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Abstract: An updated version of a 2-DH post-Boussinesq wave model is introduced. The model is 
wavenumber free and as far as the linear dispersion relation is concerned, the approach is exact. It is 
implemented for the wave propagation and transformation due to shoaling, refraction, diffraction, 
bottom friction, wave breaking, wave-structure interaction, reflection, wave-current interaction, etc. in 
nearshore zones and specifically inside ports and in the vicinity of coastal structures. Thorough 
validation of the model is attempted by comparisons with output from classic laboratory-scale wave 
flume experiments as well as analytical solutions. Physical cases of both regular and irregular wave 
fields are numerically reproduced with acceptable accuracy. Results concerning a case study in a 
characteristic Greek port setup are also presented and seem encouraging for realistic scale simulations. 

Keywords: wave modeling, post-Boussinesq model, wave propagation, wave transformation, 
nearshore, ports, non-linear waves, irregular waves 

1 Introduction 

The propagation of non-linear dispersive waves in shallow waters is traditionally numerically 
modelled by the classic Boussinesq-type equations (Peregrine, 1967). However, for the early versions 
of Boussinesq-type models there are still application constraints concerning restrictions of simulations 
to non-breaking waves in water depths d<0.2L (L is the local wave length). The work of Madsen et al. 
(1991) extended the applicability of the Boussinesq-type models by incorporating linear dispersion for 
deeper waters with extension of the relevant equations. During the 90’s, many researchers have 
produced new versions of Boussinesq-type models within the coastal engineering/science community 
(Karambas and Koutitas, 1992; Nwogu, 1993; Wei and Kirby, 1995; Wei et al., 1995; Madsen and 
Schäffer, 1998; Karambas, 1999; Zou, 1999; etc.). These endeavors mainly account for fundamental 
improvements of dispersive properties for wave frequency and addition of wave breaking dissipation 
mechanisms (surface roller and eddy viscosity models). The latter ameliorations allowed Boussinesq-
type models to be widely implemented by coastal engineers for nearshore flow simulations. Further 
advanced versions of these models by the coastal research community established the Boussinesq-type 
approaches as the main modelling tool by practitioners in coastal and port engineering. In this 
framework, Brocchini (2013) presents a comprehensive review and the reasons behind the prevalence 
of Boussinesq-type models, based on their ability to blend the modeling robustness with 
computational efficiency by modern hardware resources.  

1.1 Recent developments 

More recent developments during the last 20 years practically eradicate application restrictions due to 
the water depth (waves with kd≤25; k=2π/L the wavenumber) and allow for good accuracy (dispersion 
factor up to kd≈12) in simulations of highly nonlinear waves (Madsen et al., 2002; 2003; Bingham and 
Agnon, 2005). However, solvability issues of the newly produced Boussinesq-type equations still 
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remained, referring to stability and accuracy of the proposed integration schemes for solving complex 
systems of partial differential equations (PDEs) with a large number of high-order derivative terms. 
Tsutsui et al. (1998) derived a system of fully dispersive weakly non-linear equations in terms of the 
surface elevation and the depth-averaged horizontal velocity, replacing phase celerity terms in the 
momentum equations by integral forms with the use of a kernel of Fourier-transformed phase velocity. 
Hence, similarly proposed models became wavenumber free, and allow for description of irregular 
wave propagation over any finite water depth. New versions of a post-Boussinesq type of wave model 
were proposed by Schäffer (2003, 2004) treating nonlinear fully dispersive waves, in terms of free-
surface elevation and horizontal particle velocities at still water level. Convolution integrals in space 
were introduced, with the use of appropriate impulse functions, in order to handle internal kinematics 
of the hydrodynamic field in the water column. 

1.2 Scope of paper 

Karambas and Memos (2009) presented a similar post-Boussinesq type of model, proposing a system 
of 2-DH equations for fully dispersive and weakly nonlinear irregular waves over any finite water 
depth. Five terms were introduced in each momentum equation, including terms for long wave 
propagation and frequency dispersion in the numerical solution. Solution was based on an explicit 
Finite Differences (FD) scheme and an estimation of the aforementioned convolution integral, 
restricting the system of algebraic equations compared to other Boussinesq-type model formulations. 
In this work, an updated version of the 2-DH post-Boussinesq wave model of Karambas and Memos 
(2009) is introduced. It is implemented for the wave propagation and transformation (due to shoaling, 
refraction, diffraction, bottom friction, wave breaking, wave-structure interaction, reflection, wave-
current interaction, etc.) at nearshore zones in the vicinity of coastal structures and specifically inside 
ports. One of the main goals of the paper is the model’s thorough validation. Regarding its capabilities 
in representing the propagation of regular and irregular non-linear waves, the model was tested against 
the analytical solution of Helmholtz equation for wave diffraction, as well as versus experimental data 
for monochromatic and spectral wave propagation over complex bathymetries and sloping 
topographies (Berkhoff et al., 1982; Vincent and Briggs, 1989). The model was furthermore validated 
by comparisons with experimental data for uni- and multi-directional spectral wave diffraction 
through a breakwater gap (Li et al., 2000; Yu et al., 2000). A case study of model application over a 
realistic bathymetry in areas around and inside a characteristic Greek port is also presented.

 

2 Model description and numerical scheme 

The proposed post-Boussinesq wave model is thus wavenumber free and, as far as the linear 
dispersion relation is concerned, the approach is exact (i.e. the model poses no restriction on water 
depth). Wave breaking is further incorporated in the model by adopting the surface roller concept 
(Schäffer et al., 1993).  

2.1 Model equations  

Karambas and Memos (2009) analytically describe the theoretical formulation of the proposed model, 
which is valid for irregular, fully dispersive, weakly nonlinear waves in an inviscid and 
incompressible fluid propagating over mildly sloping bottoms. For the 2-DH version, the momentum 
equations are written: 
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where t is the time, U and V are the depth-averaged velocity in ξ- and y-direction, respectively, ζ is the 
free surface elevation, ξ1 and ξ2 are the conjugate variable terms of the Fourier transform, and the 
kernel K(ξ,y) is given by: 
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. The momentum Eqs. (1 and 2) together with the continuity Eq. (4) constitute the 

system of model equations for the 2-DH case: 
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Wave energy dissipation due to depth-limited wave breaking in the present model is primarily based 
on the “surface roller” approach. Wave attenuation due to the roller is introduced as an excess 
momentum term due to non-uniform vertical velocity distribution (Schäffer et al., 1993), while the 
surface roller is transported by wave celerity c = (cξ,cy): 
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where cξ and cy = wave celerity components, δ is the thickness of the roller, and uo, vo = core 
velocities, both pairs in ξ-and y- directions. Thus, Eq. (1 and 2) become: 
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By checking if the local slope of the free-surface elevation exceeds an initial critical value, we can 
control the incipient wave breaking. Roller region and thickness δ are determined geometrically 
(Sørensen et al., 1998). 

2.2 Numerical scheme  

The numerical solution is accomplished by a widely used simple and well-documented explicit 2
nd

 
order FD scheme centered in space and forward in time on a staggered grid (Karambas and Memos, 
2009), conserving mass and energy for non-breaking waves in a satisfactory manner. The discrete 
continuity equation is centered in the level points and the momentum equations in the flux points. 
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The partial differential equations Eq. (1, 2 and 4) are approximated by the following algebraic FD 
equations according to the selected explicit scheme (Koutitas, 1988): 
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where I is the convolution integral term, Δt and Δξ, Δy are the time and space discretisation steps, 
respectively, i and j are the number of center grid cells in ξ- and y-axis, respectively, n is the number 
of center time step, and the overbar denotes a mean value according to Karambas and Memos (2009).  

The convolution integrals of Eq. (6 and 7) are calculated numerically by higher order accurate 
methods (extended Simpson’s or Newton’s 3/8 rules). The horizontal radius of the kernel in the 
convolution integrals, which are in turn based on impulse response functions displaying exponential 
decay, are taken as ±4d (i.e. approximately four times the local water depth), instead of ±∞, in order to 
limit the computational times of integration. Decomposition rates of kernel values with normalized 
distance ξ/d away from any arbitrary grid cell of integration for the bell-shaped function are given in 
Karambas and Memos (2009) and Schäffer (2004). The relevant summation terms in Eq. (3) change 
+/– sign and therefore follow a slow convergence. Acceleration of the latter is achieved by means of 
an Euler’s transformation approach (Press et al., 1986), restricting the addition to no more than 25 
terms. This way we can significantly increase the computational speed of the model.  

The presence of vertical structures is incorporated by introducing a total reflection boundary 
condition (U = 0 or V = 0). Partial reflection is also simulated, by introducing an artificial eddy 
viscosity coefficient νh. The values of νh are estimated from the method developed by Karambas and 
Bowers (1996) for given values of the reflection coefficient from literature. 

2.3 Internal wave generation and sponge layer technique 

In the present model, the waves are generated along a generation line parallel to the offshore boundary 
by applying the source term addition method. In this method the values *

iη  of surface elevation are 
added to the corresponding surface elevation values that are computed by the model and given by 
(Larsen, and Dancy, 1983; Lee and Suh, 1998): 

( )I I*
i , t

2
2η η θ η = + − ω= iHdt

cos c sin kξ ky
dξ  (12) 

where, Hi is the incident wave height, k = 2π/L, ω is the angular frequency (ω = 2π/T, T is the wave 
period), θ is the wave propagation angle with respect to the ξ- or y-axis, c is the wave celerity, dξ is 
the typical grid cell size and dt is the time step of numerical solution.  

The model is also able to simulate irregular uni- and multi-directional waves. The generation and 
propagation of spectral waves may furthermore account for several different angles and directions 
simultaneously. Following the modeling approach of Miles (1989) and Lee and Suh (1998), the 
incident surface elevation function is given by:  
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where N  and M  are the numbers of frequency bands and directional bands in the discretized 

directional spectrum, 2 ( ) ( , )= θ θnm nm nm mA S f D f M df d  is the wave amplitude, S(fnm) is the 

frequency spectrum, ωnm is the wave angular frequency, df is the frequency interval, θm
 is  the wave 

propagation angle, dθ is the wave propagation angle interval and εnm
is  the random phase.  

 

745



                                                                                                        Breakwater 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sponge  

layers 

 

                                 Wave generation lines 
Fig. 1. Snapshot of free-surface elevation of oblique incident regular waves: generation, absorption and reflection by a 

breakwater.  

The directional spreading function D(f,θ), based on a  Fourier series representation for the wrapped 
normal spreading function, is written (see also Vincent and Briggs, 1989): 

 

  (14) 

 
where F is the max number of kf terms in the series, θ the mean wave direction and σm is the 
directional spreading parameter. 

In order to avoid diffraction problems, in the case of oblique incidence, the waves are generated 
simultaneously in two lines parallel to ξ- and y-axis, in the lower and lateral boundaries. Sponge layers 
are placed at the outer open boundaries to dissipate wave energy inside them and thus minimize wave 
reflection from the boundaries (Larsen and Dancy, 1983). According to this technique, the sponge 
layer gradually absorbs the wave energy by multiplying ζ, U and V with the energy dissipation rate ν, 
calculated by the improved scheme proposed by Yoon and Choi (2001), given as follows: 
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where ξs is the width of the sponge layer, *ξ  is the location in the sponge layer, ts the number of grid 
points inside the sponge layer, and the parameter Λ is set as 2. 

Fig. 1 shows the instantaneous free-surface elevation of oblique regular waves propagating in the 
computational domain (Hi = 1.0 m, θ = 45o

, T = 8 sec). 

3 Model validation 

Evaluation of the model’s performance is conducted by comparisons of simulation results with 
experimental data of regular and irregular wave diffraction around semi-infinite breakwaters and 
through breakwater gaps (Yu et al. 2000; Li et al. 2000). The elliptical shoal experimental setup by 
Vincent and Briggs (1989) with a directional spectral wave generator is also numerically reproduced 
as a test.  

 Fig. 2. Monochromatic and multi-directional wave propagation over a shoal: snapshot of free-surface elevation. 

3.1 Irregular wave propagation over elliptical shoal 

The shoal experiments were reported by Vincent and Briggs (1989). The directional spectral wave 
basin of 35 m wide by 29 m long has a constant water depth of 0.457 m. The elliptical shoal has a 
major axis of 3.96 m and minor axis of 3.05 m and a maximum height of 0.3048 m. The shoal 
boundary is defined by (𝑋𝑋/3.05)

2
 + (𝑌𝑌/3.96)

2
 = 1, where 𝑋𝑋 and 𝑌𝑌 are local coordinates aligned along 

the minor and major axes, respectively. The wave period T or Tp of the incident waves is 1.3 sec and 
representative wave height Hin or Hs is 2.54 cm. The water depth above the shoal is given as: 

2 2( , ) 0.914 0.762 1 ( / 3.81) ( / 4.95)= − − −d X Y X Y
  (16) 

Figure 2 shows a snapshot of the surface elevation for the monochromatic and multi-directional waves 

cases (Hin or Hs =2.54 cm, T or Tp =1.3 sec) . Figure 3 shows a comparison of the model results for 

narrow directional spectra against the experimental data along the transect No 4 which lies behind the 

shoal. The comparisons show a good agreement between the model results and the experimental data.  
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Fig. 3. Comparisons of model results against experimental data of Vincent and Briggs (1989), in terms of normalized 

wave height H/Hi, for monochromatic (left) and spectral multi-directional waves (right). Numerical model 
results: solid line, experimental data: symbols.  

3.2 Wave diffraction around semi-infinite breakwater 

The present numerical solution is compared against the Penney and Price (1944) diffraction solution. 
Penney and Price (1944) provide an analytical solution for the diffracted wave field about a semi-
infinite breakwater based on the Sommerfeld solution of Helmholtz equation using Fresnel integrals 
for monochromatic waves. The diffraction coefficient KD=H/Hi is compared with numerical results in 
Fig. 4. Acceptable agreement is observed between numerical and analytical values. 
 

 
Fig. 4. Wave diffraction behind an infinite breakwater. Comparison of diffraction coefficient KD =H/Hi (solid line: 

analytical solution, dashed line: model results). 

3.3 Wave diffraction through a breakwater gap 

The third set of numerical experiments concern irregular wave diffraction through breakwater gaps 
(Yu et al., 2000; Li et al., 2000). The incident significant wave height for the case of uni-directional 
irregular waves is Hs = 0.05 m and the peak period is Tp = 1.20 s.  

Fig. 5 shows the calculated diffraction coefficient for the case of gap width B = 3.92 m (B/L = 2, 
where the wave length L corresponds to the peak period for irregular waves). Fig. 6 gives the cross-
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section distribution of the diffraction coefficients at a distance y = 3L from the breakwater. 
Comparisons of model results against experimental data are proven to be satisfactory. 
 

 
Fig. 5. Wave propagation through breakwater gap: diffraction coefficient contours for B = 3.92 m. 

 

 
Fig. 6. Wave diffraction behind an infinite breakwater. Comparison of diffraction coefficient KD = H/Hi at a distance Y 

= 3L from the breakwater (solid line: experimental data, dashed line: model results). 

 

3.4 Typical model results in realistic bathymetry setups  

Fig. 7 presents plotted results concerning simulated fields of gridded data (dξ = 2 m) for wave height 
(top) and free-surface elevation (bottom), in the case of Thessaloniki port (Northern Aegean Sea, 
Greece). Southwesterly waves with Hs = 1 m and Tp = 8 s, have been reproduced. The unprotected 
berth areas, as well as the protection offered by the offshore breakwater, are obvious. Partial reflection 
patterns are also clearly visible. 

4 Conclusions 

In the present work a new version of a post-Boussinesq nonlinear dispersive wave propagation model 
has been developed. The model involves only one dispersive term in the momentum equation. The 
numerical solution is based on a simple explicit Finite Differences scheme and on a numerical 
evaluation of a convolution integral. The model was successfully applied for wave propagation over 
varying topographies, behind breakwaters as well as in realistic bathymetry setups. It is concluded that 
the model is capable to simulate in an accurate and efficient manner the propagation of regular and 
irregular, nonlinear, dispersive waves over any finite water depth in two horizontal dimensions in the 
presence of coastal structures. The present model’s application is limited only to weakly nonlinear 
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irregular waves, whereas other Boussinesq-type models (Zou, 1999) can take into account high 
nonlinearities. In addition, the running time of the model is quite large, and similar to the existing 
higher order Boussinesq-type models.  

 

 

 Fig. 7. Multi-directional irregular wave propagation inside the port of Thessaloniki (North Aegean Sea; Greece); Upper 
graph: wave height (m); Lower graph: free-surface elevation. 
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