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To my family 

People rarely succeed unless 
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ABSTRACT 

Atherosclerotic cardiovascular disease (ASCVD) is a disorder that affects both heart 
and blood vessels. It is caused by atherosclerosis, a chronic, low-grade inflammatory 
disease, which is characterized by the accumulation of lipids in the arterial wall. 
Modified lipoproteins contain pro-inflammatory epitopes, such as 
phosphorylcholine (PC), that interact with inflammatory cells in the vascular wall, 
thereby accelerating the development of atherosclerotic lesions. The main cause of 
myocardial infarction (MI) arises from a rupture of an unstable, inflamed 
atherosclerotic lesion in the coronary artery. The MI induces an intense 
inflammatory response that is essential for myocardial repair and scar formation, but 
which is also implicated in the onset of heart failure over time. Molecular imaging 
techniques can be potentially used for identification of new molecular targets, such 
as glucagon-like peptide-1 receptor (GLP-1R), that are involved in inflammatory and 
repair processes. 

The aim of this thesis was to investigate whether a novel immunotherapy 
targeting the PC epitope improves vascular function and attenuates atherosclerotic 
inflammation in mice. A positron emission tomography (PET) tracer 68Ga-
NODAGA-exendin-4 was evaluated for detection and imaging of GLP-1R 
expression after MI and in atherosclerosis in experimental models. In vivo PET 
imaging, ultrasound imaging, tissue autoradiography, immunohistological stainings, 
and cell assays were utilized as the main methods in the studies. 

This thesis showed that treatment with the PC immunotherapy preserved 
coronary artery function and attenuated the uptake of an established inflammation 
tracer, glucose analog 18F-FDG, in atherosclerotic lesions in mice. 68Ga-NODAGA-
exendin-4 PET detected up-regulated cardiac GLP-1R expression during the healing 
of MI in rats. The uptake of 68Ga-NODAGA-exendin-4 was also increased in 
inflamed atherosclerotic lesions in mice. In conclusion, PC immunotherapy might 
represent a potential approach to inhibit the lipid-driven inflammation in 
atherosclerosis. 68Ga-NODAGA-exendin-4 PET may have implications for studying 
pharmacological modification of GLP-1R signaling in ASCVD. 

KEYWORDS: atherosclerosis, myocardial infarction, inflammation, phosphoryl-
choline, glucagon-like peptide-1 receptor, positron emission tomography 
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TIIVISTELMÄ 

Sydän- ja verisuonitautien yleisin syy on ateroskleroosi, mikä on krooninen matala-
asteinen tulehduksellinen sairaus, jossa rasvaa kertyy valtimoiden seinämiin. 
Muokkautuneiden rasvapartikkelien pinnalta on tunnistettu tulehdusreaktiota edis-
täviä molekyylejä kuten fosforyylikoliini, jotka ovat osallisena valtimoplakkien 
muodostumiseen. Suurimman osan sydäninfarkteista aiheuttaa epävakaan tulehtu-
neen ateroskleroottisen plakin repeytyminen sepelvaltimossa. Sydäninfarkti saa 
aikaan tulehdusreaktion ja arpikudoksen muodostumisen sydänlihaksessa, mikä 
pitkittyneenä voi johtaa myös sydämen vajaatoimintaan. Molekyylikuvantamisen 
avulla voisi olla mahdollista tunnistaa ja tutkia uusia kohteita kuten glukagonin 
kaltainen peptidi-1 (GLP-1) -reseptori, jotka liittyvät sydäninfarktinjälkeiseen 
tulehdusreaktioon ja arven paranemiseen. 

Tämän väitöskirjan tarkoituksena oli tutkia koe-eläinmalleissa, miten uusi 
fosforyylikoliini-molekyyliin kohdentuva immunoterapia vaikuttaa ateroskleroot-
tisten suonten toimintaan ja tulehdukseen. Lisäksi tutkittiin GLP-1-reseptorin 
ilmentymistä sydäninfarktin jälkeen ja ateroskleroottisissa plakeissa 68Ga-
NODAGA-exendin-4 merkkiaineen ja positroniemissiotomografia (PET) -
kuvantamisen avulla. Tutkimusmenetelminä käytettiin in vivo PET- ja ultraääni-
kuvantamista, autoradiografiaa, kudosvärjäyksiä ja solukokeita. 

Väitöskirjassa havaittiin, että fosforyylikoliini-immunoterapian jälkeen hiirten 
sepelvaltimoiden toiminta oli parantunut ja plakkeihin kertyi vähemmän 18F-FDG-
merkkiainetta, mikä kertoo laantuneesta tulehduksesta. 68Ga-NODAGA-exendin-4 
PET-kuvantaminen osoitti, että GLP-1-reseptorin ilmentyminen oli lisääntynyt 
infarktinjälkeisen tulehdusreaktion aikana. 68Ga-NODAGA-exendin-4-merkkiaine 
kertyi myös selvästi tulehtuneisiin ateroskleroottisiin plakkeihin. Yhteenvetona 
voidaan todeta, että fosforyylikoliini-immunoterapia saattaisi olla potentiaalinen 
uusi lääkehoito valtimoplakkien tulehdusreaktion hillitsemiseksi. 68Ga-NODAGA-
exendin-4 PET-kuvantamista voitaisiin hyödyntää GLP-1-reseptoriin kohdentuvien 
lääkehoitojen tutkimisessa ateroskleroottisissa sydän- ja verisuonitaudeissa.  

AVAINSANAT: ateroskleroosi, sydäninfarkti, tulehdus, fosforyylikoliini, glukago-
nin kaltainen peptidi-1 -reseptori, positroniemissiotomografia 
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Abbreviations 

18F-FDG 2-deoxy-2-[18F]-fluoro-D-glucose 
α-SMA α-smooth muscle actin 
ACE Angiotensin-converting enzyme 
ACEI ACE inhibitor 
ACS Acute coronary syndrome 
AMI Acute myocardial infarction 
Ang II Angiotensin II 
ANP Atrial natriuretic peptide 
ApoB100 Apolipoprotein B100 
ARB AT1 receptor blocker 
ARNI Angiotensin receptor-neprilysin inhibitor (sacubitril/valsartan) 
ASCVD Atherosclerotic cardiovascular disease 
AT1 Ang II receptor type 1 
BNP Brain natriuretic peptide 
CAD Coronary artery disease 
CCL2 C-C motif chemokine ligand 2 
CCR2 C-C motif chemokine receptor type 2 
CCS Chronic coronary syndrome 
CD Cluster of differentiation (e.g., CD36, CD68) 
CFR Coronary flow reserve 
CMD Coronary microvascular dysfunction 
CT Computed tomography 
CTA Computed tomography angiography 
cTn Cardiac troponin 
CXCR4 Chemokine receptor 4 
DAMP Danger-associated molecular pattern 
DAPI 4',6-diamino-2-phenylindole 
DPP-4  Dipeptidyl peptidase-4 enzyme 
EC Endothelial cell 
ECM Extracellular matrix 
EDV End-diastolic volume 
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EF Ejection fraction 
eNOS Endothelial nitric oxide synthase 
ET-A Endothelin receptor A 
FFR Fractional flow reserve 
FH Familial hypercholesterolemia 
GLP-1  Glucagon-like peptide-1 
GLP-1R Glucagon-like peptide-1 receptor 
HAEC Human aortic endothelial cell 
HDL High-density lipoprotein 
HE Hematoxylin and eosin 
HF Heart failure 
HFpEF HF with preserved EF 
HFrEF HF with reduced EF 
HMG-CoA 3-hydroxy-3-methyl-glutaryl-coenzyme A 
HPLC High-performance liquid chromatography 
hsCRP High-sensitivity C-reactive protein 
I/R Ischemia-reperfusion 
ICA Invasive coronary angiography 
ICAM-1 Intercellular adhesion molecule-1 
IDL Intermediate-density lipoprotein  
IGF-II Insulin-like growth factor II 
IgG1  Immunoglobulin G1 
IgM Immunoglobulin M 
IL Interleukin 
IMT Intima-media thickness 
Ki Net influx rate 
LAD Left anterior descending coronary artery 
LCA Left coronary artery 
LDL Low-density lipoprotein 
LDL-C Low-density lipoprotein cholesterol 
LDLR LDL receptor 
Lp(a) Lipoprotein(a) 
LV Left ventricle 
Ly6C Lymphocyte antigen 6 complex 
M1 Pro-inflammatory macrophage 
M2 Anti-inflammatory macrophage 
mAb Monoclonal antibody 
MBF Myocardial blood flow 
MCP-1  Monocyte chemoattractant protein-1 (also known as CCL2) 
MDA Malondialdehyde 
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MI Myocardial infarction 
MMP Matrix metalloproteinase 
MRA Mineralocorticoid (aldosterone) receptor antagonist 
MRI Magnetic resonance imaging 
NEP Neprilysin 
NF-κB Nuclear factor κB 
NLRP3 NOD-, LRR-, and pyrin domain-containing protein 3 
NO Nitric oxide 
OxLDL Oxidized LDL 
OxPL Oxidized phospholipid 
PC Phosphorylcholine 
PCI Percutaneous coronary intervention 
PCSK9 Proprotein convertase subtilisin/kexin type 9 
PET Positron emission tomography 
PSL/mm2 Photostimulated luminescence per square millimeter 
qPCR Quantitative polymerase chain reaction 
RAAS Renin-angiotensin-aldosterone system 
RGD Arginine-glycine-aspartate motif 
RNA Ribonucleic acid 
ROI Region of interest 
SMC Smooth muscle cell 
SNS Sympathetic (adrenergic) nervous system 
SPECT Single-photon emission computed tomography 
SR Scavenger receptor 
SSTR2 Somatostatin receptor type 2 
STEMI ST-segment elevation MI 
SUV Standardized uptake value 
SV Stroke volume 
T2DM Type 2 diabetes mellitus 
TAC Time-activity curve 
TBR Target-to-background ratio 
TG Triglycerides 
TGF-β Transforming growth factor-β 
TLR Toll-like receptor 
TNF Tumor necrosis factor 
TSPO Translocator protein 
VAP-1 Vascular adhesion protein-1 
VCAM-1  Vascular cell adhesion molecule-1 
VEGF Vascular endothelial growth factor 
VLDL Very low-density lipoprotein 
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1 Introduction 

Despite significant diagnostic and therapeutic advances, atherosclerotic 
cardiovascular disease (ASCVD) and its clinical consequences, ischemic heart 
disease, and stroke remain leading causes of death and disability worldwide. 
Although cardiovascular mortality has markedly declined during the past decades, 
the increasing incidence of obesity and type 2 diabetes mellitus (T2DM), especially 
in the Western countries, contribute to the high prevalence rate of ASCVD. Other 
modifiable risk factors for ASCVD include high blood cholesterol levels, elevated 
blood pressure, cigarette smoking, and low physical activity. Genetic susceptibility 
such as familial hypercholesterolemia (FH) causes premature ASCVD due to 
lifelong increase in plasma low-density lipoprotein cholesterol (LDL-C). In clinical 
practice, the assessment of the total risk is recommended for the prevention of 
ASCVD. The higher the total risk, the more intense action, i.e., lifestyle modification 
and appropriate treatment, is required. (Pasterkamp et al., 2016; Mach et al., 2020) 

The current concept recognizes atherosclerosis as a complex, lipid-driven 
inflammatory disease of arteries. Lipoproteins interact with inflammatory cells in the 
vessel wall accelerating the development of atherosclerotic lesions. The main cause 
of myocardial infarction (MI) arises from a rupture of atherosclerotic lesion and 
thrombus formation in the coronary artery. The MI triggers an intense inflammatory 
response that is essential for myocardial healing, but which is also implicated in the 
pathogenesis of heart failure. Thus, the inflammatory process has emerged as a 
potential target for development of new therapeutic strategies in ASCVD. (Libby & 
Hansson, 2019) 

Molecular imaging modalities can reveal structural, cellular, and molecular 
alterations in ASCVD, and therefore, might be particularly promising for the 
identification of patients with adverse inflammatory response, and could potentially 
be utilized to predict disease outcome, monitor treatment response, and develop new 
therapies. (Werner et al., 2020) This thesis investigates phosphorylcholine (PC) as a 
target for novel immunotherapy, and glucagon-like peptide-1 receptor (GLP-1R) as 
a new imaging biomarker in experimental models. 
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2 Review of the Literature 

2.1 Atherosclerotic cardiovascular disease 
Atherosclerotic cardiovascular disease (ASCVD) is a disorder that affects both heart 
and blood vessels. ASCVD include coronary artery disease (CAD), stroke, and 
peripheral artery disease with atherosclerosis involved in the pathogenesis. CAD can 
further lead to complications including unstable angina pectoris defined as chest pain 
caused by restricted blood flow to the myocardium, and myocardial infarction (MI) 
where the blood flow to the myocardium is acutely obstructed. Furthermore, patients 
suffering MI remain at risk for developing heart failure (HF), which is a chronic 
clinical syndrome in which the heart is unable to pump enough blood to meet the 
needs of the body. HF can be a result of different etiologies, including CAD, 
hypertension or valve disease, which often occur simultaneously. (Pasterkamp et al., 
2016) 

2.1.1 Atherosclerosis and coronary artery disease 
Atherosclerosis, a disease of large and middle-sized arteries, is characterized by low-
grade, chronic inflammation of the arterial wall triggered by the subendothelial 
accumulation of lipoproteins from the blood circulation into the inner layer of the 
arterial wall, the intima (Bäck et al., 2019). CAD results from atherosclerotic lesions 
within the epicardial coronary arteries. When the lesion grows in size, it may narrow 
the coronary artery and restrict the blood flow to the myocardium and/or become 
unstable and ultimately rupture causing, a thrombus, a blood clot in the coronary 
artery. (Goldstein & Brown, 2015) CAD begins early in life and is a slowly 
progressing disease that typically has a long clinically silent phase. Hence, the acute 
MI is often the first manifestation of CAD. (Stary, 2000) 

The pioneering work of pathologists Virchow and von Rokitansky in the mid-
1800s described for the first time lipid accumulation, cell proliferation, “elements of 
inflammation”, and incorporated thrombus as key pathogenic processes in 
atherosclerosis (Virchow 1858). The schema of lipid storage disease introduced by 
Anitschkow and co-workers was a dominating hypothesis until the 1970s 
(Anitschkow & Chalatow 1913). Thereafter, the initiating role of smooth muscle cell 
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Review of the Literature 

(SMC) proliferation and endothelial cell (EC) dysfunction in lesion formation was 
acknowledged (Ross, 1993), followed by observations of innate and adaptive 
immune responses in atherogenesis (Libby, 2002). The current concept involves 
elements from each of the previous theories, recognizing atherosclerosis as a 
complex, lipid-driven inflammatory disease (Libby & Hansson, 2019).   

2.1.1.1 Blood lipids and lipoproteins 

Lipids derived from food intake and endogenous biosynthesis are essential for 
energy utilization, steroid hormone production and bile acid formation. Because 
lipids are insoluble in water, they are packaged into lipoproteins for transportation 
in blood. The hydrophobic core of a lipoprotein particle is rich in cholesterol esters 
and triglycerides (TG), and it is surrounded by a hydrophilic membrane consisting 
of phospholipids, unesterified cholesterol, and apolipoproteins. The major 
lipoproteins in bloodstream are chylomicrons, very low-, intermediate-, low-, and 
high-density lipoproteins (VLDL, IDL, LDL and HDL), and lipoprotein(a) [Lp(a)]. 
(Mach et al., 2020) 

Chylomicrons are responsible for the transportation of dietary lipids from 
intestine to liver and peripheral tissues. LDL is derived from VLDL and IDL 
synthetized by the liver, and it is a principal carrier of cholesterol in plasma. VLDL, 
IDL, LDL, and Lp(a) particles contain an apolipoprotein B100 (ApoB100) molecule 
on their surface. Lp(a) is an LDL-like particle with an Apo(a) moiety covalently 
bound to its ApoB100 molecule. The function of ApoB100 is to maintain the 
structural integrity of particles and serve as a ligand for LDL receptor (LDLR) 
mediating hepatic clearance of lipoproteins. However, all ApoB100-containing 
lipoproteins <70 nanometer in diameter, including remnant particles, can cross the 
endothelium, thus provoking a pro-atherogenic process. In contrast, HDL is 
considered anti-atherogenic since it contains apolipoprotein A1 on the surface and 
has a crucial role in reverse cholesterol transport from peripheral tissues to the liver. 
(Boren et al., 2020) 

Plasma LDL-C is a measure of the cholesterol mass carried by LDL particles, 
and it provides an estimate of the concentration of circulating LDL. It has been 
consistently proven in large studies that LDL-C is causally associated with the risk 
of ASCVD and that therapies lowering LDL-C levels reduce cardiovascular risk and 
mortality. (Mach et al., 2020) Although LDL is recognized as the principal driver of 
the initiation and progression of atherosclerosis, emerging evidence support an 
independent, causal role of Lp(a) in ASCVD (Nordestgaard & Langsted, 2016). 
Atherogenicity of Lp(a) is discussed further in Chapter 2.3. 
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Artery 
LDL 

Low shear stress 

Genetic 
determinants 

Hypertension 

Diabetes 

Smoking 

Systemic inflammation 

Obesity 
Other lipids 

Low physical activity 

Plaque progression 

Stable plaque 
Inflammation-resolving 
mediators 
Efficient efferocytosis 
Small lipid core 
Protective fibrous cap 

Unstable plaque 
Pro-inflammatory mediators 
Cellular necrosis 
Large lipid core 
Thin fibrous cap 
 Plaque rupture, thrombus 

Figure 1. Pathogenesis of coronary artery disease. Summary of the main risk factors and 
mechanisms underlying the endothelial dysfunction, retention of LDL particles and 
formation of foam cells in the artery wall, and subsequent inflammatory responses. 
Inflammatory/M1 macrophages accelerate the pro-inflammatory status by producing such 
mediators as IL-1β, TNF, and IL-6 in response to inflammasome (NLRP3) activation. 
Resident/M2 macrophages secrete pro-resolving mediators, such as IL-10 and TGF-β to 
suppress inflammation and promote healing. The capacity of M2 macrophages to clean 
dying cells becomes overloaded during the progression of atherosclerosis, thereby 
resulting in the formation of necrotic core and worsening of inflammation. The final clinical 
outcome depends on the balance of pro-inflammatory and inflammation-resolving 
mediators. The rupture-prone unstable plaque is typically characterized by a pronounced 
inflammation, large lipid-rich necrotic core, low SMC density, and thin fibrous cap. 
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2.1.1.2 Endothelial dysfunction 

The artery wall has three layers of which the innermost layer, tunica intima, consists 
of the endothelium and subendothelial connective tissue. ECs form a continuous 
monolayer that serves as a lining for all blood vessels to maintain vascular 
homeostasis in response to hemodynamic forces and chemical signals. The middle 
layer, tunica media, consists primarily of SMCs while the outermost layer, tunica 
adventitia, involves connective tissue. (Gimbrone & García-Cardeña, 2016) 

Normally-functioning endothelium regulates vascular tone, supplies substances 
between blood and tissues, controls angiogenesis, i.e., the formation of new vessels 
and cell proliferation, modulates immune responses, and acts as a barrier to 
macromolecules, such as bacterial products (Félétou & Vanhoutte, 2006). Moreover, 
the normal endothelium exhibits anti-thrombotic properties by preventing the 
activation of coagulation cascade and adhesion of platelets and immune cells to the 
vascular wall. However, noxious stimuli such as hyperlipidemia, hyperglycemia, 
cigarette smoke, hypertension, or altered hemodynamic forces can trigger an 
endothelial dysfunction. (Gimbrone & García-Cardeña, 2016) 

The loss of normal, protective function of endothelium was defined as 
endothelial dysfunction in the mid-1980s. The seminal observations of Furchgott and 
Zawadzki showed that the vasodilation response to acetylcholine was endothelium-
dependent mediated by a humoral factor (Furchgott and Zawadzki 1980). This factor 
was first described as endothelium-derived relaxing factor and later identified as 
nitric oxide (NO) (Palmer 1987). The observations of impaired endothelium-
mediated vasodilation in the context of hypercholesterolemia in rabbits (Verbeuren 
et al., 1986) and coronary arteries of atherosclerotic patients (Ludmer et al., 1986) 
suggested that a deficiency in endothelial NO production or its bioavailability 
precede the formation of atherosclerotic lesions. 

Endothelial nitric oxide synthase (eNOS) is a key enzyme generating NO from 
ʟ-arginine in ECs. The most important factor regulating eNOS expression and 
activity are hemodynamic forces, fluid shear stress in particular. Shear stress is 
defined as frictional force acting on the endothelial surface as a result of viscous 
fluid, the blood flow. (Malek & Alper, 1999) Atherosclerosis originates mainly at 
arterial bifurcations, branch points, and regions of high curvature. These sites are 
prone to disturbed flow patterns including low flow, flow separation, low shear 
stress, and turbulent flow. Low shear stress combined with other pro-inflammatory 
agents, such as modified lipoproteins, results in reduced NO production that is 
associated with impaired relaxation of SMCs and EC activation. (Hahn & 
Schwartz, 2008) Endothelial activation further leads to increased permeability, 
increased oxidative stress, cell surface expression of vascular cell adhesion 
molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), and 
secretion of pro-thrombotic mediators, pro-inflammatory cytokines [e.g., 
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interleukin-8 (IL-8)] and chemokines [e.g., monocyte chemoattractant protein-1 
(MCP-1), also known as C-C motif chemokine ligand 2 (CCL2)], thereby 
facilitating lipoprotein penetration, monocyte adhesion to and transmigration 
across the endothelial layer (Figure 1). (Gimbrone & García-Cardeña, 2016) It has 
been demonstrated in patients that low local endothelial shear stress at baseline is 
associated with subsequent lesion progression to a clinical event (Stone et al., 
2012). Thus, if the ECs fail to maintain the normal quiescent phenotype, it can lead 
to a dysfunctional endothelium and inflammatory milieu that is susceptible for 
development of atherosclerosis. 

2.1.1.3 Inflammation in atherosclerosis 

The acute inflammatory response in the arterial wall is initiated by ApoB100-
containing lipoproteins, selectively LDL, crossing the permeable endothelium by 
both passive filtration and active, receptor-mediated transcytosis. In the intima, 
ApoB100 moiety of LDL interacts with intimal extracellular proteoglycans and the 
LDL is trapped. This process is referred to as retention. The retained LDL is 
susceptible for modifications including oxidation and aggregation. Oxidation occurs 
by enzymes and oxidants leading to the generation of oxidized LDL (OxLDL) that 
contains several bioactive molecules on its surface, such as oxidized phospholipids 
(OxPL), which mediate pro-inflammatory effects. (Boren et al., 2020; Ylä-Herttuala 
et al., 1989) OxPLs are discussed in more detail in Chapter 2.3. 

The predominant immune cells in both human and mouse atherosclerotic lesions 
are macrophages, which originate mainly from circulating monocytes, but also from 
local proliferation of tissue-resident macrophages and trans-differentiation of intimal 
SMCs into macrophage-like cells. Other inflammatory cells include lymphocytes, 
mast cells, dendritic cells, and neutrophils. In mice under physiological state, 
circulating non-classical Ly6Clow monocytes patrol the endothelium to maintain 
protective function, whereas in atherosclerosis, pro-inflammatory classical Ly6Chigh 

monocytes predominate in the blood circulation (CD14+CD16+ and CD14+CD16-

monocytes in humans, respectively) and are recruited into the intima, where they 
differentiate into macrophages. Macrophages can use different combinations of 
scavenger receptors (SR), including CD36, SRA1 and 2, SRB1, CD68, and lectin-
type oxidized LDL receptor 1 (LOX1), to recognize and ingest OxLDL followed by 
the generation of cytoplasmic cholesteryl ester droplets, which make the 
macrophages “foamy”. (Moore et al., 2018) SMCs can also form foam cells 
(Allahverdian et al., 2014). Foam cell formation is a hallmark of early atherosclerotic 
lesions, so-called “fatty streaks” (Virmani et al., 2000). (Figure 1) 

Formation of foam cells is a beneficial process in early lesions, since free 
cholesterol is stored in lipid droplets and effluxed to HDL for transportation to the 
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liver. However, with excessive free cholesterol uptake, lipid metabolism can become 
defective. It leads to the formation of cholesterol crystals that activate a multiprotein 
complex, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) 
inflammasome, resulting in secretion of pro-inflammatory cytokines, interleukin-1β 
(IL-1β) and interleukin-18 (IL-18) from macrophages (Duewell et al., 2010). IL-1β 
can downstream promote the tumor necrosis factor (TNF) and interleukin-6 (IL-6) 
pathway, leading to increased production of C-reactive protein (CRP) from the liver 
(Ridker & Lüscher, 2014). It is well established that elevated plasma levels of CRP 
[measured by high-sensitivity (hs) assay and termed as hsCRP], and IL-6 are 
associated with an increased risk of cardiovascular events, independent of 
cholesterol levels (Ridker et al., 2000). It is important to note that this acute-phase 
inflammatory reaction is protective when functioning properly and temporally like a 
defense against infections. However, if the resolution of inflammation fails, it can 
persist and lead to chronic inflammatory conditions. 

The inflammation-resolution response is an active process orchestrated by 
various pro-resolving mediators, such as annexin A1, IL-10, and NO, as well as 
macrophages. In advanced lesions, dysfunctional foam cells die easily and release 
their content to extracellular space, leading to necrotic core formation. The cells that 
die via apoptosis are cleared by the surrounding counterpart macrophages; the 
process is called efferocytosis. (Tabas, 2010) Efficient efferocytosis in early 
atherogenesis reduces the development of atherosclerotic lesion and does not tend to 
trigger an inflammatory response (Hamada et al., 2014). However, foam cells can 
also die via pyroptosis and necroptosis, which leads to the release of pro-
inflammatory mediators and inflammasome activation. Furthermore, the capacity of 
efferocytes to ingest apoptotic cells becomes impaired during the progression of 
atherosclerosis, thereby resulting in secondary necrosis and worsening of the 
inflammatory status. (Tait et al., 2014) (Figure 1) 

The phenotype heterogeneity of intimal macrophages is wide, rather complex, 
and likely to change during the atherosclerosis progression in response to different 
microenvironmental conditions, such as growth factors, cytokines, hypoxia, and 
lipid accumulation. A novel atlas of the immune cell repertoire in atherosclerosis 
defined by single-cell ribonucleic acid (RNA) sequencing has revealed unique 
macrophage subsets with both pathogenic and protective functions. (Cochain et al., 
2018; Winkels et al., 2018). The modern classification distributes macrophages into 
5 different subsets: resident-like, inflammatory (CCR2+), foamy Trem2, interferon-
inducible cell (IFNIC), and cavity macrophages (Zernecke et al., 2020). The 
traditional classification divides macrophages into pro-inflammatory M1 and anti-
inflammatory M2 macrophages. These groups represent the opposite ends of the 
whole spectrum, but it is still a useful classification in the context of inflammation 
resolution. M1 macrophages accelerate the pro-inflammatory status by producing 
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such mediators as IL-1β, IL-6, IL-12, TNF, MCP-1, and inducible nitric oxide 
synthase (iNOS), which further promote the recruitment of new monocytes, cell 
death and secretion of matrix metalloproteinases (MMPs) contributing to lesion 
vulnerability. In contrast, M2 macrophages secrete pro-resolving mediators to 
suppress inflammation and promote healing. For example, IL-10 enhances 
efferocytosis and transforming growth factor-β (TGF-β) induces collagen production 
by fibroblasts, thus promoting the formation of protective fibrous cap in the lesion. 
(Tabas & Bornfeldt, 2016) 

As a result, the final clinical outcome depends on the balance of pro-
inflammatory and pro-resolving mediators, combined with other risk factors. If the 
resolution of inflammation is successful, it ensures proper healing and formation of 
a stable plaque manifesting, clinically as a chronic coronary syndrome (CCS). 
However, stable coronary plaques may become stenotic and cause symptoms such 
as chest pain and myocardial ischemia, usually during exercise. In contrast, when the 
pro-inflammatory mediators dominate, it can lead to an unstable advanced plaque 
that is characterized by a large lipid-rich necrotic core, pronounced inflammation, 
low SMC density and thin fibrous cap, and is frequently non-stenotic. An unstable 
plaque is prone to the erosion of the endothelial lining or rupture of the surface 
fibrous cap via both biomechanical and hemodynamic factors. The exposure of 
lesion components to blood initiates a coagulation cascade and thrombus formation, 
resulting in obstructed blood flow, which may manifest clinically as an acute 
coronary syndrome (ACS) or a stroke. (Figure 1) (Falk et al., 2013; Virmani et al., 
2000) 

2.1.2 Myocardial infarction and heart failure 
Clinically, common presentations of life-threatening ACS include unstable angina, 
arrhythmias, acute myocardial infarction (AMI), and sudden cardiac death. Rupture 
of an unstable plaque resulting in thrombosis accounts for up to 70% of all acute MI 
events. (Pasterkamp et al., 2016) Although short-time mortality following AMI has 
declined significantly during recent years, patients surviving AMI still remain at risk 
for developing HF in the long term, which is associated with a high mortality rate. 
Thus, in order to prevent the onset of HF in patients suffering AMI, the main strategy 
is to reduce the MI size and preserve the left ventricular (LV) function. In this regard, 
the endogenous myocardial inflammatory response and repair process following 
AMI have a crucial role in infarct healing and can either propagate or defend against 
HF. (Adamo et al., 2020; Braunwald, 2013) 
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2.1.2.1 Ischemia and acute myocardial infarction 

Coronary circulation comprises the epicardial conductance arteries (diameter 1-6 
mm) that feed downstream the microcirculation consisting of small arteries, 
arterioles, and capillaries (<300-400 µm), which mostly run within the ventricular 
wall. That is the site of the regulation of myocardial blood flow (MBF) and exchange 
of gas and metabolites with the myocardium, the contractile unit. (Levy et al., 2019) 
The heart is an aerobic organ that in normal conditions relies almost exclusively on 
the aerobic oxidation of substrates, largely fatty acids, in mitochondria for the 
generation of energy. (Braunwald, 1971) Hence, insufficient supply of blood 
(oxygen and nutrients) mainly due to CCS or ACS results in myocardial ischemia. 
At the myocyte level, prolonged ischemia leads to a metabolic switch towards 
anaerobic glycolysis, progressive membrane damage with cell swelling and death 
(oncosis), mitochondrial stress, and apoptosis, resulting in necrosis and loss of 
contractile function. (Buja & Vander Heide, 2016; Stanley et al., 2005) When the 
acute myocardial injury (necrosis), detected by a rise and/or fall in circulating cardiac 
biomarkers [preferably cardiac troponin (cTn) I or T] in the setting of acute 
myocardial ischemia, is evident, AMI should be used as a clinical definition. In 
addition to abnormal cTn values, one of the following diagnostic criteria for AMI 
should be present: ischemic symptoms, abnormal electrocardiographic (ECG) 
findings [e.g. ST-segment elevation MI (STEMI)], or imaging evidence of an 
intracoronary thrombus, new loss of viable myocardium, or new regional wall 
motion abnormality. (Thygesen et al., 2019) 

Ischemia can be reversible if the blood flow is restored by an early and 
successful reperfusion. The seminal work by Reimer and co-workers showed that, 
in rabbits, irreversible injury begins at 20 min in the ischemic subendocardium and 
papillary muscle, extends into the mid-myocardium by 60-90 min, and forms a 
transmural infarction after 3-4 hours (Reimer et al., 1977; Reimer & Jennings, 
1979). A similar time course appears in humans. Currently, patients with STEMI 
are referred to revascularization primarily by percutaneous coronary intervention 
(PCI) involving balloon dilatation and stenting, when feasible, to achieve 
maximum salvage of myocardium (Scholz et al., 2018). Paradoxically, the 
reperfusion process itself can cause additional myocardial damage, the so-called 
ischemia/reperfusion (I/R) injury, which is characterized by myocardial stunning 
(transient contractile impairment that recovers over time), reperfusion arrhythmias, 
coronary no-reflow phenomenon (inability to perfuse the myocardium at the level 
of microvasculature), and cardiomyocyte death (the lethal form of I/R injury). 
(Yellon & Housenloy, 2007) Thus, the I/R injury also contributes to the final MI 
size, and the approaches limiting the infarct size, i.e., cardioprotection, are crucial 
for preventing LV dysfunction. 
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2.1.2.2 Inflammatory response and myocardial repair 

In general, MI shares many features with wounds resulting from trauma or surgery 
with the exception that MI is a sterile injury of the heart, inflicting one of the most 
lethal wounds. The healthy heart contains cardiomyocytes, fibroblasts, vascular 
cells, resident mast cells and macrophages, and small populations of other 
leukocytes, such as monocytes, neutrophils, and B and T cells. (Nahrendorf & 
Swirski, 2013) In the steady-state heart, macrophages have an important 
housekeeping role against infections, but it has been suggested that they also 
participate in normal electrical conductance (Hulsmans et al., 2017) and 
physiological cardiac remodeling that occurs during pregnancy or endurance 
training. The adult mammalian heart has little regenerative capacity therefore, a well-
coordinated cascade of cellular events is required for healing and formation of a 
collagen-rich scar that does not compromise heart function. (Swirski & Nahrendorf, 
2018) 

Healing of the infarcted myocardium involves the pro-inflammatory phase 
(clearance of dead cells) and the reparative phase (resolution of inflammation), 
which results in maturation of a durable scar (Figure 2). Within minutes after the 
onset of ischemia, dying cardiomyocytes release various danger-associated 
molecular patterns (DAMP), including alarmins that provide the main stimulus for 
the activation of innate immune system. DAMPs are recognized by immune cells via 
toll-like receptors (TLR), such as TLR4, that downstream stimulate the nuclear 
factor κB (NF-κB) signaling and NLRP3 inflammasome leading to the activation of 
the complement system. (Timmers et al., 2012) Furthermore, the mast cells release 
their granules, the cardiomyocytes, resident macrophages and fibroblasts begin to 
produce pro-inflammatory cytokines, chemokines and growth factors, such as IL-1β, 
TNF, MCP-1, and vascular ECs express adhesion molecules, such as VCAM-1, 
thereby triggering a recruitment of inflammatory cells from the circulation into the 
myocardium. (Frangogiannis, 2014; Swirski & Nahrendorf, 2018) 

Neutrophils are the first immune cells entering the infarcted myocardium and 
mediating clearance of necrotic cells and extracellular matrix (ECM) debris. 
Neutrophils may contribute to an acute I/R injury, but they are also involved in 
cardiac repair by polarizing macrophages towards a reparative phenotype. 
(Horckmans et al., 2016) Neutrophil infiltration is rapidly followed by the 
recruitment of pro-inflammatory Ly6Chigh monocytes in response to the activation of 
the myocardial MCP-1 and its receptor CCR2. Leukocytes originate mainly from the 
bone marrow but also from the spleen, which, especially at later phases, serves as a 
large reservoir of immune cells that can be rapidly recruited to the heart. The number 
of neutrophils decreases after 3 days and they almost completely disappear after 7 
days, whereas Ly6Chigh monocytes continue to accumulate and differentiate into 
CCR+ (M1-type) macrophages. The main function of Ly6Chigh monocytes/M1 
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macrophages is to clear the infarct of debris by phagocytosis. They also secrete pro-
inflammatory cytokines, MMPs, and proteases that further fuel inflammation. The 
peak of initial pro-inflammatory phase is seen 3 to 4 days after MI, followed by a 
second wave of immune cells promoting tissue repair. (Figure 2) (Bajpai et al., 2018; 
Epelman et al., 2014; Hilgendorf et al., 2014; Lavine et al., 2014; Nahrendorf et al., 
2007; van der Laan et al., 2014) 

Approximately 4 days after MI, the secretion of pro-inflammatory cytokines 
decreases and Ly6Clow monocytes begin to accumulate in the infarcted myocardium 
and differentiate into reparative CCR- (M2-type) macrophages mediating the 
resolution of inflammation (Epelman et al., 2014; Lavine et al., 2014; Nahrendorf et 
al., 2007). Alternatively, it has been proposed that local monocyte/macrophage 
turnover from Ly6Chigh/M1 to Ly6Clow/M2 or direct differentiation from Ly6Chigh 

monocytes may be the main source of M2 macrophages in the infarct (Bajpai et al., 
2018; Hilgendorf et al., 2014). Ly6Clow monocytes/M2 macrophages outnumber 
their pro-inflammatory counterparts on day 7. Although first observed in mice, 
similar monocyte kinetics has been confirmed in patients with AMI (Tsujioka et al., 
2009; van der Laan et al., 2014). As a result, Ly6Clow monocytes/M2 macrophages 
secrete IL-10 that enhances efferocytosis and dampens the IL-6, TNF and MMP-9 
expression (Krishnamurthy et al., 2009), produce TGF-β to promote collagen and 
fibronectin production in fibroblasts (Dobaczewski et al., 2011), and secrete vascular 
endothelial growth factor (VEGF) to support angiogenesis (Nahrendorf et al., 2007). 
Thus, the necrotic area is replaced with newly forming tissue referred to as 
granulation tissue. 

As pro-inflammatory signaling is repressed, the activation of the TGF-β 
signaling, in particular, promotes the expansion and proliferation of cardiac 
fibroblasts, and the transdifferentiation of fibroblasts into myofibroblasts, and 
stimulates a pro-fibrotic matrix-preserving program. (Dobaczewski et al., 2011) 
Myofibroblasts are cells that express contractile proteins, such as α-smooth muscle 
actin (α-SMA), and produce collagen that strengthens the emerging scar. It has been 
proposed that myofibroblasts can also originate from local ECs, SMCs and pericytes, 
but their specific functions in repair are largely unknown. (Travers et al., 2016; 
Willems et al., 1994) Furthermore, TGF-β interacts with other important pathways 
regulating fibrogenic responses such as renin-angiotensin-aldosterone system 
(RAAS). (Figure 2) 

After the reparative phase, approximately on day 14 in mice, the ECM becomes 
cross-linked, myofibroblast density decreases, immune cell recruitment wanes, and 
reparative cells are inactivated and may undergo apoptosis, eventually resulting in a 
dense scar. The exact molecular stop-signals terminating the reparative phase remain 
unknown. (Prabhu & Frangogiannis, 2016) To maintain the integrity of the heart 
after MI, inflammatory and reparative functions have to be tightly in balance. 
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Otherwise, overactive early inflammatory response or impaired collagen deposition, 
for example, may lead to a thin and poorly healed infarct that is prone to rupture, 
thus causing a sudden cardiac death. The intense inflammatory response is essential 
for cardiac repair, but is also implicated in the pathogenesis of adverse LV 
remodeling and HF. (de Lemos et al., 2007; Frangogiannis, 2014; Tsujioka et al., 
2009) 

Acute MI Scar formation LV remodeling 

Figure 2. Cardiac repair after myocardial infarction. Healing of the infarcted myocardium involves 
a pro-inflammatory phase (clearance of dead cells) and a reparative phase (resolution 
of inflammation), which results in the maturation of a durable scar and the possibly 
preserved LV function. Inflammatory and reparative functions are tightly and timely 
regulated in order to maintain the integrity of the heart after MI. Overactive inflammatory 
and neurohormonal responses affecting also the remote, non-infarcted myocardium are 
implicated in the pathogenesis of adverse LV remodeling and chronic HF. 

2.1.2.3 Adverse left ventricular remodeling and heart failure 

In addition to the infarcted myocardium, the remaining viable, remote myocardium 
undergoes molecular and structural alterations in response to the injury, termed a 
remodeling process, which may have significant consequences on cardiac function 
and the onset of HF over time (Braunwald, 2013). Large infarcts (Chareonthaitawee 
et al., 1995; McKay et al., 1986; Pfeffer et al., 1979) and the degree of
neurohormonal (Cohn et al., 1984; Dzau et al., 1981) and inflammatory (Chen et al., 
2012; de Lemos et al., 2007) activation are strong predictors of late LV remodeling 
and HF. (Figure 2) The cardiac architecture (size, shape and composition) is 
normally matched to function, wherefore, LV remodeling is considered first as an 
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adaptive, protective response that stabilizes contractile function and maintains stroke 
volume (SV, the volume of blood the LV pumps out during each contraction). The 
LV remodeling includes progressive LV dilatation, higher diastolic pressure, wall 
thinning, hypertrophy of the myocardium, fibrosis, and distortion of LV shape 
(sphericity). (Sutton & Sharpe, 2000) This process can take months and the clinical 
manifestation, HF with reduced ejection fraction (HFrEF, EF<40%), also called 
systolic HF, develops when the end diastolic volume (EDV) is high and the LV 
cannot eject normal SV. The typical clinical symptoms, although often non-specific, 
include breathlessness, ankle swelling, pulmonary crackles, and fatigue. (Katz & 
Rolett, 2015; Ponikowski et al., 2016) 

The acute loss of myocardium due to MI results in alterations in circulatory 
hemodynamics and wall stresses that trigger a rapid compensatory activation of the 
sympathetic (adrenergic) nervous system (SNS) and RAAS. The neurohormonal 
response involves release of noradrenaline in the SNS and activation of β1-
adrenoreceptors in the kidneys, which lead to up-regulation of renal RAAS 
components: renin, angiotensin II (Ang II), Ang II receptor type 1 (AT1), 
angiotensin-converting enzyme (ACE), and aldosterone. The secretion of counter-
regulatory hormones, atrial and brain natriuretic peptides (ANP and BNP), is 
initiated, but the peripheral resistance to ANP and BNP in HF keeps the RAAS 
activated. (Hartupee & Mann, 2016) ANP and BNP are well-established biomarkers 
of HF (Cowie et al., 1997). Although the neurohormonal activation maintains 
cardiovascular homeostasis and SV in the short term, a chronic stimulus will result 
in pressure and volume overload in the heart, cardiomyocyte hypertrophy and death, 
increased collagen production and ECM degradation (stiffness and thinning), β1-
adrenoreceptor desensitization, dysregulation of intracellular Ca2+ (contraction), and 
defects in energetics and metabolism. (Braunwald, 2013; Hartupee & Mann, 2016) 

The pharmacological blockade of the neurohormonal system improves outcomes 
in patients with HF (MERIT-HF, 1999; The SOLVD, 1991), but it does not fully 
explain the complex LV remodeling process. The remote myocardium recruits more 
leukocytes progressively from the spleen during remodeling (Ismahil et al., 2014), 
and resident macrophages survive and proliferate in remote areas, probably in 
response to the pro-inflammatory cytokine milieu and by exposure to LV stretch 
(Sager et al., 2016). Elevations in the systemic and local TNF, IL-1β, IL-6, MCP-1, 
and hsCRP levels are associated with chronic HF (Cesari et al., 2003; Damås et al., 
2000; Torre-Amione et al., 1996), and human CCR2+ macrophage abundance 
correlates with adverse remodeling (Bajpai et al., 2018). Furthermore, macrophages 
express ACE that provides a local source of Ang II, and myofibroblasts produce 
aldosterone, which promotes fibrosis in the remote myocardium (Silvestre et al., 
1999; Y. Sun et al., 1994). Indeed, neurohormonal antagonists may have direct 
effects on macrophages and myofibroblasts by delaying adverse fibrosis and LV 
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remodeling (Yu et al., 2001). Although the sustained activation of inflammatory and 
fibrogenic pathways in the remote myocardium is associated with HF progression, 
the exact role of different macrophage subsets remains unclear in chronic HF, since 
no proper single-cell RNA sequencing of inflammatory cells in the remodeling 
myocardium has yet not been carried out. (Adamo et al., 2020) 

2.1.3 Overview of standard pharmacological therapies 
Lifestyle modifications and interventions targeting the known risk factors such as 
high cholesterol levels, high blood pressure, and hyperglycemia have a central role 
in the prevention and treatment of ASCVD. Key lifestyle interventions include 
cessation of smoking, healthy diet and weight, and physical activity. Plasma LDL-C 
lowering represents the primary target for reducing ASCVD risk and events, 
although the awareness of high Lp(a) and TG levels as independent risk factors has 
emerged recently (Tsimikas & Stroes, 2020). 

Statins (e.g., atorvastatin, simvastatin) serve as a cornerstone in the treatment of 
dyslipidemia. Statins reduce cholesterol synthesis in the liver by competitively 
inhibiting the enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) 
reductase that leads to increased LDLR expression and enhanced LDL uptake in 
hepatocytes. The degree of LDL-C lowering is dose-dependent (on average 30-50%) 
and varies inter-individually and between different statins. Other lipid-lowering 
drugs include cholesterol absorption inhibitors (ezetimibe), bile acid sequestrants, 
and fibrates. Recently, a new therapeutic class of agents, proprotein convertase 
subtilisin/kexin type 9 (PCSK9) inhibitors, has become available for statin-intolerant 
patients or patients at very high risk (Robinson et al., 2015a). Blockade of the PCSK9 
protein with fully human antibody (alirocumab or evolocumab) results in lower 
concentration or function of PCSK9 and thus, increased expression of LDLRs. 
PCSK9 inhibitors, either alone or in combination with statins and/or other lipid-
lowering therapies, have been shown to reduce LDL-C levels on average by 60%. 
(Mach et al., 2020) 

In the context of CCS, statins are recommended for all patients. In symptomatic 
CCS patients, anti-ischemic drugs (e.g., nitrates, β-adrenoreceptor blockers) relieve 
angina symptoms, and an anti-platelet drug (preferably low-dose aspirin) is 
recommended for prevention of ischemic events in patients with previous MI or 
definite evidence of CAD. A second anti-thrombotic drug (e.g., anti-coagulant 
rivaroxaban) can be added to aspirin for high-risk patients. Moreover, if 
hypertension, LV dysfunction or diabetes coexist in CCS patients, ACE inhibitors 
(ACEI) or β-blockers are to be considered. Dual anti-platelet therapy [low-dose 
aspirin and oral P2Y12 inhibitor (e.g., clopidogrel)] should be started for all patients 
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after MI and/or undergoing primary PCI to reduce the risk of thrombotic events 
(maintained 6-12 months). (Knuuti et al., 2020) 

The standard care of patients with HF aims to improve their functional capacity 
and quality of life, prevent hospital admission and reduce mortality. Inhibition of 
RAAS activation with ACEIs (e.g., captopril, enalapril) or AT1 receptor blockers 
(ARB, e.g., candesartan, valsartan) in combination with β-blockers (e.g., bisoprolol) 
form the backbone for the treatment of HF and are recommended for every patient 
with HFrEF. ARBs are typically recommended if ACEIs are contraindicated or not 
tolerated. Mineralocorticoid (aldosterone) receptor antagonists (MRA, 
spironolactone or eplerenone) can be added as a complementary treatment in selected 
symptomatic patients. Neurohormonal antagonists, ACEIs, ARBs, β-blockers, and 
MRAs have been shown to reduce the risk of HF hospitalization and mortality and 
morbidity in HFrEF patients. (Ponikowski et al., 2016) A new dual blocker drug 
combining the ARB (valsartan) and a neprilysin (NEP) inhibitor (sacubitril) in a 
single compound (ARNI) has become available as a replacement for ACEI for 
patients who remain symptomatic despite optimal therapy (McMurray et al., 2014). 
Inhibition of NEP decreases degradation of vasoactive peptides such as ANP and 
BNP. In symptomatic HFrEF patients, diuretics (to alleviate symptoms) and selected 
inotropic agents can be used in conjunction with the above-mentioned therapies. In 
asymptomatic patients with LV systolic dysfunction, ACEIs and β-blockers are 
recommended preventively to reduce the risk of HF development. (Ponikowski et 
al., 2016) The novel approaches for the management of ASCVD in diabetic patients 
are addressed in Chapter 2.4.  

Despite the contemporary therapies, the so-called residual inflammatory risk still 
exists in some patients (Lawler et al., 2020). The CANTOS trial in 2017 showed that 
an antibody therapy targeting IL-1β (canakinumab) reduces recurrent cardiovascular 
events in patients with previous MI and high hsCRP levels (Ridker et al., 2017), 
thereby providing eventually a clinical proof that inflammation has a crucial role in 
atherogenesis. Furthermore, a pre-specified sub-analysis of the CANTOS trial 
suggested that canakinumab reduces HF-related hospitalization and mortality 
(Everett et al., 2019). Recently, an old drug, colchicine that is indicated for the 
treatment of gout and pericarditis, was shown to reduce the risk of ischemic 
cardiovascular events in patients with recent MI (Tardif et al., 2019) or CCS (Nidorf 
et al., 2020) Colchicine possibly inhibits neutrophil function, secretion of 
inflammatory chemokines, and inflammasome activation. To date, although some of 
the current therapies may exert pleiotropic anti-inflammatory properties, no therapy 
that specifically attenuates cardiovascular inflammation is approved for the 
treatment of ASCVD or HF. However, targeted anti-inflammatory therapies bear 
clinical potential, but precise identification of patients with a “cardio-inflammatory” 
phenotype would be required. (Adamo et al., 2020; Lawler et al., 2020) 
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2.2 Advances in non-invasive cardiovascular 
imaging 

Both invasive and non-invasive cardiovascular imaging hold an essential role in the 
diagnosis of CAD and HF, provide prognostic information, and guide the treatment 
strategies. In general, cardiovascular imaging techniques include anatomical, 
functional, and molecular imaging approaches that are commonly used in 
combination for multimodal or hybrid imaging. Invasive coronary angiography 
(ICA) is considered the reference standard test for the evaluation of coronary artery 
anatomy and the severity of luminal obstruction caused by atherosclerotic lesion. 
ICA is based on the intracoronary injection of an iodinated contrast medium through 
a catheter under X-ray fluoroscopy. The spatial resolution of ICA is high. In the 
presence of an angiographically intermediate lesion, the functional severity of 
stenosis can be determined by the invasive measurement of myocardial fractional 
flow reserve (FFR) or instantenous wave-free ratio (iFR). The FFR is derived from 
the ratio of the mean distal coronary artery pressure to the mean aortic pressure 
during pharmacologically induced coronary vasodilatation, thus providing an 
estimate of stenosis-induced flow impairment. The iFR differs from the FFR in that 
the ratio is measured at a distinct time in cardiac diastole, termed the wave-free 
period, in non-vasodilated conditions. In addition to visual classification by ICA, the 
FFR and iFR provide valuable information for decision-making during 
catheterization as to whether or not coronary revascularization is needed. Other 
invasive approaches to assess stenosis severity include intravascular ultrasound 
imaging (IVUS) and optical coherence tomography (OCT). (Dewey et al., 2020; 
Jensen et al., 2020) 

Angiography can also be conducted non-invasively by coronary computed 
tomography angiography (CTA), which involves an X-ray computed tomography 
(CT) scan combined with an intravenously injected contrast agent. Modern CT 
scanners provide submillimeter spatial resolution and excellent image quality. In 
addition to the assessment of luminal stenosis, the advantages of coronary CTA 
include the evaluation of lesion morphology. Coronary lesions are traditionally 
categorized according to the degree of calcified components detected by CT. In the 
context of non-calcified lesions, CTA allows the identification of high-risk plaque 
features including the napkin-ring sign (differentiation between high-attenuation 
fibrous area and low-attenuation necrotic core), positive remodeling (compensatory 
enlargement of the vessel wall with little luminal narrowing), low attenuation, and 
spotty calcification, which may provide incremental prognostic information. The 
assessment of FFR by a CT-derived methods is also possible. (Maurovich-Horvat et 
al., 2014) Although coronary CTA cannot directly distinguish a stable lesion from 
an acute plaque rupture, it is an accurate diagnostic tool to rule out obstructive CAD, 
thereby significantly reducing the number of unnecessary ICAs (Newby et al., 2018; 
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Shaw et al., 2012). The recent Guidelines recommend the use of either coronary CTA 
or non-invasive functional imaging of ischemia as the first-line diagnostic test for 
patients with low-to-intermediate clinical likelihood of CAD (Knuuti et al., 2020). 

Ischemia can be detected through ECG changes (exercise ECG), wall motion 
abnormalities by stress echocardiography (ultrasound) or stress cardiac magnetic 
resonance imaging (MRI), or measurement of blood flow through the myocardium 
(perfusion) during stress testing. Perfusion imaging modalities include single-photon 
emission computed tomography (SPECT), positron emission tomography (PET), 
myocardial contrast echocardiography, and contrast cardiac MRI. (Knuuti et al., 
2020). The most commonly used clinical application to assess myocardial perfusion 
is 99mTc-Sestamibi or 99mTc-Tetrofosmin SPECT due to its wide availability and low 
cost. The relative assessment of SPECT perfusion images is well established for the 
diagnosis of myocardial ischemia, and further, provides incremental prognostic 
value. PET perfusion imaging with 82Rubidium, 15O-water or 13N-Ammonia is 
generally considered superior to SPECT due to accurate attenuate correction, higher 
spatial resolution, and possibility for an absolute measurement of myocardial blood 
flow (MBF, mL/g/min) at rest and during pharmacologic (vasodilator) stress. (Klein 
et al., 2020) PET perfusion imaging alone is an accurate method to confirm or 
exclude ischemia, it provides incremental prognostic value, and, in combination with 
coronary CTA, helps to distinguish whether ischemia is caused by coronary stenosis 
or rather by coronary microvascular dysfunction (CMD) (see Chapter 2.2.2). For 
revascularization decisions, information on both anatomy and ischemia is needed for 
most patients. In patients with HF, perfusion imaging plays a critical role in 
differentiating disease etiology, i.e., ischemic or non-ischemic origin, thereby 
providing guidance for optimal treatment. (Danad et al., 2017; Dewey et al., 2020) 

Cardiac MRI and echocardiography are non-invasive approaches to evaluate 
cardiac structure and function without the need for ionizing radiation. MRI is based 
on the use of a strong magnetic field that excites hydrogen atoms found in water to 
change the direction of the rotational axis, thus allowing a precise soft tissue 
discrimination, whereas ultrasound utilizes high frequency sound waves and their 
echoes from the tissues with different reflection properties. For the assessment of 
myocardial ischemia, dobutamine stress MRI and exercise or dobutamine stress 
echocardiography can be used as alternative functional tests for perfusion imaging. 
Ischemia is detected by monitoring regional wall motion and thickening during 
infusion of increasing doses of dobutamine (or during exercise). The imaging 
protocol is identical between the MRI and echocardiography, but the MRI benefits 
from constantly good image quality. Perfusion imaging is also possible with MRI 
and echocardiography by using an intravenous contrast medium and vasodilator 
(commonly adenosine) stress. (Schwitter & Arai 2011; Pellikka at al., 2020) 
Furthermore, non-invasive angiography can be conducted with MRI, and high-risk 
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features of coronary and carotid artery lesions or thrombi can be characterized with 
multi-contrast MRI (T1/T2-weighted imaging) and/or gadolinium-based intravenous 
contrast medium. Despite the recent developments in cardiac MRI, coronary imaging 
is still challenging due to motion artifacts. Ultrasound, in turn, is typically used for 
an initial test to assess carotid or peripheral artery disease. Carotid intima-media 
thickness (IMT) can be measured with ultrasound, and the functional measurement 
of arterial blood flow with Doppler ultrasound allows the estimation of stenosis 
severity. (Tarkin et al., 2015) 

In patients with suspected HF, echocardiography is the first-line diagnostic 
method of choice due to its high accuracy, availability (portability), safety, and low 
cost. Echocardiography allows measurements of cardiac structure (e.g., wall 
thickness), LV systolic function in which the EF is the most important parameter, 
diastolic function, and valvular defects (e.g., regurgitation). Microbubbles can be 
used as a contrast medium. Cardiac MRI is the gold standard for the measurements 
of the volumes, mass, and EF of both the left and right ventricles and is usually used 
in patients with a complex disease. Furthermore, myocardial fibrosis (MI scar), 
edema, and viability can be assessed using cardiac MRI with late gadolinium 
enhancement and T1/T2-mapping. (Dewey et al., 2020; Ponikowski et al., 2016) 

Importantly, the selection of an appropriate clinical imaging test is guided by 
patient characteristics, local expertise, and the availability of such modalities. 
Furthermore, non-invasive molecular imaging capable of interrogating disease 
biology and molecular pathways beyond the anatomy and function provides novel 
opportunities for more accurate diagnostics and treatment. 

2.2.1 Molecular imaging 
Molecular imaging is defined as the “visualization, characterization, and 
measurement of biological processes at the molecular and cellular levels in humans 
and other living systems” (Mankoff, 2007). Nuclear imaging techniques, i.e., SPECT 
and PET, provide the main clinical molecular imaging modalities, with the latter 
being the leading approach. PET is based on the use of an intravenously injected 
radiotracer, i.e., a small-molecule, peptide or antibody agent labeled with a short-
lived positron emitting radionuclide, such as 11C, 68Ga or 18F, that binds to a 
molecular target of interest. When the radionuclide undergoes radioactive decay, it 
emits a positron that travels a short distance in the tissue before it encounters a nearby 
electron. This collision results in annihilation and creation of a pair of 511 kilo-
electron volt (gamma) photons, which travel in opposite directions. Simultaneous 
detection of two opposite photons on the PET scanner ring-like detectors allows the 
localization of the tracer accumulation in the tissue, which can be further transferred 
and reconstructed to a 3D image. (Turkington 2001) The utilization of radiotracers 
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permits excellent target specificity and sensitivity, and spatial resolution of around 4 
mm (1.5 mm in small-animal scanners). An important advantage is that the PET 
tracer uptake is quantifiable. However, disadvantages include limited spatial 
resolution and poor anatomic contrast, and therefore, PET is usually combined with 
a CT or MR scan. The combination of PET and CT also benefit from the quick 
attenuation correction. (Meester et al., 2019) 

PET imaging has been widely and successfully used in non-cardiac conditions 
and indeed, most of the tracers have been adopted from the field of oncology to 
nuclear cardiology. The evolution of radionuclide imaging methods in nuclear 
cardiology has offered new possibilities where molecular-targeted PET imaging can 
be potentially utilized to predict the disease outcome at early stages, guide treatment 
selection and timing, monitor therapy response, and investigate the pathophysiology 
of the disease, thus facilitating the development of novel therapies. (Werner et al., 
2020) 

2.2.1.1 PET imaging of inflammation in atherosclerosis 

Despite the possibility to evaluate adverse plaque characteristics by coronary CTA 
and MRI, anatomical imaging cannot directly assess the activity of the disease 
process. Inflammatory cells, macrophages in particular, are the most abundant cell 
type in high-risk atherosclerotic lesions, thereby representing an attractive target for 
the identification of active disease. (Dweck et al., 2016) In the past decade, several 
radiopharmaceuticals have been studied for the assessment of atherosclerosis in 
animal models, but only few of them have been successfully translated to clinical 
studies. The most relevant PET tracers characterized for the imaging of inflammation 
in atherosclerosis in vivo are presented in Table 1. 

Glucose analog 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) is the most 
commonly used radiotracer in PET imaging. 18F-FDG is taken up by metabolically 
active cells via glucose transporters (GLUT) 1 and 3, and is then phosphorylated into 
18F-FDG-6-phosphate by the hexokinase enzyme. Unlike its physiological 
counterpart, 18F-FDG-6-phosphate cannot proceed the glycolytic pathway further 
and therefore, becomes trapped within the cells, reflecting the real-time metabolic 
activity of the tissue. (Hyafil & Vigne, 2019) The first observations of 18F-FDG 
uptake in the aorta were described in oncologic patients (Yun et al., 2001), and, in 
2002, Rudd and co-workers showed that 18F-FDG accumulates in symptomatic 
carotid atherosclerotic lesions. Ex vivo autoradiography experiments in excised 
carotid plaques demonstrated that tritiated deoxyglucose co-localizes in 
macrophage-rich areas. (Rudd et al., 2002) Since then, several studies in different 
animal models (Hyafil et al., 2009; Ogawa et al., 2004; Zhang et al., 2006) and in 
patients (Liu et al., 2016; Tawakol et al., 2006) have confirmed that 18F-FDG uptake 

31 



 

  

     
    

   
        

    
      

    
       

  

     

 

  
     

 

 

 

 

 

Mia Ståhle 

in plaques correlates with the histological degree of macrophages. Indeed, glucose 
turnover in macrophages and foam cells is increased in atherosclerotic lesions, but 
other cell types, such as activated SMCs, fibroblasts, and ECs, may also contribute 
to the uptake in response to inflammatory stimuli (Folco et al., 2011; Liu et al., 2016; 
Ogawa et al., 2012). Moreover, OxLDL (Lee et al., 2016) and hypoxia (Folco et al., 
2011; Tawakol et al., 2015) have been implicated as important regulators of 
macrophage 18F-FDG uptake. A recent elegant study on carotid plaque specimens 
highlights the role of cellular metabolism, glycolysis in particular, in fueling 
inflammation and a high-risk plaque phenotype (Tomas et al., 2018). 

Table 1. PET tracers characterized for the imaging of inflammation in atherosclerosis. 

Target Tracer Development stage References 
Inflammatory cells (macrophages) 
Glucose metabolism 18F-FDG Clinical and pre-clinical Rudd et al. 2002; 2009 

application Silvola et al. 2011; Taw akol et al. 2005 
Somatostatin receptor 68Ga-DOTATATE Clinical coronary, carotid Tarkin et al. 2017 
type 2 Mouse Li et al. 2013 

64Cu-DOTATATE Clinical carotid Pedersen et al. 2015 
68Ga-DOTANOC Mouse Rinne et al. 2015 

Chemokine receptor 4 68Ga-Pentixafor Clinical coronary, aortic Derlin et al. 2018; Li et al. 2018 
Rabbit Hyafil et al. 2017 

Phospholipid 18F-FCH Clinical carotid Vöö et al. 2016 
metabolism 18F-FMC Mouse Hellberg et al. 2016 

11C-Choline Mouse Laitinen et al. 2010 
Translocator protein 11C-PK11195 Clinical carotid Gaemperli et al. 2012 

18F-FEMPA Mouse Hellberg et al. 2017 
18F-GE-180 Mouse Hellberg et al. 2018 

Mannose receptor 68Ga-NOTA-MSA Rabbit Kim et al. 2016 
18F-FDM Rabbit Tahara et al. 2014 

Folate receptor β 18F-FOL Mouse, rabbit Silvola et al. 2018 
Cannabinoid recptor 2 11C-RS-016 Mouse Meletta et al. 2017 
Scavenger receptor CD68 64Cu-CD68-Fc Mouse Bigalke et al. 2014 
Leukocyte proliferation 18F-FLT Mouse, rabbit, Ye et al. 2015 

patients 
Adhesion molecules 
VCAM-1 18F-4V Mouse Nahrendorf et al. 2009 
P-selectin 64Cu-DOTA-anti-P- Mouse Nakamura et al. 2013 

selectin mAb 
68Ga-Fucoidan Mouse Li et al. 2014 

VAP-1 68Ga-DOTA-Siglec-9 Mouse Silvola et al. 2016 
Integrins 
αvβ3 18F-Fluciclatide Clinical aortic Jenkins et al. 2019 

18F-Galacto-RGD Clinical carotid Beer et al. 2014 
Mouse Laitinen et al. 2009 

18F-Flotegatide Mouse Su et al. 2014 
68Ga-NOTA-RGD Mouse Haukkala et al. 2009; Paeng et al. 2013 

Matrix metalloproteinases 
MMP-2/9 68Ga-DOTA-TCTP-1 Mouse Kiugel et al. 2018 

Although the exact mechanisms underlying lesional 18F-FDG intake are still a 
matter of debate, 18F-FDG PET/CT studies (performed in oncologic indications) 
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have demonstrated that high arterial 18F-FDG uptake provides an independent 
predictor of future cardiovascular events (Figueroa et al., 2013; Paulmier et al., 2008; 
Rominger et al., 2009). Furthermore, vascular 18F-FDG PET imaging is a highly 
reproducible and sensitive method and, interestingly, even individuals with 
atherogenic risk factors show a higher arterial 18F-FDG uptake compared to healthy 
controls (van der Valk et al., 2016a). Statin therapies demonstrated a clear and 
consistent dose-dependent reduction in arterial 18F-FDG uptake in patients with 
ASCVD or cardiovascular risk factors (Ishii et al., 2010; Tahara et al., 2006; 
Tawakol et al., 2013), and vascular 18F-FDG PET imaging has been increasingly 
used as a surrogate marker to evaluate the effects of novel therapies on 
atherosclerotic inflammation. For example, two investigational drugs, namely, a 
cholesteryl ester transfer protein inhibitor, dalcetrapib (Fayad et al., 2011), and a 
lipoprotein-associated phospholipase A2 inhibitor, rilapladip (Tawakol et al., 2014), 
failed to demonstrate a reduction in vascular 18F-FDG uptake. These proof-of-
concept studies provide important guidance before proceeding to large clinical end-
point trials. However, the main limitation of 18F-FDG is that it is not specifically 
taken up by inflammatory cells only hence, the high physiological uptake in 
myocardium makes the coronary imaging challenging. (Hyafil & Vigne, 2019) 

Recently, the somatostatin receptor type 2 (SSTR2) -targeting PET tracer 68Ga-
DOTATATE (Tarkin et al., 2017) and the chemokine receptor 4 (CXCR4) -targeting 
tracer 68Ga-Pentixafor (Derlin et al., 2018) have demonstrated potential for the 
imaging of coronary artery plaques in patients. SSTR2 is expressed on the surface of 
activated macrophages (mainly M1 type) and 68Ga-DOTATATE was shown to 
specifically bind to SSTR2 in macrophage-rich areas of the lesions. Interestingly, 
68Ga-DOTATATE was able to distinguish high-risk coronary and carotid artery 
lesions from low-risk lesions coupled with low myocardial uptake, thus being 
superior to 18F-FDG. (Tarkin et al., 2017) CXCR4, in turn, is widely expressed in a 
variety of inflammatory cells as well as in ECs and SMCs, mediating immune cell 
recruitment at the site of inflammation. Focal uptake of 68Ga-Pentixafor has been 
demonstrated in advanced coronary lesions, together with histologically confirmed 
CXCR4 expression in CD68+ macrophages. (Derlin et al., 2018) Furthermore, aortic 
68Ga-Pentixafor uptake correlated with cardiovascular risk factors (Li et al., 2018). 
Other promising targets for specific detection of macrophages in atherosclerotic 
lesions include phospholipid (choline) metabolism and translocator protein (TSPO) 
that interact with the PET tracers 18F-Fluorocholine (Vöö et al., 2016) and 11C-
PK11195 (Gaemperli et al., 2012), respectively. Both tracers have allowed 
distinction between symptomatic and asymptomatic carotid artery plaques 
correlating with lesional CD68+ macrophage infiltration. PET imaging of αvβ3 

integrin, which is expressed by macrophages and angiogenic ECs in plaques, has 
also been tested in clinical setting. The integrin αvβ3 -binding tracers, 18F-Fluciclatide 
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(Jenkins et al., 2019) and 18F-Galacto-RGD (Beer et al., 2014) showed moderate 
uptake in aortic and carotid lesions. Of note, an interesting target not directly 
reflecting the inflammation in plaques is microcalcification, which can be detected 
with 18F-sodium fluoride (18F-NaF). Although 18F-NaF has demonstrated feasibility 
for imaging high-risk coronary lesions (Joshi et al., 2014), its value in predicting 
future cardiovascular events remains unclear. (Hyafil & Vigne, 2019) 

Several PET tracers have been extensively validated in atherosclerotic animal 
models (Table 1). Potential targets on the surface of macrophages include mannose 
receptor (Kim et al., 2016; Tahara et al., 2014) and folate receptor β (Silvola et al., 
2018) mainly expressed in M2 macrophages, cannabinoid receptor 2 (Meletta et al., 
2017), and scavenger receptor CD68 (Bigalke et al., 2014). Imaging of macrophage 
proliferation in atherosclerotic lesions has been feasible as well (Ye et al., 2015). 
Other inflammation-related targets tested in murine models involve adhesion 
molecules such as VCAM-1 (Nahrendorf et al., 2009) and vascular adhesion protein-
1 (VAP-1) (Silvola et al., 2016), and matrix metalloproteinases (Kiugel et al., 2018). 
Currently, 18F-FDG is the only PET tracer with a clinical approval for imaging of 
inflammatory activities in atherosclerosis. However, recent studies have provided 
evidence that a more specific identification of high-risk lesions and active disease 
could be possible with alternative tracers, thus encouraging transformation towards 
image-guided personalized medicine. (Hyafil & Vigne, 2019) 

2.2.1.2 PET imaging of myocardial inflammation and repair 

In addition to myocardial perfusion imaging, PET molecular imaging is clinically 
utilized for the assessment of cardiomyocyte metabolism. Myocardial viability, 
defined as “ischemic, but alive myocardium” that has potential for functional 
recovery after revascularization, can be identified with 18F-FDG PET. Reduced or 
absent 18F-FDG uptake indicates scar formation, while preserved or increased uptake 
coupled with reduced myocardial perfusion identifies “hibernating”, i.e., recoverable 
myocardium. However, the role of 18F-FDG viability imaging in patient management 
is still controversial (Beanlands et al., 2007) and needs further investigation. (Bax et 
al., 2019) Other tracers for the evaluation of myocardial metabolism include 11C-
Acetate, which can be used for the measurement of myocardial oxygen consumption 
and efficiency (Knaapen et al., 2007), and fatty acid analogs, such as 18F-FTHA 
reflecting myocardial fatty acid consumption (Tuunanen & Knuuti, 2011). Both of 
these tracers have provided added value in evaluating therapy response in HF. 
However, there is a need for specific PET tracers that can identify overactive 
inflammatory or fibrogenic signaling and potentially predict the functional outcome 
after MI. PET tracers characterized for the imaging of myocardial inflammation and 
repair post-MI in vivo are presented in Table 2. 
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Detection of inflammatory cells and their subtypes by PET may provide a unique 
insight into the MI healing process and help to develop new therapies. However, 
compared to atherosclerosis, the inflammatory process after MI is a demanding 
target as it is dynamic and rapidly evolving, involving a diverse repertoire of immune 
cell populations (Figure 2). In addition to viability studies, 18F-FDG PET has been 
utilized for imaging myocardial inflammation. The peak 18F-FDG signal in the MI 
area occurs 3 to 5 days after MI in both mice (Lee et al., 2012; Thackeray et al., 
2015) and humans (Rischpler et al., 2016; Wollenweber et al., 2014), which is 
consistent with the time course of M1 monocyte/macrophage infiltration. 
Interestingly, the intensity of 18F-FDG uptake correlated inversely with the 
functional outcome at 6 months after MI (Rischpler et al., 2016). Although the 18F-
FDG PET has shown to be feasible in detecting early inflammation, the suppression 
of background cardiomyocyte 18F-FDG uptake is required. Different protocols, such 
as prolonged fasting and high-fat meals (anesthesia approaches in mice), have been 
applied, but the results vary among studies. (Thackeray & Bengel, 2018b) 

Table 2. PET tracers evaluated for the imaging of myocardial inflammation and repair. 

Target Tracer Development stage References 
Inflammatory cells (macrophages) 
Glucose metabolism 18F-FDG Clinical and pre-clinical Wollenw eber 2014; Rischpler et al. 2016 

application Lee et al 2012 
Chemokine receptor 4 68Ga-Pentixafor Clinical AMI Reiter et al. 2018; Lapa et al. 2015a 

Mouse MI, patients Thackeray et al. 2015a; Hess et al. 2020 
Somatostatin receptor 68Ga-DOTATOC Clinical AMI Lapa et al. 2015b 
type 2 68Ga-DOTATATE Mouse MI, patients Thackeray et al 2015b; Tarkin et al. 2019 
Translocator protein 18F-GE-180 Mouse MI, patients Thackeray et al. 2018a 
Amino acid metabolism 11C-Methionine Clinical AMI Morooka et al. 2009 

Mouse MI Thackeray et al. 2016 
CCR2 68Ga-DOTA-ECL1i Mouse I/R Heo et al. 2019 
Angiogenesis 
αvβ3 integrin 18F-Fluciclatide Clinical AMI Jenkins et al. 2017 

68Ga-PRGD2 Clinical AMI Sun et al. 2014 
18F-Galacto-RGD Clinical AMI Makow ski et al. 2008 

Rat MI Higuchi et al. 2008; Sherif et al. 2012 
68Ga-NOTA-RGD Rat MI Menichetti et al. 2013 
68Ga-DOTA-RGD Rat MI Kiugel et al. 2014 
68Ga-NODAGA-RGD Rat, Pig MI Laitinen at al. 2013; Grönman et al. 2017 

VEGF receptor 64Cu-DOTA-VEGF121 Rat MI Rodriguez-Porcel et al. 2008 
Matrix remodeling and fibrosis 
Angiotensin II receptor 1 11C-KR31173 Pig MI Fukushima et al. 2012 
Endothelin receptor A 18F-FBzBMS Rat MI Higuchi et al. 2013 
Plasma transglutinase 18F-XIII factor Mouse MI Majmudar et al. 2013 
MMP-2/9 68Ga-DOTA-TCTP-1 Rat MI Kiugel et al. 2018 
Activated f ibroblasts 68Ga-FAPI-04 Mouse MI Varasteh et al. 2019 

In addition to imaging atherosclerotic plaques, the potential of targeting CXCR4, 
SSTR2, and TSPO in the post-MI inflammatory process has been investigated. 68Ga-
Pentixafor PET has shown focal CXCR4 up-regulation in the infarct area 3 days after 
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MI in mice, co-localizing with CD68+ macrophages in histology. Treatment with 
ACEI was able to attenuate 68Ga-Pentixafor uptake. (Thackeray et al., 2015a) 
Moreover, early 68Ga-Pentixafor signal predicted chronic LV dysfunction, and 
blockade of CXCR4 at the time of maximum imaging signal, but not off-peak, 
improved early and late cardiac outcome in mice (Hess et al., 2020). Patients with 
AMI have demonstrated high inter-individual variability in 68Ga-Pentixafor uptake 
up to 14 days after AMI. (Lapa et al., 2015a; Reiter et al., 2018; Thackeray et al., 
2015a, Hess et al., 2020) 

Imaging of SSTR2 with 68Ga-DOTATOC in patients has shown moderate uptake 
in the MI area 3 to 10 days after AMI (Lapa et al., 2015b), whereas 68Ga-
DOTATATE also detected residual inflammation in old infarcts (Tarkin et al., 2019). 
However, the histological validation is lacking and a mouse study suggests that 68Ga-
DOTATATE does not bind sufficiently to the SSTR2s in the inflamed MI region 
(Thackeray et al., 2015b). TSPO-targeting tracer 18F-GE-180 has identified elevated 
TSPO expression 1 week after MI in both mice and patients, coupled with CD68+ 

macrophage infiltration in the infarct area. In mice, early 18F-GE-180 uptake 
predicted subsequent LV remodeling at 8 weeks. The main limitation of 18F-GE-180 
is the myocardial background uptake due to the high mitochondrial content in 
cardiomyocytes. (Thackeray et al., 2018a) Elevated amino acid metabolism in 
damaged myocardium can be targeted with 11C-Methionine, which has shown 
increased uptake early after MI in patients (Morooka et al., 2009). 11C-Methionine 
was later shown to bind M1 macrophages with a peak signal seen in the infarct area 
3 days after MI in mice (Thackeray et al., 2016). Recently, PET tracer 68Ga-DOTA-
ECL1i has shown potential to detect CCR2+ monocyte and macrophage infiltration 
in mouse I/R injury and human HF specimens (Heo et al., 2019). 

Cardiac MRI can provide quantitative measures of myocardial fibrosis, but the 
PET imaging of ECM remodeling and activated myofibroblasts would offer the 
opportunity to assess the molecular mechanisms underlying reactive fibrosis, and 
eventually monitor the development of HF and response to antifibrosis therapies 
(Thackeray & Bengel, 2018b). The most extensively studied target in myocardial 
repair is αvβ3 integrin. It is expressed in vascular ECs, macrophages, and 
myofibroblasts during ECM remodeling. Several tracers targeting αvβ3 integrin have 
been tested in experimental MI models (Table 2), showing the highest uptake at 7 
days to 3 weeks after MI, which reflects angiogenesis rather than active 
inflammation. 18F-Galacto-RGD (Makowski et al., 2008), 68Ga-PRGD2 (Sun et al., 
2014), and 18F-Fluciclatide (Jenkins et al., 2017) have also been studied in clinical 
setting. Interestingly, 18F-Fluciclatide uptake was elevated at sites of acute infarction 
at 8 to 13 days after MI and associated with increase in probability of functional 
recovery (Jenkins et al., 2017). Another target mediating angiogenesis is a VEGF 
receptor that has shown feasibility for imaging MI repair in a rat model (Rodriguez-
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Porcel et al., 2008). Other molecular targets associated with ECM remodeling and 
fibrosis, which have been tested in experimental models include AT1 receptor, 
endothelin receptor A (ET-A), plasma transglutaminase FXIII (an enzyme involved 
in MI healing), and MMP-2/9 (Table 2). The uptake of AT1 receptor-targeting tracer 
11C-KR31173 was observed in both infarct and remote myocardium in a pig MI 
model, and tracer uptake was blocked with an ACEI in healthy humans (Fukushima 
et al., 2012). Recently, a PET tracer 68Ga-FAPI-04 demonstrated potential for in vivo 
imaging of activated fibroblasts after MI in mice (Varasteh et al., 2019). 

Although the PET imaging of myocardial inflammation and healing process after 
MI is a relatively young field, recent studies indicate that the specific detection of 
the early inflammatory response after MI and the following repair mechanisms is 
possible, but the prognostic value of new tracers calls for further investigation in 
larger clinical trials. Importantly, coupling of an imaging biomarker with a 
therapeutic target holds genuine clinical potential to identify patients who will 
benefit from the treatment, optimize ideal timing of therapy, and provide a surrogate 
marker of therapeutic efficacy. (Thackeray & Bengel, 2018b) 

2.2.2 Assessment of coronary vascular function with PET 
and ultrasound 

Despite the absence of obstructive CAD or a successful PCI following stenotic 
lesions, ischemic symptoms frequently persist in those patients. It has become 
increasingly established that structural and functional alterations affecting the whole 
coronary circulation, including the microcirculation, serve as additional players 
beyond patient symptoms and CAD. (Camici et al., 2015) 

The coronary circulation consists of functionally distinct vessel segments of 
decreasing size, with the pre-arterioles and arterioles involving most of the resistance 
circuit and having the responsibility of regulating and matching blood supply for 
myocardial oxygen consumption via the coronary capillaries. Under normal 
conditions, multiple autoregulation mechanisms at the arteriolar level maintain the 
coronary blood flow constant, e.g., increase or decrease in the arteriole diameter in 
response to flow changes affect the shear stress, which upstream induces 
endothelium-dependent vasodilatation of larger epicardial conductive vessels. 
However, these arterioles are susceptible to noxious stimuli, such as hyperlipidemia, 
hypertension, and diabetes, which may trigger CMD. The pathophysiology of CMD 
includes structural (e.g., vascular remodeling) and functional (e.g., endothelial 
dysfunction, vascular SMC dysfunction, and microvascular spasm) alterations, 
thereby comprising both impaired coronary microvascular dilatation and enhanced 
constriction. (Camici et al., 2015; Taqueti & Di Carli, 2018) It is well known that 
endothelial dysfunction in resistance arteries is an important contributor to CMD, 
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and the prevalence of CMD is also high in HF patients with preserved EF and without 
macrovascular CAD (Shah et al., 2018). Although the coronary microvasculature 
cannot be directly imaged in vivo, non-invasive functional imaging methods 
currently facilitate the assessment of parameters that are directly linked to CMD in 
both mice and humans.  

Although ICA coupled with the measurement of FFR has been the historical 
gold-standard to evaluate the functional severity of stenosis, FFR primarily 
addresses hemodynamic consequences of focal epicardial lesions (Dewey et al., 
2020). Coronary flow reserve (CFR), in turn, is an integrated measure of blood flow 
through both the epicardial coronary arteries and microvasculature. The 
characterization of microvascular function using CFR as a surrogate, requires 
induction of maximal vasodilatation and hyperemia that can be achieved by an 
intravenous administration of a pharmacological stressor, such as adenosine, 
regadenoson or dipyridamole. Accordingly, the coronary blood flow velocity 
measured in the epicardial artery or absolute MBF at rest and stress can be utilized 
to calculate CRF, which is the ratio of hyperemic to resting blood flow. (Camici et 
al., 2015) There is no clear threshold values for normal versus impaired CFR, but 
CFR >3 typically indicates a normal flow in healthy individuals. Depending on the 
population, i.e., the presence of risk factors only, established CAD or 
cardiomyopathy, CFR <1.8-2.5 has been reported as impaired. (Gould et al., 2013) 

PET perfusion imaging is the most validated modality for the measurement of 
CFR. Post-processing, i.e., the kinetic modeling of dynamic rest and stress images, 
allows the quantification of regional and global MBF and calculation of CFR. The 
CFR can also be assessed with transthoracic ultrasound, where the mean or peak 
diastolic flow velocity is measured in the proximal left anterior descending coronary 
artery (LAD) at rest and stress by a pulsed-wave Doppler. Although the ultrasound 
method is relatively inexpensive and broadly available, it is a highly operator-
dependent technique. (Mathew et al., 2019) Importantly, the assessment of CFR with 
Doppler ultrasound has been validated in mice (Gan et al., 2004; Saraste et al., 2008; 
Wikström et al., 2005), providing a translational technique to study coronary 
function non-invasively in vivo in rodents. Rodent studies also suggest that CFR 
might be modifiable with novel treatments (Adingupu et al., 2019; Grönros et al., 
2011). 

Several PET perfusion and ultrasound studies have demonstrated that impaired 
CFR is a strong predictor of adverse cardiovascular events and mortality in patients 
with suspected CAD (Gupta et al., 2017; Herzog et al., 2009; Murthy et al., 2011; 
Sicari et al., 2009; Ziadi et al., 2011) However, there are currently no therapies that 
specifically target CMD, although the conventional therapies such as statins or 
ACEIs may alleviate CMD. Furthermore, clinical studies using CFR as an end-point 
measure for monitoring therapy response are completely lacking or designed with a 
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small sample size (Marinescu et al., 2015). The multifactorial pathophysiology of 
CMD coupled with the prevalence across a variety of cardiovascular risk factors and 
diseases, makes it a complex target. Accordingly, the potential of imaged-guided 
treatment of CMD remains to be tested. (Taqueti & Di Carli, 2018) The interaction 
of CMD, CAD, and their adverse outcomes such as MI and HF, is likely to provide 
a future strategy for the development of new therapies and imaging biomarkers. 

2.3 Phosphorylcholine as a therapeutic target 
Oxidation reactions are vital parts of various biological processes. Reactive oxygen 
species (ROS) are generated as by-products of aerobic metabolism, which at low 
concentrations participate in physiological processes, such as cell metabolism and 
signal transduction. However, the impaired ROS elimination may lead to oxidative 
stress, which can cause damage to lipids, proteins and DNA. (Nathan & 
Cunningham-Bussel, 2013) Primary targets for oxidative damage are phospholipids, 
which are the building blocks of cells and lipoproteins. The newly generated 
oxidized phospholipids (OxPLs) can interfere with normal cellular functions and 
eventually trigger an inflammatory response. (Binder et al., 2016) 

2.3.1 Oxidized phospholipids – Phosphorylcholine 
Oxidatively modified molecules carry oxidation-specific epitopes such as OxPLs 
and malondialdehyde (MDA)-modified amino groups on their surface. Most of the 
research effort has focused on OxPLs. A specific moiety in the OxPL backbone is 
phosphorylcholine (PC) that is a polar head group of the membrane phospholipid 
phosphatidylcholine. The PC epitope is inactive and harmless when hidden inside 
the native LDL or viable cells, but becomes pro-inflammatory when exposed during 
peroxidation of phosphatidylcholine. (Watson et al., 1997) OxPL-PC has been found 
on the surface of ApoB100-containing particles, including OxLDL (Boullier et al., 
2000), Lp(a) (Bergmark et al., 2008), and microvesicles (Tsiantoulas et al., 2015) as 
well as on apoptotic cells (Chang et al., 2004). 

Oxidation-specific epitopes are DAMPs recognized by pattern recognition 
receptors, including several SRs of the innate immune system (Miller et al., 2011). 
OxPL-PC has been shown to be a high-affinity ligand of CD36 receptor mediating 
OxLDL uptake by macrophages (Boullier et al., 2000). Furthermore, toll-like 
receptors, such as TLR4, bind OxPL-PC (Imai et al., 2008), and CRP has been found 
to bind OxLDL and apoptotic cells via OxPL-PC (Chang et al., 2002), thus 
enhancing their complement-mediated clearance. Moreover, natural antibodies of 
the innate immune system can sense OxPL-PC (Shaw et al., 2000). 
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The recognition of oxidation-specific epitopes enables the immune system to 
mediate removal of damaged molecules and dying cells in order to maintain 
homeostasis. Evolutionarily, oxidation-specific epitopes play an important role in 
apoptotic cell removal during embryonic development. (Miller et al., 2011) 
Moreover, many oxidation-specific epitopes, such as PC, share molecular identity 
and/or mimicry with the PC moiety of microbial cell-wall polysaccharides that can 
be recognized by CRP (Volanakis & Kaplan, 1971). Upon tissue damage, the 
accumulation of oxidation-specific epitopes leads to a sterile inflammation that 
normally facilitates tissue repair. However, if unresolved, the sterile inflammation 
can trigger chronic inflammation. Oxidation-specific epitopes have been found in 
the diseased tissues of patients with infectious and sterile acute lung injury, 
atherosclerosis, multiple sclerosis, and Alzheimer’s disease. (Binder et al., 2016) 

2.3.2 Natural antibodies to phosphorylcholine 
Natural antibodies (also called autoantibodies) are traditionally defined as antibodies 
that are found in healthy humans and other mammalian species in the absence of 
exogenous antigenic stimulation, providing a first line of host defense against 
pathogens. Natural antibodies are predominantly monoclonal immunoglobulin M 
(IgM) class antibodies produced by CD5-positive B1 cells. Natural IgM antibodies 
are the most-studied antibodies regulating atherosclerosis, since they contain a large 
repertoire for sensing oxidation-specific epitopes in both mice and humans. (Miller 
et al., 2011) The protective effects of natural IgM antibodies occur by neutralizing 
the pro-inflammatory effects of oxidation-specific epitopes, leading to activation of 
a complement cascade (Binder et al., 2016). 

The prototypic natural IgM antibody, E06, was originally cloned from the 
spleens of hypercholesterolemic apolipoprotein E deficient (ApoE–/–) mice. It was 
found to bind OxLDL and stain rabbit and human atherosclerotic lesions. (Palinski, 
1996) It was later shown that IgM E06 specifically recognizes OxPL-PC epitope in 
OxLDL and blocks the binding and uptake of OxLD by macrophages in vitro 
(Boullier et al., 2000; Hörkkö et al., 1999). Furthermore, IgM E06 was demonstrated 
to bind to OxPL-PC on the surface of apoptotic cells, but not in normal cells, and to 
inhibit phagocytosis of apoptotic cells by macrophages similar to OxLDL (Chang et 
al., 1999; Chang et al., 2004). Interestingly, IgM E06 was found to be structurally 
and functionally identical to the classic germline-encoded natural antibody with the 
T15 idiotype (Shaw et al., 2000) that has been shown to provide an optimal 
protection against fatal infection caused by S. pneumoniae in mice (Briles et al., 
1982). The T15/E06 IgM antibody against PC seems to represent a highly conserved 
natural antibody that is assumed to have gone through a natural selection during early 
immune development (Shaw et al., 2000). Other natural IgM antibodies to oxidation-
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specific epitopes include E014, NA17, and LR04 binding to MDA epitope, and LR01 
that binds to oxidized cardiolipin (Binder et al., 2016). 

Associations of natural IgM antibodies with atherosclerosis-related diseases 
have been widely studied in clinical setting. An early work demonstrated that the 
plasma markers of OxLDL measured by murine E06 antibody showed significant 
temporal elevations following ACS (Tsimikas et al., 2003). It was later reported that 
low serum levels of IgM antibodies against OxPL-PC (anti-PC) in ACS were 
associated with increased risk of new cardiovascular events and all-cause mortality 
(Caidahl et al., 2012). In patients with CCS, low IgM anti-PC levels were associated 
with increased risk of fatal and non-fatal future coronary events (Imhof et al., 2015). 
Moreover, it has been suggested that the low serum levels of anti-PC IgM, IgA, and 
IgG1 (but not IgG2) could predict carotid IMT progression in patients with 
hypertension (Fiskesund et al., 2012). The IgM class antibodies, in particular, have 
been proposed to be independent protection markers for atherosclerosis progression 
(Fiskesund et al., 2012; Su et al., 2006). In line with that, low levels of IgM anti-PC 
have been associated with fast carotid IMT progression and cardiovascular risk in 
men at high cardiovascular risk (Gigante et al., 2014) Furthermore, IgM anti-PC 
serum levels may have potential to predict development of stroke (Fiskesund et al., 
2010; Tsimikas et al., 2012), and have been shown to be a protection marker for 
atherosclerosis in systemic lupus erythematosus (Rahman et al., 2016). 

In summary, low levels of natural IgM antibodies against PC are associated with 
an increased risk for cardiovascular events. The IgM anti-PC may have clinical value 
as a prognostic biomarker and can be useful in the development of PC-targeting 
immunotherapies. 

2.3.3 Therapeutic concept in atherosclerosis 
While the early work demonstrated that IgM T15/E06 inhibits the OxLDL uptake 
and phagocytosis of apoptotic cells by macrophages in vitro (Boullier et al., 2000; 
Chang et al., 1999; Hörkkö et al., 1999; Shaw et al., 2000), it has been extensively 
investigated whether the neutralization of PC epitopes on OxPLs by antibodies, i.e., 
immunotherapy, is atheroprotective and anti-inflammatory in vivo. The first proof 
was that the induction of PC antibody formation by immunization of LDL receptor 
deficient (LDLR–/–) mice with S. pneumoniae decreased the extent of atherosclerosis. 
The splenic cells of immunized mice secreted IgM T15 antibody and the plasma 
derived from these mice successfully blocked the binding of OxLDL to 
macrophages. (Binder et al., 2003) The findings were replicated with PC-targeting 
immunization, showing that the aortic root lesion size was reduced in the PC-
immunized ApoE–/– mice. This time, the serum from immunized mice was capable 
of reducing the macrophage foam cell formation in the presence of OxLDL in vitro. 
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(Caligiuri et al., 2007) Furthermore, direct infusion of a human oxidation-specific 
antibody has been shown to reduce the progression of atherosclerosis in LDLR–/– 

mice. The blockade of SR-mediated uptake of OxLDL in lesion macrophages has 
been proposed as the main atheroprotective mechanism. (Tsimikas et al., 2011) 
Similar findings have been reported also with antibodies targeting the MDA epitope 
(Schiopu et al., 2007). 

Further mechanistic insights have been obtained by modifying the IgM 
expression in mouse models. In LDLR–/– mice deficient in serum IgM, 
atherosclerotic lesions are substantially larger on both low-fat and high-fat diet, with 
increased cholesterol crystal formation and SMC content in lesions (Lewis et al., 
2009). A proof-of-concept study on anti-inflammatory effects demonstrates that 
hypercholesterolemic LDLR–/– mice expressing a single-chain variable fragment of 
E06 develop less atherosclerosis coupled with reduction in systemic inflammation 
and decrease in aortic valve calcification and liver steatosis. Macrophages derived 
from these mice favor an M2-like phenotype and express less TNF and IL-1β. (Que 
et al., 2018) Histological studies have further confirmed the presence of PC epitopes 
in the atherosclerotic lesions of mice and rabbits (Binder et al., 2003; Caligiuri et al., 
2007; Lewis et al., 2009; Que et al., 2018; Shaw et al., 2000). In human 
atherosclerosis samples, PC epitopes are more prevalent in advanced lesions mainly 
associated with foamy macrophages, whereas MDA epitopes are more common in 
early lesions, such as early fibroatheromas (van Dijk et al., 2012). 

In addition to macrophages, ECs have been proposed to be major sensors of 
OxPL-PC in atherosclerosis. However, little is known about the effects of OxPL-PC 
or PC antibodies on endothelial dysfunction. An early work indicated that “cell-
modified” LDL causes an impairment of endothelium-dependent arterial relaxation 
in vitro (Kugiyama et al., 1990). It was further demonstrated that OxPL-PC inhibits 
endothelium-dependent arterial relaxation via an NO-mediated mechanism in aortic 
preparations (Rikitake et al., 2000; Yan et al., 2017). Moreover, OxPL-PC can 
induce gene expression of pro-inflammatory cytokines and adhesion molecules in 
ECs, and enhance monocyte binding to vascular ECs (Leitinger et al., 1999). The 
monocyte binding is partly mediated by the endothelial TLR4 receptor, leading to 
increased IL-8 synthesis (Walton et al., 2003). Interestingly, apoptotic cells carrying 
PC epitopes have been shown to activate ECs to induce monocyte adhesion mediated 
in part through IL-8, which can be blocked by the E06 antibody (Chang et al., 2004). 

Recent findings indicate that the main carrier of OxPL-PC in human plasma is 
Lp(a) (Tsimikas et al., 2005; van der Valk et al., 2016b). Subjects with elevated Lp(a) 
have increased inflammatory activity in the arterial wall as measured by 18F-FDG 
PET. Due to its OxPL-PC content, Lp(a) was found to have enhanced capacity to 
induce monocyte trafficking to the arterial wall and to mediate pro-inflammatory 
responses, because the E06 antibody was able to block these pro-inflammatory 

42 



 

 

   
     

   
    

   
  

 
 

   
    

      
   

         
  

   
  

  
  

   
 

    
            
        

    
    

    
     

     
    

     
  

 

   
     

     
   

Review of the Literature 

effects of Lp(a) ex vivo. (van der Valk, et al., 2016b) Furthermore, a multimodal 
imaging study demonstrated that OxPL-PC bound to Lp(a) could promote valve 
calcification and disease progression in patients with aortic stenosis, since the E06 
antibody was found to prevent the Lp(a)-mediated osteogenic differentiation of 
valvular interstitial cells in vitro (Zheng et al., 2019). Interestingly, a recent study 
showed that the Lp(a)-bound OxPL-PC activates the endothelium by enhancing 
glycolysis, thereby facilitating inflammation and monocyte migration (Schnitzler et 
al., 2020).  

To date, one therapeutic antibody targeting OxPLs has entered the clinical trial 
phase (Lehrer-Graiwer et al., 2015). Treatment with a human recombinant IgG1 
antibody against MDA epitopes on ApoB100-containing particles was found not to 
reduce arterial 18F-FDG uptake in hypercholesterolemic minipigs (Poulsen et al., 
2016) or in patients with stable inflammatory vascular lesions (Lehrer-Graiwer et al., 
2015). Despite the negative findings with the MDA-targeting antibody, previous 
proof-of-concept studies in both animals and humans support the concept that OxPL-
PC epitopes on ApoB100-containing particles and apoptotic cells elicit arterial wall 
inflammation and thus, novel therapies targeting and eliminating OxPL-PC may bear 
clinical potential in atherosclerosis. 

2.4 Glucagon-like peptide-1 receptor (GLP-1R) as 
an imaging target 

The first descriptions of a glucagon-like peptide-1 [GLP-1 (7-36) amide] (Drucker 
1986) that was shown to stimulate insulin secretion and bind to a putative receptor 
in the pancreas were published in 1986-1988 (Drucker 2015). Subsequently, the 7-
transmembrane G protein-coupled GLP-1R was cloned from rats in 1992 (Thorens, 
1992) and humans in 1993 (Graziano et al., 1993). At the time, GLP-1-related 
peptide, exendin-4 [(1-39) amide] was isolated from the saliva of a poisonous lizard, 
Heloderma suspectum. It was found to mimic the physiological effects of GLP-1. 
(Eng et al., 1992) Exendin-4 shares structural homology of only 53% with 
mammalian GLP-1, but has 10-times higher binding affinity to GLP-1R and is 
resistant to degradation by the dipeptidyl peptidase-4 (DPP-4) enzyme (Goke et al., 
1993). Discovery of GLP-1 and exendin-4 peptides provided a basis for a new class 
of antidiabetic drugs. 

2.4.1 GLP-1R signaling in normal physiology 
The incretin effect mediated by the peptide hormones GLP-1 and gastric inhibitory 
polypeptide (GIP) is responsible for up to 70% of insulin secretion after food intake 
in healthy individuals, whereas in patients with T2DM, the incretin effect is almost 
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abolished. GLP-1 is produced in and secreted from intestinal enteroendocrine L cells 
in response to nutrients. The effects of GLP-1 are mediated through the GLP-1R, 
which is physiologically expressed in the pancreas, gastrointestinal tract, brain, 
enteric and peripheral nervous system, heart, kidneys, lungs and adipose tissue. 
Overexpression of GLP-1R is detected in such pathologies as insulinomas. The 
sequence homology of the GLP-1R is over 90% across mammalian species, which 
underlines the physiological importance of the GLP-1 and its receptor. GLP-1 
stimulates insulin secretion in pancreatic β-cells and inhibits glucagon secretion in 
α-cells in a glucose-dependent manner. The release of GLP-1 also leads to the 
inhibition of gastric emptying and small bowel motility. The activation of GLP-1Rs 
in the hypothalamus and brainstem promotes satiety, which may lead to reduced food 
intake and body weight loss. In the kidney, GLP-1 increases natriuresis by the 
inhibition of sodium reabsorption. (Andersen et al., 2018) 

The short plasma half-life (1-2 minutes) of native GLP-1, due to its rapid 
degradation by the DPP4 enzyme, limits its therapeutic use. Several strategies have 
been utilized to extend the half-life, including alterations in the amino acid sequence, 
binding to plasma albumin or using the exendin-4 peptide as a GLP-1 analog. A 
distinct approach is to apply DPP-4 inhibitors, which prevent the degradation and 
inactivation of both native GLP-1 and GIP. The first GLP-1R agonist, exenatide, was 
approved for the treatment of T2DM in 2005. (Knudsen & Lau, 2019) Currently, 
different GLP-1R agonists that are based on the structure of GLP-1 or exendin-4, 
and DPP-4 inhibitors are used for the treatment of hyperglycemia in diabetic patients. 
Furthermore, the pharmacological activation of GLP-1R signaling has shown to 
exert pleiotropic actions in the cardiovascular system, but the exact mechanisms 
remain largely unknown (Nauck et al., 2017). 

2.4.1.1 GLP-1R expression in the heart and vasculature 

In the human and nonhuman primate heart, the expression of GLP-1R protein has 
been localized to myocytes in the sinoatrial node, but not in ventricular myocytes 
(Baggio et al., 2018; Pyke et al., 2014). However, GLP-1R messenger RNA 
transcripts have been detected in ventricular tissue. The GLP-1R is not expressed in 
cardiac fibroblast, coronary artery ECs, or vascular SMCs. (Baggio et al., 2018) In 
rodents, initial studies identified GLP-1R protein expression in the cardiomyocytes 
(Ban et al., 2008), but it was later shown that, like in humans, GLP-1R is not 
expressed in ventricular myocytes. Atrial expression of GLP-1R has been detected 
in rodents (Kim et al., 2013; Richards et al., 2014; Wohlfart et al., 2013). 

Convincing evidence for the expression of GLP-1R within major blood vessels 
is lacking. The expression of GLP-1R protein has been detected in the mouse aorta 
as well as the arteries and arterioles of the heart, kidney, pancreas and intestine, co-
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localizing with α-SMA. (Richards et al., 2014) In nonhuman primates, the GLP-1R 
expression can be detected in SMCs within the arteries of the kidney and lung (Pyke 
et al., 2014). Immunohistochemistry is the most often used and validated technique 
to study cellular expression of a certain protein, but it is commonly recognized that 
antibodies to G protein-coupled receptors, including GLP-1R lack sensitivity and 
specificity (Pyke & Knudsen, 2013). Thus, other specific techniques are needed in 
order to confirm the exact cellular localization of GLP-1R in the heart and 
vasculature. 

2.4.2 Cardiovascular effects of GLP-1-based therapies 
Cardiovascular outcome trials are required for all novel glucose-lowering 
therapeutics to establish their cardiovascular safety. These trials are double-blind, 
randomized placebo-controlled clinical trials including patients with T2DM at 
increased risk of cardiovascular events. All approved GLP-1R agonists have 
demonstrated cardiovascular safety as compared to a placebo. Interestingly, four of 
these drugs; Liraglutide (Marso, et al., 2016a), Semaglutide (Marso et al., 2016b), 
Albiglutide (Hernandez et al., 2018), and Dulaglutide (Gerstein et al., 2019) have 
also provided cardiovascular benefits. These benefits include decrease in non-fatal 
MI or stroke as well as reduction in cardiovascular death or all-cause mortality, i.e., 
reduction in the “hard end-points”. 

Cardiovascular effects of GLP-1R agonists have been studied in more detail in 
patients with STEMI and chronic HF. Administration of GLP-1R agonist or native 
GLP-1 at the time of PCI increases the myocardial salvage index and reduces the MI 
size (Chen et al., 2016; Lønborg et al., 2012; Woo et al., 2013), as well as improves 
the LV function (Chen et al., 2015; Nikolaidis et al., 2004; Woo et al., 2013) 
independent of diabetes. There are also contradictory findings, suggesting that GLP-
1R agonists do not exhibit any beneficial effects on the MI size (Roos et al., 2016) 
or LV function (Lønborg et al., 2012) in acute STEMI. In patients with chronic HF, 
an initial pilot study indicated that infusion of GLP-1 improves the LV function 
(Sokos et al., 2006). However, larger studies now show that treatment with GLP-1R 
agonists do not improve the LV function, myocardial metabolism or blood flow, and 
do not affect the time to death or rehospitalization for HF in chronic HF patients with 
or without diabetes (Jorsal et al., 2017; Lepore et al., 2016; Margulies et al., 2016; 
Nielsen et al., 2017). All GLP-1R agonists slightly increase the heart rate, which may 
partly explain the neutral effect on HF outcome (Sun et al., 2015). 

Clinical studies on the effects of treatments with GLP-1R agonists on 
atherosclerosis are limited. These therapies consistently modulate the lipid profile 
by lowering total cholesterol, LDL-C and TGs (Sun et al., 2015a), and reduce blood 
pressure (Sun et al., 2015b). Small trials in patients with T2DM suggest that 
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treatments with GLP-1R agonists reduce the levels of macrophage-derived sCD163 
and TNF, IL-1β, and IL-6 (Hogan et al., 2014) as well as hsCRP (Wu et al., 2011). 
Pilot studies indicate that GLP-1R agonists may decrease carotid IMT (Rizzo et al., 
2014) and favor a stable plaque phenotype characterized by a thickened fibrous cap 
and increased collagen content (Balestrieri et al., 2015). Furthermore, CMD has been 
assessed during the course of GLP-1R agonist therapies. The first study showed no 
benefit on CFR measured by Doppler ultrasound (Faber et al., 2015), while the 
second study demonstrated a slight improvement in CFR after the therapy (Wei et 
al., 2016). However, native GLP-1 and a GLP-1R agonist have been shown to 
improve brachial artery endothelial function evaluated by the flow mediated dilation 
technique (Irace et al., 2013; Nyström et al., 2004). 

Thus, the beneficial cardiovascular effects of GLP-1R agonists have been 
recognized and the current guidelines advise to consider a GLP-1R agonist for 
T2DM patients with an established or high risk of ASCVD, except for HF patients 
(Davies et al., 2019; Seferović et al., 2020). 

2.4.2.1 Mechanisms of cardiovascular action 

Preclinical studies have yielded mechanistic insights regarding the protective effects 
of GLP-1R agonists on ischemic myocardial injury, atherosclerotic lesion 
progression, and endothelial dysfunction. In line with the clinical studies, it has been 
shown that infusion of native GLP-1 before or during an induction of I/R injury in 
the isolated or intact rodent heart protects against an ischemic myocardial injury. The 
protection appears to involve reduction in MI size and increase in myocardial 
glucose uptake, coronary flow, functional recovery, and cardiomyocyte viability. 
(Aravindhan et al., 2015; Ban et al., 2008; Bose et al., 2005, 2007; Zhao et al., 2006) 
Furthermore, GLP-1R agonists reduced the MI size in an acute setting (Ban et al., 
2008; Wohlfart et al., 2013), and improved the cardiac function when administered 
long term after I/R injury in rats (Wohlfart et al., 2013). In porcine models of I/R 
injury, native GLP-1 and GLP-1R agonists reduced the MI size, augmented the 
cardiac output, and improved the LV function in some (Goodwill et al., 2014; 
Timmers et al., 2009), but not all studies (Kristensen et al., 2009). Mechanistically, 
the myocardial expression of active caspase-3 indicating apoptosis as well as the 
amount of apoptotic cells were decreased after the treatment (Timmers et al., 2009). 
In murine cardiomyocytes exposed to ischemia, GLP-1 and GLP-1R agonists have 
been shown to exert direct cytoprotective actions via inhibiting apoptosis through a 
pro-survival signaling pathway (Ban et al., 2010; Ravassa et al., 2011; Wohlfart et 
al., 2013). 

Chronic administration (2 to 12 weeks) of GLP-1 or GLP-1R agonists in rodents 
with HF following permanent coronary occlusion improved the cardiac function, LV 
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remodeling and survival (Chen et al., 2017; DeNicola et al., 2014; Liu et al., 2010; 
Robinson et al., 2015b), which was associated with decrease in cardiomyocyte 
hypertrophy and apoptosis, as well as the attenuation of myocardial inflammatory 
response and fibrosis (Chen et al., 2017; DeNicola et al., 2014; Robinson et al., 
2015). Contradictory findings on LV remodeling have been reported as well (Kyhl 
et al., 2017). 

Protection against cardiac dysfunction and remodeling may occur secondary to 
modulation of inflammation, since GLP-1R agonists have been shown to inhibit 
myocardial macrophage infiltration and alter the expression of IL-10, IL-1β and IL-
6 in macrophages in the absence of direct actions on cardiac fibroblasts (Robinson 
et al., 2015b; Tate et al., 2016). Furthermore, in mice overexpressing MCP-1 in 
cardiomyocytes, a GLP-1R agonist ameliorated LV dysfunction by reducing cardiac 
macrophage infiltration, fibrosis, and apoptosis (Younce et al., 2014). The beneficial 
effects on LV remodeling may also be related to the improved Ca2+ handling in 
myocytes (Chen et al., 2017; Younce et al., 2014) or the attenuation of Ang II-
induced fibrosis (Zhang et al., 2015a). In obese swine with MI, treatment with GLP-
1R agonist improved cardiac efficiency and function by decreasing β1-adrenoceptor 
expression similarly to β-blockade therapies (Sassoon et al., 2017). GLP-1R 
independent mechanisms may also contribute to the protective effects of GLP-1R 
agonists, since alterations in the gene expression profiles of remodeling and 
inflammation pathways comparable to the ACEI have been observed in heart 
samples in the absence of GLP-1R mRNA expression detection (Wohlfart et al., 
2013). Furthermore, a GLP-1R agonist has been capable of inducing 
cardioprotection in experimental MI, despite ablation of cardiomyocyte GLP-1R 
activity in Glp1rCM-/- mice (Ussher et al., 2014). 

In atherosclerotic mouse and rabbit models, treatments with GLP-1 and GLP-1R 
agonists have been shown to reduce systemic inflammation (Bruen et al., 2019; 
Rakipovski et al., 2018; Vinué et al., 2017) and attenuate the atherosclerotic lesion 
development and size (Arakawa et al., 2010; Bruen et al., 2017, 2019; Jojima et al., 
2017; Nagashima et al., 2011; Rakipovski et al., 2018; Sudo et al., 2017; Vinué et 
al., 2017). The atheroprotective mechanisms involved increase in lesion collagen 
content (Burgmaier et al., 2013; Sudo et al., 2017; Vinué et al., 2017), inhibition of 
monocyte/macrophage infiltration in the vascular wall (Arakawa et al., 2010; Bruen 
et al., 2017; Nagashima et al., 2011; Sudo et al., 2017; Vinué et al., 2017), 
suppression of macrophage foam cell formation (Nagashima et al., 2011), and 
reprogramming of macrophages towards M2 phenotype (Bruen et al., 2017, 2019; 
Vinué et al., 2017). In vitro, GLP-1 and GLP-1R agonists have been shown to 
prevent the adhesion of human monocytes to ECs (Noyan-Ashraf et al., 2009), 
decrease the IL-1β, TNF, and MCP-1 secretion (Bruen et al., 2017, 2019), and induce 
M2 polarization in human macrophages (Bruen et al., 2017; Shiraishi et al., 2012). 
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GLP-1R expression has been found in macrophages in the atherosclerotic lesions of 
mice and in isolated mouse and human macrophages in some (Arakawa et al., 2010; 
Bruen et al., 2017; Nagashima et al., 2011), but not all studies (Panjwani et al., 2013). 

Furthermore, GLP-1R agonists have been shown to improve endothelium-
mediated vasodilation in atherosclerotic mice (Gaspari et al., 2011; Jojima et al., 
2017). Studies on human aortic and coronary artery ECs suggested that GLP-1R 
agonists activate the signaling pathways leading to increased eNOS activity and NO 
production (Erdogdu et al., 2010; Gaspari et al., 2011; Nyström et al., 2004), and 
decrease the levels of inflammatory cytokines and adhesion molecules (Garczorz et 
al., 2018; Gaspari et al., 2011; Shiraki et al., 2012). Moreover, GLP-1R agonists may 
inhibit SMC proliferation (Jojima et al., 2017), and the osteoblastic differentiation 
and calcification of SMCs (Zhan et al., 2015b) in vitro. 

In summary, multiple direct and indirect mechanisms linking the activation of 
GLP-1R signaling in cardiomyocytes or non-cardiac cell types have been suggested, 
but it remains currently unclear which cell types and cross-organ communications 
are necessary for the protective effects of GLP-1R agonists on the cardiovascular 
system. 

2.4.3 Targeting GLP-1R with PET imaging 
Imaging of GLP-1R expression with PET is of high interest, since it would enable 
the in vivo quantification of pancreatic β-cell mass in diabetic patients and 
localization of neuroendocrine tumors, such as insulinomas. Indeed, PET imaging 
agents targeting GLP-1R have demonstrated clinical value for the detection of 
insulinomas in patients (Antwi et al., 2015; Christ et al., 2013; Eriksson et al., 2014; 
Luo et al., 2016). It has been proposed that GLP-1R-targeting imaging can be utilized 
for the selection of treatment, prediction of drug efficacy, and monitoring of 
treatment response in diabetes and cancer (Velikyan & Eriksson, 2020). 

GLP-1R-targeting radiopharmaceuticals are mainly based on exendin-4 peptide 
structure. Exendin-4 has favorable kinetics owing to its plasma half-life of 2.4 h, it 
binds to the same GLP-1R site as endogenous GLP-1, and it is internalized into the 
cells (Jodal et al., 2014; Wild et al., 2010). Exendin-4 can be labeled with different 
radionuclides such as 68Ga, 18F or 111In. Since the expression levels and density of 
GLP-1R are relatively low in many tissues, a low peptide mass with high specific 
radioactivity should be injected. Other limitations include high kidney uptake, 
especially with metal radionuclide labeled tracers, and high physiological potency 
occuring even in the microdoses of the ligands. (Velikyan & Eriksson, 2020) For 
example, pigs have demonstrated tachycardia after intravenous injection of exendin-
4 tracer (Nalin et al., 2014); however to date, clinical studies have not shown such 
adverse effects. Multiple promising exendin-4 PET tracers have been developed for 

48 



 

 

   
        
      

   
  

   
     

 

Review of the Literature 

the imaging of pancreatic β-cells (Mikkola et al., 2013; Nalin et al., 2014; Selvaraju 
et al., 2013) and different GLP-1R-positive tumors (Jodal et al., 2014; Kiesewetter 
et al., 2012; Monazzam et al., 2018; Wild et al., 2010) in animals. Interestingly, one 
study revealed up-regulation of GLP-1R expression in the myocardium after I/R 
injury in rats by using 18F-FBEM-Cys40-exendin-4 PET imaging (Gao et al., 2012). 

In summary, GLP-1R-targeting PET imaging can be potentially adopted from 
endocrinology to cardiovascular indications in order to elucidate the role of GLP-1R 
signaling in the cardiovascular system. 
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3 Aims 

The purpose of this study was to investigate whether a novel PC immunotherapy 
affects vascular function and atherosclerotic inflammation in mice. Another aim was 
to evaluate the feasibility of a PET tracer 68Ga-NODAGA-exendin-4 for the 
detection and imaging of GLP-1R expression after MI and in atherosclerosis in 
experimental models. 

The specific aims of this study were: 

1. To investigate the therapeutic effects of a novel monoclonal IgG1 antibody 
against PC on coronary artery function and atherosclerotic inflammation in 
hypercholesterolemic mice by utilizing established non-invasive imaging 
techniques, ultrasound-derived CFR and 18F-FDG PET. 

2. To evaluate 68Ga-NODAGA-exendin-4 PET for the assessment of GLP-1R 
expression related to myocardial repair after MI in rats. 

3. To assess GLP-1R expression in inflamed atherosclerotic lesions in non-
diabetic and diabetic hypercholesterolemic mice with a PET tracer 68Ga-
NODAGA-exendin-4. 
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4 Materials and Methods 

4.1 Experimental animals 
All of the animal experiments were approved by the national Animal Experiment 
Board in Finland and the Regional State Administrative Agency for Southern 
Finland (License numbers ESAVI/2163/04.10.07/2015, ESAVI/4567/2018, and 
ESAVI/1545/04.10.07/2014). The studies were carried out in compliance with the 
European Union legislation relating to the conduct of animal experimentation. The 
animals were bred and housed in the Central Animal Laboratory, University of 
Turku under standard conditions with a 12-hour light-dark cycle and ad libitum 
access to water and food throughout the studies. Genetically modified 
atherosclerotic mouse models and a rat model with surgical coronary artery ligation 
were utilized. 

4.1.1 Mouse models of atherosclerosis (I, III) 
Two strains of hypercholesterolemic mice were used: low-density lipoprotein 
receptor deficient mice expressing only ApoB100 (n = 46 LDLR-/-ApoB100/100, strain 
#003000, The Jackson Laboratory, Bar Harbor, ME, USA) (Powell-Braxton et al., 
1998) and their diabetic counterparts, LDLR-/-ApoB100/100 mice overexpressing 
insulin-like growth factor II in pancreatic β-cells (n = 12 IGF-II/LDLR-/-ApoB100/100, 
A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 
Kuopio, Finland) (Heinonen et al., 2007). Genetic modifications providing 
deficiency of LDLR combined with the expression of ApoB100 only (also called 
lack of ApoB48) result in impaired lipoprotein clearance, and eventually a lipid 
profile and lesion formation that closely resembles the type found in patients with 
FH (Véniant et al., 1998, Powell-Braxton et al., 1998). In addition to atherosclerosis, 
IGF-II/LDLR-/-ApoB100/100 mice represent the characteristics of T2DM, including 
impaired glucose tolerance and insulin resistance. They also develop a more pro-
inflammatory phenotype characterized as more complex lesions with increased 
calcification and higher IL-6 expression. (Heinonen et al., 2007) To accelerate 
atherosclerosis development, the mice were fed with a high-fat diet (0.2% total 
cholesterol, TD 88137, Envigo, Indianapolis, IN, USA) for 12 to 16 weeks, starting 
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at the age of 8 weeks. Since both strains were originally crossbred onto a C57BL/6N 
background, healthy age-matched C57BL/6N mice (n = 12) fed with a regular chow 
diet (CRM [E], product code 801730, 9.1% calories from fat, Special Diet Services, 
Essex, UK) served as controls in the studies. 

4.1.2 Rat model of myocardial infarction (II) 
Male Sprague-Dawley rats (n = 80, age 7 to 8 weeks, weight 280 ± 29 g, Strain Code 
400, Charles River Laboratories, Wilmington, MA, USA) were utilized. MI was 
induced by a permanent ligation of the left coronary artery (LCA). Buprenorphine 
(0.05 mg/kg; Temgesic; RB Pharmaceuticals Limited, Berkshire, UK) was 
administered subcutaneously (s.c.) prior to the operation for analgesia. Anesthesia 
was induced with inhaled 3% isoflurane (Baxter, Berkshire, UK) and maintained 
with an intraperitoneal (i.p.) injection combining xylazine (10 mg/kg; Rompun; 
Bayer Animal Health GmbH, Leverkusen, Germany) and ketamine (80 mg/kg; 
Ketaminol; Intervet International BV, Baxumeer, The Netherlands). Body 
temperature was maintained using a heating pad. The rats were intubated and 
connected to a rodent ventilator (TOPO dual mode ventilator; Kent Scientific, 
Torrington, CT, USA). The heart was exposed by a left lateral thoracotomy of the 
fourth intercostal space and the LCA was ligated near its origin. Ligation was 
confirmed visually by the pale appearance of the myocardium at risk, the muscle 
layer and skin were sutured, and the anesthesia was reversed with an s.c. injection of 
atipamezole (1 mg/kg; Antisedan; Orion Pharma, Espoo, Finland). Control animals 
underwent a sham-operation, which consisted of the same protocol except for the 
LCA ligation. Pain medication (0.05 mg/kg of buprenorphine twice a day) was 
continued three days following the operation. The operation mortality was 
approximately 30% and occurred during the first two days after LCA ligation. 
Thereafter, only two rats with MI died spontaneously during the follow-up. Six rats 
were excluded from the final study group, because there was no MI despite the 
ligation. The final study group consisted of 25 rats with MI and 18 sham-operated 
rats (Table 3). 

4.2 Study design 
The numbers of animals in each study and the imaging experiments performed for 
each group are presented in Table 3. 
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Table 3. The number of animals in each study and the corresponding imaging experiments. 

Tracers and groups Study Number of US MRI PET/CT ARG BD 
animals (n) (n) (n) (n) (n) (n) 

18F-FDG I 34 
LDLR-/-ApoB100/100 34 20 32 32 
68Ga-NODAGA-exendin-4 II 43 
MI 3 d 6 3 6 
MI 1 w k 7 7 7
    Block 3 3 3 
MI 12 w k 9 8* 2 8 9 
Sham 1 w k 9 8 9 
Sham 12 w k 9 9* 2 6 9 
68Ga-NODAGA-exendin-4 III 36 
LDLR-/-ApoB100/100 10 2 7
    Block 2 2 
IGF-II/LDLR-/-ApoB100/100 10 2 8
    Block 2 2 
C57BL/6N 12 4 10 
US; ultrasound, MRI; magnetic resonance imaging; ARG; ex vivo  autoradiography, 
BD; ex vivo  biodistribution, MI; myocardial infarction, 
Block; unlabeled exendin-4 peptide injected before 68Ga-NODAGA-exendin-4. 
*Repeated measurements at 1 and 12 w eeks. 

4.2.1 Interventional protocol (I) 
In Study I, the effects of a novel therapeutic antibody (designated X19-mu) 
against PC on vascular function and atherosclerotic inflammation were 
investigated in established atherosclerosis in LDLR-/-ApoB100/100 mice. To induce 
atherosclerosis, the mice were first fed with a high-fat diet for 12 weeks, starting 
at the age of 8 weeks, and then switched to a regular chow diet and randomized 
to receive i.p. injections containing either 10 mg/kg X19-mu (n = 17) or 0.9% 
saline solution as a vehicle (n = 17), once a week, for 6 weeks. The groups were 
gender and sibling matched. The selection of X19-mu antibody dose was based 
on the previous studies (Ewing et al., 2013) and a pilot study performed in LDLR-

/-ApoB100/100 mice. Vascular function was assessed by measuring CFR in response 
to adenosine using Doppler ultrasound, repeatedly before and after 6 week 
treatments in a randomly selected, pre-specified subgroup of mice (n = 
10/treatment). Inflammation in aortic atherosclerotic lesions was determined by 
the uptake of 18F-FDG and histological stainings of several inflammatory markers. 
The study design is shown in Figure 3. 

The X19-mu antibody (Athera Biotechnologies AB, Stockholm, Sweden) is a 
monoclonal mouse-human chimeric IgG1 antibody binding to PC epitope on 
OxPLs. The X19-mu antibody has been developed in parallel with a fully human 
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monoclonal IgG1 antibody against PC (PC-mAb, clone X19-A05, Athera 
Biotechnologies AB). This therapeutic PC-mAb has displayed similar properties 
to the IgM E06 antibody, including the inhibition of OxLDL uptake in 
macrophages, binding to apoptotic cells, blocking of OxLDL-induced release of 
MCP-1 from monocytes, and binding to inflammatory cells in human aortic 
atherosclerotic lesions (Ewing et al., 2013). The antigen-binding sequences and 
binding affinity to PC are identical between the fully human PC-mAb and X19-mu 
antibody, but X19-mu has a murine Fc fraction to lower the risk of an immune 
reaction to the treatment in mice. In Study I, the human PC-mAb was utilized to 
study the endothelial mechanism in vitro in human aortic endothelial cells 
(HAECs) stimulated with Lp(a). 

Chow diet 
Vehicle + chow diet 

(n=17, 0.9% saline i.p.) 

High-fat diet 

X19-mu + chow diet 
(n=17, 10 mg/kg/week i.p.) 

-12 weeks Week 0 Week 6 

CFR CFR 
18F-FDG uptake 

Histology 

-8 weeks 

Figure 3. Study design for X19-mu intervention in LDLR-/-ApoB100/100 mice. 

4.2.2 Imaging studies (II, III) 
In Study II, the myocardial uptake of a GLP-1R-targeting tracer, 68Ga-NODAGA-
exendin-4, was studied 3 days, 1 week, and 12 weeks after MI as well as 1 and 12 
weeks after the sham-operation (Table 3). In Study III, the 68Ga-NODAGA-exendin-
4 accumulation into the aorta was studied in hypercholesterolemic LDLR-/-

ApoB100/100 and IGF-II/LDLR-/-ApoB100/100 mice, and healthy C57BL/6N mice (Table 
3). In general, the animals were intravenously (i.v.) injected with 68Ga-NODAGA-
exendin-4 via the tail vein, and the tracer uptake in the heart and aorta was assessed 
by in vivo PET/CT imaging and ex vivo tissue autoradiography, followed by a 
histological analysis. Histological stainings included various markers, such as 
collagen, macrophages, and GLP-1R (Table 4). The specificity of tracer uptake in 
the MI and atherosclerotic lesions was confirmed by injecting unlabeled exendin-4 
peptide before 68Ga-NODAGA-exendin-4 in a subset of animals. 
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Materials and Methods 

4.3 Ultrasound imaging 
In Study I, the coronary artery function was examined by Doppler ultrasound before 
and after the treatment. A dedicated small animal ultrasound device (Vevo 2100, 
VisualSonics Inc., Toronto, ON, Canada) with a linear 22–55 MHz (MS550D) 
transducer was used to assess CFR, as described previously (Saraste et al., 2008). 
The mice were anesthetized with an i.p. injection of midazolam (8 mg/kg; Hameln 
Pharmaceuticals GmbH, Hameln, Germany) and ketamine (60 mg/kg; Intervet 
International BV, Boxmeer, The Netherlands). A tail vein was cannulated, and body 
temperature was maintained with a heating pad. Blood flow in the middle LCA was 
localized under color Doppler mapping using modified long-axis views, and the flow 
velocity spectrum was recorded by pulsed-wave Doppler, both at rest and under 
stress induced by infusion (maximum of 2 minutes) of adenosine (140 μg/kg/min; 
Life Medical Sweden AB, Stocksund, Sweden). Anesthesia was reversed with an s.c. 
injection of flumazenil (0.5 mg/kg; Hameln Pharmaceuticals GmbH, Hameln, 
Germany). The CFR was calculated as the ratio of the mean diastolic flow velocity 
during maximal adenosine-induced hyperemia to the flow at rest. 

In Study II, to characterize the function and size of the LV, echocardiography 
was repeatedly conducted at 1 and 12 weeks after the coronary ligation or sham-
operation (Table 3). Echocardiography was performed using the small animal 
ultrasound device with a linear 13-24 MHz (MS250) transducer. The rats were 
anesthetized with isoflurane and body temperature was maintained using a heating 
pad. Parasternal long-axis views in M-mode were acquired and the LV end-diastolic 
diameter, end-systolic diameter, and thickness of the interventricular septum and 
posterior wall were measured. Fractional shortening and LV mass were calculated. 
A subset of rats (2 MI and 2 sham) were also imaged with cardiac MRI after 12 
weeks to visualize the LV shape and function. The MRI data was acquired using 
clinical Philips Achieva 3T device (Philips Medical Systems, Koninklijke, The 
Netherlands) combined with a rodent-dedicated heart coil. 

4.4 Radiochemistry 
The PET tracers were synthetized at the Radiopharmaceutical Chemistry Laboratory 
of Turku PET Centre. The 18F-FDG was obtained from batches synthetized with a 
standard protocol and allocated for clinical use. The structure of [Nle14Lys40(Ahx-
NODAGA)NH2]-exendin-4 peptide is shown in Figure 4. 68Ga was obtained from a 
68Ge/68Ga generator (Eckert & Ziegler, Berlin, Germany) by elution with 0.1 M 
hydrochloric acid (HCl). The 68Ga-GaCl3 eluate (0.5 ml, 184 ± 19 MBq) was mixed 
with sodium acetate (18 mg, Merck, Kenilworth, NJ, US) and pH was adjusted to 
approximately 3.5 with 2 M HCl. Then, 24 µg of NODAGA-exendin-4 (5 nmol in 
deionized water) was added, and the reaction mixture was incubated at 95 ˚C for 15 
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min. The radiochemical purity was determined by a radio-high-performance liquid 
chromatography (radio-HPLC) (Jupiter C18, 300 Å, 150×4.6 mm, 5µm column, 
Phenomenex, Torrance, CA, USA). The HPLC conditions were as follows: flow rate 
= 1 ml/min, λ = 215 nm, A = 0.1% trifluoroacetic acid (TFA) in water, B = 0.1% 
TFA in acetonitrile. Linear gradient was from 18% to 60% B/A over 9 min. The 
radiochemical purity exceeded 95% in every batch. The molar activities of 68Ga-
NODAGA-exendin-4 were 35 ± 7.0 MBq/nmol (Study II) and 58 ± 20 MBq/nmol 
(Study III) at the end of synthesis. 

Figure 4. Structure of [Nle14,Lys40(Ahx-NODAGA)NH2]-exendin-4 peptide. The chemical formula is 
C212H331N56O69 and molecular weight 4765.4 g/mol. NODAGA = 1,4,7-triazacyclononane-
1-glutamic acid-4,7-diacetic acid.4 (Adopted from the original publication II supplementary 
data with a permission DOI: 10.1007/s12350-018-01547-1.) 

4.4.1 In vivo tracer stability 
In vivo stability and radiometabolism of 68Ga-NODAGA-exendin-4 in plasma was 
studied by radio-HPLC at 12 weeks after the sham-operation (n = 3). Blood samples 
were obtained at 5, 15, 30, 60, and 80 min after tracer injection from the tail vein. 
Plasma was separated by centrifugation, and the samples were mixed with 
acetonitrile (1:1, v/v) for protein precipitation, centrifuged, and the supernatant was 
analyzed with radio-HPLC (Jupiter C18, 300 Å, 10×250 mm, 5µm column, 
Phenomenex, Torrance, CA, USA). 

4.5 PET/CT imaging 
In all studies, the animals were fasted for 4 hours before tracer injection. The animals 
were anesthetized with isoflurane (4-5% for induction and 1.5-2% for maintenance), 
body temperature was maintained using a heating pad, and blood glucose levels were 
measured with a glucometer (Bayer Contour, Bayer AG, Leverkusen, Germany) 
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Materials and Methods 

from blood samples withdrawn from the saphenous vein. A tail vein catheter was put 
in place and the following radioactivity doses were injected: 11 ± 0.38 MBq of 18F-
FDG in Study I, 52 ± 5.5 MBq and 20 ± 2.0 MBq of 68Ga-NODAGA-exendin-4 in 
Studies II and III, respectively. The selection of radiotracer doses was based on the 
previous studies (Silvola et al., 2011; Mikkola et al., 2013; Kiugel et al., 2014) and 
the 68Ga-NODAGA-exendin-4 dose was adjusted between the rats and mice (body 
weight). 

In studies II and III, a subset of animals (Table 3) were imaged using a small-
animal PET/CT scanner (Inveon Multimodality, Siemens Medical Solutions, 
Knoxville, TN, USA) for 60 minutes starting from the time of the 68Ga-NODAGA-
exendin-4 injection. Immediately after the PET, an iodinated contrast agent 
(eXIATM160XL, Binitio Biomedical Inc., Ottawa, ON, Canada) was injected (250 
µl for rats and 100 µl for mice) and a high resolution contrast-enhanced CT was 
acquired in order to visualize the endocardial border (localization of myocardium) 
and large blood vessels. The PET images were reconstructed with a 3D ordered-
subset expectation maximization algorithm (OSEM3D). Quantitative PET analyses 
were performed using the in-house Carimas v. 2.8 or 2.9 software (Turku PET 
Centre, Turku, Finland). 

The PET and CT images were automatically superimposed and the co-
localization was confirmed visually based on anatomical landmarks. According to 
the high-resolution CT, regions of interest (ROIs) were drawn in the infarcted region 
and remote myocardium (II), aorta (III), blood pool in the LV cavity, chest wound 
(II), lungs, liver, kidneys, muscle, and urinary bladder (III). The MI ROI was defined 
as corresponding to the infarcted region in the myocardium supplied by the LCA and 
the remote ROI was placed in the non-infarcted myocardium in the inferior septum. 
In sham-operated rats, ROIs were drawn in the anterolateral wall corresponding to 
the LCA territory and septum. The ROIs in the aorta were defined in the aortic arch 
and aortic root in both atherosclerotic and control mice. 

Optimal contrast between 68Ga-NODAGA-exendin-4 uptake in the infarcted 
area/atherosclerotic aorta and blood pool was observed 50-60 minutes after injection, 
and therefore the regional mean radioactivity concentrations (Bq/ml) were used to 
calculate the standardized uptake values (SUVmean 50-60 min). The SUV is 
determined as the regional Bq/ml value divided by the injected radioactivity dose 
per animal weight. Uptake in the aorta was normalized by calculating the target-to-
background ratio (TBR): SUVmax, aorta/SUVmean, blood. 

4.5.1 Kinetic modeling 
In Study II, the dynamic 68Ga-NODAGA-exendin-4 data was further analyzed by the 
graphical Patlak model (Patlak et al., 1983) to estimate the irreversible tracer uptake 
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as net influx rate (Ki). Metabolite-corrected plasma time-activity curves (TAC) were 
used as input function in the Patlak plot analysis. Image-derived blood curves were 
converted into metabolite-corrected plasma curves using the group median plasma-
to-blood ratio and percentage of intact 68Ga-NODAGA-exendin-4 measured in the 
metabolite analysis. Ki was calculated as the slope of the plot after the linear phase 
was reached 20 minutes after tracer injection. Reported Ki values are based on the 
analysis of regional TACs, whereas representative parametric Ki images were 
obtained by using Patlak plots. 

4.6 Autoradiography of tissue sections 
High-resolution digital autoradiography ex vivo was used to quantify the tracer 
uptake in tissue sections in more detail. At 90 minutes (I), 80 minutes (II) or 60 
minutes (III) post-injection, blood was collected by cardiac puncture and the animals 
were sacrificed by cervical dislocation under deep anesthesia. 

The thoracic aorta from the sinotubular junction to the level of the diaphragm (I, 
III), LV (II) or pancreas (III) were excised, rinsed with saline to remove blood, frozen 
in cooled isopentane, and cut into sequential longitudinal or transverse (LV) 
cryosections of 20 and 8 μm, thus providing sections throughout the region on a 
single slide (n = 6–8 intervals/specimen). The cryosections were air-dried and placed 
under a radiation-sensitive imaging plate (Fuji Imaging Plate BAS-TR2025, Fuji 
Photo Film Co., Ltd., Tokyo, Japan) for a specific time depending on the 
radionuclide decay, and then scanned with a Fuji Analyser BAS-5000 (internal 
resolution of 25 μm, Fuji, Tokyo, Japan). Thereafter, the 20 μm sections were stained 
with hematoxylin and eosin (HE) and the parallel 8 μm sections were 
immunohistochemically stained with Mac-3 (I, III) or CD68 (II) antibodies to detect 
macrophages, α-SMA (II) to detect myofibroblasts or insulin (III) to localize 
pancreatic β-cells (Table 4). The sections were scanned with a slide scanner 
(Pannoramic 250 Flash, 3DHistech Ltd., Budapest, Hungary) and co-registered with 
autoradiographs. Tracer accumulation was measured as photostimulated 
luminescence per square millimeter (PSL/mm2), using Tina 2.1 software (Raytest 
Isotopenmessgeräte, GmbH, Straubenhardt, Germany). Background radiation was 
subtracted from the image data, and the results for each animal were decay corrected 
to injection time and exposure time and normalized for injected radioactivity dose 
per animal weight in order to compare absolute PSL/mm2 values between animals. 
Alternatively, the TBR was calculated. 

In Study I, ROIs were placed on the atherosclerotic lesions (n = 22/mouse) and 
vessel walls without lesions (n = 16/mouse), and the TBR (lesion-to-wall ratio) was 
calculated for each mouse. The lesion-to-wall ratios were compared between the 
mice treated with X19-mu or a vehicle. To assess the effects of treatment on 18F-
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Materials and Methods 

FDG uptake in lesions containing different macrophage densities, the percentage of 
Mac-3+ staining within the lesions was measured with ImageJ software (Fiji, NIH, 
Bethesda, MD, USA) and compared with the 18F-FDG uptake (lesion-to-wall ratio) 
in the same lesions in the 8 μm sections (n = 7 randomly chosen mice/treatment; 8 
lesions/mouse). In Study II, the average 68Ga-NODAGA-exendin-4 uptake was 
measured as PSL/mm2 in 4-5 sections per heart in the infarcted area, the border zone 
myocardium consisting of 3-5 myocyte layers adjacent to the infarct, and the remote 
myocardium in the septum. Furthermore, the 68Ga-NODAGA-exendin-4 uptake was 
correlated with the percentage of CD68+ macrophages and α-SMA+ myofibroblasts 
in infarcted or remote regions in parallel 8 μm sections. In Study III, the ROIs were 
defined in the atherosclerotic lesions (n = 24/mouse), vessel walls without lesions (n 
= 16/mouse), and adventitia (n = 9/mouse). The results were expressed as PSL/mm2 

and lesion-to-wall ratios. In a subset of mice (n = 4 non-diabetic, n = 5 diabetic, and 
n = 4 control mice) the pancreatic uptake of 68Ga-NODAGA-exendin-4 was 
measured in 6 sections per mouse in ROIs placed on the islets of Langerhans (n = 
28/mouse) and exocrine pancreas (n = 28/mouse). Islet-to-exocrine pancreas ratio 
was calculated for each mouse. 

4.7 Specificity of tracer binding 
To assess the specificity of 68Ga-NODAGA-exendin-4 accumulation, 12 mg/kg for 
rats and 14 mg/kg for mice of unlabeled exendin-4 peptide (ChinaPeptides Co. Ltd., 
Shanghai, China) was injected 10 minutes before 68Ga-NODAGA-exendin-4 
injection in order to block specific binding sites (Table 3). The dose of the blocking 
peptide was calculated to be an approximately 200-fold amount compared to the 
injected 68Ga-NODAGA-exendin-4. The PET/CT imaging and/or autoradiography 
studies were performed as described above. 

4.8 Ex vivo biodistribution 
In Study I, no PET/CT imaging was performed, but the radioactivity concentrations 
of 18F-FDG in certain tissues were assessed by ex vivo biodistribution analysis. After 
90 minutes of tracer accumulation, in parallel to autoradiography study, the selected 
tissues including the brain, heart, liver, lungs, and spleen were excised, weighed, and 
measured for total radioactivity using a gamma counter (Triathler 3”, Hidex Oy, 
Turku, Finland). Radioactivity values were normalized for injected radioactivity 
dose per animal weight, decay, and the weight of the tissue sample. The results were 
expressed as SUV values. 
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4.9 Histology, immunohistochemistry, and 
immunofluorescence 

The general histology and relevant inflammatory and cardiac repair markers were 
investigated in all studies. In addition to aortic cryosections, the aortic root (I, III) 
was fixed overnight with 10% formalin, embedded in paraffin, and cut into serial 5 
μm cross-sections at the level of the coronary ostium. In Study II, additional samples 
of the LV (n = 2 MI at 1 week and 2 MI and 2 sham at 12 weeks) were embedded in 
paraffin. Aortic root sections were stained with Movat’s pentachrome for the 
measurement of atherosclerotic lesion area (I, III), and with Masson’s trichrome 
(Sigma-Aldrich, St. Louis, MO, USA) for the quantification of lesion collagen 
content (I). Masson’s trichrome staining was also used to determine the MI size and 
to measure collagen density in the LV cryosections. Antibodies used for 
immunohistochemistry and immunofluorescence are listed in Table 4. 

In general, the staining protocol included heat-mediated antigen retrieval usually 
in citrate buffer, a blocking reagent such as 1% bovin serum albumin in PBS/Tween, 
incubation with primary antibody for 60 minutes or overnight, and appropriate 
secondary antibodies. In immunohistochemistry, detection was performed with 
Vectastain ABC-HRP kit (Vector Laboratories, Burlingame, CA, USA), coupled 
with chromogen (DAB, Dako K3468), and counterstained with Mayer’s 
hematoxylin. Fluorescent Alexa secondary antibodies (Invitrogen, Carlsbad, CA, 
USA) were used for detection in immunofluorescence stainings and the sections 
were mounted in ProLong TM Gold Antifade Reagent including 4',6-diamino-2-
phenylindole (DAPI) that stains nuclei (P36935, Invitrogen, Carlsbad, CA, USA). 
All staining protocols were optimized by using positive and negative tissue samples, 
as well as control non-immune IgG antibodies.  

In Study I, macrophages in aortic root sections were detected by double 
immunofluorescence using Mac-3 antibody and either CCR2 or CD206 antibody 
detecting M1 or M2 macrophages, respectively. Macrophage apoptosis was studied 
by using Mac-3 and cleaved caspase-3 antibodies. Furthermore, VCAM-1, ICAM-
1, IL-1β, and MCP-1 were detected by immunofluorescence. The presence of PC 
epitopes in atherosclerotic lesions was detected by immunofluorescence using the 
fully human PC-mAb directly labeled with Cy5 and co-stained with Mac-3 antibody 
and CD31 antibody detecting ECs. In Study II, in addition to the CD68 and α-SMA 
anyibody stainings performed for LV cryosections, serial 4 μm paraffin cross-
sections were double immunofluorescence stained with GLP-1R and either a CD68 
or α-SMA antibody in order to study the co-localization of GLP-1R with 
macrophages and α-SMA expressing myofibroblasts. In Study III, aortic root 
sections were co-stained for immunofluorescence using GLP-1R antibody and either 
Mac-3, iNOS detecting M1 macrophages, or CD206 antibody. Additional paraffin-
embedded pancreatic sections were co-stained with GLP-1R and insulin antibody. 
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Materials and Methods 

The sections were scanned with digital slide scanners (Pannoramic 250 Flash for 
histology or Pannoramic MIDI for immunofluorescence; 3DHistech Ltd., Budapest, 
Hungary) or appropriate fluorescence microscopes (Nikon Ti-2E, objective 
20x/0.75; Nikon, Amsterdam, The Netherlands, and Zeiss LSM700, objective 
40x/1.4 Oil DIC; Zeiss GmbH, Oberkochen, Germany). For each staining, 1-3 aortic 
root sections per mouse were analyzed using the ImageJ software. The intima and 
media were outlined and the lesion size was calculated as absolute intimal area 
(mm2) (I) or intima-to-media ratio (III). The percentage of intimal area positive for 
macrophages, IL-1β, and MCP-1 staining was measured using specific color 
threshold values for each staining. Lesion endothelial lining positive for VCAM-1 
and ICAM-1 was graded visually as 1 (<30%), 2 (30-60%) or 3 (>60%). Apoptotic 
macrophages were measured as the number of Mac-3 macrophages positive for 
caspase-3 per intimal area (mm2) (I). The MI size was measured as the average 
percentage of LV circumference in Masson’s trichrome stainings. Percentages of 
myocardium positive for CD68, α-SMA or collagen within the MI region or remote 
myocardium were measured in 4 sections per heart using specific color threshold 
values (II). In addition to myofibroblasts, the α-SMA antibody stains vascular SMC, 
and therefore, the most obvious vessels were carefully excluded from the MI and 
remote ROIs. The small capillaries could not be totally avoided. 

Table 4. Antibodies used in immunohistochemical and immunofluorescence stainings. 

Antibody Cat# Company Working dilution Study 
IHC IF 

α-SMA A522 Sigma-Aldrich 1:20 000 1:2000 II 
Caspase-3 9661-s Cell Signaling Technology 1:400 I 
CCR2 ab21667 Abcam 1:400 I 
CD206 ab64693 Abcam 1:200 I, III 
CD31 sc-1506-R SantaCruz 1:100 I 
CD68 MCA341R AbD Serotec 1:10 000 1:500 II 
GLP-1R ab39072 Abcam 1:500 II 
GLP-1R 7F38 DSHB by Knudsen 1:100 III 
ICAM-1 sc-1511-R SantaCruz 1:300 I 
IL-1β ab9722 Abcam 1:100 I 
iNOS ab15323 Abcam 1:200 III 
Insulin ab63820 Abcam 1:1000 1:5000 III 
Mac-3 550292 BD Pharmingen 1:5000 1:100 I, III 
MCP-1 NBP1-42280 Novus Biologicals 1:300 I 
PC Non-commercial Athera Biotechnologies 1:10 I 
VCAM-1 ab134047 Abcam 1:100 I 
IF; immunofluorescence, IHC; immunohistochemistry. 
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4.10 Glucose tolerance test 
In Study III, to assess the glucose metabolism of the mice, an i.p. glucose tolerance 
test (GTT) was performed one week prior to the imaging study. The mice were fasted 
for 4 hours, and blood samples were withdrawn from the tail vein prior to and 20, 
40, 60 and 90 min after i.p. glucose injection (1 g/kg glucose). Glucose values were 
measured from the whole venous blood using a glucometer. 

4.11 Measurement of plasma lipids and biomarkers 
Plasma concentrations of total cholesterol, LDL, HDL, and TGs were measured from 
terminal blood samples collected by heart puncture, using a Konelab 20i chemistry 
analyzer (Thermo Fisher Scientific, MA, USA) (I) or with appropriate lipid kits 
(Roche Diagnostics, Basel, Switzerland) (III). In Study III, the plasma levels of C-
peptide, glucagon, insulin, and leptin were measured, from saphenous vein blood 
samples taken before the tracer injection, using a Luminex assay according to the 
manufacturer’s instructions (MILLIPLEX MAP Mouse Metabolic Hormone 
Magnetic Bead Panel, Merck Millipore, Billerica, MA, USA). In Study I, X19-mu 
antibody levels were measured from the terminal blood samples with a modified 
CVDefine ELISA kit (Athera Biotechnologies AB, Stockholm, Sweden), where the 
original secondary antibody (detecting human IgM) was replaced with anti-IgG 
(AffiniPure goat anti-mouse IgG [H+L] and goat anti-human IgG [H+L], 
respectively; Jackson Immuno Research Laboratories, Baltimore, MD, USA). 

4.12 Human aortic endothelial cell experiments 
In Study I, primary HAECs (Lonza, Baltimore, MD, USA) were seeded on 
fibronectin-coated tissue culture-treated wells and maintained in EGM-2 medium 
(Lonza) at 37 °C and 5% CO2. Cells between passage 4 to 7 were used for HAEC 
experiments. Lipoprotein fractions were obtained from plasma of three different 
male and female normolipidemic volunteers and Lp(a) was isolated (Schnitzler et 
al., 2017). HAECs were stimulated with 1 mg/ml of Lp(a) for 24 h in the presence 
of fully human PC-mAb or a non-specific IgG. Thereafter, cells were processed for 
gene expression measurements of VCAM1, ICAM1, IL6, and IL8 (primers from 
Sigma Aldrich, Zwijndrecht, The Netherlands) by means of a quantitative 
polymerase chain reaction (qPCR) (SYBR Green Fast on a ViiA™ 7 PCR machine, 
Applied Biosystems, Bleiswijk, The Netherlands) as well as cytokine (protein) 
measurements of IL-6 and IL-8 (ELISA kit, Thermo Fisher Scientific, Carlsbad, CA, 
USA). Intracellular nitrate reflecting NO production was measured using a 
commercially available Nitric Oxide Assay Kit (fluorometric) according to the 
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Materials and Methods 

manufacturer’s instructions (ab65327, Abcam, Cambridge, UK). The experiments 
were repeated three times. 

4.13 Statistical analysis 
The results are presented as mean ± standard deviation (SD), unless otherwise 
indicated. The statistical analyses were conducted with SPSS Statistics software v. 
22 (IBM, Armonk, New York, USA), and the graphs were created using GraphPad 
Prism 6 (GraphPad Software Inc., La Jolla, CA, USA). Normality was examined by 
the Shapiro-Wilk test, and equality of variances was tested with Levene’s test. 
Student’s t-test for unpaired data was used to compare differences between two 
independent groups. Multiple comparisons were made by one-way analysis of 
variance (ANOVA) followed by a Tukey-Kramer post-hoc test (II). Different 
measurements from the same animals (e.g., MI vs. remote) were analyzed using 
paired Student’s t-test. Spearman’s correlation was used to analyze correlation 
between two continuous variables (II). Analysis of covariance was conducted to 
compare repeated CFR and echocardiography measurements (I, II). Non-parametric 
tests, namely Fisher’s exact test and Mann-Whitney U test were applied to analyze 
histological scores and in vitro data, respectively (I). 

In study I, the 18F-FDG uptake was higher in female than in male mice and 
thus, sex and treatment group were included as fixed factors in the statistical model 
(no interaction between sex and group was observed). There were no differences 
between females and males in other experiments. Two-way ANOVA was used to 
compare 18F-FDG uptake in lesions divided into tertiles according to macrophage 
density. Macrophage density and treatment were included as fixed factors in the 
model (no interaction was observed). Assuming an average CFR of 2.5 ± 0.3 (Saraste 
et al., 2006) and 18F-FDG uptake of 1.8 ± 0.25 (Rinne et al., 2014), sample sizes of 
10 and 14 were calculated to be sufficient to detect a difference of 15% with 80% 
power and a type I error of 0.05, respectively. A p-value of <0.05 was considered 
statistically significant in all studies. 
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5 Results 

5.1 Effects of a therapeutic PC antibody on 
vascular function and atherosclerotic 
inflammation 

The 6-week treatment with X19-mu was well tolerated. The antibody remained 
present in the blood circulation until the end of the intervention, with the average 
plasma X19-mu concentration being 14 ± 9.8 mg/ml 5 to 7 days after the last 
injection. The final study group consisted of 16 mice in the vehicle group and 16 
mice in the X19-mu group, since one mouse had to be excluded due to a failure in 
the dosing of X19-mu (no detectable levels of X19-mu in plasma), and one mouse 
due to failure in the dosing of 18F-FDG. Following the treatment, the groups treated 
with either vehicle or X19-mu were similar in terms of body weight (30 ± 6.0 vs. 30 
± 7.7 g, p = 0.89), fasting blood glucose levels (10 ± 2.6 vs. 10 ± 2.3 mmol/l, p = 
0.77), and total plasma cholesterol (8.8 ± 1.6 vs. 9.0 ± 1.8 mmol/l, p = 0.76) as well 
as LDL (6.8 ± 1.3 vs. 7.0 ± 1.6 mmol/l, p = 0.66) levels. 

5.1.1 Lesion histology 
All LDLR-/-ApoB100/100 mice demonstrated macrophage-rich atherosclerotic lesions 
in the aorta (Figures 5 and 7). PC-positive staining was detected in atherosclerotic 
lesions, co-localizing with Mac-3-positive macrophages and CD31-positive 
endothelial cells covering the lesions (Figure 5). The quantification of the results of 
the histological and immunofluorescence stainings of the aortic root sections is 
shown in Table 5. The absolute lesion area in the aortic root and intimal area positive 
for Mac-3 macrophage staining was similar between the vehicle- and X19-mu-
treated mice. The Mac-3-positive area of the intima contained similar amounts of 
M1 (CCR2) and M2 (CD206) macrophages in both groups. However, the IL-1β 
expression was significantly reduced after X19-mu treatment as compared with 
vehicle-treated mice (p = 0.044). The extent of lesion endothelium positive for 
VCAM-1 or ICAM-1 did not differ between the groups. The expression of MCP-1, 
number of macrophages positive for cleaved caspase-3, and the lesion collagen 
content were also comparable between the vehicle- and X19-mu-treated mice. 
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Figure 5. Phosphorylcholine (PC) epitopes are present in macrophages (yellow arrows) and 
endothelial cells (white arrows) in atherosclerotic lesions. Aortic root section stained with 
(A) PC antibody (PC-mAb), (B) Mac-3 antibody (macrophages), (C) CD31 antibody 
(endothelial cells), and (D) DAPI. (E) PC-positive staining co-localized with endothelial 
cells covering the lesion and macrophages (white color in merge). Scale bar = 75 µm. 
(Adopted from the original publication I with a permission. DOI: 
10.1016/j.jacbts.2020.01.008) 

Table 5. The effect of X19-mu treatment on lesion histology and inflammatory markers. 

Vehicle X19-mu p-value 

Lesion area (mm2) 0.68 ± 0.28 0.62 ± 0.28 0.57 

Mac-3 (%) 19 ± 8.7 19 ± 10 0.93 

CCR2 (% of Mac-3 area) 44 ± 13 43 ± 13 0.87 

CD206 (% of Mac-3 area) 48 ± 26 60 ± 24 0.23 

VCAM-1 (score*) 2.5 [2.0 and 3.0] 2.0 [2.0 and 3.0] 0.65 

ICAM-1 (score*) 2.5 [2.0 and 3.0] 2.0 [1.0 and 2.0] 0.32 

IL-1β (%) 24 ± 1.0 21 ± 0.83 0.044 

MCP-1 (%) 10 ± 1.0 10 ± 0.60 0.82 

Mac-3+Caspase-3 (cells/mm 2) 220 ± 65 230 ± 72 0.61 

Collagen (%) 39 ± 5.6 40 ± 7.9 0.68 

Values are mean ± SD w ith the exception of *median [25% and 75% percentiles]. 

Student's t -test for unpaired measurements and Fisher's exact test for scores. 

n = 10-16/staining/group. 
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5.1.2 Coronary flow reserve 
The CFR was measured as the ratio of coronary flow velocity in the middle LCA 
during adenosine stress and at rest by Doppler ultrasound before and after treatment 
(Figure 6). Compared with vehicle, the analysis of covariance for repeated 
measurements showed that the CFR preserved during the 6-week treatment with 
X19-mu (p = 0.047) (Figure 6B). Compared with week 0, CFR was 24 ± 20% lower 
after 6 weeks in vehicle-treated mice (1.9 ± 0.29 vs. 1.4 ± 0.23, p < 0.01), whereas 
there was a trend toward a higher (9.0 ± 23%) CFR after treatment with X19-mu (1.6 
± 0.24 vs. 1.7 ± 0.24, p = 0.32). 

Figure 6. Treatment with X19-mu preserves coronary flow reserve (CFR). (A) Blood flow in the 
left coronary artery (LCA) localized under color Doppler mapping (arrow) and the blood 
flow velocity profiles recorded by pulsed-wave Doppler at rest and during adenosine 
infusion. (B) Compared with vehicle, the CFR preserved in relation to the week 0 
measurement was preserved after a 6-week treatment with X19-mu. (Mean ± SD in the 
histogram; analysis of covariance for repeated measurements; n = 10/group.) (Adopted 
from the original publication I with a permission. DOI: 10.1016/j.jacbts.2020.01.008) 

5.1.3 Nitric oxide production and endothelium 
To investigate the mechanism underlying the improved vascular function, NO 
production was measured in Lp(a)-stimulated HAECs in the presence of either PC-
mAb or non-specific control IgG. The intracellular nitrate concentration, which 
reflects endothelial NO production, was reduced after a 24-h stimulation with 
Lp(a) and a nonspecific IgG (median [25% and 75% percentiles]: 144 [143 and 
150] pmol/ ×106 cells vs. 118 [117 and 123] pmol/ ×106 cells, p = 0.049), but 
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preserved in the presence of PC-mAb (135 [133 and 172] pmol/ ×106 cells, p = 
0.049 vs. nonspecific IgG). Furthermore, the gene expressions (fold change, 
median [25% and 75% percentiles]) of VCAM1 (0.70 [0.63 and 7.2] vs. 2.2 [1.5 
and 8.9], p = 0.28), ICAM1 (0.73 [0.91 and 2.1] vs. 1.5 [1.2 and 3.9], p = 0.51), 
and IL8 (0.75 [1.1 and 2.3] vs. 3.0 [1.8 and 3.8], p = 0.83) in HAECs tended to be 
lower in the presence of PC-mAb as compared with nonspecific IgG, although the 
differences were not statistically significant. The gene expression of IL6 as well as 
the cytokine (protein) IL-6 and IL-8 levels were similar in the presence of PC-mAb 
and nonspecific IgG antibodies. 

5.1.4 18F-FDG uptake 
Focal uptake of 18F-FDG was detected in macrophage-rich atherosclerotic lesions 
within the aorta by autoradiography (Figure 7A to 7C). The average uptake of 18F-
FDG in atherosclerotic lesions, expressed as lesion-to-wall ratio and adjusted by 
sex, was significantly lower after the 6-week treatment with X19-mu as compared 
with vehicle-treated mice (1.5 ± 0.17 vs. 1.7 ± 0.24, p = 0.002, Figure 7D). In a 
sub-analysis, 18F-FDG uptake was compared in lesions with a low (on average 
22%), intermediate (29%), or high (35%) density of macrophages. The higher the 
density of macrophages in the lesion, the higher the 18F-FDG uptake (p = 0.039) in 
both the vehicle- and X19-mu-treated mice. However, X19-mu treatment reduced 
18F-FDG uptake in lesions with low (1.2 ± 0.32 vs. 1.4 ± 0.33), intermediate (1.2 
± 0.19 vs. 1.6 ± 0.33), and high (1.4 ± 0.19 vs. 1.9 ± 0.29) density of macrophages 
as compared with vehicle (p < 0.001). (Figure 7E) The ex vivo biodistribution 
showed that 18F-FDG uptake was lower in the brain after X19-mu treatment 
compared with vehicle (SUV 1.3 ± 0.31 vs 1.6 ± 0.33, p = 0.036). There were no 
differences in other tissues. 
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Figure 7. X19-mu treatment reduces 18F-FDG uptake in atherosclerotic lesions. (A) A hematoxylin 
and eosin-stained longitudinal aortic cryosection, (B) corresponding autoradiograph, and 
(C) macrophage (Mac-3) staining. The regions of interest are defined in the atherosclerotic 
lesions and lesion-free vessel walls (black lines). (D) The average 18F-FDG uptake in 
atherosclerotic lesions (expressed as lesion-to-wall ratio) was lower after a 6-week 
treatment with X19-mu than with vehicle. (n = 16 mice/group; mean ± SD; sex-adjusted 
model). (E) The sub-analysis showed that X19-mu treatment reduced 18F-FDG uptake in 
lesions with low, intermediate, and high density of macrophages as compared with vehicle. 
(n = 5-7 mice/group in each sub-category; mean ± SD; two-way ANOVA for the main 
effects of macrophage density and treatment). Scale bar = 0.5 mm. A = arch; AA = 
ascending aorta; B = brachiocephalic artery; D = descending thoracic aorta; L = lesion; LC 
= left common carotid artery; LS = left subclavian artery; W = wall. (Adopted from the 
original publication I with a permission. DOI: 10.1016/j.jacbts.2020.01.008.) 

5.2 Imaging of GLP-1R expression with 
68Ga-NODAGA-exendin-4 

In Study II, none of the sham-operated rats showed myocardial injury, whereas in the 
rats that underwent LCA ligation, the average MI size was medium-to-large and it was 
comparable between the measurement time-points at day 3 (48 ± 7.4%, p = 0.54 vs. 
week 1 and p = 0.066 vs. week 12), week 1 (42 ± 6.7%, p = 0.40 vs. week 12), and 
week 12 (35 ± 14%). Echocardiography and cardiac MRI visualized significant LV 
enlargement and dysfunction at 12 weeks after MI (Figure 8). The fractional 
shortening was lower in the rats with MI at 1 and 12 weeks than in the sham-operated 
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rats (17 ± 5.0% vs. 48 ± 5.1%, p < 0.0001 and 13 ± 5.1% vs. 42 ± 5.6%, p < 0.0001, 
respectively). Compared with the sham-operated rats, the absolute LV diastolic and 
systolic diameters increased in the rats with MI from 1 to 12 weeks (change 0.57 ± 
0.70 mm vs. 2.7 ± 1.4 mm, p < 0.0001, Figure 8, and 0.83 ± 0.61 vs. 2.7 ± 1.2 mm, p 
= 0.046, respectively), thus indicating significant post-MI LV remodeling. 

In Study III, plasma levels of total cholesterol were similar between non-
diabetic (LDLR-/-ApoB100/100) and diabetic (IGF-II/LDLR-/-ApoB100/100) mice (46 ± 
7.8 mmol/l vs. 50 ± 6.6 mmol/l, p = 0.24), but significantly higher in all 
hypercholesterolemic mice than in healthy (C57BL/6N) mice (2.0 ± 0.41, p < 0.01). 
The leptin levels were also higher in both non-diabetic (6300 ± 1800 pg/ml) and 
diabetic (6500 ± 2800 pg/ml) hypercholesterolemic mice as compared with healthy 
mice (2700 ± 2600 pg/ml, p < 0.05). The diabetic mice demonstrated impaired 
glucose tolerance (peak GTT value at 20 min 29 ± 4.6 mmol/l) as compared with 
non-diabetic (14 ± 2.6 mmol/l, p ≤ 0.001) and healthy mice (13 ± 1.6 mmol/l, p ≤ 
0.001). Furthermore, compared with the non-diabetic hypercholesterolemic mice, 
the fasting plasma levels of insulin (1300 ± 1200 pg/ml vs. 2700 ± 1600 pg/ml, p = 
0.11) and C-peptide (1000 ± 670 pg/ml vs. 1700 ± 1100 pg/ml, p = 0.17) tended to 
be higher and glucagon levels (120 ± 130 pg/ml vs. 87 ± 47 pg/ml vs, p = 0.51) lower 
in the diabetic mice. 

p < 0.001 

MISham 

A 

B 

C 

Figure 8. Echocardiography and cardiac magnetic resonance imaging (MRI) show significant left 
ventricle (LV) enlargement 12 weeks after myocardial infarction (MI). (A) Parasternal long-
axis echocardiography images and (B) corresponding short-axis MR images (white color, left 
and right ventricle cavities) in a healthy sham-operated rat and in a rat with MI. The LV 
diastolic diameter (LVDD, yellow dotted lines) assessed by echocardiography increased in 
rats with MI from 1 to 12 weeks compared with sham-operated rats. (n = 8 MI and 9 Sham; 
analysis of covariance for repeated measurements) 
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5.2.1 Histology and immunostainings 
In Study III, the Masson’s trichrome stainings demonstrated that a dense collagenous 
scar developed in the infarcted region in time (areal percentage 16 ± 5.9% at day 3, 
50 ± 3.4% at week 1, and 59 ± 2.5% at week 12). The area of interstitial fibrosis was 
small in the healthy myocardium of sham-operated rats (3.9 ± 1.6% at week 1 and 
4.3 ± 1.2% at week 12), but was increased in the remote myocardium after MI as 
compared with the sham-operated rats (8.7 ± 1.4% at week 1, p < 0.001 and 11 ± 
2.0% at 12 weeks, p < 0.001). The CD68-positive macrophages were most abundant 
in the infarcted area 3 days after MI (areal percentage 15 ± 3.9%) and decreased 
gradually from day 3 to week 1 (9.5 ± 2.6%, p = 0.0072) and week 12 (4.3 ± 1.2%, 
p = 0.0048). There were very few CD68-positive macrophages (<1%) in the 
myocardium of sham-operated rats and the remote myocardium of rats with MI. In 
the infarcted region, the amount of α-SMA-positive myofibroblasts was high and 
remained stable from 1 week (areal percentage 22 ± 7.0%) to week 12 (22 ± 7.4%, 
p = 0.99). Compared with the myocardium of sham-operated rats, the area of α-SMA 
staining was also increased in the remote myocardium at 1 week (1.2 ± 0.23% vs. 
1.9 ± 0.73%, p = 0.0087) and at 12 weeks (0.96 ± 0.18% vs. 1.8 ± 0.70%, p = 0.030) 
after MI. In Study III, the area of atherosclerotic lesions in the aortic root was similar 
in non-diabetic and diabetic hypercholesterolemic mice (intima-to-media ratio 1.7 ± 
0.47 vs. 1.7 ± 0.37, p = 0.98), as was the intimal area positive for Mac-3 macrophages 
(14 ± 4.1% vs. 13 ± 4.1%, p = 0.67). 

In Study II, the expression of GLP-1R (protein) in the infarcted heart and 
atherosclerotic lesions was studied by immunofluorescence stainings. There was no 
GLP-1R-positive staining in the myocardium of sham-operated rats or in the healthy 
vessel wall of C57BL/6N mice. However, GLP-1R-positive staining was detected in 
the infarcted region, co-localizing with CD68-positive macrophages, whereas no co-
localization with α-SMA-positive myofibroblasts was observed (Figure 9). In Study 
III, in the aortic root sections of hypercholesterolemic mice, GLP-1R-positive 
staining was present mainly in the superficial macrophage-rich areas detected with 
immunofluorescence stainings with Mac-3, iNOS, and CD206 macrophage markers. 
The co-localization was most prominent with M2 (CD206) macrophages in the 
atherosclerotic lesions. 
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Figure 9. Glucagon-like peptide-1 receptor (GLP-1R) expression is detected in macrophages 1 
week after myocardial infarction. Left ventricle sections stained with (A) GLP-1R 
antibody (green) and CD68 antibody (macrophages, red), and (B) GLP-1R antibody 
(green) and α-SMA antibody (myofibroblasts, red). GLP-1R-positive staining co-
localized with macrophages in the infarcted area (A: merge, yellow), whereas no co-
localization with myofibroblasts was detected (B: merge). Scale bar = 10 µm. (α-SMA, 
alpha-smooth muscle actin) (Adopted from the original publication II with a permission. 
DOI: 10.1007/s12350-018-01547-1) 

5.2.2 PET/CT imaging 
Representative PET/CT images of 68Ga-NODAGA-exendin-4 uptake in the infarcted 
heart and atherosclerotic aorta are shown in Figure 10, and quantitative results are 
presented in Table 6. In Study II, PET/CT imaging showed increased 68Ga-
NODAGA-exendin-4 uptake (SUVmean 50-60 min) in the infarcted anterior wall of 
the LV at 3 days and 1 week after MI as compared with the remote myocardium or 
the myocardium of sham-operated rats. Pre-injection of unlabeled exendin-4 peptide 
decreased the 68Ga-NODAGA-exendin-4 signal in the infarcted region to the same 
level as detected in the sham-operated rats. There was no visible uptake of 68Ga-
NODAGA-exendin-4 in the myocardium of sham-operated rats or in the remote 
myocardium of rats with MI in PET/CT images. Furthermore, parametric Ki-images 
(Figure 10) and kinetic modeling confirmed 68Ga-NODAGA-exendin-4 uptake in 
the infarcted area, whereas the uptake was low in the remote myocardium or the 
myocardium of sham-operated rats. According to the radio-HPLC analysis, 63% of 
plasma radioactivity originated from the intact tracer and two radio-metabolites of 
68Ga-NODAGA-exendin-4 were detected in sham-operated rats. Metabolite-
correction was applied in the kinetic modeling. The net influx rate (Ki) of 68Ga-
NODAGA-exendin-4 was higher in the infarct region of the LV than remote 
myocardium at 3 days, 1 week and 12 weeks after MI. There was a good correlation 
between the SUVmean and Ki values (r = 0.53, p = 0.0034). 
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In Study III, PET/CT imaging demonstrated elevated 68Ga-NODAGA-exendin-
4 uptake in the aortas of atherosclerotic mice at 50-60 min post-injection compared 
with the healthy aortas of control mice (Figure 10 and Table 6). The TBR (SUVmax, 

aorta/SUVmean blood) was higher in atherosclerotic mice than in control mice (1.3 ± 0.15 
vs. 1.1 ± 0.13, p = 0.040). The uptake in the organs adjacent to the heart (lungs and 
liver) was relatively low in both studies, whereas high radioactivity concentrations 
were found in kidneys and urine. 
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Figure 10. Positron emission tomography (PET) and contrast-enhanced computed tomgraphy (CT) 
imaging 50-60 minutes post-injection visualizes increased 68Ga-NODAGA-exendin-4 
uptake in the infarcted region and atherosclerotic aorta. (A) A maximum-intensity-
projection (MIP) PET/CT image of the whole thorax and corresponding Ki-generated 
PET/CT images showed focally increased 68Ga-NODAGA-exendin-4 uptake in the 
anterior wall of the left ventricle (LV) (red arrows) 1 week after myocardial infarction (MI) 
compared with remote myocardium (white arrows). (B) 68Ga-NODAGA-exendin-4 
uptake was focally increased in the aorta (red arrows) of an atherosclerotic IGF-II/LDLR-

/-ApoB100/100 mouse. A = aorta, K = kidney, Li = liver, Lu = lungs. (Modified from the 
original publication II [DOI: 10.1007/s12350-018-01547-1] and III [submitted] with a 
permission.) 
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Table 6. Quantification of in vivo 68Ga-NODAGA-exendin-4 uptake. 

Rats 3 days 1 week 12 w eeks 

MI (SUVmean) 0.67 ± 0.068* 0.59 ± 0.081 0.48 ± 0.092 

p  vs. Remote 0.026 <0.001 0.082 

p  vs. MI block <0.01 

p  vs. Sham <0.01 0.14 

MI (K i ×10-3) 4.3 ± 0.48† 2.4 ± 0.41* 1.7 ± 0.42 

p  vs. Remote <0.01 <0.001 0.037 

p  vs. MI block 0.066 

p  vs. Sham 0.025 0.80 

MI block (SUVmean) 0.39 ± 0.081 

MI block (K i ×10-3) 1.8 ± 0.45 

Remote (SUVmean) 0.42 ± 0.034 0.43 ± 0.067 0.47 ± 0.098 

Remote (K i ×10-3) 1.4 ± 0.45 1.4 ± 0.26 1.1 ± 0.33 

Sham (SUVmean) 0.42 ± 0.12 0.41 ± 0.049 

Sham (K i ×10-3) 1.9 ± 0.33 1.8 ± 0.47 

Mice Atherosclerotic Control p -value 

Aorta (SUVmax) 0.26 ± 0.039 0.17 ± 0.048 0.029 

p  vs. Blood 0.028 0.53 
Blood (SUVmean) 0.20 ± 0.011 0.17 ± 0.040 0.140 
Results are expressed as standardized uptake values 
(SUVmean/max 50-60 min ± SD) or net inf lux rate (K i). 
MI; infarcted region or corresponding anterolateral w all in Sham, 
Remote; septum. Student's t -test for unpaired and paired data. 
*p <0.05 vs. 12 w eeks, †p <0.001 vs.1 and 12 w eeks (ANOVA). 
Atherosclerotic mice; pooled results from 2 non-diabetic and 2 diabetic mice. 

5.2.3 Autoradiography 
After in vivo imaging, the 68Ga-NODAGA-exendin-4 accumulation in different 
myocardial regions was studied in more detail by ex vivo tissue autoradiography 
(Figure 11). In Study II, tracer uptake was very low in the myocardium of sham-
operated rats, whereas there was focally increased 68Ga-NODAGA-exendin-4 uptake 
in the infarct scar in all rats with MI. The peak in 68Ga-NODAGA-exendin-4 signal 
was seen at 3 days after coronary ligation. Compared with the myocardium of sham-
operated rats, tracer uptake was 9-fold higher at 1 week and 5-fold higher at 12 weeks 
after MI. Furthermore, 68Ga-NODAGA-exendin-4 uptake was 2- to 3-fold higher in 
the remote, non-infarcted myocardium and the MI border zone at 1 week and 12 
weeks as compared with the myocardium of sham-operated rats. (Figure 11) 
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Figure 11. Autoradiography shows increased 68Ga-NODAGA-exendin-4 accumulation in the 
infarcted area. (A) Autoradiographs and corresponding Masson’s trichrome stainings of 
the left ventricle cross-sections showed focally increased 68Ga-NODAGA-exendin-4 
uptake in the infarcted area (black arrows) at 3 days, 1 week and 12 weeks after 
myocardial infarction (MI), whereas uptake was low in sham-operated rats and after pre-
injection of unlabeled exendin-4 (MI 1 wk block). Red arrows indicate border zone and 
the arrowhead indicates non-specific residual activity in the area of necrotic myocyte 
debris. (Scale bar = 1 mm) (B) Quantification of 68Ga- NODAGA-exendin-4 uptake, 
expressed as photo-stimulated luminescence per square millimeter (PSL/mm2) in the 
infarcted area, border zone, remote myocardium, and myocardium of sham-operated 
rats. (n = 6-9/group; mean ± SD; Student’s t-test for unpaired and paired [MI vs. remote] 
data) (Adopted from the original publication II with a permission DOI: 10.1007/s12350-
018-01547-1.) 

In Study III, autoradiography demonstrated increased accumulation of 68Ga-
NODAGA-exendin-4 into the macrophage-rich atherosclerotic lesions in both non-
diabetic and diabetic hypercholesterolemic mice. Tracer uptake was similar in the 
normal vessel wall between non-diabetic, diabetic, and control mice. Quantitative 
analysis showed that 68Ga-NODAGA-exendin-4 uptake was higher in 
atherosclerotic lesions than in normal vessel walls (lesion-to-wall ratio) in both non-
diabetic (1.6 ± 0.10, p<0.0001) and diabetic (1.6 ± 0.078, p<0.0001) mice. The 
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lesion-to-wall ratio was reduced after the pre-injection of unlabeled exendin-4 
peptide (block 1.4 ± 0.10, p = 0.0018 vs. non-diabetic and p = 0.0025 vs. diabetic 
mice). Since the diabetic strain was utilized in the study, the pancreatic uptake of 
68Ga-NODAGA-exendin-4 was also evaluated. There was focally increased tracer 
uptake in the islets of Langerhans in all groups. The islet-to-exocrine pancreas ratio 
was similar between non-diabetic and diabetic mice (9.0 ± 3.3 vs. 7.8 ± 2.5, p=0.56) 
and as compared with control mice (11 ± 1.7, p = 0.42 vs. non-diabetic and p = 0.14 
vs. diabetic mice). 

5.2.4 Histological correlations of 68Ga-NODAGA-exendin-4 
uptake 

In Study II, the association of 68Ga-NODAGA-exendin-4 uptake with histological 
findings was evaluated. The results were pooled for the time-points of 3 days, 1 week 
and 12 weeks. The degree of CD68 staining in the infarcted area correlated with the 
corresponding 68Ga-NODAGA-exendin-4 SUVmean (r = 0.56, p = 0.018) and Ki (r = 
0.74, p < 0.01) values. In autoradiography, there was a good correlation between 
68Ga-NODAGA-exendin-4 uptake and CD68-positive macrophages in the infarcted 
area (r = 0.71, p < 0.001). The correlation between 68Ga-NODAGA-exendin-4 
uptake and the degree of α-SMA staining was negative in the infarcted area (r = – 
0.49, p = 0.021), whereas the tracer uptake correlated with α-SMA-positivity in the 
remote myocardium from 1 week to 12 weeks (r = 0.52, p = 0.040, pooled 1 week 
and 12 weeks). No correlation between tracer uptake and fibrosis was found. 
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6 Discussion 

6.1 Phosphorylcholine immunotherapy in 
atherosclerosis 

A crucial step in the initiation and progression of atherosclerosis is the retention and 
oxidation of LDL in the subendothelial space of arteries. OxLDL as well as Lp(a) 
display several oxidation-specific epitopes on their surface, including OxPL-PC. 
Phosphorylcholine (PC) is a pro-inflammatory epitope on OxPLs that mediates pro-
atherogenic effects, such as endothelial dysfunction, the accumulation of 
inflammatory cells into the intima, and uptake of OxLDL by macrophages. Natural 
IgM antibodies of the innate immune system have capacity to recognize OxPL-PC 
and neutralize the pro-inflammatory effects. However, low plasma levels of natural 
IgM antibodies against PC are associated with an increased risk for cardiovascular 
events. Thus, immunotherapies targeting OxPL-PC may be beneficial in attenuating 
atherosclerosis. (Binder et al., 2016) 

In Study I, treatment with an exogenous, therapeutic monoclonal IgG1 antibody 
targeting PC epitopes on OxPLs affected NO production in ECs, preserved coronary 
vascular function, and attenuated atherosclerotic inflammation as measured by the 
uptake of 18F-FDG in atherosclerotic mice. 

6.1.1 Vascular function 
Endothelial dysfunction precedes the formation of an atherosclerotic lesion and 
thereby represents the earliest detectable marker of atherosclerosis. It is also an 
important contributor to CMD. Treatment of endothelial dysfunction is mainly based 
on the improvement of known risk factors for ASCVD and symptoms, rather than 
selective therapies targeting endothelial-based mechanisms. (Gimbrone & García-
Cardeña, 2016) 

Previous ex vivo studies suggest that OxPLs contribute to endothelial 
dysfunction by inhibiting NO-mediated vasodilatation (Kugiyama et al., 1990; 
Rikitake et al., 2000; Yan et al., 2017). Furthermore, the levels of the PC epitopes in 
OxLDL particles have been shown to be associated with the severity of endothelial 
dysfunction in CCS patients after lipid lowering therapy (Penny et al., 2001). In 
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Discussion 

young individuals, plasma levels of autoantibodies against OxLDL have been found 
to inversely correlate with the coronary vasodilatory response evaluated by PET-
derived CFR (Raitakari et al., 1997). The present study provided the first evidence 
that the blockade of OxPL-PC with a therapeutic antibody preserved CFR in vivo in 
response to adenosine in hypercholesterolemic LDLR-/-ApoB100/100 mice, indicating 
that it prevented the progression of coronary vascular dysfunction. In LDLR-/-

ApoB100/100 mice that develop obstructive CAD later in life, impaired CFR may 
reflect the early stages of atherosclerosis (Saraste et al., 2008). The adenosine-
induced CFR mainly reflects the vascular SMC relaxation, i.e., an endothelium-
independent effect, but it is also indirectly linked to endothelium-mediated 
vasodilatory function (Mathew et al., 2019). Hence, the endothelial mechanisms 
underlying the improved vascular function were further studied in Lp(a)-stimulated 
HAECs in the presence of human PC-mAb. Lp(a) was chosen instead of OxLDL, 
since it is the main carrier of OxPL-PC in the human plasma. The cell experiments 
revealed that PC-mAb has a capacity to preserve the endothelial NO production as 
compared with a nonspecific IgG.  

Alternatively, the improved vasodilatory response may be a result of an anti-
inflammatory effect of the antibody. In ECs, OxPL-PC has been found to induce the 
gene expression of pro-inflammatory cytokines and adhesion molecules, and 
enhance monocyte adhesion to ECs via the TLR4/IL-8 pathway, which can be 
blocked with the E06 antibody (Leitinger at al., 1999; Walton et al., 2003; Chang et 
al., 2004). In Lp(a)-stimulated HAECs, the gene-expression of IL-8, VCAM-1 and 
ICAM-1 tended to be lower in the presence of PC-mAb than nonspecific IgG, 
although the difference was not statistically significant. In line with the preserved 
CFR and in vitro findings, immunofluorescence stainings demonstrated PC-positive 
staining in the aortic root atherosclerotic lesions, co-localizing with ECs and 
macrophages. 

6.1.2 Atherosclerotic inflammation 
The vascular 18F-FDG signal provides an independent predictor of future 
cardiovascular events and can be used as a surrogate marker of arterial wall 
inflammation indicating the efficacy of therapy. Several studies have shown that 18F-
FDG uptake in atherosclerotic lesions correlates with the quantity of macrophages 
with high glycolytic activity. (Hyafil & Vigne, 2019) Indeed, increased glycolysis 
has been recognized as an important marker of high-risk plaque phenotype (Tomas 
et al., 2018). Furthermore, OxLDL (Lee et al., 2016) and hypoxia (Tawakol et al., 
2015) may stimulate macrophage 18F-FDG uptake, and 18F-FDG uptake is 
particularly high in the early phase of foam cell formation (Ogawa et al., 2012). 
Recently, increased arterial 18F-FDG uptake was found in subjects with elevated 
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Lp(a) (van der Valk et al., 2016b). Ex vivo experiments demonstrated that the arterial 
inflammation was due to the OxPL-PC bound to Lp(a) (van der Valk et al., 2016b) 
that activates the endothelium by enhancing glycolysis, thereby facilitating 
inflammation and monocyte migration to the artery wall (Schnitzler et al., 2020). 
The E06 antibody prevented the pro-inflammatory effects of Lp(a). 

The present study extended the previous findings by demonstrating that the 
therapeutic X19-mu antibody against OxPL-PC reduced 18F-FDG uptake in 
atherosclerotic lesions with different macrophage densities in LDLR-/-ApoB100/100 

mice. The 13% reduction in 18F-FDG uptake as compared with vehicle-treated mice 
is in line with the degree of reduction in arterial 18F-FDG uptake observed in patients 
treated with atorvastatin (5% to 15%) (Dweck et al., 2016; van der Valk et al., 
2016a). To date, one therapeutic antibody against OxPLs has been studied in a 
clinical trial, in which the human recombinant IgG1 antibody against an MDA 
epitope on ApoB100-containing particles did not reduce arterial 18F-FDG uptake in 
patients with stable inflammatory vascular lesions (Lehrer-Graiwer et al., 2015). 
This discrepancy may be explained by differences between the PC (phospholipid) 
and MDA (protein) epitopes, with the former being specifically associated with 
OxPLs, which are more prevalent in advanced, inflamed lesions (van Dijk et al., 
2012). 

Despite the attenuation of 18F-FDG uptake, no reduction in the overall lesion 
macrophage quantity or apoptotic cells, the proportions of M1 and M2 macrophages, 
the expression of MCP-1 or VCAM-1, the lesion collagen content, or the 
atherosclerosis burden was found. Based on a previous 18F-FDG validation study in 
LDLR-/-ApoB100/100 mice (Silvola et al., 2011), mice with established atherosclerosis 
were studied, and therefore, it was unlikely for any major plaque regression or 
changes in plaque cellular composition to occur during a short-term treatment. A 
different study design with, e.g., a longer follow-up time and younger mice with 
rapidly growing lesions, as used in previous studies (Caligiuri et al., 2007; Binder et 
al., 2003; Tsimikas et al., 2011; Que et al. 2018) would be needed for the evaluation 
of the effects of X19-mu antibody on the natural progression of atherosclerosis. It 
has been suggested that a metabolic marker such as 18F-FDG uptake is sensitive to 
changes caused by short-term interventions, regardless of changes in plaque burden 
(Dweck et al., 2016). Despite the unchanged amount of macrophages, the IL-1β 
content in the lesions was significantly reduced after X19-mu treatment. This is in 
line with a previous study that showed reduced IL-1β expression in macrophages 
isolated from LDLR–/– mice expressing a single-chain variable fragment of the E06 
antibody (Que et al., 2018). Furthermore, the lesion ICAM-1 content tended to be 
lower after X19-mu treatment, which has also recently been implicated in Lp(a)-
stimulated HAECs in the presence of E06 (Schnitzler et al., 2020). 
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Discussion 

The results of the present study suggest that X19-mu immunotherapy may 
mitigate specific pro-inflammatory responses in inflammatory cells and possibly 
reduce metabolic activity in atherosclerotic lesions. 

6.2 Imaging of GLP-1R expression with 
68Ga-NODAGA-exendin-4 in ASCVD 

Treatments with GLP-1R agonists reduce cardiovascular events in T2DM patients, 
and protect from ischemic myocardial injury and progression of atherosclerosis as 
shown in both preclinical and clinical studies. The beneficial cardiovascular effects 
are potentially mediated through the attenuation of inflammatory responses, thereby 
making GLP-1R an attractive target also for cardiovascular imaging. Nevertheless, 
it remains uncertain whether the protective effects are a direct result of GLP-1R 
activation in the heart and vasculature. (Nauck et al., 2017) 

In Study II, 68Ga-NODAGA-exendin-4 PET imaging detected an increase in the 
myocardial GLP-1R expression after MI in rats, correlating with the presence of 
CD68-positive macrophages during the MI healing phase. The Study III showed 
elevated 68Ga-NODAGA-exendin-4 uptake in macrophage-rich atherosclerotic 
lesions in both non-diabetic and diabetic hypercholesterolemic mice. 

6.2.1 Myocardial infarction 
Previous studies suggest that GLP-1R agonists attenuate myocardial inflammation 
and fibrosis after ischemic injury, resulting in reduced MI size and improved cardiac 
function (DeNicola et al., 2014; Robinson et al., 2015b; Liu et al., 2010; Wohlfart et 
al, 2013; Timmers et al., 2009; Woo et al., 2013). However, the beneficial effects of 
GLP-1R agonists on LV remodeling and HF outcome have been contradictory 
among the previous preclinical (DeNicola et al., 2014; Robinson et al., 2015b) and 
clinical studies (Jorsal et al., 2017; Margulies et al., 2016). A recent study 
demonstrated that, although, GLP-1R messenger RNA transcripts were detected in 
ventricular tissue, GLP-1R protein was not expressed in ventricular myocytes, 
cardiac fibroblasts, coronary artery ECs or vascular SMCs of human heart specimens 
(Baggio et al., 2018). 

In the context of myocardial injury, one study has shown up-regulation of GLP-
1R expression in the myocardium during the first days (8 hours to 3 days) after I/R 
injury in rats by using 18F-FBEM-Cys40-exendin-4 PET imaging (Gao et al., 2012). 
In line with that, the present study demonstrated a peak in the 68Ga-NODAGA-
exendin-4 signal 3 days after the permanent coronary artery ligation in rats, and 
extended the previous findings by showing that the 68Ga-NODAGA-exendin-4 
uptake was detectable by PET/CT in the infarcted region 1 week after MI. At the 
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same time-point, tissue autoradiography also showed a 9-fold higher uptake in the 
infarcted region than in the myocardium of sham-operated rats. Furthermore, the 
autoradiography analysis demonstrated elevated 68Ga-NODAGA-exendin-4 
accumulation in the infarct scar and in the remote, non-infarcted myocardium until 
12 weeks after MI. 

Previous in vitro studies with related NODAGA-exendin-4 radiotracers have 
suggested that 20-35% of the tracer is internalized into the cells (Jodal et al., 2014), 
which indicates irreversible tracer uptake. Therefore, a graphical Patlak model was 
applied to the in vivo 68Ga-NODAGA-exendin-4 data. The kinetic modeling revealed 
that 68Ga-NODAGA-exendin-4 uptake was higher in the infarcted region than in the 
remote myocardium at 3 days, 1 week, and 12 weeks after MI, thus supporting 
irreversible 68Ga-NODAGA-exendin-4 uptake in the infarcted area. The observed 
irreversible compartment can be due to irreversible receptor binding and/or 
internalization, given that the Patlak analysis calculates the net influx rate of 
irreversible tracer uptake (Patlak et al., 1983). Importantly, pre-injection of 
unlabeled exendin-4 peptide significantly reduced tracer uptake in the infarcted area 
indicating specific receptor-mediated uptake. 

The cellular substrate of 68Ga-NODAGA-exendin-4 uptake in the infarcted and 
remote areas of the myocardium was investigated by coupling the tracer uptake with 
the histological markers of myocardial repair. Activation of GLP-1R has been shown 
to induce differentiation of human macrophages to the reparative M2 phenotype with 
elevated IL-10 secretion (Shiraishi et al., 2012), increase the amount of M2 
macrophages after MI (Gross et al., 2016), and inhibit myocardial macrophage 
infiltration after MI (Robinson et al., 2015b, Tate et al., 2016) Expression of GLP-
1R has been detected in macrophages in atherosclerotic lesions and in isolated mouse 
and human macrophages (Arakawa et al., 2010; Bruen et al., 2017; Nagashima et al., 
2011), but there are also contradictory findings (Panjwani et al., 2013). The major 
problem is that the detection of immunoreactive GLP-1R is challenging due to the 
suboptimal sensitivity and specificity of the available antibodies (Pyke & Knudsen, 
2013). In a previous imaging study, no co-localization of GLP-1R with CD11b 
neutrophils was observed after MI (Gao et al., 2012). However, the present study 
showed a positive correlation between the amount of CD68-positive macrophages 
and 68Ga-NODAGA-exendin-4 uptake in the infarcted region both by PET in vivo 
and autoradiography ex vivo. Furthermore, immunofluorescence stainings 
demonstrated co-localization of GLP-1R with CD68-positive macrophages in the 
infarcted area. 

The 68Ga-NODAGA-exendin-4 uptake was moderately increased also in the 
remote myocardium 1 week and 12 weeks after MI, correlating with the presence of 
α-SMA-positive myofibroblasts. In contrast, there was a negative correlation 
between 68Ga-NODAGA-exendin-4 uptake and α-SMA-positive staining in the 
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Discussion 

infarcted area. No co-localization between GLP-1R and α-SMA-positive 
myofibroblasts was detected in the infarct scar or remote areas. The low content of 
macrophages in the remote myocardium did not allow correlation analysis. However, 
this does not mean that the number of macrophages is not increased in the remote 
region after MI, since conventional histology is less sensitive to very small changes. 
Thus, the substrate of 68Ga-NODAGA-exendin-4 uptake in the remote myocardium 
remained unexplained. It would require an in vitro cell experiment, where 
macrophages and/or myofibroblasts are incubated with 68Ga-NODAGA-exendin-4. 
However, previous studies suggest that GLP-1 may attenuate ECM remodeling in 
the absence of direct actions on cardiac fibroblasts via macrophage-dependent 
mechanisms (Robinson et al., 2015b, Tate et al., 2016), angiotensin production 
(Zhang et al., 2015), or decreasing β1-adrenoceptor expression (Sassoon et al., 
2017). 

The present study indicates that the up-regulation of myocardial GLP-1R 
expression is potentially associated with the activation of repair mechanisms after 
ischemic injury, which may be evaluated using 68Ga-NODAGA-exendin-4 PET 
imaging. 

6.2.2 Atherosclerosis 
The inflammatory hypothesis was further investigated in Study III in atherosclerotic 
mouse models. Previous small-scale clinical trials and preclinical studies propose 
that GLP-1R activation reduces systemic inflammation (Hogan et al., 2014; 
Rakipovski et al., 2018), attenuates atherosclerotic lesion development by modifying 
plaque composition (Rizzo et al., 2014; Balestrieri et al. 2015; Bruen et al., 2017; 
Nagashima et al., 2011), and inhibits macrophage infiltration into the vessel wall 
(Arakawa et al., 2010; Vinue et al., 2017). In ApoE-/- mice, lesional macrophages 
have been shown to express GLP-1R (Arakawa et al., 2010) and GLP-1R agonists 
to induce polarization of macrophages toward M2 phenotype (Bruen et al., 2017, 
2019; Vinue et al., 2017). The present study represents the first vascular imaging 
study utilizing an exendin-4 radiotracer for the detection and imaging of GLP-1R 
expression in atherosclerotic lesions. 

The present study demonstrated increased 68Ga-NODAGA-exendin-4 uptake in 
macrophage-rich atherosclerotic lesions as compared with corresponding lesion-free 
vessel wall in both non-diabetic (LDLR-/-ApoB100/100) and diabetic (IGF-II/LDLR-/-

ApoB100/100) hypercholesterolemic mice, as assessed by the autoradiography 
analysis. The uptake in atherosclerotic lesions was significantly reduced after pre-
injection of a blocking unlabeled exendin-4 peptide, indicating specific GLP-1R 
binding of the tracer. Furthermore, PET/CT imaging visualized 68Ga-NODAGA-
exendin-4 accumulation in the atherosclerotic aorta in vivo. The average TBR was 
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significantly higher in the atherosclerotic mice than in the control mice, although it 
was relatively low overall in both groups. As a result of the low in vivo uptake, no 
kinetic modeling was conducted in Study III. The present study extended the 
previous findings by demonstrating that the immunofluorescence stainings showed 
co-localization of GLP-1R with both M1 (iNOS) and M2 (CD206) macrophages in 
the aortic root atherosclerotic lesions. The co-localization was particularly prominent 
for M2 macrophages. In line with that, a recent study has suggested that a GLP-1R 
agonist treatment is capable of inducing CD206 gene expression in human 
macrophages (Bruen et al., 2019). 

Previous clinical and preclinical studies have been conducted mainly in the 
presence of T2DM in subjects at increased risk of cardiovascular events (Heuvelman 
et al., 2020). The present study sought to investigate whether T2DM has an 
incremental effect on vascular 68Ga-NODAGA-exendin-4 uptake in 
hypercholesterolemic mouse models. Previous studies have shown that IGF-
II/LDLR-/-ApoB100/100 mice represent a more pro-inflammatory phenotype, including 
more complex lesions with increased calcification and higher IL-6 expression 
(Heinonen et al., 2007; Hellberg et al., 2016). Despite the similarity between the 
strains in terms of the lipid profile and number of macrophages, the IGF-II/LDLR-/-

ApoB100/100 mice demonstrated hyperglycemia and impaired glucose tolerance when 
compared with the LDLR-/-ApoB100/100 counterparts. The pancreatic uptake of 68Ga-
NODAGA-exendin-4 (islet-to-exocrine pancreas ratio) tended to be lower in 
diabetic than non-diabetic hypercholesterolemic mice, although the difference was 
not significant. This may be due to the reduced β-cell mass and impaired β-cell 
function that occur in T2DM (Velikyan & Eriksson, 2020). However, the 68Ga-
NODAGA-exendin-4 uptake was similar in atherosclerotic lesions in both strains 
irrespective of T2DM. The observation may be important, since there are studies 
currently underway that aim to investigate whether other patients with 
cardiovascular disease, apart from subjects with T2DM and high cardiovascular risk, 
display a similar cardiovascular benefit of GLP-1R agonists (Heuvelman et al., 
2020). 

The present study provided evidence that the specific GLP-1R-targeting 
radioligand, 68Ga-NODAGA-exendin-4, enables the detection and imaging of GLP-
1R expression in atherosclerotic lesions associated with macrophages. On top of 
atherosclerosis, T2DM did not have any incremental effect on vascular 68Ga-
NODAGA-exendin-4 uptake. 

6.3 Limitations 
General limitations of the present research are related to animal models and 
methodology. Genetically modified mouse models have provided important insights 
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into the mechanisms of atherosclerosis, and the majority of contemporary studies are 
performed in mice. In the present study, the LDLR-/-ApoB100/100 mouse model was 
chosen instead of the widely used ApoE-/- or LDLR-/- mouse models, since cholesterol 
is mostly transported by LDL particles in LDLR-/-ApoB100/100 mice and their lipid 
profile closely resembles human FH (Veniant et al., 1998, Powell-Braxton et al., 
1998). It was a prerequisite for studying the effects of PC immunotherapy. Although 
the pathobiology and development of atherosclerotic lesions is similar to that in 
humans, the primary sites of lesions in mice are the aortic root, aortic arch, and 
carotid arteries, not the coronary arteries. Moreover, lesion ruptures occur rarely in 
mice. However, the mice, including LDLR-/-ApoB100/100 model, do not have Lp(a), 
wherefore the protective effects of PC immunotherapy in mice were rather related to 
the inhibition of OxLDL. (von Scheidt et al., 2017) The IGF-II/LDLR-/-ApoB100/100 

mouse model is a relevant model of human diseases, since T2DM is associated with 
increased risk of ASCVD. The IGF-II/LDLR-/-ApoB100/100 mice represent a more pro-
inflammatory phenotype (Heinonen et al., 2007), but the model has not been widely 
used and thoroughly characterized yet. 

Induction of MI by a permanent ligation of the LCA is a commonly used small 
animal model of LV remodeling and HF following MI, which was initially 
established in 1979 in rats (Pfeffer et al., 1979). The model has been utilized in 
several studies for studying the pathobiology of MI and development of new 
therapies and imaging techniques. In contrast to humans, the rat survives from an MI 
size >50% and seldom displays human-like HF symptoms even during a follow-up 
of 12 weeks, as in the present study. Furthermore, the LCA occlusion is typically 
induced in young rodents, which is contradictory to common patient population seen 
in the clinics. The I/R model would represent better the human phenotype, since it 
mimics the clinical situation where revascularization is performed after an acute MI. 
However, the I/R model exhibits a lower degree of tissue damage, and Study II aimed 
to investigate the chronic myocardial healing process in addition to the acute 
inflammatory response. (Riehle & Bauersachs 2019) 

The obvious limitation of small animal cardiac PET imaging is the small size of 
the heart and aorta, coupled with the constant movement of the heart. The resolution 
of most small animal PET scanners is 1.5 mm, while the largest murine plaques have 
a diameter of ~1 mm. It was not possible to perform the ECG-gating in the present 
studies, but the co-localization of the PET signal to the vasculature and heart was 
facilitated with a contrast-enhanced CT. However, the partial volume effects (the 
target is smaller than the voxel size) and spillover from the blood or adjacent tissues 
may have impaired the quantification, resulting in an under- or overestimate of the 
measured radioactivity. For example, the infarct-to-remote myocardium ratios of 
68Ga-NODAGA-exendin uptake were lower in vivo than those observed in 
autoradiography analyses. Due to these challenges, the demonstration of specific 
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binding by means of the co-administration of a blocking compound, as performed in 
the present study, is currently requisite for a tracer characterization. Kinetic 
modeling, if applicable, would also provide more reliable estimates of tracer uptake 
kinetics than the SUV values. In Study I, 18F-FDG uptake in the atherosclerotic 
lesions was not measured in vivo due to partial volume effects, but also because the 
high radiation exposure related to repeated high-resolution angiography might have 
influenced the health of mice. However, the high-resolution (25 µm) 
autoradiography technique allows the precise localization and characterization of the 
tracer uptake, coupled with different histological markers, thus providing useful 
information for possible clinical translation. Nevertheless, ex vivo autoradiography 
can underestimate the signal in very thin structures, including vessel wall, since 
radiation originating from 68Ga-labeled tracers, in particular, scatters from its origin 
to the surrounds. (Meester et al., 2019) 

Immunostaining for cell-specific antigens is the primary method in imaging 
studies for the purpose of assessing the cellular compositions of atherosclerotic 
lesions or an infarcted heart. Reliable quantification requires specific and 
validated antibodies, appropriate sample size (number of animals per group and 
sections analyzed per animal), sections from the same location (e.g., at the level 
of aortic sinus) cut with a similar thickness, ROIs that are defined in a similar pre-
specified manner, and normalization of the measurements (e.g., percentage of 
total lesion/infarcted area). The antibodies used in the studies for this thesis were 
selected on the basis of literature and a specific research question. The selection 
of M1 and M2 macrophage markers is challenging due to the complex nature of 
current macrophage classification. Thus, the most commonly recognized markers, 
including CCR2/MCP-1, IL-1β, and CD206, were chosen. The conventional 
immunohistochemical protocols typically produce some background staining that 
impairs the quantification, and therefore, immunofluorescence stainings were 
primarily preferred. Moreover, co-stainings can be easily done by 
immunofluorescence, which provides more reliable and specific information on 
the target antigens. However, the quantification of immunostainings is not a 
sensitive method for the detection of very small differences, wherefore it is 
usually coupled with the mRNA measurements or flow cytometry analyses of 
different cell populations. These measurements would, however, have required 
additional study groups, while the main interest in this thesis was to compare the 
radioactive signal with a biological source, which, after autoradiography, can be 
done by analyzing corresponding tissue immunostainings. (Daugherty et al., 
2017) 

There are also some specific limitations regarding the present study. Aortic root 
is the most common and validated region for atherosclerosis quantification, but it is 
also the site of the most advanced lesions (Daugherty et al., 2017). This fact may 
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explain why differences in the lesion cellular composition, such as the number of 
macrophages or change in their phenotype, were not observed after PC 
immunotherapy. Importantly, 18F-FDG uptake was measured throughout the thoracic 
aorta in different regions and multiple lesions. The Doppler ultrasound is a validated 
method for measuring CFR in mice (Gan et al., 2004; Saraste et al., 2008), although 
a highly operator-dependent technique. Because of the high variation in CFR values 
observed in mice in general (from 1.2 to >2.2) (Saraste et al., 2008; Wikström et al., 
2008) and in individual mice in the present study, larger studies are needed to 
confirm the magnitude of the treatment effect on coronary vascular function. Saline 
was used as a vehicle treatment instead of an isotype IgG1 control, since the 
production of a corresponding mouse-human chimeric isotype IgG1 not binding to 
PC is challenging. The role of natural IgG antibodies in atherosclerosis is still a 
matter of debate, and thus, the risk of interference of a non-specific IgG with the 
naturally occurring antibody responses was avoided by using saline as a control 
(Centa et al., 2019). 

A question that remained open in Studies II and III is whether the increased 
uptake of 68Ga-NODAGA-exendin-4 after MI or in atherosclerotic lesions indicates 
pro-inflammatory or protective mechanisms. Recent studies have shown that GLP-1 
secretion is increased in response to CAD (Piotrowski et al., 2013) and STEMI 
(Diebold et al., 2018). Moreover, elevated levels of GLP-1 are shown to predict 
cardiovascular events and death in patients with acute MI similarly to hsCRP or 
natriuretic peptides (Kahles et al., 2019). It has been hypothesized that increased 
plasma levels of GLP-1 might be in line with natriuretic peptides, which are up-
regulated following inflammatory stimuli and predict adverse clinical outcomes in 
patients with MI, but still remain organoprotective as endogenous counter-regulatory 
factors (Kahles et al., 2019). Thus, it needs to be studied prospectively whether the 
observed up-regulation of the myocardial GLP-1R expression soon after MI is 
related to clinical outcome, i.e., whether 68Ga-NODAGA-exendin-4 PET can predict 
cardiac function and LV remodeling. Furthermore, it would be of high interest to 
modify the 68Ga-NODAGA-exendin-4 signal with a GLP-1R agonist treatment or 
anti-inflammatory therapy and measure the GLP-1R expression levels after 
treatment. In comparison to MI, the 68Ga-NODAGA-exendin-4 uptake was quite low 
and diffuse in atherosclerotic lesions, which may indicate a relatively low receptor 
density that impairs the in vivo imaging. However, the background uptake in the 
myocardium and lungs was low, which is advantageous for the visualization of 68Ga-
NODAGA-exendin-4 signal adjacent to these organs. Thus, 68Ga-NODAGA-
exendin-4 may have implications for studies of pharmacological modification of 
GLP-1R signaling in atherosclerosis. 
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6.4 Strengths and future directions 
The ultimate strength of this thesis is the possibility for clinical translation in future 
studies. The imaging approaches used, PET and ultrasound, allow prompt 
performance of the same experiments in mice, larger animals, and humans, thus 
facilitating direct comparison and unification of basic and clinical research. The true 
value of novel therapies and imaging biomarkers in humans cannot be accomplished 
without the development of multi-disciplinary strategies for translation. The Study I 
was designed on the basis of the non-invasive imaging techniques, CFR and 18F-
FDG PET, which may be used as possible surrogate markers for the efficacy of PC 
immunotherapy also in clinical studies. In addition to the mouse model, the effects 
of human PC antibody were studied in vitro in response to Lp(a) isolated from 
different subjects, thereby mimicking the clinical situation. The starting point for 
Studies II and III was different, since GLP-1R agonist treatments have already 
demonstrated cardiovascular benefits in clinical studies. However, the role of GLP-
1R signaling in the cardiovascular system has proven challenging to investigate. PET 
imaging is not only used for diagnostic purposes, but also for the assessment of the 
pathobiology underlying the disease. Thus, the validated GLP-1R-targeting 
radioligand, 68Ga-NODAGA-exendin-4, may provide an advantageous tool for 
studying cardiac GLP-1R signaling in humans in future studies. 

6.4.1 Promises and challenges of targeting cardiovascular 
inflammation 

Virchow and von Rokitansky stated already in the mid-1800s that atherosclerosis is 
a chronic inflammatory disease induced by cholesterol, but it took time to prove that 
an anti-inflammatory therapy has capacity to reduce cardiovascular events and 
mortality in ASCVD patients (Ridker et al., 2017). Although the guideline-
recommended LDL-C levels can be achieved with contemporary therapies, the 
residual risk of ASCVD events still persists in some but not all individuals. In 
addition to inflammation, the residual risk includes such components as residual 
cholesterol, Lp(a), triglyceride, thrombosis, and diabetes risk, without forgetting the 
CMD. Recent randomized clinical trials have provided evidence that, on top of statin 
therapy, it is worthwhile to target these risks with specific treatments, such as PCSK9 
inhibitors and GLP-1R agonists. It is obvious that residual risks overlap and are 
linked; for example, PC immunotherapy may inhibit atherogenicity of Lp(a) and 
OxLDL, which downstream improves endothelial function and reduces vascular 
inflammation. Although the multiple inflammatory pathways and mechanisms in 
ASCVD are well-known, the clinical translation of anti-inflammatory therapies has 
proven challenging. The extent of inflammation varies during atheroprogression, and 
increasingly rapid changes in immune cell infiltration can be seen after MI, coupled 
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with inter-individual variability in inflammatory response. To date, several clinical 
trials targeting the early inflammatory response after MI have been neutral or 
conducted in small patient populations. Although, the treatment with low-dose 
colchicine demonstrated a reduction in ischemic cardiovascular events among 
patients with recent MI, the long-term safety and efficacy of colchicine need to be 
confirmed in larger trials. In the future, the prevention of ASCVD events will likely 
call for individualized therapies, and for that purpose, patient populations with a 
targetable “cardio-inflammatory” phenotype need to be identified. In this regard, 
blood-based biomarkers, such as hsCRP, or novel imaging biomarkers may offer a 
promise to target the right patient, with the right therapy, at the right time. (Adamo 
et al., 2020; Lawler et al., 2020) 

6.4.2 Integration of molecular imaging and therapeutic 
target 

The imaging-guided therapy concept has been successfully employed in the field of 
oncology and neurology, and is now emerging in the cardiovascular context. Imaging 
of myocardial perfusion, function, and viability is currently used for therapeutic 
guidance in ASCVD, but novel therapies would require more sophisticated 
applications. Molecular imaging bears potential for the characterization of individual 
disease biology and the identification of a molecular target, which can be directly 
modified by a specific drug, binding via the identical mechanism. The GLP-1R, 68Ga-
NODAGA-exendin-4, and GLP-1R agonist therapy represent a potential 
combination. Thus, the characteristics desired of a clinically valuable PET tracer 
include high specificity for the target that is “druggable” and potential to predict the 
disease outcome at early stages, guide treatment selection and timing, and monitor 
therapy response. None of the current tracers in nuclear cardiology meet all of these 
“criteria” yet, but, e.g., CXCR4 targeting PET tracer 68Ga-Pentixafor has 
demonstrated these characteristics in mice (Hess et al., 2020) and thus, is a very 
promising candidate. (Hess et al., 2019; Werner et al., 2020) 

Another open question related to inflammation imaging is whether the 
identification of macrophage subpopulations provides additional value. A recent in 
vitro study demonstrated that clinically relevant inflammation tracers can 
specifically recognize different immune cell populations, e.g., the TSPO-targeting 
tracer 18F-GE-180 binds primarily to M1 macrophages, whereas 68Ga-Pentixafor 
binds to a broad range of immune cells (Borchert et al., 2019). Specific targeting of 
M1 and M2 macrophages by means of molecular imaging may have potential to 
identify adverse immune responses, especially after MI, and contribute to the 
development of targeted immunotherapies to achieve optimal myocardial healing or 
stabilize atherosclerotic lesions. It is also recognized that the cardiovascular system 
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does not operate independently in response to damage. The ischemic myocardial 
injury is associated with increased activity in hematopoietic organs, such as spleen 
(Thackeray et al., 2015a), and with neuroinflammation (Thackeray et al., 2018a), 
which further fuel ASCVD and increase the risk of complications. The cross-organ 
communications would be particularly important to investigate in the context of 
GLP-1R signaling, since the receptor is expressed all over the body and the 
cardioprotective effects can be mediated also via indirect effects. The advantage of 
PET imaging is that it allows simultaneous imaging of the heart and other organs. 
Altogether, the emerging knowledge of disease pathobiology, new translational 
technologies, and therapeutic opportunities pave the way for the new era of precision 
cardiology. (Hess et al., 2019; Werner et al., 2020) 
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7 Conclusions 

This thesis investigated the effects of a novel PC immunotherapy on vascular 
function and atherosclerotic inflammation, and evaluated 68Ga-NODAGA-exendin-
4 PET for the assessment of GLP-1R expression after MI and in atherosclerotic 
lesions by utilizing experimental models. The main conclusions were as follows: 

1. Six weeks of treatment with a monoclonal antibody against PC on OxPLs 
preserved coronary artery function, enhanced NO production in ECs, and 
attenuated 18F-FDG uptake in atherosclerotic lesions in 
hypercholesterolemic LDLR-/-ApoB100/100 mice. Non-invasive imaging 
techniques, CFR and 18F-FDG PET, represent translational tools for 
assessing the effects of PC-targeting immunotherapy on vascular function 
and atherosclerosis. 

2. 68Ga-NODAGA-exendin-4 PET/CT showed an increase in myocardial 
GLP-1R expression after MI in rats. The degree of 68Ga-NODAGA-exendin-
4 uptake correlated with the amount of CD68-positive macrophages in the 
infarcted area and α-SMA-positive myofibroblasts in the remote 
myocardium, which may be associated with the activation of repair 
mechanisms after ischemic injury. 

3. 68Ga-NODAGA-exendin-4 detected GLP-1R expression in inflamed 
atherosclerotic lesions in both non-diabetic LDLR-/-ApoB100/100 and diabetic 
IGF-II/LDLR-/-ApoB100/100 mice. The GLP-1R expression in atherosclerotic 
lesions may reflect M2 macrophage responses. 

These findings provide proof-of-concept that a therapeutic antibody targeting PC 
may represent an approach to inhibit the atherogenic impact of OxPLs, and that the 
cardiovascular expression of GLP-1R is associated with inflammatory response and 
repair process. In contrast to MI, atherosclerotic lesions appear to exhibit GLP-1R 
densities that are too low for in vivo imaging. 
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