
Conference Paper, Published Version

Duron, Luc; Cierco, François-Xavier; Saad, Khaled
TatooineMesher: Anisotropic interpolation from 1D cross-
sections and 2D channel mesher
Zur Verfügung gestellt in Kooperation mit/Provided in Cooperation with:
TELEMAC-MASCARET Core Group

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/107158

Vorgeschlagene Zitierweise/Suggested citation:
Duron, Luc; Cierco, François-Xavier; Saad, Khaled (2019): TatooineMesher: Anisotropic
interpolation from 1D cross-sections and 2D channel mesher. In: XXVIth TELEMAC-
MASCARET User Conference, 15th to 17th October 2019, Toulouse.
https://doi.org/10.5281/zenodo.3611546.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.

Verwertungsrechte: Alle Rechte vorbehalten



 

 

TatooineMesher: Anisotropic interpolation from 1D 
cross-sections and 2D channel mesher 

 

Luc Duron, François-Xavier Cierco 
Hydraulic Engineering Department 

Compagnie Nationale du Rhône 
Lyon, France 

l.duron@cnr.tm.fr 

Khaled Saad 
Numerical modelling and high performance computing 

University of Bordeaux 
Bordeaux, France 

 
 
 

Abstract — A set of scripts named TatooineMesher were 

developed at CNR to provide tools for the modeller to mesh 

rivers and interpolate bathymetry from discrete cross-

section data for TELEMAC-2D calculations. The principles 

are also applied to the visualization of 1D model results 

(including MASCARET) as the surface reconstruction 

problem from discrete data is the same. The scripts made 

available for the community, are written in the Python 

programming language and rely on many standard 

scientific libraries.  

The meshing and interpolation processes are described 

separately as they are implemented as such for the sake of 

versatility. The meshing part consist of a regular mesher 

(structured or not) following constraint lines and including 

many parameters to control density and positions of nodes. 

Different anisotropic interpolation methods (following the 

flow direction) to interpolate data between discrete cross-

sections are available to the modeler. 

I. CONTEXT 

A. Aims of the developed scripts 

The developed scripts can be applied to the following 
framework: 

• pre-treatment for 1D models: interpolate intermediate 
cross-sections, 

• post-treatment of 1D model: visualize results in 2D, 
especially in the framework of a coupling with 
TELEMAC-2D, 

• pre-treatment for TELEMAC-2D river model: 
interpolate bathymetry and/or mesh river bed. 

B. Description of meshing issues 

Hydraulic numeric modelling aims to estimate in every 
point of time and space the hydraulic variables such as: water 
discharge, water heights and velocities. The horizontal spatial 
discretization is done on a mesh (or grid) which consists of a 
set of triangular elements connected together. The mesh 
quality is crucial as the accuracy (including the diffusion 
terms) and the computation time are directly affected. 
Therefore, the definition of the mesh is adapted by the 

modeller to its needs to have a satisfactory compromise 
between accuracy and computation cost. 

The main issues to mesh a river are the integration of 
longitudinal constraint lines, lateral discretization of dykes 
and integration of structures (such as bridge piers and 
groynes). TatooineMesher generates a mesh (possibly not 
structured) with regular element sizes which are controlled 
by the user through some files (for polylines) and options (at 
least longitudinal and lateral target edge lengths). 

C. Description of interpolation issues 

Hydraulic numerical simulation requires a large amount 
of topographic data to build an accurate digital elevation 
model. The bathymetry being often more complex to 
measure on permanently inundated river beds, long river 
reaches are usually only surveyed at some regular 
longitudinal position and discrete 1D cross-sections of the 
river channel are obtained. 

With discrete cross-sections data, measurement points are 
not regularly spaced and the resolution of the cross-section 
profiles is generally much higher in the lateral than in the 
longitudinal direction of the river. That is why isotropic 
interpolation methods should not be applied and methods 
considering the anisotropy of the bathymetry were 
investigated. 

The interpolation being crucial to estimate bathymetry 
between cross-sections, several 1D and 2D interpolation 
methods (linear, cubic…) were implemented within 
TatooineMesher and compared (see part IV.B).  

D.  Overview of interpolator/mesher existing tools 

In framework of 2D hydraulic modelling a large range of 
tools are available to mesh and/or interpolate a domain. In 
the TELEMAC community the commonly adopted software 
are: BlueKenue, Salome-Hydro (SMESH), SMS Mesh 
Module, Janet and GMSH [1]. 

Although they are often fast to compute and easy to use 
(they often include a GUI), they are often affected by some 
limitations such as: 

• for those providing a channel mesher (e.g. BlueKenue, 
Salome-Hydro): 
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o mesh cannot be controlled by constraint lines, 

o mesh is fully structured and not suited in case 
of longitudinal variation of the channel width, 

• definition of constraint lines is restricted (number or 
proximity limitations, they must cross all cross-
sections...), 

• the interpolator is absent or is based on isotropic 
approaches. 

In the context of surface reconstruction, a constraint line 
is a longitudinal polyline defining a change in the 
bathymetry. This notion is used in TatooineMesher to 
constraint element edges to pass along these lines and to 
guide the interpolation. 

TatooineMesher aims to fill the lack of functionalities of 
the available software. Moreover, in the investigated tools, 
the channel interpolator is often too simple, and the mesh 
generation cannot scripted (except for GMSH).  For all these 
reasons, TatooineMesher was developed as a standalone tool 
and cover different needs (see part I.A). 

II. MESH GENERATION 

A. General mesh specifications 

The mesh generation process has to follow some rules in 
order to be optimized for further computations and to 
correspond to the modeller needs. Usual mesh specifications 
are listed below (not-exhaustive, for more details on mesh 
quality see [2]): 

• nodes preferably located along cross-sections (to limit 
interpolation), 

• nodes preferably located along constraint lines, 
• elements edges do not cross constraint lines, 
• element size and number of nodes controlled by the user 

(to optimize the computation time), 
• elements are equilateral or possibly elongated along flow 

direction, 
• the transition of element size is progressive. 

B. Steps of the channel mesh generator 

The mesh generation is splitted into the 4 main following 
steps. 

Step 1: Order cross-sections 

1.1. Cross-sections are ordered from upstream to downstream. 
They are located with their curvilinear abscissa along the 
hydraulic axis, 

1.2. Cross-sections which do not cross the hydraulic axis are 
ignored. 

Step 2: Intersect cross-sections and constraint lines 

The following steps describe how the domain delimited 
by two consecutive cross-sections and two constraint lines is 
meshed, in a so-called submesh (as see in Figure 1). 

Step 3: Generate nodes for each submesh 

3.1. A set of intermediate cross-sections are defined in 
accordance to the longitudinal space step (see Figure 1a), 

3.2. Application of an affine transformation to ensure that 𝑋 
and 𝑌 coordinates of nodes follow constraint lines (see 
Figure 1b). 

 
Figure 1 : Illustrations of the mesh generation steps for a single submodel 

3.3. Lateral sampling of each intermediate cross-sections in 
accordance to mesh parameters (lateral space step or 
number of nodes), see Figure 1c. 

Step 4: Triangulate over the whole domain 

A constrained Delaunay triangulation is performed under 
the following constraints: 

• coordinates of vertices/nodes are imposed (defined at 
step 3.1), 



XXVIth Telemac & Mascaret User Club Toulouse, FR, 16-17 October, 2019 

 
 

 

• segments along constraint lines and cross-sections are 
specified as hard lines. 

The generated mesh operation leads to a “planar straight-
line graph”. 

 

C. Overview of main features to control the mesh 

C.1) Choice of the interpolation method of the 
coordinates of the constraint lines 

If no constraint lines file is specified, TatooineMesher 
considers the banks of the river (right and left) as two 
constraint lines (Figure 2a). On the other hand, user defined 
constraint lines, which can intersect only a subset of cross-
sections, are used to delimit the meshed domain (Figure 2b). 

 
Figure 2 : Meshes generated without constraint lines (a) or with multiple 

constraint lines (b) 

In addition to the vertices defining the constraint lines, 
the interpolation method between them can be computed 
with 2 different methods: 

• linear interpolation (Figure 3a), 

• Cubic Hermite Spline (CHS) interpolation (Figure 3b). 

The CHS interpolation method is interesting to smooth 
constraint lines [3]. Moreover, if the modeller does not 
provide any constraint line, the river will certainly be less 
distorted with this interpolation (river width is more 
conservative). 

 
Figure 3 : Linear interpolation for X and Y coordinates of constraint 

lines (a) or cubic spline interpolation (b) 

C.3) Option for planar projection of cross-sections 

TatooineMesher has an option to make the squiggly 
cross-sections straight through a planar projection of cross-
sections points on the line connecting left and right banks 
(see Figure 4). 

 
Figure 4 : Meshes generated without (a) or with (b) projection 

This option makes the elements mesh adjacent to the 
cross-sections more organized. The initial bathymetry points 
are shifted but this can avoid elements to be oriented in the 
transversal direction.  
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C.4) Lateral discretization  

The lateral discretization of the mesh can be specified 
either through a constant space step (Figure 5a) or through a 
number of nodes along these cross-sections (Figure 5b). The 
first option is highly recommended if the river width varies, 
and this will generate an unstructured mesh in the lateral 
direction. 

 
Figure 5 : Lateral discretization of the mesh with a constant lateral space 

step (a) or a constant number of nodes (b) 

 

 

C.5) Longitudinal discretization 

The longitudinal discretization of the mesh is controlled 
by a space step which can be different from the lateral one 
(elements can be elongated if necessary). 

An additional option is provided to the modeller to 
specify how intermediate points are defined. Two approaches 
are available: 

• number of intermediate cross-sections is determined for 
each bed (or submesh) individually, leading to an 
unstructured mesh (Figure 6a), 

• or is unique per profile (Figure 6b). 

  

 
Figure 6 :Number of intermediate lines between two consecutive cross-

sections different for each submesh (a) or identically laterally (b) 

 

III. INTERPOLATION 

After having determined the nodes localization (during 
the mesh generation, see part II), the bathymetry elevation 
(or any variable defined along each cross-section) can be 
interpolated at their positions. This section presents the 
importance of the choice of spatial interpolation methods in 
interpolating river bathymetry. 

 

A. Isotropic interpolation methods not suitable 

Some standard isotropic interpolation methods were 
tested to analyse their suitability to reconstruct surface from 
discrete cross-sections. Three interpolation methods already 
implemented in many GIS software are compared in Figure 
7. The input data set consisting of cross-sections is 
represented in black and the reference (measured) surface 
corresponds to the left subplot. 

This analysis shows that standard isotropic methods have 
major limitations/issues: 

• interpolated bottom can be discontinuous, 

• complex geometry might lead to inconsistencies, 
especially in curvatures or in case of non-straight cross-
sections. 
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Figure 7 : Bathymetry measured (left) compared to interpolated bathymetry 
from elevation along cross-sections (3 interpolation methods: Linear, IDW 

(Inverse distance weighting) and Kriging) 

B. Flow-oriented coordinate system 

The mesh built with TatooineMesher has a set of nodes 
regularly distributed in every submeshes. Each node can be 
identified with its 𝑋 and 𝑌 coordinates in the Geographic 
coordinate system (e.g. Figure 1) or with the couple of 
coordinates (𝑥$ , 𝑥&) per submesh.  These latter coordinates 
(ranging from 0 to 1) correspond respectively to the lateral 
and longitudinal dimensionless curvilinear distances (see 
Figure 8). The corresponding coordinate system is called 
“flow-oriented” and enables to take into account the 
anisotropy of the bathymetry (the 2 axes are orthogonal). 

 
Figure 8 : Single submesh displayed in the flow-oriented coordinate system 

C. Consecutive 1D interpolators (lateral then longitudinal) 

𝑃 being a node between 2 consecutive cross-sections 
(with indices 𝑖 and 𝑖 + 1). The bathymetry of 𝑃 (denoted 𝑍,) 
can be interpolated from its position (𝑥$ , 𝑥&) in the flow-
oriented coordinate system. The bathymetry can be 
determined (for each bed individually) with 2 consecutive 1D 
interpolations as presented hereafter. 

1. Two lateral interpolations to have 𝑍- and 𝑍.: 
𝑍- = 𝑍0(𝑥$) and 𝑍. = 𝑍034(𝑥$) 

2. Longitudinal interpolation between these 2 values: 
𝑍, = 𝑍(𝑥$ , 𝑥&) = (1 − 𝑥&)	𝑍- + 𝑥&	𝑍. 

In the previous equations, 𝑍0(𝑥$) corresponds to the 
bottom elevation at 𝑥$ position along section 𝑖. The points 𝐴 
and 𝐵 are respectively located along sections 𝑖 and 𝑖 + 1 
(thus their coordinates are (𝑥$ , 0) and (𝑥$ , 1) in the flow-
oriented coordinate system). 

The two distinct interpolations (lateral and longitudinal) 
can possibly be based on different methods. In the context of 
surface reconstruction from cross-sectional data, the linear 
interpolation is widely used (see [3] and [4]). In this section, 
only the choice of the lateral interpolation is analysed. A 
more complete comparison is presented in part IV.B. 

The methods tested and implemented in TatooineMesher 
are: 

1. Linear interpolation (polynomial of degree 1); 

2. Spline interpolation (polynomial of degree 3) with 
different assumptions at boundaries: 

a. Cubic spline, 

b. Akima, 

c. Piecewise Cubic Hermite Interpolating 
Polynomial (PCHIP). 

A comparison of the interpolation methods on a simple 
cross-section is shown in the figure below. All the different 
methods ensure that the interpolated values pass through 
initial points. 

 
Figure 9 : Comparison of lateral interpolation methods for a cross-section 

D.  Global 2D interpolators 

A more complex approach is to perform a 2D 
interpolation for the whole domain in a global flow-oriented 
coordinates, which means that the y-axis corresponds to non-
dimensionless values (𝑥& being interpreted a sequence 
ranging from 1 to the number of cross-sections). This method 
is not compatible if the number of constraint lines changes 
over the longitudinal direction (𝑥$ would not be consistent). 
The bilinear and bicubic methods are implemented in 
TatooineMesher. 
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IV. RESULTS AND DISCUSSIONS ON TEST CASES 

A. Mesh generation on “L’Étournel” site 

A limited domain on the Upper Rhône River (upstream 
Génissiat dam) called L’Étournel is chosen to compare 
meshes generated with TatooineMesher with different space 
discretization options. This simple data set, presented in 
Figure 10, includes 25 cross-sections intersected by at most 5 
constraint lines. 

 
Figure 10 : Geometrical data used to mesh “L’Étournel” site 

 

The different space discretization choices compared are 
presented in the Table 1. 

Mesh ID Lateral 
discretization 

Option to have laterally 
the same number of nodes 
per submesh (see II.C.5) 

Longitudinal 
discretization 

1 ∆Xt=20m Without option ∆Xl=20m 

2 ∆Xt=20m Without option ∆Xl=30m 

3 ∆Xt=20m With option ∆Xl=20m 

4 30 nodes - ∆Xl=20m 

Table 1 : Mesh generation parameters tested on L’Étournel site 

The generated mesh characteristics are compared in 
Figure 11 with multiple probability density functions: 

1. elements area 
2. edge ratio per element 
3. minimal angle per element. 

The first barplot shows that the generated meshes have 
different number of nodes. The elongation of elements along 
the longitudinal direction (mesh 1 vs 2 which have a ratio of 
1.5) is very efficient to minimize the number of elements 
(and indirectly the time step if CFL is fixed), and of course 
the minimal angles are getting slightly worse.  

The quality of mesh n°4 is the worst, the element shape 
being highly heterogenous because the river reach width 
varies, while the number of nodes remain constant 
transversally. Consequently, the number of elements with an 
angle less than 30° is high. 

 
Figure 11 : Statistics on generated meshes 

B. Interpolation methods benchmark on a part of the Rhône 
river 

A validation test case was used to compare a reference 
surface to the interpolated surfaces (with methods presented 
in parts III.C and III.D). The reference surface was measured 
by LIDAR and multi-beams to get a very fine dataset of 3D 
points.  

The test case is in the region of Vaugris, which is located 
along the Rhône river. The river reach considered is 10km 
long and the river width is about 200m. A set of 27 cross-
sections are positioned regularly at each 400m (see Figure 
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12). The cross-sections are straight and composed of 20 
points. Two lateral constraint lines are used to define the river 
bed to be meshed.  

 
Figure 12 : Map of the “Vaugris” validation test case with the reference 

surface and input data (cross-sections and constraint lines) 

This validation test case was used to compare the 
different interpolation methods with all other parameters and 
input data being equal. Six meshes were generated with 
strictly the same characteristics (space step are ∆Xt=6.5m 
and ∆Xl=10m, 50k elements) but with values at nodes 
depending on the interpolation method used. Two 2D global 
interpolation methods and four 1D lateral interpolation 
methods (in combination with a linear longitudinal 
interpolation) are compared. 

As expected, differences between computed surfaces and 
the reference surface are spatially varying and are larger far 
from input data than in the vicinity of cross-sections data 
points. The performance of the different interpolation 
methods is assessed with the calculation of some statistical 
criteria: 

• MSD = Mean Standard Deviation (closest to 0 is better), 
• MAD = Mean Absolute Deviation (lowest is better), 
• RMSD = Root-Mean Square Deviation (lowest is 

better). 
These criteria are computed with PyTelTools [5] on the 

domain meshed by removing some specific local zones 

(vicinity of bridges not represented by cross-sections) to 
compute reliable differences. Results are plotted in the Figure 
13 for the 6 interpolation methods. The generated surfaces 
have almost a null bias (less than 3cm) and the absolute 
differences are on average around 48cm. The lateral 1D 
interpolation methods play a role in the interpolation because 
cross-section resolution is not very fine (with “only” 20 
points) and the Akima spline interpolation performs well. 
Therefore, this latter lateral interpolation is recommended if 
cross-sections are not finely discretized, but if not, linear 
interpolation remains a very efficient and robust method. 

 
Figure 13 : Criteria computed to compare interpolation methods (a=MSD, 

b=MAD, c=RMSD) 

V.  MAIN APPLICATIONS OF TATOOINEMESHER 

The three main applications of TatooineMesher (see part 
I.A) correspond to different scripts which are described in 
this section. 

A. Densify profiles (densify_profiles.py) 

This tool is used to refine 1D cross-sections for a further 
1D calculation, no mesh being generated. 

B. Interpolator and mesher (interpolator_and_mesher.py) 

This script is dedicated to interpolation and/or channel 
meshing for 2D models. 

Area zoomed 
on the right 

panel subplot 
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C. Visualize 1D model results (mesh_crue10_run.py and 
mesh_mascaret_run.py) 

This last tool is based on the same principle of 
interpolator_and_mesher.py but input data correspond to a 
1D model (composed of a set of branches with its associated 
cross-sections) and output file contains 2D temporal 
generated surfaces for every variable. The following data can 
be meshed and visualised: 

• model geometry: bathymetry and friction coefficient 
spatialization, 

• 1D hydraulic results: a set of steady states or a transient 
simulation. Variables might be 1D (do not change 
laterally, see Figure 14) or 2D as seen in Figure 15. 

 
Figure 14 : Visualization of a 1D variable (Froude number) at a given time 

 
Figure 15 : Visualization of a 2D variable (water depth) at a given time 

VI. HOW TO USE THE SCRIPTS 

A. Installation and requirements 

TatooineMesher is released under the GPLv3 license. The 
source code was developed in Python version 3 and relies on 
several Python scientific libraries: 
• NumPy: numerical library for large multidimensional 

arrays, and high-level mathematical routines [6], 
• SciPy: used for several interpolation methods [7], 
• triangle: simple mesh generator proving a triangulation 

[8]. 

In addition to these standard packages, external packages 
(available on https://github.com/CNR-Engineering) are used 
to parse files: 
• PyTelTools: to write mesh files from a given 

triangulation [5], 
• Crue10_tools: to read 1D geometry and results files 

from Crue and Mascaret (based on new postel module). 

B. Command line interface scripts 

The developed scripts can be run through a command line 
with the relevant arguments. The help message can be 
displayed with -h argument. For more details, see online at 
https://github.com/CNR-Engineering/TatooineMesher/wiki. 

C. File formats used in TatooineMesher 

Input data files can be provided in different formats and 
should fulfil some conditions. The Table 2 summarized them 
for the 3 types of input file. 

File containing Supported 

formats 

Expected data 

Cross-sections shp, i3s 3D lines in arbitrary order but described 
longitudinal in the same direction (right 
to left bank, or the opposite) 

Hydraulic axis shp, i2s A single 2D line oriented from upstream 
to downstream 

Constraint lines 
(optional) 

shp, i2s At least 2 lines, not intersecting them and 
oriented in the same direction as the 
hydraulic axis 

1D model Crue10, 
Mascaret 

Geometry and hydraulic results at 
sections 

Output mesh slf, t3s, 
LandXML 

Mesh which can contain multiple 
temporal frame and variables 

Table 2 : Characteristics of data input and output files of TatooineMesher 

VII. CONCLUSION AND PERSPECTIVES 

TatooineMesher is a set of scripts released by CNR to 
provide efficient tools for 1D and 2D river modelling 
engineering with MASCARET and TELEMAC-2D. A 
channel mesher and an anisotropic interpolator were 
developed to reconstruct a 2D continuous surface from data 
at discrete cross-sections. A more complex mesher (e.g. 
GMSH) could be combined with TatooineMesher to mesh 
the floodplain or to provide an alternative mesher for river 
bed (to finely mesh obstacles and to adapt node density 
spatially). This will probably be investigated in the future. 
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