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Abstract—To reduce uncertainties in a modelled system, data 

assimilation strongly relies on the availability of observations, 

and its performance depends directly on the spatial density, the 

frequency, and the quality of these observations. Yet, rivers are 

rather poorly observed. The SWOT (Surface Water and Ocean 

Topography) mission, to be launched in 2021, is expected to 

provide global water level observations at a high-resolution 

coverage for rivers down to 50-meter wide.  

In order to highlight the merits of these future observations, we 

compare the performance of an Ensemble Kalman Filter on a 

50-kilometre reach of the Garonne (South of France) when only 

hourly water height gauge measurements are available in the 

middle of the reach, and when complementary SWOT-like 

observations are available. A 10-kilometre spatial average with 

frequencies of 3 and 1 days are tested in the framework of twin 

experiments. Results show that assimilating the SWOT-like 

observations allows the ensemble size to be reduced without 

losing accuracy. With a better correction of the friction 

coefficients and the upstream discharge, the water height 

systematic bias is cancelled out and the root mean square error 

is decreased, i.e. the deviation to the reference is reduced. The 

beneficial impact of the SWOT-like observations holds in the 12 

first hours of the forecast. 

I. INTRODUCTION 

Data assimilation aims to reduce the uncertainties in a 
modelled system by correcting the initial conditions, the 
boundary conditions and the parameters of this system. 
Among the different schemes available, the Ensemble Kalman 
Filter (EnKF; [1]) has the advantage of not requiring any 
adjoint model. Moreover, the background error covariance 
matrix being calculated using the ensemble, the analysis 
benefits from its flow-dependency. Like any Monte Carlo-
based methods however, it requires a large number of 
members to estimate the background error covariance matrix 
accurately enough, which increases its cost.  

Data assimilation also strongly relies on the availability of 
observations, and its performance depends directly on the 
spatial density, the frequency, and the quality of these 
observations. Yet, rivers are rather poorly observed. 
Observations come mainly from limnimetric in situ stations, 
which provide water height measurements and, for few of 
them, discharge measurements. However, the network 

coverage is not global, and not necessarily sustained, as shown 
in Fig. 1. In some regions, data can be difficult to access due 
to political instabilities, or financial fees. Even in countries 
such as USA, Canada, France or UK who are maintaining a 
sustainable network, entire sections of rivers are not watched 
on.  

  

  

Fig. 1: Global Runoff Data Centre2 stations with monthly data, status on 12 

August 2019. Time series end between 1919 and 1979 (red), 1980 and 1989 

(yellow), 1990 and 1999 (green), 2000 and 2009 (light blue), 2010 and 2019 

(dark blue). 

 

Nadir altimeters on board satellites such as Jason-2 can 
also provide water level measurements, but they have an 
incomplete and low-resolution spatial coverage that make 
them adapted for major rivers only. The SWOT (Surface Water 
and Ocean Topography) mission1 of CNES (Centre National 
d’Etudes Spatiales) and NASA (National Aeronautics and 
Space Administration), to be launched in 2021, is expected to 
provide water level measurements with a global and high-
resolution spatial coverage, decreasing thus the width of 
potentially observed rivers down to 50 meters. The temporal 
revisit will be of 21 days, with a 4-day insight on catchments 
at our latitudes. The accuracy of the water level measurements, 
will depend on the product delivered. For example, for 10-
kilometre reach average observations, the accuracy is 
expected to be 10 cm.  

 

1: https://swot.cnes.fr/en/mission-1,  https://swot.jpl.nasa.gov/mission.htm 

2: https://www.bafg.de/GRDC/EN/Home/homepage_node.html 
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Fig. 2: The 50-kilometer reach of the Garonne, from Tonneins to La Réole. 

Credit: A. Besnard and N. Goutal, simHydro, 2010. 

 

In this paper, we study the impact on the reanalyses and 
forecasts of densifying the observation network in space and 
time, using SWOT-like observations in twin experiments. To 
do so, we use the Smurf (System for Modelling with 
Uncertainty Reduction, and Forecasting; [2]) framework, an 
open source modular system developed in Python at Cerfacs 
for running and cycling data assimilation systems. The focus 
of the study is a 50-kilometer reach of the Garonne, from 
Tonneins to La Réole, modelled with the 1D hydrodynamics 
solver Mascaret [3]. 

The paper is organised as follows: section 2 provides 
information on the framework and the configuration used, 
whilst section 3 describes the experiments and their results; 
finally, section 4 summarises the study and gives some 
conclusions. 

II. FRAMEWORK AND CONFIGURATION 

A. The numerical model Mascaret 

Mascaret is a Fortran code that solves the Saint-Venant 
equations with a finite difference scheme, in order to simulate 
one-dimensional free surface hydraulic systems. For our 
configuration, the equations are solved with a time step of 30 
minutes and a spatial resolution of about 100 m (463 nodes). 

The study focusses on a 50-kilometer reach of the 
Garonne, from Tonneins to La Réole as shown in Fig. 2. The 
Strickler coefficient Ks is uniformly defined over three areas, 
from Tonneins to Mas d’Agenais (zone 1), from Mas 
d’Agenais to Marmande (zone 2), and from Marmande to La 

Réole (zone 3). The upstream boundary condition is 
prescribed with a discharge time series Qup(t) at Tonneins 
created on purpose to represent a sequence of high and low 
flows (Fig. 3). The downstream boundary condition is a rating 
curve at La Réole. 

B. The Ensemble Kalman Filter 

The stochastic version of the EnKF is used to correct the 
three Strickler coefficients and the time-varying upstream 
discharge. The idea is to construct an ensemble of corrected 
simulations of size N whose mean represents the best estimate 
of the hydraulic state of the river. The ensemble is constructed 
by generating perturbations with Batman-OT (Bayesian 
Analysis Tool for Modelling and uncertAinty quaNtification – 
Open Turns; [4]). For the Strickler coefficients (Ks1, Ks2, Ks3), 
scalar perturbations are drawn from a uniform law centred on 

the analysis mean with a range of ± 5 m1/3s-1. The upstream 
discharge time series Qup(t) is perturbed by a Gaussian process 
applied to a reference time series. A principal component 
analysis is performed on a sample of 10000 processes with 
chosen features. In this study we chose a Matérn function with 

a smoothness parameter η = 0.5 (exponential) and length scale 
of 1 day. A truncation is then applied according to a chosen 
threshold to keep a determined number of modes (3 in this 
study). To generate a sample of perturbations for Qup(t), the 
truncated principal components transformation is sampled 
from a centred normal distribution with a chosen standard 
deviation, before being applied to the weights. To minimise 
the cost of the analysis calculation, we chose to control the 
components of the transformation (c1, c2, c3) rather than the 
time series itself, which leads to a control vector  

 x = (Ks1, Ks2, Ks3, c1, c2, c3)T. (1) 
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A 50-day simulation is carried out over the sliding windows of 
3 hours (assimilation cycle) every hour, with a 24-hour 
forecast launch at the end of each window as shown on Fig. 4. 
For example, a first assimilation cycle is conducted from T0 to 
T3 with a forecast from T3 to T27, then a second cycle is 
performed from T1 to T4 with a forecast from T4 to T28, and so 
on. The sliding windows imply that the same observations are 
used within different assimilation cycles. For each cycle, the 
assessment of the system is performed with respect to the end 
of the windows. For example, the date T4 with lead time 0h 
and 1h is picked into the second assimilation cycle and first 
forecast, respectively. At the start of the simulation, all 
members of the ensemble have the same hydraulic state. The 
members will diverge however due to the differences between 
their control vectors (1). Note that the perturbations are 
generated at the start of each assimilation cycle to avoid the 
ensemble to collapse (no inflation used). For the upstream 
discharge a common time series is kept to which perturbations 
are added for each member. 

 

Fig. 3: Reference (black line) and perturbed (blue line) upstream discharge 

at Tonneins. 

 

 

During the assimilation cycle an analysis xa for each 
member i = 1, … N is firstly calculated 

 xa
i = xb

i + K (yo
i – yb

i), (2) 

where xb is the background control vector and yb = Hxb its 
counterpart in the observation space. H is the observation 
operator that maps the control vector space onto the 
observation space. In our case, H is constituted of the model 
Mascaret providing the water height at the time and possibly 
interpolated location of the observation. The observation 
vector yo gathers all observations available within the window. 
This vector is then perturbed for each member according to a 
normal distribution with zero mean and the prescribed 
observation error covariance matrix R. We have considered 
here a diagonal matrix (no correlation between observation 
errors). In (2) the correction (increment) to the background 
control vector is defined by the misfit between the 
observations and the background control vector counterpart 
(innovation) weighted by the Kalman gain  

 K = BHT (HBHT + R)-1,  

where 

 BHT = E[(xb – E[xb])(yb – E[yb])T], (3) 

 HBHT = E[(yb – E[yb])(yb – E[yb])T], (4) 

are estimated from the ensemble. E[.] is the expectation 

operator.  

 

Fig. 4: Cycling of the simulation with 3-hourly sliding windows. 

 

The corrected Strickler coefficients are taken into account 
and the uniform law used to generate the associated 
perturbations is re-centred about their analysis mean. The 
analysed principal components of each member are used to 
generate an analysed perturbation for the upstream discharge 
time series Qup(t) that is taken into account. The common time 
series is corrected by the mean of these perturbations. The 
ensemble members are then propagated again from the start of 
the same window, before a 24-hour forecast is launched. 
During the forecast, the last upstream discharge of the 
assimilation cycle is persisted, assuming no upstream 
discharge forecast is available. 

C. The observations 

The observations used in this study are synthetic, 
generated from the reference run of the twin experiments (see 
section III) with a perturbation drawn from a centred normal 
distribution with standard deviation of 10 cm. A first set of 
hourly water height at node 221 is defined to represent the in 
situ station of Marmande. The SWOT-like observations are 
simulated as if they were coming from limnimetric stations at 
nodes 47, 142, 236, 334, 423, representing a distance between 
stations of about 10 km. Two sets of data have been generated: 
one with daily observations, and one with observations every 
3 days. The error standard deviation of 10 cm corresponds to 
the requirement of the SWOT mission for a 10-kilometre reach 
average. Preliminary tests with shorter spatial average (and 
appropriate error standard deviation, e.g. 20 cm for a 5-
kilometre reach average) were conducted and showed that 
improvements in the root mean square (rms) error with respect 
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to the reference run were more linked to the frequency of the 
observations rather than the spatial average. Therefore, we 
chose to limit this study to a 10-kilometre reach average. 

D.  The Smurf framework 

The experiments of this study have been carried out using 
Smurf3, an open source code developed in Python. It is used to 
run and cycle data assimilation systems in a modular way. 
Smurf is organised around three super classes for the 
numerical models, the data assimilation schemes and the 
observation instruments. Any new item can be easily plugged 
in by defining a child class that will override as many methods 
as necessary. 

A specific python class has been developed for Mascaret 
in order for Smurf to set parameters, to launch the simulation 
and to retrieve variable values at specific times, through 
Application Programming Interfaces (API). A class Gauge has 
also been implemented to handle the observations coming 
from limnimetric stations. It manages the observation files and 
some basic checking such as the observation time with respect 
to the assimilation cycle currently processed. The EnKF used 
in this study is part of Smurf and available for any systems. 

The possibility of integrating the ensemble members 
simultaneously in parallel (innovation calculation, analysis 
propagation, and forecast) has been used in this study, 
reducing significantly the elapsed time for the assimilation 
experiments. 

III. RESULTS OF TWIN EXPERIMENTS 

Twin experiments have been conducted to assess the 
impact of densifying the observation network over time, in the 
prospect of the SWOT mission. 

A. Experiments 

The Reference experiment (Ref) is a deterministic 
simulation without data assimilation. The Strickler 
coefficients are set to Ks1 = 40, Ks2 = 32 and Ks3 = 33, and 
the upstream discharge time series Qup(t) is the originally 
designed one (Fig. 3, black line). This experiment is 
considered as the “truth” and is used to generate observations 
with a noise corresponding to the error standard deviation 
defined (10 cm). 

The Control experiment (Ctl) is also a deterministic 
simulation without data assimilation. However, it respects the 
cycling of 3-hourly sliding windows in order to launch 24-
hour forecasts (with persisted upstream discharge) at the end 
of each window. Although the initial hydraulic state is the 
same as Ref, the Strickler coefficients are set to Ks1 = 30, Ks2 
= 40 and Ks3 = 40, and the original upstream discharge time 
series Qup(t) is perturbed to simulate some inaccuracies (Fig. 
3, blue line). This experiment is considered as the one to 
improve towards Ref. 

Different experiments with data assimilation have been 
carried out. They are all run with the same configuration as Ctl 
for the Strickler coefficients and the upstream discharge, but 
will diverge from it due to the corrections brought sequentially 

3: https://gitlab.com/cerfacs/Smurf 

by the assimilation. A first experiment (Ais) assimilates only 
the hourly in situ data at Marmande. The second and third 
experiments (A3d and A1d) assimilate SWOT-like 
observations every 3 and 1 days, respectively. The two last 
experiments (Ais3d and Ais1d) assimilate both the hourly in 
situ data at Marmande and the SWOT-like observations every 
3 and 1 days, respectively. 

Each simulation is run during 52 days. The first two days 
are considered as a spinup to allow for the hydraulic state to 
stabilise with respect to the initial conditions and parameters. 
As a consequence, Ref and Ctl (and hence the assimilation 
runs) will diverge slightly. Therefore, the period of assessment 
goes for 50 days, from the hypothetical dates of 1st May to 20th 
June. 

B. Size of the ensemble 

The choice of the ensemble size for an EnKF algorithm is 
crucial. Too small, it will lead to inaccurate covariance 
estimates and hence a poor performance, although technics 
such as localisation are available to address this issue (e.g. [5]). 
Too big, it will lead to unaffordable costs. The experiment Ais 
assimilating only in situ observations at Marmande is 
representative of what can currently be done. Therefore, it was 
run with 50 (Ais) and 100 (Ais100) members, in order to 
assess the impact of the covariance estimate accuracy.  

As expected, both experiments are well constraining the 
water height at Marmande. Whereas the water height stays 
close to Ctl for both runs at La Réole, a large difference can be 
seen upstream at Mas d’Agenais. With 50 members only (Fig. 
5), the water height drifts slowly from Ctl, reaching a 
difference with Ref greater than 3 meters at the end of the 
period. With 100 members (Fig. 6), there is no obvious drift. 
This drift is due to incorrect analyses for the Strickler 
coefficients Ks1 and Ks2 as shown in Fig. 10 and Fig. 11 
(brown line), respectively. This issue is a consequence of 
spurious correlations in the estimate of the covariances (3) and 
(4). Because Ais100 uses twice the number of members, the 
estimates are more accurate and these spurious correlations, 
though still existing, are smaller and hence, less detrimental. 
Nevertheless, evidence of a drift for Ais100 might have been 
spotted on a longer simulation period. Note that the upstream 
discharge time series is less sensitive to the problem, thanks to 
the fact that the correction is not done directly, but on 
hyperparameters. Fig. 9 shows the evolution of the global rms 
of the water height error with respect to Ref for Ctl and the 
ensemble means of Ais and Ais100. After a month, the rms for 
Ais is higher than for Ctl, whilst Ais100 stays below. The 
degradation in the rms for Ais is mainly due to a bias increase. 
Spatially, this bad performance of Ais is restricted to the first 
and second zones (Fig. 7), i.e. upstream of the observation 
location. 

The choice is made to run the other assimilation 
experiments with 50 members only, since we expect the 
densification of the observation network to better constrain the 
problem. 

C. Performance of the data assimilation 

The performance of the data assimilation is assessed by 
comparing the mean and the rms of the water height difference 
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between the ensemble mean of each experiment with the 
reference (Ref). These diagnostics are performed by summing 
over time (Fig. 7 and Fig. 8), over location (Fig. 9), or both 
(Fig. 13, Fig. 14 and table hereafter). The global performance 
is summarised in the following table, with a focus at 
Marmande. As expected, the error is significantly reduced 
when data assimilation is used (except for Ais), although the 
performance is not spatially homogeneous (Fig. 7).  

 

Fig. 5: Water height at Mas d’Agenais for Ref (black line), Ctl (blue line), 

and Ais (grey lines for the members, red line for the ensemble mean). 

 

Fig. 6: Water height at Mas d’Agenais for Ref (black line), Ctl (blue line), 

and Ais100 (grey lines for the members, red line for the ensemble mean). 

 
 

D.  Performance of the data assimilation 

The performance of the data assimilation is assessed by 
comparing the mean and the rms of the water height difference 
between the ensemble mean of each experiment with the 
reference Ref. These diagnostics are performed by summing 
over time (Fig. 7 and Fig. 8), over location (Fig. 9), or both 
(Fig. 13, Fig. 14 and table 1). The global performance is 
summarised in the following table, with a focus at Marmande. 
As expected, the error is significantly reduced when data 
assimilation is used (except for Ais), although the performance 
is not spatially homogeneous (Fig. 7).  

TABLE 1: MEAN AND RMS ERROR WITH RESPECT TO REF FOR WATER HEIGHT 

Experiment Global (mm) Marmande (mm) 

Mean  Rms Mean Rms 

Ctl -696 854 -844 904 

Ais100 -161 312 0 69 

Ais 337 907 9 70 

A3d -104 363 -119 373 

Ais3d 8 418 5 73 

A1d -29 199 -16 200 

Ais1d -16 157 2 69 

 

In the first zone the rms error for Ctl is small close to 
Tonneins (45 cm) but increases rapidly (up to more than 1 m) 
due to the erroneous Strickler coefficient. In zones 2 and 3 the 
rms stays high although decreasing slowly. Near La Réole, the 
rms decreases again (35 cm) constraint by the rating curve. 
The large rms is mainly due to a systematic bias (Fig. 8). 
Between Tonneins and Marmande, the assimilation manages 
to reduce the rms for all experiments, except for Ais as 
mentioned in the previous section. We note nevertheless a 
slight increase in the rms for Ais3d, but this is mainly coming 
from the 10 first days of the period, the assimilation struggling 
a bit to adjust to occasional observations as shown in Fig. 9. 

 At Marmande, the significant bias of Ctl is almost 
cancelled out by the assimilation, reducing significantly the 
rms. This is especially true for the experiments assimilating 
hourly data at Marmande. For the latter, the constant Strickler 
coefficient of the third zone and the water height spatial 
correlations allow for the correction to hold downstream until 
a few kilometres before La Réole, where the rating curve takes 
precedence.  

Assimilating only SWOT-like data (A3d and A1d) shows 
a good behaviour at all locations, with a rms about 40 cm and 
20 cm depending on the observation frequency (3 days or 1 
day, respectively). However, downstream of Marmande these 
experiments are not as successful as the experiments 
assimilating hourly observations at Marmande which show a 
rms smaller than 10 cm. It is interesting to note that all the 
experiments assimilating SWOT-like observations perform 
better than Ais100 upstream of Marmande, although their 
ensemble is twice smaller. The mean error in particular, is 
almost cancelled out. Fig. 9 shows that the assimilation 
struggles especially when there are rapid changes in the flow, 
as shown by the upstream discharge time series on Fig. 3. 

The control vector (1) describes the variables that are 
corrected by the assimilation. The principal components of the 
transformation (c1, c2, c3) do not have a “truth” value since 
they generate a perturbation, and cannot hence be compared to 
a reference, unlike the upstream discharge time series Qup(t) 
itself. The time series for each assimilation experiments are 
not sufficiently well corrected for their analysis mean to reach 
the reference values (not shown). In particular, the high flows 
are still underestimated by a few hundreds of m3s-1. The 
analysis mean of the Strickler coefficients Ks1, Ks2 and Ks3 
can be compared directly to the “truth” values of the Ref 
experiment. Fig. 10, Fig. 11 and Fig. 12 show the evolution of 
their analysis mean. The patterns for A3d and A1d are similar 
to Ais3d and Ais1d, respectively, and are therefore not shown. 
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Fig. 7: Global rms of the water height error with respect to Ref depending on 

the location for Ctl and the ensemble mean of all experiments. 

 

 

Fig. 8: Global mean of the water height error with respect to Ref depending 

on the location for Ctl and the ensemble mean of all experiments. 

 

 

 
Fig. 9: Evolution of the global water height rms error with respect to Ref for 
Ctl and the ensemble mean of the assimilation experiments. 

 

Fig. 10: Evolution of the analysis mean for Ks1 in Ais100 (green line), Ais 

(brown line), Ais3d (red line) and Ais1d (pink line). The “truth” and 

erroneous values are shown by the black and blue lines, respectively. 

 

Fig. 11: Evolution of the analysis mean for Ks2 in Ais100 (green line) ), Ais 

(brown line), Ais3d (red line) and Ais1d (pink line). The “truth” and 

erroneous values are shown by the black and blue lines, respectively. 

 

Fig. 12: Evolution of the analysis mean for Ks3 in Ais100 (green line) ), Ais 

(brown line), Ais3d (red line) and Ais1d (pink line). The “truth” and 

erroneous values are shown by the black and blue lines, respectively. 
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Whilst the assimilation manages to correct Ks3 towards its 
reference value for all experiments, it clearly struggles to do 
so for Ks1 and Ks2 when only hourly in situ data at Marmande 
are available. The SWOT-like observations have a clear 
positive impact on the analysis. The more frequent the 
observations, the better the impact is, accelerating the 
convergence for Ks1 and reducing the amplitude of the 
oscillations for Ks2. It is worth mentioning that even if the 
upstream discharge time series and the Strickler coefficients 
are not exactly to their “truth” value, the water height at the 
location of frequent observations (Marmande in particular) is 
still close to the values of Ref. This is due to the well-known 
issue of equifinality [6]. 

E. Forecasts 

At the end of each 3-hourly assimilation window, a 24-hour 
forecast is launched for each member of the ensemble, with 
the Strickler coefficients corrected during the assimilation 
cycle. The upstream discharge value at the end of the 
assimilation cycle is persisted during the forecast. 

Fig. 13 and Fig. 14 show the global water height rms and mean 
error, respectively, with respect to Ref, for Ctl and all the 
assimilation experiments at hourly lead times (ensemble 
mean). For Ctl, the rms is about 85 cm during 12 hours, and 
starts then increasing reaching 1.1 m at the end of the forecast. 
If most of the error comes from a bias in the first half of the 
forecast, this bias increases only slightly in the second half. 
For the reasons exposed in section III-B, assimilating only in 
situ data at Marmande with 50 members, gives a higher rms 
than Ctl. During the first 12 hours, the other experiments 
benefit from the performance of their own assimilation cycle 
and hence have a smaller rms (and mean) than Ctl. Their 
respective performance are similar in the second half of the 
forecast, with a rms increasing faster than Ctl. After 24 hours, 
their rms is still about 20 cm smaller than Ctl. Extrapolating 
the data, we can estimate that the assimilation would lose its 
impact on the forecast after a lead time of about 30 to 32 hours. 
Note that the mean for all experiments is quite stable.  

 

Fig. 13: Global water height rms error with respect to Ref for the ensemble 
mean of the assimilation experiments. 

 

Fig. 14: Global water height mean error with respect to Ref for the ensemble 
mean of the assimilation experiments. 

IV. CONCLUSION 

We have studied the potential impact of the observation 
spatial and temporal densification on a data assimilation 
system using an EnKF, in terms of accuracy of reanalysis and 
forecast. On a 50-kilometre reach of the Garonne, we 
compared the assimilation of hourly in situ observation water 
height at Marmande to the assimilation of SWOT-like water 
height observations every 10 kilometres with a frequency of 3 
and 1 days in the framework of twin experiments.  

Having observations distributed regularly along the reach 
allows a smaller ensemble to have the same performance in 
terms of rms as a specified one. The decrease in ensemble size 
depends on the frequency of these regular observations. It is 
unlikely that SWOT observations will be available at a higher 
frequency than daily. Therefore, hourly data from limnimetric 
stations will still be useful to reduce the rms error at their 
locations and downstream of them. 

 Assimilating SWOT-like observations constrains better 
the system and the Strickler coefficients are hence rather well 
corrected, whereas assimilating in situ data only manages to 
correct the Strickler coefficient of the third zone. We did not 
see any improvement on the upstream discharge time series 
however, probably because of the equifinality issue and the 
correction method. Nevertheless, this better set of parameters 
cancels out the systematic bias existing upstream of the 
limnimetric station. The positive impact of the SWOT-like 
observations holds during the first 12 hours of the forecast.  

The SWOT mission scheduled for a launch in late 2021 
will allow us to have observations of water level regularly 
distributed in space for rivers down to 50-metre wide. This 
will be an opportunity to improve the reanalyses and forecasts 
of our hydraulic systems. 
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