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Abstract 

Computer programming is fundamental to Computer Science and IT curricula. 

At the novice level it covers programming concepts that are essential for 

subsequent advanced programming courses. However, introductory 

programming courses are among the most challenging courses for novices and 

high failure and attrition rates continue even as computer science education has 

seen improvements in pedagogy. Consequently, the quest to identify factors that 

affect student learning and academic performance in introductory computer 

programming courses has been a long-standing activity. Specifically, weak 

novice learners of programming need to be identified and assisted early in the 

semester in order to alleviate any potential risk of failing or withdrawing from 

their course. Hence, it is essential to identify at-risk programming students early, 

in order to plan (early) interventions.  

The goal of this thesis was to develop a validated, predictive model(s) with 

suitable predictors of student academic performance in introductory 

programming courses. The proposed model utilises the Naïve Bayes 

classification machine learning algorithm to analyse student performance data, 

based on the principle of parsimony. Furthermore, an additional objective was to 

propose this validated predictive model as an early warning system (EWS), to 

predict at-risk students early in the semester and, in turn, to potentially inform 

instructors (and students) for early interventions.  

We obtained data from two introductory programming courses in our study to 

develop and test the predictive models. The models were built with student 

presage and in progress-data for which instructors may easily collect or access 

despite the nature of pedagogy of educational settings. In addition, our work 

analysed the predictability of selected data sources and looked for the 

combination of predictors, which yields the highest prediction accuracy to 

predict student academic performance. The prediction accuracies of the models 

were computed by using confusion matrix data including overall model 

prediction accuracy, prediction accuracy sensitivity and specificity, balanced 

accuracy and the area under the ROC curve (AUC) score for generalisation. 

On average, the models developed with formative assessment tasks, which 

were partially assisted by the instructor in the classroom, returned higher at-risk 

prediction accuracies than the models developed with take-home assessment task 

only as predictors. The unknown data test results of this study showed that it is 

possible to predict 83% of students that need support as early as Week 3 in a 12-

week introductory programming course. The ensemble method-based results 

suggest that it is possible to improve overall at-risk prediction performance with 

low false positives and to incorporate this in early warning systems to identify 

students that need support, in order to provide early intervention before they 

reach critical stages (at-risk of failing).  
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The proposed model(s) of this study were developed on the basis of the 

principle of parsimony as well as previous research findings, which accounted 

for variations in academic settings, such as academic environment, and student 

demography. The predictive model could potentially provide early warning 

indicators to facilitate early warning intervention strategies for at-risk students in 

programming that allow for early interventions. The main contribution of this 

thesis is a model that may be applied to other programming and non-

programming courses, which have both continuous formative and a final exam 

summative assessment, to predict final student performance early in the 

semester.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Tiivistelmä 
 
Ohjelmointi on informaatioteknologian ja tietojenkäsittelytieteen opinto-

ohjelmien olennainen osa. Aloittelijatasolla opetus kattaa jatkokurssien kannalta 

keskeisiä ohjelmoinnin käsitteitä. Tästä huolimatta ohjelmoinnin peruskurssit 

ovat eräitä haasteellisimmista kursseista aloittelijoille. Korkea 

keskeyttämisprosentti ja opiskelijoiden asteittainen pois jättäytyminen ovat 

vieläkin tunnusomaisia piirteitä näille kursseille, vaikka ohjelmoinnin opetuksen 

pedagogiikka onkin kehittynyt. Näin ollen vaikuttavia syitä opiskelijoiden 

heikkoon suoriutumiseen on etsitty jo pitkään. Erityisesti heikot, aloittelevat 

ohjelmoijat tulisi tunnistaa mahdollisimman pian, jotta heille voitaisiin tarjota 

tukea ja pienentää opiskelijan riskiä epäonnistua kurssin läpäimisessä ja riskiä 

jättää kurssi kesken. Heikkojen opiskelijoiden tunnistaminen on tärkeää, jotta 

voidaan suunnitella aikainen väliintulo.  

 

Tämän väitöskirjatyön tarkoituksena oli kehittää todennettu, ennustava malli tai 

malleja sopivilla ennnustusfunktioilla koskien opiskelijan akateemista 

suoriutumista ohjelmoinnin peruskursseilla. Kehitetty malli käyttää koneoppivaa 

naiivia bayesilaista luokittelualgoritmia analysoimaan opiskelijoiden 

suoriutumisesta kertynyttä aineistoa. Lähestymistapa perustuu 

yksinkertaisimpien mahdollisten selittävien mallien periaatteeseen. Lisäksi, 

tavoitteena oli ehdottaa tätä validoitua ennustavaa mallia varhaiseksi 

varoitusjärjestelmäksi, jolla ennustetaan putoamisvaarassa olevat opiskelijat 

opintojakson alkuvaiheessa sekä informoidaan ohjaajia (ja opiskelijaa) aikaisen 

väliintulon tarpeellisuudesta. 

 

Keräsimme aineistoa kahdelta ohjelmoinnin peruskurssilta, jonka pohjalta 

ennustavaa mallia kehitettiin ja testattiin. Mallit on rakennettu opiskelijoiden 

ennakkotietojen ja kurssin kestäessä kerättyjen suoriutumistietojen perusteella, 

joita ohjaajat voivat helposti kerätä tai joihin he voivat päästä käsiksi 

oppilaitoksesta tai muusta ympäristöstä huolimatta. Lisäksi väitöskirjatyö 

analysoi valittujen datalähteiden ennustettavuutta ja sitä, mitkä mallien 

muuttujista ja niiden kombinaatioista tuottivat kannaltamme korkeimman 

ennustetarkkuuden opiskelijoiden akateemisessa suoriutumisessa. Mallien 

ennustusten tarkkuuksia laskettiin käyttämällä sekaannusmatriisia, josta saadaan 

laskettua ennusteen tarkkuus, ennusteen spesifisyys, sensitiivisyys, 

tasapainotettu tarkkuus sekä luokitteluvastekäyriä (receiver operating 

characteristics (ROC)) ja näiden luokitteluvastepinta-ala (area under curve 

(AUC)) 

 

Mallit, jotka kehitettiin formatiivisilla tehtävillä, ja joissa ohjaaja saattoi osittain 

auttaa luokkahuonetilanteessa, antoivat keskimäärin tarkemman ennustuksen 

putoamisvaarassa olevista opiskelijoista kuin mallit, joissa käytettiin kotiin 

vietäviä tehtäviä ainoina ennusteina. Tuntemattomalla testiaineistolla tehdyt 
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mallinnukset osoittavat, että voimme tunnistaa jo 3. viikon kohdalla 83% niistä 

opiskelijoista, jotka tarvitsevat lisätukea 12 viikkoa kestävällä ohjelmoinnin 

kurssilla. Tulosten perusteella vaikuttaisi, että yhdistämällä metodeja voidaan 

saavuttaa parempi yleinen ennustettavuus putoamisvaarassa olevien 

opiskelijoiden suhteen pienemmällä määrällä väärin luokiteltuja 

epätositapauksia. Tulokset viittaavat myös siihen, että on mahdollista sisällyttää 

yhdistelmämalli varoitusjärjestelmiin, jotta voidaan tunnistaa avuntarpeessa 

olevia opiskelijoita ja tarjota täten varhaisessa vaiheessa tukea ennen kuin on 

liian myöhäistä. 

 

Tässä tutkimuksessa esitellyt mallit on kehitetty nojautuen yksinkertaisimman 

selittävän mallin periaatteeseen ja myös aiempiin tutkimustuloksiin, joissa 

huomioidaan erilaiset akateemiset ympäristöt ja opiskelijoiden tausta. Ennustava 

malli voi tarjota indikaattoreita, jotka voivat mahdollisesti toimia pohjana 

väliintulostrategioihin kurssilta putoamisvaarassa olevien opiskelijoiden 

tukemiseksi. Tämän tutkimuksen keskeisin anti on malli, jolla opiskelijoiden 

suoriutumista voidaan arvioida muilla ohjelmointia ja muita aihepiirejä 

käsittelevillä kursseilla, jotka sisältävät sekä jatkuvaa arviointia että 

loppukokeen. Malli ennustaisi näillä kursseilla lopullisen opiskelijan 

suoritustason opetusjakson alkuvaiheessa. 
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Chapter 1 

Introduction 

This chapter provides the background of introductory programming education and the 

motivation for developing machine learning models to identify at-risk students. Studies 

in teaching and learning programming, identification of factors that influence student 

success in programming, research questions, scope and significance of the thesis, are 

presented.   

 

1.1 Introductory programming education 
Programming is fundamental to computer science and cognate disciplines and is 

typically offered as a major to students of other disciplines. It is an essential basis for 

many other advanced computer science and engineering courses that follows in the 

subsequent years. Introductory programming courses are taught essentially in all 

universities to introduce principles of computer science and begin to develop 

programming skills.  

However, the question “how to code a program in a computer language?” presents 

various challenges and difficulties to students and instructors. Programming has been 

identified as difficult to learn by novice students, and remains challenging, despite 

improvements in pedagogy, and ably supported by new technologies. Specifically, much 

research into improving teaching and learning of introductory programming has taken 

place (Luxton-Reilly, et al., 2018). Failure and attrition rates in programming continue to 

be in between 28-32% worldwide (Watson & Li, 2014; Bennedsen & Caspersen, 2019). 

A number of studies have been carried out to determine the factors that influence 

academic performance in programming courses, to establish why learning to program 

easier for some, more so than for others (Longi, 2016; Idemudia;Dasuki;& Ogedebe, 

2016). In addition, several studies have attempted to construct effective models to 

predict student performance in programming courses to facilitate better interventions 

(Ahadi, Lister, Haapala, & Vihavainen, 2015; Carter, Hundhausen, & Adesope, 2015; 

Castro-Wunsch;Ahadi;& Petersen, 2017; Conijn;Snijders;& Kleingeld, 2017; 

Liao;Zingaro;Alvarado;Griswold;& Porter, 2019). However, the predictor variables used 

in these various models, and the models themselves, varies from one context to another, 

with variations occurring in student cohort, cultural setting, class size and classroom and 

academic environments. It is widely accepted that parsimony is important in model 

building (Vandekerckhove;Matzke;& Wagenmakers, 2014). However, these studies did 

not use parsimonious models to characterize or model the data with a minimum number 

of predictor variables. Moreover, many studies are in need of further verification due to 

inconsistencies in results obtained over a range of identified factors and educational data 

mining techniques (Costa, Fonseca, Santana, & Araújo, 2017). Therefore, computer 

science educators are often searching for key factors that can serve as performance 

indicators or predictor variables to identify dropout/at-risk students. Moreover, 

identifying student at risk of disengaging early in the semester would help instructors to 

execute timely interventions.  

 Consequently, one of the goals of this study was to identify potential predictors 

whilst maintaining a balance between parsimony and goodness of the model fit. In 
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addition, identifying and choosing suitable machine learning techniques is also vital in 

developing predictive models. This is because machine reasoning allows a system to 

make inference based decisions about data. Moreover, machine learning is concerned 

with developing methods to discover models or patterns of data, which is significantly 

helpful in decision-making. The application of machine learning techniques in predicting 

student performance proved to be useful for identifying at-risk students and enable 

instructors to draw sense making decisions (Quille & Bergin, 2018; 

Liao;Zingaro;Alvarado;Griswold;& Porter, 2019; Liao, et al., 2019).  

This thesis presents a study that focuses on developing, validating, and testing the 

Naïve Bayes classification (NBC) algorithm based predictive models, which may be 

employed to predict student performance and to identify at-risk students in introductory 

programming. NBC is a simple supervised classification method based on the Bayesian 

probability theorem, which assumes that the input variables are conditionally 

independent from each other, given the output variable. NBC performs well on small 

numbers of observations, automatically learns feature interactions and handles irrelevant 

features that are not required for prediction. Moreover, NBC is simple to implement, 

insensitive to noisy data and performs well in many domains (Stewart, 2002; 

Osmanbegovic & Suljic, 2012; Feng;Ding;Chen;& Lin, 2013; Soni & Vivek Kumar, 

2018). A subsequent goal is to ascertain the viability of the predictive model(s) for use in 

early warning system in order to facilitate early identification of potential at-risk 

students, as well as the identification of trends and patterns to accommodate better 

interventions. 

 

Accordingly, this study attempts to develop a model(s) with explanatory variables 

selected on the basis of our previous findings to predict student performance as well as 

to identify students who need support early in the semester.  

 

1.2 Research goals and objectives 

As stated previously, the objective of this research is to develop a validated machine 

learning based predictive models to predict student academic performance in 

programming to identify at-risk early in the course of study. The three objectives of this 

study were as follows: 

 

i. Identify and select suitable data mining techniques to develop a mathematical 

model(s). 

ii. Develop and validate the mathematical model(s) using the educational data 

collected from computer programming course(s) to  

a. Identify the factors that foster student learning performance in 

programming courses. 

b. Explore the course specific factors that influence academic 

performance. 

c. Predict or identify, at an early stage, the low performing students. 

iii. Propose the developed model(s) as an early warning system to predict/identify 

at-risk students early in the semester and, in turn, potentially to inform both 

instructor and student.  
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1.3 Research questions (RQs) 

Five research questions have been designed to address each research objective of this 

study, and the research questions are; 

RQ1. Which feature selection techniques should be used to identify the influential 

factors that affect student learning and academic progress based on available 

academic data? 

RQ2. How might a predictive model be developed and validated to predict 

performance in programming courses? 

RQ3. What combination of predictors/independent variables yields the highest 

prediction accuracy to predict student academic performance? 

RQ4. What percentage of academically at-risk students may be correctly identified by 

the models? 

RQ5. How suitable are developed models for incorporation in early warning systems, 

for educators to identify students that need assistance in introductory 

programming courses? 

In publications P1, P2 and P3 we examined the feature selection techniques for 

identifying the most relevant factors affecting student learning and academic 

performance, that contribute to research question RQ1. Specifically, these three 

publications focused mainly on identifying key factors that may serve as best predictors 

in predictive model construction. Moreover, in these publications, we employed various 

data mining techniques to select suitable features for further exploration in subsequent 

studies P4 and P5. Similarly, publications P4 and P5 present studies in relation to the 

research questions RQ2-RQ5. In addition, replication and extended studies have been 

conducted based on findings from P5, to confirm that models based on our prior studies 

may be deployed as early warning systems, in order to predict/identify students that 

requiring early assistance.   

 

1.4 Scope of this thesis 

Student academic performance can be affected by various factors. This thesis focused on 

developing a predictive model based on student academic data, collected via surveys, 

homework, demonstration, tutorials and mentoring session of a specific course to 

explore the unidentified patterns in order to identify the factors that influence student’s 

learning and academic performance to predict their academic performance. In addition, 

student perceived prior programming knowledge and problem-solving skills were 

included in constructing predictive models based on prior studies P2 and P3. However, 

other psychological factors, such as self-esteem, self-regulated learning and emotional 

states were not included in constructing predictive models.  

 

1.5 Significance of this thesis 

This thesis is significant in further promoting technology-enhanced learning 

environment and enhancing personalised learning skills. The findings of this thesis will 

contribute towards learning and teaching of computer programming, which is vital in the 

context of computer science and IT curricula. The recommended approach derived from 

the results of this thesis may be applied at schools to improve student learning outcomes. 

Educators will be guided on what should be emphasised in the university curriculum to 

improve students’ performance in computer programming courses.  
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The findings of this study will be helpful for educators, students and researchers in 

the following ways: 

 Provide a predictive model with course specific factors that influence student’s 

learning skills and academic performance will help educators to redefine their 

teaching methods and strategies in teaching programming courses. 

 Provide a process to design and create a prediction model that predicts at-risk 

students who may face academic difficulty at early stage of the course will help 

educators to help them succeed.  

 Provide suggestions to reallocate or tune the learning technologies that are in 

use to align with student’s learning preferences based on identified influential 

factors from the defined model. 

 Provide suggestions to foster student learning skills, self-efficacy and increase 

in academic achievement based on results of student’s academic progress from 

the defined model. 

 Assist the instructors to extract patterns of performance, areas of weakness or 

strength, and to identify students who need more attention than others.  

 Deployment in other courses with similar goals.  

 

1.6 Structure of this thesis 

The rest of the thesis is organised as follows. Background of the study presents the 

theoretical foundations such as importance of learning analytics and educational data 

mining in predictive modelling, machine learning algorithms, and early warning systems 

relevant to this study (Chapter 2). The Related work section presents a literature survey 

of important previous work, conducted around prior knowledge, problem-solving skills, 

lecture attendance and formative assessment tasks, and their significance in relation to 

student final exam grades, predictive modelling and early warning systems (Chapter 3). 

Summary of publications section presents the summary of our published articles 

including results and contributions (Chapter 4). Research methodology section describes 

the methods used in the replication study conducted based on P5 for this thesis to find 

answers for our research question RQ3-RQ5 including the details about the courses and 

development of models (Chapter 5). Data analysis and results section presents the 

findings of the replication study conducted based on prior studies (Chapter 6), which I 

discuss in depth in discussion section including prior publications. Finally, conclusions, 

limitations and future work section presents our conclusions and limitations in terms of 

how well the foregoing research questions is answered, and we identify some related 

future work directions, to develop a more enhanced and innovative approach to teaching 

introductory programming (Chapter 7).  
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Chapter 2 

Predictive Modelling: Learning 

Analytics, Educational Data Mining, 

Machine Learning, and Early Warning 

Systems  

This chapter provides the background information related to the research publications by 

the author, and which have substantially contributed to chapters of thesis. The 

importance of learning analytics, educational data mining, machine learning and early 

warning systems, all related to predictive modelling, are presented in this chapter, as 

these topics form the basis of our prior studies as well as the replication study conducted 

for this thesis. The predictive model proposed in this thesis, to predict at-risk students 

early in the semester, was arrived at via analysis of introductory programming course 

data. The underlying concepts include Learning Analytics (LA), Educational Data 

Mining (EDM), Machine Learning (ML) and Early Warning Systems (EWSs). The 

chapter presents a background to these concepts to better situate the development of the 

proposed predictive model. 

 

2.1 Learning analytics (LA) in predictive modelling 

Learning Analytics (LA) is a composition of a set of techniques and algorithms that are 

used to measure, collect, analysis and extract results from data about learners and their 

contexts to directly support instructors and students (Pardo, 2014). In other words, LA is 

about learning, and is an emerging field that seeks to answer questions arising in 

contexts of teaching and learning, in order to enhance aspects of learning. The impact of 

educational technologies on student learning has offered new opportunities to gain useful 

insights into teaching and learning environments and demands the need of LA. For 

example, using student log and course performance data to predict student behaviors and 

subsequent learning outcomes is one of the most diverse areas within LA research. LA 

based predictive modelling with educational data mining techniques has become a core 

practice of educational researchers and largely with a focus on predicting student 

academic performance in education (West;Luzeckyj;Searle;Toohey;& Price, 2018). In 

this thesis, we are mainly concerned with student course performance and course entry 

survey data collected via ViLLE, a learning management system (LMS) to determine 

LA-based predictive modelling with data mining techniques.  

In the wake of the Internet, student online learning activities and course performance 

are captured and stored as digital traces or log data to identify patterns of learning 

behaviors, via educational data mining techniques. However, simply identifying learning 

patterns of students does not guarantee success of an education practice. That is, “How 

do we positively use these identified learning patterns or information to impact 

instructors’ teaching practices and enrich students’ learning outcomes?” or “How might 

the captured data be utilized to derive models that are capable with predicting student 

learning outcomes that will occur in the future? And, “What kind of manual or automatic 

actions and solutions should be implemented in the learning setting from the source data 
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collected as well as any identified patterns and predicted results?” It implies that, results 

of educational data mining need to be further analysed, in order to properly provide 

insights into teaching and learning. As such, our studies (P1-P5) have deployed different 

fields of LA by using educational data mining techniques, to identify answers for what 

happened? (Descriptive analytics: P1), why did it happen? (Diagnostic analytics: P2 and 

P3), what will happen? (Predictive analytics: P4 and P5) and how can we make it 

happen? (Prescriptive analytics: P5 and replication study results), in the field of CS 

education.  

 

2.2 Educational data mining (EDM) 

We now go through an introduction about EDM, which is applied in all our included 

publications and replication and extended study of this thesis. EDM is an important 

process to discover significant facts, unknown trends and patterns, and relationships in 

data that come from educational settings to understand student learning. The main goal 

of EDM community is to apply innovative data mining methods on educational data to 

discover hidden connections in order to achieve the goal of “enhancing educational 

practice”. EDM is otherwise called as knowledge discovery in database (Mohamad & 

Tasir, 2013). Moreover, EDM is one of the prominent research fields of LA 

(Chatti;Dyckhoff;Schroeder;& Thus, 2012). EDM is an analytics process with advanced 

tools and technologies to develop methods to harness the educational data points and 

their intersections to identify patterns from that to reveal student behaviours, and 

subsequent learning outcomes for LA to create actionable intelligence in order to 

improve student learning. As such, EDM focuses on data analysis paradigms and LA 

focuses on human intervention. Notably, there were four major classes of EDM methods 

those frequently used by analytics in the field of education. They are prediction models, 

relationship mining, structure discovery, and discovery with models. In these, prediction 

models are very prominent in both EDM and LA communities (Baker & Inventado, 

2014). For our study we used prediction models includes machine learning algorithm 

were explained in subsequent sections.  

 

2.3 Predictive modelling 

Predictive modeling is a process that uses statistics including machine learning 

algorithms with collected data and relevant predictor variables to predict future results. 

The process of developing predictive model is called predictive analytics. Predictive 

analytics in education uses statistical and machine learning algorithms to predict future 

events based on past educational data. The objective of predictive analytics in education 

is to predict the student performance, student retention, student enrollment, institutional 

progress and more based on the current and past student and institutional data in order to 

assist learners, instructors, course administrators and academic advisors to draw sense 

making decisions. For example, when the student learning outcomes is predicted at the 

initial stage (based on his/her past and current academic and or nonacademic data) then it 

would be easier for instructors to help students those predicted as low-motivated learners 

to alleviate their learning issues in order to reduce drop-out rates. Academic predictive 

models are developed by using the data, statistical and machine learning 

algorithms/techniques to provide answers for the questions that have been raised and 

unanswered in education. Predicting student performance in programming courses is a 

topic that has received much attention in computer science education for decades. 
Furthermore, collecting student learning process data via learning management systems 
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(LMS) such as Moodle, Blackboard, Canvas and ViLLE to understand the processes 

involved in student learning and the progress gained has also received much attention in 

the fields of EDM and LA.  

Moreover, selecting the most efficient variables as predictors (called variable 

selection) in predictive models, determine the prediction accuracy and longevity of the 

model. Variable or feature selection is the process of selecting suitable subset of features 

that may serve as best predictors in a predictive model construction and to improve the 

results. This step is also important in machine learning as it helps in understanding data, 

reducing computation requirement, and better model interoperability (Chandrashekar & 

Sahin, 2014; Miao & Niu, 2016).  Moreover, including unnecessary features in a model 

will influence the predictive performance of the model. Notably, a model with predictor 

variables that are correlated with other predictor variables may raise inconsistent results 

and prediction accuracy, which forces it to assess the selection of predictor variables by 

using various variable selection techniques. That is, selecting a subset of relevant 

features is the most important process in predictive modelling. It also implies including 

unnecessary feature influence predictive performance of the model. The most common 

variable selection methods those widely used in research studies are; filter, wrapper and 

embedded methods. As such, our studies P1-P3 examined the factors that influence 

student performance in programming and studies P4 and P5 discussed the role of 

variable selection for predictive model development. Notably, P4 used filter method and 

P5 used wrapper method for variable selection.  

 

2.4 Machine learning (ML) algorithm 

 ML is a branch of statistics or is a set of mathematical techniques that implemented on 

computer systems and provides the ability to those systems to learn from the given input 

(data) and experience to predict future outcomes (Morgan, 2018; Chio & Freeman, 

2018). There are two types of machine learning algorithms used for development of 

predictive models. They are, supervised learning (regression or classification), and 

unsupervised learning (clustering) based algorithms. Generally predictive models fall 

into one of these three categories namely clustering or classification or regression 

depends on the nature of data and problem. There are many machine learning algorithms 

that widely used for predictive modelling depends on the nature of collected data and 

problem. Figure 2.1 shows how machine learning algorithms deployed on collected data 

for predictive analytics based on its nature. 

 

 
 

Figure 2.1: Machine learning algorithms on predictive model development. 
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Here, supervised learning approach deals with labeled data (data with meaningful 

label or classified with suitable tag) and unsupervised learning deals with unlabeled data 

(data with no labels or with many labels). For example, in unsupervised learning we use 

clustering technique to identify the patterns of the input data. Figure 2.2 shows the 

machine learning algorithm implemented computer works on unsupervised data to derive 

inferences from given input (K-means clustering algorithm).  

 

 
 

Figure 2.2: Unsupervised learning on data that have no labels for clustering. 

 

In supervised learning we have machine learning algorithms for classification and 

regression. For example, Linear regression, Logistic regression, KNN, Naïve Bayes, 

Random forest are some common supervised learning algorithms widely used in 

predictive modelling with supervised learning (Liao;Zingaro;Laurenzano;Griswold;& 

Porter, 2016; Conijn;Snijders;& Kleingeld, 2017; Al-Shehri, et al., 2017; Francis & 

Babu, 2019). Table 2.1 shows extract of first year programming students’ continuous 

assessment data and grade obtained in the year 2016 for supervised learning.  

 

ID PPK* Homework Demo Final exam Grade Status 

x1 2 100 40 98 5 QUALIFIED 

x2 2 93.22 25.33 29 0 UNQUALIFIED 

x3 1 99.83 97.33 67 2 UNQUALIFIED 

x4 0 87.45 86 90 4 QUALIFIED 

x5 2 100.00 92.66 100 5 QUALIFIED 

.. .. .. .. .. .. .. 

* Prior programming knowledge (PPK) 

 

Table 2.1: data collected for supervised learning (classification or regression). 

 

Regression models are used to predict continuous or ordered whole values (for 

example, student final exam scores). Classification models are used to predict discrete 

class labels (for example, student final course grades). As the collected data are tagged 

with unique labels (Table 2.2) the supervised learning based predictive model(s) can be 

developed. 
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Input/predictor 

variables 

Output/predicted 

variable 

Type of supervised 

learning problem 

Machine learning 

algorithm (example) 

Homework and 

demo 

Final exam 

(continuous) 

Regression Linear regression / 

Random forest 

Homework and 

demo 

Status (qualified 

or unqualified) 

Binary classification  Naïve Bayes / 

Logistic regression 

Homework and 

demo scores 

Grade (0 or 1 or 2 

or 3 or 4 or 5) 

Multiclass 

classification 

Naïve Bayes / Neural 

networks / Random 

forest… 

 

Table 2.2: Regression / classification based predictive model: Supervised learning. 

 

This implies that selection of type of predictive model or implementation of learning 

algorithm is based on the nature of the dataset and output variable is in or set or the 

problem. However, it should be noted a classifier may predict a continuous value 

provided that a continuous value is in the form of a probability for a class label. 

Similarly, the regressor may predict discrete value provided the discrete value is in the 

form of an integer value. As noted, there are many machine learning algorithms that 

widely used for predictive modelling depends on the nature of collected data and 

problem. We deployed Support vector machine regression and Naïve Bayes algorithm 

classification based predictive models (supervised learning) in our prior studies P4, P5 

and replication study of this thesis, respectively.  

 

2.5 Early warning systems (EWS) 

Academic early warning system (EWS) is a computerised system that designed to 

capture and analyse student data to identify student who need academic support, and to 

identify key factors that influence student retention and learning outcomes. The EWS 

acts as a student progress indicator, allowing educators use such information to support 

off-track students before they drop out or reach critical condition (P5). For example, 

Signals project from Purdue University, and Student Explorer from STEM academy are 

kinds of early warning systems designed with core of LA to identify students that need 

support and provides real-time feedback, interventions as early as possible (Pistilli;III;& 

Campbell, 2014; Krumm, Waddington, Teasley, & Lonn, 2014). These projects analyse 

data accumulated in LMS to identify student that need support and identify factors that 

impact academic advisor’s decisions. As such, we introduced our validated models as 

early warning systems to predict at-risk students early in the semester and, in turn, 

potentially to inform both the instructor and student.  

 

2.6 Summary 

This chapter has highlighted the need for LA, EDM and feature selection to develop 

predictive models that typically include machine learning algorithm(s) and to heed the 

student engagement-based findings in order to improve student learning. We therefore 

deployed LA, EDM and machine learning algorithms in our publications P1-P5, which 

focused on development of statistical predictive models that uses data mining techniques 

and machine learning algorithms to predict student learning outcomes. Consequently, we 

presented research studies conducted around these topics in relation to introductory 

programming, the need for at-risk student identification, predictors used for model 
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development, and validation and incorporation of our validated models as early warning 

systems in the next chapter.   
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Chapter 3 

Computer programming courses, 

predictive factors and predictive 

models: Related work 

This chapter provides further motivation for this thesis by presenting the important 

related work, within the context of key areas of focus, of relevance to our study. These 

include teaching and learning of introductory programming, problem-solving skills, prior 

programming knowledge, lecture attendance, formative and summative assessment 

tasks, predictive models and machine learning techniques, which are emphasised in the 

research questions.  

 

3.1 Introductory programming  

Computer programming is the process of writing set of commands that get executed by 

computers. Programming is a vital skill and a rewarding career for students who are 

interested in computer science and IT. It is claimed that learning to program improves 

student general problem-solving and thinking skills (Psycharis & Kallia, 2017; 

Yukselturk & Altiok, 2017). Therefore, introductory programming is emphasised as one 

of the recommended courses for non-computer science students at tertiary level. 

However, introductory programming is considered to be a major stumbling block for 

many students and many studies have reported the difficulties faced by novices when 

learning programming (Qian & Lehman, 2017; Luxton-Reilly, et al., 2018). The 

worldwide average, successful completion rate in introductory programming is 67.7%, 

with failure rates continuing to be the range of 28-32% ( (Watson & Li, 2014; 

Bennedsen & Caspersen, 2019). Students enrolled in introductory programming courses 

often experience difficulties in grasping basic programming concepts and algorithms 

(Lister, et al., 2004). Novices struggle to understand programming concepts as they lack 

of clear mental models to relate to programming concepts (Moskal;Gasson;& Parsons, 

2017) and novices often write code with misconceptions and syntax and logic errors 

(Ettles;Luxton-Reilly;& Denny, 2018; Zingaro, et al., 2018; Izu;Mirolo;& Weerasinghe, 

2019). There are at least three reasons for this. First, computer programming courses 

require students to have a good understanding of programming concepts and meta-

cognitive skills, such as problem solving and high-level thinking skills, in order to be 

proficient in programming (Uysal, 2014). Second, students must have the abstract 

thinking and logical principles in order to visualise and to solve real world problems in 

code form. Third, the programming proficiency of novice learners is dependent on the 

choice of the programming language that offered in introductory programming course. 

(Koulouri, Lauria, & Macredie, 2015). That is, the programming language that offered at 

introductory programming might impact the development of programming skills of 

novice learners. Hence, several studies have attempted to identify factors that contribute 

to ability in learning and success in programming, including but not limited to students’ 

psychological and cognitive characteristics and study behaviour (Watson;Li;& Godwin, 

2014; Lishinski, Yadav, Enbody, & Good, 2016; Lishinski;Yadav;& Enbody, 2017). 
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However, these studies need further verification due to inconsistencies in results 

obtained over a range of identified factors (Longi, 2016). 

 

3.2 At-risk students and the need for predicting student academic performance 

The phrase “at-risk students” is typically used in educational settings to refer a group of 

students who struggle with their studies or risk of failing academically or have higher 

probability of dropping out of school. They are usually low academic achievers, who 

need academic support from instructors and academic advisors. Increase in at-risk 

student numbers, course non-completion and student attrition rates, cause poor university 

outcomes, of concern to all stakeholders (students, instructors, course administrators, 

academic advisors and institutions) (Jia & Maloney, 2015). Programming is difficult for 

novices to learn and failure rates are high (Bennedsen & Caspersen, 2007; Silva, 2014). 

The need for early indicators of students becoming at risk has been explored, based on 

identified factors around student success/failure, so that early intervention strategies 

maybe deployed (Macfadyen & Dawson, 2010; Helal, et al., 2019; 

Liao;Zingaro;Alvarado;Griswold;& Porter, 2019).  

Despite this concern, research studies emphasise the need for prediction of student 

academic performance for a number of reasons. First, predicting student academic 

performance is an important research endeavour at higher education level and highly 

valuable for instructors to execute timely interventions (Conijn;Snijders;& Kleingeld, 

2017). Second, improving student learning and, increasing student success rates, are 

important and long term goals for educational institutions towards providing quality 

education (Asif, Merceron, & Pathan, 2015; Yassein;Helali;& Mohomad, 2017). 

Universities capture large volumes of digital educational data of their students to 

understand and address student success, retention and graduation rates to create 

actionable intelligence knowledge (Pistilli;III;& Campbell, 2014). However, 

transforming such large volumes of data into knowledge is challenging and, which 

requires enhanced predictive methods to transform those captured data into meaningful 

patterns to enrich student learning experiences (Asif, Merceron, & Pathan, 2015; 

Shahiri;Husain;& Rashid, 2015). Third, there are no clear metrics thus far to identify 

student retention (Pistilli;III;& Campbell, 2014). So, identifying key factors that 

influence student performance would help to predict at-risk students at an early stage, to 

minimise the drop-out rate and improve retention. Fourth, there is a substantial body of 

empirical literature on machine learning techniques-based predictive models (utilising 

data mining and learning analytics) for student performance and to identify students that 

need support (Ahadi, Lister, Haapala, & Vihavainen, 2015; 

Leppänen;Leinonen;Ihantola;& Hellas, 2017; Luxton-Reilly, et al., 2018). However, as 

student predictions are inconsistent in nature, robust models are needed, to accommodate 

learning data that changes over time and to deliver significant predictions. 

 

3.3 Identifying predictors of student achievement 

Several studies have been conducted to detect the factors that influence student learning 

outcomes, and which may be used to predict student academic performance (Astin, 

1978; Longi, 2016; Luxton-Reilly, et al., 2018; Liao;Zingaro;Alvarado;Griswold;& 

Porter, 2019). Evans et al. listed 34 independent variables that that might be used to 

measure student understanding of programming concepts (Evans & Simkin, 1989). Also, 

studies have cited family causal factors, academic causal factors, and personal causal 

factors affect student academic performance (Aguiran;Lazo;& Salabat, 2014; Akar & 
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Altun, 2017). However, there is no concrete inventory that may be used as a possible 

predictor, as the results have often been inconsistent, and predictor variables used in 

these studies have varied from one context to another, with variations occurring in 

student cohort, cultural setting, class size and classroom and academic environments 

(Sharma & Shen, 2018). In addition, the data sources which are used in the 

aforementioned studies are often so complex that the predictor variables correlated in a 

complicated, non-linear way (Guo, Zhang, Xu, Shi, & Yang, 2015). Consequently, 

research seeks predictors that can produce consistent results on predicting student 

academic achievement, despite the contextual issues that impact student performance. 

So, for this thesis the predictor variables selected based on educational psychology and 

our prior studies to predict student performance in final programming exam despite 

contextual factors that affect student achievement for our model.  

 

3.4 Prior programming knowledge (PPK) as a predictor of student performance 

Prior knowledge is knowledge that can be defined as an individual’s prior personal stock 

of information, skills, experiences, beliefs and memories. Prior knowledge is reported as 

an important variable in educational psychology research (Ausubel, Novak, & Hanesian, 

1978) and has long been considered as one of the most important factors that influence 

student learning behaviours, experience and performance (Buskes & Belski, 2017; 

Adamopoulos, 2017; Tzu-ChiYang;Chen;& Y.Chen, 2018). Research studies related to 

student perceptions on prior knowledge in learning mathematics, programming and 

science courses reported that prior knowledge in topic is a factor of success 

(Hailikari;Nevgi;& Komulainen, 2007; Tafliovich, Campbell, & Petersen, 2013; 

Nivala;ParankoHans;Gruber;& Lehtinen, 2016). Students who have PPK perform better 

in programming than those who have no prior knowledge (Longi, 2016; Hsu & Plunkett, 

2016; Kori;Pedaste;Leijen;& Tõnisson, 2016). However, few studies also claim that 

inaccurate prior programming knowledge may hinder new learning and raise 

misconceptions (Marling & Juedes, 2016). Furthermore, some students who had no PPK 

attained higher grades than students who had PPK in an introductory programming 

(Alexandron, Armoni, Gordon, & Harel, 2012). Despite these mixed results, PPK is 

often discussed and included in predictive models as an input variable (Longi, 2016; 

Grover, Pea, & Cooper, 2016). In addition, our prior study (Veerasamy, Daryl D'Souza, 

& Laakso, 2018) on the impact of PPK on lecture attendance and final programming 

exam confirmed that prior knowledge in programming influences student lecture 

attendance and final exam performance. Therefore, PPK was included in our study as 

one of the predictor variables of the model developed in this thesis.  

 

3.5 Problem solving skills (PSS) as a predictor of student performance 

Problem solving is a kind of effective thinking or a complex mental activity to find 

solutions for difficult or complex issues. Problem-solving skill (PSS) is a valuable skill, 

which needs to be acquired in learning and workplace to ensure success. Moreover, 

problem-solving skills are identified as one of the required “employability skills in the 

21
st
 century workplace”, along with technical skills (Suarta;Suwintana;Sudhana;& 

Hariyanti, 2017). For example, to become a computer scientist it is necessary to have 

adequate knowledge in programming, practice in solving problems and designing 

systems (Kappelman;C.Jones;Johnson;R.Mclean;& Bonnme, 2016). As such, problem-

solving is a basic required skill for students. Several studies refer to PSS as a cognitive 

and prerequisite factor for student achievement in many courses (Behjoo, 2013; Bester, 
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2014). PSS and self-efficacy are related and therefore PSS might influence student’s 

academic self-efficacy in learning programming (Erözkan, 2014). However, Lishinski et 

al. reported that student problem-solving ability did not correlate significantly with 

student performance in multiple-choice exams (Lishinski, Yadav, Enbody, & Good, 

2016). Despite these mixed results, in higher education a significant effort is directed 

towards the development of metacognitive and PSS in order to improve students’ 

thinking and problem-solving, to ensure success in learning and in the workplace. For 

example, pedagogical approaches such as collaborative learning, and problem-based 

learning were implemented to enhance student programming PSS in novice 

programming learning (Uysal, 2014; Jackson, Lawson, Diack, Khosravi, & Vincent-

Finley, 2016; Bawamohiddin & Razali, 2017) suggesting that PSS are essential for 

learning and has a connection with student learning abilities. In addition, our study (P3) 

on relationship between PSS and student performance in introductory programming 

courses revealed that students with PSS achieved better score in final programming 

exam than students with no PSS (Veerasamy;D'Souza;Lindén;& Laakso, 2018). This 

implies that PSS and learning programming are interrelated and student PSS can be used 

to determine student learning and performance in programming courses.  

 

3.6 Lecture attendance (LEA) as a predictor of student performance 

Lecture is a traditional and continuous to be a one of the effective teaching methods in 

most universities at present. Students who attend lectures regularly are likely to succeed 

in academics (Jover & Ramírez, 2018). The relationship between student lecture 

attendance (LEA) and academic performance is widely researched (Narula & Nagar, 

2013; Lukkarinen;koivukangas;& Seppälä, 2016; Kassarnig, et al., 2018). Regular 

attendance in lecture got a positive impact on student learning despite the availability of 

online resources (Alexander & Hicks, 2016). LEA and student academic performance 

are positively correlated in introductory programming courses (Bai;Ole;& Akkaladevi, 

2018). However, Chapin reported that low or high attendance in lecture did not impact 

student final grades of first year and second year university psychology students 

(Chapin, 2018). On the other hand, Kassaring et al. measured the LEA of 100 university 

technical students and concluded that early and consistent LEA strongly correlates with 

students’ academic performance (Kassarnig;Bjerre-Nielsen;Mones;Lehmann;& Lassen, 

2017). Despite these mixed results, LEA is used as one of the predictors in machine 

learning based models for predictive analytics to predict student academic performance 

in various courses (Mueen;Zafar;& Manzoor, 2016; Rix;Dewhurst;Cooke;& Newell, 

2018; Gatsheni & Katambwa, 2018). However, our study (Veerasamy, et al., 2016) 

revealed that formal LEA and novice student’s final programming exam performance 

was negatively correlated. As such, this thesis did not use student LEA as one of the 

predictive variables.  

 

3.7 Formative assessment tasks (FA) as a predictor of student performance 

Assessment tasks represent a wide range of activities including homework, essays, group 

work assignments, oral presentations, case studies, online quizzes and tests and written 

examinations. Assessment plays an important role in student learning and influences 

student achievement (Gaal & Ridder, 2013). The purpose of assessment is to measure 

whether a student has achieved intended learning outcomes for a study module (Gibbs, 

2010). For example, formative assessment tasks (FA) conducted by academics during a 

course, typically aligned with the course syllabus requirements and which reflects the 
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desired student learning, in terms of their incremental progress in learning. It partially 

determines students’ final performances. It is claimed that the practice of FA is rooted in 

Bloom’s concept of “mastery learning”, an instructional strategy and educational 

philosophy that adopts the use of assessments to measure student’s learning outcomes 

(S. & Hastings, 1971). FA is aimed at stimulating and directing student learning 

(Timmers;AmberWalraven;& P.Veldkamp, 2015) and plays a significant role in the 

student learning process (Gibbs, 2010). Assessing students with frequent assessments 

increases study motivation reduces procrastination and enhances academic performance 

(Gibbs, 2010; Gaal & Ridder, 2013). Students aware that completing FA (for example 

homework) may lead to improved final grades (VanDeGrift, 2015). Furthermore, 

educators use FA such as homework as predictors to identify where students are 

struggling in order to assist them and to address their problems (Gibbs, 2010).  

Homework (HE) is formative assessment that is given to students to complete at 

home or outside class times to test their comprehension of the subject (Rajoo & Veloo, 

2015). There are three types of HE: practice homework (study for tests, essays), 

preparation homework (demo exercises, group work), and extension homework (project 

work, case studies) prepared and delivered to promote student learning. HE impacts 

student performance and is important for student achievement (Rajoo & Veloo, 2015; 

Planchard;Daniel;Maroo;Mishra;& McLean, 2015). Moreover, additional HE has a 

significant impact on student achievement in exams (Eren & Henderson, 2008). 

However, formative assessments have no significant impact on final exam scores and 

failure rates, although it improves overall performance in lab work (Gratchev & 

Balasubramaniam, 2012; Gaal & Ridder, 2013). A meta-analysis by Fan et al. on HE and 

student achievement in mathematics and science revealed that HE has insignificant 

positive relationship with academic achievement (Fan;Xu;Cai;He;& Fan, 2017). On the 

other hand, our prior study (P1) on impact of continuous summative assessments on 

student achievement in programming courses concluded that HE and demo exercises 

have a positive significant correlation with student achievement in final programming 

exams. However, the correlation coefficient value varied year-to-year though the 

relationship between the selected assessment tasks and student final programming exam 

performance was significantly positive (Veerasamy, et al., 2016). The aforementioned 

studies revealed that FA plays a vital role in student learning and achievement. 

Moreover, the early weeks of formative assessment results provide good opportunities to 

partially assess student learning outcomes and to identify at-risk students. As such, in 

our studies including P4, P5 and the replication study, we included performance in 

ongoing assessment tasks as predictor variables, based on our prior study, P1, for model 

development and to identify at-risk students in programming.  

 

3.8 Predictive modelling for student academic performance 

Predictive modelling comes under the category of predictive analytics. It is a kind of 

mathematical model which may employ classifiers or regressors to formulate a statistical 

model. In education predictive modelling is generally used in predicting student 

performance in a course and to identify students at risk of course failure. There have 

been several studies conducted to develop predictive models employing various data 

mining algorithms for predicting student performance in computing education (Bergin, 

Mooney, Ghent, & Quille, 2015; Devasia, P, & Hegde, 2016). Furthermore, predictive 

models may be used in an early warning system to identify students who need support by 

facilitating the use of a variety of strategies to communicate with selected at-risk 



 

16 

 

students and provide them pathways for improving their performances (Krumm, 

Waddington, Teasley, & Lonn, 2014). 

Several studies examined the effectiveness of different machine learning algorithms 

to select the suitable classification machine learning algorithms for predictive models 

(Dekker;Pechenizkiy;& Vleeshouwers, 2009; Perez;Castellanos;& Correal, 2018; 

Hussain;Zhu;Zhang;Abidi;& Ali, 2018). However, it is not clear, yet which machine 

learning algorithm is preferable in this context. For example, Devasia et al. employed 

Naïve Bayesian’s classification to predict final grades of computer science students and 

found that it was more accurate when compared with other data mining methods, 

including linear regression, decision tree, and neural networks (Devasia, P, & Hegde, 

2016). However, Bergin et al. found that there were no significant statistical differences 

between the prediction accuracy of Naïve Bayes and Logistic regression, Support vector 

machine, Artificial neural network and Decision trees data mining techniques, in 

predicting introductory programming student performance, even though Naïve Bayes 

was found to have the highest prediction accuracy (Bergin, Mooney, Ghent, & Quille, 

2015). Other studies reported that Support vector machine, when used for model 

generation and validation, achieved the best performance in predicting success over 

other classification and regression-based algorithms (Bydžovská, 2016; Liao, et al., 

2019). Liao et al. deployed Logistic regression model to perform binary classification for 

predicting student performance in multiple CS courses. They stated that Logistic 

regression was selected for model development due to its simplicity and ability to work 

well with a small number of input features (Liao;Zingaro;Alvarado;Griswold;& Porter, 

2019).  

In addition, these aforementioned studies used various model evaluation techniques 

to validate model performance, in order to determine how well these models would 

perform on unknown data. For example, Borra et al. measured the prediction error of the 

model by employing estimators such as Leave-one-out, parametric and non-parametric 

Bootstrap, as well as cross-validation methods, and reported that the repeated 10-fold 

cross-validation estimator and the parametric bootstrap estimators performed better on 

estimating the prediction error of the model, than leave-one-out and hold out estimators 

(Borra & Ciaccio, 2010). Many studies deployed confusion matrix (CF) for measuring 

the prediction accuracy of classification algorithm-based models (Mueen;Zafar;& 

Manzoor, 2016; Liao, et al., 2019). Notably, area under the curve is a probability curve 

(AUC) measure, used in several studies to determine how well the model predicts the 

classes best (Thai-Nghe;Busche;& Schmidt-Thieme, 2009; Yukselturk;Ozekes;& Türel, 

2014; Anderson;Boodhwani;& Baker, 2019). For example, Liao et al. analysed the value 

of different data sources for predicting student performance in CS courses and 

determined most valuable data sources based on AUC results (in compliance with AUC 

scores) of each data source used as predictors (Liao;Zingaro;Alvarado;Griswold;& 

Porter, 2019).  

There have been studies explored the factors that influence the predictive accuracy of 

the model (Austin & Tu, 2004; Kattan, 2011; Austin & Steyerberg, 2015). The accuracy 

of prediction models might vary from dataset to dataset on the type of classification. For 

example, the dataset which contains small portion of students fail or dropout and the vast 

majority pass is called imbalanced dataset. The model developed with imbalanced data 

may produce overoptimistic results (Novianti;Jong;Roes;& Eijkemans, 2015). The use of 

too many variables that provide similar information will bring the issue of 

multicollinearity and certainly affect the model’s goodness of fit (Derksen & Keselman, 
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1992). Our study (Veerasamy;D'Souza;Lindén;& Laakso, 2019) found that although the 

overall success of the model is significant, model overfitting and, lack of predictors 

might affect predictive accuracy of the model.  

From these studies the following points emerged. First, selection of type of machine 

learning algorithm(s) is based on the nature of the data and target variables (whose 

values are to be modelled and predicted by other variables) is in or set or the problem. 

Second, adding more predictor variables does not necessarily help improve prediction 

accuracy of the model. Moreover, inclusion of highly correlated predictor variables in a 

model might cause the “multicollinearity” or variance inflation factor (Huang & Fang, 

2013). Third, it is important to know how well the model(s) will perform for the future 

or unknown data. Fourth, the performance of the predictive model depends on the 

sample size.  

 

3.9 Predictive models as academic early warning systems (EWS) 

EWS is an alert tool and designed to support both instructors and students. It facilitates 

the instructors to monitor student attendance, engagement, and course assessment 

performance at certain intervals in visual form to explore new patterns for decision 

making. These early alert systems have been used quite extensively in many educational 

intuitions to identify at-risk student, provide support and improve retention and 

graduation rates (Baepler & Murdoch, 2010; Jokhan;Sharma;& Singh, 2018). Notably, 

mining LMS (Blackboard, Moodle) data to develop an early warning system for course 

administrators, instructors and students is a significant active field of learning analytics 

research since last decade (Macfadyen & Dawson, 2010). Arnold et al. developed course 

signals, a student success system that analyse data collected by instructional tools and 

LMSs such as Blackboard Vista to produce course early warning signs and provides 

intervention to learners who may not be performing to the best of their abilities before 

they reach a critical point (Arnold & Pistilli, 2012). Similarly, Krumm et al. designed 

“Student Explorer” - EWS with a core of learning analytics to support STEM (Science, 

Technology, Engineering and Mathematics) students in a university. This EWS is 

designed to analyse the accumulated LMS data to identify students that need academic 

support and to identify factors that influence academic advisor’s decisions (Krumm, 

Waddington, Teasley, & Lonn, 2014). Notably, EWS selectively used for freshmen 

courses targeting specific student populations such as first-year students rather than for 

all students (Simons, 2011). Some other studies investigated student attitudes towards 

these EWS and how they prefer to receive these early warning tools results in the course 

of their studies to improve their academic performance (Atif;Richards;& Bilgin, 2015; 

Roberts;Howell;Seaman;& Gibson, 2016). However, most EWSs designed heavily rely 

on student demographic and or LMS access data but not on performance data 

(Kuzilek;Hlosta;Herrmannova;& Zdrahal, 2015; Marbouti, Diefes-Dux, & Madhavan, 

2016). In addition, Most of the EWSs developed based on continuous-summative data 

but not including cognitive and psychological factors. As such, this thesis developed a 

predictive model as EWS with variables that include student performance data and 

cognitive factors such as prior knowledge and problem-solving skills.  

 

3.10 Summary 

The need for early indicators to identify students at-risk is important to establish and 

facilitate timely interventions. Several studies have attempted to identify such early 

indicators for identifying students in need of support in programming. However, there is 
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no concrete inventory that may be used as a possible predictor. In addition, student 

predictions are inconsistent, and require models that are able to accommodate learning 

data changes over time to produce consistent results on predicting student performance. 

Hence, we used predictor variables that accounted for variations in academic setting to 

predict student performance in the final programming exam despite contextual factors 

that affect student achievement for our model. As such, this study included non-collinear 

predictor variables that may have better explanatory predictive power, in order to build a 

possible balanced model (denoted parsimonious models), in turn, to attain feasible 

prediction accuracy in predicting student final exam grades in introductory 

programming. Second, this study used the classification-based algorithm, Naïve Bayes, 

to build models with predictors, selected on the basis of our previous findings (P1-P5) as 

well as the contributions to research questions, presented in the next chapter. Third, we 

deployed a K-fold cross-validation technique to evaluate the predictive performance of 

models for validation and testing. In addition, a confusion matrix was used to measure 

the prediction sensitivity, specificity, balanced accuracy, and AUC values, to compare 

the predictive models developed for this thesis, such comparison, allowed for predictive 

quality to be determined of models and to determine how well they would perform on 

unknown data, and to then propose an appropriate early warning system.  
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Chapter 4 

Summary of publications 

This chapter presents a summary of publications which have contributed to this thesis. 

They present studies involving a range of factors that ostensibly influence student 

performance, such as lecture attendance, homework, and prior programming experience, 

for example. The studies form a strategic and cohesive pursuit of factors to include in 

parsimonious predictive models, to better predict students at risk of failing the final 

exam. 

The first three research articles (P1, P2, and P3) present a list of data mining techniques 

those were used in order to identify the influential factors that affect student learning and 

academic performance in programming courses. The next two articles (P4 and P5) 

present the development and validation of mathematical models using the selected 

features based on prior studies to predict low performance students at early stage of the 

course and propose one of those developed model(s) as an early warning system.  

 

4.1 P1: The Impact of Lecture Attendance on Exams for Novice Programming 

Students 

Summary: This paper examines the influence of lecture attendance and continuous 

assessment tasks on student performance in the final examination. Lecture attendance is 

widely considered as one of the key determinants of student learning and academic 

performance in many courses. Similarly, several studies alluded to formative assessment 

tasks as one of the important factors that influence student achievement in exams. 

However, this assumption needs to be tested due to the radical impact of educational 

technologies on student learning and performance. Moreover, there are contexts in which 

students mostly work from a distance and rarely attend classes at institutions. It is 

therefore essential to measure the impact of lecture attendance, continuous summative 

assessment tasks on final exam performance. In this study, correlation coefficient and 

multiple regression analysis (Mann, 2009) were implemented to assess the influence of 

lecture attendance on novice student learning and performance in programming courses.  

Results and contribution to research questions: The correlation results for lecture 

attendance on formative and summative assessment tasks revealed that lecture 

attendance and assessment outcomes are weakly correlated. However, the correlation 

and multiple regression results for formative assessment tasks on final exam 

performance suggested that formative assessment tasks might be considered as predictor 

variables to identify student achievement in final exam. The data and results of this study 

might be used for further research to identify the learning preferences of novice 

programming students in order to enhance learner-centered classrooms. This publication 

contributes to research question (RQ1) by giving quantitative results on identifying the 

factors that foster’s student learning performance in computer programming courses.  

 

4.2 P2: The impact of prior programming knowledge on lecture attendance and 

final exam 

Summary: This publication examines the similar problem as P1 but with cognitive factor 

dataset using various statistical methods. This publication reports the results of the 
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impact of student prior knowledge in programming on lecture attendance and on 

subsequent final programming performance in a university level programming course. 

This analysis attempted to answer the research question “Why do some students skip 

lecture sessions yet, do well in the final exam?” This question was raised based on P1 

results and it is identified that students entering our first-year programming course with 

varied programming knowledge and experience which could have influenced their 

lecture attendance and academic performance. Therefore, this study analysed the impact 

of prior programming knowledge on lecture attendance and final programming exam by 

using statistical and visualisation techniques. The Shapiro-Wilk test, Spearman’s rank 

correlation coefficient, multiple regression, Kruskal-Wallis, and Bonferroni correction 

tests were used to examine the student data (Ghasemi & Zahediasl, 2012; Mann, 

Nonparametric Methods, 2009).  

Results and contribution to research questions: The study delivered mixed results. 

The Kruskal-Wallis and Bonferroni correction test (multiple comparison tests) results 

suggest that students who have prior programming knowledge will also have poor 

lecture attendance. Similarly, the multiple comparison test results revealed that students 

with high prior programming knowledge achieved higher scores in the final 

programming exam than student with no prior programming knowledge. In addition, the 

multiple regression results suggest that, student prior programming knowledge affect 

student lecture attendance and final exam performance. However, lecture attendance did 

not have any significant impact on student final exam performance. As such, this 

publication concludes that class attendance may not be considered as one of the factors 

that influence student performance. However, prior programming knowledge is 

significantly a better predictor to use to predict final exam scores in programming 

courses. This publication contributes to research questions RQ1, and RQ2 partially in 

order to use student prior knowledge as one of the predictor variables for model 

development and validation.  

 

4.3 P3: Relationship between perceived problem‐solving skills and academic 

performance of novice learners in introductory programming courses 

Summary: This publication explored the influence of cognitive factor that foster’s 

student learning performance in programming courses in order to use it as input variable 

for predictive modelling. This study focused to answer the research question “Why is 

learning to program easier for some than the others?” The research reported here aimed 

to determine whether student perceived problem-solving skills is relevant to student 

performance in learning programming. This is because research in computer science 

education highlighted that problem solving is a valuable and desirable skills for students. 

Many novice students lack problem solving skills and have difficulties in utilising key 

programming concepts to express in their code. As such, this study explored the 

influence of student perceived problem-solving skills on formative and summative 

assessment tasks performance by using quantitative analysis.  

Results and contribution to research questions: The Spearman’s rank correlation 

coefficient results revealed that students who have poor problem-solving skills might 

perform poorly in formative and summative assessment tasks. In addition, the multiple 

comparison test results revealed that effective problem solvers might perform better in 

the final exam than poor problem solvers. Furthermore, from these study results the 

following points emerged. First, it is possible to categorise students based on problem-

solving skills, to explore student constructivists learning improvements. Second, 
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although poor problem solvers performed similarly to moderate and effective problem 

solvers in formative assessment tasks, they failed to achieve high scores in the final 

exam due to lack of problem-solving transferability skills. Therefore, attention should be 

paid to align the formative and summative assessments in order to improve 

transferability skills. This publication contributes to research question RQ1 by giving 

quantitative results on identifying the course specific factors that foster student learning 

performance in computer programming courses for predictive modelling. 

 

4.4 P4: Prediction of Student Final Exam Performance in an Introductory 

Programming Course: Development and Validation of the Use of a Support Vector 

Machine-Regression Model  

Summary: In P4, the challenge in establishing valid predictive models was studied. This 

publication presents the support vector machine regression model to determine if prior 

programming knowledge and completion of selected continuous summative assessment 

tasks might be suitable predictors of examination performance. The features for 

predictive modelling were selected based on past research studies (P1 and P2), learning 

theories, and filter methods such as multiple regression. The developed predictive model 

was validated by using K-fold cross-validation technique.  

Results and contribution to research questions: The results revealed that overall 

prediction accuracy of the model is moderate. However, predictions on identifying at-

risk students are neither high nor low and that raised the following questions (i) What 

factors might have impacted the prediction accuracy of the model developed? and (ii) 

How to improve the prediction accuracy of the model in future? The possible answers 

for these questions were discussed in the publication in order to get more optimal tuning 

parameters to improve the model performance. This publication contributes to research 

questions RQ2 and RQ4 on developing and validating a predictive model for prediction 

of student performance and identification of student that need support.  

 

4.5 P5: Predictive Models as Early Warning Systems: A Bayesian classification 

model to identify at-risk students of programming 

Summary: In P5, the development and validation of parsimonious predictive models was 

studied. This publication presents the Naïve Bayes multiclass classification models to 

determine if student perceived problem-solving skills, prior knowledge in programming 

and completion of selected continuous summative assessment tasks might be suitable 

predictors of final exam grades. The features for predictive modelling were selected 

based on our prior studies (P1-P4). In addition, wrapper method was deployed to 

evaluate and select the combinations of features yields the highest prediction accuracy to 

predict student academic performance. Fifteen models with various combinations of 

selected features were developed and tested in P5. The objective of P5 was to answer the 

research questions RQ3, RQ4, and RQ5.  

Results and contribution to research questions: The K-fold cross-validation results of 

P5 revealed that the overall prediction accuracy on identifying student final exam grades 

and identifying at-risk students were moderate and good. The results of P5 persuaded us 

to propose a generic model that can be deployed for other programming and non-

programming courses, if the goal of the instructor is to predict student performance early 

in the semester.  
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4.6 Replication study results 

Summary: This study was conducted to systematically analyse and verify our previous 

studies using data collected in the years 2016-2018 from two different introductory 

programming courses. This study is a replication and extension of our prior study P5. As 

such, similar research methodology (explained in section 5) was applied to answer our 

research questions RQ3-RQ5.  

Results and contributions to research questions: The unknown data test results of this 

study shown that; it is possible to predict student that need support in the early weeks of 

the semester and re-answered our research questions RQ3, RQ4 and RQ5. The results of 

the models might be used as early warning signs and incorporated as early warning 

systems for instructors via ViLLE in visual form to provide intervention to learners 

before they reach critical point.  

 

4.7 Contributions of the author 

This thesis has sourced its content from the afore-mentioned five manuscripts (four of 

which have been published). These publications, submitted by the author, have 

independently addressed a range of factors that affect student final exam performance, 

using data mining techniques. The outcomes of the individual studies subsequently led to 

the development and validation of mathematical models using the outcomes from these 

prior studies to predict, at early stages during the course, low performing students with 

the overall aim of proposing an appropriate model(s) for incorporation in early warning 

systems. The student data used in all these studies (P1-P5 and replication study) was 

collected via ViLLE and with the help of ViLLE research team members (Peter Larsson, 

Erno Lokkila, Erkki Kaila, Teemu Rajala, and Einary Kurvinen). Details of contributions 

associated with each manuscript appear below. 

The P1 is the first manuscript of the study, which explored the impact of LEA on 

novice student performance on in programming exams. I was the main author of this 

article; statistical analysis was done with the help of Mr. Rolf Lindén, and Erkki Kaila, 

and writing was done with the help of other authors Daryl D’Souza, Mikko-Jussi Laakso 

and Tapio Salakoski. 

The P2 article is an extension of our prior article P1, which reports the results of 

impact of PPK on LEA and on subsequent final programming exam performance in a 

university level introductory programming course. It was a quantitative study and with 

the help of VilLE research team I was able to conduct ViLLE based entry survey to 

collect and analyse student data in the academic years 2012-2014 for this manuscript 

preparation. Research methodology was defined with the help of Rolf Lindén and the 

reporting was done with the help of Daryl D’Souza and Mikko-Jussi Laakso who are co-

authors of this paper.  

The P3 article is a joint effort by me, Daryl D’Souza, Rolf Lindén and Mikko-Jussi 

Laakso. The data for this article was collected via ViLLE. Mr. Erno-Lokkila, instructor 

for Algorithms and Programming helped me to conduct PSI survey online for 

introductory programming courses. This article presents the relationship between PSI 

and academic performance of novice programming students. Rolf Lindén and I analysed 

the data using EDM while, written content was contributed to by Daryl D’Souza and 

Mikko-Jussi Laakso. 

The P4 article was written by me and it was a preliminary exploratory study to 

understand how to develop predictive models for programming courses. The model 

development and selection of features was done by me, R coding and selection of 
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machine learning algorithm was determined by Rolf Lindén and complete reporting was 

done with the help of co-authors Daryl D’Souza and Mikko-Jussi Laakso. 

The P5 study was an extension of our prior study P4 and was written to answer our 

research questions RQ3, RQ4, and RQ5 of this thesis. This article was written with the 

help of ViLLE research team (helped to collect data for the study), and co-authors of this 

article.  

The replication-extension study explained in this thesis (Sections 5 to 7) was written 

by me with the support of my supervisors Mikko-Jussi Laakso, Daryl D’Souza and 

Tapio Salakoski.  
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Chapter 5 

Developing and validating predictive 

models: Research methodology 

Our study was set up as a replication and extended study to verify our previous study P5 

using larger dataset with different structure in order to know how well the models we 

developed and validated in P5 will perform on future or on unknown data. As such, this 

chapter presents our research methodology, including the research design, data 

collection, variables used as predictors, data pre-processing, and predictive model 

development procedures. It should be noted the instruments and features described in 

this replication study were taken from our prior studies (Veerasamy, et al., 2016; 

Veerasamy, Daryl D'Souza, & Laakso, 2018; Veerasamy;D'Souza;Lindén;& Laakso, 

2018; Veerasamy;D'Souza;Lindén;& Laakso, 2019) and (P5). For example, PSI and PPK 

survey questionnaire and details defined in P1-P3, confusion matrix and followed by 

measures such as sensitivity and specificity used in this study were already defined in 

P5. 

 

5.1 Research methodology 

The overall goal of this research was to develop a model with reliable predictors for 

incorporation in academic early warning systems. This chapter describes how the 

predictor variables were identified, and the predictive models developed, using 15 x 2 

courses combination of predictors. Three semesters (2016, 2017, and 2018) of student 

academic data for the courses Introduction to Programming and Algorithms and 

Programming were used for this study. Data was collected via ViLLE and, SPSS (IBM, 

2013) and R (Team, 2013) software were used for statistical analysis. Table 5.1 presents 

the dataset collected initially for the replication-extension study. 

 

*Dataset /course name 

[2016 + 2017 + 2018] 

Introduction to 

Programming 

Algorithms and 

Programming 

Total number of students enrolled for 

the course 

93+94+102=289 248+258+311=817 

Total number of students completed 

PSI survey 

65+68+66=199 230+222+266=718 

Total number of students completed 

course entry-PPK survey 

80+81+92=253 213+239+287=739 

Total number of students attended final 

exam (FE)  

66+68+70=204 174+175+224=573 

*The data for the different course deliveries was not combined but used separately 

for different phases of predictive model development, validation and final testing.  

 

Table 5.1: Initial data collected for the study (2016, 2017, and 2018). 

 

In total, over the three years, there were 289 students enrolled in the Introduction to 

Programming (Table 5.1). The initial data collected for model development in the year 
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2016 was 93. Of these only 54 students participated course entry surveys (PSI and PPK), 

and completed HE and DE exercises and FE, used to develop a model with K-fold cross- 

validation. The initial data collected for model validation in the year 2017 was 94. Of 

these 68 students completed the PSI and PPK surveys, HE and DE exercises and FE, 

used as sample data to verify the model’s performance in line with our study objectives. 

Similarly, the initial dataset collected for model testing (unknown data) in the year 2018 

was 102. Of these 20 students secured <=25% in selected FA in the first two weeks are 

identified as at-risk students for visualisation. Of remaining data of 2018, 63 students’ 

data that completed the PSI and PPK surveys, HE and DE and FE, used as unknown data 

to test the final model fit for generalisation. Table 5.2 presents the dataset used for the 

development, validation and testing of predictive models for the course Introduction to 

Programming. The breakdown of the participating 185 was 54 in the year 2016, 68 in 

the year 2017 and 63 in the year 2018 for Introduction to Programming. 

 

Introduction 

to 

Programming 

Actual No. of students 

attended PSI, PPK 

survey, completed 

assessment tasks and 

attended FE 

Dataset for training, 

validation and testing 

2016 93 54 54 (Training dataset) 

2017 94 68 68 (Validation dataset) 

2018 102 63 63* (Unknown dataset) 

* Students that secured <= 25% in the first two weeks in the year 2018 were 

visualised as at-risk students and excluded from unknown dataset.  

 

Table 5.2: Dataset used for prediction models: Introduction to Programming. 

 

Similarly, in total, over the three years, there were 817 students enrolled in the 

Algorithms and Programming (Table 5.1). The initial data collected for model 

development in the year 2016 was numbered 248. Of these only 170 students 

participated in the course entry surveys (PSI and PPK), and completed HE and TT 

exercises, and FE, used to develop a model with K-fold cross-validation. The initial data 

collected for model validation in the year 2017 was numbered 258. Of these 145 students 

completed the PSI and PPK surveys, HE and DE exercises and FE, used as sample data 

to verify the model’s performance. Similarly, the initial dataset collected for model 

testing (unknown data) was numbered 311 in the year 2018. Of these 32 students secured 

<=25% in selected FA in the first two weeks are identified as at-risk students for 

visualisation. However, note that FE is not compulsory in Algorithms and Programming 

and registration to attend FE is allowed until the last lecture week of the course. Hence, 

the number of students appearing for FE in the year 2018 is unknown, which persuaded 

us not to use the 2018 data (students secured >=25% in selected FA) for testing, as our 

developed model may not fit with the course FE conducting polices. As such, 2016 data 

was used for model development (K-fold cross-validation) and 2017 data used for model 

testing (unknown data) in Algorithms and Programming. Table 5.3 presents the dataset 

used for the development and validation of predictive models for the course Algorithms 

and Programming. The breakdown of the participating 315 was 170 in the year 2016 and 

145 in the year 2017 for Algorithms and Programming.  
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Algorithms 

and 

Programming 

Actual No. of students 

attended PSI, PPK 

survey, completed 

assessment tasks and 

attended FE 

Dataset for training, 

validation and testing 

2016 248 170 170 (Training dataset) 

2017 258 145 145 (Validation/ test dataset) 

2018 322 * Students that secured <= 25% in the first two weeks 

of the year 2018 were visualised as at-risk students. 

 

Table 5.3: Dataset used for prediction models: Algorithms and Programming. 

 

5.2 Overview of the course 

 

5.2.1 Introduction to Programming (INT) 

INT course is taught in Java programming language. It is offered once a year to students 

from different disciplines. This course is offered in English and the duration of the 

course is 12 weeks. The course comprises of 24-26 hours of lectures, 20 hours of 

demonstration sessions and 10 hours for practice exam and discussion of project or 

assignment work, over an 11-12-week semester (Veerasamy, et al., 2016). The FE is 

mandatory, and students must secure at least 50% to pass the course. However, to be 

eligible to sit for the FE students must previously have secured at least 50% in 

homework, 40% in demo exercises and expected to submit the project work before FE. 

The final course grade is calculated based on scores secured in the FE as well as bonus 

points obtained via selected formative assessment tasks and lecture attendance. 

 

5.2.2 Algorithms and Programming (ALG) 

ALG course presents introductory programming using the Python programming 

language as a teaching vehicle. This course is offered in Finnish and the duration of the 

course is 8 weeks. The course comprises of 28 hours of lectures, 14 hours of tutorial and 

8 hours of demonstration sessions, over an 8-week semester. The final grade for this 

course is calculated based on scores received in selected formative assessment tasks and 

or FE (Veerasamy, Daryl D'Souza, & Laakso, 2018). Student may get 1-2 course grade 

points at the maximum based on his/her performance in selected assessment tasks. To 

obtain course grade 3-5 student must attend FE and the final grades calculated based on 

scores received in FE including bonus points obtained from lecture attendance, and 

selected assessment tasks scores. However, student must have secured at least 50% in 

selected formative assessment tasks in order to sit for FE. The final course grade is 

calculated based on the scores received in the FE as well as bonus points calculated from 

lecture attendance and selected formative assessment tasks.  

Both courses are designed for novice programming students and use ViLLE as the 

LMS/e-learning tool to support technology enhanced classes. There was no significant 

variation among student demographics, course periods, assignments, exams, and 

instructor in both courses. 

 

5.2.3 ViLLE 

ViLLE is mainly used for programming students, to deliver and manage course content, 

such as lecture notes, formative and summative assessment tasks for programming 
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students. It manages manually graded assignments and automated tasks, such as lecture 

attendance, demonstrations, file submission, study journals and course assignments 

(Veerasamy, Daryl D'Souza, & Laakso, 2018). 

 

5.3 Description of predictor variables 

For this study two surveys were conducted at the beginning of the semester for self-

assessment of problem-solving skills and prior programming knowledge denoted as PSI 

and PPK respectively.  

 

5.3.1 Problem-solving skills (PSI)  

For this study the questionnaire developed by (Heppner, 1982) was used to collect 

student perceived PSS based on our prior study results (Veerasamy;D'Souza;Lindén;& 

Laakso, 2018). This PSI was used in various longitudinal studies to measure student 

general PSS in programming courses to identify differences between gender and their 

general PSI, improve programming skills and to enhance learners’ PSS (Yurdugül & 

Aşkar, 2013; Uysal, 2014; Özen, 2016). Moreover, this measure can be applied to 

teenagers and adults. The questionnaire contains 32 closed Likert format questions with 

a 6-point Likert scale. In addition, we ran the Cronbach’s Alpha test to measure the PSS 

reliability, which yielded 0.835, indicating a high level of internal consistency with the 

data collected, for our scale. Henceforth for brevity we drop the abbreviation PSS and 

use PSI instead for “Student perceived problem-solving skills”. 

 

5.3.2 Prior programming knowledge (PPK) 

To collect PPK, a course entry survey was conducted at the early stage of course session. 

ViLLE was used to create and collect student PPK. The survey for PPK contained 3-

point survey questions to ensure that each question had an optimum number of response 

categories and a number beyond which there was no further improvement in terms of the 

distinction between the rated items and those used in our prior study (Veerasamy, Daryl 

D'Souza, & Laakso, 2018). Both PSI & PPK survey questionnaires provided in the 

Appendix (Appendices 9.1-9.3). 

  

5.3.3 Homework exercises (HE) assessment 

HE is set as weekly formative assessments for ALG and INT provided for a total of 8 

weeks and over 10 weeks, respectively. These exercises are offered to students via 

ViLLE and allow them to electronically submit their answers. Submitted answers for HE 

is automatically graded via ViLLE. The possible total raw score for HE for INT and 

ALG was 890 and 317, respectively. 

 

5.3.4 Demo exercises (DE) assessment 

DE for INT was provided to students weekly, for 10 weeks, and bi-weekly (from the 4th 

week onwards) for ALG, via ViLLE throughout the semester. Students are expected to 

prepare solutions for DE exercises at home and present their solutions in designated DE 

sessions. In a DE session, all student solutions are discussed, and a few students are 

selected randomly via ViLLE, to demonstrate their answers to the entire class. No marks 

are awarded for class demonstrations. However, students who complete the DE are 

instructed to enter their responses in the lecturer’s computer to record the number of DEs 

completed by them. The marks for DE were calculated by ViLLE based on their 

registered responses in the lecturer’s computer (Veerasamy, Daryl D'Souza, & Laakso, 
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2018). The possible total DE for INT and ALG was 750 and 300 respectively. However, 

DE for ALG was delivered to students via ViLLE after three weeks. Hence, this study 

did not include DE to predict student FE grades for ALG. 

 

5.3.5 Tutorial exercises (TT) assessment 

Each set of TTs for ALG was provided to students weekly for a total of 8 weeks. In a 

tutorial session students are given coding exercises via ViLLE to work online in the 

classroom. Students are allowed to submit their answers online on their own or in a 

group, and submitted exercises are automatically graded by ViLLE. However, a few 

coding exercises are manually graded by lecturer, with scores entered into ViLLE. The 

possible total TT for ALG is 650. INT course does not offer tutorials for students. 

Both HE and DE are hurdles for INT with students having to attain at least 50% or 

over HE and 40% or over DE in order to pass these components and the course. 

Similarly, all HE, TT, and DE are hurdles for ALG and students must secure at least 

50% in each component and ALG course students must complete the end semester 

online-assignment in ViLLE, to be eligible to sit for the FE. Both TT and DE sessions 

are conducted in the classroom and partially supervised and assisted by the lecturer. 

 

5.3.6 Final exam (FE) 

The FE is a summative assessment task conducted at the end of each course, 

electronically submitted via ViLLE. The FE is a hurdle for INT and student must secure 

at least 50% to pass the hurdle and to be eligible for a course grade. However, FE is not 

compulsory for ALG to pass the course, provided students attain at least 80% over all the 

selected assessment components to receive the maximum of two credit points and course 

grade 2. To obtain grades from 3 to 5 students must secure at least 50% in the 

assessment components and should get at least 62% in the FE (Table 5.4). The possible 

total FE score for INT and ALG is 100 and 90, respectively. 

 

5.3.7 Final exam grade (FEG) 

The FEG for the course is calculated based on FE scores. Table 5.4 shows the grade 

calculation in detail that used for this study to predict FEG for both courses.  

 

INT ALG 

FE marks Grade* FE marks Grade* 

0 to 49  0 (FAIL) 0 to 44  0 (FAIL) 

50 to 59  1 45 to 55 1 

60 to 69 2 56 to 66 2 

70 to 79 3 67 to 77 3 

80 to 92 4 78 to 88 4 

93 + 5 89 + 5 

* The actual grades 0 and 1 are considered as “at-risk” and denoted as ZERO; 

Grades 2 and 3 as “good” and denoted as ONE and grades 4 and 5 as “very 

good” and denoted as TWO for this study. 

 

Table 5.4: Grading criterion table-INT and ALG. 
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5.4 Data collection and pre-processing 

The main objective of this study is to identify students who needed support in the early 

weeks of the semester, for the instructor to intervene, in order to improve student 

learning. As such, data for the cognitive variables: PSI and PPK were collected in the 

first week of the semester for both courses INT and ALG, for the years 2016, 2017 and 

2018. As noted earlier, the course duration for INT and ALG were 12 and 8 weeks 

respectively. So, the formative assessment task (HE and DE) data for INT was collected 

after two weeks (Week 2 data), after four weeks (Week 4 data), and after six weeks 

(Week 6) of the semesters (2016, 2017 and 2018), for model development, validation, 

and testing. Similarly, formative assessments (HE and TT) data for ALG was collected 

after two weeks (Week 2 data), after three weeks (Week 3 data), and after four weeks 

(Week 4 data) of the semesters (2016 and 2017) for model development and 

validation/testing.  

Data pre-processing is an important step in predictive model development, as 

incomplete, noisy, discrepancies or inconsistent data potentially affects predictive model 

performance. As such, the data collected via ViLLE was pre-processed. This study used 

SPSS and R software to pre-process the data in order to transform the raw data into a 

more understandable format (IBM, 2013; Team, 2013). First, the actual HE and DE/TT 

scores (for the first six weeks of the term, for all years) were transformed into 

percentages. The scaled dataset was stored as .xlsx/csv files to implement the developed 

predictive model, based on these pre-processed datasets. Table 5.5 shows the variables 

with the description and values stored as dataset for predictive analytics (extracted from 

P5). 

  

Data pre-processing for predictive modelling 

Variable Description Type Values 

HE Homework Continuous The actual HE, DE/TT secured 

converted into percentage DE Demo exercise Continuous 

TT Tutorial exercise Continuous 

PSI Problem-solving 

skills 

Discrete Integer values in between 32 

and 192 

PPK Prior programming 

knowledge 

Categorical 0 No knowledge; 1 Basic 

knowledge 

2 Good knowledge 

FE Final exam Discrete Integer values in between 0 and 

100 (INT) / 0 and 90 (ALG) 

FEG Final exam grade Categorical Calculated from FE scores 

(Table 5.4) 

 

Table 5.5: Variables with the description and values collected and stored as dataset for 

predictive modelling (P5). 

 

The FEG for the courses was calculated from FE scores (Table 5.4) in order to 

maintain consistency between selected predictor variables and the output variable. The 

pre-processed datasets collected in the year 2016 were used to develop a set of machine 

learning algorithm based predictive models. The datasets collected in the years 2017 and 

2018 were then employed to validate and test these developed predictive models. It 
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should be noted that, data imputation was not used as imputing missing data can lead to 

biased feature estimates. Table 5.6 shows the calculated grade wise distribution data of 

INT for the years 2016-2018 and ALG for the years 2016-2017 for training (10-fold 

cross-validation), validation and unknown data testing for generalisation.  

 

In this replication-extension study, we defined students that secured grades 0 (<50%: 

INT, <45%: ALG) or 1 (<60%: INT, <56%: ALG) in FE as at-risk. This is because; 

students that secure a passing grade may likely not to succeed in subsequent courses. As 

such, the actual grades 0 and 1 are considered as at-risk for this study and defined as 

grade “ZERO” (Table 5.6). 

 

Final exam grade (FEG) 

*At-risk 

INT 

(Number of students) 

ALG 

(Number of students) 

2016 

  

2017 2018 2016 2017 

*ZERO = Zero + One 21 16 29 44 28 

ONE = Two + Three 9 21 12 54 44 

TWO = Four + Five 24 31 22 72 73 

 

Table 5.6: Grade wise distribution calculated from FE scores for INT and ALG. 

 

5.5 Predictive model development, validation, and testing 

 

 

 
 

Figure 5.1: Modelling framework of replication study. 
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5.5.1 Criteria used for measuring prediction accuracy of models 

The modelling framework used for this study is based on prior 

(Veerasamy;D'Souza;Lindén;& Laakso, 2019) and (P5). Student performance in FA (HE 

and DE/TT), PPK and PSI might act as early warning indicators for identifying students 

at-risk of course failure. In addition, the predictive model was developed with the 

supervised learning approach to excavate patterns of performance from assessment and 

other data, areas of weakness or strength, and to predict grades or learning outcomes. 

The intent behind this model was to identify students who needed attention and to refer 

them to relevant support activities before they reached critical points. This study 

deployed the Naïve Bayes classification algorithm with K-fold cross-validation to 

predict students’ final exam grades. Figure 5.1 shows the modelling framework of this 

replication study derived from P5.  

The classification accuracies of the developed models were evaluated based on a 

confusion matrix (CF) computed via R coding. CF is a table that presents a summary of 

prediction results for binary and multi-class classification-based models (Fawcett, 2006). 

The table is prepared with four different combinations of measures for predicted and 

actual values. CF is mainly used to compute predictive model prediction sensitivity, 

specificity, positive and negative predicted values and balanced accuracies, in order to 

weigh and compare the prediction accuracy of the developed models. Table 5.7 shows 

the skeleton of multiclass classification problem-based confusion matrix table used for 

this study. 

  

 Predicted 

Actual 

 ZERO 

(At-risk) 

ONE 

(Good) 

TWO 

(Very good) 

ZERO TP FN 

ONE FP TN 

TWO 

 

Table 5.7: Confusion matrix table for performance measurement of models. 

 

True Positive (TP): This means that the predicted positive class and the actual positive 

class are the same. In this study, the TP value represents the number of at-risk students 

(grade 0) who are correctly identified by the model. 

 

False Positive (FP): This means that the predicted positive class and the actual positive 

class are not the same. In this study, the FP value represents the number of not-at-risk 

students (grades 1 and 2) who are incorrectly identified as at-risk students (grade 0) by 

the model. 

 

True Negative (TN): This means that the predicted negative class and the actual negative 

class are the same. In this study, the TN value represents the number of not-at-risk 

students (grades 1 and 2) who are correctly identified by the model.  

 

False Negative (FN): This means that the predicted negative class and the actual 

negative class are not the same. In this study, FN represents the number of at-risk 
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students (grade 0) who are incorrectly identified as not-at-risk students (grades 1 and 2) 

by the model. 

Model’s at-risk prediction accuracy sensitivity (ATSE): This denotes the proportion of 

actual positive classes that got predicted as positive by the model. In this study, the 

ATSE value represents the percentage of at-risk students who are correctly identified by 

the model. The model’s ATSE is calculated as;  

𝐴𝑇𝑆𝐸 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

 

Model’s at-risk prediction accuracy specificity (ATSP): This denotes the proportion of 

actual negative classes that got predicted as negative. In this study, the ATSP value 

represents the percentage of not-at-risk students who are correctly identified by the 

model. The model’s ATSP is calculated as; 

𝐴𝑇𝑆𝑃 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 

 

Positive predictive value (PPV): The PPV measures the proportion of actual positives 

that are correctly identified. In this study, the PPV value represents the probability of 

actual at-risk students who would be correctly identified by the model. The PPV is 

measured by calculating number of actual at-risk students who were correctly identified 

as grade “0” (TP) by dividing the total number students predicted as at-risk (TP + FP) by 

the model. Then, the result is multiplied by 100 to get the PPV for the model.  

 

Negative predictive value (NPV): The NPV measures the proportion of actual negatives 

that are correctly identified. In this study, the NPV value represents the probability of 

actual not-at-risk students that would be correctly identified by the model. The NPV is 

measured by calculating the number of actual not-at-risk students correctly identified as 

not attaining grade “0” (TN) by dividing the total number students predicted as not-at-

risk (FN + TN) by the model.  

 

Balanced accuracy (BAC): This measure the average accuracy obtained from each class 

in the model. In this study, BAC represents the overall probability that a student will be 

correctly classified by the model. It is calculated as, 

𝐵𝐴𝐶 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
× 100 

 

Model’s overall classification accuracy (MAC): It denotes the overall model 

classification accuracy.  Here, TPs represents the total number of both at-risk and not-at-

risk students correctly identified by the model. In this study, MAC represents the model 

prediction accuracy in percentage and is calculated as, 

𝑀𝐴𝐶 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃𝑠 + 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑃𝑠
× 100 

 

Area under the curve (AUC): The AUC is a performance measurement for binary or 

multiclass classifiers. The AUC value lies between 0.5 to 1 where 0.5 denotes a bad 

classifier and 1 denotes an excellent classifier. In this study, we determined above 0.5 for 

AUC as a good model classifier (Fawcett, 2006). Furthermore, we determine the model’s 
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classification performance based on the model’s MAC, ATSE, and ATSP and, in 

compliance with high AUC scores (closer to 1.0) 

 

Ensemble method of classification: This is a method of combining the 

decisions/predictions from multiple models of same machine learning or different 

machine learning algorithms of same model to improve the overall prediction 

performance. In this study, we combined the at-risk predictions of models in the years 

2017 and 2018 based on training and validation results for ALG and INT, respectively.   

Majority voting technique was applied to obtain the final output at-risk prediction to 

compute the at-risk prediction accuracy of the models tested for this replication-

extension study.  

  

5.5.2 Feature selection for model development 

 

Model# Feature with model equation Type Course 

#1 PSI  FEG Cognitive variables INT  

#2 PPK  FEG 

#3 PSI, PPK  FEG 

#4 HE FEG Formative assessment 

tasks #5 DE  FEG 

#6 HE, DE  FEG 

#7 PSI, HE  FEG Cognitive variables and 

formative assessment 

tasks 
#8 PSI, DE  FEG 

#9 PSI, HE, DE  FEG 

#10 PSI, PPK, HE  FEG 

#11 PSI, PPK, DE  FEG 

#12 PPK, HE  FEG 

#13 PPK, DE  FEG 

#14 PPK, HE, DE  FEG 

#15 PSI, PPK, HE, DE  FEG 

#16 PSI  FEG Cognitive variables  ALG  

#17 PPK  FEG 

#18 PSI, PPK  FEG 

#19 HE FEG Formative assessment 

tasks #20 TT  FEG 

#21 HE, TT  FEG 

#22 PSI, HE  FEG Cognitive variables and 

formative assessment 

tasks 
#23 PSI, TT  FEG 

#24 PSI, HE, TT  FEG 

#25 PSI, PPK, HE  FEG 

#26 PSI, PPK, TT  FEG 

#27 PPK, HE  FEG 

#28 PPK, TT  FEG 

#29 PPK, HE, TT  FEG 

#30 PSI, PPK, HE, TT  FEG 

 

Table 5.8: The models developed for feature selection: Naive Bayes classification (P5). 
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In order to measure how accurately the selected variables were able to predict student 

FEGs, and to identify students that needed support, 2 courses x 15 predictive models 

were developed, with the following combinations of predictor variables to measure the 

differences between predictive capabilities of these models. Table 5.8 shows the models 

developed for feature selection. 

In addition, one of the objectives of this study was selecting a model(s) with a 

suitable subset of features yielding higher prediction accuracies, to use in early warning 

systems. In order to evaluate the prediction accuracy of the models, we used 10-fold 

cross-validation to ensure that the training and testing sets (year 2016) and validation 

sets (year 2017) contain sufficient variation to arrive at unbiased results. In turn, this 

would avoid overfitting and to establish how well the model generalizes to unknown 

data (year 2018). We used the wrapper method (forward selection) to determine whether 

adding a specific feature would statistically improve the predictive performance of the 

model (Li, et al., 2017). In addition, the process was continued until all available 

variables were successively added to a model, to identify the best set of variables for 

model development. The prediction accuracy of each of the 30 predictive models was 

examined by calculating the overall model prediction accuracy, the at-risk student 

prediction accuracy sensitivity and specificity, and area under the curve score (ROC 

curve), for each model.  The following prediction accuracy measures were applied via R 

coding, to evaluate the performance of all models (in training, validation and testing) to 

answer our research questions.  

Models #1-#3 and #16-#18 were developed using cognitive features as input 

variables to predict FEG for both courses. Models #4-#6 and #19-#21 were developed 

using formative assessment tasks as input variables to predict FEG for both courses. 

Models #7-#15 and #22-#30 were developed using both formative assessment tasks and 

cognitive factors as predictor variables to predict student FEG for both courses. The 

models (#1-#2, and #4-#5) and (#16 -#17, and #19-#20) were developed with single 

feature for INT and ALG to examine the MAC, ATSE, ATSP, BAC, and AUC (for 

multiclass) results of those models in order to identify the most valuable predictors for 

model development respectively. In addition, AUC for all classes and at-risk class versus 

all other classes measured to determine which of the models developed predicts the at-

risk classes best.  

For this study, the prediction accuracy on identifying at-risk and not-at-risk values 

(MAC, ATSE, ATSP, PPV, NPV, BAC in compliance with AUC scores >0.5) below 

50% is considered as poor; 50% - 69% as moderate; and 70% and above as good. 

 
5.6 Summary 

This chapter presented the research methodology used to collect data and conduct a 

replication study to address the thesis research questions developed. The dataset 

collected in the years 2016, deployed for development and the datasets collected in the 

years 2017 and 2018, were deployed as validation and unknown data, respectively. Our 

study included two surveys, for self-assessment of PSI and PPK, and these surveys were 

conducted via ViLLE at the start of the semester. Two courses x 15 predictive models 

were developed with combinations of FAs (HE and DE) and cognitive variables (PSI 

and PPK) as predictors for feature selection. CF was mainly used to evaluate 

classification accuracies of the developed models. In next chapter we present the results 

of models developed, validated and tested including the influences of predictors that may 

serve as best predictors.   
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Chapter 6 

Performance of predictive models: data 

analysis and results 

This chapter presents the results of our replication-extension study, which was based on 

the research methodology presented in the previous chapter. The results presented 

include the effects of relevant parameters of the predictive models, and validation and 

testing of developed models.  

 

6.1 Feature selection results 

15 models x 3 terms for INT and 15 models x 2 terms for ALG were developed to 

determine the importance of predictors, to potentially serve as best predictors in a 

predictive model construction in programming. Prediction accuracy results of the models 

were tabulated and provided in the Appendices 9.4-9.5. Models with higher prediction 

accuracies in compliance with AUC scores were selected for further analysis.  

 

6.1.1 Models with a single feature as predictor (training, validation, and testing) for INT 

(After Week 2 / Week 4 / Week 6): Models #1-#2 and #4-#5. 

As noted, use of unnecessary features in a model will influence the predictive 

performance of the model. As such, the models #1-#2 and #4-#5 were developed, 

validated, and tested with a single feature for INT, to identify the single feature that most 

influences the model performance. The mean prediction accuracies (MAC, ATSE, and 

BAC) of DE, and HE computed over Week 2, Week 4, and Week 6 for the years 2016, 

2017, and 2018 to determine the single feature that most influences the model accuracy. 

Figures 6.1, 6.2, and 6.3 present the average prediction accuracies of HE, DE and, PSI 

and PPK on predicting FEG in INT, using these variables in turn as single feature model 

predictors.  

 

 
 

Figure 6.1: K-fold cross-validation results (2016): HE, DE, PSI, and PPK on FEG. 
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Figure 6.2: Validation results (2017): HE, DE, PSI, and PPK on FEG. 

 

 

 
 

Figure 6.3: Unknown data results (2018): HE, DE, PSI, and PPK on FEG. 

 

The models developed, validated, and tested with DE only as predictor (#5) at different 

early week study periods for INT had higher prediction accuracies in predicting FEG in 

compliance with AUC scores in between >0.50 and <0.70 in compare to models those 

developed with other features as single predictor. The models developed and tested with 

HE as single predictor (#4) had lowest prediction accuracies with insignificant AUC 

scores (between 0.46 and 0.55) (Figures 6.1-6.3). On the other hand, models developed 

with PSI or PPK only as predictor return mixed results. Models with PPK as predictor 

(#2) had nearly moderate prediction accuracies (training, validation, and testing) in 

compliance with AUC scores (between 0.56 and 0.58). However, models with other 

cognitive variable PSI only as predictor had moderate prediction accuracies (BAC) in 

training (Figures 6.1 and 6.3) but returned poor MAC, ATSE and BAC on validation and 

testing although AUC scores were moderate (in between 0.55 and 0.60) (Figure 6.2). 
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This implies that models developed with the combination of DE, PSI and PPK may yield 

higher prediction accuracies compare to models developed with other combination of 

features.   

 

6.1.2 Models with a single feature as predictor (training and testing) for ALG (After 

Week 2 / Week 3 / Week 4): Models #16-#17 and #19-#20. 

Similarly, models #16-17 and #19-#20 developed, tested with single predictor for 

ALG revealed that models developed and tested with PSI or TT only as predictor (#16 or 

#20) had higher prediction accuracies (in compliance with at-risk AUC scores in 

between 0.51 and 0.66) on identifying student FEG (with low false positives) in compare 

to models #17 and #19 developed with other features PPK and HE, respectively. Figures 

6.4 and 6.5 present the models’ average prediction accuracies (Week 2, Week 3, and 

Week 4) of selected formative assessments, and cognitive variables for the year 2016 

and 2017 (training and testing).  

 

 
 

Figure 6.4: K-fold cross-validation (2016): HE, TT, PSI, and PPK on FEG 

 

 
 

Figure 6.5: Unknown data results (2017): HE, TT, PSI, and PPK on FEG 
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In addition, the model developed with PPK or HE as predictor returned poor 

prediction accuracies (ATSE) (0% and 4%) on identifying at-risk students in compare to 

models developed with PSI (61%) or TT (49%) only as predictors.  

 

6.1.3 Models with cognitive features (K-fold, validation, and testing) only as predictors 

for INT and ALG: Models #3 and #18.  

The predictive models developed with cognitive variables only (PPK, PSI) as predictors 

were employed in the beginning of the course period (first week) to identify students in 

need of support, before second week of the semester. Figures 6.6 and 6.7 present the 

average prediction accuracies of the models with PSI and PPK only as predictors for INT 

and ALG respectively. 

 

 
 

Figure 6.6: Cognitive features only as predictors (INT) 

 

The predictive model (#3) developed and validated with cognitive features for INT had 

good significant prediction accuracies on identifying at-risk students (ATSE) in 

compliance with AUC scores (between 0.56 and 0.62) early in the course period. 

However, unknown data test results on model #3 had poor prediction accuracies on 

identifying at-risk (ATSE: 45%) and not-at-risk students (ATSP: 44%) in compliance 

with AUC score 0.58 for INT. In addition, the MAC of validation (38%) and unknown 

data (38%) were poor, although K-fold on test set yielded moderate MAC (52%) on 

identifying student FEG (Figure 6.6). 

Similarly, the predictive model #18 with PSI and PPK as predictors developed and 

tested for ALG had poor MAC (45% and 46%). On average, the BAC of K-fold cross-

validation results on identifying both at-risk and not-at-risk students was moderate 

(51%) but with insignificant AUC scores 0.47. On the other hand, the BAC on unknown 

data testing was good in compliance with moderate AUC score (0.52) (Figure 6.7).  
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Figure 6.7: Cognitive features only as predictors (ALG). 

 

6.1.4 Models with formative assessments only as predictors (K-fold/validation and 

testing) for INT and ALG: Models #6 and #2. 

The predictive models developed with formative assessments only as predictors for INT 

were employed after the 2
nd

 week, 4
th

 week and 6
th

 week of the course because the 

models required student HE and DE scores as inputs (#6). Similarly, the model 

developed with formative assessments HE and TT only as predictors for ALG (#21) 

were employed after 2
nd

 week, 3
rd

 Week, and 4
th

 week, respectively. Figure 6.8 presents 

the average prediction accuracies (average of Week 2, 4, and 6 prediction accuracies) of 

model (#6) developed (2016), validated (2017), and tested (2018) for INT.  

 

 
 

Figure 6.8: Formative assessments only as predictors (INT). 
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On average, the model with formative assessments only as predictors had moderate 

and good BAC (2016: 66%, 2017: 59%, and 2018: 60%) on identifying at-risk and not 

at-risk students in compliance with AUC scores (between 0.53 and 0.60) for INT. The 

overall MAC on K-fold cross-validation (56%) and unknown data (51%) for INT was 

moderate, although MAC on validation was poor (47%). 

Similarly, Figure 6.9 presents the average prediction accuracies (average of Week 2, 

3, and 4 prediction accuracies) of model (#21) developed (K-fold) and tested for ALG. 

The model with formative assessments only as predictors had poor prediction accuracies 

in identifying at-risk students in compliance with insignificant AUC scores (between 

0.46 and 0.51: bad classifier) for ALG.  

 

 
 

Figure 6.9: Formative assessments only as predictors (ALG). 

 

6.2 Predicting student final programming performance 

One of the objectives of this study was to identify the combination of 

predictor/independent variables that yields the highest prediction accuracy to predict 

student performance (RQ3). As such, models #6-#15 and #21-#30 were developed with 

various combinations of selected features for INT and ALG respectively. Of these, 

models that had higher prediction accuracies in compliance with AUC scores after Week 

2, Week 4, and Week 6 were selected for further analysis.  

Figure 6.10 shows the models that yielded the highest prediction accuracies (MAC, 

BAC, and overall-AUC) for prediction of student academic performance for INT. It 

should be noted the actual values of overall-AUC computed via R were converted into 

multiples of 100 for visual acuity in figures 6.10 and 6.11. 
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Figure 6.10: The overall prediction accuracies on training (K-fold), validation and 

testing on Week 2, Week 4 and Week 6 for INT. 

 

The K-fold cross-validation results for Week 2 data (2016) revealed that the model 

developed with HE2 and DE2 as predictors for INT, had nearly moderate prediction 

accuracy (MAC: 59%) at identifying student FEG. In addition, this model is capable of 

correctly predicting the probabilities for students as being at risk of failing for 71% of 

the students (AUC: 0.64). The unknown data test results for Week 2 (2018) revealed that 

the model with PPK and DE2 as predictor variables returns moderate prediction 

accuracy (MAC: 56%) at identifying student FEG in compliance with AUC score 0.61. 

However, the validation results for Week 2 revealed that the model with HE2, DE2 and 

PSI on Week 2 (2017) yielded poor prediction accuracy (MAC: 47%) on identifying 

student FEG (AUC: 0.58).  

The K-fold and validation results for Week 4 data revealed that the model with PSI, 

PPK and DE4 returns the good (MAC: 65%) and moderate (MAC: 54%) prediction 

accuracies at identifying student FEG in the years 2016 (K-fold cross-validation) and 

2017 (validation), respectively. However, the unknown data test results for Week 4 

revealed that the model with DE4 only as predictor, identified as the best predictor and 

had nearly moderate prediction accuracy (MAC: 49%) at identifying student FEG in 

compliance with AUC score (0.54). The K-fold (2016) and validation (2017) results for 

Week 6 revealed that model with PSI, PPK and DE6 as predictors returns best 

combinations of predictors that yielded moderate predictive accuracies at identifying 

FEG in INT. On the other hand, unknown data test results for Week 6 revealed that the 

model with DE6 only as predictor had good prediction accuracies at identifying student 

FEG in compliance with AUC score (0.68). As noted in section 6.1.1, the models 

developed with DE or combination of cognitive variables PSI or PPK or both yielded the 

highest prediction accuracies at identifying student FEG in INT.  

 

Similarly, Figure 6.11 shows the models with different predictor combinations with 

different data sets (Week 2, Week 3, and Week 4) yielded the highest prediction 
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accuracies (MAC, BAC, and overall-AUC) for prediction of student’s academic 

performance in ALG.  

 

 
 

Figure 6.11: The overall prediction accuracies on training (K-fold) and testing on Week 

2, Week 3 and Week 4 for ALG. 

 

The K-fold cross-validation results for Week 2 and Week 3 (2016) had poor prediction 

accuracies (MAC: 46% and MAC: 49%) at identifying FEG, although K-fold cross-

validation results for Week 4 yielded moderate prediction accuracy (MAC: 51%) for 

identification of FEG (AUC: 0.53). In addition, these results revealed that models with 

PPK and HE only as predictors for Week 3 and Week 4 were capable of correctly 

predicting students as being at risk of failing for 58% (on average: BAC) of the students 

in compliance with AUC score 0.53, compare to models with other combinations of 

predictors. 

The unknown data test results for Week 2, Week 3, and Week 4 for ALG (2017) 

yielded mixed results (Figure 6.11). The model with PSI and HE3 (#22) as predictors 

yielded moderate prediction accuracy (MAC: 56%) at identifying FEG for Week 3 and 

in compliance with AUC score 0.58. However, the unknown data test results for Week 2 

and Week 4 revealed that none of the models with different combinations of predictors 

yielded higher prediction accuracies with low false positives, over models with PSI only 

as predictors. On the other hand, these identified models had highest prediction 

accuracies, on the probability of identifying not at-risk students (NPV in between 78% 

and 82%) with high false negatives raised the predictive capabilities of these models. 

Furthermore, models developed and tested with various combinations of selected 

variables for ALG results, revealed that with cognitive variables PSI, and combinations 

of formative assessments TT or HE or both, the models yielded moderate prediction 

accuracies on predicting student FEGs in compliance with AUC scores (between 0.53 – 

0.58).  

 

6.3 Identifying academically at-risk students 

One key objectives of this study was to identify at-risk students that need support, early, 

in order to alleviate their learning difficulties. As such, the at-risk prediction accuracy 
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was measured based on number of students who received the final exam grade “0” (fail) 

or “1” (marginal pass). For example, if the student’s FE score was less than 50 in 

Introduction to Programming or less than 45 in Algorithms and Programming, then 

his/her grade will be “ZERO” and it will be denoted as “0” in the student’s transcript of 

study records of respective courses. Hence, this study tags students FEG who secured 

grade 0 (fail) or 1 (marginal pass) as at-risk students, to check the at-risk student 

prediction accuracy of the model (Tables 5.4 and 5.6). We calculated the ATSE, ATSP, 

and AUC score for at-risk class versus all other not-at-risk classes based on the test set of 

final exam grades, computed across 10-trials of cross-validation with actual final exam 

grades. Then, these developed models were validated, and tested by using unknown data 

for generalisation. Tables 6.1 and 6.2 present models that had highest at-risk prediction 

accuracies with low false positive rates in compliance with AUC score for at-risk class 

versus all other classes (binary classification) based on Week 2, Week 4 and Week 6 

data for INT in the years 2016, 2017 and 2018 and for ALG in the years 2016 and 2017.  

 

Dataset and 

year 

Week No. ATSE ATSP AUC: at-risk Vs 

all other classes 

95% CI 

K-fold 

cross-

validation: 

2016 

Two #6 57.14 84.85 0.71 0.59-0.84 

Four #11 71.43 78.79 0.75 0.63-0.87 

Six #11 61.9 75.76 0.69 0.56-0.82 

Validation: 

2017 

Two #2 81.25 44.23 0.63 0.51-0.75 

Four #11 81.25 55.77 0.69 0.57-0.81 

Six #11 82.25 50.00 0.66 0.54-0.78 

Unknown 

data testing: 

2018 

Two #13 82.76 47.06 0.65 0.54-0.76 

Four #5 86.21 26.47 0.56 0.47-0.69 

Six #5 75.86 67.65 0.72 0.61-0.83 

 

Table 6.1: Models had highest at-risk prediction accuracies with 95% CI for AUC: INT 

 

The statistical results for model development, validation, and unknown data for INT 

produced good results (Table 6.1). On average, the ATSE for identifying students that 

need support for INT was 63% (2016), 82% (2017) and 82% (2018) in compliance with 

moderate and good ATSP and AUC scores for at-risk class versus all other classes 

(between 0.56-0.75). However, the unknown data test results on Week 4 produced high 

sensitivity (ATSE: 86%) with low specificity (27%) at identifying at-risk and not at-risk 

students in compliance with AUC score 0.56.  

The statistical results for training and unknown data testing for ALG produced mixed 

results (Table 6.2). For example, K-fold cross-validation results for Week 2, Week 3 and 

Week 4 data discovered that models developed with all selected variables as predictors 

identified as model that had highest prediction accuracy but poor prediction accuracies 

on identifying at-risk students but with high ATSP or high false positives in compliance 

with AUC scores > 0.5. The unknown data test results on models with different 

combination of predictors did not yield any significant/good prediction accuracies on 

identifying at-risk prediction accuracies in compliance with AUC scores, although model 

#22 for Week 3 yielded moderate prediction accuracies. However, the model with PSI 

only as predictor had good prediction accuracies on identifying both at-risk and not at-
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risk students in compliance with AUC score 0.66 despite the student formative 

assessment scores secured in Week 2, Week 3 and Week 4. In addition, most of the 

models with different combinations of predictors yielded moderate prediction accuracies 

had insignificant CI for AUC scores (Appendix 9.5).  

 

Dataset and 

year 

Week  No. ATSE ATSP AUC: at-risk 

Vs other 

classes 

95% CI 

At-risk 

K-fold cross- 

validation: 

2016 

 Two #30 47.73 76.13 0.62 0.54-0.70 

Three #30 36.36 81.75 0.55 0.51-0.67 

Four #30 36.36 84.13 0.6 0.52-0.68 

Unknown data 

testing: 2017 

Two #16 60.71 70.94 0.66 0.56-0.76 

Three #22 50.00 84.62 0.67 0.56-0.77 

Four #16 60.71 70.94 0.66 0.56-0.76 

 

Table 6.2: Models had highest at-risk prediction accuracies with 95% CI for AUC: ALG 

 

Although the aforementioned results confirm that it is possible to predict student 

performance and identify at-risk student early in the semester, they are unable to identify 

a single model with a suitable feature subset that can be proposed as early warning 

systems. As such, the ensemble method was deployed to improve overall at-risk 

prediction performance: the results, reflecting early warning signs, may be incorporated 

in early warning systems. Consequently, an ensemble model was deployed to combine 

multiple predictions generated by models that yielded highest prediction accuracies in 

identifying at-risk students to get final predictions and propose those results as early 

warning signs. As such, models in the year 2018 for INT were selected based on 2016 

and 2017 results. That is, DE, and its combination with other variables HE, PPK and PSI 

had higher predictions accuracies in the years 2016 and 2017 for INT (Figures 6.1 and 

6.2). As such, at-risk prediction results of models with DE, and its combination with 

other predictors (#5-#6, #8-#9, #11, #13-#15) of 2018 were chosen to combine at-risk 

predictions for INT. However, the K-fold cross-validation results of 2016 for ALG made 

us to surmise that it is difficult to identify the best combination of predictors that yield 

significant prediction accuracies in ALG due to its assessment policy on final exam. As 

such, we did not deploy ensemble method for ALG.  

 

6.4 Ensemble of classifiers 

As noted, for this study, 15 x 2 models were developed, validated and tested to get final 

predictions. The models were selected based on training and validation results for 

ensembling via a majority voting method. Majority voting is a process of taking 

prediction with maximum votes (>=50%) from the multiple model predictions while 

predicting the outcomes of a classification problem. Figure 6.12 shows the at-risk 

prediction results of ensembling at-risk classifiers computed for unknown dataset after 

Week 2, Week 4, and Week 6 for INT. 
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Figure 6.12: Ensemble of at-risk classifier results in the year 2018 for INT 

 

The ensemble of at-risk classifiers results on unknown data test for INT show that on 

average, it is possible to identify 83% of students after Week 2, 86% of students after 

Week 4 and 72% of students after Week 6 that need support (Figure 6.12).  

 

6.5 Summary of results 

A total of 15 models x 2 models have been developed, validated, and tested by using 

Naïve Bayes classification technique. The features included: PSI, PPK, HE, and DE or 

TT. The K-fold cross-validation on test set, validation, and unknown data test results on 

models with a single feature as predictor revealed that, of the four features, DE is the 

most influential feature in predicting student FEG in INT with overall average AUC 

0.59. The next average AUC (0.58) was provided by PSI and PPK (AUC 0.57). 

Similarly, PSI and followed by TT were identified as most predictive (both K-fold and 

testing) for ALG with moderate AUC scores (0.56 and 0.52). HE and PPK were 

identified as least influential features on predicting student performance in INT and ALG 

respectively although the predictive performance of models with HE and combination 

other features had nearly moderate or good prediction accuracies in both courses. The 

models with cognitive features (PSI & PPK), only, as predictors return slightly higher 

overall AUC (0.59) than models with formative assessments (HE and DE), only, as 

predictors in model development, validation and unknown data testing for Week 2, 

Week 4 Week 6 data (AUC: 0.58) for INT. However, the models developed and tested 

with formative assessments HE and TT, only, as predictors for ALG had 

poor/insignificant prediction accuracies. Moreover, the models developed and tested 

with different combination of predictors for ALG also had imbalanced prediction 

accuracies on identifying student FEG and or at-risk students or with high FP/FN. The 

majority voting –ensemble method results show that it is possible to predict students that 

need support within first Six weeks of the course period although there is no consistency 

in prediction accuracies between the results for Week 2, Week 4 and Week 6 for INT 

(Figure 6.12). However, these aforementioned statistical results imply that it is possible 

to visualise at-risk results obtained via ensemble modelling as early warning signals.  
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Chapter 7 

Utilising predictive models as early 

warning systems: Discussion and 

conclusions 

 
This chapter summarises the major research finding of our publications and replication 

and extended study conducted for this thesis, deployment of models as early warning 

systems, limitations and possible future work of this study. In Section 7.1 we present the 

contributions of publications to research questions and in section 7.2 we discuss the 

outcomes or findings in the context of the research questions (RQs) we set out to answer. 

Section 7.3 presents our conclusions and further work options. 

 

7.1 Contributions of publications to research questions 

 

Publication & 

Description of the study 

Key findings Contributions to 

research questions 

P1. This study examined the 

influence of lecture 

attendance on continuous 

summative assessment tasks 

and the subsequent final 

examination.                                                                                                                                                 

-Attending formal lecture 

sessions has no impact on 

student final exam 

performance. 

-Continuous summative 

assessments have impact 

on final examination. 

However, the strength of 

the relationship between 

the selected assessment 

tasks and the final exam 

performance varies from 

one academic year to next. 

-These results provide 

immediate information for 

novice programming 

course instructors to 

analyze further to find the 

factors that prevent 

novices from attending 

programming formal 

lecture sessions. 

RQ1: Which feature 

selection techniques 

should be used to identify 

the influential factors that 

affect student learning 

and academic progress 

based on available 

academic data? 

 How to identify the 

factors that foster 

students’ learning 

performance in 

computer programming 

courses? 

 How to determine the 

course specific factors 

that influence students’ 

academic 

performance? 

 

P2.This study is an 

extension of our prior study 

P1 in which we raised the 

question “why some 

-Prior programming 

knowledge has a 

significant impact on 

student lecture attendance. 
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Publication & 

Description of the study 

Key findings Contributions to 

research questions 

students skip lecture 

sessions yet, do well in the 

final exam?” This study 

explored the impact of prior 

knowledge on lecture 

attendance and on 

subsequent final 

examination in introductory 

programming course.  

-Student with no prior 

knowledge attended 

lecture sessions more 

regularly than those with 

some prior programming 

knowledge.  

-There was no significant 

difference in the 

distribution of lecture 

attendance between 

students with basic and 

higher levels of prior 

programming knowledge. 

-There is a statistically 

significant difference in 

final exam scores between 

the students with no prior 

programming knowledge 

and those that with some 

prior programming 

knowledge.  

-Prior programming 

knowledge affects student 

academic achievement in 

programming courses. 

-Lecture attendance has no 

impact on student final 

examination performance. 

-PPK can be used to 

determine student progress 

and performance. 

P3. This study was 

conducted to examine the 

relevance of problem-

solving skills in student 

performance in ongoing 

assessment tasks and final 

programming exam.  

-There was no statistical 

significant difference in 

ongoing assessment task 

scores between the 

students with different 

problem-solving skills.   

-Problem solving skills has 

a significant impact on 

student final exam 

performance. 

-There is a difference in 

final exam scores between 

students with good versus 

those with poor problem-

solving skills.  
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Publication & 

Description of the study 

Key findings Contributions to 

research questions 

-It is possible to categorize 

students on the basis of 

PSS, to explore student 

constructivist learning 

improvements. 

-Measuring student PSS in 

the beginning of novice 

programming course can 

be useful in predicting the 

student final programming 

exam performance in the 

course. 

P4. The objective of the 

research reported in this 

study was to develop a 

predictive model with 

selected predictor variables 

using support vector 

machine algorithm to 

predict student performance 

and at-risk students in a 

programming course (at 

university level) to make 

proactive measures in 

teaching and learning.  

This study attempted to 

explore the impact of 

formative assessment tasks 

and prior programming 

knowledge in predicting 

student’s final exam scores.  

 

-The success rate of the 

model is 52% on 

predicting student final 

exam scores of all students 

in the programming 

course. 

-The statistical results of 

binomial test revealed that 

the model has a 46% 

success rate for predicting 

academically at-risk 

students and not 

significant.  

-The comparison between 

MSE/RMSE values of 

training and validation sets 

suggest that the model is 

slightly over fitted. 

-Although the overall 

prediction accuracy of the 

model is good, the 

prediction accuracy results 

(52%) suggest that 

attention should be paid to 

the effects of the 

interaction between the 

selected variables. 

-The study results suggest 

that develop a simple 

model(s) with explanatory 

predictor variables, with 

selection based on the 

principle of parsimony and 

previous research findings. 

RQ2: How can a 

predictive model be 

developed and validated 

to predict performance in 

programming courses? 

  

RQ4: What percentage of 

academically at-risk 

students may be correctly 

identified by the model? 

 

 How to develop and 

validate a 

mathematical model 

using the educational 

data collected from 

programming courses? 

 

 How to predict student 

final exam scores using 

the collected 

educational data via 

learning management 

systems? 

 How to measure the 

predictive accuracy of 

regression model? 

 How to identify student 

that need support from 

predicted values in a 

developed model? 

 Which machine 

learning algorithm to 

be used to construct 
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Publication & 

Description of the study 

Key findings Contributions to 

research questions 

predictive models for 

student performance? 

P5. The main objective of 

this study was to construct a 

predictive model with a 

combination of predictor 

variables that predict final 

programming exam 

performance of students.  

-The models developed 

with single predictors for 

introductory programming 

courses revealed that, 

models developed with DE 

or TT (followed by PSI 

and PPK) as the most 

influential factor in 

determining student final 

exam performance in 

compare to other features 

used in this study. 

-The at-risk student 

prediction accuracy on k-

fold test result is good and 

reveals that it is possible to 

predict 81% (average of 

top Three models’ at-risk 

prediction accuracies) of 

students who need early 

assistance in introductory 

programming courses, 

based on their problem-

solving skills, and scores 

achieved in selected 

formative assessment 

tasks, in the first few 

weeks of the semester.  

-Hence, these results imply 

that our model may be 

adapted as an EWS in 

programming courses that 

has continuous assessment 

and final exam 

components, to predict 

student academic 

performance and to 

identify students that need 

support. 

-The model(s) may be used 

by instructors to categorize 

students as, for example, 

“at-risk”, “marginal”, 

“average”, “good”, “very 

RQ3: What combination 

of predictor/independent 

variables yields the 

highest prediction 

accuracy to predict 

student’s academic 

performance? 

 

RQ4: What percentage of 

academically at-risk 

students may be correctly 

identified by the models? 

 

RQ5: How suitable are 

developed models for 

incorporation in early 

warning systems, for 

educators to identify 

students that need 

assistance in introductory 

programming courses? 

 

 What is the optimal 

combination of 

predictor/independent 

variables with the 

highest prediction 

accuracy for predicting 

student’s academic 

performance? 

 

 What is the percentage 

of academically at-risk 

students that can be 

correctly identified by 

the model at early 

stage of the course? 

 

 Might our proposed 

model with these 

predictor variables be 

deployed as EWS to 

support instructors and 

programming students? 
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Publication & 

Description of the study 

Key findings Contributions to 

research questions 

good”, and “excellent” 

based on predicted final 

exam grades, in order to 

reshape their pedagogical 

practices accordingly.  

-Based on the past research 

findings and results of this 

study, a generic predictive 

model was proposed that 

can be deployed for other 

programming and non-

programming courses, if 

the goal of instructor is to 

predict student 

performance early in the 

semester. 

 

 Might our proposed 

model be transformed 

as a generic predictive 

model for other courses 

that has continuous 

summative assessments 

and or final exam, to 

predict student 

performance early in 

the semester? 

Replication-extension study.  

This study was conducted to 

verify P5 using larger 

dataset with different 

structure to to know how 

well the models we 

developed and validated in 

prior studies will perform 

on future or on unknown 

data. Sections 5-7 present 

the replication study in 

detail. 

-The replication study 

results revealed classroom 

assisted formative 

assessments influence 

student performance in 

programming exam. 

-The majority voting –

ensemble method results 

suggest that it is possible 

to predict student 

performance and identify 

students that need support 

from second week of the 

semester onwards.  

 

Table 7.1: Contributions of publications to research questions. 

 

7.2 Discussion of the results: Answers to research questions 

 

RQ1. Which feature selection methods should be used to identify the influential factors 

that affect student learning and academic progress based on available academic data? 

 

Identifying influential factors that contribute to student learning and academic progress 

is important in machine learning as it helps in understanding data, reducing computation 

requirement, and better model interoperability. Moreover, including unnecessary 

features in a model will influence the predictive performance of a model. We used filter 

methods for P1, P2, and P3 and wrapper methods for P4, P5, and replication-extension 

study to identify potential factors that influence student performance in programming. 

First, the predictor variables were selected based on their intrinsic properties measured 
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via correlation coefficient and linear regression techniques (filter method). Then these 

selected factors were evaluated again in a model by using various machine learning 

algorithms with cross-validation techniques and different selection procedures (wrapper 

method) such as forward selection or stepwise regression to find optimal features based 

on the learning performance.  

In the filter method all features of the dataset ranked based on certain criteria 

(correlation for example) to lets the researcher to select the features those with highest 

rankings are as predictors before the deployment of machine learning algorithms. As 

such, we used filter method (Spearman’s Rank correlation and linear regression 

techniques) in P1 to examine the relationship and influence of LEA, HE and DE on 

student performance in final programming exam to determine if LEA and FA might be 

suitable predictors of student performance (Veerasamy, et al., 2016). We identified that 

LEA and student performance in FE was negatively correlated and statistically 

insignificant. On the other hand, student FAs scores and performance in FE was 

positively correlated and statistically significant. However, correlation does not imply 

causation. As such, the multiple linear regression technique was deployed to measure the 

impact of LEA and FA on FE scores. This is because, multiple linear regression 

examines how an independent variable is numerically related to the dependent variable 

and the results of multiple regression indicates the impact of a change in value of 

independent variable on the value of dependent variable. The multiple linear regression 

results of P1 revealed that the effect of HE and DE (FAs) on FE is moderate and 

significant respectively. However, the effect of LEA on the FE is not significant. As 

such, our subsequent studies (P4, P5 and replication study) included HE and DE as 

features for model development and excluded LEA for further analysis. Similarly, we 

conducted two more studies (P2 and P3) to identify influential factors that affect student 

learning. The P2 and P3 results revealed that PPK and PSS (cognitive factors) influence 

student performance in programming courses (Veerasamy, Daryl D'Souza, & Laakso, 

2018; Veerasamy;D'Souza;Lindén;& Laakso, 2018). We used filter method in P4 to 

select potential factors for Support vector machine regression-based predictive model 

development (Veerasamy;D'Souza;Lindén;& Laakso, 2019). The multiple linear 

regression results of P4 (Adjusted R square: 0.264) revealed that there is a relationship 

between PPK, HE and DE on FE performance and can be used as predictors for model 

development. However, although the overall prediction accuracy of the model is 

moderate, the prediction accuracy on identifying at-risk students was not significant. It 

should be noted, filter method is simple and computationally inexpensive. However, 

filter method determines the features that have higher variance and filter out the least 

promising features. But it ignores feature dependencies which may lead to poor 

classification performance. So, it might have failed to find the best subset of features. On 

the other hand, wrapper feature selection method is model oriented and gets good subset 

of features using the machine learning algorithm itself as part of the evaluation function 

(Li, et al., 2017). As such, for P5 we used wrapper method for feature selection to 

identify the best subset of features that could predict student performance. In addition, 

this method was used to examine the features that had highest predictive performance for 

model development and validation for RQ3. The feature selection results (evaluated by 

machine learning) of P5 shown that student PSI, PPK, HE, DE/TT had moderate or good 

influence on predicting student FEG in programming courses.  

However, our replication study results conducted on INT course revealed that, DE is 

the most influential factor that influence student performance and followed PSI, PPK 
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and HE (Figures 6.1, 6.2 and 6.3). On the other hand, the wrapper method results 

conducted on ALG course revealed that, PSI and followed by TT, were identified as 

most influential factors that affect student performance (Figures 6.4 and 6.5).   

 

RQ2.  How can a predictive model be developed and validated to predict performance in 

programming courses? 

 

One of the objectives of this research was to develop a model using course specific 

academic and cognitive variables extracted from LMS (ViLLE) to predict student 

performance and identify students that need support to make proactive measures in 

teaching and learning. This can be achieved by utilising predictive analytics techniques 

called predictive modeling. As known, the objective of predictive modelling in education 

is to predict student performance. So, the regression-based predictive model was initially 

deployed in P4 to answer our RQ2 (Veerasamy;D'Souza;Lindén;& Laakso, 2019). We 

used filter method in P4 for feature selection and developed a model using support 

vector machine (SVM) learning-regression algorithm for prediction of student final 

programming exam scores. SVM-regression is generally good for numerical prediction 

and has a high generalisation performance. K-fold cross-validation was used to estimate 

the performance of a model to know how well the developed model will work on 

unknown data. Although the overall prediction accuracy of the model was moderate, 

predictions on identifying at-risk students was neither high nor low. Hence, the results of 

P4 persuaded us to update research methodology to improve predictive performance For 

example, inclusion of more data, and features, check for multicollinearity symptoms if 

exists between the input variables, and exploring the impact of other machine learning 

algorithms as some algorithms might work  well better on certain types of dataset than 

others. In addition, P4 results made us to conclude that identifying students that need 

support early in the semester would assist instructors to take necessary interventions. 

Therefore, classification algorithm based predictive models would serve better than 

regression models that we tested in P4. As such, we conducted P5 to construct Naïve 

Bayes classification-based models (selected based on preliminary prediction 

performance results over other algorithms such as Random forest, SVM, C5.0) to answer 

the research questions RQ2 and RQ3. As noted in P4, including too many variables that 

provide similar information will bring the issue of multicollinearity and may affect 

model’s predictive performance (Veerasamy;D'Souza;Lindén;& Laakso, 2019). As such, 

we deployed parsimonious modelling procedures in P5 to develop a predictive model 

with a minimum set of explanatory predictor variables selected based on prior studies 

(P1-P4) and tested on unknown data for generalisation. The P5 results (both K-fold 

cross-validation and testing) revealed that student PSI, PPK, HE and DE/TT captured in 

predictive model was a good fit of the data.   

Our replication study on unknown data testing results revealed that, it is possible to 

predict student performance and identify students at-risk of course failure although the 

consistency between the predictors combinations and results of models varied year to 

year (Tables 6.1 and 6.2 and Figures 6.10 and 6.11).  

 

RQ3. What combination of predictor/independent variables yields the highest prediction 

accuracy to predict student’s academic performance? 
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To answer RQ3 we developed Naïve Bayes classification (NBC) based models in P5. 

We used wrapper method to find suitable subset of features as it was learned from P4 

that selection of features and type of machine learning algorithms play vital role in 

predictive model development and performance. As such, NBC was used for predictive 

model development in P5 as they provided better prediction accuracy on identifying at-

risk students compared to other machine learning algorithms such as Support vector 

machine, Random forest and C5.0. Variance inflation factor analysis was deployed to 

assure that models developed for P5 had no highly correlated predictor variables that can 

cause multicollinearity. The validation results of P5 shown that the models developed 

with DE and or combination of cognitive features PSI and PPK yielded highest 

prediction accuracies on predicting student performance in a programming course. The 

P5 results also suggest that parsimonious models are likely to perform better on 

unknown or test data than models with many predictor variables.  

Our replication-extension study on unknown data testing yielded mixed results on 

identifying the suitable combination of predictors that yielded the highest prediction 

accuracy on prediction of student performance. As noted earlier, the models tested with 

predictors DE, and or combination of PSI and PPK on unknown data (2018) had highest 

prediction accuracies on predicting student performance in INT (Table 6.1). However, 

the models developed and tested for ALG course produced insignificant results although 

the models with PSI or PPK or both had nearly moderate or moderate performance on 

predicting student FEG (Table 6.2). These results made us to surmise that models with 

DE and combination of other predictors might yield better prediction accuracies than 

other models for INT and answered RQ3. However, the predictors selected for model 

development in ALG need to be tuned as current models with selected features did not 

yield significant results as expected and it should be analysed further (Figure 6.11).  

 

RQ4. What percentage of academically at-risk students may be correctly identified by 

the model? 

 

The motivation of this research was high failure/attrition in introductory programming 

courses affect both time-to-graduation and student retention. So, this research was 

focussed on developing models for identification of students that need support early in 

the course for instructors to provide timely aid to those students. Two different studies 

(P4 and P5) were conducted to answer RQ4 of this research. As noted earlier, we 

deployed regression based predictive modelling in P4 and classification based predictive 

modelling in P5 to identify at-risk students in programming. Regression based models 

are mainly used where the researcher target is to predict continuous quantity such as 

marks, income for example. On the other hand, classification-based models are mainly 

useful for predicting a label of an observation (For example, pass or fail, excellent or 

good or poor).  

We developed a model with three factors PPK, HE and DE as input for P4 to predict 

student FE scores (regression). The binomial test result on probability of identifying at-

risk students was nearly moderate (0.462). It was identified that the selection of features 

influenced model’s prediction accuracy suggesting that, including one or more predictor 

variables in the model may improve the model’s accuracy on predicting student 

performance and identifying at-risk students. Furthermore, we used support vector 

machine algorithm to train and validate the model using K-fold cross-validation. The 

results of P4 suggested that, this study could be replicated by using various other 
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machine learning algorithms to check the performance of the model for identifying at-

risk students in programming as the learning process of machine learning algorithm can 

be influenced by the dataset used for training and testing and in turn it might influence 

model’s performance. In addition, the objective of the study was to classify students that 

need support in order to provide necessary teaching interventions to those identified 

group of students. Therefore, we used NBC algorithm for model development and 

validation in P5 to identify answers for RQ4 and RQ5. The PSI was included with other 

factors PPK, HE and DE in model development for identification of student-at-risk in 

programming. Two (courses) X 15 predictive models were developed to identify the 

models with predictors that yielded highest prediction accuracies on identifying student 

at-risk in introductory programming. On average, the prediction accuracy in identifying 

at-risk students for introductory programming courses on the test set was 71% and 59%. 

The statistical results on identifying at-risk students of P5 imply that it is possible to 

identify at-risk students in the first four weeks, based on student PSI, PPK, HE and DE 

in introductory programming course. The results of P5 motivated us to conduct another 

study with more data with different structure to verify the results of P5.  

We replicated P5 work with more data and models developed with same set of 

features. The models were validated, and tested after Week 2, Week 4 and Week 6 for 

INT and after Week 2, Week 3 and Week 4 for ALG course to check how well these 

models tested in P5 works on unknown data with different structure. The replication and 

extended study results on unknown data for INT shown that, it is possible to predict 

student that need support after Week 2 (83%), Week 4 (86%) and Week 6 (76%) (Table 

6.1). Similarly, the unknown data test results on ALG revealed that it is possible to 

predict 61% of students that need academic support based on PSI early in the course 

(Table 6.2). In addition, our ensemble method results of unknown data for INT confirm 

that on average, it is possible to identify 83% of students after Week 2, 86% of students 

after Week 4 and 72% of students after Week 6 that need support with low false 

positives. However, we did not deploy ensemble method for ALG to obtain improved at-

risk prediction accuracies as most of the models with different combinations of 

predictors did not yield significant predictions.  

 

RQ5. How suitable are developed models for incorporation in an early warning system 

for educators to identify student that need assistance in introductory programming 

courses? 

 

As known, developing and employing an early warning system that tracks student 

progress through the analysis of readily available student academic and cognitive data is 

critical for higher education to identify students that need support and to refer them 

relevant support activities before they reach critical point. As such, we developed and 

validated set of predictive models in P5 that can be proposed as early warning systems 

for programming courses. The statistical results of P5 revealed that the models 

developed and tested in this study can be adopted as early warning systems. These 

models can be very useful to track the progress of individual students after week 4. In 

addition, based on the research finding and results of P5 a generic predictive model was 

proposed, which can be deployed for other programming and non-programming courses 

for instructors to predict student performance early in the semester.  

However as noted, it is important identify student that need support as early as 

possible in order to understand the root causes of student engagement and academic 
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failure to provide more effective intervention services. So, we conducted a replication 

and extended study based on P5 results with the objective of developing predictive 

models that capable of identifying at-risk students from beginning of the semester (Week 

2 onwards) in order to incorporate those models as early warning systems. The statistical 

results on unknown data test of our replication study revealed that (Table 6.2) it is 

possible to identify 61% of students that need support in the beginning of the semester 

(Week 2) based on student PSI survey responses in ALG. Similarly, 83% of students can 

be identified in INT based on student performance in DE with other cognitive variable 

PPK after Week 2 (Table 6.1). In addition, the ensemble of at-risk classifiers results on 

unknown data test for INT that it is possible to identify students that need support in the 

early weeks (after Week 2) of the semester (83%). As such, the models developed for 

this study can be incorporated as an early warning system to identify students that need 

support after Week 2, Week 4 and Week 6 for INT course (Figure 6.12).   

 

7.3 Conclusions 

Identification of students that need support in programming has been a long-standing 

problem. In this thesis, we developed a set of validated parsimonious predictive models 

to predict student academic performance in introductory programming courses to 

identify at-risk students early in the semester, by using presage (cognitive variables) and 

in-progress factors (formative assessments) as predictor variables. 15 x 2 models were 

developed, validated and tested by using different data sets collected during the Week 1 

to Week 6 periods of the semesters. Model prediction sensitivity, specificity, and 

positive and negative predicted values, and balanced accuracies, were computed via a 

confusion matrix to weigh and compare the prediction accuracy of the models. The 

influence of features evaluated by using stepwise regression techniques identified that 

DE, PSI, and PPK were the most valuable factors influencing the predictive performance 

of the models. The statistical results of unknown data tests showed that overall success 

of the models was moderate and good and that these models may therefore be 

incorporated in early warning systems to assist instructors to identify students that need 

early assistance. In addition, unknown data test results suggest that instructors may use 

PSI and PPK responses (from students) as predictors to identify students that need 

support before they engage in course assessment tasks.  

Additionally, as our models were developed by using a multiclass classification-

based algorithm, the models may be used by instructors to categorise students as “at-risk 

and marginal pass”, “good” and “very good”, based on predicted final exam grades, to 

reshape their pedagogical practices, accordingly. Similarly, it is possible to understand 

the student PSI and PPK levels early in the course to develop inclusive teaching 

strategies, to engage students with varied programming knowledge and problem-solving 

skills. As noted in P3, it is possible to categorise students on the basis of PSS to explore 

student constructivist learning improvements (Veerasamy;D'Souza;Lindén;& Laakso, 

2018). For example, providing course assessment tasks to promote student programing 

problem-solving skills and connect programming thinking.  Similarly, as noted, the 

predictive models developed in this study were based on the data collected via ViLLE. 

So, it is quite possible to present these models results as early warning signals at ViLLE 

in visual form for instructors to identify students that need support early in the semester. 

Therefore, our publications and replication-extension study results provide the evidence 

that by analysing readily available student formative assessment data and course related 
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cognitive data it is possible to implement effective interventions in order to avoid or 

minimise student failures. 

 

7.4 Limitations and future work of the study 

Although the results (ensemble) were good, this study has a number of limitations that 

influence the overall generalisability and internal validity of the proposed study. First, 

only a few cognitive features including PPK and PSI were concerned in this study. 

Second, this study used self-reported survey data to examine student PSI and PPK levels 

that may contain potential sources of bias; it is unknown whether or not students 

responded to the questionnaires honestly although Cronbach’s Alpha, a psychometric 

test, on PSI and PPK reliability, yielded good values. Third, we used the first six weeks 

of assessment results for analysis. However, learning is dynamic and a learner might not 

do well in the first few weeks of the semester and may perform well in subsequent weeks 

of the semester. Hence, there is a need to monitor and track student progress throughout 

the course period in order to provide continuous academic support. Fourth, the findings 

presented in this research cannot be generalised as the data used in this study was 

collected within one institution although the models of this study can be tested to other 

programming courses. Fifth, although predictor variables used in this study yielded 

moderate and good results, there still remains a degree of uncertainty as to which 

variables or combination of variables has the most predictive power.  

This study may be extended to develop ensemble models of various machine learning 

algorithms by using similar set of features and or other predictor variables that could 

influence the performance of students for multiple courses across a curriculum and at 

multiple institutions. Based on the past research findings and results of our replication 

and extended study our predictive model(s) can be deployed for other programming and 

non-programming courses, if the goal of instructor is to predict student performance 

early in the semester. This study can be extended like “how to use our previously 

developed predictive models as early warning systems, to identify students that need 

early attention/support to alleviate any potential for becoming at risk” In addition, this 

study can be extended to to investigate the effectiveness of a visualization tool to serve 

as an early warning system (EWS) for introductory programming courses.   
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9.  Appendices 
 

9.1 Problem Solving Inventory Questionnaire: Finnish version 

 

1. ”Kun ongelman ratkaisu ei onnistunut, en tutki miksi ratkaisu ei toiminut." 

2.  Kun kohtaan monimutkaisen ongelman, en välitä kehittää strategiaa tiedon 

keräämiseen, jotta voisin määritellä tarkalleen mikä ongelma on. 

3.  Kun minun ensimmäiset ongelmanratkaisuyritykseni epäonnistuvat, minulle tulee 

epämukava olo ajatellessani kykyjäni käsitellä tilannetta. 

4.  Kun olen ratkaissut ongelman, en analysoi mikä meni oikein ja mikä väärin. 

5.  Pystyn yleensä keksimään luovia ja tehokkaita vaihtoehtoja ongelman 

ratkaisemiseksi. 

6.  Kun olen yrittänyt ratkaista ongelman tietyllä tavalla, käytän aikaa vertaillakseni 

saavutettuja lopputuloksia alkuperäisiin odotuksiini. 

7.  Kun minulla on ongelma, yritän keksiä uusia ja uusia tapoja sen ratkaisemiseksi, 

kunnes en enää keksi enempää. 

8.  Kohdatessani ongelman, tarkastelen johdonmukaisesti tunteitani selvittääkseni mitä 

ongelmatilanteessa tapahtuu. 

9. Mikä on lempivärisi? 

10.  Minulla on kyky ratkaista useimmat ongelmat, vaikka mikään ratkaisu ei aluksi 

olisikaan ilmeinen. 

11.  Monet ongelmista joita kohtaan ovat liian monimutkaisia ratkaistavakseni. 

12.  Teen päätöksiä ja olen niihin myöhemmin tyytyväinen. 

13.  Kohdatessani ongelman, minulla on tapana yrittää ratkaista se ensimmäisellä 

mieleen tulevalla tavalla. 

14.  En toisinaan pysähdy ja ota aikaa ratkoakseni ongelmiani, vaan ikäänkuin tarvon 

eteenpäin. 

15.  Tehdessäni päätöksiä ideoista tai valitessani ongelman mahdollisista ratkaisuista, en 

jää pohtimaan miten hyvät mahdollisuudet kullakin vaihtoehdolla on onnistua. 

16.  Kun kohtaan ongelman, pysähdyn miettimään ennen seuraavaa askelta. 

17.  Yleensä valitsen ensimmäisen hyvän idean joka mieleeni tulee. 

18.  Tehdessäni päätöstä, punnitsen jokaisen vaihtoehdon seuraukset ja vertailen niitä 

keskenään. 

19.  Kun suunnittelen ratkaisua ongelmaan, olen melkein varma että saan suunnitelman 

toimimaan. 

20.  Pyrin ennakoimaan tekemieni toimenpiteiden vaikutuksia tuloksiin. 

21.  Pyrkiessäni keksimään mahdollisia ratkaisuita ongelmaan, en keksi kovin monia 

vaihtoehtoja. 

22.  Millainen päivä sinulla tänään on? 

23. Kun aikaa on riittävästi ja yritän tarpeeksi, uskon voivani ratkaista useimmat vastaan 

tulevat ongelmat." 

24. Kun ajaudun uuteen tilanteeseen, olen luottavainen että selviän mahdollisesti 

kohtaamistani ongelmista. 

25. Vaikka teen töitä ongelman ratkaisemiseksi, minusta välillä tuntuu että haparoin tai 

harhailen, enkä ryhdy ratkaisemaan varsinaista asiaa. 

26. Teen päätöksiä hetken mielijohteesta ja kadun niitä myöhemmin. 

27. Uskon kykyyni ratkaista uusia ja vaikeita ongelmia. 
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28.  Minulla on systemaattinen tapa vaihtoehtojen vertailuun ja päätösten tekoon. 

29.  Mikä on lempiruokasi? 

30.  Kun kohtaan ongelman, en yleensä tutki millaiset ulkoiset asiat ympäristössäni 

voivat olla ongelman osatekijöitä. 

31.  Kun en tiedä mitä ongelman kanssa pitäisi tehdä, pyrin ensimmäisten asioiden 

joukossa kartoittamaan tilanteen ja päättelemään ongelmanratkaisun kannalta olennaiset 

asiat. 

32.  Tunteeni ovat välillä niin pinnassa, etten kykene harkitsemaan erilaisia tapoja 

ongelman ratkaisemiseksi. 

33.  Tehtyäni päätöksen, odottamani lopputulos yleensä vastaa toteutunutta lopputulosta. 

34.  Kun kohtaan ongelman, olen epävarma siitä että selviän tilanteesta. 

35.  Kun tulen tietoiseksi ongelman olemassaolosta, pyrin ensimmäisten asioiden 

joukossa ratkaisemaan millainen ongelma tarkalleen on. 

 

9.2 Problem Solving Inventory Questionnaire: English version 

 

1. When a solution to a problem was unsuccessful, I do not examine why it didn't work. 

2. When I am confronted with a complex problem, I do not bother to develop a strategy 

to collect information so I can define exactly what the problem is.   

3. When my first efforts to solve a problem fail, I become uneasy about my ability to 

handle the situation.   

4. After I have solved a problem, I do not analyse what went right or what went wrong. 

5. I am usually able to think up creative and effective alternatives to solve a problem. 

6. After I have tried to solve a problem with a certain course of action, I take time and 

compare the actual outcome to what I thought should have happened.  

7. When I have a problem, I think up as many possible ways to handle it as I can until I 

can't come up with any more ideas.     

8. When confronted with a problem, I consistently examine my feelings to find out what 

is going on in a problem situation.     

9. Filler questions    

10. I have the ability to solve most problems even though initially no solution is 

immediately apparent.   

11. Many problems I face are too complex for me to solve.    

12. I make decisions and am happy with them later.     

13. When confronted with a problem, I tend to do the first thing that I can think of to 

solve it.    

14. Sometimes I do not stop and take time to deal with my problems, but just kind of 

muddle ahead.  

15. When deciding on an idea or possible solution to a problem, I do not take time to 

consider the chances of each alternative being successful.    

16. When confronted with a problem, I stop and think about it before deciding on a next 

step.    

17. I generally go with the first good idea that comes to my mind.   

18. When making a decision, I weigh the consequences of each alternative and compare 

them against each other. 

19. When I make plans to solve a problem, I am almost certain that I can make them 

work.    

20. I try to predict the overall result of carrying out a particular course of action.  
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21. When I try to think up possible solutions to a problem, I do not come up with very 

many alternatives.  

22. Filler questions.     

23. Given enough time and effort, I believe I can solve most problems that confront. 

24. When faced with a novel situation I have confidence that I can handle problem that 

may arise.    

25. Even though I work on a problem, sometimes I feel like I am groping or wandering , 

and am not getting down to the real issue .    

26. I make snap judgments and later regret them.     

27. I trust my ability to solve new and difficult problems.    

28. I have a systematic method for comparing alternatives and making decision.  

29. Filler questions.     

30. When confronted with a problem, I do not usually examine what sort of external 

things my environment may be contributing to my problem.    

31. When I am confused by a problem, one of the first things I do is survey the situation 

and considers all the relevant pieces of information.     

32. Sometimes I get so charged up emotionally that I am unable to consider many ways 

of dealing with my problems. 

33. After making a decision, the outcome I expected usually matches the actual outcome. 

34. When confronted with a problem, I am unsure of whether I can handle the situation. 

35. When I become aware of a problem, one of the first things I do is to try to find out 

exactly what the problem is.  

 

9.3 Prior Programming knowledge Questionnaire: 

 

Question 1: How much previous programming experience/knowledge (PPK) have 

you had? 

Likert scale PPK level  

0 0 Means you have no programming experience/ knowledge 

at all. 

1 and 2 1 Means you have learnt or acquired some basic skills in 

programming. In addition, you may know how to write 

and execute basic level computer programs. 

>=3 2 Means you have studied one or more programming 

languages, or you have sufficient knowledge in computer 

programming. In addition, you know how to write mid-

level and or higher-level computer programs. 

Question 2: Which programming languages have you written over 200 lines of code 

(note that mark-up languages such as (X) HTML or XML are not counted as 

programming here)?  

 

Table PPK. Survey question to examine student’s prior programming knowledge- self 

reported (Author) 

 

 

 

 

 



 

80 

 

9.4 Model prediction accuracies: 15 x 3 terms for Introduction to Programming 

 

Table INT_K1. Week 2-K-fold cross-validation results: 2016 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk: 

AUC 

At-risk Vs 

other: CI 

#1 46.3 42.86 66.67 45.00 64.71 54.76 0.55 0.55 0.41-0.68 

#2 51.85 52.38 63.64 47.83 67.74 58.01 0.58 0.58 0.44-0.72 

#3 51.85 66.67 63.64 53.85 75.00 65.15 0.62 0.65 0.52-0.78 

#4 31.48 71.43 15.15 34.88 45.45 43.29 0.49 0.44 0.32-0.55 

#5 59.26 52.38 84.85 68.75 73.68 68.61 0.60 0.69 0.56-0.81 

#6 59.26 57.14 84.85 70.59 75.68 71.00 0.64 0.71 0.59-0.84 

#7 44.44 66.67 51.52 46.67 70.83 59.09 0.63 0.59 0.46-0.73 

#8 55.56 47.62 81.82 62.50 71.05 64.72 0.61 0.65 0.52-0.78 

#9 55.56 52.38 78.79 61.11 72.22 65.58 0.64 0.66 0.53-0.79 

#10 50.00 76.19 48.48 48.48 761.9 62.34 0.59 0.62 0.50-0.75 

#11 
57.41 52.38 78.79 61.11 72.22 65.58 

0.59 0.66 0.53-0.66 

#12 38.89 71.43 30.30 39.47 62.50 50.87 0.53 0.51 0.38-0.64 

#13 55.56 47.62 78.79 58.82 70.27 63.20 0.55 0.63 0.51-0.76 

#14 51.85 57.14 57.58 46.15 67.86 57.36 0.58 0.57 0.44-0.71 

#15 50.00 52.38 66.67 50.00 68.75 59.52 0.55 0.60 0.46-0.73 

 

Table INT_K2. Week 4-K-fold cross-validation results: 2016 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#1 46.3 42.86 66.67 45.00 64.71 54.76 0.55 0.55 0.41-0.68 

#2 51.85 52.38 63.64 47.83 67.74 58.01 0.58 0.58 0.44-0.72 

#3 51.85 66.67 63.64 53.85 75.00 65.15 0.62 0.65 0.52-0.78 

#4 42.59 14.29 81.82 33.33 60.00 48.05 0.46 0.48 0.38-0.58 

#5 59.25 57.14 78.79 63.16 74.29 67.97 0.58 0.68 0.55-0.81 

#6 55.56 53.28 78.79 61.11 72.22 65.58 0.55 0.66 0.53-0.79 

#7 42.59 42.86 63.64 42.86 63.64 53.25 0.54 0.53 0.40-0.70 

#8 62.96 61.90 81.82 68.42 77.14 71.86 0.58 0.72 0.59-0.84 

#9 55.56 52.38 81.82 64.71 72.97 67.10 0.51 0.67 0.54-0.80 
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No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#10 38.89 42.86 57.58 39.13 61.29 50.22 0.51 0.50 0.36-0.64 

#11 64.81 71.43 78.79 68.18 81.25 75.11 0.61 0.75 0.63-0.87 

#12 37.04 33.33 60.61 35.50 58.82 46.97 0.65 0.47 0.34-0.60 

#13 64.81 71.43 75.76 65.22 80.65 73.59 0.59 0.74 0.61-0.86 

#14 55.56 52.38 78.79 61.11 72.22 65.58 0.51 0.66 0.53-0.79 

#15 62.96 66.67 81.82 70.00 79.41 74.24 0.58 0.74 0.62-0.87 

 

 

Table INT_K3. Week 6-K-fold cross-validation results: 2016 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#1 46.3 42.86 66.67 45.00 64.71 54.76 0.55 0.55 0.41-0.68 

#2 51.85 52.38 63.64 47.83 67.74 58.01 0.58 0.58 0.44-0.72 

#3 51.85 66.67 63.64 53.85 75.00 65.15 0.62 0.65 0.52-0.78 

#4 42.59 19.05 72.73 30.77 58.54 45.89 0.41 0.46 0.34-0.57 

#5 57.41 52.38 75.76 57.89 71.43 64.07 0.52 0.64 0.51-0.78 

#6 51.85 47.62 69.70 50.00 67.65 58.66 0.61 0.59 0.45-0.72 

#7 40.74 33.33 69.70 41.18 62.16 51.52 0.52 0.52 0.39-0.65 

#8 55.56 57.14 75.76 60.00 73.53 66.45 0.59 0.67 0.53-0.80 

#9 53.70 52.38 72.73 55.00 70.59 62.55 0.53 0.63 0.49-0.76 

#10 44.44 47.62 60.61 43.48 64.52 54.11 0.62 0.54 0.40-0.68 

#11 57.41 61.90 75.76 61.90 75.76 68.83 0.60 0.69 0.56-0.82 

#12 44.44 42.86 57.58 39.13 61.29 50.22 0.61 0.50 0.36-0.64 

#13 59.26 57.14 75.76 60.00 73.53 66.45 0.53 0.67 0.53-0.80 

#14 55.56 57.14 72.73 57.14 72.73 64.94 0.63 0.65 0.52-0.78 

#15 51.85 57.14 72.73 57.14 72.73 64.94 0.54 0.65 0.52-0.78 
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Table INT_V1. Week 2-Validation results: 2017 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#1 25.00 12.50 53.85 7.70 66.67 33.17 0.58 0.33 0.22-0.44 

#2 41.18 81.25 44.23 30.95 88.46 62.74 0.57 0.63 0.51-0.75 

#3 38.24 68.75 46.15 28.21 82.76 57.45 0.56 0.58 0.44-0.71 

#4 22.06 75.00 11.54 20.69 60.00 43.27 0.46 0.44 0.31-0.55 

#5 41.18 37.50 61.54 23.08 76.19 49.52 0.58 0.50 0.36-0.63 

#6 44.12 50.00 59.62 27.59 79.49 54.81 0.59 0.55 0.40-0.69 

#7 29.41 68.75 32.69 23.91 77.27 50.72 0.57 0.51 0.37-0.64 

#8 42.65 37.50 61.54 23.07 76.19 49.52 0.57 0.50 0.36-0.64 

#9 47.06 56.25 57.69 29.03 81.08 56.97 0.58 0.57 0.43-0.72 

#10 30.88 56.25 34.62 20.93 72.00 45.43 0.48 0.45 0.31-0.60 

#11 41.18 50.00 55.77 25.81 78.38 52.88 0.54 0.53 0.39-0.67 

#12 25.00 62.50 21.15 19.61 64.71 41.83 0.44 0.42 0.28-0.53 

#13 44.12 50.00 61.54 28.57 80.00 55.77 0.58 0.56 0.41-0.70 

#14 32.35 75.00 25.00 23.53 76.47 50.00 0.46 0.5 0.38-0.62 

#15 36.76 68.75 36.54 25.00 79.17 52.64 0.52 0.53 0.39-0.66 

 

 

Table INT_V2. Week 4-Validation results: 2017 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#1 25.00 12.50 53.85 7.70 66.67 33.17 0.58 0.33 0.22-0.44 

#2 41.18 81.25 44.23 30.95 88.46 62.74 0.57 0.63 0.51-0.75 

#3 38.24 68.75 46.15 28.21 82.76 57.45 0.56 0.58 0.44-0.71 

#4 45.59 18.75 86.54 30.00 77.59 52.64 0.48 0.53 0.42-0.64 

#5 45.59 62.50 50.00 27.78 81.25 56.25 0.60 0.56 0.42-0.70 

#6 47.06 62.50 53.85 29.41 82.35 58.17 0.60 0.58 0.44-0.72 

#7 30.88 18.75 61.54 13.04 71.11 40.14 0.46 0.40 0.28-0.52 

#8 48.53 62.50 55.77 30.30 82.86 59.13 0.60 0.59 0.45-0.73 

#9 48.53 62.50 59.62 32.26 83.78 61.06 0.60 0.61 0.47-0.75 

#10 35.29 62.50 48.08 27.03 80.65 55.29 0.55 0.55 0.41-0.69 
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No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#11 54.41 81.25 55.77 36.11 90.62 68.51 0.65 0.69 0.57-0.81 

#12 36.76 75.00 40.38 27.91 84.00 57.69 0.52 0.58 0.45-0.71 

#13 50.00 75.00 50.00 31.58 86.67 23.53 0.66 0.63 0.50-0.75 

#14 50.00 68.75 55.77 32.35 85.29 62.26 0.63 0.62 0.49-0.76 

#15 54.41 75.00 59.62 36.36 88.57 67.31 0.63 0.67 0.55-0.80 

 

Table INT_V3. Week 6-Validation results: 2017 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#1 25.00 12.50 53.85 7.70 66.67 33.17 0.58 0.33 0.22-0.44 

#2 41.18 81.25 44.23 30.95 88.46 62.74 0.57 0.63 0.51-0.75 

#3 38.24 68.75 46.15 28.21 82.76 57.45 0.56 0.58 0.44-0.71 

#4 51.47 37.50 84.62 42.86 81.48 61.06 0.49 0.61 0.48-0.74 

#5 48.53 81.25 50.00 33.33 89.66 65.62 0.65 0.66 0.54-0.78 

#6 50.00 68.75 61.54 35.48 86.49 65.14 0.63 0.65 0.52-0.79 

#7 50.00 43.75 78.85 38.89 82.00 61.30 0.58 0.61 0.48-0.75 

#8 51.47 68.75 59.62 34.38 86.11 64.18 0.58 0.64 0.51-0.78 

#9 51.47 68.75 63.46 36.67 86.84 66.11 0.58 0.66 0.53-0.80 

#10 39.71 62.50 53.85 29.41 82.35 58.17 0.58 0.58 0.44-0.72 

#11 51.47 82.25 50.00 33.33 89.66 65.62 0.63 0.66 0.54-0.78 

#12 36.76 75.00 40.38 27.91 84.00 57.69 0.52 0.58 0.45-0.71 

#13 47.06 81.25 46.15 31.71 88.89 63.70 0.64 0.64 0.52-0.76 

#14 48.53 68.75 57.69 33.33 85.71 63.22 0.62 0.63 0.50-0.77 

#15 51.47 68.75 59.62 34.38 86.11 64.18 0.59 0.64 0.51-0.78 
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Table INT_T1. Week 2- Unknown data test results: 2018 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#1 34.92 37.93 44.12 36.67 45.45 41.02 0.60 0.59 0.47-0.71 

#2 44.44 44.83 61.76 50.00 56.76 53.30 0.56 0.53 0.41-0.66 

#3 38.1 44.83 44.12 40.62 48.39 44.47 0.58 0.56 0.43-0.68 

#4 44.44 96.55 00.00 45.16 00.00 48.28 0.49 0.48 0.45-0.52 

#5 52.38 82.76 38.24 53.33 72.22 60.50 0.55 0.61 0.50-0.71 

#6 50.79 82.76 35.29 52.17 70.59 59.03 0.55 0.59 0.48-0.70 

#7 36.51 65.52 17.65 40.43 37.50 41.58 0.44 0.42 0.30-0.53 

#8 47.62 72.41 41.18 51.22 63.64 56.80 0.54 0.57 0.45-0.69 

#9 
50.79 75.86 38.24 51.16 65.00 57.05 

0.53 0.57 0.46-0.69 

#10 31.75 51.72 23.53 36.59 36.36 37.63 0.42 0.38 0.26-0.49 

#11 
46.03 72.41 32.35 47.73 57.89 52.38 

0.48 0.52 0.41-0.64 

#12 41.27 82.76 8.82 43.64 37.50 45.79 0.47 0.46 0.37-0.54 

#13 55.56 82.76 47.06 57.14 76.19 64.91 0.61 0.65 0.54-0.76 

#14 50.79 86.21 23.53 49.02 66.67 54.87 0.48 0.55 0.45-0.65 

#15 50.79 79.31 29.41 48.94 62.50 54.36 0.49 0.54 0.44-0.65 

 

 

Table INT_T2. Week 4- Unknown data test results: 2018 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#1 34.92 37.93 44.12 36.67 45.45 41.02 0.60 0.59 0.47-0.71 

#2 44.44 44.83 61.76 50.00 56.76 53.30 0.56 0.53 0.41-0.66 

#3 38.1 44.83 44.12 40.62 48.39 44.47 0.58 0.56 0.43-0.68 

#4 38.10 13.79 94.11 66.67 56.14 53.96 0.55 0.54 0.46-0.64 

#5 49.21 86.21 26.47 50.00 69.23 56.34 0.54 0.56 0.47-0.66 

#6 49.21 86.21 26.47 50.00 69.23 56.34 0.54 0.56 0.47-0.66 

#7 30.16 27.59 44.12 29.63 41.67 35.85 0.63 0.64 0.52-0.76 

#8 47.62 75.86 35.29 50.00 63.16 55.58 0.52 0.56 0.44-0.70 

#9 47.62 72.41 38.24 50.00 61.90 55.32 0.51 0.55 0.44-0.67 
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No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#10 36.51 41.38 44.12 38.71 46.88 42.75 0.58 0.57 0.45-0.70 

#11 
47.62 72.41 35.29 48.84 60.00 53.85 

0.48 0.54 0.42-0.66 

#12 47.62 51.72 61.76 61.76 53.57 60.00 56.74 0.57 0.44-0.69 

#13 49.21 79.31 32.35 50.00 64.71 55.83 0.51 0.56 0.45-0.67 

#14 47.62 72.41 38.24 50.00 61.90 55.32 0.51 0.55 0.44-0.67 

#15 46.03 68.97 38.24 48.78 59.09 53.60 0.50 0.54 0.42-0.66 

 

 

Table INT_T3. Week 6- Unknown data test results: 2018 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#1 34.92 37.93 44.12 36.67 45.45 41.02 0.60 0.59 0.47-0.71 

#2 44.44 44.83 61.76 50.00 56.76 53.30 0.56 0.53 0.41-0.66 

#3 38.1 44.83 44.12 40.62 48.39 44.47 0.58 0.56 0.43-0.68 

#4 42.86 31.03 82.35 60.00 58.33 56.69 51.94 0.57 0.46-0.68 

#5 61.90 75.86 67.65 66.67 76.67 71.75 0.68 0.72 0.61-0.83 

#6 53.97 58.62 70.59 62.96 66.67 64.60 0.52 0.65 0.53-0.77 

#7 34.92 27.59 61.76 38.10 50.00 44.68 0.43 0.45 0.33-0.56 

#8 53.97 65.52 58.82 57.58 66.67 62.17 0.59 0.62 0.50-0.74 

#9 50.79 51.72 70.59 60.00 63.16 61.16 0.49 0.61 0.49-0.73 

#10 41.27 44.83 52.94 44.83 52.94 48.88 0.56 0.49 0.36-0.61 

#11 50.79 65.52 52.94 54.29 64.29 59.23 0.57 0.59 0.47-0.72 

#12 47.62 58.62 52.94 51.52 60.00 55.78 0.55 0.56 0.43-0.68 

#13 53.97 75.86 52.94 57.89 72.00 64.40 0.60 0.64 0.53-0.76 

#14 58.73 65.52 73.53 67.86 67.86 71.43 0.55 0.70 0.58-0.81 

#15 50.79 58.62 61.76 56.67 63.64 60.19 0.55 0.60 0.48-0.73 
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9.5 Model prediction accuracies: 15 X 2 terms for Algorithms and Programming 

 

Table ALG_K1. Week 2-K-fold cross-validation results: 2016 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#16 44.12 22.73 89.68 43.48 76.87 56.21 0.51 0.56 0.49-0.63 

#17 44.12 4.55 93.65 20.00 73.75 49.10 0.44 0.49 0.45-0.53 

#18 44.71 11.36 90.48 29.41 74.51 50.92 0.47 0.51 0.46-0.56 

#19 38.82 9.09 88.89 22.22 73.68 48.99 0.50 0.49 0.44-0.54 

#20 30.59 93.18 13.49 27.33 85.00 53.34 0.54 0.53 0.49-0.58 

#21 36.47 22.73 73.01 22.73 73.02 47.87 0.51 0.48 0.41-0.55 

#22 38.82 9.91 88.89 22.22 73.68 48.99 0.50 0.49 0.44-0.54 

#23 34.12 90.91 20.63 28.57 86.67 55.77 0.54 0.56 0.50-0.61 

#24 
42.35 43.18 69.84 33.33 77.88 56.51 

0.54 0.57 0.48-0.65 

#25 
42.94 36.36 78.57 37.21 77.95 57.47 

0.54 0.57 0.49-0.66 

#26 
41.76 84.09 35.71 31.36 86.54 59.90 

0.55 0.60 0.53-0.67 

#27 42.35 36.36 76.19 34.78 77.42 56.28 0.53 0.56 0.48-0.64 

#28 34.12 90.91 21.43 28.78 87.10 56.17 0.55 0.56 0.51-0.62 

#29 
45.29 40.91 80.16 41.86 79.53 60.53 

0.58 0.61 0.52-0.69 

#30 
45.88 47.73 76.13 41.18 80.67 61.96 

0.58 0.62 0.54-0.70 

 

 

Table ALG_K2. Week 3-K-fold cross-validation results: 2016 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#19 44.71 00.00 96.03 00.00 73.33 48.02 0.49 0.48 0.46-0.50 

#20 42.94 00.00 100.0 0 74.12 50.00 0.51 0.50 0.50-0.50 

#21 45.29 4.55 94.44 22.22 73.91 49.49 0.51 0.50 0.46-0.53 

#22 44.71 11.34 90.48 29.41 74.51 50.92 0.53 0.51 0.46-0.56 

#23 44.71 15.91 92.06 41.18 75.82 53.99 0.52 0.54 0.48-0.60 

#24 
43.53 6.82 91.27 21.43 73.72 49.04 

0.50 0.49 0.45-0.54 
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No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#25 
48.24 36.36 80.95 40.00 78.46 58.66 

0.55 0.59 0.51-0.67 

#26 
44.71 25.00 85.71 37.93 76.60 55.36 

0.49 0.55 0.48-0.63 

#27 48.82 31.82 83.33 40.00 77.78 57.58 0.53 0.58 0.50-0.65 

#28 47.65 31.82 85.71 43.75 78.26 58.77 0.53 0.59 0.51-0.66 

#29 
47.06 34.09 81.75 39.47 78.03 57.92 

0.54 0.58 0.50-0.66 

#30 
47.65 36.36 81.75 41.03 78.63 59.06 

0.55 0.59 0.51-0.67 

 

Table ALG_K3. Week 4-K-fold cross-validation results: 2016 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#16 44.12 22.73 89.68 43.48 76.87 56.21 0.51 0.56 0.49-0.63 

#17 44.12 4.55 93.65 20.00 73.75 49.10 0.44 0.49 0.45-0.53 

#18 44.71 11.36 90.48 29.41 74.51 50.92 0.47 0.51 0.46-0.56 

#19 49.41 9.09 96.83 50.00 75.31 52.96 0.52 0.53 0.48-0.58 

#20 41.76 00.00 100.0 NaN 74.12 50.00 0.51 0.50 0.50-0.50 

#21 46.47 9.09 95.24 40.00 75.00 52.17 0.51 0.52 0.48-0.57 

#22 46.47 6.82 93.65 27.27 74.21 50.23 0.49 0.50 0.46-0.55 

#23 44.71 25.00 89.68 45.83 77.40 57.34 0.53 0.57 0.50-0.60 

#24 
45.29 11.36 93.65 38.46 75.16 52.51 

0.52 0.53 0.47-0.58 

#25 
49.41 31.82 84.13 41.18 77.94 57.97 

0.51 0.58 0.50-0.66 

#26 
44.71 25.00 85.71 37.93 76.60 55.36 

0.52 0.55 0.48-0.63 

#27 51.18 34.09 83.33 41.67 78.36 58.71 0.53 0.59 0.51-0.67 

#28 45.29 29.55 84.13 39.39 77.37 56.84 0.52 0.57 0.49-0.64 

#29 
48.24 34.09 83.33 41.67 78.36 58.71 

0.53 0.59 0.51-0.67 

#30 
48.82 36.36 84.13 44.44 79.10 60.25 

0.56 0.60 0.52-0.68 
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Table ALG_T3. Week 2- unknown data results: 2017 

 

No. MAC ATSE ATSP PPV NPV BAC 
overall 

AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#16 53.1 60.71 70.94 33.33 88.3 65.83 0.54 0.66 0.56-0.76 

#17 51.72 0 100 0 80.69 50 0.62 0.5 0.50-0.50 

#18 46.21 46.43 72.65 28.89 85 59.54 0.52 0.6 0.49-0.70 

#19 54.48 7.14 98.29 50 81.56 52.72 0.53 0.53 0.48-0.58 

#20 21.38 82.14 8.55 17.69 66.67 45.35 0.46 0.45 0.38-0.53 

#21 53.1 0 98.29 0 80.42 49.15 0.49 0.49 0.48-0.50 

#22 54.48 7.14 98.29 50 81.56 52.72 0.53 0.53 0.48-0.58 

#23 34.48 64.29 35.9 19.35 80.77 50.09 0.46 0.5 0.40-0.60 

#24 55.86 28.57 89.74 40 84 59.16 0.54 0.59 0.50-0.68 

#25 43.45 60.71 45.3 20.99 82.81 53.01 0.54 0.53 0.43-0.63 

#26 37.24 71.43 35.04 20.83 83.67 53.24 0.44 0.53 0.43-0.63 

#27 41.38 60.71 41.88 20 81.67 51.3 0.53 0.51 0.41-0.62 

#28 37.93 57.14 42.74 19.28 80.65 49.94 0.54 0.5 0.40-0.60 

#29 41.38 50 46.15 18.18 79.41 48.08 0.56 0.52 0.42-0.62 

#30 42.76 57.14 46.15 20.25 81.82 51.65 0.52 0.52 0.42-0.62 

 

 

Table ALG_T3. Week 3- unknown data results: 2017 

 

No. MAC ATSE ATSP PPV NPV BAC 
overall 

AUC 

At-

risk: 

AUC 

At-risk Vs 

other: CI 

#16 53.1 60.71 70.94 33.33 88.3 65.83 0.54 0.66 0.56-0.76 

#17 51.72 0 100 0 80.69 50 0.62 0.5 0.50-0.50 

#18 46.21 46.43 72.65 28.89 85 59.54 0.52 0.6 0.49-0.70 

#19 50.34 0 99.15 0 80.56 49.57 0.52 0.5 0.49-0.50 

#20 50.34 0 99.14 80.56 49.57 50 0.52 0.5 0.49-0.50 

#21 49.66 0 100.00 0 80.69 50 0.48 0.5 0.50-0.50 

#22 55.86 50 84.62 43.75 87.61 67.31 0.58 0.67 0.57-0.77 

#23 54.48 39.29 85.47 39.29 85.47 62.38 0.52 0.62 0.53-0.72 

#24 48.97 17.86 88.89 27.78 81.89 53.37 0.48 0.53 0.46-0.61 

#25 40.69 71.43 41.88 22.73 85.96 56.65 0.57 0.57 0.47-0.66 

#26 39.31 50 51.28 19.72 81.08 50.64 0.59 0.6 0.54-0.68 

#27 38.62 60.71 41.88 20 81.67 51.3 0.54 0.51 0.41-0.62 
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No. MAC ATSE ATSP PPV NPV BAC overall 

AUC 

At-

risk: 

AUC 

At-risk Vs 

other: CI 
#28 38.62 60.71 41.88 20 81.67 51.3 0.54 0.51 0.41-0.62 

#29 36.55 57.14 41.88 19.05 80.33 49.51 0.52 0.5 0.39-0.60 

#30 37.24 60.71 41.88 20 81.67 51.3 0.53 0.51 0.41-0.62 

 

 

Table ALG_T3. Week 4- unknown data results: 2017 

 

No. MAC ATSE ATSP PPV NPV BAC AUC 

At-

risk 

AUC 

At-risk Vs 

other: CI 

#16 53.10 60.71 70.94 33.33 88.30 65.83 0.54 0.66 0.56-0.76 

#17 51.72 00.00 100.0 0 80.69 50.00 0.62 0.50 0.50-0.50 

#18 46.21 46.43 72.65 28.89 85.00 59.54 0.52 0.60 0.49-0.70 

#19 53.10 14.29 95.73 44.44 82.35 55.01 0.52 0.55 0.48-0.62 

#20 46.90 00.00 100.0 Nan 80.69 50.00 0.46 0.50 0.50-0.50 

#21 50.34 17.86 95.73 50.00 82.96 56.79 0.51 0.57 0.49-0.64 

#22 53.10 21.43 90.60 35.29 82.81 56.01 0.51 0.56 0.48-0.64 

#23 51.03 50.00 78.63 35.89 86.79 64.32 0.51 0.64 0.54-0.75 

#24 49.66 21.43 90.60 35.29 82.81 56.01 0.48 0.56 0.49-0.64 

#25 40.00 53.57 51.28 20.83 82.19 52.43 0.54 0.52 0.42-0.63 

#26 
36.55 53.57 47.01 19.48 80.88 50.29 

0.52 0.50 0.40-0.61 

#27 39.31 11.36 94.06 45.46 70.90 52.71 0.54 0.52 0.42-0.62 

#28 34.48 60.71 39.32 19.32 80.70 50.02 0.53 0.50 0.40-0.60 

#29 36.55 60.71 42.74 20.24 81.97 51.72 0.53 0.52 0.42-0.62 

#30 37.24 60.71 43.59 20.48 82.26 52.15 0.54 0.52 0.42-0.62 
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