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A B S T R A C T   

Recent advancements in mobile sensing and wearable technologies create new opportunities to improve our 
understanding of how people experience their environment. This understanding can inform urban design de
cisions. Currently, an important urban design issue is the adaptation of infrastructure to increasing cycle and e- 
bike use. Using data collected from 12 cyclists on a cycle highway between two municipalities in The 
Netherlands, we coupled location and wearable emotion data at a high spatiotemporal resolution to model and 
examine relationships between cyclists’ emotional arousal (operationalized as skin conductance responses) and 
visual stimuli from the environment (operationalized as extent of visible land cover type). We specifically took a 
within-participants multilevel modeling approach to determine relationships between different types of viewable 
land cover area and emotional arousal, while controlling for speed, direction, distance to roads, and directional 
change. Surprisingly, our model suggests ride segments with views of larger natural, recreational, agricultural, 
and forested areas were more emotionally arousing for participants. Conversely, segments with views of larger 
developed areas were less arousing. The presented methodological framework, spatial-emotional analyses, and 
findings from multilevel modeling provide new opportunities for spatial, data-driven approaches to portable 
sensing and urban planning research. Furthermore, our findings have implications for design of infrastructure to 
optimize cycling experiences.   

1. Introduction 

Emotions play a major role in our day-to-day lives, shaping how we 
perceive and experience the world. Emotions are intense, short-lived, 
complex reactions to personally meaningful stimuli (Oatley, Keltner, & 
Jenkins, 2006). An important source of personally meaningful stimuli 
are the places in which people live. Bumper-to-bumper traffic, large 
noisy crowds, and beautiful architecture, all evoke emotional responses. 
While we may feel happy and secure in one place, we might feel worried 
and unhappy in another (Korpela, 2002). Furthermore, it is well-known 
that such reactions involve interactions between stimuli and individual 
differences such as personality, biological sex, and age (Larsen & Diener, 
1987). 

How we emotionally respond to a place depends on a wide variety of 
factors (Kirillova, Fu, Lehto, & Cai, 2014). Urban planning and design 
efforts focus on controlling these factors to make experiences of cities as 

positive as possible. Related research examining how emotions develop 
over urban spaces is quickly growing (i Agust’ı, Rutllant, & Fortea, 
2019; Shoval, Schvimer, & Tamir, 2018) including urban cycling ex
periences (Schmidkunz, Schroth, Zeile, & Kias, 2019; Gamble, Snizek, & 
Nielsen, 2017; Zeile et al., 2016; Snizek et al., 2013). Cycling’s recent 
boom in popularity, and considerable efforts to redesign city trans
portation infrastructures around cycling, warrants a closer look at cy
clists’ experiences within and between cities. Two technological 
developments point to a need for further research. First, existing cycling 
infrastructure is being enhanced to accommodate the increasing spread 
of e-bikes enabling higher average cycling speeds over mid-range dis
tances (5–20 km; Schleinitz, Petzoldt, Franke-Bartholdt, Krems, & 
Gehlert, 2017). Second, increasingly accurate and affordable biometric 
technologies make it possible to measure cyclists’ emotions in a 
continuous, time-based, and unobtrusive way. These technologies have 
been applied to urban experiences of walking, but only rarely to cycling. 
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To address this gap, we used wearable location and emotion tracking of 
12 cyclists on an intercity cycling highway to determine how the land 
cover type within their field of view affects their emotional arousal. 
Findings can inform urban design approaches for building public spaces 
that effectively evoke the emotions and experiences urban planning 
strategies demand. 

2. Background 

Emotions are biologically-based responses to stimuli (Scherer, 2005). 
Evoked in situations that are seen as personally relevant, emotions 
constitute the main driving force of human behavior (Ekman, 1992). 
Physical characteristics of locations such as cities can evoke an emotion 
(Mody, Willis, & Kerstein, 2009), causing them to be experienced as 
attractive, boring, or dangerous, for example (Korpela, 2002). 

Emotions thus play a crucial role in the mental construction and 
recollection of urban experiences. In the context of leisure and tourism, 
Bastiaansen et al. (2019) proposed a model based on cognitive psy
chology and neuroscience which demonstrates the importance of emo
tions for understanding experience. The model takes external and 
internal stimuli as a starting point, which together comprise an in
dividual’s continuous stream of consciousness. Because this stream is 
overwhelmingly rich in information, the mind marshals models for pe
riods of time such as ‘breakfast’ and ‘commute’ to separate the stream of 
consciousness into discrete experiential episodes. Emotional arousal 
varies from one episode to the next, but also within each episode. If 
emotional arousal peaks beyond a certain threshold during a given 
episode, that episode prompts an action tendency (Fredrickson, 1998) 
and is thus likely to be remembered and acted upon. Based on this 
model, emotion acts as a ‘switch’ to determine if a given experiential 
episode influences memory and behavior. Thus, Bastiaansen et al. 
(2019) stress that to measure experience, the crucial outcome to focus 
on is emotion. Furthermore, they assert that emotion develops contin
uously over time, and should therefore be measured using the newly 
available wealth of physiological methods such as wearable skin 
conductance or heart rate (variability) measurements, in addition to 
self-report methods. 

Certain physiological measures have been shown to be especially 
sensitive to emotions (Bradley & Lang, 2000; Lench, Flores, & Bench, 
2011). These measures are useful for studying whether the physical 
layout of an environment, along with its built and natural structures, can 
evoke particular emotions in its users and in turn, affect the way it is 
perceived and experienced (Hille, 1999). One well-established physio
logical marker of emotion is skin conductance. Also termed electro
dermal activity (EDA) or galvanic skin response (GSR), skin conductance 
refers to increases in the skin’s ability to conduct electricity caused by an 
opening of the sweat glands. Two electrodes passing a weak current 
between one another, as those worn on the bottom of a wristband, can 
detect this change. Technologies such as the Empatica E4 (Empatica, 
2019), a wearable wristband designed to measure skin conductance, 
make such measurement accessible in mobile field contexts. 

Variations in skin conductance comprise physiological responses to 
discrete environmental stimuli. Hence, they are not only considered to 
be a reliable index of emotional arousal (Bradley et al., 2008), but when 
combined with location tracking, reveal the spatial distribution of 
emotional arousal (Birenboim, Dijst, Ettema, et al., 2019; Shoval et al., 
2018). Coupling location measurements with physiological signals en
ables measuring the experiences of urban design interventions, such as 
singage or marking of cycling routes. Previously, research measuring the 
emotional effects of urban design has been largely limited to cross- 
sectional or repeated measures (Snizek et al., 2013) through self- 
report-based questionnaires or qualitative methods. The combination 
of physiological emotion measurement with location tracking holds 
several advantages over traditional self-report procedures: it is free from 
the well-known recall biases of self-report measures (Wirtz, Kruger, 
Scollon, & Diener, 2003), it reduces burden on participants, avoids 

disrupting the experience being measured, is ecologically valid, and can 
log in-situ, continuous, high spatiotemporal resolution measurements of 
emotional arousal (Bastiaansen et al., 2019; Birenboim, Dijst, Scheepers, 
et al., 2019). By ecologically valid, we mean that physiological mea
surements assess experiences as they naturally happen, without 
researcher intervention, in their appropriate environmental context. 

Ecological validity of most previous physiological research on emo
tions has suffered from participants’ laboratory experiences being rather 
different than a real-life visit to an urban space. While recent studies on 
cycling experience have made considerable advancements in simulating 
real-world environments in laboratory settings, they still tend to be 
perceived as artificial. This was observed in Birenboim, Dijst, Scheepers, 
et al. (2019), which demonstrated how even though immersive virtual 
environments offer higher levels of realism to participants, they are still 
found to be artificial in test–retest reliability. Similar outcomes were 
observed in Ellard (2017)’s research, which explored connections be
tween emotion and urban design using high-immersion virtual envi
ronments. With wearable recording equipment now readily available, 
physiological measurements are increasingly being used in ecologically- 
valid urban settings (Birenboim, Dijst, Scheepers, et al., 2019; i Agust’ı 
et al., 2019; Shoval et al., 2018). The results of mobile in-situ emotion 
measurements are directly applicable to urban planning for decision 
support and the evaluation of ongoing planning processes (Resch et al., 
2015; Nold et al., 2009). Urban planners can gain valuable insight into 
which spatial configurations and environmental features (e.g., open 
green spaces, dense urban spaces) trigger emotional arousal in visitors 
and residents. Emotionally stimulating areas can be identified and then 
emphasized or removed, respectively. 

Previous research has linked physiological measures of emotional 
arousal with location (Nold et al., 2009; Zeile et al., 2009; Sagl, Resch, & 
Blaschke, 2015; Resch et al., 2015). The interest in mapping emotion has 
since continued to grow within urban spatial analytics (Birenboim, 
Reinau, Shoval, & Harder, 2015; Birenboim, 2016; Birenboim, Dijst, 
Scheepers, et al., 2019; Shoval et al., 2018; Hijazi et al., 2016; Zeile, 
Höffken, & Papastefanou, 2009, Zeile et al., 2013, Zeile et al., 2015, 
Zeile et al., 2016). These studies are based on urban walking experi
ences, and the measured data are usually interpreted in terms of prox
imity to urban features. Yet, being near a certain urban feature does not 
mean that it is actually experienced or even sensed. Many of these 
studies’ analyses involve deriving a map and describing it, without 
statistical modeling (with the exception of Hijazi et al., 2016). 

Two notable studies (Schmidkunz et al., 2019; Zeile et al., 2016) 
combined skin conductance recording with location tracking of a cycling 
experience, focusing on stress and safety in urban cycling contexts. By 
taking a bio-physiological sensing based, mixed-methods approach, 
these studies demonstrate how infrastructure inter-user conflict can play 
a principal role in sparking emotional responses from cyclists. However, 
these studies are qualitatively described, rather than being modeled 
statistically, making comparison from one study to another difficult. 
Moreover, experiences of combined urban and inter-urban travel using 
e-bikes have yet to be covered. 

Cycle highways are a relatively new type of urban infrastructure that 
offer healthy and environmentally-friendly alternatives to motorized 
transportation within and between nearby cities. Planning cycling 
highways for optimal rider experience is important to ensure they are 
used, and that their users benefit from these investments. Stressful or 
unpleasant cycling experiences are likely to be recalled and unlikely to 
be repeated, reducing cycle use and possibly contributing to increased 
automobile use. Furthermore, the increased popularity of e-bikes pre
sents differing infrastructure requirements, and new challenges to solve. 
For example, conventional signs are designed for average cycling speeds 
of 15 km/h, whereas most riders on e-bikes can easily reach 25 km/h 
(Solymosi, Bowers, & Fujiyama, 2015). Current infrastructure includes 
rough paving, sharp turns, and small signs parallel to the direction of 
travel, which are inadequate for navigating at these higher speeds. Thus, 
mapping and statistically analyzing cyclists’ experiences can help gather 
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insights into spatiotemporal dynamics of emotional arousal, and help 
city planners respond to changing infrastructure requirements. We 
expect areas where infrastructure poses a known problem to lead to 
more emotional arousal in users. We also believe that unique sights 
along the route will trigger emotional arousal. Furthermore, we focus on 
experience of visual stimuli, as sight is the dominant sense in triggering 
emotional responses (Kalat, 2015), and the other senses are difficult to 
model across space using secondary geospatial data. 

Our goal in the present study is to extend the existing research in 
several ways: First, we apply physiological methods to the experience of 
cycle highways and using e-bikes for urban and inter-urban travel. 
Second, by calculating viewsheds of what cyclists would see at a dense 
systematic sample of points along their ride, we link their experience not 
only to a location, but to a metric of the actual visual stimuli present at a 
given location. Third, we move beyond merely mapping relationships 
between visual stimuli and emotional arousal by modeling it statistically 
with multilevel models, which nest stimulus-arousal effects within 
participants. Fourth, we surpass aggregated considerations of space and 
time by developing a dynamic, interactive, web-based mapping system 
to visualize fine-grained dynamics of environmental exposure and 
experience. Overall, our approach serves two main goals:  

1. Establish a methodological framework for spatiotemporal modeling 
of emotional reactions to urban experiences and develop a dynamic 
web-based mapping system to interactively visualize these reactions. 

2. Determine how environmental stimuli along a cycle highway influ
ence e-bike users’ emotional arousal. 

To carry out these objectives, we established the following research 
question:  

1. How does extent of a given land cover type in a electric bicycle 
rider’s view affect her or his level of emotional arousal, while con
trolling for ride speed, direction, and distance to automobile roads, 
and how do changes in direction (turns) explain additional variation 
in skin conductance when the other variables are accounted for? 

We address these goals and question in the context of e-bike rides on 
a cycle highway connecting the Dutch cities of Tilburg and Waalwijk. 

3. Methods & data 

3.1. Study region 

Our study took place on the F261 cycle highway from Tilburg via 
Loon op Zand to Waalwijk, Netherlands (Fig. 1). It has been established 
as a demonstration route for research on how various traffic situations 
and bicycle infrastructure affect cyclists’ experiences. It is 18 km long, is 
approximately evenly divided between urban and rural environments, 
and connects the municipalities of Tilburg, Loon op Zand, and Waalwijk. 
Tilburg is one of the Netherlands’ larger cities (6th; 219,632 residents) 
and has an urban, industrialized character, with numerous factories and 
businesses. 

North from Tilburg, the cycle highway moves past two of the coun
try’s most important tourism attractions: the Efteling, which is the 
world’s oldest theme park, having opened in 1952, and the Loonse en 
Drunense Duinen, a national park containing a unique inland dune field. 
These two attractions flank the village of Loon op Zand. The cycle 
highway’s north end terminates in the town of Waalwijk, which is 
significantly smaller than Tilburg (population 48,240) but features large 
shopping centers on its southern side. In this area, the cycle highway 
also crosses the busy A59 motorway. Thus, the ride featured a mix of 
urban and rural landscapes, with frequent changes in land cover type 
across the viewshed (Fig. 1). 

3.2. Procedure & participants 

12 participants (4 female, 8 male) unfamiliar with the cycling route 
were recruited for this study. Half (N = 6) of participants’ ages ranged 
from 18 to 24 years old (M = 21), while the remaining half were 55 years 
or older (M = 65). We used a purposive sampling approach in selecting 
participants. Since we were focusing on a newly designed type of 
infrastructure, we chose half of our sample from an older population, 
who are likely to cycle recreationally, often while exploring new loca
tions, and use existing infrastructure to do so. For comparative purposes 
and ease of recruitment, younger individuals were selected for the other 
half of the sample, who were majorly students. In selecting from these 
two populations, we eliminated groups for which we thought the new 
infrastructure was less relevant, especially in terms of the unique e-bike 
oriented signage. This approach specifically allowed us to exclude in
dividuals who have perhaps become too accustom to their daily ride, or 

Fig. 1. Study area containing the cycling highway participants took connecting the municipalities of Tilburg, Loon op Zand, and Waalwijk: (a) land cover type and 
the cycling route, buildings, and vegetation; (b) digital surface model including elevation [m] of bare ground, buildings, and vegetation. Both data layers were 
developed at half-meter resolution. 
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sport cyclists who use personal navigation units. While relevant to data 
collection procedures, statistically modeling differences between the 
older and younger subgroups was beyond the scope of the present paper. 
However, we recommend future research efforts to carry out such a 
comparative investigation, as differences in personality, biological sex, 
and age can all substantially modulate the evaluation and memory 
encoding of emotional experiences (Larsen & Diener, 1987). 

Participants were asked to provide information on their weekly 
cycling habits. Younger participants, mostly university students, re
ported cycling functionally 3 days a week (M = 20.4 min per day), while 
those 55 years or older cycled 2.5 days a week (M = 22.6 min per day). 
Recreationally, younger participants cycled roughly 1 day a week (M =
23.4 min per day) and older participants cycled 2 days a week (M = 4 h 
per day). 

Participants were instructed to stay on the cycle highway for the 
entirety of the route. None of the participants were familiar with the 
route and they all used the signposting, infrastructural layout, and other 
indicators to find their way. Participants were randomly split in half for 
the direction of the ride. Half of participants cycled in the direction from 
Tilburg to Waalwijk, while the other half cycled in the opposite direc
tion. Gazelle e-bikes were ridden by participants, with electric pedaling 
support limited to a speed of 25 km/h, in line with Dutch law. Cycling 
faster than 25 km/h means that the electrical support stopped and 
cycling became more strenuous. Thus, riders were not able to exceed this 
point. The bicycles offered three levels of powered assistance, from 
which participants were free to choose. A researcher riding along with 
participants used the same make and model of bicycle. 

The choice to have a researcher ‘ride along’ with participants pre
sents a compromise among several limitations faced during data 
collection. On one hand, we wanted participants to navigate the cycle 
highway by themselves. This was in consideration of data collection’s 
secondary focus—the function of signage and wayfinding. On the other 
hand, we wanted participants to stay on the cycle highway to spatially 
align their experiences as much as possible. Thus, we had a researcher 
ride along with participants to correct any navigation errors, rather than 
explain the route beforehand or provide any type of navigation tech
nology. Otherwise, it is likely any effects of signage would have been 
overlooked. This approach thus gave us the opportunity to: 1) allow 
participants to self-sufficiently navigate the cycle highway and 2) ensure 
they remained on the F261 cycle highway. Prior to their cycling journey, 
they were given clear instructions not to converse with the researcher 
nor ask them questions when cycling. The researcher only interrupted 
when participants became lost, or started going in an incorrect direction. 
Additionally, the researcher recorded any locations where participants 
may have hesitated or became confused. As soon as they completed their 
cycling journey, the researcher administered post-interviews to each 

participant. During which, the researcher used the information gathered 
on potentially confusing regions of the cycle highway to unveil how 
participants might have felt during such situations or what may have 
caused these situations, such as improper signage (Hoeke, de Kruijf, & 
Soemers, 2019). 

3.3. Mobile data collection 

3.3.1. Location & speed 
Location data were collected through a dedicated smartphone 

application. The application utilized both the smart phones’ GPS and the 
cellular network location to record participants’ location as well as 
speed and approximate elevation (see Fig. 2). Collected time-stamps 
(Table 1) allowed for synchronization with skin conductance response 
data, a key aspect when analyzing skin conductivity as it allows for 
accurate logging of start- and end-times of specific physiological 
episodes. 

Fig. 2. Data capturing process.  

Table 1 
Descriptions, sampling devices, processing software, and sampling rates asso
ciated with various human movement, physiology, and environmental location 
data variables.  

Variable Description Device 
[Software] 

Sampling 
Rate 

Human Movement & Physiology 
Init_time Time stamp in Unix time Empatica [Ledalab] 4Hz 
Init_time_mat Time stamp in datetime 

format 
Empatica [Ledalab] 4Hz 

Time Sampled at a frequency 
(s) 

Empatica [Ledalab] 4Hz 

Datatype Type of data (SCR or 
GPS) 

Empatica [Ledalab] 4Hz 

Conductance Raw Electrodermal 
Activity (EDA) 

Empatica [Ledalab] 4Hz 

Conductance_z Z-transformed EDA Empatica [Ledalab] 4Hz 
Tonic_z Z-transformed SCL Empatica [Ledalab] 4Hz 
Phasic Raw SCR Empatica [Ledalab] 4Hz 
Phasic_z Z-transformed SCR Empatica [Ledalab] 4Hz 
Environmental Location 
Latitude Coordinate data 

(northing) 
Mobile GPS [R — 
GRASS] 

1Hz 

Longitude Coordinate data (easting) Mobile GPS [R — 
GRASS] 

1Hz 

Altitude Height above sea level 
(m) 

Mobile GPS [R — 
GRASS] 

1Hz 

Distance Meters from starting 
point 

Mobile GPS [R — 
GRASS] 

1Hz 

Speed Current velocity (km/h) Mobile GPS [R — 
GRASS] 

1Hz  
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The high sampling frequency of the location data (Table 1) resulted 
in an unrealistic, noisy speed variability. We used weighted moving 
average with a 60-s moving window to compute smoothed speed along 
the cycle highway for each participant. The weights were linearly 
decreasing from 1 at the current point to 0 at the window limits and 
subsequently, the weights were re-normalized so that they summed to 1. 
In this manner, the mean was unaffected while the noise decreased 
roughly by an order of magnitude, while longer intervals of break in 
speed due to stops were still well represented. 

3.3.2. Emotional arousal 
We used skin conductance responses as a continuous, time-varying 

measure of emotional arousal. As cyclists biked along the track, their 
skin conductance was measured using a wrist-worn Empatica E4 wear
able, which uses two active electrodes on the bottom of the wrist. Skin 
conductance was recorded at a rate of 4 Hz. It is well-established that 
raw skin conductance signals result from two separate processes—rapid 
responses to emotional stimuli, and gradual change due to differences in 
temperature, physical activity, and the wearing of a sensor against the 
skin (Braithwaite, Watson, Jones, & Rowe, 2013). The former compo
nent, known as phasic skin conductance or skin conductance responses 
(SCR), is the metric which indicates immediate peripheral nervous re
sponses to emotion stimuli. 

Skin conductance responses were derived from the raw skin 
conductance signal in Ledalab (Karenbach, 2005), a MATLAB-based 
(MATLAB, 2018) software for the analysis of raw EDA data. To carry 
out this process, we first used a moving window of 20 s on raw, un
processed skin conductance data to identify deviations of 3 standard 
deviations or more as potential motion artifacts. These deviations were 
visually inspected and if they failed to conform to a standard, 
physiologically-plausible shape for a SCR—specifically a decline which 
lasted at least 3 or more seconds after a peak—were replaced with linear 
interpolation. Cleaned data were then deconvoluted using the Ledalab 
toolbox into phasic and tonic components. Ledalab implements the 
method of continuous deconvolution, wherein frequencies of change are 
used to mathematically separate out changes in nerve activity that drive 
skin conductance responses, and gradual changes due to skin conduc
tance level. The former is considered a valid and reliable metric of 
emotional arousal, with a baseline near 0, reached between occasions of 
emotional stimuli, and sharp increases immediately after the onset of a 
stimulus. The remaining tonic signal changes over a course of minutes or 
hours in response to physical activity and environmental conditions. 
After deconvolution into these two components, we retained the phasic 
component as a continuous, time-indexed metric of emotional arousal, 
which became the dependent variable in our statistical models (R Core 
Team, 2017). We z-standardized the phasic signal to reduce differences 
between participants in the average amplitude of skin conductance re
sponses, as discussed by Braithwaite et al. (2013). 

As mentioned earlier, the physiological data were georeferenced 
through a time-based synchronization of the SCR data with GPS location 
data. To preserve the higher frequency of physiological measurements, 
the SCR data were assigned to the closest GPS location collected at 1 Hz 
frequency. To further enhance the precision of the location associated 
with each physiological measurement, the GPS locations can also be 
interpolated to match the 4 Hz frequency. The entire data set, consisting 
of over 180,000 georeferenced physiological measurements, was then 
re-projected to the local coordinate reference system (Amersfoort, EPSG: 
28992) to facilitate integration with the geospatial data sets and 
analysis. 

3.4. Static geospatial data 

To develop a digital surface model (DSM) and a land use map, we 
used three geospatial data sets. These included orthoimagery, airborne 
lidar point cloud, and vectorized buildings, roads, and other land use 
features downloaded from the official open data repositories1. See Fig. 1 

for an overview of the processed geospatial data used as input for the 
analysis, and the Appendix2 for the full Jupyter notebook environment 
containing all used data and detailing cloud-executable code of the 
employed analyses. 

3.4.1. Elevation 
We used lidar point cloud to generate a detailed model of the envi

ronment. Several studies have demonstrated that high resolution lidar- 
derived DSM improved accuracy of visibility calculations compared to 
lower resolution (Klouček et al., 2015) and bare ground surfaces 
(Vukomanovic, Singh, Petrasova, & Vogler, 2018). Thus, DSM was 
interpolated from first-return lidar points at 0.5 m resolution to provide 
input for computation of viewsheds along the cyclists path while 
capturing the impact of buildings and other structures (Fig. 3). We used 
a regularized spline with tension algorithm implemented in GRASS GIS 
to balance the smoothness and approximation accuracy of the interpo
lated elevation surface (v.surf.rst3 module; Mitasova, Mitas, & Harmon, 
2005). 

3.4.2. Land use 
Visual perception of environmental features often has a significant 

impact on how cyclists value their environment and the trips them
selves. Within the current context, environmental features were ob
tained using the data set ‘Bestand Bodemgebruik’ (BBG), or ‘Resistant 
Land Use’, maintained by Statistics Netherlands (CBS, 2018). Based on 
previous research in the Netherlands using similar data (Jansen, Ettema, 
Kamphuis, Pierik, & Dijst, 2017), these extensive land classification data 
were categorized into seven overarching land use groups: 1) developed, 
2) natural, 3) recreation, 4) water, 5) business, 6) agriculture, and 7) 
forest. Developed areas were classified as either built or semi-built up 
land. Built land contained residential areas, retail areas, and public fa
cility areas, for example. Semi-built land included cemeteries, dumping 
grounds, and junkyards. Natural areas in the vicinity of the cycle high
way were constituted by open terrain, consisting of either dry or mixed 
vegetation. Recreation contained places frequented for leisure like 
sports areas, and amusement parks. Any area described as containing a 
body of water such as rivers, was also defined. Agricultural areas con
tained greenhouses, or land used for general agricultural purposes. The 
polygon-based land use layer was then converted to 0.5 M resolution 
raster representation. 

The chosen categorization of land cover types is a simplified yet 
necessary perspective on the visual stimuli offered by this landscape to a 
cyclist in motion. We felt that seven land cover types offered a reason
able compromise among 1) representing visual stimuli as realistically as 
possible, 2) creating a statistical model of emotional arousal based on 
sufficiently few parameters that it can be readily estimated and inter
preted, and 3) grouping the visual stimuli experienced along this 
particular cycle path in sufficiently few types so that each type com
prises a substantial number of data points. 

4. Analysis 

4.1. Distance to roads 

Since our analyses were interested in potential dependence between 
distance from environmental features and associated skin conductance 
values, we used v.distance4, a GRASS GIS (Neteler & Mitasova, 2008) 
module to map the distances between each cyclist’s location point and 
the closest roads. These were stored for later statistical analyses to 
determine possible relationships between how far away cyclists were 
from roads and observed levels of emotional arousal. 

4.2. Viewsheds 

Viewsheds, the portions of a landscape visible from a given point or 
set of points (Wilson, Lindsey, & Liu, 2008), are computed on a DSM 
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based on a line-of-sight method. To perform this analysis, we used the 
GRASS GIS r.viewshed5 module, which employs a computationally effi
cient algorithm (line-sweeping method) suitable for deriving viewsheds 
on a high-resolution DSM (Haverkort, Toma, & Zhuang, 2009). 

The viewsheds were computed for 1739 viewpoints evenly distrib
uted along the cycling highway at 20 m intervals. These points were 
used twice, as required to derive viewsheds for each riding direction, 
resulting in a total of 3478 data points for statistical modeling. 
Considering the marginal increase in a person’s height when riding a 
bike, the viewsheds were computed on the 0.5 m resolution DSM slightly 
above eye-level–1.75 m–to simulate a typical viewpoint while riding a 
bicycle. Cyclists’ maximum range of visibility was set at 1000 m. The 
static cut-off distance of 1000 m was selected after careful evaluation of 
line of sight in this flat terrain. Our preliminary computation of view
sheds indicated that the range of views is within 1 km, and often times, 
was much less as buildings and vegetation limited views along the bike 
route. Additionally, we limited cyclists’ horizontal viewing angle to 
180

◦

. The viewing angles were computed based on the directions par
ticipants were traveling along the cycle highway, and were set in de
grees counterclockwise (East is 0

◦

), between 0
◦

and 360
◦

(Fig. 4b). 
Viewshed maps were then intersected with land cover data and zonal 

statistics were applied to extract proportional contributions of each 
visible land cover class (e.g., buildings, forest) within the total visible 
area, creating ‘visible land cover maps’. These maps are high-resolution 
visualizations of participants’ environmental interaction as it unfolds 
over time, within both natural and built conditions (Fig. 4d). By 
coupling these with associated Z-transformed SCR data (phasic z), we 
can then statistically associate variations in the cyclists’ perceptual and 

related mental states as they experience their environment. 

4.3. Statistical modeling & visualization 

Because the data were nested within participants, we took a within- 
participants multilevel modeling approach using the lmer() (Bates, 
Mächler, Bolker, & Walker, 2015) function in R. The specific modeling 
approach used—within-participant random intercept models—models 
unique variance in a time-variant outcome as a function of time-variant 
predictors for an average participant, while controlling for baseline 
(intercept) differences between participants in the outcome variable. 
The data resolution was limited by the resolution of the calculated 
viewsheds to one data point per 20 m. This was the maximum possible 
resolution given computational limitations. The distribution of points 
translates to a temporal resolution of 0.278 Hz, or once per 3.67 s. 
Because our central question was to determine the effects of environ
mental stimuli on experience, we used variables representing stim
uli—extent of viewable area in different land cover types, direction, 
distance to road, and speed—as predictors. We used a variable repre
senting the level of emotional arousal experienced, quantified as phasic 
skin conductance responses, as the outcome. We compared this model 
using an F-test to a model with no predictors to establish its overall 
predictive value, before applying the Satterthwaite approximation of T- 
value to determine the statistical significance of each parameter. Thus, 
each parameter in the model represents the statistical relationship be
tween the visible extent of a particular type of landcover and emotional 
arousal within the experience of the average participant. 

We took a hierarchical approach to making the model more complex 

Fig. 3. High resolution digital surface model (DSM) in Tillburg, with two tall buildings and a segment of the studied route. Orthophotography is draped over 
the DSM. 

Fig. 4. Procedure for computing viewshed for a single viewpoint: (a) viewpoints were set along the cycling highway at 20 m evenly distributed intervals; (b) riding 
direction angle was established with line direction in degrees counter-clockwise from east; (c) binary viewsheds were generated on the DSM, horizontally limited to 
180

◦

; (d) viewshed maps were then intersected with land cover data layer to extract visible land cover classes. 
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as a way of addressing the second part of our research question. As 
previous research based on the same participants emphasized the 
importance of turns during navigation to the overall experience, we 
added a measure of directional change to the model, once again using 
the F-test to determine if this constituted an improvement in model fit. 
The added parameter, directional change, represents the relationship 
between how much participants were turning in a given moment based 
on temporally proximal data and their emotional arousal, while holding 
visible land cover constant. 

Finally, to move beyond an aggregated consideration of space and 
time, we have developed a dynamic, interactive web-based mapping 
system capable of: 1) registering linkages at individual and grouped 
levels, 2) visualizing high-resolution spatiotemporal, geographically 
contextualized, interpretable data, and 3) allowing researchers to 
investigate various aspects of environmental exposure and experience 
simultaneously. 

5. Results 

5.1. Descriptive statistics 

To summarize and graphically represent descriptive statistical results 
from the measured data, we used a hexagonal binning process–a tech
nique for synthesizing geographical data which groups pairs of locations 
based on their distance from one another across a spatial grid. The 
hexagonal grids were generated using v.mkgrid6, which creates a vector 
map representation of a regular coordinate grid. Then, v.vect.stats7 was 
used to compute and display spatial distributions of the phasic skin 
conductance and speed variables along the cycling route, grouped by 
their respective average and standard deviations. Fig. 5 shows the 
resulting gridded hexagons, generated at 300 m resolution. These 
spatially distributed summary metrics indicate prevailing lower values 
of phasic skin conductance in urban areas, while higher phasic skin 
conductance values are seen midway along the route in more rural 
settings (Fig. 5). 

5.2. Multilevel models 

Our initial model (Table 2) examined the relationships between 
visible area extent of seven different landcover types and emotional 
arousal while controlling for ride direction, speed, and proximity to 

Fig. 5. Result of the hexagonal binning process at 300 m resolution. These maps represent the spatial distributions of the (a) averages and (b) standard deviations of 
phasic skin conductance [μS] and the (c) averages and (d) standard deviations of the smoothed speed variable in [km/h]. Both maps are overlaid on the 
orthophotography. 

Table 2 
Mixed-effects linear models of the connections among viewable land cover, 
speed, direction, distance to roads, direction changes, and emotional arousal.  

Predictor(s) Fixed effect CE SE T Model 
AIC 

Model 1 
Developed in 

view 
− 0.000002 0.0000002 − 10.203***  

Natural in view − 0.000023 0.000025 − 0.903  
Recreation in 

view 
0.0000068 0.0000016 4.221***  

Water in view 0.0000023 0.0000037 0.643  
Business in view − 0.0000022 0.0000006 − 3.418*** 356399.8 
Agriculture in 

view 
0.0000014 0.0000002 5.172***  

Forest in view 0.0000378 0.0000017 22.171***  
Speed (km/h) − 0.0145064 0.0003125 − 46.416***  
Direction − 0.2884326 0.2334752 − 1.235  
Distance to road 0.0098596 0.0003992 24.693***  
Model 2 
Developed in 

View 
− 0.0000016 0.0000002 − 6.229***  

Natural in View − 0.0000299 0.0000256 − 1.170  
Recreation in 

View 
0.00000634 0.00000161 3.921***  

Water in View − 0.00000002 0.00000368 − 0.004  
Business in View 0.00000077 0.00000065 1.182  
Agriculture in 

View 
0.00000070 0.00000028 2.531* 355591.9 

Forest in View 0.00003474 0.00000171 20.361***  
Speed − 0.01495816 0.00031218 − 47.916***  
Direction − 0.28314307 0.23396383 − 1.210  
Distance to Road 0.00871448 0.00040035 21.767***  
Direction Change − 0.00075514 0.00002650 − 28.494***  

Note: Signif. codes: 0′***’ 0.001′**’ 0.01′*’ 0.05′.’ 0.1′′ 1. 
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roads. This model was significantly better than a null model (AIC =
356,400; LL = − 178,187; Chi-square = 4143.1; p < 0.001). Of the 
control variables, distance to roads was positively related to emotional 
arousal, while speed was negatively related to emotional arousal. In 
other words, within the average participant, the most intensely 
emotional moments were relatively further from roads and at lower 
cycling speeds, holding visible area extent of different landcover types 
constant. Direction, namely whether participants cycled from Tilburg to 
Waalwijk or vice versa, was unrelated to emotional arousal. The visible 
extent of five landcover types had a significant effect on emotional 
arousal. The extents of viewable recreation, agriculture, and forest areas 
were positively related to emotional arousal, while the extents of 
developed and business areas were negatively related to emotional 
arousal (all p’s < 0.001). Thus, while holding distance to roads, speed, 
and direction constant, participants became more emotional in large 
viewable areas managed for natural resource uses. They became rela
tively less emotional in large viewable human-built areas. 

We then entered the variable of directional change into the model, 
which captures the extent to which participants were turning rather than 
riding straight in a given moment. This addition resulted in a better 
fitting model (AIC = 355,592; LL = − 177,782; Chi-square = 809.93; p < 
0.001). The effects of control variables on emotional arousal did not 
change in direction or significance. The effects of visible extent of 
landcover types also did not change in direction or significance, except 
the effect of business landcover became non-significant (p = 0.24). The 
variable of interest in this analysis, extent to which participants were 
turning, was negatively related to emotional arousal (p < 0.001). In 
other words, the more steeply participants were turning, the less 
emotionally aroused they were, holding direction, speed, proximity to 
roads, and extent of viewable landcover type areas constant. 

5.3. Dynamic visualization 

The main view of the dynamic visualization system and its user 
interface is shown in Fig. 6. Its components, key views, and interactive 
features are described below. The implementation is mainly based on 
Mapbox GL JS, a JavaScript library that uses WebGL to render interac
tive maps. 

Toggable Data: With toggable data (Fig. 6a), we can seamlessly switch 

back and forth between different cyclists. This is important to explore 
variability in skin conductance across multiple participants. 

3D Map: The 3D map view (Fig. 6b) provides an overview of the 
cyclists’ physiological responses within the spatial context, including 
the effects of buildings. It allows us to display data as a 2D map or zoom- 
in and explore details in a 3D perspective view. The 3D view facilitates 
visual assessment of data location accuracy in relation to the buildings 
and transportation infrastructure, queries all attributes associated with 
each point, and visually analyzes spatial patterns of attribute values 
using colored point symbols. The 3D mapping platform thus serves as a 
valuable feature for exploration, analysis, and interpretation of complex 
human physiology data across urban landscapes. 

Dynamic Graph: The dynamic graph (Fig. 6c) shows the temporal 
distributions of cyclists’ collective (or individual when only one cyclist 
has been selected) physiological patterns. This chart dynamically dis
plays all data that is currently loaded into the map frame. As we zoom in 
and out and pan around in the map, the chart automatically updates 
with a spatiotemporal overview of complex, highly dynamic human 
physiological data. 

Automatic Street View: Using Mapillary8, a crowd-sourced alternative 
of street-level photographs to Google Street View, the automatic street 
view (Fig. 6d) allows us to more naturally and realistically inspect areas 
and their surrounding environmental features at a given time and thus, 
provides more realistic insight into the complexities of moving through 
and directly experiencing 3D space. With this capability, our application 
derives information that is not visible on aerial imagery, for example 
type of traffic sign, or to map features that would require in-person 
exploration through field surveys (Juhász & Hochmair, 2016). While a 
researcher did observe and collect video recordings of the participants’ 
journey along the cycle highway, we opted for a more automated 
approach using Mapillary. This was done to ensure the application’s 
reproducibility and applicability to a wide variety of use cases. Specif
ically, if researchers or users did not collect videos or similar imagery 
during their research efforts, they can still adopt the application for their 
research needs. Yet, Mapillary is a community-led service which fully 
relies on the street-level photos captured and uploaded by its users, and 
thus, is prone to containing improperly captured street-views. For 
example, we encountered street-level views impeded by passing traffic, 
for example. Thus, we intend on supplementing Mapillary’s preexisting 

Fig. 6. Web-based dynamic visualization of georeferenced physiological data: gcmillar.github.io/e-motion/.  
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database with high-resolution video recordings, as collected by GoPros 
used in our study. Overall, the 3D viewer visualization and user inter
action components enabled us to explore multiple data sources and 
related spatiotemporal details of fine-grained dynamics of human 
physiology. It was essential for informing the development of workflows 
for data processing and for interpretation of the results. 

6. Discussion 

The principal aim of the present study was to determine how the 
visible environment affects individuals’ experiences of an inter-urban 
cycling highway. Twelve participants cycled the cycle highway be
tween Tilburg and Waalwijk while their location and skin conductance 
were recorded. We used a multilevel model to determine the relation
ships between extents of different types of viewable land cover and 
emotional arousal, operationalized as phasic skin conductance, while 
controlling for speed, direction, and distance to roads. We subsequently 
added a measure of directional change to the model, which significantly 
improved its fit. This definitive model suggested that ride segments 
containing relatively less developed and more recreational, agricultural, 
and forest land cover in view, were more emotionally arousing for 
participants. Conversely, segments which were more developed and less 
covered in visible recreational, agricultural, and forest land cover were 
less arousing. These patterns occurred over and above the positive effect 
of distance from roads and negative effect of speed, as well as the 
negative effect of turning, on emotional arousal. Thus, in locations of 
similar land cover, slower, straighter segments which were further from 
roads were experienced by participants as more emotionally arousing. 

Several studies have shown that emotional arousal is elevated with 
cities, usually being seen as exciting and stimulating places. This was 
seen in Zeile et al. (2009, Zeile et al., 2016), which deemed less-busy 
streets as more calming. However, these studies relied heavily on 
aggregate techniques for assessing spatial-emotional interactions at the 
individual level. Our model, in contrast, nested both external visual 
stimuli and movement variables such as speed and turning within the 
experience of the average participant. In so doing, along with holding 
confounds to emotional arousal constant, it is possible that the enjoy
ment of large, open, green views may instead involve elevated emotional 
arousal, not cities. This is reasonable to assume when considering the 
relatively functional experience navigating urban areas entails, such as 
Tilburg and Waalwijk. It is also important to remember that many Dutch 
cities, including Tilburg and Waalwijk, have a culturally-rich central 
core surrounded by large, more open commercial and industrial areas. 
Thus, these larger developed views may have been perceived as boring, 
and thus relatively low in emotional arousal. It is more likely, however, 
that emotional arousal as we measured it—according to phasic skin 
conductance, which spikes whenever an individual feels any emotional 
arousal, positive or negative—did not reflect a single (positive or 
negative) direction of emotional valence. In this way, our findings echo 
the caution of i Agust’ı et al. (2019) to combine physiological findings 
with various self-report data, as simply mapping physiological signals 
across space does not do justice to the complexity of emotion. Uncor
related emotion measures, as i Agust’ı et al. (2019) has found, are not 
necessarily inaccurate, but rather represent independent components of 
emotion experience (Mauss and Robinson, 2009). 

It is important to interpret the present results with a significant 
measurement limitation in mind, namely, that physiological measures of 
emotion have so far been validated to only measure arousal, not valence. 
Valence refers to the extent to which an emotion is positive (pleasant) or 
negative (unpleasant). The consensus in emotion psychology is that 
valence and arousal are independent dimensions and thus require 
separate measures (Mauss and Robinson, 2009). A large synthesis of 
emotion psychophysiology studies shows consistent links between some 
measures, such as skin conductance, and emotion arousal, but few 
consistent links between physiology and valence (Kreibig, 2010). The 
valence of emotions in the cycling experience is crucial for urban 

planning decisions, however, and must be obtained in future research 
using other, most likely self-report based methods. These include ques
tionnaires, as well the use of physiological data to elicit qualitative ex
planations and interpretations from participants, a method pioneered by 
Nold et al. (2009). 

According to Brakus, Schmitt, and Zarantonello (2009), all percep
tions start with the eye. That is, human sight is the main driver behind 
human perception (Brakus et al., 2009) and consequent experience 
(Kalat, 2015). Past research has relied on qualitative assessments to 
establish aesthetic judgments of urban and nature-based locations 
(Kirillova et al., 2014; Kirillova & Lehto, 2015; Kirillova, Lehto, & Cai, 
2017). Walking in urban locations has also been studied using methods 
similar to ours, namely a combination of location tracking and physio
logical measures of emotion, first by Nold et al. (2009), and more 
recently by i Agust’ı et al. (2019), Shoval et al. (2018), Birenboim et al. 
(2019b), and others. We extend this research in several ways. First, we 
bring the approach of combining location and physiological measure
ment to cycling. Doing so allowed us to demonstrate that wearable 
measurement of emotional arousal is possible during cycling, affirming 
the promising findings of Zeile et al. (2016) and Schmidkunz et al. 
(2019). Furthermore, we show that such data can form a foundation for 
maps, statistical models, and interactive 3D visualizations of the (inter) 
urban cycling experience. Second, we model the relationship between 
these variables using a multilevel statistical model. This model revealed 
that in the present study context, relatively natural interurban visual 
stimuli were relatively more emotionally arousing for e-bike cycle 
highway users. Third, this model uses visual stimuli derived from loca
tion information using viewsheds, rather than merely location or prox
imity, as a predictor. Thus, we incorporated the perceptual variable of 
sight to explore relationships between environmental interaction and 
resulting physiological responses. Simple spatial proximity to an envi
ronmental feature does not imply true environmental interaction and 
experience. Specifically, one can be cycling past an amusement park 
with yet a low ability to view it due to surrounding tree coverage, 
speaking to the true value of viewsheds for establishing more accurate 
environment interaction metrics. This claim is made with caution 
however, as people still remain capable of developing experiences from 
multiple sensory inputs. For example, smell, sight, and sound, even 
when transmitted from long distances, can be simultaneously received, 
processed, and integrated for immediate experiential development 
(Blauert, 1997; Dalton, Doolittle, Nagata, & Breslin, 2000; Wickens, 
2008; Wolfe et al., 2006). 

In contrast to other studies linking location with physiological 
measurement of emotion, we measured an experience that included both 
urban and rural settings. Of these, rural land cover area were predictive 
of higher emotional arousal, whereas land cover area associated with 
urban settings, especially industrial areas on the urban fringe, predicted 
lower emotional arousal. This contrasts somewhat with the portrayal of 
urban areas being necessarily exciting compared to rural settings that is 
occasionally mentioned in the literature (Shoval et al., 2018; Zeile et al., 
2009, Zeile et al., 2013, Zeile et al., 2015, Zeile et al., 2016). Thus, this 
finding in particular deserves further exploration using self-report 
methods which can also capture emotional valence. 

Ellard (2015) stressed that urban planning decisions should be made 
based on evidence collected from actual urban residents, and that 
wearable psychophysiological methods represent a breakthrough for 
gathering such evidence. Using physiological data on experiences offers 
numerous opportunities to inform urban planning processes with not 
only evidence of a difficult-to-measure construct––experience––but also 
to involve residents in the gathering and interpretation of such data. 
Such an approach was pioneered by Nold et al. (2009) and can be further 
facilitated with contemporary visualization methods, such as our 3D 
visualizer (Fig. 6). A future step would be to automate statistical 
modeling of data, so a model such as the one we have derived would be 
continuously updated with resident-driven data collection, as Zeile et al. 
(2016) suggested. 

G.C. Millar et al.                                                                                                                                                                                                                                



Computers, Environment and Urban Systems 85 (2021) 101554

10

7. Limitations & future directions 

This study has several important limitations, mostly stemming from 
the technical complexity of measuring emotional experiences as they 
unfold over space and time. While the wearable technology we used to 
measure skin conductance is increasingly accessible, it is still expensive. 
Thus, we were limited to a convenience sample of 12 participants, which 
excludes any possibility of analyzing between-participant differences, 
some of which strongly affect experiences. Even if budgets do not allow 
purchasing more wearable devices, it is possible in future research to 
build up larger sample sizes from using groups of participants to record 
data in ‘shifts’. With such samples, it would be possible to examine 
differences in how urban spaces are experienced based on individuals’ 
gender, age, demographic status, and even personality traits. 

Similar resource limitations were encountered due to computing 
power required to calculate and generate analyzable viewsheds from the 
high resolution DSM with over 500 million grid cells. While skin 
conductance was measured at 4 Hz, location was only measured at 1 Hz, 
whereas viewshed area and accompanying composition metrics were 
sampled and analyzed at a reduced spatial resolution, every 20 m, which 
was roughly equivalent to temporal resolution of about three and a half 
seconds, depending on speed. If more powerful devices would be 
available to record GPS location data at the same 4 Hz frequency in 
which skin conductance is sampled, with calculations of viewsheds 
matching this frequency as well, presented analyses would be more 
precise. Alternatively in the future work, the location data can be 
interpolated to 4 Hz along the road using the 1 Hz GPS data and par
allelized version of the viewshed calculation would make the more 
precise analysis feasible. However, a thorough analytical investigation 
and optimization of spatial and temporal resolution should be per
formed to assess possible effects of varying data resolutions on statistical 
power and computational complexity. It must also be noted that angle 
and extent cutoff values for viewsheds were constant and based on a 
smaller sample of line of sight range analysis specific to our study area. 
To apply this technique to environmental regions with more variable 
topography, more computationally optimal and adaptive viewshed 
techniques must be developed, which stand capable of better accounting 
for the multi-scaled dynamics of environmental interaction and result
ing experiences. 

Finally, it must be admitted that our statistical model was limited in 
complexity to including speed, direction, direction changes, distance to 
roads, and extent of viewable area across various land cover types as 
predictors of emotional arousal. Interaction effects between these pre
dictors, as well as other within-individual predictors such as weather 
changes were excluded for the sake of interpretability of the model. 
Models, including statistical models, are by definition simplifications of 
reality which allow realistic interpretation of phenomena. Extremely 
complex models of the present data would, thus, be self-defeating. 

8. Conclusions 

Our model incorporated multiple levels of environmental exposure, 
interaction, and experience into a single analysis. Our approach is novel 
in holding environmental and human elements of speed, distance to 
roads, and turns constant, more adequately modeling environmental 
exposure at both individual and ecological levels. Furthermore, we 
demonstrated how accounting for a wider range of perceptual variables, 
specifically cyclists’ line-of-sight, results in surprising links between 
environment and experience. 

More generally, our study demonstrated the possibility, potential, 
and utility in continuously monitoring cyclists with wearable sensors. 
This approach can be adopted to better understand the human experi
ence as it unfolds over space and time, in its appropriate environmental 
context. This approach represents a step toward supplying urban plan
ners with accurate, concrete, educated, and actionable insight which can 
be used to make just-in-time decisions and investments, decisions and 

investments aimed toward making our environment not only a more 
beautiful place to be visited and traveled through, but one that func
tionally contributes to emotional and physical well-being. 
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