
Conference Paper, Published Version

Audouin, Yoann; Fontaine, Jacques; Fouquet, Thierry; Goeury, Cédric;
Leroy, Agnès; Pham, Chi-Tuan; Souillé, Frank; Taccone, Florian; Duron,
Luc; Daou, Mehdi-Pierre; Sécher, Matthieu
A new Python3 module for TELEMAC-MASCARET
dedicated to post-treatment: Postel
Zur Verfügung gestellt in Kooperation mit/Provided in Cooperation with:
TELEMAC-MASCARET Core Group

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/107165

Vorgeschlagene Zitierweise/Suggested citation:
Audouin, Yoann; Fontaine, Jacques; Fouquet, Thierry; Goeury, Cédric; Leroy, Agnès; Pham,
Chi-Tuan; Souillé, Frank; Taccone, Florian; Duron, Luc; Daou, Mehdi-Pierre; Sécher,
Matthieu (2019): A new Python3 module for TELEMAC-MASCARET dedicated to post-
treatment: Postel. In: XXVIth TELEMAC-MASCARET User Conference, 15th to 17th October
2019, Toulouse. https://doi.org/10.5281/zenodo.3611502.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.

Verwertungsrechte: Alle Rechte vorbehalten

A new Python3 module for TELEMAC-MASCARET dedicated

to post-treatment: Postel

Audouin Y., Fontaine J., Fouquet T., Goeury C.,
Leroy A., Pham C.-T., Souillé F. and Taccone F.

Laboratoire National d’Hydraulique et Environnement,
EDF R&D, Chatou France

yoann.audouin@edf.fr

Daou M.-P.

Artelia Eau & Environnement
Echirolles France

Duron L.

Compagnie Nationale du Rhône
Lyon France

Sécher M.

Centre d’Ingénierie Hydraulique EDF
La Motte Servolex France

Abstract — This paper describes the work started during the April

2019 Coding Week. The goal was to write a Python module to perform

dedicated TELEMAC-MASCARET post-treatments using NumPy,

SciPy, Matplotlib. The aim was to have a fully documented, validated

and easy to use toolkit. Also it should make it possible for users to

easily add their own modifications to the plots. The documentation was

done using Jupyter notebooks which serve as documentation,

validation and examples. The module can process to 2D/1D extractions

from a 3D/2D mesh file, extraction from a TELEMAC listing,

extraction from a shape file, plot of vectors and streamlines, plot with

masked dry zones, plot over a background image (that can be extracted

from a WMS flux), post-treatment for MASCARET files, spectrum

specific plots, computation of fluxes, volumes, wet sections and

statistics calculation, interpolation on a regular grid.

I. INTRODUCTION

TELEMAC-MASCARET is a suite of scientific codes
developed as interconnected modules entirely written in
Fortran. Surrounding TELEMAC-MASCARET and also
distributed as open source codes, an ensemble of pre- and
post-processing scripts entirely written in Python have been
developed over the last 5 years ([10], [11] and [12]). In fact,
Python is a portable, dynamic, extensible, free language,
which allows (without imposing) a modular approach and
object oriented programming. Python has been developed
since 1989 by Guido van Rossum and many volunteer
contributors. In addition of the benefits of this programming
language, Python offers a large amounts of interoperable
libraries enabling to facilitate post-processing tasks on 2D or
3D TELEMAC-MASCARET computation results.

In order to gather all those tools and give them a place to
flourish, a new Python [8] module “POStreatment
TELemac” (Postel) is created in the TELEMAC-
MASCARET system [7]. It was developed only in Python 3
as Python will be retired by the end of the year. This module
will be available in TELEMAC-MASCARET 8.1.

This module is developed with the guidelines below in
mind:

● A user friendly list of classes and functions.

● Well documented and with examples.

● Easily customizable (you should be able to do it the
way you want).

To match those guidelines the first thing done is to split
this development in two parts “Data” and “Plot”.

The “Data” part contains all the functions around
extracting and manipulating data. It can be to extract 1D, 2D
data from a file, interpolate data along a polyline or compute
fluxes for example. This part mainly uses NumPy [2] and
SciPy [1] libraries.

The “Plot” part contains all the functions to plot graphs.
It contains 1D, 2D and 3D plotting functions and allows
plotting mesh, vectors, scalar map and contours for instance.
This part is mainly based on the Matplotlib [3] library. This
part can both take as input data extracted with the “Data”
part or custom data.

To provide a useful documentation and proper examples,
Python Notebooks are used [4].

First, this paper gives a brief explanation of the internal
structure of the module and a layout of a code using it. Then,
a more thorough description of the “Data” part of the
module is given. Finally we will show some of the graphs
we can do with the “Plot” part.

II. STRUCTURE

This part presents the organisation of the code sources of
the module. Then, a post-treatment example using the Postel
module gives a framework of its use. The access to the
notebook documentation is finally introduced.

A. Module structure

The scripts of the module are located in the same folder
as all the other TELEMAC-MASCARET scripts
($HOMETEL/scripts/python3), where $HOMETEL is the
path to your installation of TELEMAC-MASCARET. The
developments for this module are grouped in two folders:
postel for “Plot” part and data_manip for “Data” part. The
Figure 1 shows the content of those folders.

Not all of the content of data_manip will be described
here but notebooks can be found for most of them.

All the scripts follow the PEP 8 [5] coding convention
(we used Pylint [6] to check that convention).

XXVIth Telemac & Mascaret User Club

Toulouse, FR, 16-17 October, 2019

Figure 1: Tree of the content of data_manip and postel

B. Code structure

Figure 2 is a template of what a post-treatment code
using Postel looks like.

Figure 2: Examples of code using Postel

Where:

● Part A: imports the different Python modules
needed.

● Part B: extracts or computes the data. This is the
“Data” part.

● Part C: initialises the Matplotlib figures.

● Part D: adds plots to the figures and sets its
parameters.

● Part E: displays or saves the figure.

Parts C, D, E represent the “Plot” part.

Most of the examples you will see below follow that
structure.

C. Notebooks

The Jupyter Notebooks are a mixed between a “IPython”
[9] session and a website. This gives you a platform in
which you can write a Python code and execute it. This
leads to an interactive documentation where you can easily
modify the code to match your own data.

This is used for documentation, examples and validation
of the module. To start exploring the notebooks, run the
following command:

jupyter-notebook $HOMETEL/notebooks/index.ipynb

This notebook will be your guide into the world of not
only Postel but also all the Python scripts orbiting
TELEMAC-MASCARET. It is an index of all the
functionalities you have access to and a link to a notebook
for all of them.

To display them you will need to install jupyter
(https://jupyter.org/) follow the instructions on their website.

III. DATA MANIPULATION

This part will give an overview of the functionalities of
data extraction and computation functions of the Postel
module.

A. How to extract data from files

The data extraction part allows us to obtain different
types of information from a mesh or a TELEMAC result file
(whether in med or selafin format). The class TelemacFile
contains several parameters and methods designed for this
purpose. The properties meshx and meshy give the
coordinates of each node of the mesh, while the method
get_timeseries_on_nodes extracts a time series of variables
from the graphical outputs on a given node or point defined
by its coordinates. It is also possible to retrieve the
spatialized value of a variable at a given frame with the
method get_data_value. This spatial extraction can also be
interpolated on a regular grid with the method
interpolate_on_grid, which permits to compare two results
on different meshes using the field_diff_on_grid method.
Finally, the method get_liq_bnd_info provides information
on the location of boundaries, their type, as well as the table
of correspondences between the global node number and the
boundary condition number.

When the results come from a TELEMAC-3D
simulation, it is possible to use them in several ways thanks

XXVIth Telemac & Mascaret User Club

Toulouse, FR, 16-17 October, 2019

to the module. It is possible to extract horizontal sections,
either following a plane of the three-dimensional mesh with
the get_data_on_horizontal_plane method, or having a fixed
elevation with the get_data_on_horizontal_slice method. It
is also possible to extract the data on a vertical section with
fixed coordinates using the get_data_on_vertical_plane
method, and to perform a time series of the value of a
variable in the entire water column at a given point in the
horizontal plane with get_timeseries_on_vertical_ segment.

In addition to the extraction of data from a result file,
Postel offers the possibility of reading into the listing
outputs to retrieve certain information thanks to the class
OutputFileData. This gives, among other things, the
possibility to know the time profile of the simulation (which
physical time corresponds to which iteration) with the
method get_time_profile, the name of the study with the
method get_name_of_study, or the mass fluxes at the
boundaries and the mass-balance data with the method
get_value_history_output. The user can also customize his
query by giving a word to find in the listing so that the code
returns information on the corresponding line using the
method get_user_defined_output.

It is also possible to read shapefiles and extract polylines
or polygons with the shapefile_reader class, but also to read
and write information in csv format based on savetxt
function of NumPy.

B. How to compute data from extractions

After the extraction of the data from the result files, the
Postel module provides various functionalities to calculate
the values of interest associated with the hydraulic variables.

For a given polygonal chain, it is indeed possible to
compute the wet area with the function wet_area_2d after a
TELEMAC-2D result file extraction of the water depth. The
flux_2d function can be used to compute the flux of a scalar
through this chain. By additionally extracting the velocity
components in both directions, it is also possible to calculate
the flow rate through this polygonal chain using the flux_2d
function. This same function is also able to calculate solid
discharge if the corresponding variables are previously
extracted from a SISYPHE result file.

The function volume_calculation allows the integration
of a variable extracted from a TELEMAC result file over the
entire domain. It can be used, for example, to calculate the
total volume of water in a domain by taking as an input, the
extraction of water depths in the results file and the
information of coordinates and triangulation of the mesh
from TelemacFile. This can also be applied to
erosion/deposit volume computation, if the evolution
variable of the SISYPHE results file is extracted.

Figure 3: Probability Density Function of the solid discharge

Statistical information from your data can be simply
computed using the Python module Pandas have a look at
the notebook statistic for a more detailed explanation. Figure

3 shows the result of the said notebook.

C. How to post-treat MASCARET files

The first step for MASCARET file post-treatment is to
be able to extract the data. There are two main classes to
allow this:

• The class MascaretGeoFile allows reading and
writing geometry files.

• The class MascaretFile allows reading different
types of a MASCARET result file (whether in
Rubens or Opthyca formats).

These classes contain several attributes and functions
designed for post-treatment tasks.

Let us begin with the class MascaretGeoFile, the
summary method gives the reaches and associated sections
in a text format. These two items describe geometry in
MASCARET. In this class, the reaches attribute stores the
object list of reaches and each reach contain multiple
Section objects.

The class Reach contains methods to get the pk with
get_section_pk_list method, to get the index list of section in
reach object with get_section_id_list method, in addition to
get of the section index of geometry from previously index
with get_section_idx method.

The class Section contains mainly geometric attributes
which are:

• axis: x, y coordinates of hydraulic axis.
• x, y, z: 1D-arrays for coordinates x y z respectively.
• distances: 1D-array with cumulative distance from

first point along the section.
• nb_points: number of points.
• limits: a dict with the position and name of all

limits.
Note in class MascaretGeoFile that the save method

allows us to write a geometry file after having modified the
object attributes.

The MascaretFile is based on the same principle with
the attribute reaches containing its associated sections (but
in this case the geometry is not set because the result file do
not provide it). This class contains the post-treatment

XXVIth Telemac & Mascaret User Club

Toulouse, FR, 16-17 October, 2019

methods for results files. The summary method gives
variables and number of temporal frame in addition to the
information provided bythe corresponding method in class
MascaretGeoFile. The get_position_var method returns the
variable index from the variable name given. The values
along a reach for one time step are extracted with
get_values_at_reach method for the variable index and
reach index. Furthermore the get_series method allows us to
get the temporal values at a given section.

Then, the step after data extraction is to be able to draw
them in a graphic. For this, the same 1D plots function is
used than TELEMAC (to see IV.A).

Another post-treatment step is writing results for specific
variables or specific time steps with write_optfile method.
Finally there is also export_as_lig method allowing
continuation of computation with the creation of LIDOP file
from a given time step.

The different examples can be found in the notebook
example_mascaret.

IV. PLOT

This part will give examples of the different
visualization tools available in Postel ranging from simple
1D plots to more complex 2D plots with multiple layers and
3D plots.

D. How to do 1D plots

From data extracted from TELEMAC result file, 1D plot
can be done with abscissa and ordinate data. This can either
be timeseries or plot along polygonal chain or any other
data. Several plot examples are given in the example_plot1d
notebook as well as the corresponding extraction function.
In Figure 4 and Figure 5 an example of plot of time series on
points and plot along a polygonal chain are shown.

Figure 4: Example of 1d plot of time series on different points

Figure 5: Example of 1d plot along a polyline

E. How to do 2D plots (x, y) plane view

In this section we mainly focus on the functions
available in postel/plot2d.py which are described in detail in
the example_plot2d notebook.

The first function of 2D plots is plot2d_triangle_mesh. It
allows the visualization of 2D mesh and takes as argument
the triangulation contained in the TELEMAC result file,
which is tri, a parameter of the TelemacFile class. At the
same time, it can be useful to visualize boundary conditions
types and numbers. It can be done with the
plot2d_annotate_bnd and plot2d_annotate_liq_bnd
functions respectively. An example of 2D mesh plot with
boundary annotations is shown on Figure 6.

Figure 6: Example of mesh and boundary conditions plot with the
confluence test case of TELEMAC-2D

To plot a scalar like water depth, elevation or velocity
norm two functions are available in plot2d,
plot2d_scalar_map and plot2d_scalar_filled_contour. On
Figure 7 and Figure 8 a scalar map and a scalar filled
contours are shown with the mesh in the background. In
addition, non-filled contours can also be plotted with the
function plot2d_scalar_contour, as it is shown on figure 7.
Note that these functions take as argument a mesh that can
either be a triangulation or a regular grid and the scalar data
extracted from that mesh. Colour bar can be customized via
the vmin, vmax arguments for maximum and minimum
values as well as nv for the number of ticks. In the case of
contours, a list of values can be provided instead with the
levels argument.

XXVIth Telemac & Mascaret User Club

Toulouse, FR, 16-17 October, 2019

Figure 7: Example of scalar map plot with the gouttedo test case of

TELEMAC-2D

Figure 8: Example of scalar filled contours plot with the gouttedo test case

of TELEMAC-2D

The last two functions in plot2d are plot2d_vectors and
plot2d_streamlines and are used to visualize vectorial data
like velocity, wind velocity or solid and liquid discharges.
They take two scalars as inputs data_x and data_y, which
correspond to x and y components of the vector. As for other
2D plots, mesh argument can either be a grid or a
triangulation. But the user can also specify a grid resolution
with the grid_resolution argument to make the functions
generate their own grid. This functionality is useful when
the triangular mesh is too refined and lead to a large amount
of vectors being plotted. Vectors size are adjustable with the
scale argument as well as streamlines density with the
density argument. Vectors and streamlines are coloured
depending on their norm by default but can also be coloured
uniformly with the color argument. An example of coloured
vectors plot is shown on Figure 9.

Figure 9: Example of vectors plot with the gouttedo test case of
TELEMAC-2D

F. How to do 2D plots with z elevation as y-axis

TELEMAC-3D results can be visualized with 2D plots
(x, y) presented previously if extraction is performed on a
plane, defined at a fixed elevation or along a given
computation plane. But 2D plots with elevation as y-axis
could also be defined in combination with 2 possibilities for
x-axis: curvilinear distance along a line or time.

The first example in Figure 10 displays velocity
magnitude and shear velocity vectors in a user defined
horizontal section. Although the vertical extraction (on the
whole water column) is done along a straight line (y=10m),
it could be performed along any arbitrary 2D polygonal
chain.

Figure 10: Example of 2D plot corresponding to a horizontal section (plane

y=10m with gouttedo test case of TELEMAC-3D)

The alternative 2D plot with z-elevation is used to
analyse the vertical distribution of a scalar over time. The
Figure 11 presents vertical velocity distribution over time at
the centre of the gouttedo domain (x=10m, y=10m).

XXVIth Telemac & Mascaret User Club

Toulouse, FR, 16-17 October, 2019

Figure 11: Example of a temporal 2D plot over the vertical with gouttedo

test case of TELEMAC-3D

These 2D plots involving elevation are documented in
the 3d_extraction notebook.

G. How to do fancy 2D plots

The logic behind Postel plotting functions is that it
allows us to pile up multiple layers. For instance, we can
have a scalar map on top of a mesh with vectors and
streamlines above it. The amount of layers is not restricted
but data overlapping is the main limitation. To overcome
this problem, alpha of each layer can be adjusted and mesh
triangles can be masked. Masking can be done with a
customizable criterion with the mask_triangles function. For
example dry zones can be masked as on Figure 12. More
details are presented in the notebook
example_plot2d_advanced.

Figure 12: Example of advanced plotting with the Malpasset test case of
TELEMAC-2D

In addition to basic 2D plots layers presented previously,
images can also be added with the plot2d_image function.
Images can be background map as presented in the Figure
13. Plotting background map often requires to change the
coordinate system of the mesh. This can be done with the
pyproj Python package. Moreover background image can be
taken directly from a web map service using the owslib
package. An example of how to use those packages is
presented in example_plot2d_background_map.

Figure 13: Example of background image plot with the tide test case of
TELEMAC-2D

H. How to do 3d plots

3D plotting is limited in Python and only one function is
available in Postel: plot3d_scalar_map. This allows us to
visualize water depth as a 3D surface as presented in Figure
14.

Figure 14: Example of 3D plot with the gouttedo test case of TELEMAC-
2D

I. How to plot TOMAWAC spectrum files

Tomawac displays specific outputs, namely the
spectrum, that need specific post-treatment. A user can
specify several output locations over the domain, such that
energy densities will be recorded for all discretised
directions and frequencies. A couple of functions were
added to get the spectrum graphic output. They are shown in
the notebook spectrum.

XXVIth Telemac & Mascaret User Club

Toulouse, FR, 16-17 October, 2019

First we added a method called get_spectrum_name in
TelemacFile that gives you the name containing the
spectrum associate to a point number given as a parameter.
The function get_list_spectrum_points will give the list of
points available in the file.

Figure 15 shows the integrated spectrum over the
directions at a given point for a given record using
TelemacFile.get_spectrum.

Figure 15: Plot of the TOMAWAC 1D spectrum for different output points

Using TelemacFile.get_angular_dispersion you can
extract the energy integrated over the frequencies for a given
point and record. The wave dispersion can be then observed.
Figure 16:6 shows a polar projection example.

Figure 16: Plot of the energy density along wave directions of a

TOMAWAC spectrum file for a list of points.

J. One line simple plots

It is possible to do some of the plots describes before
using a one line bash command. This means you will have
less control over what you can modify but it is a good way
to make simple “on the go” plots.

This script is called plot.py. Run it with the option –h to
see how it works. You can also have a look at the notebook
plot.

V. CONCLUSION

We now have a nice Python module documented and
easy to use. Containing all of the post-treatment we could do
via the xml and more.

This will be available in the next release of TELEMAC-
MASCARET (v8p1).

These scripts are bound to keep on evolving as they are
used. Therefore contributions are more than welcome if you
have scripts that could be integrated do not hesitate to
contact the TELEMAC-MASCARET team.

ACKNOWLEDGEMENTS

Thanks for all the hard work of the Coding Week team
that made the creation of this module possible.

REFERENCES

[1] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open Source
Scientific Tools for Python, 2001-, http://www.scipy.org/ [Online;

accessed 2019-08-09].
[2] T. E, Oliphant. A guide to NumPy, USA: Trelgol Publishing, (2006).
[3] Hunter, J. D. Matplotlib: A 2D graphics environment, IEEE

COMPUTER SOC Volume 9 Number 3 Pages 90-95 (2007)
[4] T. Kluyver, B. Ragan-Kelley, et al. Jupyter Notebooks - a publishing

format for reproducible computational workflows, ELPUB, 2016
[5] G. van Rossum, B. Warsaw, N. Coghlan. PEPE8 -- Style Guide for

Python Code, https://www.python.org/dev/peps/pep-0008, 2001

[6] Pylint, https://www.pylint.org/
[7] J-M. Hervouet, “Hydrodynamics of Free Surface Flows”, Wiley,

2007, pp. 83–130.
[8] G. van Rossum, Python tutorial, Technical Report CS-R9526,

Centrum voor Wiskunde en Informatica (CWI), Amsterdam, May

1995.
[9] F. Pérez, B. E. Granger, IPython: A System for Interactive Scientific

Computing, Computing in Science and Engineering, vol. 9, no. 3, pp.
21-29, May/June 2007, doi:10.1109/MCSE.2007.53. URL:

https://ipython.org
[10] S. Bourban, J.-C. Parisi, A. Weisgerber, The TELEMAC’s automated

management and continuous integration and validation system,
Proceedings of the XXII Telemac User Conference, 2015, Daresburry

(England).
[11] P. Prodanovic, A practical toolkit for terrain free surface flow and

wave modelling, 2017, PPUTILS user documentation.

[12] L. Duron, Y. Wang, PyTelTools: Python scripts and GUI to automate

Telemac post-processing tasks, 2017, Graz (Austria).

XXVIth Telemac & Mascaret User Club

Toulouse, FR, 16-17 October, 2019

