HENRY

Hydraulic Engineering Repository

Ein Service der Bundesanstalt fur Wasserbau

Conference Paper, Published Version

Jensen, Jurgen; Ulm, Marius

Improvements for the Estimation of Design Water Levels
with Historical and Modeled Data

Verfugbar unter/Available at: https://hdl.handle.net/20.500.11970/106656

Vorgeschlagene Zitierweise/Suggested citation:

Jensen, Jiurgen; Ulm, Marius (2019): Improvements for the Estimation of Design Water
Levels with Historical and Modeled Data. In: Goseberg, Nils; Schlurmann, Torsten (Hg.):
Coastal Structures 2019. Karlsruhe: Bundesanstalt fir Wasserbau. S. 435-441.
https://doi.org/10.18451/978-3-939230-64-9_044.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewahrten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.

(OMOM




Coastal Structures 2019 - Nils Goseberg, Torsten Schlurmann (eds) - © 2019 Bundesanstalt fiir Wasserbau
ISBN 978-3-939230-64-9 (Online) - DOI: 10.18451/978-3-939230-64-9_044

Improvements for the Estimation of Design Water Levels with
Historical and Modeled Data

J. Jensen & M. Ulm

University of Siegen, Research Institute for Water and Environment (fwu), Siegen, Germany

Abstract: Design water level definitions for coastal engineering applications rely on robust statistical
analyses of observed extreme water levels. Since tide gauge data only cover the past decades,
statistical estimations lack the information of historical events. Furthermore, mathematically correct
but physically implausible extreme water level estimations should be avoided. A projection of past
storm surges, like the storm surge of 1717 at the German North Sea coast, on today’s conditions as
well as upper limit estimations of recent research projects will be presented, explaining the importance
of a large data base for the improvement of extreme value statistics-based studies. Both methods, the
projection as well as the simulation, allow an improvement of design water level estimations, since
previously disregarded events can now be incorporated in statistical analyses.

Keywords: design water level, extreme value statistics, storm surge, historical events, water level
projection, numerical simulation, reconstruction, coastal protection

1 Introduction

The design height of flood protection measures is mostly based on observed hydrological data by
estimating design events with extreme value analyses (EVA). In coastal engineering, tide gauge
observations are used in EVA to estimate extreme water levels to assure protection with an acceptable
low probability of failure, e.g. 1% annual exceedance probability. On a double logarithmic probability
scale, distribution functions which describe extreme water levels can take shape of a progressive line
(Gumbel Typ II or Frechét), a straight line (Gumbel Typ I) or a degressive line (Gumbel Typ III or
Weibull) (Coles, 2001). Only the latter has an upper limit, both other functions increase steadily.
Using functions with a progressive or straight line to estimate extremes with very small probabilities
may yield an overestimation, which is, however, in clear contrast to the physics behind most
meteorological or hydrological processes (see Fig. 1).

Therefore, historical data and a physically based upper limit are helpful for the estimation of a
more reliable distribution function resulting in plausible flood protection design heights. In addition,
EVA studies generally use observed data, which only go back a few decades for most tide gauges.
This also limits the chances of a reliable extrapolation and, in return, low probability events can only
be roughly estimated. A proper EVA should include observed extreme water levels (i.e. annual
maxima or peaks over threshold), levels of historical events, upper or physical limits (e.g. by
simulations, model results), and aspects on dealing with uncertainties in risk analysis approaches. The
uncertainties will additionally increase by using climate change scenarios and by considering changes
in coastal morphodynamics, since these processes interact and affect further developments. The
challenge is to transfer historical storm surge heights to the current state of the flood protection
systems (e.g. dikes, dunes, etc.) in order to improve the EVA performance.
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Fig. 1.  Exemplary EVA: The fit of an extreme value distribution (EVD) to observed data (orange) yields good results
for extrapolations within a short range (c.f. Coles, 2001). Extremely rare events (e.g. the 10,000-year-event)
tend to be overestimated and estimated water levels possibly exceed physical upper limits. Historical data can
help to improve the estimation by adding more support points to the EVD fit (red).

Studies with a similar aim use model chains to reconstruct historic storm surge heights. For example,
Baart et al. (2011) use historic paintings to derive unmeasured water levels and numerical simulations
to describe morphologic changes in order to improve the EVA estimates of extreme storm surges for
the Netherlands. The chosen approach allows an improvement but also introduces uncertainties, i.a.
due to inevitable model assumptions while our approach focuses on the transfer of observed trends in
water level time series. Other studies try to estimate storm surge probabilities and risks for large areas
(e.g. Haigh et al., 2013) or even the global coastline (e.g. Muis et al., 2016) while we work on the
detailed description of locally severe historic storm surges.

In detail, we briefly highlight how extreme storm surges shaped coastal areas in the past using the
German North Sea coast as an example. We show and discuss how historical extreme storm surge
water levels can be projected on today’s conditions in order to provide improved knowledge for future
extreme value statistics. Finally, we compare the results with model estimates from recent coastal
engineering research projects, which try to explore possible physical upper limits in extreme water
levels.

2 Coastline Changes and Extreme Water Levels in the North Sea

Sea level rise, storm surges, human activities, and anthropogenic effects have mainly driven the
formation of today’s German North Sea coastline including its islands and islets called “Halligen”.
The appearance has been altered over time due to diking, land reclamation, waterway dredging, and
peat degradation, as well as following soil erosion resulting from salt production by burning peat
(Jensen, 2019). However, besides from human activities, sea level rise and storm surges may have
caused the most dramatic changes along the coastline over the past centuries. Examples for coastline
changes due to storms or sea level rise can be found around the globe. Today alterations are often
changed back to a previous state, e.g. by beach nourishments, or initially prevented by using technical
coastal protection. In order to design measures, either fixed in place like a dike or flexible and
temporary like a beach nourishment, design values of hydrodynamics are mandatory to provide
efficient protection based on a defined level of safety.

The past gives examples for coastline changes as a consequence of insufficient coastal protection,
simply because of a lack of knowledge concerning extreme storm surges at that time. One of the most
catastrophic storm surges in medieval times was the “Grote Mandrenke” which dramatically changed
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large parts of the North Frisian and East Frisian coastline. In January 1362, the storm surge destroyed
the small dikes and flooded the hinterland. Large areas of the flooded land were no longer suitable for
farming and turned into tidal flats, since the dikes had not been rebuilt. Subsequently, the North Sea
took these areas in the following centuries (Hadler et al., 2017). Furthermore, the storm surge of 1362
caused the sinking and loss of Rungholt, which was a major settlement with the same or probably
more importance than ancient Hamburg or Kiel. With the “Second Grote Mandrenke” in 1634, the
coastline was altered again towards a shape, which is similar to today’s coastline, as shown in Fig. 2
(Gade et al., 2017).

These events, which are two of many more severe storm surges, highlight the importance of the
knowledge about extreme storm surges and emphasize the need for robust extreme value estimations
in order to provide sufficient coastal protection measures. Since statistical methods always rely on a
data basis as large as possible, the incorporation of historic events, which are not on tide gauge
records, is an important step towards improved design values. Although we only highlight the North
Sea region in this paper, the need for precise long-term databases exists globally, as shown e.g. by
Needham and Keim (2011) for the Gulf of Mexico.

Fig.2.  Development of the North Frisian coastline (red box) due to severe storm surges 1362 and 1634, after Gade et
al. (2017) and Behre (2008).

3 Projection of Historical Storm Surge Events

The first storm surge heights along the German North Sea coast where reported from a storm surge in
1164 with about 20,000 fatalities (Kramer and Rohde, 1992). More historical storm surge disasters
where reported in 1362, 1634, 1717, 1825, and 1906 for the entire southern North Sea coastline
(Jensen and Schwarzer, 2013). Brahms (1754) conducted first studies on the historical storm surge
events and their heights, followed by Woebcken (1924) and others. With regard to engineering
purposes, storm surge heights, are only documented well enough since the second half of the 20th
century, beginning with the disastrous flooding of the Netherlands in 1953. The earlier events often
lack detailed information and precise measurement. Projections to present day conditions of the
historical events over the last 1000 years would be very helpful for the extreme value analysis. The
projection has to account for different geological and morphodynamic processes, which altered the
coastal regime over the last centuries.

For the classification of historical storm surge water levels and especially for the comparison with
today's storm surges, the consideration of changes in the overall coastal system is essential. In order to
estimate how high a storm surge observed in the past would rise today under the same meteorological
and astronomical conditions, three factors must be taken into account:

1. Anthropogenic changes in bathymetry and coastline,

2. subsidence and uplift with resulting bathymetric changes, and

3. changes in mean sea level.
Anthropogenically induced changes in bathymetry and coastline have a major effect on coastal
hydrodynamics. In the course of the last century, significant changes in tidal dynamics have been
observed due to land reclamation measures in the form of littoral fields, beach nourishments and the
diking of originally unprotected lowlands, as well as the successive deepening of shipping fairways.

Subsidence or uplift of the land, measured relative to mean sea level, lead to an increase or
reduction of the run-up heights with regard to the storm surge water levels measurable at the gauge.
The bathymetric effects of subsidence and uplift also superimpose with anthropogenic morphology
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changes described above. First descriptions of the impact of land subsidence date back to the 19th and
early 20th century (e.g. Brahms, 1754; Schiitte, 1908). Following the retreat of the ice sheets in
northern Europe after the last ice age and the associated relief of the earth’s crust, strong land uplifts
occurred, which can still be measured today in Scandinavia. In return, isostatic crustal adjustment
causes land subsidence with rates of up to 1.5 mm/year in northern Germany (Sirocko et al., 2008).
Additionally, the extraction of natural gas leads to regionally amplified subsidence rates.

The described effects show the complexity of the coastal system and its processes, which result in
water level changes at the coastline. For coastal engineering and dimensioning of coastal protection, it
is important to estimate how these changes gradually intensify storm surge water levels. Using
projections of historical events on today’s conditions, considering trends measured by tide gauges, can
help to improve the design standards.

Fig. 3 shows the projection of different historical storm surge water levels at the tide gauge Emden.
The historic storm surge events (red @) occurred before the start of permanent tide gauge records in
1946 and were compiled by Rhode (1977) using storm surge markers at local buildings. While the
mean sea level (MSL) trend in the Ems estuary ranges from 1.3 to 1.7 mm/year, a stronger increase of
3.4 mm/year has been observed at mean tidal high waters (MHW) (see e.g. Jensen et al., 2014).
Therefore, the projection has been conducted for trends of 1.5, 2.5, and 3.5 mm/year in order to cover
the entire range of different trends and to visualize the uncertainties (indicated as red A, B and 'V,
respectively). Applying the trends to selected past events shows, that these events would have
exceeded the high storm surges in the second half of the 20th century if they had occurred under
present day conditions. Further increases, which are not covered by the linear projection, may include
storm surge height amplifications due to changes in bathymetry and coastline as well as the damping
effect of dike failures and overflow which occurred during the historic events (sketched as red A).
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Fig.3.  Projection of historic storm surge heights on today’s conditions for the tide gauge at Emden harbor, in
comparison to results of the research projects MUSE and EXTREMNESS. Historical events (red @) are
projected using different trends of MSL and MHW (red A, B and V¥, respectively). Further uncertainties are
indicated as red A).
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Overall, the simple linear projection of the extreme events shows the potential of past storms. As an
example, during the storm surge December 24, 1717 water levels rose up to 4.62 m in Emden.
Considering observed trends in mean high water levels, this storm surge can be projected in the range
between 5.10 m and 5.70 m, without consideration of other increasing effects like bathymetry changes
or dike failures that occurred back in 1717. The resulting height is around or above observed events of
the second half of the 20th century, when continuous tide gauge measurements became available. The
storm surge could be the highest event under present day conditions, and is therefore relevant for
design water level estimations.

4 Modeling Extreme Storm Surge Scenarios

Knowledge of the probability of the occurrence of certain storm surge levels is essential for coastal
flood risk management. Recent coastal engineering research projects took a step towards estimating a
physical upper limit of extreme storm surge water levels. Two project results are indicated with a blue
threshold in Fig. 3 and allow a plausibility check of the projected extreme events and vice versa.

The project MUSE (“Model-backed investigations of storm surges with very low probabilities of
occurrence”), funded by the German Federal Ministry of Education and Research, estimated possible
extreme storm surge water levels in the entire German Bight based on model simulations and
statistical analyses (Jensen et al., 2006). The model simulations were performed by using modeling
chains of the German Weather Service (DWD) and Federal Maritime and Hydrographic Agency of
Germany (BSH). The results were statistically evaluated at the Research Institute for Water and
Environment at the University of Siegen. Using numerical prediction models, DWD computed
physically possible weather and wind situations that may cause extreme storm surges in the German
Bight. Besides the wind speed, the wind direction as well as the storm track are key factors for the
formation of extreme water levels at the coast. Combinations leading to the most severe impacts were
tested. All computations were physically consistent, i.e. only realistic weather scenarios were
analyzed. The weather and wind situations computed by DWD were transferred to the BSH, which
computed the resulting water levels and wind setup heights for a number of coastal locations. BSH
used physically consistent numerical 2D and 3D operational storm surge forecasting models. The
contribution of BSH focused especially on the selection and development of a suitable wind stress
modeling approach for very high wind speeds, which may exceed 30 m/s. As Donelan et al. (2004)
show using physical model experiments, a limiting state in sea surface roughness is reached at wind
speeds of about 33 m/s. A further increase of wind speed does not yield a larger surge and therefore no
increase in total water levels at the coast. Jensen et al. (2006) finally show that weather conditions can
possibly occur in the German North Sea region, which may lead to storm surge levels exceeding the
maximum levels observed so far by up to 1.40 m without stating this level as an absolute physical
maximum. Changes in meteorological and hydrodynamic boundaries, e.g. driven by climate change,
may shift possible storm surge heights above the estimation for today’s conditions.

The ongoing project EXTREMENESS, also funded by the German Federal Ministry of Education
and Research, continues the work of MUSE and examines extreme meteorological drivers and
possible amplifications for the Ems estuary (Lower Saxony, Germany). Existing datasets of climate
reanalysis and reconstruction simulations were searched for extreme conditions, which were then
amplified, e.g. by a superposition with spring tide water levels (Ganske et al., 2018). The found
hydrological and meteorological boundary conditions were then simulated using a two-dimensional
numerical model to estimate storm surge water levels along the coast of the Ems estuary. Preliminary
results show, that extreme storm surges may lead to water levels of 6.60 m above mean sea level,
which is, for the harbor of Emden, circa 1.60 m above the highest event on record and can be
statistically rated as a 1,400-year event (Ulm et al, 2019). A further step within the project
EXTREMENESS is the application of different models to reconstruct events from historic
meteorological data (i.e. wind and pressure fields). The German Weather Service digitized maps, e.g.
from the 1906 storm surge, and provides the data for simulation runs.

With the project MUSTOK (“Modelling of extreme storm surges on the German Baltic Sea
Coastline”), funded by the German Coastal Engineering Research Council (KFKI) with funds of the
German Federal Ministry for Education and Research from 2005 to 2008, an approach similar to
MUSE was used to reconstruct extreme water levels in the Baltic Sea (Jensen, 2009). On November
13, 1872, the most devastating storm surge on record occurred in the western Baltic Sea. In the project
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MUSTOK, this event has successfully been reconstructed with a model chain of spatiotemporal high-
resolution data of wind speeds and air pressure. The reconstruction of this storm surge event shows a
very good agreement of water levels from observations and simulations forced by these reconstructed
data (Rosenhagen and Bork, 2009). The project shows that modern modeling techniques allow the
simulation of past events, which can then be used for extreme value estimations.

5 Conclusions and Outlook

The projects EXTREMENESS, MUSE, and MUSTOK show that observed storm surges of the past
decades could have been more severe under unfavorable conditions and that the reconstruction of
historical storm surge events is possible with remarkable results. All projects used a model chain to
describe extreme meteorological conditions and the resulting storm surge water levels. While MUSE
worked on the physically correct storm surge generation under extreme conditions, MUSTOK and
EXTREMENESS focus on the reconstruction of historic events to estimate physically upper limits.
The found heights of physically plausible extreme storm surge levels match the projection presented
in this paper, which uses a simple but robust method to estimate how high extreme water levels would
rise under present day conditions. Since the used projection needs careful consideration of local long-
term effects in time series data, the described approach might not be suitable for global applications. It
rather provides a robust tool for model verification, as shown for the three projects. Based on the
results, it will be possible to improve the evaluation of extreme storm surge peak water levels with
respect to their probability of occurrence, e.g. by using approaches shown by van Gelder (1996). Both
methods, the projection as well as the simulation, allow an improvement of design water level
estimations, since previously disregarded events can now be incorporated in statistical analyses. With
a reconstruction of historical storm surges, e.g. 1362, 1634, 1717, or 1825 the basis for a
statistical/probabilistical EVA is improved, yielding more robust design water levels and smaller
uncertainties.
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