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Abstract

Particle decay processes have deep and profound implications in cosmology
and especially on various early universe particle processes. Common decay
rates, which may be experimentally verified e.g., in particle accelerators,
are calculated using a theory which relies on Einstein’s theory of special
relativity thereby neglecting gravity which is contained in the general theory
of relativity. The early universe is, however, a place where the curvature of
the spacetime cannot be neglected anymore. Hence, the flat space quantum
field theory becomes only an approximation and of limited applicability.
A more precise picture which includes the role of gravity forces one to
view things more generally from the perspective of quantum field theory
in curved spacetime. As a result, particle decay rates, cross sections and
lifetimes may be modified from the common decay rates obtained from flat
spacetime theory.

The aim of this thesis is to investigate how the known flat space decay
rates are modified in the presence of a gravitational field and what implica-
tions these have on early universe particle processes. Using quantum field
theory in curved spactime and a conceptually clear method for calculating
decay rates in curved spacetime, the decay of a massive scalar is studied in
a realistic and cosmologically relevant scenarios in an expanding universe.
The results have significance when studying early universe cosmological
situations but also as the cosmological data and measurements become in-
creasingly more accurate, there might arise a necessity in the future to
include the effects of curved spacetime also in particle decay rates.
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Tiivistelmä

Hiukkasten hajoamisprosesseilla on syvällisiä ja perustavanlaatuisia seu-
rauksia kosmologiassa ja erityisesti varhaisen maailmankaikkeuden hiuk-
kasprosesseissa. Tavanomaiset hajoamisnopeudet, joita voidaan esimerkiksi
hiukkaskiihdyttimissä kokeellisesti todentaa, ovat laskettu käyttäen teoriaa
joka nojautuu Einsteinin erityiseen suhteellisuusteoriaan jättäen näin huo-
mioimatta painovoiman, joka sisältyy yleiseen suhteellisuusteoriaan. Var-
hainen maailmankaikkeus on kuitenkin paikka, jossa avaruusajan kaare-
vuutta ei voida enää jättää huomioimatta. Tällöin tavanomainen litteän
(laakean) avaruuden kvanttikenttäteoria on vain approksimaatio ja sen käyt-
tö rajallista. Tarkempi kuvaus ja painovoiman roolin huomioiminen pakot-
taakin tarkastelemaan asioita laajemmin kaarevan avaruuden kvanttikent-
täteorian näkökulmasta. Tämän seurauksena hiukkasten hajoamisnopeu-
det, vaikutusalat ja eliniät saattavat kuitenkin muuttua tavanomaisista lit-
teän avaruuden teoriasta saaduista tuloksista.

Tämän väitöskirjan tarkoitus on tutkia miten tunnetut litteän avaruu-
den hajoamisnopeudet muuttuvat painovoiman vaikutuksen alaisena ja mi-
tä seurauksia tällä on varhaisen maailmankaikkeuden hiukkasprosesseihin.
Käyttämällä kaarevan avaruuden kvanttikenttäteoriaa ja käsitteellisesti sel-
keää tapaa laskea hajoamisnopeuksia kaarevassa avaruudessa, massiivisen
skalaarihiukkasen hajoamista on tarkasteltu realistisissa ja kosmologisesti
merkityksellisissä skenaarioissa avaruuden laajetessa. Tuloksilla on merki-
tystä tutkittaessa varhaisen maailmankaikkeuden kosmologisia tapahtumia
mutta myös kosmologisen datan ja mittausten tullessa yhä tarkemmiksi,
voi tulevaisuudessa syntyä tarve ottaa huomioon myös kaarevan avaruuden
seuraukset hiukkasten hajoamisnopeuksiin.
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Introduction

Particle decay processes in the early universe have deep and profound impli-
cations in cosmology, from baryogenesis [1, 2] to Big Bang nucleosynthesis
[3] and reheating scenarios after inflation [4]. When considering these and
other early universe processes in depth, the effect of curvature of the space-
time cannot be neglected anymore and the Minkowskian quantum field
theory is ultimately only an approximation and of limited applicability.
In this region, quantum field theory in curved spacetime must be used.
As a result of spacetime curvature, the particle decay rates, cross sections
and lifetimes are modified compared to the usual flat space results [5, 6].
New particle processes, forbidden in Minkowski space, are to be considered
leading to new Feynman diagrams even at first-order [5–8].

Quantum field theory in curved spacetime in itself has proven to be
a rich theory full of new physical phenomena. One of the most striking
features arising from this theory is gravitational particle production; the
creation of particles by the expansion of spacetime even without particle
interactions. The foundations were laid by quantization of free fields around
the second half of the last century [9–17] and a considerable amount of work
has been devoted to this aspect; see e.g., [18–20] and references therein.
Although free fields are an important facet of study, realistic fields tend
to interact with each other which naturally led scientists to investigate
interacting quantum fields on a curved spacetime as well [21, 22].

But while the investigations were focused mainly on the problem of
renormalization, a closely related topic of mutually interacting fields has
still been only scarcely investigated. A few extensive studies were made
some time ago which established the fact that the gravitational particle
creation severely interferes with the process of mutual interaction making
the usual in-out approach non-applicable in curved spacetime [5–8, 23, 24].
Lately interest in the subject has resurfaced with the applications to QED
processes in de Sitter spacetime [25–27]. The de Sitter spacetime is of con-
siderable interest in scenarios involving e.g., cosmological inflation, but so

13



14 Introduction

far there is no experimental verification for this scenario. The postinflation-
ary universe on the other hand includes universes dominated by radiation
and ordinary matter with experimental data verifying the existence of these
eras [28, 29], yet it has only scarcely been investigated from particle decay
point of view [30, 31].

This thesis aims to increase our knowledge on how gravity affects parti-
cle decay particularly in the postinflationary universe. We begin by intro-
ducing the subject in question in the first three chapters with the rest of
the thesis concerning the results obtained in Publications I-V. Chapter 1
concerns cosmology which sets up the background framework for this the-
sis. The introduction of the Robertson-Walker universe and the Einstein
and Friedmann equations form the basis for describing the evolution of the
universe. We discuss thermodynamics in the early universe with the Boltz-
mann equations and derive the equations which govern the time evolution
of energy densities of a non-relativistic particle decaying into radiation.
The chapter concludes by a brief review on the concept of cosmological
inflation and reheating. These last two subjects give sufficient knowledge
to understand the framework for the results on reheating in Chap. 5.

From the cosmological background we move to quantum theory and
put quantized fields to propagate on the curved spacetime in Chap. 2.
The focus will be on quantizing free fields on a curved spacetime revealing
the profound phenomenon of gravitational particle creation. In a curved
spacetime the vacuum becomes observer dependent, therefore the question
of defining the vacuum state and particle concept in curved spacetime is
also touched upon with the focus on a spatially flat Robertson-Walker uni-
verse. A discussion on conformal invariance concludes this chapter for its
importance for later chapters.

With the free fields quantized, we introduce interactions into the mix
in Chap. 3. The treatment of interacting fields in curved spacetime is
very superficial in this chapter with the main focus being on conceptual
issues arising when the background is curved. We will see in this chapter
that the traditional in-out scheme from Minkowskian field theory cannot
be straightforwardly transferred to curved spacetime because the gravita-
tional particle creation interferes so severely with the mutual interaction.
A method to calculate meaningful transition amplitudes in curved space-
time is then introduced via the added-up formalism introduced in [5] and a
procedure to calculate decay rates in curved spacetime is given within this
formalism.
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The decay rate of a massive scalar particle to decay into massless par-
ticles in an expanding universe is discussed in Chap. 4 where the results
of Publications I-IV are presented. We will find that the Minkowskian de-
cay rates are modified and become time dependent. The case of a massive
scalar to decay into massless scalars or fermions is considered within the
added-up formalism and we present the results for the transition amplitudes
and decay rates. We discuss some of the phenomena these introduce and
find that for a conformally coupled massive particle, the decay into scalar
channel is diminished and for fermionic channel enhanced by the spacetime
expansion. Moreover, we find that in the very early universe the fermionic
channel is the dominant channel of decay for these particles.

In Chap. 5 we present the results of Publication V. In it we considered
a reheating scenario in a kination epoch through the Boltzmann equations,
gravitational particle creation and the modified decay rates. It is seen
that if the particle content is created by the expanding universe alone, this
mechanism is able to reheat the universe to temperatures of about 104-
1012 GeV. Finally, in Chap. 6 the key findings of this thesis are summarized
and take a look at future regarding these findings.
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Chapter 1

The Early Universe

The study of the early universe began taking shape somewhere in the 1980s
when ideas from modern particle physics were adopted into cosmological
context in a wide range of topics1 to what is nowadays known as particle
cosmology. The Standard Model of particle physics provided an under-
standing of physics up to the electroweak scale of about 250 GeV and using
ideas from particle physics, models could be constructed to discuss physics
even up to the Planck scale of about 1019 GeV. Applying these ideas and
models, a wealth of interesting and compelling scenarios which might have
taken place in the early universe began to emerge. These included events
with intriguing names such as baryogenesis, leptogenesis and inflation to
name just a few. Even the matter content may be envisaged to be some-
thing very strange and exotic like that of stiff matter [35–37] which can be
realized in a variety of scenarios.

In this chapter, we will embark on a brief journey to these earliest of
times. Topics will be picked up only from those needed for sufficient un-
derstanding of the results discussed in this thesis. We will consider the
spatially flat Robertson-Walker cosmological model as it is well supported
by observational evidence [28, 29, 38]. To lay the background for the re-
sults of Chap. 5, we consider the decay of a massive particle into massless
particles with the help of the Boltzmann equations. In doing so, special
care is taken with the fact in mind that in a curved spacetime the decay
rates become time dependent. Finally, we will take a brief look at cos-
mological inflation which gives the background for studying reheating in
Chap. 5 through the Boltzmann equations. Throughout the thesis we will
use natural units with ~ = c = 1 unless otherwise stated.

1See e.g., [32–34] and references therein.
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18 The Early Universe

1.1 Standard Cosmology

The cosmological principle, a premise at the heart of contemporary cos-
mological models, states that no observer occupies a preferred position in
the universe. It looks the same no matter who you are or wherefrom you
look at it. To put it more precisely, the universe is said to be spatially
homogeneous and isotropic. But certainly the universe cannot share these
properties on all scales. Indeed, on a small scale the universe looks anything
but; it is filled with stars, galaxies and galaxy clusters ranging from a mere
1 light year in size of a star to the enormous sizes of about 107 light years
for galaxy clusters. But increasing still the cosmic length scale uniformity
does begin to emerge and on scales larger than those of the galaxy clus-
ters the universe begins to look spatially homogenous and isotropic, a fact
which is supported by many experiments, most manifestly in the unifor-
mity of temperature in the CMB [28, 29] and on the large-scale structure
of the universe [38]. Taking this large scale viewpoint, a natural starting
place for a cosmological model is therefore a mathematical description of
the spacetime based on this principle.

1.1.1 The Robertson-Walker Metric

Based on the cosmological principle, a suitable metric describing a universe
with homogeneous and isotropic spatial sections is given by the Robertson-
Walker metric [39, 40]

ds2 = dt2 − a(t)2
[ dr2

1− κr2 + r2dθ2 + r2 sin2 θdφ2
]
, (1.1.1)

where the scale factor a(t) is a dimensionless function of the coordinate
time t and (r, θ, φ) are the spherical coordinates. The sign convention
(+,−,−,−) is used. The spatial curvature of the universe is character-
ized by the parameter κ with κ < 0 corresponding to a negatively curved,
κ > 0 to positively curved and κ = 0 to a spatially flat space. However,
experimental data from various independent sources confirm the universe
to be spatially flat to a high degree [28, 29] and these observations give cre-
dence for a study of a spatially flat Robertson-Walker metric in particular.
In this case κ = 0 and the metric simplifies into the form

ds2 = dt2 − a(t)2dx2, (1.1.2)
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where the bold face denotes the spatial section given in cartesian coordi-
nates (x, y, z). In this form, the metric is said to be given in comoving
coordinates. Often it is convenient to define a new time variable η, the
conformal time, as dt = a(η)dη and express the metric (1.1.2) as

ds2 = a(η)2(dη2 − dx2). (1.1.3)

It then follows directly that the spatially flat Robertson-Walker metric is
conformal to the Minkowski metric, i.e., gRWµν = a(η)2ηµν with a new time
variable η. Spacetimes sharing this property are said to be conformally
flat. This is an example of a conformal transformation in which the metric
tensor gµν is transformed as gµν → g̃µν = Ω(x)2gµν , for some continuous,
real-valued function Ω(x) of the spacetime coordinates [41].

1.1.2 Einstein’s Equations

The mathematical description for a spatially homogeneous and isotropic
metric forms only one part of the cosmological model and is geometrical
without any reference to gravity itself. To complete the cosmological model,
we still need to incorporate gravity into it. Gravity and the curvature of
spacetime are intertwined by the theory of general relativity in which the
curvature of the spacetime is related to the matter distribution in it. The
content of general theory of relativity is embodied in a set of differential
equations

Rµν −
1
2Rgµν = 8πGTµν (1.1.4)

known as Einstein’s equations, where Rµν is the Ricci tensor, R the Ricci
scalar and G denotes Newton’s gravitational constant. The energy and
momentum content of the universe is contained in the the stress-energy
tensor Tµν . Contracting both sides of the Eq. (1.1.4) gives a useful form as

Rµν = 8πG(Tµν −
1
2Tgµν), (1.1.5)

where T denotes the trace of the energy-momentum tensor. Being a set of
second-order nonlinear partial differential equations for the metric gµν , the
Einstein’s equations are extremely difficult to solve in any sort of generality.
Therefore, the first step to finding solutions to the Einstein’s equations is
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to describe the matter content of the universe in terms of Tµν .
A good approximation to the form of matter is found by applying the

cosmological principle to the tensor Tµν itself. In this case the underlying
symmetries force the energy-momentum tensor of the universe to take the
form of a perfect fluid which is completely characterized by the rest-frame
energy density ρ and an isotropic pressure p [34]. From the general form of
the stress-energy tensor for a perfect fluid

Tµν = (ρ(t) + p(t))uµuν − p(t)gµν , (1.1.6)

where the four velocity of the fluid is denoted by uµ, one obtains in the rest
frame uµ = (1, 0, 0, 0) a convenient form,

Tµν = diag(ρ,−p,−p,−p), (1.1.7)

by raising an index in Eq. (1.1.6). The time dependence of the functions
ρ and p has been suppressed to clarify notation, a convention which will
mostly be used from henceforth. With this perfect fluid approximation,
the Robertson-Walker metric (1.1.2) can be inserted into the Einstein’s
equations (1.1.5) to obtain the relationship between the expansion of the
universe and its matter content, the Friedmann equations. For the 00-
component of (1.1.5) we have

ä

a
= −4πG

3 (ρ+ 3p). (1.1.8)

With the help of this equation, the ii-components may be written as

H2 = 8πG
3 ρ, (1.1.9)

where the Hubble parameter H is defined as H ≡ ȧ/a and the dot refers
to derivation with respect to the coordinate time t. Finally, from the con-
servation of the stress-energy tensor ∇µTµν = 0, where ∇µ denotes the
covariant derivative, one obtains the continuity equation as

dρ

dt
+ 3 ȧ

a
(ρ+ p) = 0. (1.1.10)

With this basic formalism, we turn to the description of the evolution of
the universe.
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1.1.3 Matter Content and Evolution of the Universe

Once the evolution of the energy density ρ from Eq. (1.1.10) is known,
the actual dynamical evolution of the universe is obtained by solving the
Friedmann equation (1.1.9) for the scale factor a(t). To solve the continuity
equation (1.1.10), a relationship between the pressure and energy density
can be introduced in the form of an equation of state,

p = ωρ, (1.1.11)

where the equation of state parameter ω is assumed to be a constant. With
this assumption, Eq. (1.1.11) describes most of the common cosmological
fluids like radiation and matter. The conservation of energy (1.1.10) is now
given by

dρ

dt
+ 3 ȧ

a
(1 + ω)ρ = 0 (1.1.12)

with a solution of the form

ρ(t) = ρ0a
−3(1+ω), (1.1.13)

where the value of the constant ρ0 is fixed by initial conditions. Plugging
this solution into the Friedmann equation (1.1.9), one obtains in the case
of a spatially flat universe

a(t) = bt
2

3(1+ω) , (1.1.14)

where b is a positive constant controlling the expansion rate of the universe
again fixed by initial conditions.

The evolution of the universe is therefore seen to depend on the mat-
ter content through the equation of state parameter ω and it is of utmost
importance to understand the nature of the matter driving the expansion.
Direct evidence from the CMB provides support for an early universe dom-
inated by radiation [28, 29] and after that the universe is known to be
matter-dominated as the structures were formed. These universes have the
equation of state parameters ω = 1/3 and ω = 0, respectively and are
governed by the scale parameter a(t) ∝ t1/2 for radiation and a(t) ∝ t2/3

for matter. Of course, in the very earliest of times it is by no means un-
reasonable to envisage a universe dominated by a matter of very exotic
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nature. One type of exotic matter in particular has received much atten-
tion lately; a fluid obeying the stiff equation of state ρ = p. The intrigue
in this particular equation of state lies in the possibility that an early stiff-
matter-dominated era may well have existed, since the stiff matter energy
density scales as ρ ∝ a−6 diluting much faster than radiation, for which
ρ ∝ a−4. Indeed, the implications of an early stiff matter era near the
singularity has been much discussed [35–37] and also a more general stiff
matter cosmology has been studied [42]. An early stiff matter era may also
have implications for baryogenesis [43] and Big Bang Nucleosynthesis [44]
and it also appears on various inflationary and reheating scenarios [45–53].

1.2 Thermodynamics in the Early Universe

The early universe was extremely hot and dense and in this environment
particle interactions Γ occurred very rapidly compared to the expansion
rate H i.e., Γ� H. The interactions were so frequent that any fluctuation
in their energy density would be smoothed out and thermal equilibrium
would be reached. This makes the equilibrium description of the early uni-
verse is a very good approximation. But this is not always the case. Once
Γ ∼ H, the equilibrium description is no longer a good approximation be-
cause the interactions do not occur rapidly enough to bring the system
into thermal equilibrium. The particles will then decouple from the ther-
mal plasma, but they will do so at different times because the interaction
rates Γ are different for different particle interactions and masses. The
equilibrium thermodynamic description therefore fails at Γ ∼ H and an
out-of-equilibrium description is needed. This description is provided by
the Boltzmann equations which will be reviewed following [32].

1.2.1 The Boltzmann Equations

The evolution of a particle’s phase space distribution function fi(pµ, xµ) is
governed by the Boltzmann equation [32]

L[fi] = C[fi], (1.2.1)

where C is the collision operator characterising interactions between par-
ticles and L is the Liouville operator. The index i represents a particle
species. Due to homogeneity and isotropy of a Robertson-Walker universe,
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the phase space density function fi(E(p), t) is a function of energy E and
time t only and the Liouville operator is given by [32]

L[fi] = E
∂fi
∂t
− ȧ

a
|p2|∂fi

∂E
. (1.2.2)

Using the definition of number density n in terms of phase space density f ,

ni = gi
(2π)3

∫
fi(E, t)d3p, (1.2.3)

the Boltzmann equation for a non-relativistic particle in a Robertson-Walker
universe can be cast in integral form as

ṅi + 3Hni = gi
(2π)3

∫
C[fi]

d3p

E
, (1.2.4)

where gi denotes the internal degrees of freedom of the particle. Given in the
form (1.2.4), the Boltzmann equations are a set of coupled integral-partial
differential equations for all species present. In many cases simplifications
can be made to reduce the problem to a single integro-differential equation
for the particle species of interest. One of the most common uses of Boltz-
mann equations encountered is an out-of-equilibrium decay of a massive
particle.

1.2.2 Out-of-Equilibrium Decay

The out-of-equilibrium decay process where a non-relativistic φ particle
decays into ϕ particles is described by the Boltzmann equation [32]

ṅφ + 3Hnφ = −Γϕnφ. (1.2.5)

Here Γϕ denotes the decay rate of the φ particles to decay into ϕ particles.
The physical significance of the terms is manifest. The second term on the
left side accounts for the dilution of the φ particles due to expansion and
the right-hand side accounts for their decay into ϕ particles. For a non-
relativistic φ particle with mass m, the energy density is given by ρφ = mnφ,
and the evolution of the energy density is

ρ̇φ + 3Hρφ = −Γϕρφ. (1.2.6)
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The solution of (1.2.6) is readily found as

ρφ(t) =
(a(t0)
a(t)

)3
ρφ(t0)e−

∫ t
t0

Γϕdt′
, (1.2.7)

where t0 indicates the initial time. It is worth noting that in the absence
of interactions, Eq. (1.2.6) reduces to the energy conservation equation
(1.1.10). If we assume that the energy released by the decay of the φ
particles is rapidly converted into the energy of some relativistic particles
ϕ, the energy density of the universe resides only in these two components.
The Boltzmann equations for the relativistic species is given by

ρ̇ϕ + 4Hρϕ = Γϕρφ, (1.2.8)

where the right-hand side now accounts for the creation of ϕ particles via
the decay. For relativistic particles, the factor of 4 in the second term on
the left is due to redshift. A formal solution is again easily found,

ρϕ(t) = 1
a(t)4

∫ t

t0
Γϕρφ(t′)a(t′)4dt′ +

(a(t0)
a(t)

)4
ρϕ(t0). (1.2.9)

The solutions (1.2.7) and (1.2.9) describe the evolution of the energy den-
sities of these two components in the universe. Eventually, if the non-
relativistic particles decay, their energy density is transferred to radiation.
If the universe is initially dominated by non-relativistic matter, it will later
become the subdominant form due to decays and radiation will start to
dominate at some point ρφ(teq) = ρϕ(teq), where teq denotes the equilib-
rium time. The universe then transforms from a matter-dominated one into
a radiation-dominated universe.

In the preceding calculations it is usually assumed that the decay rate
Γϕ is time-independent simplifying considerably the integrations. This as-
sumption is of course valid when using decay rates obtained in Minkowskian
field theory, but in a curved spacetime when using quantum field theory
in curved spacetime to calculate the decay rates, this does not need to be
so. We have therefore left the integral over the decay rate explicit in Eq.
(1.2.7) in anticipation of later chapters.
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1.3 Inflationary Universe

Although the standard cosmological model has been very succesful in de-
scribing the evolution of the universe and direct evidence supports its va-
lidity all the way back to primordial nucleosynthesis, it is not without its
shortcomings. A major issue concerns the initial conditions which have
produced the universe as we see it today. Although the spatial geometry of
the universe is observed to be very flat to a high degree, the initial condi-
tions required for this to happen would have had to be set to an accuracy
of dozens of orders of magnitude. That such finely tuned initial conditions
would have occurred seems extremely unlikely. This is known as the flat-
ness problem. Second, there is the horizon problem. According to CMB,
the regions in the whole observable universe, even two regions opposite of
one another, are to a high degree in thermal equilibrium. But because of
the constancy of the speed of light, these two opposite regions have had no
time to interact with each other in order to bring them to thermal equilib-
rium. The standard cosmological model has difficulty explaining how these
causally disconnected regions have reached thermal equilibrium.

These problems may be overcome by introducing a concept of cosmo-
logical inflation [54–56]. The basic idea behind this proposition is that in
the early stages of its evolution the universe underwent a rapid period of ac-
celerated expansion. Inflation, as originally proposed in 1981 by Guth [54],
provided answers to the shortcomings of standard cosmology but lead to a
situation where the universe would inflate forever [57]. A year later, Linde
[55] and independently Albrecht and Steinhardt [56] proposed an inflation
model in which inflation occurred by a scalar field rolling slowly down a
potential as inflation occurred.

While inflation is able to describe how the universe ended up being
spatially flat and homogeneous, its true merit lies in its ability to describe
how structure formation took place via small perturbations and at present
the main use of inflation lies in investigating this structure formation [33,
58]. But, even though this thesis does not concern the inflation scenario in
these applications, we give a short review of the ”new inflation” model.

1.3.1 Standard Inflation

In the most basic inflationary picture one has a single scalar field φ called
the inflaton, whose potential energy can lead to the accelerated expansion
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of the universe. The energy density and pressure for a scalar field in flat
Robertson-Walker universe are given by [32]

ρφ = 1
2 φ̇

2 + V (φ), (1.3.1)

pφ = 1
2 φ̇

2 − V (φ). (1.3.2)

The spatial gradient terms in the above equations have been suppressed,
since they scale as 1/a2 and quickly become irrelevant as the universe ex-
pands rapidly. The Friedmann equation and the continuity equation now
give

1
3M2

Pl

(1
2 φ̇

2 + V (φ)
)

= H2, (1.3.3)

φ̈+ 3Hφ̇+ V ′(φ) = 0, (1.3.4)

where the reduced Planck mass is defined as MPl ≡ (8πG)−1/2. Since
inflation is a period of accelerated expansion ä > 0, the first Friedmann
equation (1.1.8) leads to the requirement ρ+ 3p < 0. The implication for a
scalar field φ with energy density and pressure given by (1.3.1) and (1.3.2)
is that the potential energy of the inflaton dominates its kinetic energy.
Furthermore, in this case ρφ = −pφ, so ω = −1. With the potential energy
dominating, the standard way for analyzing inflation is the so-called slow-
roll approximation [33],

φ̇2

2 � V (φ), |φ̈| � 3H|φ̇| (1.3.5)

so that Eqs. (1.3.3) and (1.3.4) are approximately given by

H2 ≈ 1
3M2

Pl

V (φ), (1.3.6)

3Hφ̇ ≈ −V ′(φ). (1.3.7)

Defining the slow-roll parameters η and ε as

ε ≡ M2
Pl

2
(V ′(φ)
V (φ)

)2
, η ≡M2

Pl

V ′′(φ)
V (φ) , (1.3.8)
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the slow-roll conditions (1.3.5) are given by ε � 1 and |η| � 1 which is
seen by a direct substitution of Eqs. (1.3.6) and (1.3.7) into the slow-roll
conditions. Once these conditions are violated, inflation effectively ends.

1.3.2 Reheating the Universe

During inflation the size of the universe has increased tremendously and
as a result all the particles which might have been present have been di-
luted away leaving behind a cold universe practically void of all matter. To
recover the standard description of the evolution of the universe, a mecha-
nism for creating radiation to drive its expansion is needed, i.e., one needs
to reheat the universe.

Several methods to achieve this have been investigated in the literature.
In the original paper of Guth, this was achieved through collision of bubbles
[54], but the eternal inflation from which the model suffered prevented the
universe from reheating [57]. In the new inflationary models, reheating was
accomplished by a perturbative decay of oscillations near the minimum
of the inflaton potential [55]. Reheating may also occur by parametric
resonance in a process known as preheating in which the produced particles
decay extremely rapidly and the oscillation phase ends almost instantly
[59]. In this thesis we will consider a reheating mechanism via gravitational
particle creation, but as a prelude and to introduce some concepts, the main
aspects of reheating via oscillations are briefly reviewed.

Once the slow-roll conditions are violated, the motion of the scalar field
is once again described by Eq. (1.3.4). The scalar field moves rapidly into
the minimum of its potential and begins to oscillate. In this process parti-
cles are created which subsequently decay ultimately producing radiation.
To take this decay into account, a dissipative term Γϕφ̇ is added into Eq.
(1.3.4). By multiplying the ensuing equation by φ̇ and averaging over an
oscillation cycle, we obtain [32]

ρ̇φ + 3Hρφ + Γϕρφ = 0, (1.3.9)

which describes the evolution of the energy density of the scalar field. This
is recognized as the Boltzmann equation (1.2.6) for the decay of a nonrel-
ativistic particle. Indeed, the oscillations truly behave as non-relativistic
matter [32] and the results of Sec. 1.2.2 apply.

Assuming that the decay products ϕ are relativistic, the evolution of the
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energy density is described by the Boltzmann equation (1.2.9) for relativis-
tic particles. At the beginning of the oscillations the energy loss into the
ϕ particles is initially negligible compared to the energy loss from dilution
[4]. Hence, from the start of the oscillations up until t ∼ Γ−1

ϕ , the universe
is dominated by ordinary matter. In matter-dominated era a(t) ∝ t2/3, so
Eq. (1.2.9) gives

ρϕ(t) = 9M2
PlΓϕ
5t

(
1−

( t0
t

)5/3)
, (1.3.10)

where t0 denotes the end of inflation, i.e., the beginning of oscillations. It
has also been assumed that the initial density ρϕ(t0) = 0 because initially
there is no production of radiation. It is seen that the energy density ρϕ
increases from 0 to about 9M2

PlΓ2
ϕ/5.

Neither the perturbative decay nor the preheating mechanism produce
a thermal spectrum of the decay products [4]. In many situations it is
also important to know the temperature at which the universe takes on a
thermal distribution. Therefore, the decay products need to interact with
each other and thermalize to bring the system into thermal equilibrium.
On that moment, the energy density for these relativistic particles is given
by ρϕ = g∗π

2T 4/30, where T denotes the temperature and g∗ the effective
degrees of freedom. The universe becomes radiation dominated at the time
t ∼ Γ−1

ϕ when the φ particles decay rapidly. The temperature, known as
reheating temperature, at this time is

T (t = Γ−1
ϕ ) ≈ 1.5g−1/4

∗
√
MPlΓϕ, (1.3.11)

and after the evolution of the universe is described by the standard Hot
Big Bang model.



Chapter 2

Gravitation and Quantum
Fields

Quantum field theory in curved spacetime is the study of propagating quan-
tum fields on a curved spacetime, where the background metric is left un-
quantized [18, 19]. Since the Minkowskian metric familiar from flat space
quantum field theory is replaced by a more general metric governed by Ein-
stein’s equations, gravity is explicitly taken into account. From the early
studies of particle production [10–17] to results on quantum black holes [60–
64], this theory has proven to be rich and full of new physical phenomena.
Though all the aspects of the theory are interesting in their own regard, in
this thesis the main ingredient picked up is the gravitational particle cre-
ation in a spatially flat Robertson-Walker universe, which was extensively
studied by Parker in the 1960s. In his articles [10–12], among other things,
it was shown that particles are always created in pairs with opposite mo-
menta. Studies were not only constrained to isotropic universes, but also
on anisotropic universes and indeed, it may even be that particle produc-
tion leads to rapid isotropization of the metric in the very early universe
[13, 14]. While the current creation of particles due to expansion of space
is quite insignificant, it may have been an important phenomenon in the
early times of the universe when cosmic expansion proceeded rapidly [65].
To describe this phenomenon will lead us into concepts like causality of
spacetime and a special type of transformations called Bogoliubov trans-
formations. These concepts arise when quantization on a classical curved
spacetime is performed.

The starting point therefore lies on the quantization of a free field in a
curved spacetime. Although nature has shown us that most important phe-

29
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nomena occur when particles are interacting with each other, understanding
the quantization of free fields provides the basis for studying these inter-
actions because once the free particle is understood, mutual interactions
can be described by a perturbative scheme based on the free field. Even
more crucially, the free field quantization in curved spacetime also brings
out the most striking features of curved spacetime quantum field theory in
a clear manner. Once a grasp of the fundamental notions is gained by the
quantization procedure of the free field one is able to move to interactions
with physically motivated procedures. Without loss of generality we will
consider a real scalar field because any complex scalar field can be expressed
in terms of two real scalar fields. This not only helps to clarify the pro-
cedure but also brings out the features characteristic to curved spacetime
field theory more transparently. Quantizing the spinor field is also touched
upon from the parts necessary for the later chapters.

2.1 Canonical Quantization in Curved Space

To quantize fields in curved spacetime one tries to transfer the quantization
procedure of the Minkowskian quantum field theory to curved space in the
most general fashion possible. While the procedure proceeds in quite similar
fashion, a time-dependent metric tensor and curved spacetime introduces
some subtleties peculiar to curved space alone. In the following quantization
procedure we will focus mainly on understanding concepts rather than on
mathematical rigor.

Speaking of these peculiarities, the common method in physics to de-
scribe the evolution of a system as an initial value problem, i.e., the evolu-
tion of the system is described uniquely once the initial state of the system
is known at some initial time, needs to be stated more precicely. This is be-
cause in curved spacetime this is not necessarily always true since causality
may be violated in certain spacetimes. To be able to describe the system
and to find a unique solution for the field equations along with a consistent
quantization prescription, we will restrict to a class of spacetimes which
are globally hyperbolic i.e., those admitting a Cauchy surface1. Given ini-
tial conditions on a Cauchy surface determine the future (and the past)
uniquely. While it is possible to try to quantize the theory without this
restriction [67, 68], for the purpose of this thesis, we are only interested in

1For technical definitions see e.g., [66].
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the globally hyperbolic spacetime like the Robertson-Walker universe.
To begin, the physics of flat spacetime must be first generalized into

curved spacetime. This means that the action functional for the system
must be constructed so that it is invariant under general coordinate trans-
formations according to the principle of general covariance instead of ordi-
nary (global) Lorentz invariance. The simplest way to achieve this is the
minimal coupling prescription, where the Minkowskian metric ηµν is re-
placed by a general metric gµν , the ordinary derivatives ∂µ by the covariant
derivative ∇µ and dnx by the invariant volume element

√
−g dnx, where g

denotes the determinant of the metric. With the assumption of global hy-
perbolicity and a generally covariant action, the quantization may proceed.
We will consider a field φa, where a denotes the different fields, propagating
in a classical spacetime with a line element ds2 = −gµνdxµdxν .

2.1.1 Canonical Formalism

The generally covariant classical action functional S for the system in an
n-dimensional spacetime is given by

S[φa(x)] =
∫
L(φa(x),∇φa(x), gµν(x))dnx, (2.1.1)

where the Lagrangian density is denoted by L and∇ denotes collectively the
covariant derivatives of the field which reduce to ordinary partial derivatives
for a scalar field. The factor of

√
−g of the volume element has been

absorbed into L and the spacetime coordinate x includes both spatial and
temporal coordinates. The equations of motion are found by varying the
action (2.1.1) with respect to the fields φa and requiring the variation to
vanish. This yields the Euler-Lagrange equations of motion for the scalar
field

∂L
∂φa
− ∂µ

( ∂L
∂(∂µφa)

)
= 0, (2.1.2)

while variation with respect to the metric yields the energy-momentum
tensor Tµν defined by

Tµν ≡ − 2√
−g

δS

δgµν(x) , (2.1.3)
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where δS/δgµν referes to the functional derivative.
To proceed with the introduction of the canonical commutation relations

and canonical momentum, one must proceed with more subtlety because
of the dynamical nature of spacetime and causality already alluded above.
It is here where the assumption on global hyperbolicity becomes necessary
as it allows one to choose a time coordinate t such that every surface of
constant time is a Cauchy surface [69, 70]. One would therefore expect the
theory to have a well defined classical evolution from the initial conditions
given at a Cauchy surface and indeed it can be shown to be true [71]. The
canonical momentum π can therefore be defined as

πa(x) = ∂L
∂(∂0φa)

, (2.1.4)

and with the help of πa the Hamiltonian H is defined as

H =
∫

[π(x)∂0φ(x)− L(x)]dn−1x. (2.1.5)

In the canonical quantization, the field φ and its conjugate momentum
π are promoted to operators acting on a Hilbert space and satisfying the
commutation relations

[φa(t,x), φb(t,x′)] = 0,
[πa(t,x), πb(t,x′)] = 0, (2.1.6)
[φa(t,x), πb(t,x′)] = iδabδ(x− x′),

defined on the same constant time hypersurface. These relations can be
shown to be independent of the spacelike hypersurfaces chosen to repre-
sent the equal time and of coordinate systems within them, i.e., they are
covariant [72]. With this basic formalism, we can now proceed with the
quantization of a free scalar field.

2.1.2 The Free Scalar Field

In generalizing the Lagrangian density from the special relativistic theory
into curved spacetime, one often seeks the simplest generalization which
reduces to the ordinary free field Lagrangian in the absent of gravity. The
simplest curved space generalization of a Lagrangian density for a neutral
real scalar field φ is given by
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L = 1
2
√
−g(∂µφ∂µφ−m2φ2 − ξRφ2), (2.1.7)

where ξ is a dimensionless constant coupling the field to gravity via the Ricci
scalar R. The Euler-Lagrange equations (2.1.2) yield the Klein-Gordon
equation in curved spacetime,

�φ(t,x) + (m2 + ξR)φ(t,x) = 0, (2.1.8)

where � is the d’Alembert operator � ≡ ∇µ∇µ. The coupling ξ ap-
pearing in (2.1.7) and (2.1.8) is essentially arbitrary although there have
been attempts to restrict its value [73]. Two values most often used in
the literature are the minimal coupling ξ = 0 and the conformal coupling
ξ = (n − 2)/(4n − 4) which in four spacetime dimensions gives the value
ξ = 1/6. The former turns off the interaction with R and the latter makes
the field equations (2.1.8) conformally invariant for a free massless field. We
will return to this conformal invariance more in depth later in the chapter.

To quantize the theory, we must first find solutions of the Klein-Gordon
equation (2.1.8). To do that, we enclose the field φ in a box with a coordi-
nate length L and coordinate volume V = L3 and impose periodic boundary
conditions. This is to obtain a mathematically consistent theory and after
physical quantities have been calculated, the volume V may be taken to
infinity [19]. To begin, we introduce an inner product, the Klein-Gordon
inner product, for two solutions as

〈φ|ψ〉 = −i
∫

Σ
[φ(x)∂µψ∗(x)− (∂µφ(x))ψ∗(x)]

√
−gdΣµ, (2.1.9)

where dΣµ = nµdΣ with dΣ being the volume element in a given spacelike
hypersurface Σ and nµ a future-directed unit vector orthogonal to this
hypersurface. The scalar product (2.1.9) is independent of the choice of
the hypersurface [71]. Suppose then that {uk, u

∗
k} form a complete set of

solutions of the Klein-Gordon equation (2.1.8) which are orthonormal with
respect to the inner product (2.1.9), i.e., they satisfy the relations

〈uk|uk′〉 = δkk′ , 〈u∗k|u∗k′〉 = −δkk′ , 〈uk|u∗k′〉 = 0. (2.1.10)

The mode uk is said to be a positive mode in the sense that 〈uk|uk〉 > 0
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and similarly the mode u∗k is said to be negative mode because 〈u∗k|u∗k〉 < 0.
The field φ can then be expanded in terms of these solutions as

φ(t,x) =
∑

k
[akuk(t,x) + a†ku

∗
k(t,x)]. (2.1.11)

The quantization proceeds as described above by imposing the canonical
commutation relations which are equivalent to having the commutation
relations

[ak, a
†
k′ ] = δkk′ (2.1.12)

for the annihilation operator ak and creation operator a†k with other com-
mutators vanishing. The vacuum state |0〉 is defined in the usual way

ak |0〉 = 0, ∀k (2.1.13)

and the one-particle state |1k〉 is obtained by operating on the vacuum state
by the creation operator,

a†k |0〉 = |1k〉 . (2.1.14)

In quantum field theory one usually deals with many particle systems, so we
also introduce the Fock multi-particle states defined by acting repeatedly
with the creation operators on the vacuum state to produce a multi-particle
state

a†k1
a†k2
· · · a†kj |0〉 = |1k1 , 1k2 , ..., 1kj 〉 , (2.1.15)

with all kj distinct. If some of the kj are repeated nj times, there will be
a corresponding normalization factor of 1/

√
nj ! on the left-hand side.

The quantization in a globally hyperbolic spacetime has so far been
carried out in a fashion similar to Minkowski spacetime generalizing the
procedure straightforwardly to curved spacetime. There is, however, a ma-
jor exception in curved spacetime responsible of all the novel phenomena
associated with quantum field theory in curved spacetime, namely there is
no unique choice analogous to the positive mode solutions in Minkowski
space; the mode solutions uk appearing in (2.1.11) are not unique [74, 75].

In Minkowskian field theory the positive mode solution uk ∝ e−iωt,
with ω2 = k2 +m2, so that ∂tuk = −iωuk. Moreover, the operator ∂t is a
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global timelike Killing vector so a positive mode solution defined via this
Poincaré invariant criterion stays positive throughout the whole spacetime
[18]. This is to say, the vacuum is invariant under the Poincaré group
of transformations, while in a curved spacetime the Poincaré group is no
longer a symmetry group of the spacetime [72]. In a general spacetime
there may not be any timelike Killing vectors to define positive modes, or
they may be defined only in some specific regions of the spacetime. Hence,
there exists an unlimited number of different mode solutions, each equally
viable to be used in the expansion of the field operator φ. These expansions
are, however, related with one another leading us naturally to Bogoliubov
coefficients.

2.1.3 Bogoliubov Transformations

Consider therefore two distinct sets of mode solutions each with a corre-
sponding set of creation and annihilation operators satisfying the commu-
tation relations (2.1.12). Let these be {uk, u

∗
k} with {a

†
k, ak} and {vk, v

∗
k}

with {b†k, bk}. Let |0〉 denote the vacuum state of the uk modes defined by

ak |0〉 = 0, ∀k. (2.1.16)

and let |0̃〉 denote the vacuum state of the vk modes defined by

bk |0̃〉 = 0, ∀k, (2.1.17)

with the many-particle states are constructed in the usual way. The field
operator φ may be expanded in both basis solutions

φ(t,x) =
∑

k
[akuk(t,x) + a†ku

∗
k(t,x)] =

∑
k′

[bk′vk′(t,x) + b†k′v
∗
k′(t,x)].

(2.1.18)

The annihilation operators may be written as ak = 〈φ|uk〉, bk = 〈φ|vk〉
(cf. (2.1.10)) and the relationship between the creation and annihilation
operators in different regions are given by

ak =
∑
k′

(αkk′bk′ − β∗kk′b
†
k′). (2.1.19)

This is known as a Bogoliubov transformation and the complex coefficients
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αkk′ and βkk′ are known as Bogoliubov coefficients. In an isotropic space-
time their explicit form may be given in terms of the Wronskian of the
positive mode solutions [20]. Using the commutation relations for the anni-
hilation and creation operators, or alternatively the scalar product (2.1.10),
one obtains the following relations for the Bogoliubov coefficients,∑

s
(αksα

∗
k′s − β∗ksβk′s) = δkk′ (2.1.20)∑

s
(αksαk′s − βksβk′s) = 0 (2.1.21)

Moreover, even though the modes uk and vk define different vacuum states,
they are still both solutions of the Klein-Gordon equation (2.1.8) and are
therefore related to each other. We may therefore express the mode uk in
terms of the modes vk in a linear combination as

uk =
∑
k′

[αkk′vk′ + βkk′v
∗
k′ ]. (2.1.22)

The number operator Nk may be constructed in the usual way by defin-
ing Nk = a†kak and indeed it easily seen that 〈0|Nk|0〉 = 0. But these ak
operators are related by Eq. (2.1.19) to the bk operators. Therefore, we
may also ask what the number operator gives if applied to the vacuum |0̃〉
of these modes. In this case, by the same relation, we have

〈0̃|Nk|0̃〉 =
∑
k′
|βkk′ |2. (2.1.23)

This result can be interpreted as the vacuum |0̃〉 of the vk′ modes contain-
ing

∑
k′ |βkk′ |2 particles in the uk mode. The Bogoliubov coefficient βkk′

therefore becomes the essential quantity in evaluating particle creation in
curved spacetime and effectively it gives the average number of particles
created during the expansion of spacetime [10, 11].

2.1.4 Quantization of the Spinor Field

In generalizing the action for the scalar field above, we followed the mini-
mal coupling principle and replaced the flat spacetime quantities with their
curved spacetime counterparts. In truth, this procedure is valid only for ob-
jects which transform as tensors under Lorentz transformation and not for
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objects like spinors [34]. To incorporate spinors into general relativity, one
must adopt a different prescription, the formalism of tetrads or vielbeins.

In the tetrad formalism2 one takes advantage over the principle of equiv-
alence and attaches to every point in the spacetime an inertial coordinate
system ξa and introduces the tetrad fields eaµ as

dξa = ∂ξa

∂xµ
dxµ = eaµdx

µ, (2.1.24)

where the tetrad field is defined by ∂ξa/∂xµ ≡ eaµ. We adopt the convention
that the latin indices refer to the local inertial coordinates and the greek
indices to the general curved coordinates. The inverse tetrad is defined
analogously as

dxµ = ∂xµ

∂ξa
dξa = eµadξ

a, (2.1.25)

where ∂xµ/∂ξa ≡ eµa and the metric satisfies the relation gµν = ηabe
a
µe
b
ν .

The tetrad field may therefore be viewed as a transformation between the
arbitrary coordinates xµ and the inertial coordinates ξa. The tetrad field
has the property of transforming a vector with a general coordinate index
µ (or more generally a tensor) into a set of scalars via a contraction e.g.,
Aa = eaµA

µ, where Aa is a set of four scalars. The spinor may then be
brought into the framework of general relativity by focusing on these scalars
instead.

The Lagrangian density for a massive spinor field ψ in curved spacetime
can now be given by [18]

Lψ = i

2
√
−g(ψγµ∇µψ − (∇µψ)γµψ −mψψ), (2.1.26)

where ψ denotes the Dirac conjugate spinor ψ = ψ†γ0. The curved space
gamma matrices are defined via the tetrad as γµ = eµaγ

a, where γa denotes
the usual flat space gamma matrix. The curved space gamma matrices
satisfy the usual anticommutation relations

{γµ, γν} = 2gµν (2.1.27)

and the covariant derivative is defined with the help of a spin-connection
2See e.g., [34, 76].
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Γµ as

∇µ := ∂µ + Γµ, (2.1.28)

where (assuming no torsion),

Γµ = 1
8[γa, γb]eaν∂µebν . (2.1.29)

By varying the action one obtains the Dirac equation for a ψ-particle in
curved space

iγµ∇µψ −mψ = 0. (2.1.30)

A corresponding equation will be obtained for the ψ-particle aswell. The
canonical quantization of the spinor field now follows closely the procedure
given above. Instead of the commutation relations, the spinors satisfy the
anticommutation relations

{ψa(t,x), ψb(t,x′)} = 0, (2.1.31)
{πa(t,x), πb(t,x′)} = 0, (2.1.32)
{ψa(t,x), πb(t,x′)} = iδabδ(x− x′).

Introducing the inner product for the spinors over a hypersurface Σ chosen
to be a constant time surface,

〈ψ|φ〉 =
∫
t
dn−1xψ(t,x)γ0φ(t,x), (2.1.33)

the spinor field ψ may be expanded with time-dependent modes as

ψ(t,x) =
∑
±s

∑
k

[bskusk(t,x) + ds
†

k v
s
k(t,x), (2.1.34)

where a summation over the spinor indices s is made. Likewise, the conju-
gate field ψ may be expanded as

ψ(t,x) =
∑
±s

∑
k

[dskv̄sk(t,x) + bs
†

k ū
s
k(t,x)]. (2.1.35)
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Moreover, the spinors are normalized according to

u(k, s)†u(k, s′) = v(k, s)†v(k, s′) = 2|k|δss′ . (2.1.36)

This completes the quantization procedure for scalars and spinors in
curved spacetime sufficient for this thesis. A more detailed study may
be found in [18, 19] along with the quantization of the vector field. The
vector field quantization has been omitted because for the results of the
Publications in this thesis, it is not needed.

2.2 Particle and the Vacuum

As one might have foreseen from the previous quantization procedure, the
lack of a unique choice for the positive modes in curved spacetime, and
the vacua they define, lead to an interpretational problem of a particle in
curved spacetime. The question then becomes how to define the concept of
a particle3. One approach would be to define the particle operationally by
using particle detectors; a particle is something a particle detector detects.
The theory behind particle detectors has been studied in numerous papers
[77–81] and while it has its own merits, it is one which is not pursued here.
In this thesis, we are more concerned about a method which would be more
in the spirit of conventional in-out quantum field theory. The main tool
would be to use Bogoliubov coefficients and trying to establish a particle
concept.

But it is here, in this in-out formalism, where a possible solution lies
when trying to establish a well defined particle concept. Even though a
particle concept in the usual plane-wave sense cannot be established when
the effect of gravity is considerable, one may focus on a particular class of
spacetimes in which the effects of gravity disappear in these in- and out-
regions. It is not necessary to assume that the geometry is flat in these
regions, but if it is not some physically motivated criterion for defining
positive frequency solutions must be given [22].

More generally, if the spacetime admits regions where the particle con-
cept may be unambiguously established, as is the case for stationary space-
times [82], one may construct the vacuum states for these regions and com-

3The particle concept defined in terms of field modes is a global concept. For fields
taken as fundamental objects see e.g., [18, 19].
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pare them via the Bogoliubov transformation to find the Bogoliubov coef-
ficients. The problem therefore reduces to finding solutions of the Klein-
Gordon equation (2.1.8) and on identifying the positive field modes which
would reduce to the correct positive modes in the regions where the particle
concept may be established. In the following, these notions will be put into
a mathematical form which will serve as a basis of discussion in Chap. 4,
where the field modes obtained in Publications I-IV are presented.

2.2.1 In and Out Vacuum States

Based on the above discussion, we assume that a stable particle concept
may be unambiguously defined in the in- and out-regions. In the in-region,
the field can be expanded in terms of the in-region modes {uin

k , u
in∗
k } as

φ(t,x) =
∑

k
[ain

k u
in
k (t,x) + ain†

k uin∗
k (t,x)], (2.2.1)

where the set of creation and annihilation operators {ain†
k , ain

k } obey the
commutation relations [ain

k , a
in†
k′ ] = δkk′ in the in-region. These modes then

define a vacuum state in the in-region denoted as |0, in〉 in the usual way

ain
k |0, in〉 = 0, ∀k. (2.2.2)

In the out-region we consider another set of mode solutions {uout
k , uout∗

k } and
the corresponding creation and annihilation operators {aout†

k , aout
k } obeying

the commutation relations [aout
k , aout†

k′ ] = δkk′ now in the out-region. The
field can be expanded similarly in terms of these modes in the out-region.
The out-vacuum |0, out〉 is defined as

aout
k |0, out〉 = 0, ∀k. (2.2.3)

While the in-vacuum and the corresponding operators {uin
k , u

in∗
k } are de-

fined throughout the spacetime, they possess a known physical interpre-
tation only in the in-region and not necessarily so in the out-region. A
corresponding interpretation is also attached to the out-vacuum and the
corresponding operators {uout

k , uout∗
k }.

The creation and annihilation operators in the in- and out-regions obey
the usual commutation relations (2.1.12) in their respective regions, but
they do not do so with respect to each other in different regions. Hence,
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the commutation relations between the operators in the in- and out-regions
are given by [5],

[aout
k , ain

k′ ] = βkδk,−k′ , [aout†
k , ain

k′ ] = −αkδk,k′ (2.2.4)

[aout
k , ain†

k′ ] = α∗kδk,k′ , [aout†
k , ain†

k′ ] = −β∗kδk,−k′

The multi-particle states are constructed in the usual way in both re-
gions and the annihilation operators are related by the Bogoliubov trans-
formation (2.1.19). The focus is now on finding the positive field modes
which corresponds to these vacua.

In passing, we do note that as the vacuum state is not unique, there are
various ways to try to define it in curved spacetime and the vacuum given
above is only one. In the literature, many different vacuum states are found
and they each have their own purposes and places [61, 64, 83, 84]. One must
therefore be careful when talking about a vacuum in curved spacetime. In
this thesis, when talking about the vacuum, it will mean vacuum as defined
in the in- and out-regions by the above prescription.

2.2.2 Field Modes in Flat Robertson-Walker Universe

Although some general statements may be made on particle creation [11,
12], most often the explicit field modes are required in order to obtain
the form of the Bogoliubov coefficients βkk′ and the corresponding particle
spectrum. We will present the method for finding the field modes in a
spatially flat Robertson-Walker metric (1.1.3) given in conformal time.

First, the field φ may be decomposed as usual,

φ(η,x) =
∑

p
[apup(η,x) + a†pu

∗
p(η,x)], (2.2.5)

and because of the homogeneity of the spatial sections in a Robertson-
Walker spacetime, the mode solutions up are separable [18],

up(η,x) = eip·x

(2π)3/2a(η)
χp(η), (2.2.6)

where p ≡ |p|. The Klein-Gordon equation (2.1.8) for the positive mode
then reduces to the differential equation for the temporal part χp,
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χ′′p(η) +
(
p2 + a(η)2m2 +

(
ξ − 1

6
)
Ra(η)2

)
χp(η) = 0, (2.2.7)

where χp satisfies the Wronskian condition χ̇pχ
∗
p − χpχ̇

∗
p = i. Denoting

C(η) ≡ a(η)2, the Ricci scalar is given by [18],

R = 1
C

(3C̈
C
− 3Ċ2

C2

)
. (2.2.8)

To find the positive field modes, Eq. (2.2.7) must be solved. From the
solution one needs to find the correctly normalized combination, which
behaves like the field mode with which the in- and out-region particles
have been defined, e.g., if the in- and out-regions are Minkowskian, the
solution must reduce to the Minkowskian field modes in these regions. This
construction defines the field modes uin

p and uout
p . The caveat is, that even

though Eq. (2.2.7) looks like a quite simple differential equation, there is
no known general solution to this for a general scale factor a(η) even for
the conformal coupling. Therefore, a scale factor must be exactly chosen
and even if a solution for the differential equation is then found, it may be
that the positive mode solution which would reduce to known solution in
the in- and out-regions cannot be recognized.

To illustrate this proceduce, and later chapters in mind, we choose a
power-law expansion law a(η) = bηn/2, with b > 0 giving the Ricci scalar

R = 3n(n− 2)
2b2ηn+2 . (2.2.9)

It is now seen that as η → ±∞, the scalar curvature vanishes, the space-
time is slowly varying4 and a stable particle concept may be established in
these asymptotic in- and out-regions. The positive mode solutions in these
regions may be obtained by the prescription described above. But even for
a general power-law expansion a(η) = bηn/2 and conformal coupling, Eq.
(2.2.7) does not possess a solution when the parameter n is left unspecified,
i.e., the equation χ′′p(η) + (p2 + m2b2ηn)χp(η) = 0 is not exactly solvable
although for some special values of n solutions may be found. Most notably,
solutions may be found and positive modes recognized e.g., for universes

4i.e., dl

dηl
Ċ(η)
C(η)

η→±∞−→ 0, ∀l ≥ 0.
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which are dominated by stiff matter with n = 1 [85] and the de Sitter space
with n = −2 [84].

From the particle creation standpoint, it is important to solve Eq.
(2.2.7) for a general momentum p in order to find the explicit spectrum
of the created particles. In some instances, however, knowledge of only the
rest frame field mode may still be of importance in some calculations. Most
notably this may be used to study the decay of a massive particle in its rest
frame, for which knowing the rest frame field modes is sufficient. It turns
out that for a scale factor a(η) = bηn/2, Eq. (2.2.7) has an explicit solution
for p = 0 for any n. We will return to this in Chap. 4.

Before moving on we comment on the construction of the in- and out-
states. The use of η → ±∞ is the usual way for determining the in- and
out-regions, but is of course a little dissatisfying from a physical perspec-
tive because the spacetime needs to be completed by passing through the
singularity while for a realistic model the time should advance from zero
onwards. There is a way, however, to construct a stable particle concept in
the vicinity of the singularity η = 0 as was noted in [85]. Consider again Eq.
(2.2.7). As η → 0, for our chosen scale factor, the solutions χp are given
as plane waves in the neighborhood of η = 0. Hence, the field modes are
exact and a stable particle concept may be established. It must be stressed
though that this is not viable at the singularity, only in some neighborhood
of it where the scale factor is a(η0) with η0 in the neighborhood of η = 0. It
is this construction of the in-region near the singularity which will be used
in the results of this thesis in Chap. 4 and 5.

2.3 Conformal Transformations and Particle Cre-
ation

Conformal transformations are special kinds of transformations of the met-
ric which were studied by Penrose in the 1960s [41]. Essentially, it is a local
change of the metric scale along with an appropriate conformally trans-
formed field. But what Penrose showed in [41] was that under a conformal
transformation, the field equations for a free scalar field are invariant if
the mass is zero and the coupling ξ = 1/6 in four spacetime dimensions.
The connection between conformal transformations and particle creation
appeared in the early works of Parker [10–12] where he noticed that there
was no gravitational particle creation for particles of zero mass which are
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conformally coupled to gravity. This very fundamental notion is of great
importance and will ultimately help us in providing a way to appropriately
discuss about particle decay in curved spacetime.

On the other hand, if there is a mass term, a non-conformal coupling, or
something else which breaks the conformal invariance of the field equations,
the field modes get mixed and particle creation is indeed possible [19]. We
will therefore take a closer look at this interconnectivity with conformal
transformations and particle creation in curved spacetime. For simplicity
this will be done for the scalar field only in four dimensions, but generaliza-
tions to fields of higher spin and to higher dimensions yield similar results,
if not so straigthforwardly [41, 86].

2.3.1 Conformal Invariance

We start by considering a conformal transformation g̃µν = Ω2(x)gµν of the
metric. For the equations of motion to be invariant, it is sufficient that
the Lagrangian density is invariant under the transformation5, i.e. L̃ = L.
Recall the free field Lagrangian density for the scalar field given by

L = 1
2
√
−g(∂µφ∂µφ−m2φ2 − ξRφ2). (2.3.1)

We assume the field to transform as φ̃ = Ωqφ, where q is a parameter,
known as conformal weight, yet to be determined. Under the conformal
transformation the transformed Lagrangian density reads as

L̃ =Ω4

2
√
−g{Ω−2gµν(Ω2q∂νφ∂µφ+ q2Ω2q−2φ2∂µΩ∂νΩ + 2qΩ2q−1φ∂µΩ∂νφ)

− ξΩ2q−2Rφ2 − 6ξΩ2q−3φ2gµν∂νΩ∂µΩ−m2Ω−2φ2}. (2.3.2)

In order for the first term to become invariant, q = −1 must be chosen.
Moreover choosing ξ = 1/6 and performing a partial integration this equa-
tion can be written as

L̃ = L+ 1
2
√
−g∂ν(φ2gµν∂µ(ln Ω))− 1

2
√
−gm2Ω2φ2. (2.3.3)

The second term on the right hand side is now a surface term upon in-
tegration and therefore does not have effect on the equations of motion

5Note that
√
−g is included in the definition of L.
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and may be discarded. The key point to emphasize is that only with the
value ξ = 1/6 can the surface term be formed. Otherwise, for arbitrary
values of ξ, there would remain terms which could not be made invariant
by any choice of q. It is now evident from Eq. (2.3.3) that if the mass m
is non-zero, the Lagrangian density is not invariant under the conformal
transformation; the presence of a mass term in the Lagrangian breaks the
conformal symmetry.

The conditions under which the field equations are invariant in con-
formal transformations may therefore be established: the scalar field must
transform as φ̃ = Ω−1φ, the mass m = 0 and the gravitation coupling
ξ = 1/6. The conformal weight in this case is q = −1. Equivalent calcula-
tions may be made for other fields aswell, and in the case of a spinor field
ψ it can be shown that the weight is q = −2/3, i.e., ψ̃ = Ω−2/3ψ [86].

To obtain the field equations, we note that under the conformal trans-
formation, the functional derivative of the action transforms as

δS

δφ
= δS̃

δφ
= 1

Ω
δS̃

δφ̃
(2.3.4)

so the equations of motion transform as(
� + 1

6R
)
φ(x) = Ω3

(
�̃ + 1

6R̃
)
φ̃(x). (2.3.5)

Therefore, if φ is a solution of the original field equation(
� + 1

6R
)
φ(x) = 0, (2.3.6)

then φ̃ = Ω−1φ is a solution of the transformed equation(
�̃ + 1

6R̃
)
φ̃(x) = 0, (2.3.7)

or vice versa. While all this has been for a general metric, it turns out that
this formalism has quite important consequences for the spacetime which
is conformally flat, like the Robertson-Walker spacetime.
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2.3.2 Conformally Flat Spacetimes

The notion of a conformally flat spacetime was already introduced in Chap.
1. What we will do next is to make a conformal transformation which
takes us from the spatially flat Robertson-Walker spacetime into Minkowski
space. To use the results of last section, we adopt the notation where the
tilde refers to Minkowski space, i.e., we identify g̃µν = ηµν and choose
Ω(x) = a(η)−1. We then have ηµν = a(η)−2gRWµν , with RW referring to
the Robertson-Walker metric. In this case R̃ = 0 and the transformed
equations of motion (2.3.7) read as �̃φ̃ = 0. This has a solution in terms
of normal plane waves with η as the time variable. The solution in the
Robertson-Walker space can then be obtained by the relation φ = a−1φ̃.

All this means that the solution of the field equation for the conformally
coupled massless particles in the flat Robertson-Walker spacetime is just
the ordinary plane-wave solution times times the conformal factor,

φ(η,x) = 1
(2π)3/2

√
2ka(η)

∫
d3k(ake

−ikη+ik·x + a†ke
ikη−ik·x). (2.3.8)

The positive mode solutions may readily be identified. In this case however,
the positive mode solutions defining the in-vacuum (2.2.2) are the same as
the ones defining the out-vacuum (2.2.3). In this case there is no mixing of
the modes, βkk′ = 0, and there is no particle creation. As a consequence,
there exists a global preferred vacuum in the spatially flat Robertson-
Walker universe simply from the existence of one in the Minkowski space
[87]. A vacuum state constructed in this way appears sometimes in the
literature under the name of conformal vacuum [18].

We are therefore led to the important conclusion that in a conformally
flat spacetime conformally coupled massless particles are not created by the
expansion of spacetime. This notion appeared first in the papers of Parker
[10, 11] and is readily generalized to hold for massless spinors aswell [12], but
is not valid e.g., in certain anisotropic spacetimes where massless confor-
mally coupled particles may be created [14] or in the presence of a conformal
symmetry breaking interaction terms [88]. Hence, in order for particles to
be produced, the conformal symmetry must be broken. This conclusion will
take on an even more important meaning and place when we talk about
particle decay in curved spacetime.



Chapter 3

Mutually Interacting Fields
in Curved Spacetime

The goal of any physical theory is ultimately to match theory with experi-
ment. While the free field quantization has revealed novel phenomena in the
form of gravitationally created particles, this is a phenomenon involving no
matter interactions in itself. Therefore, in order to get a closer description
of the real world, interactions must be explicitly taken into account.

The development of the theory of interacting quantum fields in curved
spacetime was a natural extension to the free field quantization that took
place in the later decades of the 1900s. The focus was mainly on renor-
malization issues and self-interacting quantum fields [21, 22]. A closely
related topic of mutual interaction, where interaction takes place between
different species of particles, has been only scarcely investigated due to the
more difficult nature of the problem. Few extensive studies were made
in the early days, focusing not only on the physical interpretation but
also on the effect of the mutual interaction on particle creation processes
[5, 7, 8, 23, 24, 89, 90]. Interest in the mutual interactions waned for a
while, but lately the subject has gained renewed attention and found it-
self on studies of quantum electrodynamic processes in de Sitter spacetime
[25–27].

In contrast to the Minkowskian situation, the dynamical nature of the
spacetime brings new aspects to interacting field theory. New processes
forbidden in flat spacetime become possible due to lack of energy conserva-
tion [91] and the field may even decay into its own quanta because of this
[92, 93]. Moreover, the interaction itself may induce particle production
by breaking the conformal invariance of an otherwise conformally invariant

47
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free field theory [90] and even CPT invariance may be broken as the global
Lorentz invariance of the theory is lost [94, 95]. It is perhaps no surprise
that the physically relevant quantities, like cross sections, decay rates and
lifetimes, may greatly differ from those obtained in the usual flat spacetime
quantum field theory. Indeed, studies on these quantities have hinted on the
restricted applicability of the Minkowskian results in a curved spacetime
setting [5, 30, 31, 92, 93].

In this chapter we will take a dive into the vast subject of interacting
field theory. While generalizing the flat spacetime formalism, many techni-
cal aspects and details will be largely overlooked1 in favor of a clear concep-
tual understanding on interpretational issues presented by the curved back-
ground. These issues are found to be linked to the fundamental phenomena
of particle creation and a method to overcome these will be developed. The
main goal of this chapter is to arrive at a physically and conceptually clear
definition of a particle decay in curved spacetime.

3.1 Interacting Field Theory in Curved Space-
time

The introduction of field interactions to the theory has the effect of adding
nonlinear terms to the ensuing field equations. In flat spacetime solving
these equations exactly has proved to be an unsurmountable task and the
situation is hardly any simpler in curved spacetime.

Since the field equations cannot be exactly solved when interactions are
present, the standard method in both flat or curved spacetime, see e.g.,
[18, 97], is to assume that the interaction is adiabatically switched off in
some distant in and out regions. The generic field φ will then reduce to
free fields φin and φout respectively in these regions. In curved spacetime it
is in addition required that a stable particle concept may be established in
these regions. The free fields φin and φout can be quantized in the manner
described in Chap. 2 and the solutions may then be used to construct the
in and out particle states as described in Sec. 2.2.1.

With interactions one is interested in calculating the scattering ampli-
tudes, or the S-matrix elements. The main quantities of interest to be

1For more detail in technical aspects, see e.g., [96].
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calculated are therefore the transition amplitudes such as

〈out, 1p1 , 1p2 , . . . , 1pj |S|1kl , . . . , 1k2 , 1k1 , in〉 , (3.1.1)

describing the evolution of a particular in state into a particular out state.
For example, the transition amplitude for a decay of a massive φ particle
into two massless ψ particles would given by 〈out, 1ψk1

, 1ψk2
|S|1φp, in〉. The

probability for this process to occur is then given as the absolute value
squared of this amplitude.

The problem therefore is to calculate the transition amplitudes. Similar
to Minkowski space theory, reduction formulas for the transition amplitude
(3.1.1) can be obtained in curved spacetime with special care taken for the
fact that the in and out vacuum states are in general inequivalent [21]. The
reduction method does have its disadvantages though as it is not possible
to prescribe the vacuum state which is used in the calculation [18]. Fortu-
nately, the interaction picture approach is easily adapted from Minkowskian
field theory to curved spacetime setting to allow the calculation of the tran-
sition amplitudes [18, 22, 90]. It has the advantage of facilitating practical
calculations when interactions are present and is the one used in this thesis.

The curved spacetime nevertheless provides its own set of subtleties
even with this approach. Although these concepts generalize mathemat-
ically quite nicely to curved spacetime, interpretational problems are en-
countered in actually using them because, contrast to Minkowskian situ-
ation, the in and out vacuum states are generally inequivalent. An in-
terpretational issue is therefore attached to a transition amplitude such as
〈out, 1ψk1

, 1ψk2
|S|1φp, in〉 as will be later shown. But first we establish the form

for the S-matrix suitable for calculations and show how to perturbatively
calculate the transition amplitudes.

3.1.1 The Interaction Picture in Curved Spacetime

Suppose that the Hamiltonian density of the system H can be decomposed
into a free part H0 and interaction part HI as H = H0 +HI . Let |Ψ〉 be a
state vector, which in the interaction picture satisfies the Schrödinger-like
equation [18],

HI(x) |Ψ[Σ]〉 = i
δ |Ψ[Σ]〉
δΣ(x) , (3.1.2)
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where Σ(x) is taken to be a spacelike Cauchy surface through x. The
solution of (3.1.2) is found in terms of a unitary operator U defined by

|Ψ[Σ]〉 = U [Σ,Σ0] |Ψ[Σ0]〉 , (3.1.3)

where Σ0 denotes the initial Cauchy surface taken to be at some fixed time.
Inserting this expression into (3.1.2), one obtains the equation

HI(x)U [Σ,Σ0] = i
δU [Σ,Σ0]
δΣ(x) , (3.1.4)

with an initial condition U [Σ0,Σ0] = 1 as easily seen from Eq. (3.1.3).
With this initial condition, equation (3.1.4) can be written in integral form
as

U [Σ,Σ0] = 1− i
∫ Σ

Σ0
HI(x′)U [Σ′,Σ0]dnx′, (3.1.5)

where the integration is understood to be taken between two Cauchy sur-
faces. The solution may be found by iteration, e.g., the term U [Σ′,Σ0] in
the integrand is given as

U [Σ′,Σ0] = 1− i
∫ Σ′

Σ0
HI(x′′)U [Σ′′,Σ0]dnx′′, (3.1.6)

where Σ ≥ Σ′ ≥ Σ′′. Substitution into (3.1.5) gives

U [Σ,Σ0] =1− i
∫ Σ

Σ0
HI(x′)dnx′

+ (−i)2
∫ Σ

Σ0

∫ Σ′

Σ0
HI(x′)HI(x′′)U [Σ′′,Σ0]dnx′′dnx′. (3.1.7)

The term U [Σ′′,Σ0] is then again solved from (3.1.5), inserted into (3.1.7)
and the process continues. Because the integrations are time ordered Σ ≥
Σ′ ≥ Σ′′ ≥ · · · , we may introduce the usual time-ordering operator T̂ in
the Hamiltonian products without changing anything. As in flat spacetime,
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the integration intervals may be symmetrized [18] so that

U [Σ,Σ0] = 1 +
∞∑
m=1

(−i)m

m!

∫ Σ

Σ0
T̂ (HI(x1) · · ·HI(xm))dnx1 · · · dnxm

≡ T̂ exp[−i
∫ Σ

Σ0
HI(x′)dnx′]. (3.1.8)

We may therefore formally define the S-matrix describing the transition
from an initial state into a final state via the unitary operator U ,

S ≡ U [Σout,Σin], (3.1.9)

for some suitably chosen in- and out-regions of the spacetime. Using the
relations (3.1.3) and (3.1.9), the state vector in the out region may be
expressed via the S-matrix as

|Ψ[Σout]〉 = S |Ψ[Σin]〉 . (3.1.10)

3.1.2 Perturbative Calculations

With the S-matrix defined, we can return to the calculation of the tran-
sition amplitudes. At this point we assume that we are dealing with
non-derivative couplings so that HI = −LI and that the spacetime is
globally hyperbolic. The initial state is chosen as a multi-particle state,
|Ψ[Σin]〉 = |1k1 , 1k2 , . . . , 1kj , in〉. The transition amplitude (3.1.1) can now
be calculated within the formalism presented above. The S-matrix is de-
fined via Eqs. (3.1.9) and (3.1.8) as

S = lim
β→0+

T̂ exp[i
∫ Σout

Σin
e−β|x

0|LI(x′)dnx′]. (3.1.11)

In the above a switch off e−β|x
0| for the interaction has been introduced

to ensure convergence2 and x0 denotes the time coordinate. The S-matrix
can be expanded as

S = 1 + i lim
β→0+

∫
T̂ e−β|x

0|LIdnx+ · · · , (3.1.12)

2If the time interval is finite, this switch-off is not needed.
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as in Eq. (3.1.8). In this thesis we are only concerned with 1st order
processes, also known as tree-level processes, so the higher order terms in
Eq. (3.1.12) are of no relevant use to us. The first term, which is unity,
simply describes the possibility that no interaction takes place. We refer to
this as the zeroth order term of the expansion. The first order transition
amplitude is then given by

A ≡ 〈out, 1p1 , 1p2 , . . . , 1pj |A|1kl , . . . , 1k2 , 1k1 , in〉 , (3.1.13)

where

A = i lim
β→0+

∫
T̂ e−β|x

0|LIdnx. (3.1.14)

In principle the calculation of the transition amplitude proceeds as in flat
spacetime, where one substitutes the free field solutions into LI with the
exception of replacing the plane-wave solutions with their curved space
counterparts [18]. However, the curved spacetime presents some subtleties
on its own complicating this rather straightforward generalization.

3.1.3 In-Out Probability Amplitudes

It is tempting to generalize this in-out scheme into curved spacetime as pre-
sented previously. One would take an initial state containing finite amount
of particles and with the S-matrix scheme compare it with an out-state
containing finite amount of particles. As simple as it sounds, in curved
spacetime this approach leads to severe consequences which can ultimately
be tracked to the phenomena of gravitational particle creation.

To see how particle creation affects the in-out formalism, consider,
as was already shown by Parker in 1969, the vacuum amplitude squared
| 〈out, 0|0, in〉 |2, which can be expressed as [11],

| 〈out, 0|0, in〉 |2 = exp
(
− V

(2π)3

∫
log |αp|2d3p

)
. (3.1.15)

Here αp is the Bogoliubov coefficient. With V being the normalization
volume, this expression diverges as V →∞. This is a direct consequence of
particle creation: since the expansion creates particles in all modes, there
is a vanishing probability for the vacuum state to stay as a vacuum state
in the infinite limit.
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But the vacuum amplitude appears also in the S-matrix amplitude for
any general particle state. Consider e.g., a state containing a finite amount
of c massive φ particles and r massless ψ particles with definite momenta
which can be scalars, fermions or vectors. Construct for these an in-state
|1φp · · · 1ψk · · ·〉 ≡ |cφrψ〉 as described in Chap. 2 and likewise for the out-
state. Hence the transition amplitude is 〈out, dφsψ|S|cφrψ, in〉. Inserting a
complete set of in-states in between, the amplitude can be expressed as

〈out, dφsψ|S(z)|cφrψ, in〉 =
∑
g,t

〈out,dφsψ|gφtψ, in〉 〈in, gφtψ|S(z)|cφrψ, in〉 ,

(3.1.16)

where z denotes the order of the S-matrix operator, i.e., z = 0 corresponds
to no interaction, z = 1 to first order etc. Consider then the first factor on
the right-hand side of Eq. (3.1.16). As shown by Audretsch and Spangehl
[5], this term may be expressed as

〈out, dφsψ|gφtψ, in〉 = 〈out, 0|0, in〉 f(α, β), (3.1.17)

using commutation relations for the in and out annihilation and creation
operators (2.2.4) where f is a finite function of the Bogoliubov coefficients
and independent of the normalization volume V . The problem now becomes
evident: if one were to square the transition amplitude of Eq. (3.1.16), the
result would be a vanishing probability as V → ∞ for all orders of the
mutual interaction generalizing the earlier result of Parker in [11]. As a
consequence of (3.1.15), dividing the transition amplitude (3.1.17) by the
vacuum amplitude is a quantity with no direct physical meaning, although
this method has also been used in the literature [30, 31].

In the same manner as for the vacuum amplitude, the probability of
finding a final state |dφsψ, out〉 with finite amount of particles and other
modes empty, has a vanishing probability. The reason for this stems from
the particle creation which fills all the modes already in the zeroth order.
We are therefore led to the conclusion that in curved spacetime the normal
Minkowskian type in-out transition amplitudes lose their physical mean-
ing. The fact that particle creation so severely interferes with the mutual
interaction process in curved spacetime forces us to consider different ap-
proaches to the description of particle decay. Fortunately, such approaches
have been developed in curved spacetime context while still retaining the
conceptual basis of the Minkowskian in-out transition amplitude scheme.
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3.2 The Added-Up Probability
As seen in the last section, particle production in curved spacetime severely
interferes with mutual interaction and the decay process itself. As the con-
cept of particle loses its meaning in curved spacetime, it sounds reasonable
that it also renders the decay process itself an ambiguous one. Since the
decay rate does not have the same conceptual meaning as in Minkowski
spacetime, the normal in-out method is not directly transferable to curved
spacetime and instead one must use an alternative method of calculation.
Indeed, as noted already in [98, 99], the possibility of particle creation from
the vacuum points out that the standard Feynman rules could be modified.

The problem relates back to the non-uniqueness of the vacuum states
|0, in〉 and |0, out〉 which are in general different from each other. So while
one can calculate a transition amplitude like 〈out, 0|P |0, in〉, for some op-
erator P , it is not the same as the physically relevant expectation values
〈in, 0|P |0, in〉 taken with respect to the same vacuum state. This type of
ambiquity in the formalism requires alternative formulations of the prob-
lem. The in-in, closed-time-path, or Schwinger-Keldysh formalism seems
particulary suitable for curved spacetime [100, 101] but leads quickly to ex-
tremely difficult expressions and calculations. Figuratively speaking, in the
in-in formalism one propagates the field forward in time and then ”back-
wards in time”, forming a closed time loop. As a consequence, this for-
malism also increases the number of Feynman diagram to be included in
the calculations [100]. Moreover, as noted by Kay, the in-in formalism au-
tomatically takes care of the infinite particle creation divergences [99]. A
deeper dive into this subject is beyond the scope of this thesis.

In the spirit of the in-in formalism, Audretsch and Spangehl proposed
some time ago a method for calculating transition amplitudes in curved
spacetime which they called the added-up probability [5]. This procedure
was physically motivated on the basis of the issues expressed in the last
section and is more tied to a traditional detector problem of flat spacetime.
It is also the method used in the calculations in this thesis and we will
therefore give a sufficient introduction into it following [5]. We will work
within the interaction picture presented in the last section and assume that
the spacetime is conformally flat, for reason soon to be given.
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3.2.1 What Can You Detect?

The starting point in establishing a physically motivated decay rate formula
is to consider the whole problem as a detector problem. Like in flat space-
time theory, the final state particles are something that a particle detector
would detect. In a curved spacetime, however, a single particle counter can
only register the combined effect of the background and mutual interaction
[23]. If one has a detector detecting massive particles, there is no way for
the detector to discern whether these massive particles are a result of the
interaction, or whether they were created gravitationally by the expansion.
It is impossible to seperate out these two contributions and here lies the
root of the whole problem. Moreover, the gravitationally created particles
decay themselves complicating the detection problem. We must therefore
pose the question of decay a little differently.

To obtain information regarding the mutual interaction only, one should
fix the in-state and concentrate on the out-states containing a specific in-
dicator configuration which the detector could detect and which would be
minimally disturbed by particle creation from the vacuum. An indicator
configuration is therefore a configuration which cannot be produced from
the background. On a conformally flat spacetime, one such configuration
is provided by massless conformally coupled particles. As seen in Sec. 2.3,
these are not produced gravitationally by the expansion of the spacetime.
Therefore, a detection of a massless particle3 in the out-state means that
it has solely been created or influenced by the mutual interaction only.

A physically reasonable question therefore is what would be the prob-
ability of detecting a massless particle state regardless of what has hap-
pened to the massive particle states, since these are always created by the
expansion. Technically this is achieved by summing over all the massive
out states. Consider therefore again a state |1φp · · · 1ψk · · ·〉 ≡ |cφrψ〉. The
added-up transition probability is defined as [5],

wadd(sψ|cφrψ) =
∑
all d
| 〈out, dφsψ|S|cφrψ, in〉 |2, (3.2.1)

where the sum is over all massive out-states. Because there is no creation
of massless particles, |sψ, out〉 = |sψ, in〉. Moreover, both the in and out

3From hereon, the term conformally will be dropped when talking about massless
particles, but it should be understood that when talking about massless particles for the
rest of this thesis, they always refer to conformally coupled ones.
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massive states are complete,∑
all c
|cφ, in〉 〈in, cφ| = 1 =

∑
all d
|dφ, out〉 〈out, dφ| . (3.2.2)

Inserting this completeness relation twice into the right-hand side of Eq.
(3.2.1) and using |sψ, out〉 = |sψ, in〉, the added-up probability can be re-
duced to in-in amplitudes [5]

wadd(sψ|cφrψ) =
∑
all d
| 〈in, dφsψ|S|cφrψ, in〉 |2. (3.2.3)

Because of (3.2.2), the added-up probability may also be given in terms
of out-out states. It is now seen that the added-up probability can be
expressed in terms of in-in amplitudes for which an in-in Feynman diagram
technique applies [5].

3.2.2 Particle Decay in the φψ2 Theory

Without performing any explicit calculations, an example is perhaps in
order to illuminate the added-up method. With the Chap. 4 in mind,
we consider a massive particle decaying into two massless particles. The
spacetime is chosen to be flat Robertson-Walker universe and the interac-
tion term is LI = −

√
−gλφψ2, where λ is the coupling constant. At this

point, it is not necessary to restrict into any specific species of particles.
As usual, we assume that a stable concept of a particle may be established
in the in- and out-regions. The S-matrix may be expanded as

S = 1− iλA+O(λ2), (3.2.4)

where

A ≡ lim
β→0+

∫
T̂ φψ2e−β|η|

√
−gd4x. (3.2.5)

To make the theory more manageable, we consider only first order, tree-
level processes. As shown in [5], the added-up transition probability (3.2.3)
reduces for this type of interaction to



Mutually Interacting Fields in Curved Spacetime 57

wadd =λ2
{
| 〈in, 1ψk1

1ψk2
|A|1φp, in〉 |2 +

∑
q
| 〈in, 1φp1φq1ψk1

1ψk2
|A|1φp, in〉 |2

}
.

(3.2.6)

The corresponding Feynman diagrams, now with the in-in amplitudes, are
given in Fig. 3.1. The second diagram appears because there is no energy
conservation in curved spacetime making this graph possible. In a loose
sense, one may think that the energy stored in the gravitational field is
”taken” to make the creation of all three particles possible as the spacetime
expands. In addition the particle may also pass through undisturbed, which
is depicted by the dashed line in diagram b.

p
k1

k2

p

q
k1

k2

(a) (b)

Fig. 3.1: Diagrams of the added-up transition probability. The dashed line
corresponds to the massive particle and the solid lines to massless particles.

The second amplitude in (3.2.6) can further be simplified by using the
property 〈in, 1φp1φq1ψk1

1ψk2
|A|1φp, in〉 = 〈in, 1φq1ψk1

1ψk2
|A|0, in〉 [5]. This second

diagram complicates the interpretation of the decay of a single massive
particle with momenta p. Therefore, the three-momentum conservation
law p = k1 + k2 is imposed so that the decay probability would correspond
most closely to a decay of a massive particle with momenta p. In a universe
with spatial translational symmetry, the three-momentum conservation law
is always valid [32]. The added-up decay probability is defined with this
restriction [5] and

wadd = λ2
{
| 〈in, 1ψk1ψp−k|A|1

φ
p, in〉 |2+| 〈in, 1φp1ψk1ψp−k|A|0, in〉 |

2
}
, (3.2.7)
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and the corresponding Feynman diagrams in Fig. 3.2 below.

p
k

p− k

p
k

p− k
(a) (b)

Fig. 3.2: Diagrams contributing to the added-up decay probability.

The total decay probability is then obtained by summing over the k mo-
menta as

wtot =
∑

k
wadd. (3.2.8)

We have therefore arrived at something which closest resembles the
decay for a massive particle with momentum p in curved spacetime. The
added-up method offers a generalization of flat spacetime decay to curved
spacetime which contains a minimal admixture of particle creation processes
which are indistinquishable from the actual decay process in the spirit of
the in-out formalism.



Chapter 4

Decaying Massive Particle in
the Early Universe

As already mentioned in the introduction, particle decay processes in the
early universe play an important role in cosmology. The calculations per-
formed have commonly used the Minkowskian decay rates which brings up
the question about how good these Minkowskian approximations really are
when the spacetime is curved. In this chapter we try to answer this question
by presenting the results of Publications I-IV where the decay of a massive
particle using quantum field theory in curved spacetime were studied. The
study was conducted using the physically motivated added-up probability
introduced in the last chapter. The decay into both scalar and fermionic
channels was considered in spatially flat Robertson-Walker universes and
it was found that the decay rates are considerably modified for early times,
but asymptotically only by an additive term. We will consider these decay
channels first separately and then compare the differences.

4.1 Decay into Scalar Channel

The decay of a massive scalar particle into two massless scalars was the
subject of research in Publications I-III. The case of a conformally coupled
massive particle was studied in Publication I for a stiff-matter-dominated
universe and in Publication II for universes dominated by matter and ra-
diation. In Publication III the decay was generalized to contain not only a
non-conformally coupled massive scalar but also a more general power-law
expansion for the universe. In the following the results for the transition
amplitudes and decay rates will be given with this more general formalism.

59
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First, the necessary background information must be established. Con-
sider a massive real scalar field φ with mass m and a gravitational coupling
ξ and a conformally coupled massless real scalar field ϕ. The Lagrangian
for the theory is given by

L =
√
−g
2
{
∂µφ∂

µφ−m2φ2 − ξRφ2 + ∂µϕ∂
µϕ− R

6 ϕ
2}+ LI . (4.1.1)

For the interaction term, we choose

LI = −
√
−gλφϕ2, (4.1.2)

where λ 6= 0 is the interaction coupling constant. We will consider a spa-
tially flat four-dimensional Robertson-Walker spacetime with the line el-
ement ds2 = a(η)2(dη2 − dx2) for which the conformal time coordinate
η ∈ (0,∞). From the point of view of quantization and particle definition,
this is the same type of universe as considered in Sec. 2.2.2. The definition
of the in- and out-regions and construction of the field modes follows the
same procedure with the in-region estalished in the neighborhood of η = 0.
Recall that the massive scalar field modes were given by

up(η,x) = eip·x

(2π)3/2a(η)
χp(η), (4.1.3)

with χp satisfying Eq. (2.2.7) and the positive modes for the massless field
as

vk(η,x) = 1
(2π)3/2a(η)

eik·x−ikη√
2k

(4.1.4)

due to conformal invariance. As described in Sec. 3.1.2, the S-matrix is
expanded to first order S = 1− iλA+O(λ2) where

A = lim
β→0+

∫
T̂ e−βηφϕ2√−gd4x. (4.1.5)

Throughout we work with the established added-up formalism.
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4.1.1 Total Transition Probability

In Publication II, a general form for the total transition probability for
the massive scalar to decay into two massless scalars was derived. Since
this derivation introduces a couple of important features, we present its
derivation in the briefest of forms.

Referring back to Fig. 3.2, which gives the Feynman diagrams for
the decay process in curved spacetime, we define for the amplitude of di-
agram a Aa(k1,k2,p) ≡ −iλ 〈out, 1ϕk1

1ϕk2
|A|1φp, out〉 and Ab(k1,k2,q) ≡

−iλ 〈out, 1φq1ϕk1
1ϕk2
|A|0, out〉 for diagram b. With the solutions (4.1.3) and

(4.1.4) this gives

Aa(k1,k2,p) = −iλδ(p− k1 − k2)
(2π)3/22

√
k2k2

lim
β→0+

∫ ∞
0

e−βηa(η)ei(k1+k2)ηχp(η)dη.

(4.1.6)

For diagram b, the same amplitude is obtained with the following changes,
δ(p− k1 − k2) → δ(q + k1 + k2) and χp(η) → χp(η)∗. The delta-function
expresses the three-momentum conservation law. Note that the amplitudes
are defined with respect to the out-modes. As was noted in Sec. 3.2.1,
the added-up transition amplitude can also be given in terms of the out-
out amplitudes. The choice to use out-mode solutions stems from the fact
that the positive solutions for the field modes are easily recognized in the
asymptotic future for our model. Imposing the three-momentum conserva-
tion law, performing the k2 integration and passing to continuum limit, we
have for the total probability

wtot =
∫
R3
d3k

(
|Aa(k, |p− k|)|2 + |Ab(k, |p− k|)|2

)
. (4.1.7)

This integral as it is, is extremely difficult to solve for a general momentum
parameter p and for a general χp the k integration cannot be performed. For
this reason, we go into the rest frame of the massive particle p = 0, which
allows the use of powerful methods of distributions. Using the symmetry
property |Aa(k, |p− k|)|2 = |Ab(−k,−|p− k|)|2 and spherical coordinates,

wtot = λ2

8π2

∫ ∞
−∞

dk
∣∣∣ ∫ T

0
a(η)e2ikηχp=0(η)dη

∣∣∣2. (4.1.8)

Even with the switch-off, the time integral may diverge, as is the case for the
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stiff-matter-dominated universe, so we have introduced a cutoff at η = T
and taken the β-limit inside the integral. In this form, the k integral can
be treated as a distribution so we finally arrive at the general form for the
total transition probability

wtot = λ2

8π

∫ T

0
a(η)2∣∣χp=0(η)

∣∣2dη, (4.1.9)

which can be used to calculate the total added-up probability for a known
scale factor and known rest frame field modes.

4.1.2 Scalar Modes in Rest Frame

Even though the total transition probability (4.1.9) is restricted to only
massive modes in their rest frames, it also presents us with some new pos-
sibilities. Since we are only considering decay in the rest frame, the p2-term
in the differential equation (2.2.7) for χp is zero which helps us in finding
the exact mode solutions. The differential equation (2.2.7) then becomes
exactly solvable for a general power-law expansion. We then have the ad-
vantage of also finding field modes and studying decay for universes for
which the exact solutions for general p cannot be found, like the matter-
dominated universe.

In Publication III, the differential equation (2.2.7) with p2 = 0 was
solved exactly for a general power-law scale factor

a(η) = bηn/2, (4.1.10)

where b is a positive constant, n essentially unrestricted and we work in
conformal time. The Ricci scalar is given by Eq. (2.2.9) and the interesting
cases of universes dominated by stiff matter, radiation and ordinary matter
are given by the values n = 1, n = 2 and n = 4, respectively. The solutions
for the massive scalar field modes in the rest frame were found in terms
of Hankel functions H(1,2)

α , with the normalization depending on whether
the index α was real or purely imaginary. For real index, the normalized
positive solution was found in a manner as described in Sec. 2.2.2 and was
found to be

χp=0(η) =
√

πη

2(2 + n)e
− iπ4 (1−2α)H(2)

α

(2bmη(2+n)/2

2 + n

)
, (4.1.11)
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where α is defined as

α ≡
√

1− n(n− 2)(6ξ − 1)
2 + n

. (4.1.12)

For purely imaginary index α, we write α = iα̃, where

α̃ =
√
n(n− 2)(6ξ − 1)− 1

2 + n
(4.1.13)

is real. Their normalized positive mode solutions were found to be given as

χp=0(η) =
√

πη

2(2 + n)e
− iπ4 +πα̃

2 H
(2)
iα̃

(2bmη(2+n)/2

2 + n

)
. (4.1.14)

The Hankel function of the second kind behaves asymptotically like H(2)
ν (z)

∼
√

2/(πz) e−i(z−νπ/2−π/4), so the only difference between these two solu-
tions is a different exponential factor. These mode solutions are not de-
fined when n = −2, which would correspond to the de Sitter spacetime.
The differential equation for χp=0 may be solved for this special value, but
the positive modes cannot still be recognized. Hence, we have to exclude
de Sitter spacetime from our study. Given these positive mode solutions
for the massive scalar field, we may now insert these with the scale fac-
tor a(η) = bηn/2 into the general formula (4.1.9) to obtain the transition
probability.

4.1.3 Transition Probabilities

The total transition probability is obtained by inserting the positive rest
frame field modes into Eq. (4.1.9). In both cases the solution was found as

w = λ2

32m2

∫ mt

0
uH(1)

α (u)H(2)
α (u)du, (4.1.15)

where u is a dimensionless variable and t denotes the standard coordinate
time given by the relation dt = a(η)dη.

Although the lower limit of the integral is taken from 0 onwards, we
note that it may also be taken as mt0 where t0 is the initial time near
the singularity. For the scalar channel decay, the integral may be exactly
solved with the lower limit of zero and this limit does present us with some
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interesting features when the decay rate is calculated. Before moving on, we
note that the integrand of Eq. (4.1.15) can be interpreted as the differential
decay rate

Γdiff = λ2

32 tH
(1)
α (mt)H(2)

α (mt), (4.1.16)

when t > 0. This form will come in handy as we consider the reheating
scenario via Boltzmann equations in the next chapter.

Returning now to the integral (4.1.15), we found that it can be evaluated
exactly in terms of Bessel functions and the solutions are given by1

wRe = λ2

64m2 {(mt)
2[Jα(mt)2 − Jα−1(mt)Jα+1(mt) + Yα(mt)2

− Yα−1(mt)Yα+1(mt)]− 4α cot(πα)
π

}, (4.1.17)

for the real index for which the integral (4.1.15) converges when |α| < 1.
When α = 0, the constant term is given by its limiting value 2/π2. For the
imaginary index the exact solution was found as

wIm = λ2

64m2 {(mt)
2[Jα(mt)2 − Jα−1(mt)Jα+1(mt) + Yα(mt)2

− Yα−1(mt)Yα+1(mt)]− 4α̃ coth(πα̃)
π

}, (4.1.18)

where α is given by (4.1.12) with the same condition |α| < 1. The constant
terms arise from the lower limit of the integral which was set to zero. Since
the integral (4.1.15) converges only when |α| < 1, this condition restricts
the pair (n, ξ) by the inequalities

(n+ 3)(n+ 1)
n(2− n) < 6ξ − 1 ≤ 1

n(n− 2) , n 6∈ (0, 2) (4.1.19)

1
n(n− 2) ≤ 6ξ − 1 < (n+ 3)(n+ 1)

n(2− n) , n ∈ (0, 2). (4.1.20)

These restrictions divide the nξ plane into regions where a finite transition
probability can be calculated (Fig. 4.1).

1The following results differ by a multiplication by 2 in the additive term from those
of Publication III due to an error found in the calculations.
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Fig. 4.1: Allowed regions for the total transition probability. The shaded
area corresponds to values of the pair (n, ξ) for which the transition am-
plitude is not finite. Regions indicated by R are for real index solution,
while regions with iR are for imaginary index solutions. The dashed lines
correspond to asymptotes n = 2 and 6ξ − 1 = −1.

There are two regions where all values of ξ are allowed, namely n = 0
the Minkowski space and n = 2 the radiation-dominated universe. This
is hardly surprising, since the Ricci scalar (2.2.9) vanishes at these values
and along with it the coupling to gravity. Moreover, there does exist one
region where all values of n are allowed. This band is located between the
maximum and minimum points of the non-allowed region, where

ξ ∈
(3−

√
5

4 ,
3 +
√

5
4

)
. (4.1.21)

It is somewhat puzzling why the mean decay rate is not finite for all the
values, excluding the line n = −2. Currently there exists no measurable
restrictions on the parameter ξ which would allow us to exclude e.g., the
lower part of Fig. 4.1 altogether. Although we have calculated the tran-
sition amplitudes for all n, in this thesis we are mainly interested in the
region where n is positive, since it contains the cosmologically interesting
cases of stiff-matter-, matter- and radiation-dominated universes. In this
region there are no restrictions for a positive gravitational coupling ξ. We
do note, however, that the differential decay rate (4.1.16) may be calculated
without any restrictions.
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4.1.4 Asymptotic Decay Rates

Besides the exact transition probabilities, we can also look at their asymp-
totic forms in the long-time limit. The exact probabilities can be expanded
in asymptotic series and we found that the leading terms are given by

w ∼ λ2

16πm
(
t− |α| cot(π|α|)

m

)
, (4.1.22)

where the result has been combined to include both the imaginary and real
solutions.

In Minkowskian space field theory, the decay rate is obtained by dividing
the total probability by the time t. This procedure is now a little more
problematic due to the appearance of the constant term in Eq. (4.1.22)
so it is not clear how to define the decay rate and with it the lifetime of
the particle. To this end, we notice that there are two different time scales
involved: that of the duration of the mutual interaction and that of the
gravitational influence. The first one is characterized by the infinite time
while the second is finite because the gravitational fields exerts its influence
only in the region between the in- and out-regions. This second time scale
may be defined as tgrav := tf − ti, where ti indicates the time when the
gravitational field begins its influence and tf its end [5]. To deal with the
constant term we adopt the same procedure as was introduced in [5] where
this constant term is divided by tgrav. With this definition, the mean decay
rate was found to be

Γφ ∼
λ2

16πm
(
1− |α| cot(π|α|)

mtgrav

)
. (4.1.23)

It should be stressed that while there seems to be no way to define tgrav
exactly [5, 6], this procedure will at least give some quantitative idea of the
gravitational influence on particle decay.

It is now seen that the influence of the gravitational field modifies the
Minkowskian decay rates, at least asymptotically, by an additive time-
dependent term. In the next section we will see that the first term truly
corresponds to the Minkowskian decay rate. The question then arises on
the significance of this correction term. In a real setting the time tgrav is
usually much longer than the inverse of mass, which implies that the correc-
tion term is quite small. Equation (4.1.23) is, however, only the first order
asymptotic expansion and as the time gets smaller, next to leading order
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contributions must be taken into account aswell. Therefore it cannot be
said outright that relative correction term in Eq. (4.1.23) can be neglected
altogether, since in particular when m ∼ t, the full equation (4.1.15) for the
transition probability must be used. While the sign in front of this relative
correction term in (4.1.23) is negative, the term itself can be either negative
or positive depending on the values of α. We now take a closer look at how
the value of α influences the decay rate and show how the Minkowskian
result is reproduced.

4.1.5 Minkowskian Decay Rate and Gravitational Correc-
tion Term

It is natural to assume that the general result in curved spacetime repro-
duces the Minkowskian results when the appropriate limit is taken. For our
model, this limit is given when the spacetime becomes static, i.e., a(t) = 1.
This is achieved by taking n = 0 and the parameter b may be chosen as
b = 1 although it does not explicitly appear in the transition probabilities.
In this case the parameter α = 1/2, the constant term in Eq. (4.1.17) is
zero and the rest of the expression reduces to

wMink = λ2t

16πm (4.1.24)

which, when divided by t, gives the correct Minkowskian limit. It was also
found that using the added-up method with the Minkowskian plane-waves
inserted, the above result is also produced validating the procedure.

However, if the value α = 1/2 gives us the Minkowskian decay rate
when n = 0, this immediately implies that there are values of (n, ξ) which
give the Minkowskian decay rate when α = 1/2. By the properties of Bessel
function, the same rate is found when α = −1/2 aswell. Hence, solving the
parameter α in Eq. (4.1.12) for α = ±1/2 gives two solutions. The one is
the n = 0 case and the other is

ξ(n) = n− 4
8(n− 2) . (4.1.25)

Along this curve then, the decay rate is exactly and always Minkowskian.
There is one special point on this curve corresponding to n = 4, for which
ξ = 0. This means that the decay rate in a matter-dominated universe for
minimally coupled scalars is exactly that of Minkowskian space.
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Fig. 4.2: Plot of the Minkowskian rate curves (solid). The gravitational
correction term is negative in the shaded purple region indicated by the
−-sign. The +-sign indicates the areas where the contribution to the decay
rate is enchancing and the shaded blue areas correspond to the values of
(n, ξ) where the total decay rate is not defined.

The change of the gravitational correction term from negative to posi-
tive happens when crossing the boundary curve (4.1.25). This curve has ver-
tical asymptote at n = 2 and horizontal asymptotes at 6ξ − 1 = ±1/4. For
the cosmologically interesting cases of stiff-matter-, radiation- and matter-
dominated universes, we see that the effect of the gravitational field is
always to diminish the decay as long as the gravitational coupling is pos-
itive, except for the minimally coupled field in matter-dominated universe
for which the decay rate is Minkowskian. In the regions where the inte-
grated transition amplitude cannot be calculated, it seems plausible that
the effect of the spacetime would still be enhancing as the differential rate
can be calculated in these regions (Fig. 4.2). It can be inferred, with some
caution, that the effect of the gravitational coupling to the decay is mostly
to enhance it, when the coupling is negative, and to decrease it when it is
positive. While the preceding analysis was done for a single real scalar field
φ, a generalization to multicomponent scalar field is straigthforward.
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4.2 Decay into Fermionic Channel
In Publication IV, the decay of a massive scalar into a massless fermion-
antifermion pair was considered. The formalism follows closely that of the
scalar channel decay; solve the field modes and use the added-up probability
to obtain the transition amplitude. The scalar particle will be taken in its
rest frame so results from previous section can be applied straightforwardly
and the decay product particles are massless spinors as reguired by the
added-up probability. In this case we may also further elaborate the model
and consider the implications these assumptions might have. From the
point of symmetry, one may consider a complex scalar field with non-zero
charge, a chiral spinor field ψL with opposite charge and a zero-charge field
ψR. In a U(1)-symmetric theory a mass term in the fermion Lagrangian
density violates this symmetry, so for a globally U(1)-symmetric theory
the fermions should be massless [97]. Also, considering the scalar field φ
as an SU(2) doublet, by defining the (global) U(1)-charges of the theory
in a suitable way, the fermionic fields may be thought as fermions of the
standard model [97].

We consider then a Lagrangian for the theory consisting of three parts:
the Lagrangian density Lφ for the complex scalar field, Lψ for the fermion
field and the interaction term LI . The Lagrangian density for a complex
scalar field is given by

Lφ =
√
−g(∂µφ∗∂µφ−m2φ∗φ− ξRφ∗φ). (4.2.1)

As the complex scalar field can always be decomposed into two real scalar
fields as φ = (φ1 + iφ2)/

√
2, we will only consider real scalar fields to

make the theory more manageable and it also allows us to use results from
the previous section. The only effect this has is that the total transition
amplitude should be multiplied by a factor of two in the complex case. The
massless spinor Lagrangian is given by

Lψ = i

2
√
−g(ψγµ∇µψ − (∇µψ)γµψ), (4.2.2)

where γµ denotes the gamma matrices in curved spacetime. The quan-
tization of the spinor field in curved spacetime goes as described in Sec.
2.1.4.
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For the interaction we choose a Yukawa type interaction

LI = −
√
−ghφψψ, (4.2.3)

where the dimensionless coupling constant is denoted by h and chosen to
be real. The perturbative expansion of the S-matrix to first order is given
as S = 1− ihA+O(h2), where

A = lim
β→0+

∫
T̂ e−βηφψψ

√
−gd4x. (4.2.4)

The problem now is to find the correctly normalized positive mode solutions
for the massless spinor in spatially flat Robertson-Walker universe.

4.2.1 Spinor Modes in Rest Frame

Solving the spinor modes in curved spacetime is considerably harder than
the scalar modes owing to the more complex nature of the spinor [102–104].
In order to obtain exact solutions, we must fix the scale factor outright
even for a massless field. The solutions are most easily found when using
standard coordinate time t at the outset. We therefore choose as the scale
factor a power-law expansion a(t) = b′tn

′ with n′ ∈ [0, 1). This covers the
cosmologically interesting cases like stiff-matter-, radiation- and matter-
dominated universes for n′ = 1/3, n′ = 1/2 and n′ = 2/3, respectively. It
should be noted that the parameters b′, n′ are not the same as those used
in previous section for the scalar channel decay. These may be related to
the conformal time scale factor (4.1.10) by

n′ = n

2 + n
, b′ = b

(2 + n

2b
) n

2+n
. (4.2.5)

The results of the previous section for the scalar field may be straigthfor-
wardly transformed into standard coordinate time by using these relations
and dt = a(η)dη.

The spinor modes were solved using the chiral representation

γ0 =

 0 σ0

σ0 0

 , γi =

 0 σi

−σi 0

 , (4.2.6)

where σ0 is the identity matrix and σi are the Pauli matrices. This represen-
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tation decouples the Dirac equation into sets of two second-order differential
equations allowing for exact solutions to be found. By solving the Dirac
equation (2.1.30) in curved spacetime for the massless spinor, the following
set of mode solutions were found

usk(t,x) = 1
[2πa(t)]3/2

√
2k
u(k, s)eik·x−

ik
b′(1−n′) t

1−n′

(4.2.7)

vsk(t,x) = 1
[2πa(t)]3/2

√
2k
v(k, s)e−ik·x+ ik

b′(1−n′) t
1−n′

. (4.2.8)

The positive and negative energy spinors were normalized according to Eq.
(2.1.36) and were found to be

u(k,+) =


√
k − k3
−k+√
k−k3

0
0

 , v(k,+) =


√
k + k3
−k+√
k−k3

0
0

 ,

u(k,−) =


0
0

√
k + k3
k+√
k+k3

 , v(k,−) =


0
0

√
k − k3
k+√
k+k3

 , (4.2.9)

where we have defined k ≡ |k| and k± ≡ k1 ± ik2 with k = (k1, k2, k3)T .
The spinor field ψ and its conjugate field ψ may now be expanded as in
Eqs. (2.1.34) and (2.1.35). For the massive scalar field mode we may use
the results of the previous section with the parameters converted to the
primed variables.

4.2.2 Transition Probability and Decay Rate

The total transition amplitude for the massive scalar to decay into a mass-
less fermion-antifermion pair was calculated using the added-up method
and was found to be

wtot = h2

32

∫ mt

mt0

∣∣∣∣ dds
(
s

1−n′
2 H(2)

α (s)
)∣∣∣∣2sn′ds, (4.2.10)
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where s is a dimensionless variable. The Hankel function arises from the
scalar field mode (4.1.11) and the index α may given in terms of the primed
parameters as

α =
√

(1− n′)2 − 4n′(2n′ − 1)(6ξ − 1)
2 . (4.2.11)

Contrast to the scalar channel, the total transition probability diverges
in the lower limit t0 → 0 unless the spacetime is Minkowskian, radiation-
dominated or the coupling ξ is conformal. But since the theory of gravita-
tion we are dealing with is classical, the spacetime singularity poses its own
problems. For a physical explanation of this divergence a more complete
theory of quantum gravity might be needed to explain it, but as long as t0
is in the neighborhood of the singularity, Eq. (4.2.10) has a well defined
lower limit.

The differential decay rate may again be interpreted as the integrand
of Eq. (4.2.10), which gives

Γdiff
ψ = h2tn

′

32

∣∣∣∣ ddt
(
t

1−n′
2 H(2)

α (mt)
)∣∣∣∣2 (4.2.12)

and we found that with the same Minkowskian limit n′ = 0, b′ = 1, the
transition amplitude reduces to the Minkowskian decay rate

ΓMink = h2m

16π (4.2.13)

when divided by the time ∆t ≡ t−t0. Having transition amplitudes defined
for both scalar and fermion channel decays, we may now compare them with
each other.

4.3 Modification of Minkowskian Results

It is already clear from the results of the last section, that Minkowskian
decay rates are modified in curved spacetime. In the case of scalar channel
decay, the decay rate obtains an additive term arising from the lower limit
of the integral taken to be the limit when t0 → 0. For the fermionic
channel we found a same kind of additive term when the massive particle
is conformally coupled so the integration may be performed with the lower
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limit t0 → 0. In this section we will take a closer look at how the decay rates
are modified in curved spacetime and compare the differences in decay into
either scalar or fermionic channels. We will begin by considering the case
where the massive particle is conformally coupled because this allows for
the comparison of these two channels of decay all the way from the initial
singularity where the additive term originates. It is found that there is an
ordering in these additive terms depending on the universe type in question.
Finally, we take a look at what happens with the differential decay rates as
the time approaches singularity.

4.3.1 Conformally Coupled Massive Particles

We start by considering the special case where the decaying particle is
conformally coupled to the background gravitational field in the integration
limit t0 → 0. For the fermionic channel we found that the total transition
amplitude is then given in terms of Bessel functions as

wtot =h2

64{(mt)
2[J− 1+n′

2
(mt)2 − J− 3+n′

2
(mt)J 1−n′

2
(mt) + Y− 1+n′

2
(mt)2

− Y− 3+n′
2

(mt)Y 1−n′
2

(mt)] + 2(1 + n′) tan(n′π/2)
π

}, (4.3.1)

where the last constant term again arises from the lower limit of t0 → 0. For
further insight, we also take a look at the asymptotic, long-time behavior
which we found to be given by

wtot ∼ h2m

16π
(
t+ (1 + n′)

2m tan(n
′π

2 )
)
, (4.3.2)

valid when n′ ∈ [0, 1), and the asymptotic decay rate is given by the same
prescription as for the scalar channel by dividing by the time of the gravi-
tational influence tgrav,

Γψ ∼
h2m

16π
(
1 + (1 + n′) tan(n′π/2)

2mtgrav

)
. (4.3.3)
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The asymptotic decay rate for the scalar channel Eq. (4.1.23) for the con-
formal coupling and in terms of the primed parameters is now given by

Γφ ∼
λ2

16mπ
(
1− (1− n′) cot[(1− n′)π/2]

2mtgrav

)
, (4.3.4)

also valid when n′ ∈ [0, 1).
A major difference can now be seen when comparing the two expressions

Eqs. (4.3.3) and (4.3.4) corresponding to the sign of the additive term. For
a decay into scalars the sign is negative and for fermionic channel it is posi-
tive. This indicates that for a conformally coupled massive scalar, the effect
of gravitation is to enhance the decay into the fermionic channel while di-
minishing the decay into the scalar channel. Although these inferences are
made from the asymptotic formulas, in Publication IV it was found numer-
ically that they hold also for the exact mean decay rates. Moreover, both
functions in the correction terms are increasing functions on the interval
n′ ∈ [0, 1), so the correction term increases as n′ increases. Therefore the
decay into scalar channel is diminished and decay into fermionic channel
enhanced as n′ increases. This was already noted in Publications I and II
for the stiff-matter-, radiation- and matter-dominated universes, where it
was noted that the correction term is largest for matter-dominated universe
and smallest for stiff matter out of these three. A speculative idea was also
put forth that the faster the universe is expanding the smaller is the decay
rate into the scalar particles.

This idea can be quantified more easily by taking a look at the Hubble
parameter H = ȧ/a = n′/t. This shows us that as n′ increases the universe
expands relatively faster. Hence, the faster the universe is expanding the
faster is the decay rate into the fermionic channel. The reason for this
behavior may be speculated from a statistical point of view. As the uni-
verse expands faster and faster, more states are becoming available for the
fermions to occupy. On the other hand, for bosons the Bose enhancement
factor is reduced by the expansion as more states become available in total
thereby diminishing the decay rate.

4.3.2 A Dominant Channel of Decay

As was already noted, the integral (4.2.10) for the fermionic transition
probability diverges in the limit t0 → 0 while the corresponding integral
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(4.1.15) for the scalar channel does not. This singular behavior may be
investigated by taking a look at the behavior of the integrand, interpreting
it as the differential decay rate, as t → 0. What we found was that the
differential decay rate of the fermionic channel (4.2.12) behaves like t−2α−1

in the vicinity of the spacetime singularity, while the scalar differential
decay rate (4.1.16) behaves like t−2α+1. Taken together, these observations
imply that the fermionic decay channel dominates the scalar one in the
early universe, because the inequality 2α+ 1 > 2α− 1 is always true.

This inequality is true regardless of the value of the parameters n and
ξ which define the matter content of the universe and the coupling of the
massive particle to the gravitational field. It must be stressed though that
this inference holds only near the singularity of the spacetime and it is not
evident from the analysis just what this exact time when this is true is.
This is because decay rates are differently proportional to masses and to
couplings which affect the decay rate. Also this holds only when the decay
products are massless and conformally coupled, so a more general notion
on this property cannot be made.
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Chapter 5

Reheating in the Kination
Epoch

In the previous chapter we took a theoretical look into particle decay in
curved spacetime within the framework of quantum field theory in curved
spacetime. Now it is time to take these results and apply them to a cosmo-
logical scenario. The inflationary universe, and especially reheating, pro-
vides a good application for these results. As inflation leaves behind a cold
universe void of matter, it needs to be reheated as described in Chap. 1.
At the end of inflation the spacetime metric changes, usually from de Sitter
spacetime into a spatially flat Robertson-Walker metric. But the theory of
quantum fields in curved spacetime predicts that particles are created in
this transition due to the change of the metric itself. This insight provided
a basis for investigation on whether this mechanism might be capable of
reheating the universe.

In the 1980s, Ford investigated a situation where massless nonconfor-
mally coupled particles were created as the metric changed from de Sitter
into matter- or radiation-dominated era and indeed found it to be capable of
reheating the universe [105]. This idea of reheating by gravitational parti-
cle production was expanded by Spokoiny to an inflationary scenario where
the kinetic energy of the inflaton field dominates at the end of inflation.
In his studies, Spokoiny introduced some potentials which, contrary to to
the conventional models, do not have minimums but rather just rapidly fall
for large values of the field [106]. In this case the potential energy of the
inflaton is converted to its kinetic energy and the universe ends up being
driven by the kinetic term. Again, it was found that this mechanism is
capable of reheating the universe. While Spokoiny called this situation de-
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flationary, as opposed to inflationary, it was Joyce who supposedly coined
the term kination to describe this phase of kinetic energy dominated ex-
pansion [43]. Recently, the idea of a kination phase has extensively been
used in quintessential models [45–53].

The kination phase has a close connection with a universe dominated by
stiff matter. After inflation, the universe emerges in a kination phase where
the kinetic energy dominates the potential energy, so from Eqs. (1.3.1) and
(1.3.2) we have pφ = ρφ. As this equation corresponds to the stiff equation
of state, it can be inferred that the kination phase corresponds to a universe
where the energy density is dominated by stiff matter.

Though much investigated, particle creation from a sudden or smooth
change of the metric into the kination era is not the only way to produce
particles into the universe because there is also gravitational particle cre-
ation by the expansion of spacetime itself. In this chapter, we present the
results of Publication V concerning reheating in a kination epoch in which,
contrast to previous studies, the starting point will be gravitational parti-
cle creation in a stiff-matter-dominated era. The study will be conducted
through non-equilibrium decay using the Boltzmann equations. The aim is
for a more precise calculation, so the particle decay will also be described
in the context of curved spacetime field theory and the decay rates for stiff-
matter, radiation- and matter-dominated universes from previous chapter
will be used.

5.1 Reheating via Gravitational Particle Produc-
tion

The aim of Publication V was to study reheating in the kination era where
particles were produced by the expansion of spacetime in the stiff-matter-
dominated era and to obtain the reheating temperature. More precisely,
we considered a massive scalar particle φ interacting with massless scalar
particles ϕ as described by the Lagrangian densities (4.1.1) and (4.1.2).
The massive particle then decays into massless particles which ultimately
thermalize and reheat the universe.

Described in this way, there exists two different scenarios which might
happen. As the massive non-relativistic particle decays into massless parti-
cles, described as radiation, it may happen that either one of these energy
densities dominate when the equilibrium with the background stiff matter
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energy density ρstiff is reached. If at this equilibrium point the massive par-
ticle energy density ρφ is larger, the universe becomes matter-dominated
for a while and if the massless particle energy density ρϕ dominates the
universe transforms directly into radiation-dominated universe. We had
to consider the possibility of both of these scenarios to occur. In both
cases, the effective reheating temperature Trh was obtained as a maximum
of the function ρmax

ϕ in the radiation-dominated era through the relation
π2

30 g∗T
4
rh = ρmax

ϕ . In both cases the evolution of the energy densities was
described by the Boltzmann equations in a manner presented in Sec. 1.2.2
with the curved space differential decay rates for the matter-, radiation-
and stiff-matter-dominated eras given by Eq. (4.1.16). The spacetime was
taken as a four-dimensional spatially flat Robertson-Walker universe with
the familiar scale factor a(η) = bηn/2 where n is assumed to be non-negative.

Regarding the Boltzmann equations, the evolution of the energy den-
sities in the radiation- and matter-dominated eras is described by the or-
dinary Boltzmann equations (1.2.6) as given in Chap. 1, but in the stiff-
matter era there is an additional term contributing to the energy density
coming from the gravitational particle production. Hence, the Boltzmann
equations (1.2.6) in the stiff-matter era are given by

ρ̇φ + 3Hρφ = −Γϕρφ + wφ, (5.1.1)

where wφ is the contribution from the gravitationally created particles to
the energy density and Γϕ is given by Eq. (4.1.16) with n = 1 correspond-
ing to the stiff-matter era. In the radiation- and matter-dominated eras,
the decay rate in the ordinary Boltzmann equations is given by Eq. (4.1.16)
with n = 2 and n = 4, respectively. These decay rates were derived in the
rest frame of the decaying particle but, as was shown in [85], particle pro-
duction in a stiff-matter-dominated universe is peaked at low-momentum
modes and is greater the more massive the particle is. Therefore the use of
zero-momentum decay rate serves as a valid approximation to be used in
the Boltzmann equations.

The differential equation (5.1.1) has the formal solution

ρφ(t) = 1
a(t)3 e

−
∫ t
t0

Γϕ(t′)dt′
∫ t

t0
a(t′)3wφ(t′)e

∫ t′
t0

Γϕ(t′′)dt′′
dt′, (5.1.2)
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where t0 denotes the initial time taken to be the time when inflation ends.
We have also assumed that the initial energy density ρφ(t0) is zero, a rea-
sonable assumption because inflation would inflate out any existing matter.
Since we are using curved space decay rates, the decay rate Γϕ has explicit
time dependence. The contribution from the gravitationally created parti-
cles in the stiff-matter era can be obtained from their differential creation
rate d|βk|2/dη as

wφ(η) = 1
2π

∫ ∞
0

k2ωk(η)d|βk|
2

dη
dk, (5.1.3)

where ωk(η) =
√
k2 +m2b2η. Using the differential creation rate per mode

k obtained in [85],

d|βk|2

dη
=π(mb)2η

2k
[
Ai
(−k2 − (mb)2η

(mb)4/3

)
Ai′
(−k2 − (mb)2η

(mb)4/3

)
+ Bi

(−k2 − (mb)2η

(mb)4/3

)
Bi′
(−k2 − (mb)2η

(mb)4/3

)]
(5.1.4)

we found that the contribution to the energy density of the massive scalars
was given in coordinate time t by

wφ(t) =3(mb)13/3

32b t
[
Ai(−(3mt/2)2/3)2 + Bi(−(3mt/2)2/3)2], (5.1.5)

under the approximation ωk(η) ≈ mb
√
η, which was proven to be sound

in [85]. After the stiff-matter-dominated era, the evolution of the massive
particles is described by the usual Boltzmann equations (1.2.6), i.e., Eq.
(5.1.1) without the wφ term, because there is no gravitational particle pro-
duction anymore. The energy density for the massless decay products is
given by Eq. (1.2.8) with the formal solution

ρϕ(t) = 1
a(t)4

∫ t

t0
Γϕρφ(t′)a(t′)4dt′, (5.1.6)

where the initial energy density is set to zero because there are no decay
products present. Finally, the energy density of the background in the
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stiff-matter era is given by [42],

ρstiff(t) = 1
24πGN t2

, (5.1.7)

where GN is the gravitational constant.

5.2 Numerical Results
To obtain the reheating temperature, we used PYTHON programming to
numerically evaluate the integrals of the energy densities of the previous
section with a 200 × 200 grid of the parameters m and b. The analysis
was done in Planck units, where GN = 1 in addition to ~ = c = 1, for
numerical reasons. The Planck units may be converted to GeV after the
calculations. The initial time t0 was fixed to t0 = 1011 corresponding to
t0 ∼ 10−32 sec, a value commonly found in the literature [32, 33], with no
observable changes in the numerical values if changed a few orders of mag-
nitude around this value. The gravitational coupling ξ used was between
the minimal and conformal couplings and the parameter b was calculated
in the range of b ∈ [10−1, 101]. These presented no observable changes to
the reheating temperature although they do affect on the time of transi-
tion between different phases of the universe. The coupling constant λ was
assumed to be small for the perturbation theory to work and it was fixed
to run with the mass through the relation λ = γm, with five values for γ,
namely γ = 10−1, 10−2, 10−3, 10−4, 10−5.

For the two different scenarios which could happen, either the uni-
verse becomes immediately radiation-dominated or is temporarily matter-
dominated, we found that with the full range of parameters used the uni-
verse always ends up being matter-dominated for a while. This implies that
the decay into massless particles is not fast enough to increase their energy
density sufficiently above the energy density of the massive particles as the
equilibrium with the background stiff matter is reached. The possibility
of a straight transition into radiation-dominated universe cannot be ruled
out completely, because there might exist a range of parameters with which
this could be achieved, e.g., increasing the coupling λ sufficiently, although
in this case the perturbative expansion might not work.
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5.2.1 Reheating Temperature

For the actual reheating temperature, we found it to lie in the interval
of about 10−15-10−7 in Planck units depending on the parameters used.
In natural units, this corresponds to about the order of 104-1012 GeV. In
Fig. 5.1a the reheating temperature Trh is presented for selected parameter
values. From this figure it is also evident that the reheating temperature
does not depend on the expansion parameter b. The reason behind this can
be traced back to the fact that the parameter b appears explicitly only in
the differential creation rate (5.1.4) thereby directly affecting the massive
particle energy density in the stiff-matter era alone. Combined with the
knowledge that in a stiff- matter-dominated universe particle creation is
peaked to high-mass modes [85] and the decay rate to massless particles is
faster the more massive the particle is, it is reasonable to expect that the
energy densities ρφ and ρϕ follow each other closely in the stiff-matter era.
In the matter- and radiation-dominated phases the evolution is independent
of the parameter b, which would explain the independence of this parameter
in the reheating temperature.

10−17 10−16 10−15 10−14 10−13 10−12 10−11 10−10 10−9

m

10−1

100

101

b

1.12e-14

7.05e-14

4.45e-13

2.81e-12

1.77e-11

1.12e-10

(a)

10−17 10−16 10−15 10−14 10−13 10−12 10−11 10−10 10−9

m

10−1

100

101

b

1.00e+11

4.99e+12

2.49e+14

1.24e+16

6.20e+17

3.10e+19

(b)

Fig. 5.1: a) Reheating temperature Trh as a function of mass m and ex-
pansion parameter b given in Planck units with the ratio λ/m = 10−2 and
ξ = 1/6 b) Time of transition to matter dominated era as a function of
mass m and the expansion parameter b given in Planck units. The ratio
λ/m is 10−4 and the coupling ξ is conformal.
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The expansion rate b does, however, affect on the time the universe
transitions into the matter-dominated era but has no effect on the tran-
sition time from matter- to radiation-dominated era. A clearer picture of
this is presented in Fig. 5.1b, where the time of transition to the matter-
dominated era is given as a function of the mass of the decaying particle and
the expansion rate b. As can be seen, increasing the mass m or the parame-
ter b generally shortens the time when matter domination is reached. Since
in the stiff-matter-dominated era, the particle creation is most effective for
large m and b [85], this is a reasonable result. Hence, for a very massive
particle, the particle creation from the vacuum is so explosive that the
universe transforms almost immediately into the matter-dominated phase.

The interaction coupling λ, or rather its ratio with the mass m, does
have an effect on the reheating temperature as seen from Fig. 5.2. With
a fixed mass m, an increase in this ratio corresponds to increasing λ by
the same amount. An order of magnitude increase corresponds to roughly
an order of magniture increase in the reheating temperature. This sort of
relation is quite natural because the λ affects directly the decay rate and its
increase increases the decay into massless particles which in turn increases
their energy density ρϕ. Hence, if the energy density is larger to begin with,
it is a natural consequence for the reheating temperature to be higher also.
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m

10−15
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10−8

10−7

Trh

Fig. 5.2: Reheating temperature in Planck units as a function of mass m
with five values of the ratio λ/m; 10−1 (blue), 10−2 (magenta), 10−3 (red),
10−4 (green) and 10−5 (cyan) with b = 10 and ξ = 1/6.
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We also ran the simulation with the Minkowskian decay rates and found
that both produce results within the same order of magnitude with only
small numerical differences. Although the Minkowskian decay rates are
modified in curved spacetime, it is likely that at least in the scalar decay
case, the timescales in question are so small that the effect of curved space
modification has not produced any noticeable effects yet.

In conclusion, we showed that the gravitational particle creation mech-
anism is able to reheat the universe to temperatures of about 104-1012 GeV
and that this temperature is independent on the expansion rate of the uni-
verse and the coupling of the decaying particle into gravity. The advantage
of our numerical approach is that we obtain an exact numerical value for the
reheating temperature which does not explicitly depend on the time when
inflation ends, which is the case in models where the particles are produced
by the change of the metric [49–51]. At this point a question naturally
comes to mind how the inclusion of the fermionic decay channel with the
curved space decay rates of Chap. 4 affects the above reheating scenario.
This question is currently investigated in ongoing research involving both
the scalar and fermionic channels of decay.



Chapter 6

Concluding Remarks

In this thesis we have studied particle decay in the presence of a gravita-
tional field using quantum field theory in curved spacetime. The results
we have presented indicate that the Minkowskian decay rates are modified
by the expanding universe; significantly for early times near the spacetime
singularity and by an additive term in the long-time limit. As the topic
of this thesis is a mix of both modern cosmology as well as quantum field
theory in curved spacetimes, a sufficient background on these topics was
presented in Chap. 1-3. By no means were they meant to be comprehen-
sive but rather the purpose was to allow the reader to follow the thesis.
In Chap. 1 we reviewed the key topics of modern cosmology from those
parts which were needed. The focus was given to a spatially flat Robertson-
Walker spacetime and investigation into an exotic stiff matter phase was
given. Non-equilibrium decay was considered with the help of Boltzmann
equations for a massive particle to decay into two massless particles and fi-
nally a short review on the concepts of cosmological inflation and reheating
was given.

In Chap. 2 we moved to quantum fields propagating on curved space-
times. The quantization of a free scalar and spinor fields was given in the
most general way as possible and the phenomena of gravitational particle
creation was discussed. In this chapter the persisting feature of quantum
field theory in curved spacetime of not having a unique solution for the pos-
itive field modes was discussed. In the case of a spatially flat Robertson-
Walker universe, the construction of a meaningful in- and out-regions of
spacetime in which the particle concept could be defined was given. As
the notion of conformal invariance is of utmost importance in regard to the
concepts presented in this thesis, a section to it was also devoted.

Leaving the free fields behind, in Chap. 3, the case of mutually in-
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teracting fields in curved spacetime was considered. Although the theory
of interacting fields in curved spacetime was considered, weight was given
to the interpretational problems arising because the gravitational parti-
cle creation severely interferes with the mutual interaction. To overcome
these issues a concept of added-up transition probabilities introduced by
Audretsch and Spangehl was reviewed with the goal of reaching a formula
for the decay rate in curved spacetime which can physically be motivated.
The issues encountered in this chapter suggest that considerable care must
be exercised when studying mutually interacting fields in curved spacetime.

In the following chapters the key findings of Publications I-V were given.
In Chap. 4 the results were presented for the transition amplitudes and de-
cay rates for a massive scalar particle to decay into two massless scalars or a
massless fermion-antifermion pair in the rest frame of the decaying particle.
It was found that decay rates are considerably modified at early times as
compared to the Minkowskian decay rates but only by an additive term in
the long-time limit. Moreover, for conformally coupled particles, the decay
into fermionic channel was found to be enhanced and the decay into scalar
channel diminished by the expanding spacetime with the fermionic channel
dominating the scalar channel at early times. These results were used in
Chap. 5 when a reheating scenario was considered within the kination era
after inflation. The particles were created by gravitational particle creation,
which subsequently decay and reheat the universe to temperatures of about
104-1012 GeV. Within the parameter range used, the scalar channel decay
results in the universe always being dominated by ordinary matter for a
short while before the radiation-dominated universe begins.

To conclude, the results presented in this thesis reinforce the notion that
Minkowskian field theory is ultimately only an approximation in a regime
where the effects of gravitation cannot be neglected anymore. We have seen
how the changing spacetime metric modifies the Minkowskian decay rates
and this modification depends on the value of the gravitational coupling and
the channel of decay for a massive scalar. The results open up a possibility
to do more precise cosmological calculations by replacing the Minkowskian
decay rates commonly used by the curved space counterparts. And we must
not forget that as cosmological data and measurements become increasingly
more accurate, there might be a necessity in the future to include the effects
of curved space also in particle decay rates.
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