
Conference Paper, Published Version

Grasset, Judicaël; Longshaw, Stephen M.; Moulinec, Charles; Emerson,
David R.; Audouin, Yoann; Tassi, Pablo
Porting TELEMAC-MASCARET to OPENPOWER and
experimenting GPU offloading to accelerate the TOMAWAC
module
Zur Verfügung gestellt in Kooperation mit/Provided in Cooperation with:
TELEMAC-MASCARET Core Group

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/107159

Vorgeschlagene Zitierweise/Suggested citation:
Grasset, Judicaël; Longshaw, Stephen M.; Moulinec, Charles; Emerson, David R.; Audouin,
Yoann; Tassi, Pablo (2019): Porting TELEMAC-MASCARET to OPENPOWER and
experimenting GPU offloading to accelerate the TOMAWAC module. In: XXVIth TELEMAC-
MASCARET User Conference, 15th to 17th October 2019, Toulouse.
https://doi.org/10.5281/zenodo.3611548.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.

Verwertungsrechte: Alle Rechte vorbehalten

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hydraulic Engineering Repository

https://core.ac.uk/display/347187781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Porting TELEMAC-MASCARET to OPENPOWER and
experimenting GPU offloading to accelerate the

TOMAWAC module

Judicaël GRASSET, Stephen M. LONGSHAW, Charles
MOULINEC, David R. EMERSON

STFC Daresbury Laboratory
Warrington, United Kingdom
judicael.grasset@stfc.ac.uk

Yoann AUDOUIN, Pablo TASSI

EDF R&D
Chatou, France

Abstract—In this paper the state of porting TELEMAC-

MASCARET on the OPENPOWER architecture with different

compilers is shown. A port to GPUs with OpenMP and

OpenACC of a computationally intensive subroutine of

TOMAWAC is also explained and the performance benefits

shown, a comparison with an x86-64 machine is also presented.

Finally ongoing work is presented and discussed: the port of a

complete and more challenging test-case, a triple coupling case

from EDF.

Keywords:OPENPOWER, POWER8, TOMAWAC, GPU, OpenACC,

OpenMP

I. INTRODUCTION

Currently TELEMAC-MASCARET is parallelised with MPI,
although attempts at hybrid parallelism have been tried in the
past [1]. Improving the parallelisation of TELEMAC-
MASCARET is useful for users who frequently perform
simulations that take a long time to calculate. Current
computer trends favour the increase of the number of cores in
a single processor and, as shown by Fig. 1, this is being
combined with the addition of accelerators such as GPUs,
and memory interconnects designed to reduce the latency
that is introduced by transferring data between different
memory locations. It is therefore now important that
TELEMAC-MASCARET is modified to take advantage of this
new kind of architecure.

Figure 1. Evolution of the percentage of machines in the Top500 list that
have GPUs in them.

There are two key options when choosing how best to run
on GPUs, taking a low-level approach and programming
directly with OpenCL or CUDA, or using pragma-based
programming with OpenMP or OpenACC. The first option
gives more control and usually more performance but it also
means that a specific code has to be written and that two
different versions of the same kernel have to be maintained.
However, when using the pragma-based approach, changes
to the code do not infer a re-write of the kernel, with the bulk
of the changes needed being the addition of pragmas around
the existing code. This approach reduces the burden on those
that maintain the original codebase and means acceptance of
changes is more likely. This work therefore concentrates on
enabling GPU acceleration of portions of TELEMAC-
MASCARET using a pragma-based approach.

This paper first presents a kernel of Tomawac ported to
GPUs using OpenMP and OpenACC pragmas and tested on
OPENPOWER and x86-64 architecture. The possibility of
using GPUs acceleration on a more challenging test-case
provided by EDF is then explored.

II. RELATED WORK

An attempt to use GPUs with TELEMAC-MASCARET has
already been made [1], however the method presented is
different from the one described in this article. In [1], the
authors replaced the original matrix-vector product of
TELEMAC-MASCARET with the one from the MAGMA
library [2], which is then able to be offloaded to GPU.

The primary problem they encountered was that the
MAGMA library was not using the same matrix format as
TELEMAC-MASCARET. Doing the conversion before and after
every matrix-vector product prevented any real-world
performance improvement. This work shows how directly
accelerating the existing code without modifying the data
structure used by TELEMAC-MASCARET is a better approach.

III. MACHINES USED

A. Paragon

The OPENPOWER foundation [3] is a consortium of
entities working to provide an architecture revolving around
the POWER processors and accelerators. In this work the

0

5

10

15

20

25

30

P
e

rc
e

n
ta

g
e

 o
f
m

a
c
h

in
e

s
 w

it
h

 G
P

U

XXVIth Telemac & Mascaret User Club Toulouse, FR, 16-17 October, 2019

architecture used consists of IBM POWER8 processors and
NVIDIA GPUs. The processors are interfaced to the GPUs
with NVLink instead of PCI-Express. NVLink is a high-
bandwidth proprietary interface developed by NVIDIA [4], it
is also used here to enable GPU to GPU interconnection.

This work has almost entirely been done on the UK
Research and Innovation Science and Technology Facilities
Council's (UKRI-STFC) Paragon POWER8 cluster,
maintained and run by the Hartree Centre [5] at Daresbury
Laboratory in the UK. Each node of the cluster consists of 2
POWER8 CPUs, each with 8 physical cores (up to 8 hardware
threads per core) and 4 NVIDIA P100 GPUs with NVLink 1.0
interconnects. Each P100 has 16GB of memory and the 2
POWER8 CPUs share 1TB of memory.

B. Wilkes-2

The Wilkes-2 cluster [6] is hosted at Cambridge
University, in the UK. Each node of the cluster consists of
one Xeon E5-2650 v4 2.2GHz CPU with twelve physical
cores, and four NVIDIA P100 GPUs. Each P100 has 16GB of
memory and the node has 96GB of memory.

The Wilkes-2 cluster has the same GPUs as the Paragon
cluster, so little difference in computation time is expected
between them. However, the Paragon cluster has NVLink to
transfer data between the CPUs and GPUs, while Wilkes-2
has standard PCI-Express which means that in the case of
high-volume data-transfer between CPUs and GPUs the
Paragon cluster has an advantage.

IV. PORTING TO THE OPENPOWER ARCHITECTURE

Before working on accelerating parts of TELEMAC-
MASCARET using GPUs, it was first necessary to port and
compile it using the OPENPOWER architecture. During
testing, a significant bug with GCC for OPENPOWER was
discovered, through this work this has been reported [7] and
fixed in GCC 9.1. Similarly, a number of internal bugs within
IBM's XL compiler have been found by this work, reported
and fixed in the version 16.1.1.1. A single compilation issue
when using the XL compiler remains in the current
TELEMAC-MASCARET code-base but is easily rectified with a
small patch. Finally, the PGI compiler tested is able to
compile the lastest stable version of TELEMAC-MASCARET

(v8p0r2) but fails when compiling the trunk, this has been
reported on the PGI bug tracker [8].

Further problems with compilation using all three
compilers were found when using OpenACC and OpenMP,
these have all been reported to the respective public bug
trackers for GCC [9] and PGI [10] and internally to IBM.

Version ≥ PGI 18.10 ≥GCC 9.1 ≥XL 16.1.1.1

v8p0r2 Compile Compile Does not
compilea

trunk Does not
compilea

Compile Does not
compilea

a. Compilation possible following application of patch to TELEMAC-MASCARET

Table 1. Summary of the current state of TELEMAC-MASCARET on
OPENPOWER with different compilers.

V. PORTING A KERNEL TO GPUS

A. Kernel Choice

In order to determine whether there would be any
significant benefits to porting parts of TELEMAC-MASCARET

to GPUs, a specific test-case was chosen. The case
fetch_limited/tom_test6.cas of the wave propagation module
TOMAWAC was a good candidate because it is computationaly
intensive and most of the computations are localised in a
single subroutine. Even though it is a complete test case with
initialisation, finalisation and calls of numerous subroutines,
95% of the computational time is spent in the qnlin3
subroutine. Any benchmarks of this kernel shown will give
the execution of the whole test case and not only the time of
the qnlin3 subroutine. The execution time is measured using
the internal timers of TELEMAC-MASCARET.

The qnlin3 subroutine is approximately 400 hundred lines
long and mainly consists of a four-level nested loops and
updates to two three-dimensional arrays. Each array can have
its cells updated multiple times during a single call of the
subroutine.

As the original test-case mesh is very small, it was
refined twice in order to increase the computation time. This
was achieved with Stbtel and the python scripts from the
TELEMAC-MASCARET suite. The final mesh was made of
75 664 elements and 32 127 points. Some parameters in the
.cas steering file have also been changed: “NUMBER OF
TIME STEP” was increased to 400 and “TIME STEP” to
225.

B. ORIGINAL EXECUTION TIME

Each core of the POWER8 CPU is able to work at different
levels of Simultaneous Multi-Threading, (SMT1, SMT2,
SMT4 and SMT8). This means that each core can execute
more than one thread at the same time, e.g. two threads with
SMT2. This functionality is comparable with the
Hyperthreading technology of Intel processors. While Intel's
Hyperthreading can only currently be used to run a maximum
of two threads in parallel, a POWER8 core is able to run up to
eight. Benchmarks have shown that TELEMAC-MASCARET

does not benefit from the use of SMT8 (maybe because the
memory bandwith is saturated, also SMT8 is not on par with
SMT2 or SMT4 as it deactivates the CPU's instruction
prefetcher [11]). As standard TELEMAC-MASCARET uses MPI
parallelisation and is able to run on thousands of cores [12],
early tests have showed that it is always beneficial to use
SMT2 and in some cases SMT4 but never SMT8. This work
therefore presents results using SMT1, SMT2 and SMT4.

Tables 2, 3 and 4 show that there is a significant
difference in execution time for the same code, when
compiled with different compilers but using the same basic
optimisation parameters. The PGI compiler generates the
fastest code, the IBM compiler produces code between 1.10
and 1.49 times slower than PGI and the GCC compiler
generates code between 1.04 and 1.89 times slower than PGI.
The biggest difference in execution time is noted when the

XXVIth Telemac & Mascaret User Club Toulouse, FR, 16-17 October, 2019

code is run on one or two nodes, while the smallest comes
when the code is run on eight nodes.

Number of

nodes

SMT1

execution time (s)

SMT2

execution time (s)

SMT4

execution time (s)

1 8442 6801 6072

2 4494 3376 3172

4 2240 1775 1747

8 1185 980 2489

Table 2. Execution time (s) comparison of the original code with different
level of SMT when compiled with PGI.

Number of

nodes

SMT1

execution time (s)

SMT2

execution time (s)

SMT4

execution time (s)

1 12 045 10 507 8108

2 6711 4274 4186

4 2697 2254 2276

8 1425 1236 2734

Table 3. Execution time (s) comparison of the original code with different
level of SMT when compiled with IBM XL.

Number of

nodes

SMT1

execution time (s)

SMT2

execution time (s)

SMT4

execution time (s)

1 15 973 9976 7640

2 6084 4338 3899

4 2865 2136 2075

8 1353 1146 2595

Table 4. Execution time (s) comparison of the original code with different
level of SMT when compiled with GCC.

As shown in Tables 2,3 and 4, the performance difference
between the compilers reduces as the number of MPI
processes increases (and therefore the number of
computations per MPI process decreases), therefore it can be
hypothesised that the PGI compiler produces the fastest
executable because of a better ability to vectorise the code.
The vectorisation achieved by the PGI compiler appears
efficient when there are a lot of computations per MPI
process but when the processes have a small amount of work
it does not make much difference.

C. OPENACC

OpenACC is an open standard set of directives to offload
computations on GPUs. Between the three compilers used
for this work, only PGI and GCC provide an OpenACC
implementation.

The modifications introduced to use OpenACC for GPUs
with the TOMAWAC module required only small changes to
the code. The key change is that, in order to get good
performance, the four loops have been moved closer to each
other and have been collapsed (as seen in code sample 1).
However this revealed a problem when compiling with PGI.
Collapsing the four loops meant the compiler replaced the
four loops with a new one which iterates from 1 to the

multiplication of the four upper-bounds. In the original code
the four max variables were 32 bit integers however, 32 bits
is not enough to hold the multiplication of the four upper-
bounds in the test-case used. The type has therefore been
changed to a 64 bit integer. The problem has been mentioned
in the PGI forum and they have proposed that the next
version of the compiler will automatically use 64 bit integers
when collapsing loops as an optimisation [10].

 As the cells arrays can be updated several times during a
single call to qnlin3, it was necessary to protect each update
in order to make sure that no cells were updated
simultaneously. To do so, each update is put in an atomic
operation. In a pure CPU implementation this would be
considered a bad approach as atomic instructions are
typically slow but here GPU performance implications
appear minimal. On CPU, instead of using atomic it would
have been possible to use a reduction on the arrays, at the
cost of added memory usage.

Finally, in OpenACC there is no directive to distribute a
loop accross multiple GPUs. However, as TELEMAC-
MASCARET is already parallelised with MPI we can easily
take advantage of this. During the initialisation of TELEMAC-
MASCARET each MPI rank is assigned to a GPU. When the
process encounters a portion of code to offload, it sends it to
the GPU it has been assigned to (assignement is maintained
for the duration of the execution). E.g. when 4 MPI ranks are
created, GPU 0 will be assigned to MPI rank 0 and GPU 1 to
rank 1 and so on. When 8 MPI ranks are created, each GPU
will have 2 MPI ranks assigned to it (since there are 4 GPUs
on each node).

To validate that the modified code still gives the correct
results, the result file is compared to the result file generated
by the original code. In the benchmarks presented hereafter
no differences between the two result files have been found.

Tables 3 and 4 show the results for the program compiled
with the PGI and GCC compilers. It can be seen that the PGI
implementation is the more efficient as it outperformed GCC
by around three times. If these results are compared with the
original execution time using MPI-only, then it shows that
using GPU with OpenACC is highly beneficial. The program
using GPU and compiled with the PGI compiler is between
4.4 and 5.5 times faster than the CPU MPI-only version and
between 1.8 and 2.1 times faster for the program compiled
with the GCC compiler.

do i=1,maxi
!some operations
 do j=1, maxj
 !some operations
 do k=1, maxk
 !some operations
 do l=1, maxl
 arr(j,k,l) = arr(j,k,l) +1

!$acc parallel loop collapse(4)
do i=1,maxi
 do j=1.maxj
 do k=1,maxk
 do l=1,maxl
 !some operations
 !$acc atomic update
 arr(j,k,l) = arr(j,k,l) + x

Code sample 1. Comparison of of the original and after transformation
of a simplified part of qnlin3.

XXVIth Telemac & Mascaret User Club Toulouse, FR, 16-17 October, 2019

Number

of nodes

Best original CPU

execution time (s)

GPU (OpenACC)

execution time (s)

Speedup

(CPU / GPU)

1 6072 1367 4.4

2 3172 686 4.6

4 1747 342 5.1

8 980 179 5.5

Table 5. Comparison between CPU and CPU+GPU execution time with
OpenACC when compiled with PGI.

Number

of nodes

Best original CPU

execution time (s)

GPU (OpenACC)

execution time (s)

Speedup

(CPU / GPU)

1 7640 4192 1.8

2 3899 2131 1.8

4 2075 1083 1.9

8 1146 554 2.1

Table 6. Comparison between CPU and CPU+GPU execution time with
OpenACC when compiled with GCC.

D. OPENMP

Since version 4.0, OpenMP has offered its own GPU
offloading capabilities similar to those provided by
OpenACC, again these are pragma-based. Even though the
pragmas are syntactically different from those in OpenACC,
the ones used for offloading are functionally equivalent. The
OpenMP offloaded version of qnlin3 is therefore very similar
to the OpenACC one (see code sample 2).

As the PGI compiler used only supports OpenMP
pragmas for CPU, the IBM compiler has been used to
evaluate OpenMP GPU offloading performance. GCC also
implements OpenMP GPU offloading but for unknown
reasons the program always crashes when entering the GPU
code, it has therefore been impossible to test it so far.

Table 7 shows the results for the OpenMP offloading
compared to the original MPI version, the two being
compiled with the IBM XL compiler. It can be seen that there
is still a notable acceleration when using the GPUs. On two
nodes, the version running on GPUs is three times faster than
the original MPI version and it is four times faster on eight
nodes. However the speedup achieved is smaller than the one
achieved with OpenACC. In fact, the OpenMP version is
about two times slower than the OpenACC version compiled
with PGI. This difference in performance could be attributed
to having to use the IBM compiler rather than the PGI
compiler used for the OpenACC tests as the IBM compiler
typically produces slower code (as can be seen in Tables 2
and 3).

Performance on 4 MPI ranks has been impossible to
measure. The problem is the same as described in section
IV,C. The difference is that using a 64 bit integer as an index
loop does not solve the problem, the IBM XL compiler
seems to still generate GPU code which uses 32 bit integer.
This problem has been reported to IBM.

!$omp target teams distribute parallel do collapse(4)
do i=1,maxi
 do j=1.maxj
 do k=1,maxk
 do l=1,maxl
 !some operations
 !$omp atomic update
 arr(j,k,l) = arr(j,k,l) + x

Code sample 2. OpenMP offloaded version of a simplified qnlin3.

E. MULTIPLE MPI PROCESSES PER GPU

Profiling using NVIDIA’S nvprof utility shows that the
PGI compiled OpenACC implementation uses about 25% of
the total occupancy of each GPU. Furthermore, the kernel
does not run continously but only for about 60% of the total
execution time of the whole program, so the GPU alternates
between idle time (40%) and computing time (60%). In
theory it should therefore be possible to run nearly 8
instances of the code on the GPU before hitting 100% usage
for the test case shown. Also, as this case has a low memory
consumption, there are no foreseeable problems running 4
instances of the code on one GPU from a memory
consumption perspective. An added beneficial consequence
of running four instances of the code on each of the GPUs
means that every core of the POWER8 CPU is also used when
SMT1 is assumed.

A profiling of the version compiled with GCC has been
done and was notably different from the PGI one. With PGI
the kernels were taking 25% of the GPU computational
capability and running for 60% of the time, with GCC the
kernels use only 12.5% of the GPU capacity and are running
for 83% of the time. This shows that PGI, at least in this case
generates kernels which are able to extract more parallelism
and use more of the computational power of the GPU.

Tables 8 and 9 show the results for using multiple MPI
processes per GPU (up to one MPI process per core of the
CPU). These results demonstrate that it is beneficial to run
multiple instance of the code on the GPU compiled with the
PGI compiler, the code benefits from an acceleration between
1.25 and 1.49. However when the code is compiled with
GCC, the acceleration (between 1.03) is almost non-existant
when running multiple instances of the code on the same
GPU.

The same test has also been tried with the OpenMP
version of the offloading. Table 10 shows the results. As with
the PGI+OpenACC version, the IBM+OpenMP version can
also benefit from offloading mulitple MPI processes on a
GPU, the acceleration obtained is between 1.20 and 1.27.

Number of

nodes

Best original CPU

execution time (s)

GPU (OpenMP)

execution time (s)

Speedup

(CPU / GPU)

1 8108 Crash –

2 4186 1401 3.0

4 2254 686 3.3

8 1236 336 3.7

Table 7. Comparison between CPU and CPU+GPU execution time with
OpenMP when compiled with IBM XL.

XXVIth Telemac & Mascaret User Club Toulouse, FR, 16-17 October, 2019

Number of

nodes

1 MPI per GPU

execution time(s)

2 MPI per GPU

execution time(s)

4 MPI per GPU

execution time(s)

1 1367 1192 1090

2 686 612 532

4 342 303 253

8 179 146 120

Table 8. Comparison of execution time (s) when offloading multiple MPI
processes on the same GPU with OpenACC when compiled with PGI.

Number of

nodes

1 MPI per GPU

execution time(s)

2 MPI per GPU

execution time(s)

4 MPI per GPU

execution time(s)

1 4213 4192 4086

2 2131 2115 2061

4 1083 1079 1051

8 554 553 539

Table 9. Comparison of execution time (s) when offloading multiple MPI
processes on the same GPU with OpenACC when compiled with GCC.

Number of

nodes

1 MPI per GPU

execution time(s)

2 MPI per GPU

execution time(s)

4 MPI per GPU

execution time(s)

1 Crash 2533 2191

2 1401 1207 1098

4 686 603 542

8 336 302 280

Table 10. Comparison of execution time (s) when offloading multiple MPI
processes on the same GPU with OpenMP when compiled with IBM XL.

F. COMPARISON WITH AN X86-64 MACHINE

This section provides results using a more typical x86-64
based cluster called Wilkes-2. It uses the same P100 GPUs as
Paragon, but it does not have an NVlink interconnect
between the CPUs and GPUs, this means that data transfers
will be slower than on Paragon. As Table 11 shows, there is
no significant differences in execution time between Wilkes-
2 and Paragon when the code is offloaded to GPUs when
using 1 to 4 nodes, this is most likely because data transfers
in the presented case are small and infrequent. Currently it
can be seen that when 8 nodes are used, execution time starts
to rise again indicating a drop-off in scalability. However,
given past experience and performance achieved using the
Paragon Power8 system, this is unexpected behavior and
may be attributed to a functional problem with the Wilkes-2
system. Further investigation of this problem will be
undertaken.

VI. PORTING A CHALLENGING TEST-CASE TO GPUS

In the fetch_limited/tom_test6.cas test-case the
performance bottleneck was the qnlin3 subroutine, taking
about 95% of the execution time. So the offloading to GPU
was relatively simple with only one subroutine to offload in
order to get good performance. Our ongoing work now
focuses on porting more subroutines to GPU to enable
accelerated calculation of more complex cases.

Number of

nodes

Original, 12 MPI

per node,

execution time (s)

and speedup

4 MPI, 4GPU per

node, execution

time (s) and

speedup (cpu/gpu)

12 MPI, 4 GPU

per node,

execution time (s)

and speedup

(cpu/gpu)

1 17 339 1319 (13.1x) 1199 (14.5x)

2 8088 652 (12.4x) 650 (12.4x)

4 3751 328 (11.4x) 320 (11.7x)

8 1900 564 (3.4x) 477 (4x)

Table 11. Comparison of execution time (s) between original code and
offloading to GPUs with OpenACC on Wilkes-2 when compiled with PGI.

EDF have provided a test case named Somme_7days.
This is a triple coupling case using TELEMAC2D, SISYPHE and
TOMAWAC. After profiling the code, it seems that most of the
time is spent in Tomawac, but not in a single subroutine as
with the presented test-case. In Somme_7days there is no
clear bottleneck to note. The profiling has been done with the
Linux perf profiler [13], using one core of one POWER8 node
and the code was compiled with the PGI compiler.

In Fig 2. it can be seen that the main time-consuming
subroutines are schar41_per_4d, log, qnlin1 and bief_interp.
It should be noted that log is mostly called in qwind1, thus
their execution times could be merged. The main difference
with the previous work done on the tom_test6.cas case is that
this time it is not possible to offload one subroutine to GPU
and get a significant acceleration, because no subroutine
dominates. Another difference is that qnlin3 was
computationally expensive, but in this case no subroutine is
equally as expensive, for instance a single call to qnlin1 takes
about 400 ms and a call to bief_interp, which is the most time
consuming subroutine, takes about 20 ms. The subroutine
bief_interp is the most expensive not because of the
computational cost but because it is called very frequently
during the execution of the program.

In order to get performance improvements with GPU
offloading in this case, it will be necessary to offload
multiple subroutines and since the subroutines are quick to
execute and called thousands of times it is very important to
minimise the data transfers between host machine and GPU.
To achieve this it will be necessary to perform all transfers at
the caller level and not within the offloaded subroutine.
Doing so will introduce another complication, for instance it
is easy to do the data transfers in semimp for all the offloaded
subroutines that semimp will call. However if those
subroutines are called outside of semimp then the data needed
will not be available on the GPU, leading to a crash.

One solution would be to add a call to acc_is_present (or
omp_target_is_present) at the beginning of each offloaded
subroutine, if the data is present the code will be executed on
the GPUs and if not on the CPU. But doing so does not take
into account that some subroutines might be modified to
execute more efficiently on GPUs (like a collapse of the
loops, as seen on code sample 1) and that these modifications
are usually guarded with a compile-time ifdef in order to not
duplicate the code and keep the two versions in the same file.

XXVIth Telemac & Mascaret User Club Toulouse, FR, 16-17 October, 2019

Since only one part of the code guarded by the ifdef will be
compiled it will not be possible to select it arbitrarily at
runtime. An elegant solution to this problem is still being
considered.

Figure 2. Profiling of the Somme_7days test-case (1 MPI, 1 POWER8 core,
PGI compiler, Linux perf profiler)

VII. CONCLUSION

The last stable version of TELEMAC-MASCARET (v8p0r2)
is now working on the OPENPOWER architecture with GCC,
PGI and with IBM XL (when using a minor patch). An
official certification has been granted by the OPENPOWER

foundation for this stable version [14].

Progress has been made on porting parts of TOMAWAC to
GPUs. This is working as expected and gives performance
improvements on subroutines which are computationally
intensive such as qnlin3, but more work needs to be done for
subroutine which are less computationaly intensive, such as
qnlin1.

ACKNOWLEDGEMENT

This work is supported by the Hartree Centre through the
Innovation Return on Research (IROR) programme.

This work was partialy performed using the Cambridge
Wilkes service. Part of which is operated by the University of
Cambridge Research Computing on behalf of the STFC
DiRAC HPC Facility [15]. The DiRAC component of Wilkes
was funded by BEIS capital funding via STFC capital grants
ST/P002307/1 and ST/R002452/1 and STFC operations grant
ST/R00689X/1. DiRAC is part of the National e-
Infrastructure.

REFERENCES

[1] Hamza Belaoura, Intégration de la bibliothèque MAGMA dans le
système TELEMAC-MASCARET, 2017, Université de Versailles, Saint
Quentin en Yvelines, Internship report

[2] https://icl.utk.edu/magma/index.html – Visited on the 2019-08-27

[3] https://openpowerfoundation.org/ – Visited on the 2019-08-27

[4] https://www.nvidia.com/en-gb/data-center/nvlink/ – Visited on the
2019-08-27

[5] https://www.hartree.stfc.ac.uk/Pages/home.aspx – Visited on the
2019-08-27

[6] https://top500.org/system/179044 – Visited on the 2019-08-27

[7] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87689 – Visited on the
2019-08-27

[8] https://www.pgroup.com/userforum/viewtopic.php?f=4&t=6429 –
Visited on the 2019-08-27

[9] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91410 – Visited on the
2019-08-27

[10] https://www.pgroup.com/userforum/viewtopic.php?f=12&t=6562 –
Visited on the 2019-08-27

[11] Sinharoy Balaram, Van Norstrand J. A., Eickemeyer Richard J., et al.
IBM POWER8 processor core microarchitecture. IBM Journal of
Research and Development, 2015

[12] Moulinec Charles, Denis Christophe, Pham C.-T., et al. TELEMAC:
An efficient hydrodynamics suite for massively parallel architectures.
Computers & Fluids, 2011, vol. 51, no 1, p. 30-34.

[13] https://perf.wiki.kernel.org/index.php/Main_Page – Visited on the
2019-10-02

[14] https://openpowerfoundation.org/?resource_lib=stfc-daresbury-
laboratory-telemac-mascaret-v8 – Visited on the 2019-08-29

[15] www.dirac.ac.uk – Visited on the 2019-09-29

http://www.dirac.ac.uk/
http://www.dirac.ac.uk/
https://openpowerfoundation.org/?resource_lib=stfc-daresbury-laboratory-telemac-mascaret-v8
https://openpowerfoundation.org/?resource_lib=stfc-daresbury-laboratory-telemac-mascaret-v8
https://www.pgroup.com/userforum/viewtopic.php?f=4&t=6429
https://www.pgroup.com/userforum/viewtopic.php?f=12&t=6562
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87689
https://top500.org/system/179044
https://perf.wiki.kernel.org/index.php/Main_Page
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91410
https://icl.utk.edu/magma/index.html
https://www.hartree.stfc.ac.uk/Pages/home.aspx
https://www.nvidia.com/en-gb/data-center/nvlink/
https://openpowerfoundation.org/

