
Open Universiteit 
www.ou.nl 

Restructering design patterns using functions in Java

Citation for published version (APA):

Bijlsma, A., Kok, A. J. F., Passier, H. J. M., Pootjes, H. J., & Stuurman, S. (2019). Restructering design patterns
using functions in Java: An explorative study. Open Universiteit Nederland.

Document status and date:
Published: 10/01/2019

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 26 Nov. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open University of the Netherlands Research Portal

https://core.ac.uk/display/347202375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.ou.nl/en/publications/00d868fe-ac7a-4981-9896-34fef89c8638


Restructering design patterns using functions in

Java

A. Bijlsma*1, A.J.F. Kok�1, H.J.M. Passier�1, H.J. Pootjes�1 and S.

Stuurman¶1

1Open Universiteit, Faculty of Management, Science and

Technology, Department of Computer Science, Postbus 2960, 6401

DL Heerlen, The Netherlands

February 5, 2020

*lex.bijlsma@ou.nl
�arjan.kok@ou.nl
�harrie.passier@ou.nl
�harold.pootjes@ou.nl
¶sylvia.stuurman@ou.nl

1



1 Introduction

Design patterns are standard solutions to common design problems. The famous
Gang of Four (GoF) book describes twenty-three design patterns for the object-
oriented (oo) paradigm [7]. Most of these patterns are based on the oo concepts
delegation, inheritance, abstract class and interface.

Meanwhile, the functional paradigm has also become more popular. Besides
pure functional languages, such as Haskell [11], more and more programming
languages incorporate functional features and are in fact multi-paradigm lan-
guages. Examples are Scala [17] and JavaScript [18]. Java incorporates func-
tional concepts from version 8, such as function objects as �rst class citizens and
function composition, implemented by Java syntax constructs such as lambda
expressions, functional interfaces and streams [12].
There are a number of examples on the world wibe web where object ori-
ented design patterns are modi�ed by applying functional features, for example
[3, 4, 5, 6]. What is missing is a more thorough study of when and how it is
useful to apply the functional features in design patterns.

In this report we investigate to what extent the solutions that oo design
patterns o�er can be replaced by functional features of Java, in such a way that
the resulting solutions support more e�ectively the conceptual model underlying
the original program design. We describe our research and results based on the
strategy pattern. We also investigated other patterns, such as template method,
visitor, decorator, and command. The speci�c results for these patterns can be
found in [?]. Finally, we derive some rules of thumb to determine which patterns
can be simpli�ed and how this can be done.

uml class diagrams [2, 13] are helpful during the design and implementation
of object oriented systems. Today, uml does not support functional features
explicitly. It is a problem to show functional features as �rst-class citizens
clearly in a uml class diagram. We shall propose one way of incorporating
functional features into uml class diagrams.

This report In Section 2 we show several implementations of the strategy
pattern and discuss the advantages and disadvantages of these implementations.
Section 3 proposes an extension to UML to incorporate functions. Section 4
describes related work. The results are discussed in Section 5, which leads to
conclusions and ideas for future work in Section 6.

2



2 The Strategy pattern

The strategy design pattern is intended to provide a way of selecting a strategy
from a range of interchangeable strategies. This pattern de�nes several imple-
mentations of this strategy, and at runtime can be decided which implementation
is used.

2.1 The standard object oriented approach

The GoF book shows an object oriented solution, see Figure 1 and Listing 1.
Each concrete strategy is de�ned in a separate class that implements a common
interface Strategy that de�nes the function(s) of the strategies. In Figure 1
the strategies de�ne just one function: execute (types X and Y are not further
speci�ed). The strategy is used by the class Context in method executeStrategy.
Which of the available strategies will be used, is set with method setStrategy,
that is called with an instance of the required strategy.

-strategy

1

Context

+setStrategy(Strategy)
+executeStrategy()

�interface�
Strategy

execute(X):Y

StrategyA

+execute(X):Y

StrategyB

+execute(X):Y

Figure 1: The strategy pattern, object oriented approach (Listing 1)

Listing 1: The strategy pattern, object oriented approach

public interface Strategy {
public Y execute(X x);

}

public class StrategyA implements Strategy {

public Y execute(X x) {
// implementation for strategy A

}
}

public class StrategyB implements Strategy {

public Y execute(X x) {
// implementation for strategy B

}
}

3



public class Context {
private Strategy strategy = new StrategyA ();

public void setStrategy(Strategy strategy) {
this.strategy = strategy;

}

public void executeStrategy () {
...
y = strategy.execute(x);
...

}
}

A simple example how to apply the strategy pattern is given in Listing 2.
Here, the instance of the concrete strategy is created directly. Usually this
creation will be done with a factory.

Listing 2: Application of the object oriented strategy pattern

public static void main(String [] args) {
Context context = new Context ();
context.setStrategy(new StrategyA ());
context.executeStrategy ();
context.setStrategy(new StrategyB ());
context.executeStrategy ();

}

2.2 An alternative approach using an enumeration

With an enumeration it is possible to implement the equivalent of the strategy
pattern without the class hierarchy, see Figure 2 and Listing 3. All di�erent im-
plementations of the strategy functions are de�ned in one enumeration Strategy.
This enumeration replaces the class hierarchy of the object oriented approach.
Each enumeration constant is coupled to one (or more) function(s), by imple-
menting the strategy methods de�ned as abstract methods in the enumeration.
In the given listing, each constant implements the strategy method execute.
Class Context operates in the same way as in the object oriented version.

-strategy

1

Context

+setStrategy(Strategy)
+executeStrategy()

�enumeration�
Strategy

STRATEGYA
STRATEGYB

+execute(X):Y

Figure 2: The strategy pattern, enumeration approach (Listing 3)

4



Listing 3: The strategy pattern, enumeration approach

public enum Strategy {

STRATEGYA {
public Y execute(X x) {

// implementation of strategy A
}

},

STRATEGYB {
public Y execute(X x) {

// implementation of strategy B
}

};

public abstract Y execute(X x);
}

public class Context {
private Strategy strategy = Strategy.STRATEGYA;

public void setStrategy(Strategy strategy) {
this.strategy = strategy;

}

public void executeStrategy () {
...
y = strategy.execute(x);
...

}
}

A simple example how to apply the strategy pattern is given in Listing 4.
Note that now the client doesn't create instances of the strategies itself. So no
factory is needed.

Listing 4: Application of the enumeration strategy pattern

public static void main(String [] args) {
Context context = new Context ();
context.setStrategy(Strategy.STRATEGYA );
context.executeStrategy ();
context.setStrategy(Strategy.STRATEGYB );
context.executeStrategy ();

}

2.3 An alternative approach with a functional interface

In the standard object oriented pattern the strategy is de�ned by an interface.
When the methods of the interface are functions, then the interface can also be

5



used to store the implementation of these functions.
Figure 3 and Listing 5 show an implementation of the strategy pattern where

the functions are stored in an interface. Each function in Strategy is a lambda
function.

-strategy

1

Context

+setStrategy(Strategy)
+executeStrategy()

�interface�
Strategy

STRATEGYA
STRATEGYB

execute(X):Y

Figure 3: The strategy pattern, functions de�ned in a functional interface (list-
ing 5)

Listing 5: The strategy pattern, functions de�ned in interface

public class Context {
private Strategy strategy = Strategy.STRATEGYA;

public void setStrategy(Strategy strategy) {
this.strategy = strategy;

}

public void executeStrategy () {
...
y = strategy.execute(x);
...

}
}

public interface Strategy {
Y execute(X x);

public Strategy STRATEGYA = (x) -> ... // a lambda expression
public Strategy STRATEGYB = (x) -> ... // another lambda expression

}

A simple example how to apply the strategy pattern is given in Listing 6.

Listing 6: Application of strategy pattern with functions from an interface

public static void main(String [] args) {
Context context = new Context ();
context.setStrategy(Strategy.STRATEGYA );
context.executeStrategy ();
context.setStrategy(Strategy.STRATEGYB );
context.executeStrategy ();

}

6



However, this solution does not restrict the strategies to be used to those
de�ned in given interface. All methods or lambda expressions that match the
interface Strategy can be passed to method setStrategy, wherever they are de-
�ned, see Listing 7. Therefore, it is a very �exible solution, but there is not
much control of what the strategies will do.

Listing 7: Application of the functional strategy pattern

public static void main(String [] args) {
Context context = new Context ();
context.setStrategy(Strategy.STRATEGYA );
context.executeStrategy ();
context.setStrategy(Strategy.STRATEGYB );
context.executeStrategy ();

// class C contains method that matches interface Strategy
context.setStrategy(C:: method );
context.executeStrategy ();
context.setStrategy ((x)->doSomethingCompletelyDifferent(x));
context.executeStrategy ();

}

Another disadvantage of this approach arises when a strategy consists of
two or more methods. For example, when the strategy is de�ned by methods
method1 and method2, these must be de�ned in two seperate interfaces, as a
functional interface can only contain one method de�nition. Furthermore, all
combinations of implementations of method1 and method2 are possible. That can
not be prevented. This is in con�ict with the intent of the strategy pattern,
that should enforce only certain combinations of these methods.

2.4 Discussion of the approaches

The object oriented and enumeration approaches meet the intent of the strategy
pattern: de�ne a family of algorithms and make them interchangeable. The
interface approach does not limit the possible strategies, and therefore does not
completely meet this intent. This interface approach will not be considered
further.

The main di�erence between the two remaining approaches is where the
functions are de�ned: each strategy in its own class for the object oriented
approach or all strategies in one enumeration for the enumeration approach.

The advantage of the object oriented approach is that adding a new strat-
egy only means adding a new class for this new strategy. Existing classes are
not modi�ed. Adding a new strategy in the enumeration approach means ex-
tending the existing enumeration (Strategy). However, this enumeration is only
extended, existing code is not modi�ed. In all cases the extension can be added
without modifying existing code. Therefore, both approaches satisfy the Open-
Closed principle [14].

7



The enumeration approach simpli�es the class structure, i.e. the subclasses
of the strategy have been removed. The cost of this simpli�cation of the class
structure is an increased size of the enumeration or the class that contains the
strategies, as all implementations of strategies are now collected in this enumer-
ation or class. Therefore, the enumeration approach seems to be most applicable
when the implementations of the strategies are simple, i.e. exist of a limited
number of lines of code.

There is a di�erence in the exact functionality between the di�erent ap-
proaches. A concrete strategy in the enumeration has singleton behavior: all
users of a strategy in an application use the same object. In the object ori-
ented approach an application can create and use several instances of the same
strategy. This di�erence only shows when the strategies store states. When the
strategies contain pure functions, this di�erence can be ignored.

From the uml class diagrams of Figure 1, it is directly clear that it represents
a strategy pattern and which variations of the strategy exist. The pattern is
not explicitly present in the uml class diagram of the enumeration approach
in Figure 2. Only the names of the strategies are directly visible, but not
the functions for each strategy. We will discuss a proposal to extend uml for
enumerations in Section 3.

In some applications the subclasses of Strategy in the object oriented ap-
proach need to store information (state) as attributes. The functions in the
enumeration approach do not have attributes to store state, as this approach
uses pure functions. To overcome this problem, the Context can manage the
state information and pass this information to the functions as parameters.

When each strategy needs another type of state information, so each strategy
needs its own class, then the object oriented approach is preferred over the other
approaches. The advantage of the other approaches is eliminated, as the number
of state objects equals the number of subclasses, so no reduction of classes is
achieved.

8



3 uml extension: a proposal

In Section 2 we gave a simpler solution to the problem underlying the GoF Strat-
egy pattern, using enumerations and functional abstraction. However, these
solutions are far harder to describe in uml than the classical approach. The
essence of the pattern, in our view, is the possibility of a dynamic choice between
statically de�ned alternatives. In the object-oriented style of Figure 1, this is
clearly visible because of the dynamically mutable association from Context to
Strategy, as opposed to the statically �xed implementation relationship between
interface Strategy and concrete classes StrategyA and StrategyB.

In Figure 2 the concrete strategies are no longer visible except as untyped
constants in the enumeration. This is because uml is entirely geared to relations
between classes, and in the simpli�ed enum-style solution the concrete strategies
are no longer represented as classes. They are, in fact, �rst-class functions � not
methods. The only way to represent a �rst-class function in uml is to view this
as an object implementing a functional interface. However, it is very awkward
to have to show this library interface in the diagram every time a function is
used.

This situation suggests that we would like to extend uml with a dedicated
notation for such �rst-class functions. Then in Figure 2 the enumeration ele-
ments could be explicitly linked to the functions they represent.

In order to remain as close as possible to standard uml, we propose to use
a rectangle with rounded left and right sides: a so-called `capsule shape'. These
do not play a role in normal class diagrams, but the shape is used in activity
diagrams to denote an activity. This does not seem to clash strongly with
the proposed use as a notation for stand-alone functions. Using this shape to
denote the functions associated with the enumeration elements, Figure 2 may
be replaced by Figure 4. We claim that this notation makes it easier to see the
dynamic choice between statically de�ned alternatives, which was what we set
out to do.

-strategy

1

STRATEGYA

STRATEGYB

Context

+setStrategy(Strategy)
+executeStrategy()

�enumeration�
Strategies

+execute()

execute()

execute()

Figure 4: The strategy pattern, enum style (Listing 3)

Being able to model a solution is bene�cial for students, because it allows
them to think about a solution in abstract terms without having to attend
every detail [1]. Furthermore, a uml diagram is bene�cial in communication
with domain experts, because diagrams are far more easy to understand than
code.

9



4 Related work

It has been observed many times before that design patterns re�ect a lack of
features in programming languages. The GoF patterns [7] correspond to the set
of features current in mainstream object-oriented languages such as C++ and
Java around the time of the book's publication. Sullivan [16] showed that using
a more permissive object-oriented language would make some design patterns
disappear. Hannemann and Kiczales [8] explored expressing the GoF patterns in
AspectJ, with the result that in many cases the core part of the implementation
could be abstracted into reusable code, thus creating a component rather than
a pattern.

An early proposal to exploit the new Java functional features in the context of
design patterns was made by Fusco [3, 4, 5, 6]. However, his approach is entirely
code-based and rather ad hoc: it provides one with several examples where
existing code is cleaned up and simpli�ed, but omits any consistent methodology
and does not aid at all in the design phase.

The recent work of Heinzl and Schreibmann [9] does share our ambition for
the early introduction of lambda expressions, and proposes an extension to uml
to facilitate the design process accordingly. However, their choice of a class
symbol to represent a function is confusing: a function is not a class but an
object of type Function<P, R>. Moreover, they seem to use the same multiplicity
notation for referring both to n objects and to a single object with n attributes.
Finally, their notation blurs the essence of some design patterns: the Strategy
pattern, for instance, is about making a dynamic choice from a repertoire of
algorithms. In the description of Heinzl and Schreibmann all the algorithms are
present simultaneously as attributes, and the dynamic aspect vanishes from the
design.

10



5 Discussion

5.1 Generalization of the method

Our goal was to simplify the class structure of design patterns to bring the
design more into line with the conceptual model. We have done this by removing
the inheritance structure and replace is with an enumeration or with function
interfaces:

Enumeration. The functions in the concrete subclasses in the object oriented
approach are collected into one enumeration, and stored labeled with an
enumeration constant.

Functional interfaces. The functions in the concrete subclasses in the object
oriented approach are collected in one interface.

We discussed that the interface approach has several disadvantages. I t is
not enforced that the functions are de�ned in one place, i.e. one interface. And
when the design pattern is de�ned by two ore more functions, we cannot restrict
to the desired combinations of implementations.

The enumeration approach is a good alternative for the object oriented ap-
proach, as long as the implementions of the functions are simple, and are free
of state. It is, however, possible to use state by transferring it by a parameter
object, but this makes the interface solution more complex, so than in most
cases the object oriented approach is preferred.

5.2 Applicability for other patterns

Our approach is feasible when:

� Methods are pure functions, that is when they do not rely on attributes
(state). In cases where the methods rely on very simple (only a few at-
tributes of simple types), then this state can be realized by passing state
as parameter. In these cases the caller of the functions is responsible for
managing the state.

� The redesigned design pattern should not become more complex than the
original object oriented pattern and should support the conceptual way of
thinking.

Given these conditions, for the three categories of patterns, behavioral, cre-
ational, structural, we will conclude with some general statements about the
applicabiltiy of our approaches:

� Behavorial patterns are the most likely candidates for applying the enu-
maration approach. Behavior is often de�ned by algorithms, and thus by
pure functions.

� The creational patterns can be reconstructed using functions, as long as
no state is needed to construct the �nal object structure.

11



� The enumeration and interface approach are less applicable for structural
patterns, where structure is added in terms of attributes, as these ap-
proaches do not o�er an easy way to store attributes. When the structure
is only de�ned by pure functions, then for some of the structural pat-
terns our approaches are both applicable and simplify the application.
For example, in the famous co�ee example [?] for the decorator pattern
our approaches are applicable, because the added functionality consists of
pure functions, as for example the computation of the price of a cup of
co�ee.

12



6 Conclusions and future work

We investigated the use of functional features for several design patterns. Our
goal was to simplify the class structure of design patterns to bring the design
more into line with the conceptual model. We have done this by removing the
inheritance structure and replacing it with an enumeration. The functions in
the concrete subclasses in the object oriented approach are collected into one
enumeration, and stored labeled with an enumeration constant.
Our approach is feasible when:

� Methods are pure functions, i.e. when they do not rely on attributes
(state). In cases where the methods rely on very simple state (only a few
attributes of simple types), then this state can be realized by passing state
as parameter. In these cases the caller of the functions is responsible for
managing the state.

� Methods are of limited complexity and size. Otherwise, for example, the
enumeration will become very large.

� The redesigned design pattern should not become more complex than the
original object oriented pattern and should support the conceptual way of
thinking.

Best suited are the patterns classi�ed as behavioral, for example Strategy and
Template Method, as they deal with algorithms (functions). However, some
of the behavioral patterns are less suitable, for example Command and Visi-
tor. Structural patterns deal with structure, and therefore are less suited. In
some special cases, however, also structural patterns can use our approach, for
example the Decorator pattern when the decorations are pure functions.

6.1 Future work

The question which design patterns form a suitable candidate for improvement
through functional features does not seem to allow of a simple answer: as argued
in the previous section, the dichotomy between behavioral and structural pat-
terns comes close to providing a criterion, but Visitor and Decorator are notable
counterexamples. Ideally one would wish for an objective criterion pointing to
the cases where our approach adds value. One avenue to explore in this di-
rection would be the application of various quality metrics [10]. However, it
is worth pointing out that design patterns do not improve all quality aspects:
they have a purpose, for instance contributing to �exibility for certain types of
changes, but often do so by increasing the number of classes or adding a level
of indirection, all of which would deteriorate other quality metrics.

A di�erent approach to analyzing design patterns was o�ered by Smith [15],
who considered them as compositions of much simpler programming ideas that
cannot be decomposed further. The structure of such compositions provides an
indication of conceptual complexity for each classical design pattern and also

13



for our alternative versions: this might lead to an objective criterion of the kind
we are looking for.

A �nal remark that must be made is that the possible solutions considered
here are constrained by what is possible within present versions of Java. Related
languages such as Scala would lead to di�erent choices. Therefore it would
be worth while to investigate what language features would be necessary for
even simpler versions of design patterns. For example, the Singleton pattern
disappears entirely in Scala because the language o�ers the possibility of de�ning
individual objects not belonging to any class.

14



References

[1] Vladislav Georgiev Alfredov. How programming languages a�ect design
patterns, a comparative study of programming languages and design pat-
terns. Master's thesis, Department of Informatics, University of Oslo, Au-
tumn 2016.

[2] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Uni�ed Modeling
Language User Guide. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1999.

[3] Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head
First Design Patterns. O' Reilly & Associates, Inc., 2004.

[4] M. Fusco. Gang of Four Patterns in a Functional Light: Part
1. https://www.voxxed.com/2016/04/gang-fourpatterns-functional-
light-part-1/, 2016.

[5] M. Fusco. Gang of Four Patterns in a Functional Light: Part
2. https://www.voxxed.com/2016/05/gang-fourpatterns-functional-
light-part-2/, 2016.

[6] M. Fusco. Gang of four patterns in a functional light: Part
3. https://www.voxxed.com/2016/05/gang-fourpatterns-functional-
light-part-3/, 2016.

[7] M. Fusco. Gang of four patterns in a functional light: Part
4. https://www.voxxed.com/2016/05/gang-fourpatterns-functional-
light-part-4/, 2016.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Publishing Company, Reading, MA, USA, 1995.

[9] Jan Hannemann and Gregor Kiczales. Design pattern implementation in
Java and AspectJ. SIGPLAN Not., 37(11):161�173, November 2002.

[10] Ste�en Heinzl and Vitaliy Schreibmann. Function references as �rst class
citizens in uml class modeling. In Proceedings of the 13th International
Conference on Evaluation of Novel Approaches to Software Engineering -
Volume 1: ENASE,, pages 335�342. INSTICC, SciTePress, 2018.

[11] Nien-Lin Hsueh, Peng-Hua Chu, and William Chu. A quantitative ap-
proach for evaluating the quality of design patterns. Journal of Systems
and Software, 81(8):1430 � 1439, 2008.

[12] Graham Hutton. Programming in Haskell. Cambridge University Press,
New York, NY, USA, 2nd edition, 2016.

[13] Gosling J., Joy B., Steele G., Bracha G., and Buckley A. The Java Language
Speci�cation (3rd edn). Addison-Wesley, 2014.

15



[14] C. Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2009.

[15] B. Meyer. Object-Oriented Software Construction. Prentice-Hall PTR:
Upper Saddle River, NJ, U.S.A., 1997.

[16] Jason McC. Smith. Elemental Design Patterns. Addison-Wesley Profes-
sional, 2012.

[17] Gregory T Sullivan. Advanced programming language features for exe-
cutable design patterns: Better patterns through re�ection. Lab memo
AIM-2002-005, MIT Arti�cial Intelligence Laboratory, 2002.

[18] B.P. Upadhyaya. Programming with Scala: Language Exploration. Under-
graduate Topics in Computer Science. Springer International Publishing,
2017.

[19] Nicholas C. Zakas. Understanding ECMAScript 6: The De�nitive Guide
for JavaScript Developers. No Starch Press, San Francisco, CA, USA, 1st
edition, 2016.

16


