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Abstract: In order to reduce wave agitation in shallow-water coastal or lagoon areas, dissipative 
submerged porous structures made of parallelepipedic metallic cages filled with used oyster shells 
(COS) are considered. The present study combines an experimental study in an hexapod facility to 
determine the parameters which best characterize these COS units considered as an homogeneous 
porous medium. Various numerical modeling strategies are then considered to simulate the 
propagation of monochromatic waves over a series of such COS devices in water of variable depth. 
Finally, the results from these models are compared with an independent series of experiments 
performed in a wave flume with the same COS. Overall, a fair agreement is obtained from these 
models regarding wave height attenuation and transmission for a range of relative water depth 
conditions and various relative heights of the COS structures relative to the water depth. 

Keywords: water waves, wave attenuation, porous medium, numerical modeling, cage of oyster shells 

1 Introduction and scope of the study 

In order to promote the growth or spatial extension of certain types of marine vegetation in coastal 
zones or lagoon areas it is often desired to reduce the local wave-induced agitation due to incident 
swell and/or wind-seas. In principle, various coastal engineering solutions could be considered for this 
purpose, including submerged breakwaters, patches of artificial vegetation-inspired flexible or rigid 
structures, etc. In the present project, we consider an environmental friendly solution using 
parallelepipedic metallic Cages filled with (used) Oyster Shells (abbreviated COS hereafter), 
developed by the Ecocean company (France). These modules can be used individually or as 
combinations of several units. In the application considered here, the COS are laid on the sea bottom 
in shallow water. These COS constitute an anisotropic porous medium, in which wave energy is 
dissipated.  

With the aim to improve our knowledge of the dissipative mechanisms inside the COS and to 
develop numerical modeling tools that could be used to help designing coastal protection solutions 
based on these COS units, the present study combines a series of experimental tests and the 
development and test of simplified numerical models. 

The paper is organized as follows: in Section 2, the general strategy for modeling the wave induced 
flow in a system composed of a lower layer of homogeneous porous medium (here the COS) and an 
upper layer of pure water is recalled. In particular, the linear solution for progressive waves in a 
medium with constant water depth and porous layer height is discussed, together with the associated 
dispersion relation. In Section 3, we present the experimental campaign carried out with these COS 
units in an hexapod facility to estimate the values of the parameters which characterize the COS. In 
Section 4, various modelling strategies for waves interacting with a series of COS are introduced. In 
particular, two models are selected: one based on the Elliptic Mild Slope (EMS) equation following 
Rojanakamthorn et al. (1990) and Loasada et al. (1996), and one simplified phase-averaged model, 
assuming progressive waves. These models are compared to a dedicated series of experiments 
performed in a wave flume in Section 5. Conclusions are summarized in Section 6. 
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2 Brief review of flow modeling approach inside and above a porous layer on the bottom 

2.1 General modeling of the flow in the porous medium 

We consider the case of a homogeneous porous layer on an impermeable sea bottom (see Fig. 1-a). 
The total water depth (i.e. between the impermeable bottom and the mean level at rest, corresponding 
to z = 0) is denoted h [m]. In the general case, h varies in space as a function of the horizontal 
coordinates (x, y). The thickness of the porous medium layer (above the rigid bottom) is denoted 
hp = ah [m], and also varies with (x, y) in the general case. Therefore, the thickness of the pure water 
layer above the porous medium is hw = h - hp = (1 - a) h = βh [m]. The parameters a [-] and β [-], both 
varying between 0 and 1 and such that a + β = 1, therefore represent the fractions of the water column 
height occupied by the porous medium and the pure water, respectively. 

 

Fig. 1.  Definition sketch of the problem studied here, with a lower layer of porous medium on an impermeable bed, and 
an upper layer of pure water. Panel a) general configuration with variable water depth and porous layer height; 
Panel b) particular case of infinite medium with uniform water depth and porous layer height.  

Solitt and Cross (1972) developed a model of the flow inside the porous medium based on a potential 
approach. According to this model, the porous medium is characterized by the following set of 
parameters: 

• porosity coefficients: the volume porosity τ̂  [-] is defined as the fraction of the total volume of 

porous medium occupied by water, and the surface porosity ( )2/3
ˆ ˆ1 1ε = − − τ  [-] has to be 

considered when writing flow continuity equation at the interface between the porous medium 

and the water layer (see Eq. (3.f) below). Both porosity coefficients vary between 0 and 1. 

• a coefficient of inertia ( ) ττ−+= ˆ/ˆ11ˆ
aCS  [-], where Ca [-] is a coefficient of added mass. 

• a linearized friction coefficient f̂  [-]. 

Here, these parameters are assumed to be constant inside the whole porous layer. Furthermore, we 
define )ˆiˆ/(ˆˆ fS −ε=f  a (complex) parameter combining the characteristics of the porous medium. 

The free surface elevation, measured with respect to the level at rest (z = 0), is denoted by η(x, y, t) 
[m], and we denote Φ(x, y, t) [m

2
/s] and Ψ(x, y, t) [m

2
/s] the potentials in the water layer and in the 

porous medium, respectively. In the following, we assume the problem is invariant along the y 
direction and that the waves propagate along the x direction to simplify the presentation, limiting 
ourselves to 2DV cases (x, z). The surface waves are assumed to have small amplitude so that a linear 
modeling approach can be used. We furthermore consider monochromatic waves with (known) wave 
period T [s] and angular frequency ω = 2π/T [rad/s]. 

The pressure in the upper water layer is given by the Bernoulli equation (here linearized): 

gztzx
p

t
w −Φ−=
ρ

),,(  0)( ≤≤− zxhw  (1) 

where ρ is the water density and g the acceleration due to gravity. In the porous layer, the pressure 

is given by a generalized Bernoulli relation (e.g. Losada et al., 2016): 

Ψω−−Ψ−=
ρ

fgzStzx
p

t
p ˆˆ),,(  )()( xhzxh w−≤≤−  (2) 

taking into account inertia effects through the coefficient Ŝ  in the first term of the right hand side 
(RHS) and a linearized friction term using the friction coefficient f̂  (last term of the RHS of Eq. (2)). 
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The problem is defined by the following set of equations: 

0=Φ+Φ zzxx  0)( ≤≤− zxhw  (3.a) 

0=Ψ+Ψ zzxx  )()( xhzxh w−≤≤−  (3.b) 

η−=Φ gt  z = 0 (3.c) 

zt Φ=η  z = 0 (3.d) 

0z x xhΨ + Ψ =  z = –h(x) (3.e) 

nn


∂
Ψ∂

ε=
∂
Φ∂

ˆ  z = –hw(x) (3.f) 

Ψω+Ψ=Φ fS tt
ˆˆ  ( )wz h x= −  (3.g) 

Eqs. (3.a) and (3.b) express mass conservation in the water layer and in the porous layer, respectively. 
Eq. (3.c) is the (linearized) dynamic free surface boundary condition (FSBC), while Eq. (3.d) is the 
(linearized) kinematic FSBC. Eq. (3.e) is the impermeability bottom boundary condition. Eq. (3.f) 
expresses the continuity of the flow discharge at the interface between the two layers, relating to the 
normal velocity at the interface and taking into account the porosity of the porous medium ( n


 is the 

unit vector normal to the interface). Finally, Eq. (3.g) expresses the continuity of pressure at the 
interface. In principle, this system must be supplemented with lateral boundary conditions. 

2.2 Analytical solution for the case of uniform water depth and porous layer height 

Considering the particular case of progressive linear waves in an infinite domain in the x direction 
with constant water depth h and constant porous medium height hp (as depicted in Fig. 1-b), the free 
surface elevation can be written in the following form: 

( ){ } ( ) ( ){ }( , ) Re exp ( ) exp ) Re exp ( )i rx t a i t Kx K x a i t K xη = ω − = ω −  (4) 

where K = Kr + iKi  is the wave-number, a complex quantity in the general case. A priori, there are 
several possible solutions for this wave-number, denoted as Kn (n = 0, 1, 2, ...). The real part of each 
Kn, Knr = Re{Kn}, gives the wavelength of the waves Ln = 2π/Knr [m], and the imaginary part 
Kni = Im{Kn} corresponds to the rate of attenuation of the waves in space, given by the term 

( )exp )iK x  in Eq. (4), with the condition that Kni ≤ 0 due to the form chosen here for the solution (4). 
In this situation, the problem can be solved analytically and a dispersion relation can be derived 

(e.g. Losada et al., 1996), expressed as: 

)tanh()tanh(1)tanh(ˆ
22

wwp Kh
gK

Kh
gK

Kh −
ω

=








 ω
−f  (5.a) 

or equivalently, by denoting X ≡ Kh  [-] and 
g

h2ω
≡Γ  [-]: 

[ ]ˆ ˆ( , , , ) tanh( ) tanh( ) tanh( ) 0F X X X X X XΓ a ϕ ≡ Γ − β −ϕ a −Γ β =  (5.b) 

Determining all the roots of Eqs. (5.a) or (5.b) is a difficult numerical problem in the general case, as 
reported by several authors (Losada et al., 1996; Mendez and Losada, 2004; Chang and Liou, 2006). It 
would seem natural to use an iterative method to solve these equations. However, starting from the 
solutions of the classical wave dispersion relation without porous medium, these authors have shown 
that iterative methods of Newton-type or Müller-type do not systematically converge to the correct 
solutions. In the present work, we have followed the homotopy technique introduced by Chang and 
Liou (2006) to solve Eq. (5.b). For each wave-number K, the solution for the potential in each layer is 
then obtained as: 

)(),(),,( zFtx
g

itzx η
ω

=Φ  0)( ≤≤− zxhw  (6.a) 

)(),(),,( zGtx
g

itzx η
ω

=Ψ  )()( xhzxh w−≤≤−  (6.b) 
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with )sinh()cosh()(
2

Kz
gK

KzzF
ω

+=     and    ))(cosh(
)sinh(ˆ

)sinh()cosh(
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2

zhK
Kh

KhKh
gK

zG
p

ww

+
ε

−
ω

=  (6.c) 

In order to apply this solution, the parameters of the porous medium (namely ε̂ , Ŝ  and f̂ ) appearing 

in the coefficient f̂  need to be determined, which is the purpose of the next section.  

3 Experimental characterization of cages of oyster shells as a porous medium 

3.1 Experimental setup for hexapod tests 

With the aim to determine the values of the physical parameters representative of the COS considered 
as a porous medium, an extensive experimental campaign was conducted in an hexapod facility at 
Centrale Marseille in standing waves conditions. This hexapod is a motion generator with 6 degrees of 
freedom (DOF). It allows, using a system of computer-controlled actuators, to impose simple or 
combined movements according to one or more of the 6 DOF to an object fixed on its tray. It allows 
to study objects with a maximum mass of one ton and to impose acceleration up to 1 times the gravity 
acceleration. Here, the hexapod imposes regular surge motions with small amplitude of a 
parallelepipedic tank containing one or several COS immersed in water (see Fig. 2). 

Recently, similar tests have been carried out in this facility with a rectangular tank filled with a 
large number of vertical cylinders piercing the free surface or completely immersed (Molin et al., 
2016), and a similar methodology is followed here. The tank is subjected to translational movements 
at frequencies close to the natural frequency of the first sloshing mode. The measurements consist of 
the elevation of free surface at the lateral walls of the tank and the hydrodynamic forces recorded by 
the 6 actuators of the hexapod, which make it possible to have access at any time to the full set of 
forces and torques. Using a similar theoretical approach as the one outlined in Section 2 (linear 
potential flow approach including a friction term in the porous layer to express the energy dissipation 
due to the viscous effects in the porous medium) but now considering standing waves in the tank, a 
modal approach is applied to represent the sloshing wave motion.  

     

Fig. 2.  Photographs of the test setup in the hexapod. Panel a) configuration A with COS occupying the full effective 
length of the tank (which is about half of the total length of the tank); Panel b) configuration B with COS 
occupying half the length of the tank (here COS centered in the middle of the tank) 

In this work, the COS unit considered have the following dimensions: 0.80 m (length) x 0.50 m 
(width) x 0.12 m (height). Photographs of these COS units are given in Fig. 2. First, the volume 
porosity of the COS was determined by measuring the excess volume of water when a COS is 
immersed in a tank already filled with water. A value τ̂  = 80% was obtained with a variability of 
about ± 1.5%, after 5 tests on different COS units. 
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The testing tank, built for the present study, has a rectangular base of 1.60 x 0.51 m. Its height is 
large to prevent water from coming out of the tank during testing, especially for testing around the 
natural frequency. Two configurations were tested: 

• Configuration A (or "small tank") corresponding to COS occupying the entire length of the tank 
(see Fig. 2-a). In this case, the tank is compartmentalized and the useful length is reduced to 
0.82 m (i.e. slightly larger than the length of the COS). The two compartments on the sides (not 
used) are filled with polystyrene in order to limit the weight of the onboard water and the bias 
on the measurements of forces that would generate movements of the fluid in these 
compartments.  

• Configuration B (or "large tank") corresponding to COS occupying half the length of the tank, 
located either in the middle of it or on one side. In both cases, the length filled with water is 
1.60 m (see Fig. 2-b). 

In the following, only results of configuration A are considered for determining the parameters of the 
porous medium. 

3.2 Measurements and analysis of hexapod test results 

For a range of water depths and forcing periods, the Response Amplitude Operator (RAO) of the 
amplitude of the waves on the lateral walls is measured, as well as the forces and torques exerted by 
the tested structure on the oscillating platform, from which a damping coefficient, denoted Cb,  is 
determined (details of the method can be found in Molin et al. (2016). Using the values determined 
above for the porosity ( τ̂  = 80% and ε̂  = 66%), the values of the added-mass coefficient Ca and the 
friction coefficient f̂  are determined so that experimental curves of the RAO and Cb match as closely 
as possible the curves given by the numerical model. Examples of such comparison between 
experimental results and numerical predictions are given in Fig. 3 (RAO curves) and Fig. 4 (Cb 
curves) for a particular case of one single COS (hp = 0.12 m) in a water depth h = 2 hp = 0.24 m. Two 
experimental curves are plotted, corresponding to 1 mm and 2 mm of amplitude of surge motion 
imposed by the hexapod. Due to lower influence of nonlinearity, tests with 1 mm of motion amplitude 
are usually preferred to determine the parameters. 

 

Fig. 3.  RAO of the free surface elevation in the tank (hexapod experiments) for the case hp = 0.12 m (one single COS) 
in a water depth h = 2 hp = 0.24 m. Regarding the curves from the numerical model, the value of the friction 
coefficient is fixed ( f̂  = 1) and various values of Ca are tested. 

152



 

Fig. 4.  Damping coefficient Cb of the free surface elevation in the tank (hexapod experiments) for the case hp = 0.12 m 
(one single COS) in a water depth h = 2 hp = 0.24 m. Regarding the curves from the numerical model, the value 
of the friction coefficient is fixed ( f̂  = 1) and various values of Ca are tested. 

In the results plotted in Figs 3 and 4, the value of the friction coefficient is fixed to f̂  = 1, which 
appeared to be the optimal value, at least for this amplitude of motion of the tank (not shown here). 
Various values of Ca are then tested, and it appears that Ca = 2.5 produces a best fit of the two curves.  

The set of values ( f̂  = 1, Ca = 2.5) was tested on all other configurations studied in the hexapod 
(with configuration A). In general, the agreement reached appeared reasonable given that oyster shells 
have specific characteristics (compared to classical rip rap): it is a strongly anisotropic medium (a 
priori, there are more shells in the horizontal direction than in the vertical direction, the effects of 
added mass in both directions are not strictly identical), and the shells have many sharp angles. 

It is generally observed that the coefficient of friction f̂  must be taken larger (around 1.4) for tests 
performed with an amplitude of motion 2 mm, compared to tests with an amplitude of 1 mm, for 
which f̂  = 1 generally gives the good order of magnitude of the experimental curves. The fact that the 
coefficient f̂  must be adjusted according to the amplitude of the imposed motion is a clear sign that 
damping forces have a non-negligible quadratic component. This one is not taken into account in the 
current version of the theoretical model (which only considers a linearized friction force). Going 
further in the analysis and taking into account of these effects would require testing other formulations 
of frictional forces, which is left for future studies. 

4 Numerical models for waves interacting with a series of COS in variable bottom conditions 

4.1 Deterministic modeling of wave transformation with porous medium and variable depth 

In order to model wave transformation in the presence of a porous layer close to the bottom in variable 
depth conditions (as depicted schematically in Fig 1-b), we follow Rojanakamthorn et al. (1990) and 
Losada et al. (1996). These authors derived an approximate model for monochromatic waves within 
the framework of linear potential formalism, assuming mild slopes of the bottom elevation and of the 
porous layer height. This model is similar in spirit to the mild slope equation derived by Berkhoff 
(1972). The system of initial equations is the system of Eqs.(3.a – 3.g) presented in Section 2. 

As the total water depth h and height of porous layer hp vary smoothly and slowly with the position 
(x, y), it is assumed (i) that the vertical dependence of the potential remains the same as that obtained 
in the case of a uniform medium treated in sub-section 2.2 and given by Eq. (6.c), and (ii) that the 
local values of the (complex) wave-number K(x, y) and (complex) phase celerity C(x, y) ≡ ω/K are 
given by the dispersion relation in uniform medium (Eqs. (5.a) or (5.b)), but using local values of 
hw(x, y), hp(x, y) and h(x, y). 
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An additional hypothesis of the model is to retain in the solution only the first mode (mode 0, 
giving K0 for the wave-number), similar to the propagative mode for the case without porous medium, 
and to ignore all the higher modes. This simplification is supported by the locations of wave-numbers 
Kn in the complex plane, which show that wave-numbers Kn for n ≥ 1 have larger imaginary parts, and 
thus behave essentially as local (evanescent) modes (not shown here). 

Following Eqs. (6.a) and (6.b), the potentials in the two layers are written as: 

ˆ( , , , ) ( , , ) ( ) ( , ) ( )i tg
x y z t x y t F z i x y e F zω Φ = f = η ω 

 ( , ) 0wh x y z− ≤ ≤  (7.a) 

ˆ( , , , ) ( , , ) ( ) ( , ) ( )i tg
x y z t x y t G z i x y e G zω Ψ = f = η ω 

 ( , ) ( , )wh x y z h x y− ≤ ≤ −  (7.b) 

and it can be shown under the above assumptions that ˆ ( , )x yη  satisfies the following elliptic-type mild 
slope equation (EMS), formulated in the three equivalent forms as: 

( ) 0ˆˆ 2
0

2
00 =ηω+η∇⋅∇ nCn  (8.a) 

( ) 0ˆˆ 0
2
00 =ηβ+η∇β⋅∇ K  (8.b) 

20
0

0

ˆ ˆ ˆ. 0K
∇β

∆η+ ∇η+ η =
β

 (8.c) 

where 0
0

0

21
1

2 sinh(2 )

K h
n

K h

 
≡ + 

 
 and 2

000 Cn≡β  are quantities varying in (x,y), but constant in time. Note 

that these terms correspond respectively to Cg/C and CCg for the classical mild slope equation without 

porous medium, but they are here complex quantities. For the 1DH case, we will subsequently solve 

this EMS model under the form of Eq. (8.c): 

( )0 2
0

0

ˆ ˆ ˆ 0x
xx x K

β
η + η + η =

β
 (9) 

4.2 Phase-averaged modeling of wave transformation with porous medium and variable depth 

Eq. (8) is a deterministic (phase-resolving) model: its numerical simulation requires choosing a grid 
size of about 1/10 of the local wavelength. It is therefore desirable to examine whether a phase-
averaged model (not subjected to the same discretization constraint) could be applied as well. To that 
end, we assume that the waves are essentially progressive and write the complex amplitude as: 

( )ˆ ( , ) ( , )exp i ( , )x y a x y x yη = − θ  (10) 

where a(x,y) is the wave amplitude [m] and θ(x,y) its phase [rad]. We also write the complex term β0 
as ( )0 expB iβ ≡ ψ , where 0B = β  et ψ = Arg(β0) are the modulus and phase of β0 respectively, and 
define θ∇≡κ


 the wave-number vector. We further denote 0 ir iK K K≡ + . After inserting Eq. (10) into 

Eq. (8) and separating the real and imaginary parts, we obtain after some calculations: 

2 2 2 . .r i

a B a
K K

a B a

∆ ∇ ∇
κ = − + + + κ∇ψ


 (11.a) 

( ) 1
. 2 .

2
r iB E B K K E E

 ∇ κ = + ∇ψ∇ 
 


 (11.b) 

Eq. (11.a), known as the eikonal equation, gives the modulus of the wave-number vector, being 
recalled that this vector also satisfies the irrotationality condition 0


=κ×∇ . Eq. (11.b) is an equation 

on the wave energy flux B Eκ


, where E = ½ ρga
2
 is the average wave energy per unit surface in the 

horizontal plane. Note Eqs. (11.a) and (11.b), called “system 1”, still form a phase-resolving model. 

While searching for simplified versions of system 1, an analysis of order of magnitudes of the 

various terms in the RHS of Eqs. (11.a) and (11.b) was carried out, and it appeared that the first term 

in each of these equations represents usually the dominant contribution, so that after neglecting the 

other terms the eikonal Eq. (11.a) reduces to rKκ ≈ and Eq. (11.b) can then be approximated as a 

model, called “system 2”, written below for the 1DH case: 
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( )2 22r r i
x

BK a K K Ba=  (12) 

This system 2 is now a phase-averaged model, whose numerical simulation is easier than both the 
EMS and system 1, and it can be discretized using coarser grids. However, this system does not 
account for physical processes related to the changes of wave phase, in particular diffraction and 
reflection effects are not present in this model. One can also note that the dissipation of energy in the 
RHS of Eq. (12) is mainly controlled by the imaginary part Ki of the wave-number K0.  

5 Validation of the numerical models through wave flume tests with series of COS 

5.1 Experimental set-up of wave flume experiments with series of COS 

The models derived in Section 4 were then applied to a set of laboratory tests carried out 
independently in a wave flume at EDF R&D, Chatou (France). The wave flume is 72 m long. In the 
absence of COS, the bottom of the flume was flat, and 3 values of the water depth h were considered: 
0.50 m, 0.67 m and 0.83 m. Tests were performed in irregular unidirectional wave conditions, 
characterized by a significant height Hs [m] and a peak period Tp [s]. 

In these tests, various arrangements of the same type of COS as used during the hexapod tests were 
considered. Three different heights of COS were tested, stacking 1, 2 or 3 units of 0.12 m height each. 
In the longitudinal direction (along the flume centerline) the extent of each COS zone is 0.50 m. The 
COS are not contiguous, but spaced with a separation distance of 0.30 m. 

In total, 16 tests were performed by EDF R&D: 
• 9 tests with 25 COS zones: 0.50 m long and 0.24 m high, spaced 0.30 m apart, 
• 4 tests with 16 COS zones: 0.50 m long and 0.36 m high, spaced 0.30 m apart, 
• 3 tests with 25 COS zones: 0.50 m long and 0.12 m high, spaced 0.30 m apart. 

A series of 20 wave measurement probes were deployed along the wave flume. Sensors #1 to #5, 
located between the wave generator and the first COS area, were used to separate incident and 
reflected wave trains. Sensors #6 to #20 were set over the domain covered by the COS, and after these 
COS, with the convention that the origin of the x-coordinates is set at the beginning of the first COS 
zone, also corresponding to the position of sensor # 6. The positions of these probes are given in 
Table 1. After the experiments, it was observed that data from probes #9 and #17 were not always 
reliable; therefore, these two probes were discarded from the analysis and comparisons. 

Tab. 1. Position of the wave measurement probes used during the wave flume experiments. 

Probe 

number 

Position w.r.t. 

wave flume 

origin [m] 

Distance from 

previous probe [m] 

Abscissa used for 

modeling [m] 
Comments  

6 38.30   0.00 Position of the start of the first COS 

7 36.80 1.50 1.50   

8 35.25 1.55 3.05   

9 33.65 1.60 4.65 Probe out of order (not used) 

10 32.15 1.50 6.15   

11 30.60 1.55 7.70   

12 29.05 1.55 9.25   

13 27.50 1.55 10.80   

14 25.90 1.60 12.40   

15 24.45 1.45 13.85   

16 22.90 1.55 15.40   

17 21.30 1.60 17.00 Probe out of order (not used) 

18 19.80 1.50 18.50   

19 18.30 1.50 20.00 Position of the end of the last COS 

20 16.70 1.60 21.60   
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5.2 Numerical modeling settings and discretization 

As mentioned in the previous sub-section, the tests were performed with irregular waves, but they are 
simulated numerically with both the EMS model (Eq. (9)) and system 2 (Eq. (12)) using 
monochromatic waves, taking for the wave height H = Hs and for the period T = Tp. The values 
actually used for Hs and Tp are recalled in the legends of the figures of results below. 

The two models use the same 1DH spatial mesh, from x = -2.5 m to 22.5 m, with a uniform 
resolution ∆x = 0.01 m (i.e. 2501 nodes in total). A COS unit (length of 0.50 m) thus corresponds to 
50 grid cells. Note that, in order to limit the numerical effects linked to the rectangular shape of the 
COS, their geometry was slightly smoothed in the numerical models by imposing a smooth transition 
of the COS height between 0 and hp over 5 nodes at the beginning and end of each COS. 

The parameters of the porous medium of the COS are deduced from the tests carried out in the 
hexapod (see Section 3): 

• volume porosity τ̂  = 0.80, giving a surface porosity ε̂ = 0.66, 
• added mass coefficient Ca = 2.50, giving a coefficient of inertia Ŝ  = 1.625. 
• linearized friction coefficient f̂  = 0.8. Compared to the value f̂  = 1 obtained in Section 3, a 

slight reduction was observed to improve the comparison with the wave flume experiments. 

5.3 Comparison of results for 25 COS zones with height hp = 0.24 m (2 COS units stacked) 

Comparisons for the case of 25 COS zones with height hp = 0.24 m (2 unit COS stacked) are 
presented in Figs. 5 and 6 for two hydrodynamic conditions. In both cases, the comparison with the 
measurements confirms the relevance of the proposed models. The measured decay rate of wave 
height and energy as waves propagate over a series of COS is well captured by the two models.  

 
Fig. 5. Simulation of wave height evolution for a test with 25 successive COS each of height hp = 0.24 m in a water 

depth h = 0.83 m with irregular incident waves: Hs = 0.20 m and Tp = 1.67 s. The purple curve (EMS)  is the 
result from the elliptic mild slope model and the red curve is the result from the simplified phase-averaged 
model (system 2). Black squares represent measured wave heights at various positions along the wave flume.  

For the case presented in Fig. 5, corresponding to both shorter waves (Tp = 1.67 s) and deeper water 
conditions (h = 0.83 m), the attenuation due to the COS zones is lower, and differences between the 
two models are weak. For the case presented in Fig. 6 with longer waves (Tp = 2.48 s) and lower water 
depth (h = 0.50 m), the wave dissipation is stronger, resulting in lower transmission coefficients. For 
this case, where reflection effects are more significant, differences between the two models are more 
marked. The curve of system 2 results exhibits a crenelated (rectangular) shape following the 
succession of COS zones. The EMS model, superior in representing reflection and diffraction effects 
associated with each individual COS, produces a smoother wave height evolution. Note the 
transmitted wave heights are slightly different between the two models in this second case. 
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Fig. 6. Simulation of wave height evolution for a test with 25 successive COS zones each of height hp = 0.24 m in a 

water depth h = 0.50 m with irregular incident waves: Hs = 0.15 m and Tp = 2.48 s. See legend of Fig. 5. 

6 Discussion and conclusions 

The combination of experiments and numerical simulations carried out during this study has allowed a 
better understanding of the ability of parallelepipedic metallic cages filled with used oyster shells 
(COS) to dissipate wave energy in shallow-water areas. It appears that these COS can be reasonably 
well represented by a layer of porous medium above the rigid bottom. The characteristics of this 
porous medium could be determined from a series of tests in an hexapod facility (sloshing wave 
motion in a tank containing one or several stacked COS). 

In order to simulate the propagation of waves over a series of COS zones in variable depth 
conditions, a mild-slope type (phase-resolving) model originally introduced by Rojanakamthorn et al. 
(1990) and then used by Losada et al. (1996) was adopted. This model was then subsequently 
simplified into a phase-averaged equation, called “system 2”, in which the dissipative effect of the 
COS appears through the imaginary part of the wave-number. The results from these two models were 
compared with an independent series of experiments performed in a wave flume. An overall good 
agreement is obtained for both these models regarding wave height attenuation and transmission for a 
range of relative water depth conditions and various relative heights of the COS structures. Although 
the “system 2” model needs further validation in other conditions, it appears as a promising simplified 
model for engineering calculations of the effects of such COS devices. 
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