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ABSTRACT 

This study takes advantage of transaction level data from the U.S. Drug Enforcement 

Administration’s (DEA) Automation of Reports and Consolidated Orders System (ARCOS) 

database made newly available under court order by The Washington Post in July 2019. This data 

details individual shipments of pharmaceutical opioid analgesics from wholesalers to retail 

distributors. Using the Enhanced 2-Step Floating Catchment Area (E2SFCA) method, this study 

calculated access to opioid morphine milligram equivalents (MME) per capita for census tracts in 

North Carolina and South Carolina during the year 2009. This study demonstrated that outlier 

volumes of opioid analgesics at individual pharmacies are not always co-located with census tracts 

that have access to outlier per capita opioid volumes. In addition, this study used 5-year average 

American Community Survey (ACS) data to identify distinct populations and compare their access 

to opioid analgesics using a k-medoids clustering algorithm. While opioid access for most clusters 

corresponded to previous research, a rural, socially vulnerable African American population in the 

Low Country of both states was identified with high access to opioid analgesics.  This finding is 

contrary to previous research, indicating the need for further investigation. 
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I. INTRODUCTION 

The opioid epidemic in the United States is a public health crisis. From the 1990’s until 

2010, the rates of opioid prescribing and overdose deaths linked to prescription opioid analgesics 

steadily rose. In 2010, 75% of all prescription drug overdose deaths were caused by opioids, and 

the number of those deaths were 400% greater than in 1999. In 2009, 256.9 million opioid 

prescriptions were filled at pharmacies [1]. 

The details of all shipments of prescription opioids from manufacturers and wholesalers to 

pharmacies and prescribing practitioners are recorded in a U.S. Drug Enforcement Administration 

(DEA) database, the Automation of Reports and Consolidated Orders System (ARCOS). 

Historically, that data has been aggregated and reported on a regular basis to the public, but access 

to individual records has never been allowed despite the details of distribution that might lead to 

insights related to the opioid epidemic [2]. In 2019, The Washington Post was granted the right via 

court order to publish original, unaggregated data from the DEA’s ARCOS database for the years 

2006 through 2012. The public availability of this data is an unprecedented opportunity for 

researchers to understand where, when, and by whom opioid analgesics were distributed 

throughout the United States during this time period. Transactional data from ARCOS makes it 

much easier to compare opioid analgesic distribution with smaller geographic units like the U.S. 

Census Bureau’s census tracts and provides an opportunity to address the limitations outlined by 

Modarai et al. [3]. 

Evidence for the increase in sales of opioid analgesics over time is present in the ARCOS 

database. From 2006 to 2010 opioid sales increased over 50% from 66.89 million grams to 102.79 
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million grams nationally1. Volume of opioid sales during this time varied across states and within 

states as demonstrated by the DEA’s quarterly publications of aggregated ARCOS data. Data 

submitted to this database exists as transactional shipment data. It is released by the DEA to the 

public with all transactional data aggregated to the 3-digit ZIP code which for many portions of 

the country represent multiple counties [4]. 

Researchers have studied the differential distribution of opioids at the state-, county-, and 

3-digit ZIP code level and found associations between both increasing volumes of opioids sold 

and numbers of prescriptions written with an increase in the number of prescription opioid-related 

hospitalizations and overdose deaths [5]–[7]. Researchers have also found differentiation among 

demographic and socioeconomic groups and the odds ratios of their risk for overdose deaths due 

to misuse of opioid analgesics [5]. Modarai et al. [3] studied opioid distribution, opioid poisoning 

hospitalization, and OP-related deaths between 2008 and 2010 in North Carolina in order to 

identify variation of risk for different demographic groups at a geographic level smaller than the 

state level. They asked whether this variation could be identified at the sub-state level. One of their 

sources of data was the ARCOS database, however they argued that their results were limited by 

the 3-digit ZIP code aggregation that the DEA performed before releasing this data. 

This thesis considers data from the ARCOS database covering the area of North Carolina 

and South Carolina for the year 2009. A brief description of the origins of the opioid epidemic and 

its progression is provided. The literature review explores previous research of opioid distribution 

and prescription rates and the health impacts on different sub-populations. It also explores floating 

catchment areas (FCA), a method for calculating a population’s access to an available opioid 

                                                 
1 These numbers are limited to sales of oxycodone and hydrocodone, because this study only examined those two 
opioid analgesic drugs. 
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supply. The methodology section explains the data sources and methodology used in this study. 

The results section provides an exploratory data analysis, a description of clusters formed with a 

k-medoids clustering algorithm, and the results of an OLS regression model using opioid 

accessibility calculated from an FCA method as the dependent variable. The discussion section 

reviews the study’s results in the context of past research. 

This study has several goals. The new availability of individual records from the ARCOS 

database is an opportunity to explore that data spatially and its relationship with the characteristics 

of the population in which opioid shipments were distributed. This will be accomplished using a 

k-medoids clustering algorithm to identify similar populations based on demographic and 

socioeconomic variables. Modarai et al. [3] argued that aggregated ARCOS data limited the results 

of their study; the public release of unaggregated ARCOS data provides an opportunity to address 

that limitation. Additionally, having access to more granular data in combination with available 

demographic and socioeconomic variables is an opportunity to test whether the relationship 

between those variables and geographic variability in opioid distribution remains the same at a 

smaller geographic unit. In this study, I hypothesize that the distribution of medical use opioid 

analgesics was non-random in relation to demographic and socioeconomic characteristics of the 

population. I used an ordinary least squares (OLS) regression model to test this hypothesis, 

however the basic assumption of homoscedasticity was not met indicating that other types of 

models should be considered for future research. 
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II. BACKGROUND 

In the late 1980s, specialists in pain management began publishing studies that examined 

the use of opioid analgesics for treating chronic, non-malignant pain [8]. Despite acknowledging 

the potential for addiction, they argued that the risk of addiction was outweighed by the poor state 

of pain management in the United States [7], [9]. Just like today, many American patients were 

suffering from chronic pain from a host of different ailments, but the medical community was 

averse to pursuing treatments in which the side effects were potentially worse than the conditions 

being treated. In 1995, the president of the American Pain Society advocated in his annual address 

to the Society that a fifth vital sign2, the indication of pain, be introduced as a measurement of 

patient well-being [11]. In response, regulatory guidelines were revised to encourage assessment 

of pain during doctors’ visits [9]. Historically the uses of opioid analgesics had been limited to 

cancer patients or those suffering acute pain in a post-operation environment due to the addictive 

nature of opioids. During this same period of time, state regulators began to loosen the regulations 

governing when non-cancer patients could be prescribed opioid analgesics [12]. 

Around the same time, the semi-synthetic opioid, Oxycontin, was introduced by 

pharmaceutical manufacturer, Purdue Pharma. Oxycontin’s claim to fame was that unlike any 

other opioid-based drug, its manufacturer had purportedly created a formula that was less 

addictive, and the potential for abuse of the drug was minimal [13]. The company’s marketing 

department and sales representatives marketed it aggressively. A common practice was to 

personally visit physicians to promote the drug and to leave behind free samples for physicians to 

distribute to patients. Personal incentives for prescribing the drug were also provided to physicians 

                                                 
2 Traditionally there have been four acknowledged vital signs: blood pressure, body temperature, pulse rate, and 
respiration rate. These signs are all externally identifiable and measurable by a physician [10]. 
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by the company. Oxycontin sales grew rapidly. From 1996 to 2012; global annual sales grew from 

$48 million to $2.4 billion. Nationally, the number of prescriptions written for all opioid analgesic 

drugs rose drastically. Between 1997 and 2002, prescriptions for all oxycodone-based analgesics 

rose 402%. Concurrently, emergency department visits for oxycodone-related overdoses rose 

346% [14]. Overall opioid prescriptions in the United States rose 300% between 1991 to 2009 

[12]. 

Globally, opioid analgesic usage rates have increased from the 1990’s into the first two 

decades of the 21st Century, but it is the United States that dominates the rest of the world in terms 

of consumption. For example, prior to 1990, the total global annual consumption of hydrocodone, 

a semi-synthetic opioid analgesic, was four tons. In 2009, annual global consumption of 

hydrocodone had increased to 39 tons and 99% of that consumption occurred in the United States. 

During the same time period, the annual consumption rate of oxycodone rose from three tons to 

77 tons of which 81% was consumed in the United States. Two factors account for this increase in 

total weight consumed. First, between 2000 and 2009 the number of prescriptions per 100 persons 

issued rose from 61.9 to 83.73. During the same time period, the average size of a prescription had 

also increased: by 69.4% for hydrocodone prescriptions and by 69.7% for oxycodone prescriptions 

[16].  

Levy et al. [17] identified that a broad spectrum of medical specialists increased the rate of 

prescriptions written between 2007 and 2010. After 2010, prescriptions from most specialist 

categories of physicians leveled off as physicians began to pull back on the amount of opioids they 

were willing to prescribe. Some physicians, like those involved in rehabilitation, continued to 

                                                 
3 These numbers appear to come from CDC sources, however they do not match the national prescription rate data 
that is currently available on the CDC website [15]. It should be noted, however, that this website excludes 
prescription rates previous to 2006. 
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prescribe opioids at increasing rates until 2012. This was a national trend, and regions within the 

country experienced different trends through time. This regional variation can be seen at multiple 

levels of geographic organization. In 2009, North Carolina and South Carolina opioid prescription 

rates were approximately the same: 89.3 and 95.8 prescriptions per 100 persons, respectively [18]. 

These rates put both states in the upper third of states’ prescription rates. However, if one looks at 

county-level detail, there is much more nuance in the variation of prescription rates. Prescription 

rates in North Carolina ranged from 22.3 to 175.9 prescriptions per 100 persons for Currituck 

County and Columbus County, respectively. South Carolina’s counties had a similar range: from 

24.6 to 151 prescriptions per 100 persons for McCormick County and Oconee County, respectively 

[19]. 

None of this would necessarily be concerning if opioids were not so addictive to users, and 

if the potential for overdose-related deaths were not so great. However, both of these are true. The 

originator of Oxycontin, Purdue Pharma, had long claimed that its product was not addictive and 

that it was not until years after the drug went on the market that they became aware of abuse by 

addicted patients. However, in 2018 the New York Times published a confidential report from the 

U.S. Department of Justice. It indicated that in 2006 federal prosecutors had found that Purdue 

Pharma had become aware of substantial levels of abuse of the drug in 1996, the same year that 

the drug became commercially available. The drug, sold in tablet form, was being stolen or 

otherwise diverted from pharmacies and crushed for the purposes of snorting it or injecting it 

intravenously. In the late 1990’s, the street value of the drug was more than 2000% higher than a 

legal prescription cost, approximately $35 per tablet. Despite becoming aware of the situation, the 

company hid this information and continued to manufacture and market the drug [13]. 
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Once a person becomes addicted to opioids, their body physically needs the drug to feel 

good. A common result of this is the illegal diversion of prescription opioids like hydrocodone or 

oxycodone for non-medical uses. When prescription opioids are not available, research shows that 

opioid abusers seek out illegal opioids like heroin, which is often laced with fentanyl, an extremely 

powerful, fully synthetic opioid [9]. These drugs, which are classified as narcotics, can have an 

overwhelming effect on the human body’s systems. Primarily, they impact areas of the brain that 

control both voluntary and involuntary breathing as well as the body’s ability to sense a build-up 

of carbon dioxide in the bloodstream. The gag reflex is also suppressed, and irregular heart rates 

can be triggered. All of these effects accumulate into overwhelming a person, requiring them to be 

hospitalized due to opioid poisoning, or worse, causing their death [20].  

Researchers have found evidence that increasing a population’s exposure to opioids for 

legitimate medical uses also increases the amount of opioids diverted for non-medical abuse 

purposes and the consequences of that abuse. Powell et al. [21] found that a 10% increase in the 

distribution of opioids for medical uses leads to a subsequent 7.4% increase in opioid-related 

overdose deaths of people who had not been prescribed opioids. Ghertner [22] found a positive 

association between increasing opioid availability and hospitalizations due to opioid poisoning. 

Across 32 states, for every 1 morphine kilogram equivalents (MKE) of opioids sold per 10,000 

persons there was a 9% increase in hospitalizations. Urban counties experienced a smaller rate 

than rural counties, but the difference was not statistically significant. 

Mortality in North Carolina associated with prescription opioid poisonings began to rise in 

1999 and continued to do so until 2008. Since that time, the number of deaths in the state have 

maintained a flat trend. In 2017, there were 659 overdose deaths of this nature – a rate of 6.5 deaths 

per 100,000 persons [23]. 2017 was also the last year that prescription OP-related mortality was 
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greater than synthetic opioid-related deaths. South Carolina has seen similar trends with 

prescription OP-related mortality, although its trend flattened in 2006 and remained flat until 

increasing dramatically again in 2014. In 2017, 345 persons died of prescription opioid-related 

overdoses, a rate of 7.1 deaths per 100,000 persons. Like North Carolina, South Carolina 

prescription OP-related deaths were greater than those from synthetic opioids until 2017 [24]. 

Despite widespread acknowledgement of the addictive nature of opioids and the evidence from 

associated mortality rates, physicians continue to prescribe opioid analgesics at high rates (Fig. 1). 

Although both North Carolina and South Carolina prescription rates have fallen in more recent 

years (61.5 and 69.2 per 100 persons, respectively, in 2018), they are still much higher than the 

national average [25]. 

 
Fig. 1.  Comparison of Opioid Analgesic Prescription Rates, 2006-
2018. National prescription rate in 2018 was 51.4 per 100 persons. 

Opioid analgesics are classified as controlled substances by the U.S. DEA [26]. As 

controlled substances, the DEA mandates that all shipments of opioids be documented. This 

documentation is preserved in the DEA’s ARCOS database. Within this database are all 

transactional shipments of controlled substances among wholesale and retail distributors. The data 
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within has long been considered proprietary by both drug manufacturers and the DEA. 

Pharmaceutical companies have argued in court that revealing this data would harm competitive 

advantages; the DEA has argued that revealing this data to the public would hurt ongoing 

investigations. Past settlements with pharmaceutical companies have included stipulations that 

transactional data from ARCOS not be published [2]. The DEA regularly publishes data from 

ARCOS; however, the data has been aggregated to the 3-digit ZIP code prior to publication. 

Aggregation of data removes much of the original detail. Not only are finer geographic details like 

the addresses of buyers and sellers removed but also the details regarding the timing of sales, and 

the volume and dosage strength of the drugs shipped [27]. However, for the general public and 

researchers it is this transactional level of detail that ARCOS contains that is vital for 

understanding the who, what, when, and where of all opioid shipments in the United States. It has 

the potential to reveal associations between opioid exposure and opioid-related death at a much 

more granular level of detail than has ever been available previously. 

Over the course of one year, The Washington Post and HD Media, publisher of the 

Charleston Gazette-Mail in West Virginia, fought in court to have transactional-level data from 

the ARCOS database published. This lawsuit originated when the DEA refused to comply with a 

Freedom of Information Act request that was filed by The Washington Post in 2016. In July 2019, 

a U.S. District Judge, Dan Polster, allowed for data from the ARCOS database for the years 2006 

through 2012 to be made publicly available [2]. Two more years of ARCOS data, 2013 and 2014, 

were subsequently released under a separate ruling in January 2020 [28]. 

Access to ARCOS transactional-level data opens new research opportunities for those 

interested in understanding the distribution of medical use opioid analgesics during the years data 

is now available [29]. Previously, aggregated ARCOS data could only be associated with 3-digit 
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ZIP codes which frequently encompass multiple counties within a single state. Any researcher 

interested in geodemographic variation associated with exposure to opioids has much of the spatial 

variability eliminated when working at the level of the 3-digit ZIP code, as demonstrated by 

Modarai et al. [3]. Now that transactional-level data is available, researchers can analyze data at a 

much more detailed level: spatially, temporally, and by buyer or seller or type of drug. In this 

study, I perform an exploratory spatial data analysis of the newly available ARCOS transactional 

data in combination with data from the U.S. Census Bureau’s American Community Survey 

(ACS). I focus on North Carolina and South Carolina. I use the Enhanced 2-Step Floating 

Catchment Area (E2SFCA) method proposed by Luo and Qi [30] to assign an opioid accessibility 

score for all census tracts in the Carolinas. I use a k-medoids clustering method to explore 

demographic and socioeconomic differences, and I create an OLS regression model to identify 

explanatory variables that can explain the variation of opioid accessibility scores. Based on studies 

of demographic and socioeconomic variation in the distribution of opioid analgesics, including 

elderly populations in Powell et al. [21], African-American and public insurance recipient 

populations in Basak et al. [31], median age in Piper et al. [32], non-Hispanic Whites, rural 

residence and public insurance recipients in Guy et al. [33], and economically disadvantaged and 

non-Hispanic White populations in Anderson et al. [34], I hypothesize that there was a non-random 

distribution of opioid analgesics in relation to the demographic and socioeconomic characteristics 

of the populations in the census tracts of the Carolinas. 
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III. LITERATURE REVIEW 

Researchers have access to different sources of data that can be used to analyze the 

distribution of medical-use opioids. Aggregated data from the ARCOS database has been one of 

those sources. However, shipments of opioid drugs to pharmacies is not equivalent to actual 

prescriptions prescribed by doctors and fulfilled at pharmacies. Individual states maintain 

Prescription Drug Monitoring Programs (PDMP) databases that record and preserve details of 

opioid prescriptions. At least one study [32] has compared prescriptions recorded in a state’s 

PDMP to aggregated data available from the ARCOS database. The study found high correlation 

– over 98% - between the databases although the authors noted that data from the PDMP only 

represented 78% of the total opioid analgesic volume distributed to the state. While data from the 

ARCOS database is not equivalent to the individual actions of prescribing physicians, it represents 

an important step in the supply chain from manufacturer to consumers. In this study, ARCOS data 

serves as a proxy for a population’s access to opioids. 

A.  Relationship between Opioid Availability and Related Mortality 

There is a significant body of research demonstrating whether there is a relationship 

between increasing opioid analgesic sales and overdose-related mortality. Nationally, Paulozzi et 

al. [7] found similar positive growth of opioid analgesics sales (76%) and opioid-related 

poisonings (95%) between 1999 and 2002. Along with [7], other studies have also identified 

similar trends. A study of 32 states determined that a 1 MKE increase in opioid analgesic sales per 

10,000 persons predicted a 9% increase in opioid poisoning hospitalizations [22]. Powell et al. 

[21] compared states with high and low Medicare Part D rates of usage. They concluded that a 

10% increase in the distribution of opioid analgesics increased the mortality rate of a state’s non-

Medicare eligible population by 7.4%. Modarai et al. [3] found spatial relationships between 
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increasing opioid analgesic distribution and increasing OP-related mortality, which will be 

expanded upon later in this section. 

The increased usage of opioid analgesics and its addictive nature has resulted in large 

increases in overdose deaths. In a national study, the Centers for Disease Control and Prevention 

reported that state-level variation in prescription opioid-related mortality could not be explained 

by variation in demographic characteristics and could only be explained by variation among states 

in opioid prescribing practices [35]. In 2010, total drug overdose deaths had increased 11 years in 

a row. In that year, 75% of all prescription drug-related overdose deaths involved opioids. Deaths 

related to prescription opioids rose 400% between 1999 and 2010. In their survey of prescription 

opioid-related mortality, King et al. [1] identified determinants of mortality including demographic 

characteristics, user behavior, and prescribing doctor behavior that included increasing numbers 

of prescriptions and volume of dosages. Agnoli et al. [5] hypothesized that short-term mortality of 

patients is higher among those exposed to opioid analgesics. The authors took a nationally 

representative sample of patients. When adjusted for sociodemographic variables, those patients 

who had been exposed to at least one prescription of opioid analgesics had a statistically significant 

higher odds ratio of short-term mortality. Increasing rates of OP-related mortality associated with 

increasing prescription rates of opioid analgesics have been found in New York State [36], in states 

considered part of the Deep South region of the country [6], and in a national cohort study [37]. 

B.  Opioid Exposure, Mortality, and Demographic Variation 

Men are consistently reported to die from OP-related causes at higher rates than women 

[6], [35], [38]–[40], although Brandenburg [6] identified a flat trend over time for male mortality 

and a rising trend for female mortality in the Deep South from 1999 to 2015. These trends 

corresponded with a strong correlation between males and flat hydrocodone sales and between 
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females and spiking oxycodone sales. However, many studies have found that women tend to be 

prescribed opioid analgesics for chronic pain at a higher rate than men [5], [7], [41], [42]. Those 

women tended to live in Southern or Midwestern states and to be older, publicly insured, and with 

lower incomes [5]. This corresponds with research that shows increased rates of OP-related 

hospitalizations or mortality among non-Hispanic Whites and persons with lower educational 

attainment, lower income, and eligible for public insurance [37], [39]–[41]. 

Much of the research done to understand the role of opioid analgesic prescriptions in the 

opioid crisis has come in the form of assessing what factors have a positive or negative relationship 

to OP-related hospitalization or mortality. From the larger body of literature several relevant 

studies are discussed below. The studies cited have contributed to the demographic and 

socioeconomic factors used in this study. The present study examines a list of variables that are 

reflective of the demographic determinants identified by a survey of studies conducted by King et 

al. [1]. Consistently found within the literature studying prescription opioid-related mortality is the 

inclusion and the examination of gender, age, race and ethnicity, urban vs. rural residence, and 

socioeconomic status. For example, McDonald et al. [43] found positive relationships with size of 

county population, urban residence, and proportions of Non-Hispanic Whites, African-Americans, 

poverty, and low levels of health insurance to rates of opioid prescribing. Their study also found 

that the factor contributing the most explanation to the variation in those rates was the abundance 

of prescribing physicians in a county. This study does not have access to physician-to-population 

data, so it cannot be included in this study’s models. The variables that McDonald et al. included 

in their study only accounted for a third of all variation in prescribing rates. 

Brandenburg [6] used a time series analysis to find a temporal relationship between opioid 

sales in Deep South states, including South Carolina, and medical-cause mortality (which is death 
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due to a medically defined disease). The author identified a temporal association between the sales 

of hydrocodone and oxycodone and medically-caused mortality in Non-Hispanic whites between 

ages 45 and 54. In particular, he identified spikes in opioid sales in 2007 and 2013 that were 

followed by a spike in medically-caused mortality approximately one year later. The author 

postulated that the first spike was related to the implementation of Medicare Part D which greatly 

expanded access to prescription drugs, including opioid analgesics which has been found to be 

over-prescribed to public insurance beneficiaries. While the author acknowledged that other 

factors such as prevalence of smoking and obesity in the Deep South played a role in mortality, 

the lack of wide fluctuations year to year in these other factors pointed to the fluctuation in year to 

year opioid sales as a predictor of shifting medical-cause mortality. This was the first study to 

examine opioid exposure and medical-cause mortality and has not yet been replicated, but it points 

to yet another detrimental repercussion of the use of opioids for pain management. 

Modarai et al. [3] were interested in understanding whether demographic variation of risk 

at the state level would continue to be identifiable at a sub-state level. They analyzed opioid sales 

data for North Carolina from the DEA’s ARCOS database that had been aggregated to the 3-digit 

ZIP code level. Sales of each type of opioid were calculated as MKE per 10,000 persons. This data 

was analyzed using correlation analysis and linear regression in combination with emergency 

department visits and unintentional overdose deaths. Based on this analysis, an 839% increase in 

the sale of hydrocodone and a 224% increase in the sale of oxycodone was identified state-wide 

for the years between 1997 and 2010. At the sub-state level, spatial relationships were identified 

between areas that had higher rates of opioid sales and increased rates of overdose-related deaths. 

This association was most pronounced in the southern and western portions of the state in the years 

2008 through 2010. Additionally, the 3-digit ZIP codes that could be considered rural tended to 
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have both higher sales and higher overdose-related mortality. The authors also used several spatial 

clustering tools in ArcGIS including the Local Moran I and the Local Indicators of Spatial 

Association (LISA) tests, however none of those tools identified statistically significant clusters. 

When considering the limitations of their study, the authors argued that aggregated ARCOS data 

smoothed away too much local variability, and they recommended that analysis at the census tract 

level could produce significant results. 

Over the years, researchers have worked to improve the granularity of their understanding 

of aspects of the opioid crisis and how it varies spatially. The smallest geographic units have often 

been either 3-digit ZIP codes or counties. Marotta et al. [36] looked at geographic variability of 

opioid overdoses in New York State. They were able to identify outlier counties on both the low 

and high end of the spectrum using the LISA test. McDonald et al. [43] identified wide variation 

in the volume of opioids prescribed among counties nationally. Oxycodone, in particular, had wide 

variability; the top quarter of counties prescribed seven to 10 times more morphine equivalents per 

capita than the average county. Rossen et al. [44] used Global Moran’s I to test for spatial 

autocorrelation of drug poisoning deaths at the county level between 2007-2009. More than three 

out of four of those deaths were associated with opioid analgesics. Their results suggested that 

drug poisoning mortality clustered among counties more frequently than by random chance. They 

were also able to identify hot spots and cold spots of drug poisoning mortality. Their findings 

corresponded with Modarai et al. [3]; the western third of North Carolina and the northwestern 

corner of South Carolina were part of a larger hotspot of mortality that included a large swath of 

Appalachia. Rossen et al. [44] also identified a single county hot spot of drug poisoning mortality 

in the southeast corner of North Carolina near Wilmington. It was smaller in geographic scope 
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than the hot spot found by Modarai et al. [3], although this could be related to a difference in 

geographic units; Modarai et al. used 3-digit ZIP codes and Rossen et al. used counties. 

C.  Healthcare Accessibility 

There is an extensive body of research that assesses whether a population has adequate 

access to a particular type of healthcare service. Such services can range from everyday healthcare 

needs like visiting a primary care physician or obtaining prescriptions from a pharmacy to 

obtaining specialty care like mammography screenings or cancer treatment [30], [45]–[48]. Part 

of the assessment of accessibility is measuring physical distance between a population in need and 

the location of the healthcare service. How physical distance as a proxy for accessibility is 

measured has evolved over time. Accessibility was once measured ‘as the crow flies’: a Euclidean 

distance radius from a service location. Researchers set a distance limit and any population that 

was beyond that limit might be considered to be living in a healthcare desert [49]. Only under ideal 

circumstances, like in a city with neatly gridded blocks, is this a reasonable measure of distance 

traveled, and even then, use of Manhattan distance over Euclidean would be more apropos. 

Technology has enabled researchers to develop more nuanced methods for measuring distances 

between a service and the population it serves. A Geographic Information System (GIS) provides 

the functionality to measure distance as a person typically experiences it: traversed along a road 

network. Many studies have utilized distance traveled as a measurement of accessibility in which 

a required greater distance traveled to obtain a service is equated with less access to that service 

[47], [50]–[52].  

While GIS has played a role in measuring distance traveled along road networks, it also 

has played a role in measuring accessibility not via the distance traveled but the time required to 

travel to a destination. Details of a road network such as speed limits or average traffic conditions 
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can provide a more nuanced understanding of how much time is required for a person to reach his 

or her destination. In their review of national travel survey data, Probst et al. [53] identified the 

average distance and time persons traveled to reach healthcare services. Unsurprisingly, there is a 

considerable difference in distance traveled between urban residents (8.3 miles) and rural residents 

(17.5 miles) without a substantial difference in time traveled (23.5 and 27.2 minutes, respectively). 

Travel time is a better predictor of access to healthcare services. There is a growing body of 

healthcare accessibility literature that advocates for and uses travel time. For example, Schuurman 

et al. [54] studied hospital accessibility in the rural regions of British Columbia, Canada. They 

demonstrated that in a rural mountainous environment Euclidean distance does not have much 

bearing on distances people travel to access services. They demonstrated that a road network was 

necessary to measure the distance traveled but that time traveled as an impedance should be a 

factor in measuring accessibility. Other studies that have used travel time to measure accessibility 

include [30], [48], [55]–[57]. 

D.  Defining Pharmacy Catchment Areas 

In order to identify a pharmacy’s presumed catchment area and resulting customer base, a 

catchment area needs to be defined. Catchment areas are geographic areas in which the resident 

population is able to access and utilize the service of a business or institution. Oftentimes, 

catchment areas are exclusive and do not overlap, such as school districts. However, in situations 

where businesses compete for customers, catchment areas can overlap [54]. This study used 

overlapping catchment areas. Catchment areas can be defined by the distance a person will travel 

to access a pharmacy or the time a person is willing to travel to access a pharmacy. A primary 

consideration in choosing distance travelled or travel time is whether a population lives in a rural 

or an urban area. The research regarding whether there is a difference is mixed. Probst et al. [53] 
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used the 2001 US National Household Travel Survey to identify medical and dental accessibility 

differences based on residence and race. Across all races, they found that rural residents traveled 

17.5 miles (27.2 minutes) on average compared to urban residents who traveled 8.3 miles (23.5 

minutes). Syed et al. [46] surveyed 61 previous studies related to healthcare accessibility and race 

and residence. Their results were mixed when reviewing studies that focused on differences 

between rural and urban residents’ healthcare accessibility and utilization. They also saw mixed 

results in their survey of studies that examined the effect of travel time and travel distance on 

healthcare accessibility. McGrail & Humphreys [58] studied differences in accessibility between 

rural and urban regions in Victoria, Australia. They concluded that accessibility could be more 

accurately measured when differences in population density between rural and urban areas were 

accounted for during the parameterization of the catchment areas: namely that the size of 

catchment areas needed to be different for rural and urban areas and that a decay function be 

implemented to account for decreasing accessibility with increasing travel. A discussion on the 

nuances of distinguishing between urban and rural regions follows in Subsection E: Defining Rural 

and Urban Catchment Areas. 

Researchers have worked progressively over many years to identify a model that can 

accurately represent the accessibility of a supply to a local populace. A popular means to achieve 

this accuracy is the family of FCA methods. Generally speaking, these methods measure the ratio 

of supply to the demand of the local populace at a given location. The method chosen to define the 

catchment area of a location, whether it is a fixed radius, a defined time travelled along a road 

network, or any other method, is used to calculate accessibility for each source of demand. Thus 

the catchment area ‘floats’ from one location to another [59]. Catchment areas are premised on the 

supply and demand gravity model introduced by Weibull [60]. The earlier versions of FCAs treated 
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access dichotomously [59]. Persons within a catchment area were considered to have access, and 

persons without a catchment area were considered to have no access. This approach does not 

consider the effect of travel cost; a person ¼ mile away from a supply and another person ten miles 

away are considered to have equal access which is not a reasonable assumption to make. Early 

FCA methods also tended to rely on distance travelled as the cost incurred to access a supply [47], 

[49], [61], [62], however travel time has been identified as a more accurate cost measurement [30], 

[54], [59], [63]. Luo & Qi [30] proposed a new FCA method that addressed the problem of 

dichotomous accessibility: the E2SFCA method. They considered hospitals as their supply 

locations and the populations of census tracts as their units of demand. In this method two sets of 

catchment areas are created. The first set includes the catchment areas for locations that have a 

desired supply. Instead of a single travel time applied to the entire catchment area, multiple zones 

of travel time are used. For instance, catchment areas might be broken into four zones: 0-5, 5-10, 

10-15, and 15-20 minutes. Each of those zones have a weight applied to those zones that represent 

decreasing access to a supply as the cost of travel time increases. All census tract centroids that 

fall within a catchment area are considered part of that supply’s catchment area; tract centroids are 

grouped based on each zone of a catchment area. The populace of the tracts in each zone are 

summed and multiplied by the weight of that zone. The weighted populations of all zones are 

summed again, and the ratio of available supply to residents of the catchment area is calculated. 

The second set of catchment areas represent the length of time the populace of each census tract is 

willing to travel to reach a supply. Catchment areas in this set have the same zones of travel time 

and the same weights. Any supply location that falls within a tract’s catchment area is considered 

part of the supply for that tract’s populace. Supply locations are grouped based on each zone of a 

catchment area, and the available supply for that location is multiplied by the zone’s weight. The 
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weighted supplies of all zones are summed again, and the ratio of supply available per capita in 

the census tract is calculated. This summed ratio represents the supply accessible for each person 

in that tract. Higher ratios represent a greater supply per capita for that tract’s populace [30]. 

The weights that are assigned to the zones of a catchment area are based on a distance 

decay function [30]. The values of the function used represent increasing impedance that time of 

travel creates when attempting to reach a supply. Various functions have been suggested, including 

the inverse power, the exponential, and the Gaussian functions, however Wang [64] demonstrated 

that the Gaussian function is the best function to use when studying access to healthcare services. 

Other functions that have been proposed have a very steep initial decline and so produce too high 

of an impedance too near to a supply location. The initial gradual decline of the Gaussian function 

as well as its accelerating decline makes it a better suited function to generate distance decay 

weights for healthcare services. 

Distance decay functions have long been a tool used by city planners and transportation 

experts to model travel behavior by persons in a variety of settings. Distance decay is a flexible 

enough concept that it can be applied to any mode of travel: public transit, biking, private 

automobile, or walking and can be applied to any reason for traveling: work, retail shopping, etc. 

Distance decay functions can be based on an unconstrained gravity model as represented in 

Equation (1) [67, eq. (1)]: 

 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑘𝑘𝑖𝑖
𝜇𝜇𝑤𝑤𝑖𝑖𝛼𝛼𝑐𝑐𝑖𝑖𝑖𝑖−𝛽𝛽 ( 1 ) 

 

in which 𝑇𝑇𝑖𝑖𝑖𝑖 is the number of trips between zone i and zone j, the variables v and w describe the 

level of attractiveness that an origin or a destination has, and the variable c is the cost that is 

incurred to travel between zones i and j. The term 𝛽𝛽 is extremely important because it represents 



21 
 

the amount of impedance that a traveler incurs to travel between two locations. 𝛽𝛽 can also be 

viewed as the willingness of someone to travel to a given location. While the gravity model 

represented in Equation (1) uses a power function to represent this impedance, other functions are 

equally legitimate to use, including a Gaussian function [65].  

Distance decay functions have also been applied to measuring accessibility, or the ability 

of a person to reach and utilize the services at a given location. Modeling accessibility has taken 

three forms: gravity-based models, behavioral models, and cumulative-opportunity models. When 

modeling accessibility of a location based on the gravity model, one is measuring the opportunity 

that a location provides to a traveler weighted against the cost, or impedance, to travel to that 

location. Equations for gravity-based accessibility models include an impedance function such as 

𝑓𝑓𝑖𝑖𝑖𝑖 = exp (−𝑏𝑏𝐶𝐶𝑖𝑖𝑖𝑖) in which 𝑏𝑏 is a non-negative parameter and 𝐶𝐶 is a generalized cost variable that 

traditionally has represented distance traveled, but in more recent literature has also come to 

represent travel time [65]. 

While adding weights to catchment areas to represent distance decay can create a more 

accurate model of supply and demand over distance, implementing this solution creates an 

additional challenge because those weights ideally should be based on actual travel behavior. 

Unless previous surveys for the study area exist or researchers produce data from their own 

surveys, weights need to be borrowed from other studies with similar conditions. Ikram [45] found 

that the average travel time to pharmacies in Baton Rouge was 8.11 minutes; 86% of the population 

lived within 10 minutes, and 96% of the population lived within 15 minutes. Because these 

researchers did not have survey data, they produced multiple-sized catchment areas until the entire 

population was covered. Wang and Ramroop [66] studied pharmacy accessibility in the Greater 

Toronto Area. They chose catchment area zones of 5-, 10-, and 15-minute travel times with 
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corresponding weights of 1.00, 0.42, and 0.09, respectively. Those weights were originally used 

by Luo and Qi [30] in which two sets of weights were applied to the same area of study. The 

weights above represented a faster rate of decay than the other set of weights: 1.00, 0.68, and 0.22. 

Luo and Qi recommended that faster decays should be used for commonly available healthcare 

services like pharmacies. McGrail [57] tested catchment areas of variable size for urban and rural 

areas versus same-sized catchment areas to assess the best method for calculating healthcare 

accessibility in Victoria, Australia. They also used two sets of weights (1.00, 0.60, 0.25, 0.05 and 

1.00, 0.80, 0.55, 0.15) to test stepwise decay functions versus continuous decay functions. Their 

results found only minor differences between stepwise and continuous decay functions. Fast and 

slow sets of weights had an impact on the accessibility scores in both urban and rural areas, but 

they argued that it is most important that variable catchment area sizes be used to most accurately 

reflect accessibility scores especially on the outskirts of metro areas and the nearby rural areas. 

Studies in the United States have made use of McGrail’s weight selections [48], [56] and variable 

catchment size areas [56] in their own assessment of healthcare accessibility. 

E.  Defining Rural and Urban Regions 

Identifying an appropriate travel distance or travel time in the United States based on rural 

and urban residences is complicated by the lack of a consistent definition for what it means to be 

rural. The U.S. Census Bureau does not define rural. However, it has two definitions of what it 

means to be urban: an Urbanized Area has 50,000 or more people, and an Urbanized Cluster has 

between 2,500 and 49,999 people. Neither definition follows city or county boundaries. Any area 

with less people is considered rural [67]. The Office of Management and Budget identifies counties 

as either metropolitan, micropolitan, or rural. Rural counties have less than 10,000 people [68]. 
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When neither definition works well, researchers identify an alternate definition that meets the 

needs of their study. 

For this study, the geographic focus was North Carolina and South Carolina, which has a 

mix of both urban and rural regions. Different travel time parameters needed to be applied to the 

different regions within this geographic area, which meant a method was required to identify 

whether an area is urban or rural.  As noted above, even within the federal government there is no 

consistent definition of what qualifies as rural in the United States, and different researchers and 

organizations use different methods based on their goals. Examining a single locale can reveal the 

complexity of assigning a rural designation to a location. For example, consider Aynor, South 

Carolina, which is located in the northwestern corner of Horry County. Because the town of Aynor 

is not located in an Urbanized Area it is given rural status by the Rural Health Clinics Program. 

However, according to the Federal Office of Rural Health Policy grant program Aynor is not in a 

designated rural census tract or county so it is not eligible for that program [69]. While not being 

within an Urbanized Area, it is associated with one by the U.S. Department of Agriculture’s 

(USDA) Rural-Urban Commuting Area (RUCA) codes because at least 30% of Aynor’s populace 

commutes to an Urbanized Area [70]. 

As a result of this complexity and lack of clarity, researchers choose a rural definition based 

on the focus of their study. This study followed the example of Zahnd et al. [48]. They analyzed 

travel times and access to mammography screening services in the Lower Mississippi Delta 

Region. They chose to use the USDA’s RUCA codes to distinguish urban and rural locations in 

their study area. 
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F.  Review of Studies Using ARCOS Data 

The U.S. DEA began collecting records of shipments of controlled substances after passage 

by Congress of The Controlled Substances Act of 1970 (§ 827) [71]. According to this law all 

manufacturers and distributors of controlled substances must notify the government of every 

shipment of a controlled substance they send to hospitals, retail pharmacies, and medical 

practitioners [21]. Oxycodone and hydrocodone have both been declared Schedule II substances 

which are defined as having a high possibility for abuse leading to physical or psychological 

dependence [26]. Records of shipments from distributors and manufacturers are collected in the 

DEA’s ARCOS database. The DEA publishes quarterly reports of all shipments reported to the 

database, however this data is aggregated to the 3-digit ZIP code [4]. 

Despite the limitation of aggregated data, these reports have been a useful source of data 

for researchers studying the effects of changing availability of opioids on the American population 

[3], [7], [16], [21], [32], [72], [73], [74]. Modarai et al. [3], however, pointed to the aggregation of 

ARCOS data as limiting their ability to find statistical significance in some of their work. They 

suggested future work be done to interpolate ARCOS data at the census tract level to improve the 

spatial variability that is lost due to data aggregation. 

Address-level data has only been available since July 2019; as of February 2020, a 

comprehensive literature review did not identify any published work that utilized the address-level 

transactional data from the ARCOS database that The Washington Post published. 
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IV. METHODOLOGY 

A.  Data Sources 

Demographic and socioeconomic variables came from the U.S. Census Bureau’s ACS  

2012 5-year average survey [75]. This study included the demographic and socioeconomic 

variables related to sex, age, racial identity, ethnic identity, income, housing and related housing 

expenses, health insurance, disability and veteran status, and poverty. The U.S. Census Bureau 

was also the source of census tract polygonal data that was used for work in a GIS software 

application. Data from the U.S. DEA’s ARCOS database for North Carolina and South Carolina 

was downloaded from The Washington Post’s published database [76]. 

1)  ACS Data:  The Census Bureau conducts the ACS nationally every year. Approximately 

3.5 million households are sampled throughout the entire year. The feedback from respondents is 

collated into a single year average that represents population, demographics, economic, social, 

housing, and other factors of life in the United States. Additionally, each year a five-year rolling 

average of the past five years of survey results is also published. The 2012 ACS included the results 

from the 2008-2012 surveys. Because the ACS takes a sample of the population each year unlike 

the full national census that occurs decennially, estimates for variables of the actual population 

have a margin of error. That margin of error is greater for the one-year average than for the five-

year average because it accounts for a smaller sample size of the total population. The five-year 

average surveys are more statistically reliant, especially for smaller geographic units and smaller 

populations, but that comes with the downside that the data is not current to the year it is published 

because survey results from years of collection are averaged together [77]. 

In this study, a five-year average study was chosen for its reduced margin of error and 

because the Census Bureau publishes data for a small geographic unit – the census tract – and 
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small populations only for the five-year average surveys. The Census Bureau defines small 

populations as less than 65,000 persons [77]. This study used the 2012 survey, because it was the 

first year that questions from the ACS regarding health insurance coverage and disability status 

were published by the Census Bureau. Due to the association found between exposure to opioid 

analgesics and health insurance coverage and disability status, it was imperative that this study 

include data from the 2012 5-year average [41]. Table I lists all demographic and socioeconomic 

variables used in this study, however not all variables were used for all models created in this study 

and some variables were only used for descriptive purposes as indicated in later sections. In 

addition, some variables are derived from other ACS variables; calculation details are also 

described in Table I [78].
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Variable Description ACS Variable Name or Field Calculation ACS Table 
Educational Attainment: Percent of population with High School degree or less HC03_VC85 + HC03_VC86 + HC03_VC87 DP02 
Disability: Percent of total population with a disability HC03_VC104 DP02 
Disability: Percent of under 18 population with a disability HC03_VC107 DP02 
Disability: Percent of 18 to 64 population with a disability HC03_VC110 DP02 
Disability: Percent of over 65 population with a disability HC03_VC113 DP02 
Median household income HC01_VC85 DP03 
Per capita income HC01_VC115 DP03 
Health Insurance: Percent of population with public health insurance HC03_VC130 DP03 
Health Insurance: Percent of population with no health insurance (public or private) HC03_VC131 DP03 
Poverty: Percent of population whose income in last 12 months was below the poverty 
level 

HC03_VC166 DP03 

Housing: Percent of housing units that are renter-occupied HC03_VC64 DP04 
Housing: Percent of housing units with no vehicle available HC03_VC82 DP04 
Housing: Percent of owner-occupied housing units with a mortgage HC03_VC130 DP04 
Housing: Percent of housing units with a mortgage in which housing costs are 35% or more 
of income 

HC03_VC160 DP04 

Housing: Percent of housing units without a mortgage in which housing costs are 35% or 
more of income 

HC03_VC171 DP04 

Housing: Percent of rented housing units with rental costs 35% or more of income HC03_VC197 DP04 
Median age in years HC01_VC21 DP05 
Sex & Age: Percent of population 65 and over that is male HC03_VC33 DP05 
Sex & Age: Percent of population 18 to 64 that is male (HC01_VC29 – HC01_VC33)/(HC01_VC28 – 

HC01_VC32) 
DP05 

Race & Ethnicity: Percent population Hispanic or Latino – all races HC03_VC82 DP05 
Race & Ethnicity: Percent population not Hispanic or Latino – white only HC03_VC88 DP05 
Race & Ethnicity: Percent population not Hispanic or Latino – black only HCO3_VC89 DP05 
Race & Ethnicity: Percent population not Hispanic or Latino – all other races ((HC01_VC03 – HC01_VC82) – HC01_VC88 – 

HC01_VC89) / HC01_VC03 
DP05 

 

Table I 
Demographic and Socioeconomic Variables from American Community Survey. ACS Table indicates the DP table source of the 

variable. ACS Variable Name or Field Calculation is the combination of variables from the source DP table that each variable in this 
study is derived from. 
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The variables in this study can be categorized by their unit of measurement: individuals, 

households, or housing units. Variables regarding disability status are based on the civilian 

noninstitutionalized population in which respondents indicated some combination of hearing, 

ambulatory, self-care, cognitive, independent living, or visual difficulty. This study combined 

educational attainment variables pertaining to all persons ages 18 and older that obtained no more 

than a high school diploma, including passing the General Educational Development (GED) test, 

but did not attend college for any length of time. Per capita income is the aggregate income of an 

entire census tract divided by its total population. Variables related to health insurance pertain only 

to comprehensive health insurance. Persons with public health insurance coverage have at least 

one of the following coverage plans, Medicaid, Medicare, VA Health Care, Children’s Health 

Insurance Program, or a state health care plan. Persons with no health insurance have neither public 

nor private coverage. Private health insurance coverage includes plans from an employer, a private 

insurance company, or some form of military plan such as TRICARE. The Census Bureau began 

asking respondents about health insurance coverage in 2008; 2012 was the first year that a five-

year average survey included the results from this question. 

This study considers poverty at the individual and family level and not at the household 

level. Determination of poverty status is based on the Census Bureau’s monetary thresholds that 

vary based on family size and age of householders. Poverty status is also determined based on total 

income from the previous 12 months from which respondents took the survey. Median age is the 

calculated middle age of all persons residing in a census tract. This study considered sex and age 

in tandem. Variables used from the ACS include males between the ages of 18 and 64 and males 

age 65 and above. Percentage of a census tract population that is in one of those age brackets and 

is female is derived by subtracting the relevant value from one (1). Race and Hispanic ethnicity 
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were considered in tandem in this study. Any persons self-identified as having Hispanic, Latino, 

or Spanish origins, of any race, are considered ‘Hispanic’ in this study. Persons who self-identified 

as non-Hispanic (NH) were grouped into three distinct racial categories: White, Black or African 

American, and Other. The Other category includes American Indian or Alaska Native, Asian, 

Native Hawaiian or Pacific Islander, and any persons who self-identify as two or more races. (All 

racial categories follow federal guidelines from the Office of Management and Budget.) The four 

variables Hispanic, NH White, NH Black or African American, and NH Other represent the total 

population of a census tract with no overlapping of persons [78]. Population density was calculated 

by dividing the total population of a census tract as reported in the ACS by the square miles of the 

tract. This calculation was performed in ArcGIS Pro; square miles values were derived in ArcGIS 

Pro. 

Renter-occupied housing units are all housing units that are occupied by anyone other than 

the unit’s owner regardless of whether rent is paid. The percentage of owner-occupied housing 

units can be inferred by calculating the inverse. Housing units with a mortgage only include owner-

occupied housing units in which the said property is security for payment of a debt. Variables 

related to housing costs and income are used in this study to gauge economic stress. For renter-

occupied housing units, this study looked only at units where the gross rent paid is at least 35% of 

income for the past 12 months. Gross rent is defined as the contractual rent plus utilities (fuel, 

water, electricity). For owner-occupied housing units, this study looked only at units where the 

housing costs paid is at least 35% of income for the past 12 months. Housing costs are any costs 

that must be paid by the owner to maintain ownership and occupancy of the unit: mortgage, taxes, 

insurance, and utilities. Housing units with and without a mortgage are distinguished as two 

separate variables. The variable ‘no vehicle available’ captures the percentage of housing units in 
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a census tract in which occupants of the unit do not have access to any vehicle for personal use. 

Median household income is the middle income of all households in a census tract including 

households with no income [78]. 

2)  RUCA Codes:  Census tracts were categorized as either rural or urban based on the 

USDA Economic Research Service’s (ERC) RUCA codes [79]. 

3)  ARCOS data:  Data from the ARCOS dataset for North Carolina and South Carolina 

was downloaded from The Washington Post’s published database [76]. Each record represents a 

single shipment of one opioid analgesic drug from any given reporting entity to any given 

purchasing entity. Reporting entities are either pharmaceutical manufacturers or wholesale 

distributors. Purchasing entities are other distributors, storefront pharmacies, both chain and retail, 

or individual practitioners. If the same reporting entity sent multiple shipments to the same 

purchasing entity on the same day, then there is a separate record for each of those shipments in 

the data. The Washington Post made alterations to the data they received from the DEA prior to 

publishing it. While the ARCOS database contains shipment records of all controlled substances, 

The Washington Post’s database is limited to only shipments of opioid analgesic in tablet form 

containing either oxycodone or hydrocodone. Shipments for other opioids like morphine were 

removed because they represented a small percentage of total opioids shipped and because the data 

showed that those other opioids did not have dramatic increases in distributed volumes during the 

years represented in their database: 2007 – 2012 [29].4 While measuring opioid sales is not the 

same as measuring the number of prescriptions written, there is a fairly approximate equivalency. 

Piper et al. [32] found a statistically significant positive correlation in Maine between the volume 

                                                 
4 Note that The Washington Post published an additional two years of ARCOS data, 2013 and 2014, on January 17, 
2020. Because this year’s data became available after this study began, those years were not considered as part of 
the methodology [76]. 
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of opioids reported in the ARCOS database and the number of prescriptions written as reported by 

the state’s prescription drug monitoring program (PDMP). Notably, the PDMP reflected only 78% 

of the total opioid volume distributed to the state as reported in ARCOS. The authors speculated 

that the difference was due to opioids prescribed at Veterans Affairs clinics which are not 

represented in the state’s PDMP database but are represented in the ARCOS database as shipments 

to the clinics. 

B.  ARCOS Data Preparation 

Opioid buyer addresses were compiled from an assortment of ARCOS data fields. Opioid 

buyer names and addresses were standardized so that they were consistently represented across all 

data records. Buyer addresses were geocoded and reviewed for quality. All addresses that were 

geocoded with a confidence score less than 8 on a scale of 1 (low) through 10 (high) were manually 

reviewed and corrected as needed. The volume of opioids shipped to a single geocoded location 

was standardized by calculating the morphine milligram equivalents (MME) present in each 

shipment. This is common practice among healthcare researchers [21], [32], [74]. The calculation 

was based on Equation (2): 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 = 𝑇𝑇𝑠𝑠𝐷𝐷𝑠𝑠𝐶𝐶𝑜𝑜 ( 2 ) 

 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 is the total MME in a shipment; T is the number of opioid analgesic tablets in 

shipment, s; D is the dosage strength, in milligrams (mg) of the tablets in the shipment; and C is 

the standard conversion factor for the opioid analgesic, o, present in the shipment. The 

hydrocodone conversion factor is 1.0; the oxycodone conversion factor is 1.5 [3]. 
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Analysis of ARCOS data was confined to records of shipments to pharmacies in 2009. 

There are two types of pharmacies categorized in the data: chain and retail. Chain pharmacies are 

nationally recognized chains with dozens if not hundreds of retail outlets like Wal-Mart, CVS, and 

Kerr Drugs. Retail pharmacies are locally owned pharmacies that do not have a national chain 

affiliation. Because so many retail pharmacy locations changed ownership throughout the year 

2009, either with another retail pharmacy or with a chain pharmacy, the name of pharmacies and 

the type of pharmacy was removed from the analysis. Records of shipments to practitioners were 

also eliminated from the analysis, because they represented a small minority of records in the data. 

This is true both for the total number of shipments (0.39%) and the total shipment MME (0.26%). 

Despite these small percentages, practitioner locations also represented over half of all shipment 

destinations (52.7%). Shipments to practitioners were also eliminated because any given 

practitioner’s potential customer base is only a subset of a region’s population whereas the 

potential customer base for a pharmacy can be considered a region’s entire population. 

C.  Defining Rural and Urban Regions 

The USDA ERC’s RUCA codes [79] were developed to classify commuting flow among 

differently sized population centers, however they have proven to be a useful classifier for 

distinguishing between rural and urban regions [80]. This study used the Rural Health Research 

Center’s guidance for classifying census tracts using RUCA codes [70]. Just as Zahnd et al. [48] 

used the Center’s guidelines for classifying rural and urban census tracts in their study of 

mammography services accessibility, this study uses the Rural Health Research Center’s 

Categorization C guideline which creates a binary distinction between rural and urban census 

tracts. Census tracts with RUCA codes 1.0, 1.1, 2.0, 2.1, 3.0, 4.1, 5.1, 7.1, 8.1, and 10.1 were 

labeled as ‘urban’ in this study. Census tracts with RUCA codes 4.0, 5.0, 6.0, 7.0, 7.2, 8.0, 8.2, 
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9.0, 10.0, 10.2, and 10.3 were labeled as ‘rural’ (Fig. 2). Any census tract with the RUCA code 

value 99 had zero population according to the U.S. Census Bureau and was eliminated from this 

study. See Table II for definitions of the RUCA codes. 

 
Fig. 2.   Map of Urban and Rural Census Tracts in North Carolina and South Carolina. Classification based on Rural Health 
Research Center’s Categorization C of USDA ERC’s RUCA codes. 
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TABLE II 
RUCA Codes and Definitions with Rural Health Research Center Classifications. The United States Department of Agriculture’s 
Economic Research Service created and defined the Rural-Urban Commuting Area codes. UA refers to an Urbanized Area with a 

population of 50,000 or greater. UC refers to an Urbanized cluster with a population between 10,000 and 49,999. The Rural 
Health Research Center’s classification used in this study Categorization C. 

RUCA 
Code 

USDA ERC Definition Rural Health Research 
Center Classification 

1.0 Metropolitan area core: primary flow within an 
urbanized area (UA) 

Urban 

1.1 Secondary flow 30% to 50% to a larger UA Urban 
2.0 Metropolitan area high commuting: primary flow 

30% or more to a UA 
Urban 

2.1 Secondary flow 30% to 50% to a larger UA Urban 
3.0 Metropolitan area low commuting: primary flow 

10% to 30% to a UA 
Urban 

4.0 Micropolitan area core: primary flow within an 
Urban Cluster of 10,000 to 49,999 (large UC) 

Rural 

4.1 Secondary flow 30% to 50% to a UA Urban 
5.0 Micropolitan high commuting: primary flow 30% 

or more to a large UC 
Rural 

5.1 Secondary flow 30% to 50% to a UA Urban 
6.0 Micropolitan low commuting: primary flow 10% 

to 30% to a large UC 
Rural 

7.0 Small town core: primary flow within an Urban 
Cluster of 2,500 to 9,999 (small UC) 

Rural 

7.1 Secondary flow 30% to 50% to a UA Urban 
7.2 Secondary flow 30% to 50% to a large UC Rural 
8.0 Small town high commuting: primary flow 30% or 

more to a small UC 
Rural 

8.1 Secondary flow 30% to 50% to a UA Urban 
8.2 Secondary flow 30% to 50% to a large UC Rural 
9.0 Small town low commuting: primary flow 10% to 

30% to a small UC 
Rural 

10.0 Rural areas: primary flow to a tract outside a UA 
or UC 

Rural 

10.1 Secondary flow 30% to 50% to a UA Urban 
10.2 Secondary flow 30% to 50% to a large UC Rural 
10.3 Secondary flow 30% to 50% to a small UC Rural 
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D.  Generating Catchment Areas 

The E2SFCA method, as defined by Luo & Qi [30], was used to generate catchment areas. 

For the first step of this method, catchment areas of pharmacies were created, and in the second 

step of this method, catchment areas of population centers represented by census tract centroids 

were created. Due to the concentration of pharmaceutical services in urban areas and the paucity 

of similar services in rural areas, catchment areas were generated with different parameters for 

rural and urban regions on the basis that less travel time is required to reach a pharmacy within an 

urban region than in a rural region. Catchment areas in urban regions were limited to a maximum 

drive time of 20 minutes with four zones: 1) 0-5 minutes, 2) >5-10 minutes, 3) >10-15 minutes, 

and 4) >15-20 minutes. The maximum travel time and the zone travel time ranges were based on 

Ikram et al. [45]. Literature on travel times to pharmacies in rural regions is sparse, so a reasonable 

approximation was made. A national survey of travel behavior in 2007 indicated that in a rural 

environment the mean travel time for a person to reach a healthcare service is 27 minutes [53]. 

Luo & Qi [30] created 30 minute catchment areas when they proposed the E2SFCA model to 

calculate spatial accessibility to primary care physicians in northern Illinois. This catchment area 

size was used for both urban and rural regions in their study area. In light of these studies, rural 

catchment areas were defined with a maximum travel time of 36 minutes and four zones of travel: 

1) 0-9 minutes, 2) >9-18 minutes, 3) >18-27 minutes, and 4) >27-36 minutes. A distance decay 

function was used to model increasing friction (declining accessibility) the greater the time spent 

traveling. For assessing healthcare accessibility, a Gaussian function has become a de facto 

standard [30], [57], [48]. McGrail [57] proposed two sets of distance decay values, one with slow 

decay (1.0, 0.80, 0.55, 0.15) and one with fast decay (1.0, 0.60, 0.25, 0.05). Based on Luo & Qi’s 

[30] opinion that fast distance decay functions should be used for common healthcare services like 
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primary care physicians and pharmacies and slow distance decay functions should be used for 

specialty, or rarer, healthcare services, this study used McGrail’s [57] fast distance decay function 

values. These values were used for both rural and urban catchment areas. 

The ratio of opioid supply volume in MME to the accessing population for a pharmacy 

catchment area was calculated using Equation (3) [30, eq(4)] in which 𝑅𝑅𝑖𝑖 is that ratio. Parameters 

in Equation (3) include 𝑗𝑗, the pharmacy location; 𝑆𝑆𝑖𝑖, the supply volume in MME at location 𝑗𝑗; 𝑘𝑘, 

the census tract centroids that fall within the pharmacy’s catchment area travel time zone, 𝐷𝐷𝑟𝑟; 𝑃𝑃𝑘𝑘, 

the population of census tracts, 𝑘𝑘; and 𝑊𝑊𝑟𝑟, the distance decay weight applied to the distance decay 

breakpoint, 𝑟𝑟. 

 

 

 
( 3 ) 

 

The ratio of accessible opioid volume in MME to the population of a census tract was 

calculated using Equation (4) [30, eq. (5)] in which 𝐴𝐴𝑖𝑖𝐹𝐹 is that ratio. It is the sum of the supply-to-

population ratio, 𝑅𝑅𝑖𝑖, for each pharmacy, 𝑗𝑗, that lies within the census tract, 𝑖𝑖, catchment area, 

weighted by the distance decay value, 𝑊𝑊𝑟𝑟, in which 𝑟𝑟 is the distance decay breakpoint. The term 

𝐴𝐴𝑖𝑖𝐹𝐹is referred to in this paper as the opioid accessibility score of a census tract’s population. Its unit 

of measurement is MME. Larger values indicate that the population had greater access to opioid 

analgesics per capita, and smaller values indicate that the population had lesser access to opioid 

analgesics per capita. 

 
 

( 4 ) 
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E.  Exploratory Data Analysis 

Across North Carolina and South Carolina, there were 3,210 census tracts used in this 

study. There were 34 census tracts that were removed from the study because they had an estimated 

population of zero people. They primarily represented wilderness areas, airports or small 

uninhabited barrier islands or narrow areas along coastlines. There were also 53 census tracts that 

had no data for at least one ACS variable used in the study. These tracts were also removed from 

the study. 

Several variables were removed from this study or excluded from certain models. The 

Veteran Affairs mail-order pharmacy in Charleston, South Carolina, serves veterans in multiple 

states beyond North Carolina and South Carolina and thus received a massive volume of opioids 

in 2009 (656.1 million MME). Because it does not exclusively serve a local population, that data 

point was removed from this study as was the corresponding ACS variable, percent of population 

that is a veteran. Collinear variables (>0.70) were dropped from both the k-medoids cluster 

analysis and the OLS regression model (Table III). Variables with low variability were dropped 

from the k-medoids cluster analysis. 

TABLE III 
Collinear ACS Variables 

X Variable Y Variable R2 Value 
NHB NHW -0.91 

Below Poverty Med HH Income -0.75 
Per Cap Inc HS Grad or Less -0.74 
Per Cap Inc Med HH Income 0.80 

HC03_VC104 HC03_VC110 0.92 
Foreign Born Hisp_Ltnx 0.76 

Below Poverty No Vehicle 0.71 
HC03_VC104 Public Ins 0.74 
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F.  Model Building 

Cluster analysis was performed in RStudio. The pam (Partitioning Around Medoids) 

function in the cluster library was used to produce K-medoids clusters. Given the number of 

variables used in this study with skewed data distributions, this algorithm was chosen as a more 

robust alternative to the more frequently used K-means cluster methodology. K-medoids clustering 

requires that the parameter, k, be chosen ahead of time as the number of clusters to be created. 

Determining the optimal number of clusters to use in the analysis is an iterative process in which 

within cluster variation is measured as k is increased incrementally. When k is small, the variation 

drops precipitously. As k increases in value the change in variation diminishes. Researchers choose 

a value for k based on when the within cluster variation no longer decreases appreciably. This is 

commonly referred to as the elbow method [81]. Based on this method, seven clusters were created. 

Because the variables used for the clustering analysis have inconsistent scales, all variables were 

rescaled. 

An OLS regression model was created in RStudio. In order to produce a valid model, 

assumptions were checked to confirm they could be met. Independent variables that showed high 

collinearity were removed from the OLS regression model (Table III). The response variable, the 

opioid accessibility score, and many of the independent variables from the ACS were skewed; the 

assumption of normality had been met, however, due to the large number of observations in the 

study (3,210). Heteroscedasticity was reviewed visually and statistically with the studentized 

Breusch-Pagan Test and the Non-constant Variance Score Test. All variables, response and 

independent, were power transformed with lambda based on results from the Box-Cox method. 

The model was checked for high-leverage outliers based on their standardized variance (>4) and 

hat values (> 0.014). Hat values were calculated using Equation (5): 
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 2(𝑝𝑝 + 1)
𝑛𝑛

 
( 5 ) 

 

where p is the number of variables in the regression model and n is the number of observations5. 

Three methods were used for feature selection: forward stepwise, backward stepwise, and 

Bayesian model averaging. Stepwise methods were assessed using Bayesian Information Criteria 

(BIC) which prioritizes parsimonious models. 

G.  Software 

ARCOS data was cleansed and aggregated using an Anaconda distribution, version 1.9.7, 

using Jupyter Notebooks, version, 6.0.1, and Python, version 3.7.4. Rural and urban classification, 

pharmacy address geocoding, and the E2SFCA method was implemented using Esri’s GIS 

software, ArcGIS Pro, version 2.3.2. Geocoding used Esri’s online World Geocoding Service. K-

medoids cluster analysis and OLS Regression models were built using RStudio v1.1.456. 

  

                                                 
5 Equation (5) and recommended values for standardized variance and hat values come from personal communication 
with Dr. Lindsey Bell. 
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V. RESULTS 

Catchment areas were generated in this study in order to calculate the MME volume of 

opioid analgesic drugs accessible to each census tract’s population on per capita basis. Travel time 

cost weighted by distance decay values affected the contribution of each pharmacy that fell within 

a catchment area. The opioid analgesic MME volume to person ratio is referred to as the opioid 

accessibility score in this study (Fig. 3). 

 
Fig. 3.   Choropleth Map of Opioid Accessibility Scores for Census Tracts in North Carolina and South Carolina. Choropleth values 
are based on Natural Jenks. 

A.  Descriptive Analysis 

In 2009 there were 3,003 pharmacies in North Carolina and South Carolina that received 

shipments of hydrocodone or oxycodone-based opioid analgesics. The median pharmacy received 

1,557,550 MME (Table IV). Outlier pharmacies were identified as receiving greater than 1.5 times 

the value of the interquartile range (IQR) of the 3rd quartile. There were no outliers below the lower 
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fence. There were 177 outlier pharmacies above the upper fence (≥ 6,012,687.5 𝑀𝑀𝑀𝑀𝑀𝑀). There 

were 2,262 (75.3%) pharmacies located in census tracts classified in this study as urban. There 

were 107 (60.5%) pharmacies located in urban census tracts that were identified as outliers. 

TABLE IV 
Summary of Distribution of Opioids to All Pharmacies. Values are total MME distributed during 2009. 

Min 1st Quartile Median 3rd Quartile Max 

500 MME 772,375 MME 1,557,550 MME 2,868,500 MME 20,884,000 MME 

IQR Lower Fence Upper Fence   

2,096,125 MME < 0 MME 6,012,687.50 MME   

 

Census tracts used in this study were based on the 2010 decennial census. Excluding tracts 

with zero population or with missing ACS variables, there were 3,210 tracts included in this study 

of which 2,652 (82.6%) were classified as urban. The volume of opioids available to each person 

in any given census tract was calculated using the E2SFCA method. The median volume of opioid 

analgesic accessible per capita in the census tracts was 442.9 MME (Table V). Outlier census tracts 

were identified as having access to a volume of opioids greater than 1.5 times the value of the IQR 

of the 3rd quartile. There are no outliers below the 1st quartile. There were 167 census tracts above 

the upper fence (≥ 1601.85 𝑀𝑀𝑀𝑀𝑀𝑀 per capita). Fifty-five (32.9%) of those outliers were urban 

census tracts. 

TABLE V 
Summary of Distribution of Opioids in All Census Tracts. Values are opioid accessibility scores: the ratio 

of MME volume accessible per capita in a census tract. 

Min 1st Quartile Median 3rd Quartile Max 

0.0 MME 246.1 MME 442.9 MME 788.4 MME 12,797.4 MME 

IQR Lower Fence Upper Fence   

542.29 MME < 0 MME 1601.85 MME   
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There were 89 census tracts that had an opioid accessibility score of zero. This means that 

those tracts’ centroids did not fall within the catchment areas of any of the pharmacies in the study 

area. Twelve of these tracts were defined as rural for this study. Seven of them represent either 

coastal edges, barrier islands, or remote wilderness in Appalachia; all of them have no population. 

The other five rural tracts had populations, but they are remote coastal or Appalachia tracts that 

are too distant from pharmacies to fall within a pharmacy’s catchment area. Of the 77 urban tracts, 

11 lie at the edges of the study area. That artificial barrier may have played a role in impacting 

accessibility for those tracts. Nine tracts have at least one pharmacy that fell within them. A lack 

of roads that come close to the geographic centroid of these tracts may have played a role in those 

tracts not falling within any pharmacy’s catchment area. The vast majority of the other urban tracts 

with an accessibility score of zero lie at the fringe between urban and rural regions. They represent 

portions of the study area that lie at the furthest areas that are drawn towards an urban center and 

yet are also too far away from the small rural population centers where rural pharmacies tend to 

be located. Of the urban tracts that are surrounded by other urban tracts and yet do not have access 

to pharmacies, a combination of geographic barriers, distance from pharmacies, and distance from 

tract centroids to the road network account for their lack of accessibility. There is one census tract 

in Charleston County, South Carolina, with an accessibility score of zero, but was within travel 

time of one pharmacy. That pharmacy’s catchment area did not reach any tract centroids and thus 

had a weighted population sum of zero. This effected its contribution to all tracts (six) that could 

reach that pharmacy. A second pharmacy in Madison County, North Carolina, also did not have 

any tract centroids that fell within its catchment area. Unlike the pharmacy in Charleston County, 

this pharmacy was not reachable by any tract centroids. 
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B.  Cluster Analysis 

A k-medoids clustering algorithm was used to produce seven clusters of census tracts based 

on ACS variables (Fig. 4). A subset of ACS variables was used in the analysis. Four variables were 

removed for high collinearity – > 0.70 – with other variables: percent of population that is non-

Hispanic Black, percent of population below the poverty level, per capita income, and percent of 

population disabled. After the results of an initial cluster analysis were analyzed, an additional five 

variables were removed from a second cluster analysis because they showed little variability 

among the clusters: percent of population under 21 with a disability, percent of housing units 

without a mortgage and housing costs greater than 35% of income, percent of population over age 

65 that is male, percent of population between ages 18 and 64 that is male, and percent of 

population that is non-Hispanic: other races. Only the results of the second cluster analysis are 

reported here. 

 
Fig. 4.   Map of K-Medoids Clusters. 
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Each cluster is described below in terms of its predominant characteristics. All 

characteristics are based on median variable values; however, many clusters’ variables show a 

wide range of values – in some cases between 0% to 100% - meaning there is much overlap 

variable by variable amongst the clusters. It is the distribution of variables’ values that distinguish 

one cluster from another.  

Details regarding outliers of opioid accessibility are based on the interquartile range of the 

variable’s distribution as described in Equation (6) in which 𝑂𝑂 is the volume of opioid analgesics 

in MME, 𝑄𝑄3 and 𝑄𝑄1 are the 75th and 25th percentiles of the distribution, respectively, and 𝐼𝐼𝑄𝑄𝑅𝑅 is 

the interquartile range, calculated as 𝑄𝑄3 − 𝑄𝑄1. 

 𝑂𝑂 =  �
𝑄𝑄3 + (𝐼𝐼𝑄𝑄𝑅𝑅 ∗ 1.5)
𝑄𝑄1 − (𝐼𝐼𝑄𝑄𝑅𝑅 ∗ 1.5) 

 
( 6 ) 

 

Some variables showed little differentiation in median values. The variable percent of 

population between ages 18 and 64 that is male ranged between 47.2% and 49.6%. The variable 

percent of population over age 65 that is male ranged between 38.5% and 45.2%. Due to this small 

differentiation, these variables are not referenced in the descriptions of clusters below. All median 

variable values are presented in Table VI. 
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TABLE VI 
Median Variable Values of Clusters 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 
Educational Attainment: Percent of 
population with High School degree 
or less 

0.31 0.356 0.503 0.531 0.555 0.1765 0.6145 

Disability: Percent of total 
population with a disability 

0.085 0.116 0.114 0.147 0.198 0.071 0.186 

Disability: Percent of under 18 
population with a disability 

0.0255 0.029 0.03 0.037 0.044 0.019 0.045 

Disability: Percent of 18 to 64 
population with a disability 

0.07 0.09 0.10 0.13 0.18 0.05 0.17 

Disability: Percent of over 65 
population with a disability 

0.325 0.359 0.427 0.379 0.4455 0.263 0.487 

Median household income $53,190.50 $52,111 $32,621 $45,246 $37,286.50 $86,002.50 $28,767.50 
Per capita income $26,701 $27,057.50 $17,642 $21,815 $20,169.50 $40,562 $15,679.50 
Health Insurance: Percent of 
population with public health 
insurance 

0.227 0.265 0.32 0.332 0.385 0.17 0.4455 

Health Insurance: Percent of 
population with no health insurance 
(public or private) 

0.143 0.137 0.268 0.155 0.1845 0.064 0.208 

Poverty: Percent of population 
whose income in last 12 months was 
below the poverty level 

0.1115 0.1115 0.277 0149 0.1795 0.042 0.30 

Housing: Percent of housing units 
that are renter-occupied 

0.3525 0.284 0.625 0.198 0.242 0.125 0.426 

Housing: Percent of housing units 
with no vehicle available 

0.0315 0.037 0.114 0.042 0.061 0.015 0.143 

Housing: Percent of owner-occupied 
housing units with a mortgage 

0.7815 0.721 0.686 0.595 0.52 0.789 0.5325 

Housing: Percent of housing units 
with a mortgage in which housing 
costs are 35% or more of income 

0.2055 0.247 0.292 0.215 0.2915 0.1925 0.326 

Housing: Percent of housing units 
without a mortgage in which housing 
costs are 35% or more of income 

0.07 0.08 0.096 0.088 0.1005 0.068 0.1405 

Housing: Percent of rented housing 
units with rental costs 35% or more 
of income 

0.345 0.41 0.46 0.41 0.41 0.31 0.50 

Median age in years 34 39 31 41 44 40 38 
Sex & Age: Percent of population 65 
and over that is male 

0.419 0.4275 0.388 0.447 0.441 0.452 0.385 

Sex & Age: Percent of population 18 
to 64 that is male 

0.474 0.486 0.491 0.496 0.493 0.484 0.472 

Race & Ethnicity: Percent population 
Hispanic or Latino – all races 

0.077 0.0425 0.186 0.033 0.026 0.027 0.043 

Race & Ethnicity: Percent population 
not Hispanic or Latino – white only 

0.6 0.772 0.367 0.813 0.8335 0.849 0.3775 

Race & Ethnicity: Percent population 
not Hispanic or Latino – black only 

0.2515 0.1215 0.351 0.102 0.086 0.058 0.51 

Race & Ethnicity: Percent population 
not Hispanic or Latino – all other 
races 

0.055 0.035 0.396 0.0175 0.0188 0.04 0.024 

Population Density (Persons per 
Square Mile) 

1610.3 846.6 2808 134 97.8 1156.7 454.8 

Opioid Accessibility Score (MME) 328.535 483.873 477.424 364.997 628.426 280.424 704.103 
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1)  Cluster 1:  Cluster 1 can be categorized as an urban and diverse population with a higher 

educational attainment and lower economic stress (Fig. 5). Its census tracts are primarily centered 

around the metropolitan areas of both states: Greenville, Spartanburg, and Columbia in South 

Carolina, and Charlotte, Fayetteville, Winston-Salem, Greensboro, Durham, and Raleigh in North 

Carolina. While the majority of census tracts are categorized as an urban metropolitan core based 

on the USDA’s RUCA codes [70], they tend to encircle the very center of these cities. Persons in 

these areas have the greatest access to pharmaceutical services – 78 pharmacies per census tract 

catchment area, but they have the second lowest accessibility score of opioid analgesics (328.5 

MME). There are six tracts that are considered outliers for opioid accessibility, however none of 

them are urban core tracts nor are they located near any of the cities referenced above. This 

population is one of the youngest with a median age of 34 years. It can also be described as the 

most diverse: median percentages of non-Hispanic Whites and non-Hispanic African Americans 

are 60% and 25.15%, respectively, and the median percentage of Hispanics and non-Hispanics of 

all other races are also high: 7.7% and 5.6%, respectively. Housing occupancy is mixed with about 

one-third of housing units rented and the remainder owner-occupied. Of those owned, a large 

proportion of owner have a mortgage (78.2%). Less than one-third of persons have no more than 

a high school diploma (31.0%), and median household income is one of the highest ($53,190.50). 

Per capita income ($26,701) and the median age suggest that households in general include a lot 

of families. This cluster shows fewer signs of economic stress than other clusters. Lack of access 

to a personal vehicle is low (3.2%), and housing stress is lower than most other clusters: housing 

expenses greater than 35% of income for those with a mortgage is 20.6% and renting expenses 

greater than 35% of income is 35.4%. Poverty rates are also low (11.2%). Use of public health 
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insurance is lower than most clusters (22.7%); disability is likewise lower than most other clusters 

(8.5%). 

 
Fig. 5.   Radar Plot of Cluster 1. All values listed are median values for all census tracts in this cluster. Age in years: 34, household 
income: $53,191, per capita income: $26,701, persons per square mile: 1610, pharmacy count: 78, and opioid MME volume: 
328.53. 

2)  Cluster 2:  Many of the tracts in this cluster are part of the urbanized areas described 

for cluster 1, or they have high levels of commuting into those same urbanized areas (Fig. 6). This 

cluster also includes tracts in the center of many other urban areas: Asheville, Greenville, Rocky 

Mount, and Wilmington, among others, in North Carolina, and Charleston, Florence, and Myrtle 
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Beach in South Carolina. Persons in these areas have lower access to pharmaceutical services than 

cluster 1 (32 pharmacies per census tract catchment area), but a higher volume of opioids (483.9 

MME). There are 18 census tracts that are outliers in terms of the available volume of opioids. 

Outlier tracts are outside the suburban areas that surround the larger metro areas. Rather, they are 

found in smaller towns like Florence, Hartsville, and Conway in South Carolina and Statesville, 

Lumberton, and New Bern in North Carolina. It is a modestly older population – median age is 39, 

and it is less diverse than the population in cluster 1: non-Hispanic Whites (77.2%), non-Hispanic 

Blacks (12.2%), and Hispanics (4.3%). Economically, this population is similar to the population 

in cluster 1. Educational attainment is similar (35.6%), and median household income is also 

similar ($52,111). Homeownership is greater (28.4%), although more households own their home 

outright (72.1%). There may be signs of slightly more economic stress than for the population in 

cluster 1. While the percentage of the population below the poverty level is the same (11.2%), 

housing costs take up a large share of income – greater than 35% - for more households: with a 

mortgage (24.7%) and for renters (41.0%). About one-quarter of the population is on public health 

insurance (26.5%); 13.7% have no health insurance. There is a slightly larger proportion of the 

population that is disabled (11.6%) than in cluster 1. 
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Fig. 6.   Radar Plot of Cluster 2. All values listed are median values for all census tracts in this cluster. Age in years: 39, household 
income: $52,111, per capita income: $27,058, persons per square miles: 847, pharmacy count: 32, and opioid MME volume: 483.87. 

3)  Cluster 3:  This populace is impoverished, poorly educated, highly diverse, and living 

in close proximity to each other (Fig. 7). The population of this cluster lives in the most densely 

populated census tracts of the study area’s urban cores. Median population density is 2,808 persons 

per square mile. Like the populace in cluster 1, this population has high access to pharmaceutical 

services – median pharmacy count is 72 per catchment area, however the volume of opioids is 

more similar to cluster 2 (477.3 MME). Diversity is high. The percent of those who identify as 

Hispanic is highest (18.6%) and the non-Hispanic White (36.7%) and non-Hispanic Black (35.1%) 
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populations are equivalent. Like cluster 7, this population has one of the highest percentages of 

females over 64 years (61.2%). Just over half the population has no more than a high school 

education (50.3%); the level of poverty is also the second highest among the clusters (27.7%). 

Percentage of households that rent is the highest (62.5%). No access to a personal vehicle is also 

high (11.4%). This provides evidence of economic stress as do higher percentages of households 

with housing (29.2%) and rental (46.0%) costs above 35% of income. This population has one of 

the highest percentages of those with a disability and over 64 (42.7%) and the highest percentage 

with no health insurance coverage (26.8%). 
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Fig. 7.   Radar Plot of Cluster 3. All values listed are median values for all census tracts in this cluster. Age in years: 31, household 
income: $32,621, per capita income: $17,642, persons per square miles: 2,808, pharmacy count: 72, and opioid MME volume: 
477.42. 

4)  Cluster 4:  This cluster is the most spatially dispersed. It represents areas surrounding 

all the larger urban centers in the study area: Charlotte, Columbia, Greenville, Winston-Salem, and 

others (Fig. 8). It also represents remote portions of Appalachia and coastal areas in both states. 

Over two-thirds of the tracts represent outer portions of urbanized areas or areas beyond urbanized 

areas that have a higher percentage of commuters traveling into an urbanized area (RUCA = 2), 

however this cluster also represents all other categories of the RUCA system from micropolitans 
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to small towns and rural areas. It is one of the least densely populated of the clusters (134 persons 

per square mile). It also represents some of the lowest access to pharmaceutical services (18 per 

census tract catchment area) and access to opioids (365 MME). Despite this low access, 35 of the 

census tracts are outliers. Most of these 35 tracts are in the Appalachian region; only seven lie 

outside that region. It is also one of the least diverse populations: non-Hispanic Whites account for 

81.3% of the populace. It is the second oldest cluster with a median age of 41 years, and it has one 

of the highest proportions of men over 64 years (44.7%). The median percentage of renter-

occupied housing is rather low (19.8%), yet rates of homeowner-occupied housing has one of the 

lowest median percentages of mortgages (59.5%). Those who do rent have greater housing stress 

than those who pay a mortgage (41.0% vs 21.5%, respectively). In terms of health and insurance 

coverage, this cluster fits about in the middle among the clusters: median percentage of disabled 

population (14.7%), public health insurance coverage (33.2%), and no health insurance coverage 

(15.5%). 



53 
 

 
Fig. 8.   Radar Plot of Cluster 4. All values listed are median values for all census tracts in this cluster. Age in years: 41, household 
income: $45,246, per capita income: $21,815, persons per square miles: 134, pharmacy count: 18, and opioid MME volume: 365. 

5)  Cluster 5:  Cluster 5 is the least densely populated of all the clusters with a median 97 

persons per square mile (Fig. 9). Much of Appalachia is represented in this cluster, although one-

third of its census tracts are in the Low Country of both states and the remainder of its census tracts 

are spread out between the coast and Appalachia. Like clusters 4 and 6, this is a racially 

homogenous population. The median non-Hispanic White percentage of the population is 83.4%; 

census tracts that drop below 50% non-Hispanic White are all east of a line that runs from 

Greensville, South Carolina, to Winston-Salem, North Carolina. The population has the oldest 
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median age (44 years), and it has one of the highest proportions of men over 64 (44.1%). 

Educational attainment is the second lowest of all clusters (55.5%). Median household income is 

one of the lowest as well ($37,286.50). However, homeownership is fairly high; median percentage 

of rental occupancy is 24.2%, and the low median percentage of owner-occupied housing units 

with a mortgage (52.0%) suggest a stable, non-mobile populace. Poverty is more prevalent (18.0%) 

and is evident in the percentage of households that spend more than 35% of income on housing 

costs: with a mortgage (29.2%), without a mortgage (10.1%), and renting households (41.0%). Use 

of public health insurance (38.5%) and lack of any health insurance coverage (18.5%) are among 

the highest of all the clusters. The median percentage of the population with a disability is the 

highest (19.8%) and the second highest for the over 64 population (44.6%). Despite having the 

lowest access to pharmaceutical services (median pharmacy count = 17), there is access to a high 

volume of opioids per capita (628.4 MME), second only to cluster 7. There is also an equivalent 

number of census tracts that are outliers for opioid access in cluster 7 – 53. They are evenly split 

spatially between Appalachia and the Low Country. 
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Fig. 9.   Radar Plot of Cluster 5. All values listed are median values for all census tracts in this cluster. Age in years: 44, household 
income: $37,287, per capita income: $20,170, persons per square miles: 98, pharmacy count: 17, and opioid MME volume: 628.43. 

6)  Cluster 6:  The populace in cluster 6 is best characterized as homogenously non-

Hispanic White living in suburban neighborhoods with high levels of educational and economic 

attainment (Fig. 10). Census tracts in this cluster are primarily located between census tracts in 

cluster 1 and census tracts in cluster 2 in urbanized areas. This is more or less the case in Columbia, 

Spartanburg, and Greenville in South Carolina and in Charlotte, the Winston-Salem-Greensboro 

region, and the Durham-Raleigh region in North Carolina. This cluster is also present in Charleston 

and Beaufort, South Carolina, but the concentric nature of the clusters is not present as it is in other 
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metro areas. It represents a populace that is the least diverse among the clusters: the median 

percentage of non-Hispanic Whites is 84.9% with even the 10th percentile of census tracts having 

a non-Hispanic White population over 55%. Like other tracts with a median percentage of non-

Hispanic Whites over 80%, it has a higher median percentage of males over 64 (45.2%). This is 

the most highly educated of all the clusters; the median percentage who have no more than a high 

school diploma is 17.7%. Median household income is also the highest among the clusters: 

$86,002.50. Home ownership is the highest (87.5%) as is the median percentage of owner-

occupied housing units with a mortgage (78.9%) suggesting a mobile populous that has the capital 

to purchase a home but does not stay in any one place long enough to pay off a mortgage. There 

are almost no signs of economic stress; all stress indicators are the lowest median values of all the 

clusters. It is the only cluster with a median percentage of households below the poverty level in 

the single digits (4.2%), however nearly one-third of renting households pay more than 35% of 

income for housing costs (31.0%). In line with the educational and economic success evident, this 

is a population with the lowest median levels of disability and access to private health insurance. 

Median percentages of public health insurance coverage (17.0%) and no health insurance coverage 

(6.4%) are both the lowest among the clusters. The populace has one of the highest rates of access 

to pharmaceutical services – median pharmacy count is 58 per catchment area, and yet it also has 

the lowest volume of opioids accessible from those pharmacies – 280.4 MME per capita. There 

are just two outliers in this cluster, but they are not located in the suburban neighborhoods that this 

cluster best represents. 
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Fig. 10.   Radar Plot of Cluster 6. All values listed are median values for all census tracts in this cluster. Age in years: 40, household 
income: $86,003, per capita income: $40,562, persons per square miles: 1157, pharmacy count: 56, and opioid MME volume: 
280.42. 

7)  Cluster 7:  This cluster can be categorized as being the most vulnerable among all the 

clusters in terms of socio-economic stress, health care, and educational attainment (Fig. 11). The 

vast majority of the census tracts grouped in this cluster are located in a non-contiguous swath 

from the Virginia border in the north to the Georgia border in the south and bounded on the west 

by the metropolitan areas of Durham-Raleigh, Charlotte, and Columbia. It is a mix of urban (60%) 

and rural (40%) census tracts in which the tracts classified as urban represent smaller towns or 
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areas where many commuters feed into more densely populated urban centers, but it also includes 

neighborhoods in the heart of several urban cores such as Charleston, Columbia, and Greenville 

in South Carolina and Wilmington, Charlotte, Durham, and Winston-Salem in North Carolina. 

East of Columbia, Charlotte, and Raleigh, the population is predominantly Non-Hispanic African 

American (51.0%), while west of those metro areas, census tracts have a more even mix of non-

Hispanic Whites and African Americans. Women are also more prominent in the 18-64 

demographic (52.8%), but even more so in the over 64 demographic (61.5%). This cluster shows 

signs of economic stress. It has the lowest median household income ($28,768) of all the clusters, 

and the highest median rate of households below the poverty level (30.0%). It also has the highest 

median percentage of persons whose educational attainment is no greater than a high school 

diploma (61.5%). 

Economic stress is evident in vehicle ownership and housing costs. While it may be 

reasonable to anticipate that persons living in an urban core can manage without access to a 

vehicle, it is much more difficult to manage in rural or suburban areas where commuting via 

personal vehicle is a must. This cluster has the highest median proportion of households without 

access to a vehicle (14.3%). Urban tracts have much higher percentages – greater than 50% for 

several tracts in Charleston. However, throughout the rural swath of this cluster described earlier, 

inaccessibility to a vehicle ranges between 9% and 22% of all households. In terms of housing 

stress, this cluster shows consistently high percentages of households that spend more than 35% 

on income to meet housing costs (50.0% for renters, 32.6% for homeowners with a mortgage). 

This is consistent for both rural and urban tracts. 

This cluster has the highest median percentage of persons over 64 with a disability (48.7%); 

it also has the second highest median percentage of persons with no health insurance (20.8%). It 
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has, however, the highest median percentage of person on public health insurance (44.6%) with its 

range between 24.3% and 74.5%. 

This cluster has a higher median volume of opioids accessible to the cluster’s population 

than the median for the entire study area (704.1 MME per capita vs 442.9 MME per capita). This 

is the highest median MME volume of all the clusters. Nearly one-third of outliers in the study are 

present in this cluster – 52. In South Carolina, they are mostly scattered throughout the Low 

Country. Along the border of North Carolina, outliers in Loris and Lake View, South Carolina are 

spatially grouped with several outlier census tracts in North Carolina stretching from Tabor City 

northward to Lumberton and Elizabethtown. Elsewhere in North Carolina there is a separate 

grouping of outliers in New Bern as well as several small towns strung along the Interstate 40 

highway between Ashville and Winston-Salem. 
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Fig. 11.   Radar Plot of Cluster 7. All values listed below are median values for all census tracts in this cluster. Age in years: 38, 
household income: $28,768, per capita income: $15,680, persons per square mile: 455, pharmacy count: 31, and opioid MME 
volume: 704.1. 

C.  OLS Regression Model 

Both forward stepwise and backward stepwise methods returned an identical criterion (BIC 

= 5495.856). The Bayesian model averaging method identified the mean number of regressors as 

8.6 with a Posterior Model Probability (PMP) of 0.9102, although the most parsimonious model 

had seven regressors. The best model identified had the same eight regressors as the results of the 

forward and backward stepwise methods (Table VII). 
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TABLE VII 
OLS Regression Coefficients and Significance 

Independent Variable Estimate Standard Error t-value p-value 
Percent Disabled 0.96 0.19 4.99 6.22e-07 
Pharmacy Count 1.33 0.05 27.90 <2e-16 

Percent with Public Insurance Coverage 1.19 0.18 6.71 2.24e-11 
Percent Non-Hispanic White 1.32 0.07 18.24 <2e-16 
Median Household Income -0.08 0.01 -5.21 1.99e-07 

Percent Housing Units with Mortgage -1.10 0.18 -5.97 2.72e-09 
Percent Housing Units Renter Occupied 0.36 0.10 3.78 0.000163 
Percent Housing Units with Mortgage 
and Housing Costs >= 35% of Income 

0.29 0.09 3.02 0.002564 

 

The OLS regression model was checked to determine if assumptions for the model had been met. 

While the response variable, opioid accessibility scores, and many of the independent variables 

were skewed (Fig. 12), the large number of observations in the study, 3,210, meant that the 

assumption of normality was met. Independent variables identified as collinear (correlation 

coefficient > ǀ0.7ǀ) were removed from the model (Table III). Inconstant variance of the residuals 

– heteroscedasticity – is evident in the residual plot [Fig. 13(a)] and was confirmed statistically 

with the studentized Breusch-Pagan Test (BP = 64.364, p=2.731e-16). In an attempt to studentized 

the residuals, all variables, response and independent, were power transformed by lambda (λ). 

Lambda was calculated using the BoxCox method (𝜆𝜆 = 0.3434). After recreating the regression 

model, it was tested for heteroscedasticity again. The statistical test, studentized Breusch-Pagan 

Test (BP = 354.17, p-value = 2.2e-16) showed no improvement in the variance of the residuals 

[Fig. 13(b)]. A single high-leverage outlier was identified: a census tract located in Appalachia in 

the western most corner of North Carolina. 
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Fig. 12.   Histograms of Variables Demonstrating Skewness of Data. (a) Distribution of Opioid Accessibility Scores. (b) 
Distribution of Accessible Pharmacies in a Census Tract Catchment Area. (c) Distribution of Median Household Income. (d) 
Distribution of Renter-Occupied Housing Units.  

 
Fig. 13.   Residual Plots from OLS Regression Models. (a) Original Data – Residuals vs. Fitted. The cone shaped pattern of 
residual values is indicative of heteroscedasticity. (b) Power Transformed Data – Residuals vs. Fitted. Heteroscedasticity has 
been reduced, but not removed entirely. 
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VI. DISCUSSION 

A.  Opioid Volume Outliers 

Because pharmacy ownership changed for so many pharmacies in the study area in 2009, 

certain attributes like type of pharmacy ownership – chain or retail – could not be kept for any of 

the models. However, during the analysis of the results outlier pharmacies’ type of ownership was 

reviewed. No outlier pharmacies changed ownership between retail and chain owners, so the rate 

of outliers among an ownership type can be compared to the general population. Retail pharmacies, 

those that are independently owned, are overrepresented in the population of outlier pharmacies 

(61% of outliers vs. 36% of all pharmacies). 

Access to transaction-level data from the U.S. DEA’s ARCOS database allows one to study 

the volume of medical-use opioid analgesics distributed to North Carolina and South Carolina. 

One approach is to look at the total volume distributed to each pharmacy and identify those 

locations that are outliers within that distribution. Based on the interquartile range of this 

distribution (Fig. 14), there are 177 pharmacies that can be considered outliers (> 6,012,687.5 

MME). These outliers visually follow a few spatial patterns (Fig. 15). One group is clustered in 

the southeast corner of North Carolina and the northeast corner of South Carolina. There are many 

outliers that broadly follow the path of Interstate Highway 85 from the Virginia-North Carolina 

border to the Georgia-South Carolina border. Another set of outliers follow Interstate Highway 40 

from Durham, North Carolina, to Asheville, North Carolina. There are a very small number of 

outliers that follow Interstate Highway 95 from the Virginia-North Carolina border southward to 

Florence, South Carolina, but they are sparsely spread out. It is worthwhile to note that in some 

portions of the study area, outlier pharmacies are closely aligned with major arterials of the 
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highway system while other areas have no such evident patterns (e.g. Interstate Highways 20 and 

26 in South Carolina). 

 
Fig. 14.   Box and Whisker Plot of Total KME Delivered to Each Pharmacy in 
2009. Each circle represents a pharmacy that received an outlier volume of 
opioid analgesics. 

 
Fig. 15.   Pharmacy Outlier Locations in North Carolina and South Carolina. Outlier pharmacies received in excess of 
6,012,687.5 MME opioid analgesics during the year 2009. 

This approach, however, only takes into consideration the location and supply of opioids 

without considering variation in the demand for opioids. If we assume that demand is constant 

throughout the population, then a greater density of people is equivalent to a greater demand. 
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However, the supply of opioids is relegated to specific locations, and the demand from a populace 

is spread out across a large geographic area. The E2SFCA method is a valid method to bridge that 

gap. It can be used to quantify the accessibility of a supply to a given population with the caveat 

that accessibility diminishes as the time required to reach a supply’s location increases. When this 

method was applied to geocoded pharmacies located in North Carolina and South Carolina, the 

volume of opioids accessible to each census tract’s population was calculated. Based on the 

interquartile range of this distribution (Fig. 16), there are 167 census tracts that can be considered 

outliers (> 1,602 MME per capita). 

 
Fig. 16.   Box and Whisker Plot of Census Tract Opioid Accessibility Scores. 
Each circle represents a census tract population that had access to an outlier 
volume of opioid analgesics. 

There are considerable differences between the spatial distribution of outlier pharmacies 

and outlier census tracts (Fig. 17). One can see three types of areas with outliers: areas with only 

outlier pharmacies (like Greenville, Spartanburg, and Charleston in South Carolina), areas with 

only outlier census tracts (central South Carolina), and areas with both types of outliers (much of 

Appalachia, New Bern, and between Lumberton and Wilmington in North Carolina). It is only 

when accessibility of the population to the available volume of opioid analgesics is calculated can 

areas with suspect volumes of opioids be identified. For example, because there are no outlier 

pharmacies near the towns of Ridgeland, Allendale, and others in southwestern South Carolina 

(see red circle in outlier map, Fig. 17), one would be unlikely to suspect that the local populaces 
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have an extremely high volume of opioids accessible to them (between approximately 2,400 and 

6,200 MME per capita in those census tracts). It should be noted as well that what is considered 

extreme is somewhat arbitrary. The outliers identified in this study are based on the univariate IQR 

method. This does not take into consideration domain expertise of what ought to be considered 

extreme for any given population. Census tracts identified as outliers have accessibility scores in 

excess of 1,600 MME per capita. This is equivalent to 160 10-mg pills of hydrocodone or 107 10-

mg pills of oxycodone per person for the year 2009 alone. In this researcher’s estimation a quantity 

far smaller than 1,600 MME per capita could still be considered extreme. Based on whatever 

number that is, census tracts with extreme quantities accessible to the population can be identified. 

 
Fig. 17.   Pharmacy and Census Tract Outlier Locations in North Carolina and South Carolina. Grey polygons are census tracts. 
Outliers were identified using the IQR outlier method. Pharmacies labeled as an outlier had at least 6,012,687.5 MME opioids 
distributed to it in 2009. Census tracts labeled as an outlier had an opioid accessibility score in excess of 1602 MME. 
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B.  Comparison to Modarai et al. 

Modarai et al. [3] used data from the ARCOS database that was aggregated to the 3-digit 

ZIP code to evaluate comparisons between opioid sales, prescription opioid-related 

hospitalizations, and prescription-opioid-related overdose deaths. At the end of their paper they 

cited the data aggregation as a limitation that reduced geographic specificity and hindered 

obtaining statistical significance from their spatial clustering analysis. Their recommendation to 

overcome this limitation was to use a technique called kriging that allows researchers to impute 

values from nearby values. With the availability of transactional data from the ARCOS database, 

geographic specificity is improved without the need to rely on any imputation methods. When 

comparing outlier census tracts from this study (Fig. 17) to regions of higher opioid sales (Fig. 18) 

in [3, Fig. 3], there is broad similarity between the two maps.6 Modarai et al. demonstrated above 

average opioid sales throughout the Appalachian region and in the southeastern region around 

Fayetteville and Wilmington. A similar spatial pattern is reflected in this study’s results with the 

quantity of outlier census tracts in both of those regions. Modarai et al. also saw higher than 

average sales in Winston-Salem. Although this study does not identify any outlier tracts in that 

city, there are several outliers to the north and west. Around New Bern, the data was too unreliable 

for their study, but in this study, there is evidence of several outliers both in New Bern as well as 

in the areas to the east and south along the coastline. Beyond where this study and the work of 

Modarai et al. [3] correspond or contradict, this study demonstrates that access to transactional 

level data combined with the E2SFCA method addresses the limitation that they experienced. 

                                                 
6 Data visualized in [3] is from 2010. However, the authors found similar spatial patterns in the 2008 and 2009 data. 
“Spatial relationships existed between high rates of sales and overdoses in specific regions, particularly in the 
southern and western regions of the state in 2010 (similar patterns were noted in 2008 and 2009, however data are 
not presented).” [3, p. 82] 
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Fig. 18.   Reprint of Fig. 3 from Modarai et al. [3] This figure shows relative volume of opioid sales in North Carolina during 
2010 compared to the statewide average. 

C.  Review of Cluster Analysis 

Qualitatively, the clusters produced using the K-medoids clustering method make intuitive 

sense given prior knowledge of the study area. There is strong racial segregation throughout large 

portions of both states (clusters 4, 5, and 6 vs. cluster 7); urban populations (clusters 1, 3, and 6) 

are easily distinguished from the most rural populations (clusters 4, 5, and 7). When one considers 

the medians of each cluster, many of the demographic and socioeconomic factors show strong 

linear correlation with increasing accessibility to opioid analgesics in line with past researchers’ 

results (Table VIII). As has been demonstrated in previous studies [48], [58], [74], [82], there is a 

dichotomy between rural and urban areas in terms of accessibility of opioids. Rural census tracts 

consistently have a much higher median opioid accessibility score than their urban census tract 

counterparts (Table IX).
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Variable Adjusted 
R2 

Coefficient Standard 
Error 

P-value 

Educational Attainment: Percent of population with High School degree or less 0.62 7.85 2.72 0.0344 
Veteran Status: Percent of civilian 18 and older population that is a veteran -0.20 -6.01 45.47 0.8999 
Disability: Percent of total population with a disability 0.70 28.11 7.21 0.0114 
Disability: Percent of under 18 population with a disability 0.68 139.17 37.39 0.0137 
Disability: Percent of 18 to 64 population with a disability 0.69 27.35 7.25 0.0130 
Disability: Percent of over 65 population with a disability 0.80 18.75 3.70 0.0039 
Place of Birth: Percent of population foreign born -0.08 -10.95 14.96 0.4971 
Median household income 0.51 -0.01 0.002 0.0427 
Per capita income 0.46 -0.014 0.01 0.0550 
Health Insurance: Percent of population with public health insurance 0.76 14.90 3.33 0.0066 
Health Insurance: Percent of population with no health insurance (public or private) 0.25 15.10 8.65 0.1414 
Poverty: Percent of population whose income in last 12 months was below the 
poverty level 

0.50 12.80 4.87 0.0468 

Housing: Percent of housing units that are renter-occupied -0.03 3.59 3.90 0.3992 
Housing: Percent of housing units with no vehicle available 0.51 25.49 9.45 0.0429 
Housing: Percent of owner-occupied housing units with a mortgage 0.59 -11.31 3.63 0.0265 
Housing: Percent of housing units with a mortgage in which housing costs are 35% 
or more of income 

0.88 28.97 4.37 0.0012** 

Housing: Percent of housing units without a mortgage in which housing costs are 
35% or more of income 

0.75 56.40 12.94 0.0073 

Housing: Percent of rented housing units with rental costs 35% or more of income 0.67 20.02 6.23 0.0236 
Median age in years -0.16 6.85 15.71 0.6807 
Sex & Age: Percent of population 65 and over that is male 0.14 -30.81 21.72 0.2152 
Sex & Age: Percent of population 18 to 64 that is male -0.19 -16.06 75.84 0.8406 
Race & Ethnicity: Percent population Hispanic or Latino – all races -0.20 -0.99 12.21 0.9388 
Race & Ethnicity: Percent population not Hispanic or Latino – white only 0.01 -3.05 3.00 0.3555 
Race & Ethnicity: Percent population not Hispanic or Latino – black only 0.15 5.00 3.51 0.2144 
Race & Ethnicity: Percent population not Hispanic or Latino – all other races 0.17 -63.59 42.43 0.1942 

 

TABLE VIII 
Bivariate fits with MME Accessibility Scores of Clusters. Asterisks indicative of strength of statistical significance. 
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TABLE IX 
Breakdown of Cluster Descriptive Statistics by Rural and Urban Residence 

Cluster % 
Urban 

Urban 
Pharma 
Count 

Rural 
Pharma 
Count 

Urban 
MME 

Rural 
MME 

Urban 
Pop 

Density 

Rural 
Pop 

Density 

Urban 
Disability 

Rural 
Disability 

1 90.52 75 93 312.67 1046.04 1793.85 332.60 8 13.1 
2 90.36 33 25 454.09 868.63 897.99 378.43 11.5 12.4 
3 93.81 72 63 465.96 817.62 2884.45 856.34 11.4 14.2 
4 71.57 13 26 269.78 694.22 150.21 104.80 14.4 15.4 
5 53.50 13 21 426.03 841.29 138.93 80.83 19.2 20.5 
6 96.79 57 25 279.73 634.59 1218.21 220.50 7.1 12.2 
7 59.14 31 31 558.71 858.37 959.44 169.32 17.9 19.3 

 

Cluster 7 produced unexpected results; it had the highest median opioid accessibility score, 

but it also represents the predominantly rural African American population of both states. These 

findings are contrary to studies demonstrating that African Americans receive opioid analgesic 

prescriptions at far lower rates than non-Hispanic Whites [41], [83]. Qato et al. [47] found 

disparities between segregated African American communities and segregated White or integrated 

communities when it comes to access to pharmacies. Several surveys of racial disparity in pain 

management contemporaneous with this study’s data consistently identified African American 

communities as suffering from more pain and receiving less treatment in the form of opioid 

analgesics [84]–[86]. So, there must be something else going on in this cluster – some other 

combination of factors that drove up the accessibility scores. It could be a combination of other 

factors that result in higher accessibility regardless of the high percentages of African Americans 

in the population. A combination of high disability, high public insurance usage, and low percent 

of males over 64 could suggest that there are many individuals in this cluster who are participants 

in Medicare Part D. Powell et al. [21] found that Part D expanded the usage of prescription drugs, 

including opioid analgesics, in states with larger elderly populations. Other studies have noted that 

females, especially elderly females, are more likely to be prescribed opioid analgesics than their 
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male counterparts [5], [43]. This cluster has the highest median percent usage (44.55%) of public 

insurance which includes Medicare Part D, the federal prescription drug coverage plan. It also has 

the lowest median percentage of males in the 65 and over age category (38.5%) indicating that the 

elderly population has a much higher proportion of females than the other clusters. However, this 

cluster has one of the younger median ages (38), and unlike most other clusters, cluster 7 has no 

census tracts with truly high median age – the maximum median age for any tract is 55. This means 

that a relatively younger population is making use of public insurance plans at much higher rates 

than older populations in other clusters. 

When considering the unexpectedly high median opioid accessibility score for cluster 7, it 

is possible that it is a result of the proximity of that cluster with a large portion of cluster 5. While 

the majority of cluster 7 is confined to the Low Country of the Carolinas, cluster 5 is split between 

the same area of cluster 7 and the Appalachian region. Given the known racial disparities in pain 

management [83]–[85], [87], it is possible that the proximity of many census tracts in these two 

clusters increased opioid accessibility scores in cluster 7 tracts. Sorting through whether this may 

have occurred is beyond the scope of this research. This may be better understood utilizing 

additional data on physician prescribing practices and on details of who received prescriptions 

[43], [88]. Additionally, a spatial cluster analysis to test spatial autocorrelation between the two 

clusters may also provide insight. 

D.  Review of OLS Regression Model 

This study’s OLS regression model variates have similarities to many studies that have also 

examined opioid analgesic volumes and demographic and socioeconomic variation. Other studies 

have identified correlations between available opioid analgesic volumes and prescription rates per 

capita and rates of public insurance beneficiaries [5], [21], [31], [33], non-Hispanic Whites [33], 



72 
 

[37], [41], density of nearby pharmacies or pharmacists [88], proportions of populations with a 

disability [33], and economically disadvantaged neighborhoods [5]. The renter-occupied housing 

units variable has a 63% correlation with the percent poverty variable; to a limited extent it can be 

considered a proxy for poverty which has been correlated in past studies to increasing accessibility 

to opioids [5]. The variable percent of housing units that are owner-occupied with a mortgage does 

not match up with the results from any studies in this study’s literature review. There were also 

some surprises about variables that were dropped out by the stepwise and BMA methods used to 

choose the most parsimonious model. higher poverty rates [5], [43] and lack of health insurance 

[43] have been associated with greater access to opioids, but these variables were not included in 

the final OLS regression model. In fact, they were only identified as useful in a very small 

percentage of models generated using the BMA method. Many variables chosen for this study 

were collinear. This may have played a role in the variable selection process. As stated above, the 

poverty rate variable is correlated 63% with renter-occupied housing units, and percent with no 

health insurance coverage is correlated with lower educational attainment (60%) and median 

household income (62%). In each case, a dropped variable that is relevant based on past studies is 

more strongly correlated (>60%) with a variable that remained in the model. 

With the high-leverage outlier removed, the OLS regression model produced an adjusted 

R2 value of 0.3084 meaning that nearly 70% of all the variation of the opioid MME accessibility 

scores is accounted for by factors other than the eight variables included in the model. Other 

researchers have found similarly low percentages of explanation of their response variables [33], 

[43]. There are several factors that were not part of the current study that may account for some of 

the remaining variability. McDonald et al. [43] studied geographic variation of volumes of opioid 

prescribing; they found the strongest correlation to opioid prescribing volumes to be the numbers 
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of prescribing physicians within a county. In Guy et al. [33], their linear regression model 

identified higher rates of unemployment led to higher rates of opioid analgesic prescribing at the 

county level. In retrospect, including unemployment data from the ACS may have had a beneficial 

impact on this study’s OLS regression model. This study also considered age groups (18-64 and 

over 64) coupled with sex. However, other studies [1], [33] have found links between increased 

availability and usage based on age which this study did not consider. 

An alternative factor for a low R2 value is that it is possible that the geographic unit used 

in this study – the census tract – has introduced a scale problem that resulted in a diminished R2 

value. The Modifiable Areal Unit Problem (MAUP) can occur when spatial aggregation occurs. 

Data aggregated to larger geographical units, like 3-digit ZIP codes or counties, has a smoothing 

effect on variability. Aggregated data mask extreme data values as it is represented by 

measurements of its central tendency [89]. 

One of the benefits of producing a linear regression model is that it can be used to infer 

outcomes when the response variable is unknown. However, to do so, the model relies on 

assumptions that support its mathematical framework. One of those assumptions is the normal 

distribution of the error terms – known as homoscedasticity. In this study, the residuals were found 

to be heteroscedastic, and efforts to remove the heteroscedasticity via a power transform of 

response and independent variables was not successful. Because the homoscedastic assumption 

could not be met, it seems evident that a linear regression model that relies on this assumption is 

not ideal for modeling this data. Any future researcher attempting to model the data should 

examine non-parametric models that do not rely on this assumption as a possible candidate. 
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VII. LIMITATIONS AND FUTURE WORK 

This study explored the uses of the E2SFCA methodology to identify variation of opioid 

accessibility at the level of the census tract. The family of FCA methodologies have experienced 

iterations of improvements by a variety of researchers. There are recommendations for tweaks in 

this study’s E2SFCA methodology for future researchers. Boundaries can be physical and real like 

a coastline, but they can also be artificial. State boundaries are political creations that do not affect 

the movement of persons. This study limited ARCOS data to the states of North Carolina and 

South Carolina. This potentially limited opioid supplies from pharmacies in bordering states. It is 

recommended that future studies include a buffer of ARCOS data from neighboring states to be 

included for the creation of catchment areas. Buffer size should be guided by future studies’ 

catchment area sizes. This study generated geographic centroids of census tracts as part of the 

E2SFCA methodology. Rural census tracts are typically much larger than urban census tracts and 

their geographic centroids may not correspond well with its population center. During routine 

inspection of catchment areas, some examples were found in which the distance of a large census 

tract’s centroid from the road network may have impacted opioid accessibility calculations. It is 

recommended that future studies that use the E2SFCA methodology calculate population-weighted 

centroids of census tracts. 

This study’s methodology included k-medoids cluster analysis and OLS regression based 

on data from the ACS and the ARCOS database. The variables chosen were strictly non-spatial 

data. However, there is a rich array of models available to researchers that can combine non-spatial 

data with spatial data. Given the amount of variability of opioid accessibility unexplained in the 

OLS regression model, it would be worth exploring spatial regression algorithms to determine how 

much more variability is explained once the spatial nature of the data has been incorporated into 
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the model. Additionally, the high opioid accessibility scores assigned to census tracts in cluster 7 

were unexpected and contrary to previous research. Exploring the spatial relationship between 

clusters 7 and 5, as discussed in the results section with spatial correlation tools like LISA and 

Global Moran I may provide some insight into those results for future researchers. 

Variable selection for this study was guided by the literature review. Based on the results 

of the OLS regression model it is evident that there are other factors that could help to provide 

additional explanation of the variability of opioid accessibility scores. One possible additional 

variable is the percentage of workforce population that is unemployed. This variable is available 

in the 5-year average ACS data. There are other variables that previous studies have found 

significant in explaining variation of opioid accessibility: the number of prescribing physicians 

available to a population [43], differences in prescribing patterns by diagnosed condition and by 

type of physician specialty [17], and variation of opioid usage by type of opioid [43]. The first two 

of these variables required accessing databases not available for this study and so was considered 

out of scope. The ARCOS data available from The Washington Post includes two opioid 

analgesics: oxycodone and hydrocodone. This study’s methodology grouped all types of opioid 

drugs together, however given the amount of variation not explained in the OLS regression model 

and challenges related to heteroscedastic variance, exploring variation of opioid accessibility based 

on opioid drug type may provide fruitful results. Future researchers may also want to consider 

models that do not have the assumption of homoscedasticity. For example, a logistic regression 

model may be a preferable alternative to a linear regression model. 
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VIII. CONCLUSION 

The abuse of opioids continues to inflict harm on the lives of Americans. Opioids 

accounted for 70% of the 46,802 drug overdose deaths in 2018. While in recent years the synthetic 

opiate fentanyl has been the primary cause of opioid-related overdose deaths and continues to be 

a major concern, the good news is that overdose deaths related to prescription opioids has been 

declining. Nationally, there was a 13.5% relative decrease in prescription opioid-related deaths 

between 2017 and 2018. As has been discussed in this paper, however, there is always significant 

variation evident when data is explored at smaller geographic units. North Carolina experienced a 

27.7% relative decrease in deaths between 2017 and 2018 while South Carolina experienced a 

4.2% relative increase in deaths during the same time period. While the overall decline is good 

news, there were still over 17,000 deaths related to prescription opioid abuse [90]. Clearly, more 

work is needed to prevent future deaths. 

The publication of data from the U.S. DEA’s ARCOS database in 2019 provided an 

opportunity for researchers to gain a far more nuanced and detailed understanding of how opioid 

analgesics were distributed to pharmacies across the country. The goals of this study were to 

engage in an initial exploration of the data for North Carolina and South Carolina, assess whether 

more granular data could capture greater detail of variability in the distribution of opioids in 

comparison to the research done in Modarai et al. [3] in 2009, and to model the relationship 

between demographic characteristics of the population and opioid volumes accessible to that 

population. In order to achieve these goals, this study used the E2SFCA method advocated by Luo 

and Qi [30] to measure healthcare accessibility on a per capita basis. Based on this study’s 

literature review, using the E2SFCA method to measure prescription opioid accessibility has not 

been used in previous studies. In comparing the results to Modarai et al. [3], this study has 
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demonstrated that the E2SFCA method can successfully transform point-based data from the 

ARCOS database to areal data that can be used to reveal spatial variability in smaller geographic 

units than past studies have been able to achieve. 

Finally, while this study produced population clusters from the k-medoids clustering 

algorithm that matched much of past literature in terms of opioid volume accessibility, the nature 

of cluster 7 leaves some questions unanswered. Cluster 7 represented a rural, socially vulnerable, 

predominantly African American population that had access to the highest volumes of opioid 

analgesics and included 31% of all outlier census tracts but less than 17% of all census tracts in 

the study area. Given the findings in this study’s literature review that African Americans lacked 

access to opioids for pain management, this result was surprising. However, cluster 7 is 

geographically intertwined with cluster 5 which represents a rural, socially vulnerable, 

predominantly non-Hispanic White population with a similar overrepresentation of outlier census 

tracts in its cluster. An obvious question is whether the proximity of these two clusters inflated the 

opioid accessibility scores for the African American population against expectations or if there are 

other factors at play that are more heavily influencing opioid volumes in these areas. It could be 

that working with spatial correlation tools might provide some insight into the spatial relationship 

between these two clustered populations. 
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