
Enhancing and integration of security
testing in the development of a

microservices environment

Master of Science in Technology Thesis
University of Turku

Department of Future Technologies
Security of Networked Systems

September 2020
Gabriele Orazi

Supervisors:
Karo Vallittu (Awake.AI)

Examiners:
Petri Sainio (University of Turku)

Seppo Virtanen (University of Turku)

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTUPub

https://core.ac.uk/display/347181108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF TURKU
Department of Future Technologies

Gabriele Orazi: Enhancing and integration of security testing in the develop-
ment of a microservices environment

Master of Science in Technology Thesis, 85 p.
Security of Networked Systems
September 2020

In the last decade, web application development is moving toward the adoption
of Service-Oriented Architecture (SOA). Accordingly to this trend, Software as
a Service (SaaS) and Serverless providers are embracing DevOps with the latest
tools to facilitate the creation, maintenance and scalability of microservices system
configuration.

Even if within this trend, security is still an open point that is too often underesti-
mated. Many companies are still thinking about security as a set of controls that
have to be checked before the software is used in production. In reality, security
needs to be taken into account all along the entire Software Development Lifecycle
(SDL).

In this thesis, state of the art security recommendations for microservice architec-
ture are reviewed, and useful improvements are given. The main target is for secure
to become integrated better into a company workflow, increasing security awareness
and simplifying the integration of security measures throughout the SDL.

With this background, best practices and recommendations are compared with what
companies are currently doing in securing their service-oriented infrastructures.
The assumption that there still is much ground to cover security-wise still standing.
Lastly, a small case study is presented and used as proof of how small and dynamic
startups can be the front runners of high cybersecurity standards. The results of
the analysis show that it is easier to integrate up-to-date security measures in a
small company.

Keywords: microservices, containers, security, testing, software development lifecy-
cle, SaaS, Serverless, Service-Oriented Architecture

Contents

1 Introduction 1

2 Key principles and tools for Agile Fast Development Workflow 3

2.1 Agile security engineering method . 3

2.1.1 The Software Development Lifecycle in Agile 5

2.1.2 The Shift Left paradigm . 6

2.2 Serverless . 8

2.2.1 Advantages . 9

2.2.2 Disadvantages . 10

2.3 Microservices . 10

2.3.1 Containers - Docker . 13

2.3.2 Container orchestration - Kubernetes 16

2.3.3 DIE paradigm . 19

2.3.4 Distroless containers . 19

2.4 Release Management . 20

2.4.1 Deployment environments . 21

2.4.2 Continuous integration & continuous deployment 24

2.4.3 Pipelines . 28

3 Security best practices in software development 31

3.1 Secure Software Development Lifecycle 32

i

3.2 Requirements phase . 33

3.2.1 ISO/IEC 27000-series standard 34

3.3 Design phase . 35

3.3.1 Pre-coding . 36

3.3.2 Threat modeling . 39

3.4 Implementation phase . 46

3.4.1 Coding . 47

3.4.2 HTTP security headers . 48

3.5 Test phase . 52

3.6 Deploy phase . 55

3.7 Retirement . 56

4 Cutting-edge approaches for secure development 58

4.1 Improvements for microservice environments 58

4.1.1 Kubernetes security management 59

4.1.2 Periodic container scans . 60

4.1.3 Hacking testing environment 60

4.2 General proposals of improvement . 61

4.2.1 Periodic vulnerability scans 61

4.2.2 Interactive Application Security Testing 62

4.2.3 Code review exercising . 63

4.2.4 Penetration testing automation 64

4.2.5 Dashboards . 65

4.2.6 Centralized Log Management 66

5 Currently adopted security processes and methods 67

5.1 Requirements phase comparison . 68

5.2 Design phase comparison . 69

5.3 Implementation phase comparison . 70

5.3.1 Linters usage . 70

5.3.2 HTTP Security Headers usage 71

5.4 Test phase comparison . 72

5.5 Deploy phase comparison . 74

6 Implementation and verification of the approach: a case study 75

6.1 Requirements . 76

6.2 Design . 76

6.3 Implementation . 77

6.4 Test . 78

6.5 Deploy . 78

7 Conclusion 80

References 86

1 Introduction

Nowadays, each of us benefits from a variety of services available online by accessing

them through different terminals. By registering for the service it is usually possible

to access the same functionalities, as well as the same data. This has allowed during

the last decade to decrease the need of using the same device in favor of a greater

dependence on the service and its related data. Also the cyber security world has

been affected by the change, shifting more and more the attention towards web

applications and the data flow generated by them. As stated by the 2020 Verizon

Security Report[1], nowadays more than the 90% of breaches have web applications

as hacking vectors, confirming the growing trend if compared to the same report from

previous year[2]. Indeed, this information confirms that many of the applications

that few years ago were installed on a desktop, nowadays can be used from a standard

web browser.

During the decades, the growing demand of software challenged software archi-

tects to came up with designs able to meet requirements and, at the same time,

be resilient enough to support changes. Thus, code bases irremediably experienced

an exponential growth in size, complicating more and more the management of the

product itself. This created the need for a new solution that would allow the com-

plexity of the product to be separated, making it easier to develop and manage.

Microservice architecture was the answer to this need, the one which has been able

to solve many problems that businesses were struggling with. Despite the benefits

CHAPTER 1. INTRODUCTION 2

that this technology brings to organizations today, the implementation of this ar-

chitecture can be more complex. In parallel, the safety of the platforms that take

advantage of this design has also had to adapt to the new introduced challenges.

This study seeks to address the management of safety in the new ecosystem re-

sulting from the combination of the two trends described above. The Web applica-

tion based on microservice architecture is today the most advanced and widespread

solution in software engineering. Ensuring this technology as accurately as possible

is therefore a subject that deserves to be explored in depth and is, moreover, the

aim of this study. Thus, the thesis will try to understand which are the best specific

tools that have been created or adopted specifically for microservice environments.

The market demands for secure platforms and companies should adopt (or aim for

adopting) the most up-to-date recommendations to satisfy such requirement. For

this reason, framing how companies are doing security-wise speaking will be another

objective of this thesis. Nevertheless, an investigation will be conducted into how

the size of the business can influence the cyber security of the web applications that

the companies themselves offer on the market.

The second chapter of the thesis provides a wide understanding over the methods,

tools and techniques that will often be recalled in the paper. In the third one, a

complete and up-to-date overview of the elements that allows companies to increase

security among all the software development process is offered, while in the fourth

chapter some innovative methodologies are proposed as integration of the previously

explained framework. The fifth chapter’s aim is to compare the provided set of

best practices with what is currently implemented and used by average in tech

companies panorama. Lastly, a case study of a small startup and its security vision

is analyzed to understand strengths and weaknesses that derives from its small

structure. Conclusions close the thesis, using the results of the analysis to answer

the open points raised initially and proposing future developments for this work.

2 Key principles and tools for Agile

Fast Development Workflow

In order to describe and study Information Security (InfoSec) and its application

in the microservices environment, it is important to clarify the context and some

main principles that will be useful to take for granted in the development of this

work. Even if the next sections may not be directly connected with InfoSec itself,

the definition of these assumptions are mandatory for the development of this study.

In the next sections security engineering aspects will be taken into account, as

well as some related Software Development Operation (DevOps) best practices and

basics. Main tools used in Microservices environment will be also described.

2.1 Agile security engineering method

The current security engineering found its baseline in the Agile software develop-

ment. Starting from 1990, companies started to shift from a traditional and ineffi-

cient software development to a more sophisticated and comprehensive method. As

examined by researchers Hoda, Salleh and Grundy[3], Agile introduced practicali-

ties and processes to boost the level of coordination within the teams, increasing

productivity and, more importantly, adapting the developed product based on the

stakeholder’s willing. The Agile Alliance, guided by Kent Beck, manage to enclose

such a big and powerful development methodology into few solid principles collected

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 4

in the famous Agile Manifesto[4]. Each of them represents an essential milestone

where all Agile-based approaches need to base their philosophy.

According to the 13th Annual State of Agile Survey[5], in 2018 the 97% of all

the interviewed organizations reported to adopt agile methodology at least in one

team within the company, demonstrating the growth of the trend if compared with

the 84% of the first version of the survey, made in 2007[6].

During the years, the Agile concept has been interpreted in many ways, giving

rise to different specific methods. Despite the proliferation of proposals, few of

them have survived in the past decades. In particular, the Annual State of Agile

Survey[5] states that Scrum-based agile methodologies are still the most widely

adopted with a 72% of the 1319 people interviewed coming from all different kinds

of organizations. Few other methods populate the rest of the ranking, but the most

relevant is Kanban[7]: it is adopted as Scrumban (combination of Kanban and Scrum

with 8%) and Kanban itself (5%).

The co-creator of SCRUM, Jeff Sutherland, explains in his book[8] how such

process can be effective in plenty of different contexts that can easily lie outside

from software development. Also the previous mentioned paper[3] underline the

spreading of the Agile style in disciplines beyond software: project management,

marketing, human resources or sales are just few good examples that sustain the

statement.

Security engineering represents a field in which Agile methods can be applied

with enormous gains, especially if in conjunction with the software development flow.

An interesting study[9] made by K. Rindell, S. Hyrynsalmi, and V. Leppänen took

into account many different agile methodologies in order to analyze how security

perspective has been evolved and adopted within the methods itself. Among the

plethora of processes, the authors pointed out the slowness of the development

of such methods in security-wise perspective. Despite such delay, methodologies

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 5

nowadays include security as important milestone of the process. Perhaps, the

study sadly highlights the detachment of theoretical usage from actual empirical

implementation: all the case studies that have been reviewed by the paper[9] shown

that reality is far from been compliant with security development recommendations.

In 2017, another research[10] has been conducted with the aim of sketching how

security engineering is performed within different kind of Software Development

Lifecycle (SDLC) (more about the topic in the next section 2.1.1). For the purposes

of this paper, the most relevant extracted insight is that the 42% of the 118 analyzed

primary studies concentrate security controls in code phase, relying merely on static

and dynamic analysis on top of the written code. Once again, this proves the grade

of inefficiency regarding the real implementation of security engineering.

In the next sections, a description of the fundamental principles for agile security

engineering are explained. The aim of this chapter is create a solid background for

the following chapters, that will have to refer to the notions explained here.

2.1.1 The Software Development Lifecycle in Agile

As well resumed by Nayan B. Ruparelia in his paper[11], different models can be

adopted as guidance for developing code within a team. New approaches have been

proposed during the years, many others have been rediscussed and improved. The so

called Software Development Lifecycle (SDLC) usually defines different stages of the

development and how to go through them. The first documented SDLC has been

the Waterfall Model [12]: even if it has been widely adopted since its publication,

the model nowadays is almost neglected. The Waterfall method is too rigid and

doesn’t provide the possibility to make changes in the design. Development steps

are followed in a row, completely omitting on-going discussions and adaptations of

the project together with the stakeholders. Regarding Waterfall approach, Ericsson

AB in Sweden was taken as test case in 2009 for studying the methodology. The

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 6

resulting paper[13] evidenced all weaknesses and reasons why such method cannot

be considered as effective in software development anymore.

Eventually, many other methods have been released after this one: B-model, In-

cremental model and V-model are some good examples[11]. The central idea intro-

duced with those is the concept of cycling through stages, leveraging the importance

of dynamic definition of the goals in the short term. This approach has been the key

that enables organizations to solve problems of the previously adopted Waterfall-like

methods. Development is split in many sprints that usually last no more than 3-4

weeks. Even if they may slightly vary, all these cycle-based approaches follow five

basic phases within each sprint:

• Requirements: user stories are generated and translated into features to be

implemented;

• Design/Plan: upcoming features to be developed are selected and discussed;

goals are split in small tasks and prioritized;

• Develop/Code: tasks are accomplished;

• Test: fresh new features are stressed in order to detect possible problem-

s/flaws;

• Deploy: developed features are tested and integrated into the product.

In fact, all the Agile techniques mentioned in section 2.1 are compliant with this

philosophy.

2.1.2 The Shift Left paradigm

Differences between teams always leads to interesting insights if seen from the cor-

rect perspective: in the Accelerate annual State of DevOps 2019 report[14], many

different teams has been taken into account thanks to more than 1000 respondents.

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 7

The report divides teams into four main groups, from elite performers towards the

low ones. Thus, the comparison between elite and low performers shows that the

best ones have 7 times lower change failure rate. What is really relevant from this

information is the adopted process before a change: elite groups are not necessary

less error prone than the low ones, but have the capability to capture possible point

of failure before than the others, avoiding to silently carry the errors until the de-

ployment. This is the main key ability that stands behind the shift left paradigm:

addressing issues (including security related ones) towards the early stages of the

SDLC (discussed in section 2.1.1).

In support of the above, the Error cost escalation analysis through the project life

cycle, by NASA[15] in 2004. Taking into consideration three different methods of

analysis and comparing them with previous accomplished studies in the subject, the

study clearly demonstrates that the cost escalation has an exponential growing trend.

The representative outcome of the paper can be identified in the multiplicative

factors shown in table 2.1. Software and electronics hardware (system) projects

have been compared, showing that despite the apparent misalignment of results, the

order of magnitude of growth does not change.

Therefore there is no doubt that waiting for validation coming from the test-

ing phase is already too late, generating a greater required effort in solving the

issue. Even if performing security controls sounds like something to be performed

in the late steps of the development, ensuring information security can gain from

the shift left principle as well. Each stage of the lifecycle requires different approach

(as discussed in chapter 3), which needs to go hand in hand with usual software

development process.

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 8

Software Cost Factors Systems Cost Factors

Requirements 1X 1X

Design 5-7X 3-8X

Build 10-26X 7-16X

Test 50-177X 21-78X

Operations 100-1000X 29-1615X

Table 2.1: Comparison of software & systems error cost factors by NASA study[15].

2.2 Serverless

Even if the usage of Serverless configurations is rooted in 1995, the diffusion and

improvement has grown constantly among decades until today. In the first com-

plete publication[16] about the topic, released by University of Berkeley, the authors

managed to craft the first working configuration of a serverless solution combining

different technologies such as RAID, LFS and Zebra.

During the years, system architectures has grown, pushing further the potential

of the technology itself and, at the same time, overcoming bottlenecks of centralized

file system design. Serverless is just the last stage of a process which has started with

old non-virtualized servers, passing through the event of hypervisor [17] for virtual-

ization and docker 1 for containers. The general tendency of shifting to Platform as a

Service (PaaS) concept influx on the success of Serverless adoption, which nowadays

is able to offer scalability, high availability and the easiest management ever reached

until now.

Eventually, the most advanced stage of server configuration has been reached

during the last years with the cooperation of container technology combined with

Serverless architecture, giving rise to the container-based microservice system, dis-

1https://www.docker.com/

https://www.docker.com/

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 9

cussed more in detail in chapter 2.3.

2.2.1 Advantages

The success of the technology relies on few but fundamental points of strength that

allow many "agile" realities (from the smaller start-up to the biggest enterprise) to

enhance the effectiveness of fast pace development discussed in section 2.1.

The most tangible effect for the company that uses the service is the complete

disappearance of low-level server management. The provider of the serverless

solution takes charge in all the responsibility, usually offering an User Interface (UI)

where to customize and setup the required configuration. In addition, monitoring

tools for the service are completely focused on information regarding the service itself

rather than the hardware that actually is running it and its architecture. Access

control alerts, error messages and traffic analysis are good instances of what would

be shown as metrics, taking the place of CPU and memory consumption.

Withstanding service requests is the basis of reliability, therefore the ability

to scale seamlessly and automatically is one of the main reasons of the wide

adoption of serverless solutions. The cost and the difficulty of handling manually

a reasonable level of scalability is already enough to justify the adoption. Service

providers are able to adjust dedicated resources with respect to the load of the

service, relieving engineers of the onerous task of managing resources.

Providers of the service are always able to offer to their customers an high avail-

ability by design: dynamic allocation of resources requires relying on a complex

distributed system of redundant machines that is able to continue operating also in

deteriorated situations.

In business terms, companies who decided to adopt a serverless solution may end

up in saving costs, since the service is supplied with a bill-per-request model. It

is fair to point out that this favourable condition may not always be met as it is

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 10

dependent on the load of requests. Small and medium companies may gain the most

from these agreement, big enterprises may prefer to invest resources to handle their

own infrastructure internally.

2.2.2 Disadvantages

Even if advantages are usually in favour of every possible scenario that can take into

consideration such architecture, some drawbacks can be identified as well.

The vendor lock-in phenomenon is the biggest concern for companies who sign

contracts with service providers. Once the service has been configured it may be

really difficult to migrate into another provider because of technical and businesses

aspects. The shift would require a massive adaption that could be evaluated to be

more expensive than the gains generated by the shift itself. Moreover, each service

provider offers their own small services that are well integrated with one another,

discouraging the adoption of third party services and implicitly pushing the customer

to rely on a single master vendor.

Related to this, customers will necessarily end up in losing control over the

environment and the underlying infrastructure. Exposing the customer to disas-

ters which may happen to the vendor such as exposed vulnerabilities resulting in

security breaches or power outages generated from natural disasters.

2.3 Microservices

A microservice can be defined as a small application that can be tested and deployed

independently, as well as scale to satisfy the demand load. The most important

principle to keep in mind is the single responsibility one, which imposes that

each microservice must provide a simple, defined and atomic service. As stated

by Johannes Thönes in his interview published by IEEE Computer Society[18], mi-

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 11

croservices approach goes against the old-fashion monolithic systems: rather then

include all features of a product into a massive single piece of code, microservices

are aiming for splitting applications into smaller pieces. Each single fragment of

the application is separately maintained but, at the same time, is able to cooperate

together with the other components and, when not needed anymore, it can be easily

shut down. On the same line as Thönes’ words, also the Newman’s book "Building

Microservices"[19] states microservices method allows to make fast changes, which

translate into faster deployments as well. Continuous Integration and Deployment

(CI/CD) (described in section 2.4.2) represents a natural solution to enhance the

potential of microservices, resulting in a more effective software delivery into pro-

duction. In monolithic application, small changes need to be released together with

the whole application. These kind of deployments are risky, therefore they cannot be

performed every now and then. Increasing time in between one release and another

increase the possibilities of incurring in errors. On the other hand, microservices

permit handling possible errors without risking too much, thanks to the isolation

between different services and the simplicity of rolling back to the previous version

if needed.

It is difficult to efficiently scale a monolithic application since it has to be seen as

a single piece that requires a certain amount of resources. Splitting services allows

the usage of less powerful hardware and, even more importantly, to instantiate the

amount of resources on demand. Either organizational alignment can benefit of the

same idea: develop and maintain many small products reflects also in having smaller

and more productive teams.

Even if it can be understood as simple, defining granularity of the services is not

a trivial task: usually each service should stay within 2000 lines of code, but 200

lines could be more than enough. Since this definition may depend on too many

factors, a better definition has been provided by Jon Eaves[19], which uses time

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 12

required to write from scratch the service as a metric, estimating two weeks as a

correct period in which a service should take to be completely reinvented.

Since each service is decoupled one from another, it is possible to maintain a

high level of technology heterogeneity: in other words, tools and languages can

be decided depending on the specific needs of each service, helping in maintain-

ing a lightweight stack and increasing performance. Moreover, this encourages the

adoption of new technologies since those can be tested without big changes in the

overall architecture. In a monolithic system, the substitution of each single compo-

nent would require excessive effort and an high risk task to be performed, therefore

discouraging developers to upgrade the system in favour of newer and better com-

ponents.

The complete picture of microservices is obtained thanks to the creation of an

effective network communication. Each single piece should be autonomous, ex-

posing itself to the other nodes through simple Application Programming Interfaces

(APIs). Citing Newman’s book[19], an effective and simple question to point out in

order to understand if a service is autonomous would be:

"Can you make a change to a service and deploy it by itself without

changing anything else?"

Usually, if the answer is yes a good design has been performed.

As all innovative technologies, microservices introduced challenges together with

improvements discussed since now. Even if it is true that as the service granularity

gets smaller the benefits increase, it is also reasonable that the amount of connected

pieces increase the complexity. Spreading responsibilities into smaller components

increase the difficulty of enforcing security measures against the overall application.

Because of the heterogeneity of the services, an administrator will have to deal

with different security domains, depending on tools and environments in use in each

node. This exposes a greater surface of attack, requiring particular attention in the

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 13

definition of each single exposure point provided by APIs. It is also important to

notice that with such an architecture, introducing the concept of trust is needed:

if one component becomes infected and/or controlled by a malicious party, it can

easily turn into a vector useful for compromising the entire application.

Concluding with another quote from the above-mentioned book[19]:

"As you get better at handling the complexity, you can strive for smaller

and smaller services."

In the next paragraphs, containers and their orchestration will be described.

Those elements can perfectly represent the practical and tangible representation of

the concepts delivered by microservices design.

2.3.1 Containers - Docker

Despite their novelty, containers have been considered from the very beginning as

a powerful solution to solve a lot of technological challenges. Released in March

2013, Docker project is de facto implementation of containers. Thus, from now

on, containers will be considered as Docker images and vice versa. The potential

of Docker has been highlighted already in 2014, when Dirk Merkel wrote about

the topic in the Linux Journal[20]. A lot of limits imposed by the usage of virtual

machines have been pushed far away thanks to this technology: cloud computing

is one of these fields, where the advantages have been promptly emphasized in the

study made by Di Liu and Libin Zhao[21] already in the late 2014.

The official documentation[22] provided by the company itself is accurate and

useful to understand the architectural implementation. Docker provides OS-level

virtualization and is running as a system daemon that acts as an interface between

the instantiated containers and the client that sends commands to the processes. The

aim of a container is to sandbox a process. The container itself is a single process

nested in the host machine kernel. The container itself can be considered as alive

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 14

Figure 2.1: Architectural difference between VMs and containers[21].

as long as the relative process is running. The difference between a container and

a virtual machine (VM) is as simple as effective: each single VM is a virtualization

of a guest Operating System (OS), with its own kernel running; on the other hand,

the strength of containers is the usage of the host machine kernel. The result is a

single process which shares system libraries with the host machine but that at the

same time is enclosed into a single process. Differences in the architecture can be

seen in figure 2.1.

A container image is the binary representation of the container itself and is

nothing more than a composition of different other images, organized in a hierarchi-

cal manner. Each image is a standalone and can be modified, updated and changed.

If one image of the tree has been modified, all the relative descendants of that node

can be rebuilt in order to adopt the latest changes.

Building a container image can be accomplished in two different ways:

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 15

• The Dockerfile is a .json or .yaml file which describes the image itself. The

FROM field defines the parent image where to start and the rest of the file

describes additions made to the parent.

• A docker image can be also build from runtime: it is possible to run the

parent image, make changes and configurations to it and then generate a

replicable image out of that specific execution.

Usually, Docker images are collected into registries. For instance, the Docker

Hub2 is the public one provided by Docker but it is possible to create also private

registries where to store private images. This can be the use case for companies

which don’t want to share their own developed containers. The Docker Host is

considered as the machine in which the daemon and containers are running. Images

can be pulled and pushed from the registry and stored into the docker host cache

registry.

The client manages the life cycle of the containers, interacting with the daemon.

The client can:

• Push and pull images from the cache;

• Create new images;

• Build an image;

• Run an image;

• Configure the infrastructure of the docker host in which containers are oper-

ating, which means network and storage configurations.

Figure 2.2 helps the reader to visualize how the entities described before are related

between each other.

2https://hub.docker.com/

https://hub.docker.com/

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 16

Figure 2.2: Docker host overall architecture[22].

There are no dependencies between the container and the host machine other

than the daemon: everything is packed into the container itself: because of this,

once a valid daemon can be installed in a machine, every container can run on top

of it, independently from the host machine OS. This independence is based on two

principles:

• Process namespaces provide isolation between different processes, limiting

processes that a container can see, therefore limiting also the usage of those;

• cgroups (control groups) aim is to discipline how much a container can use a

specific resource. Metering and limiting resources such as memory, CPU and

network is the aim, providing also access control over devices.

2.3.2 Container orchestration - Kubernetes

Container orchestration is the next step that enables the concept of containers to

enhance their potential. Even if containers can communicate between each other

without being included in a cluster, these are not specifically designed to accomplish

this task. It is important to notice that container clustering solutions can address

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 17

the majority of the security-related problems that have been discovered regarding

possible attacks. In support of this statement, Docker has been analyzed[23] in 2016

in order to find possible conceptual security weaknesses: the authors of the research

stated that container orchestration tools can solve all the discovered threats.

Google started a project written in Go, called Kubernetes (often shorten as K8s),

which than has been donated in open source to Cloud Native Computing Foundation

(CNCF). Similarly to Docker, Kubernetes quickly assumed the role of the standard

tool used for the purpose. Kubernetes technology is almost in all companies and or-

ganizations who decided to use microservices: in 2018, TheNewStack.io3 conducted

an investigation[24] discovering that Kubernetes was adopted in the 69% of orga-

nizations with microservices architecture. Moreover, the following positions in the

ranking were occupied by Kubernetes wrappers such as Amazon ECS or Google

Container Engine. For this reason, as for the containers, this study will refer to

Kubernetes as the container orchestrator and viceversa.

The term "orchestration" stands for the ability to organize and coordinate ef-

ficiently multiple small services provided via container technology. As explained

in the official online documentation[25] and shown in figure 2.3, a cluster contains

basically three actors:

• The Master (usually single, but for complex configurations may also be more

then one) is the element which coordinates the work in between nodes and it

should be free of normal workload and completely dedicated to receive requests,

schedule tasks to assign to nodes and handle shared resources;

• Nodes handle the workload and execute tasks assigned by the master ;

• A Pod is the atomic unit of Kubernetes. It is always contained inside a

node. Pods include container(s) and provide to those a shared sandboxed

3https://thenewstack.io

https://thenewstack.io

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 18

Figure 2.3: Kubernetes architecture[25].

environment in which to operate. Pods do not have a state and they follow

a simple lifecycle where they born, live and then die when they have served

their purpose; they can be easily replicated and included into a ReplicaSet,

which is a collection of different instances of the same pod;

• A service is the element that provide a unique IP/DNS for a group of pods

that are working together. Services and pods are coupled thanks to a simple

and effective labelling system: pods are described with a set of labels (ver-

sion, purpose, environment, ...). A service is defined through a set of labels

as well, which are used to claim the belonging of such pods who match its

categorization;

• A Kubernetes deployment has to be intended as a self-documented declara-

tion of the cluster structure which is intended to be created and maintained

during runtime; it is defined with a manifest file (either .json or .yaml); the

most important element specified into this file is the number of ReplicaSets to

be maintained as active during the execution.

The capabilities of this architecture permits Kubernetes to be considered as one

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 19

of the optimal solutions in terms of scalability.

2.3.3 DIE paradigm

The simplicity of a pod lifecycle is in line with the DIE paradigm. The short lifespan

allows the orchestrator to handle more easily its atomic units, spawning or killing

instances depending on the workload. Furthermore, as soon as the pod reach an

error state or, for some reason, it gets stack, Kubernetes is able to detect the faulty

state and proceed with killing the single unit.

Each pod is coupled to the specific release of the software with which it was

created and there is no way to update or change it. This concept of immutable

software wants to enforce the idea that none of the pods should have a long fixed

life. Whatever is the patch, update or error that has to be handle, the solution

would always be to kill and create a brand new instance with changes up from the

very beginning. Being in line with this idea should push developers and DevOps to

bear in mind that the service should be as lean and clean as possible, with specific

and well circumscribed responsibility.

2.3.4 Distroless containers

By their design, containers should provide a lightweight solution to run code. As

already discussed, each container is based on a base image specified in the FROM

section of the Dockerfile. Although slim Linux distribution (such as Alpine Linux 4

or Debian5) are used as baseline for deploying a service, still a lot of unused and

unnecessary dependencies are introduced. Those dependencies usually are deployed

together with the application that the container is supposed to provide, inevitably

increasing the size of the image and, even more importantly, opening the side to

4https://alpinelinux.org/
5https://hub.docker.com/_/debian

https://alpinelinux.org/
https://hub.docker.com/_/debian

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 20

possible attack vectors.

Google aimed to address such problem introducing a new concept of Distroless

docker images[26]. The pioneering project aims to reduce the content of the final

deployed image to the application itself, the associated resources and the minimum

amount of language-related dependencies needed at runtime. Thus, the eligible

attack surface exposed will be reduced, as well as the size of the image. As a

side-effect, also the overhead needed to scan and patching vulnerabilities related to

unused dependencies will be cut down.

In addition, this compression offers the chance to developers to try to provide

a read-only image whenever possible; getting rid of shell access is also feasible,

reducing again the attack surface. Even without a shell, debugging the image will

be possible through the usage of multi-stage builds [27]: Docker has introduced such

feature in order to help the optimization of images. Before this feature, developers

who were aiming to deploy small images usually had to work with a big container

with all kind of needed dependencies and tools for developing. Once the image was

ready for deployment, a new tiny image was crafted, trying to reduce the content

to a minimum. With the introduction of multi-stage builds, developers are able to

avoid the use of two different images simply using multiple FROM statements in the

image manifest file and giving the possibility to pick one version at build time.

In a big picture such as a Kubernetes cluster, where a lot of pods need to be

instantiated and where connection between them may represent the biggest security

concern, distroless containers represents one of the best and most effective mitiga-

tions against possible attacks.

2.4 Release Management

The integration of brand new features and patches into the final product is a vital

topic that each organization needs to take into account. Despite each company may

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 21

decide to adapt the releasing process with respect to their specific needs, keeping

trace and versioning a product is an essential activity which has be agreed within

the entire team.

Release management follows the entire development of a software build through

its planning, scheduling and controlling phases, until hitting the release. Usually

software is deployed across different environments in order to be tested and then,

consequently, pushed into production. In a context in which Agile methodologies

(discussed in section 2.1) are embraced, techniques for establishing some level of

automation whenever a new feature is ready to be tested has been created.

These will be the topics described in this section, always keeping attention on a

security perspective and its real applicability within the deployment process.

2.4.1 Deployment environments

Whenever a product needs to be delivered and maintained to the customer, an or-

ganization needs to mitigate the risk of producing unexpected disruptions of the

provided service. Developing new features or patching problems is a high risk op-

eration to be directly performed on the customer product. For this reason it is

important to add some layers in between the developer machine, where the features

are tested in the first place, and the machine which actually serves the customer’s

product. Therefore, creating a separation in between a development environment

(DEV) and production one (PROD) is necessary. This separation allows developers

to deliver and observe new features in a not exposed replica of the product and then,

release or roll back the code depending on the outcome of the tests. The usage of

many other intermediate steps in between DEV and PROD can be adopted in order

to increase the pace of released features together and reducing at the same time the

risk of production failure.

Even though the configuration of such an infrastructure may appear to be com-

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 22

plex to configure and maintain, nowadays Serverless solutions (described in 2.2)

integrate such functionalities into their products. Thanks to this level of simplifi-

cation, it is quite easy for DevOps to handle permission, resources and fine-tuned

configurations through a simple control panel, leaving aside practical hardware issues

and focusing on the logic.

There is a quite large grade of variation in nomenclature that each organization

uses to apply to different environments in use. For this reason, in the following

description of the main environments that usually are used within organization, the

reader is invited to focus on the purpose of each environment rather than on the

assigned name.

• Development environment (DEV): Usually developers use to work lo-

cally in their machine while implementing a new feature or a patch. As soon

as the code seems to be mature enough, the next step is integrating this into

the development environment. This environment contains all the newer im-

plementation of the product but is highly failure-prone due to immaturity of

the code. For this reason, disruption occurs often in DEV, but that doesn’t

represent a problem since this is the real purpose of this environment: provide

an early test bench were to push changes without concerning too much about

possible side effects.

• Stage environment (STAGE): This layer is often renamed as Integration

environment. This version of the product is the collection of all the new

features that have been tested singularly in DEV and that have been considered

to be mature enough to be merged into the master branch. Therefore, in

STAGE all the services and features are labeled as the latest version. The

outcome of this environment may be still unstable due to the integration of

all the new different features.

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 23

• Quality Assurance environment (QA): Whenever the organization de-

cides to release a new update of the product, the current status obtained in

the STAGE is assigned to a tag that express the version of the release. This

specific frame of the product is supposed to be ready for being shipped into

production. Thus, organizations may want to introduce an additional step

in order to run more tests. This is the purpose of the QA, where a release

candidate is produced and submitted to the testing team in order to assess

that all the functionalities included in the release are guaranteed.

• Production environment (PROD): The product which is directly in use

by the customers is the one contained in PROD. Since this is the real-life

exposed version of the product, robustness is required and therefore releases

represent a really sensitive step to be accomplished. Deploying errors or bugs

exposes the organization to huge risks in terms of credibility and finance.

When major releases are deployed, traffic routing may be required in order

to switch from a version to the next one in order to avoid service downtime.

Once again, Serverless solutions simplify such process, often offering automatic

shifting processes. Big companies with enormous amount of users choose to

restrict the release of the new version only to a small fraction of users in order

to mitigate possible errors in the delivered version or even to collect feedback

from users. As described in the "Continuous Delivery" book by J.Humble and

D. Farley[28], this technique - called canary releasing - leads to good benefits:

rolling back to the previous version would be much easier and observing how

and how much the new developed features are used can also give a direction

for future developments. Moreover, this method is considered to be really

effective for testing capacity requirements, releasing the new version gradually

to users.

The pace of the deployments, whether for STAGE, QA or PROD environments,

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 24

is related to the organization decisions. For internal stages, decisions are instructed

by the team organization and the adopted development method, whether for public

releases (and release candidates) it may be effective to take into consideration the

nature of the product itself and the kind of user needs and priorities.

2.4.2 Continuous integration & continuous deployment

In the general Agile and fast development panorama (discussed in section 2.1),

CI/CD plays an important role. The combination of these two processes enables

a company to deliver a more complete and safer product with faster pace. More-

over, it releases developers from manual and inefficient tasks. CI/CD is supposed to

follow the evolution of the code all along the different environments (considered in

section 2.4.1), speeding up the entire process and, therefore, hitting the production

deploy as soon as possible. If in the Accelerate 2019 Report[14] the conjunction

of Development and Operation has been evaluated to be the game changer in soft-

ware development, CI/CD represents the higher point of contact between these two

worlds.

Already in 2017, the Systematic Literature Review conducted by M. Shahin[29]

was highlighting the increase in interest in the topic. The paper took into account

69 papers published from 2004 to 2016, and the 56,5% of those were published

in the previous three years. The growing trend has been discussed in section 5.4,

confirming the importance of this practices. Shahin[29] identified seven main factors

that impact the success of CI/CD, which are:

• Testing (effort and time)

• Team awareness and transparency

• Good design principles

• Customer

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 25

• Highly skilled and motivated team

• Application domain

• Appropriate infrastructure

Such factors will be emphasized in the next paragraphs, where a definition of

Continuous Integration and Deployment is provided. It is important to define bound-

aries of these two methods that always work in symbiosis, but which too often are

erroneously considered as the same thing. In support of these, some space will be

dedicated to Pipelines, as the most used and effective tool.

Continuous Integration (CI)

In the traditional old fashion workflow, developers use to work on their own features

for a long time. If everything goes smoothly, they start to think about integrating

their feature after one or two weeks, even though there is the possibility that the

isolation period can be also extended for a month, depending on the entity of the

developed feature. When the feature is completed, the developer is called to merge

the brand new feature into the master branch of the project. Unfortunately, going

into this process will be so stressful due to the multitude of conflicts that the devel-

oper will have to solve before accomplishing the task. Moreover, the developer will

also have to involve other colleagues to resolve the "merge hell", since he will have

to deal with someone else’s work, avoiding to break what as been done so far. As it

might be evident, such process is time-consuming, stressful and expensive, as well

as error prone. Developers need to probably deal with old code with a logic that

they are missing.

Introduced by Kent Beck in 2000[30], Continuous Integration aims to mitigate

such problem thanks to the fast pace of code growth. As indicated in picture 2.4

focus of CI is on the first step of the programming lifecycle, covering the important

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 26

Figure 2.4: CI/CD integration in the code lifecycle[28].

step that goes from the coding phase to the build. The key concept is quite easy as it

is effective: frequent integration of the code allows developers to work on an updated

code base, therefore drastically reducing the likelihood of conflicts. This won’t

totally prevent clashes, but it will surely reduce the number and, most importantly,

the complexity of the required fix. Less developers will be involved in the case and

probably they will also have to concentrate on small snippets of code which have

been written recently (probably within one or two days). This pattern is in line

with the Beck’s mantra, which states:

"If it hurts, do it often and it will hurt less."

The CI principle is not only aiming to integrate the code, but it is also focused

on the automation of building and testing new commits. Using pipelines (described

in 2.4.3) to automate the build will enable the developer to get notifications just in

case something went wrong and, eventually, quickly fixing the problem. Moreover,

constantly having an updated and working version of the software will open more

possibilities for testing team to accomplish their task more efficiently.

Continuous Deployment (CD)

If the CI is focused on the early stage of the code lifecycle, Continuous deployment

wants to follow the rest of the chain. The goal is to push as quickly as possible the

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 27

code into production through small and frequent changes. Perfectly following the

first principle of the Agile Manifesto[4], CD wants to satisfy customer through early

and continuous delivery of valuable software.

If the first step of the process is covered by CI, which translates code into software

with the build, CD wants to push the software into different steps represented by

the environments to finally hit the production. Different tools may be used in order

to automate the deployment of the software through the different stages, even if

the purpose is always to describe and carry out movements of the build across

environments. Order of deploy, timing a versioning/tagging need to be discussed

within the organization and then translated into a real configuration for such auto

deploy tools.

Lastly, depending on the organization and its nature, decision making can be

required when in comes to release new versions in production. As already mention in

section 2.4.1, companies may target the production release as a risky step that needs

to be evaluated each time a specific version is ready to be deployed. Some companies

refer to their Change Approval Board (CAB) to take decisions. Surprisingly, CD

acronym is sometimes overloaded: when the decision step is required, continuous

delivery terminology should be used rather than deployment. Unfortunately, often

both of this nomenclatures are associated with the same abbreviation, confusing

relative concepts as well.

It is important to notice that opting for Continuous Delivery may be the de-

terrent used to hide the fear of adopting a complete Continuous Deployment ethic.

As stated in the Humble’s book[28], sometimes fear takes over rational decisions,

leading project managers to the feeling of losing the control over what is delivered

to the customer. Even though this may sound reasonable, it is also true that the

risk is tremendously lowered by the minimum amount of change that each small re-

lease will bring. Furthermore, as discussed in section 2.4.1, Canary releases enable

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 28

restricting potential damages as well as collecting data on how customer perceived

the newer updates.

A great instance of successful continuous delivery implementation is the Paddy

Power[31]’s one that L. Chen described. The organization went into a massive shift

during 2014 from traditional software development model into a more automated

reality. At that time, the company counted 4000 employees in the technology de-

partment, with teams composed by two up to 26 developers, depending on the entity

of the project. Before the big change, the company used to release just 6 version

of the software during one year. After the shift, Chen noticed the increase in the

quality of the delivered product, obviously related to the boost in customer satis-

faction: getting frequent updates drive the customer to a better overall perception

of the product and stimulate also to provide feedback that can be implemented and

released fast. It is a virtuous cycle that leads to success. Chen pointed out also

challenges that have been introduced by the shift: the most important one has been

identified as the breakage of barriers between teams and the conceptual adoption of

real collaborative work. Organizational challenges are the part of the transaction

that may require more effort and time to be defined. Lastly, but not less important,

a technical dare has been the creation of a common workflow to put in place CD;

there are no standards and this consumes resources in order to pick the correct tools

and best practices to be adopted.

As for CI, pipelines represent the best mechanism to enable autonomous deploy-

ments.

2.4.3 Pipelines

As stated before, pipelines are the backbone of every kind of continuous framework.

Pipelines are the definition of all those automatic steps that need to be accom-

plished with respect to the CI/CD policies that the team have decided. In other

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 29

words, pipelines can be considered as a executable specification of the tasks that an

engineer would have to accomplish manually right after the coding period. These

specifications are usually split into four consequent steps, where each of them may

contains different tasks in turn:

• Source: this is the pipeline entrypoint, usually fired with a source commit

made by the developer. It can also be fired manually or scheduled, but it is

quite uncommon. Usually this step is not explicitly defined since its unique

goal is to start the rest of the operations chain;

• Build: source code needs to be combined with dependencies in order to create

the executable software. This step may be skipped in case the language in use

is an interpreted one (such as Python, Javascript, Ruby etc.) but it is necessary

for all the ones that need to be compiled, such as Go, C, C++, Java and many

other. It is particularly important to notice that, in a microservice context,

this step is always required independently from the programming language,

since the container requires to be built;

• Test: as soon as a runnable instance of the source code has been produced,

the software itself can be tested in order to verify its correctness and expected

behaviours. Tests to be run against the build are written by the developers,

and may differ in typology. The biggest distinction is between unit tests and

integration tests ; the first one is focused on testing a the smaller feature of the

software, which should be the more atomic and simple as possible; on the other

hand, integration tests or end-to-end tests are made from a user perspective,

testing multiple consequent interactions with the software that can be made

by a user to consume a specific feature. It is important to notice that writing

and running more test means to have a more reliable code, even if this phase

may take quite a lot of time. In order to mitigate this slow down, a team may

CHAPTER 2. KEY PRINCIPLES AND TOOLS FOR AGILE FAST
DEVELOPMENT WORKFLOW 30

want to execute tests just in one of the environments or reduce the number of

assessments in the early stages;

• Deploy: actions performed in this phase really depend a lot from the environ-

ment and from the policies that have been decided by the team/organization.

It is easy to understand that deploy features in DEV environment can be done

without risking compared to deploying in production. The tendency is to au-

tomatically fire this phase in the first steps of the deployment and fire this

phase manually for production deployment.

Whenever a single task contained in one of the previously described steps fails,

all the pipeline stops generating a notification. At this point it will be easier for

the developer to check and solve the error, since the modification that produced the

failure has been made recently. As soon as the problem is solved, the developer can

commit again and a new pipeline will be fired. Whatever pipeline tool is in use, it

should always provide logs and tracebacks of what has been done so far and error

messages that generate the failure state, so that the developer will easily locate the

source of the problem.

3 Security best practices in software

development

This chapter attempts to frame the current state of the art regarding security pro-

cesses and their integration in the normal software development flow. Such best

practices, taken from literature and from the the most virtuous contexts, represents

the starting point for the investigation aims of this study.

Security cannot be taken into account as an additional phase of the normal

development, where all checks and verification are applied in order to certify the

robustness of the final product: on the contrary, security lays on all different steps

of the development adopting different approaches to reach the highest level of effec-

tiveness. It is important to keep in mind the importance of the shift-left paradigm

(discussed in section 2.1.2), without losing the focus from the last phases of the

process.

In the next sections, current methods defined as the best approaches are grouped

by the main phases in which those belong to. Starting from the planning phase,

where measures are defined at an higher level, methods become more technical for

code, build and test phases.

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 32

Figure 3.1: DevOps cycle proposed by Jim Bird[32].

3.1 Secure Software Development Lifecycle

A great overview is provided by the concept of Continuous Security that Jim Bird

tried to frame into the diagram shown in figure 3.1: security is achieved following

the SDLC steps that have been discussed in 2.1.1, demonstrating again how security

is a central feature.

Even more interesting is the Secure Software Development Lifecycle (SSDLC)

framework openly released by the Unity AppSec Team[33], which provides a more

practical approach. Despite small differences, concepts that rely behind these two

perceptions of security are quite in line. The Unity documentation defines a parallel

lifecycle timeline (shown in figure 3.2) to the usual SDLC one, identifying practices

to adopt in each block of the process. In table 3.1, each stage of the Unity SSDLC

is associated with macro-tasks to be integrated in the normal workflow. The aim is

to leverage security over the development process.

The schema proposed by the UnityTech will be adopted in the following sections

in order to frame and describe measures that nowadays are considered to be the best

practices in infosec. By itself, SSDLC is useless if not associated with an effective set

of tools and processes. In fact, activities listed in table 3.1 are high level activities

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 33

Figure 3.2: Unity SSDLC parallel with respect to normal SDLC[33].

that deserve to be deepened and integrated.

Requirements Design Implementation Test Deploy

Security

Requirements

Design Review

and

Threat Models

Static Analysis

and

Secure Coding

Open discussion

and

Security Testing

Pentesting and

Incident Response

Support

Table 3.1: Unity AppSec Team SSDLC macro activities offering[33].

3.2 Requirements phase

In the earlier stage of a project, the requirements definition needs to evaluate the

boundaries and rules that will be applied during the entire development and shared

high-level guidelines to be compliant with. Elements to be taken into account are law

and specific regulations related to the project topic, even if internal and customer

care policies should be involved as well. On top of the assumptions and decisions

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 34

that are taken during this phase, security requirements should be involved in the

discussion in order to identify standards that need to be observed. The company

should have a security policy already in place that can speed up the process, but ex-

ternal standards are usually interesting to be followed to enhance the security level,

therefore gaining in reliability and trust from customers. Depending on the field,

many security guidelines have been detailed: explicative instances may be repre-

sented by Health Insurance Portability and Accountability Act (HIPAA) regarding

healthcare or Payment Card Industry Data Security Standard (PCI-DSS) standard

for what concerns credit cards. Such information security standards are responsible

for the mitigation of environment-related threats and are mostly associated with

sensitive scopes.

Exception is made for ISO 27000-series standard, which is the most important

general security standard. As such, it deserves to be described more in detail in the

following section.

3.2.1 ISO/IEC 27000-series standard

The aims of the ISO/IEC 27000 standard family target to compensate the lack of

information security in business organizations, whether for small companies or for

big enterprises. Sensitive data is the main actor taken into account, which can be

identified in financial information, customer data, employee details and internal in-

tellectual property. The delivery is a complete framework of practicalities related to

the enhancement of information security measures. As indicated in the name, the

standard has been released and currently maintained by the united effort of Inter-

national Organization for Standardization (ISO) and International Electrotechnical

Commission (IEC) organizations.

In particular, the ISO 27000 acts as an introduction and background definition

for the well known ISO 27001 standard. This latter explains in detail requirements

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 35

for an compelling Information Security Management System (ISMS). Having such a

standard helps companies to centralize security controls that may be already imple-

mented within the company infrastructure, but not properly used. The result is an

efficient and complete ISMS, able to systematically check the identified vulnerable

points. As stated by Georg Disterer[34], the ISO 27001 is a signature of reliability

for the company who claim it, since it implies meeting strict requirements. More-

over, the certification comes from a third-party international organization such as

ISO, consequently increasing both the reputation of the subscribed company and

the customer’s faith. In addition, the standard is constantly updated in order to

match with new technologies and their related threats that come along with, push-

ing companies to be keep their infrastructure updated and in line with the latest

guidelines.

It is important to reference the main objectives of the ISO 27001 standard that

Disterer[34] pointed out. Apart from the standard itself, the paper highlight strong

concepts to take into account during the requirement definition such as human re-

sources security or information system acquisition, development and management.

Being compliant with all the requirements can be a tough target to be accomplished

by companies, but even if that is not possible, the standard should be used to pin-

point the major topics and elements in which to focus on in the requirement phase

and, in general, it should always be perceived as a target to hit.

3.3 Design phase

Requirements shape the boundaries of the project, but the foundation of the software

architecture need to be crafted just before to start to implement the product. In fact,

there is no code involved already in this phase since the focus is on the elements that

will be used and how those will be connected together. Even if some decisions may

appear to be straight-forward for designers, this is not replicable at all security-wise

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 36

speaking. For this reason, all design documentation that will be produced should be

reviewed from security perspective and, even more effective, security experts should

be involved in the design process to facilitate decisions and highlight weaknesses that

may go unnoticed. To help in this process, separate sessions can be organized to

review the architecture and find all possible flaws and vulnerabilities of the provided

solution. This discussions are usually named as Threat Modeling (TM) sessions;

high-level frameworks and software tools has been produced during the time to

support such practice, but still today lot of organizations lack in the usage of such

an important practice.

3.3.1 Pre-coding

Before get into the process of writing code, some preventive steps should be done

to design in the best way the code architecture and safe time and effort to solve

problems that, almost certainly, will come out later on.

Third party libraries validation

It is a popular and verified quote which states that there is no need to reinvent the

wheel. Third party libraries are really important for developers because they allow

to speed-up the code creation problem avoiding to spend effort in something that has

been already developed, tested and debugged by someone else. Such libraries’ source

code can be either publicly released as open source resource or private and provided

by the third entity as blackbox software. Security-wise speaking, it is strongly rec-

ommended to prefer the first option, even if the library itself entails a subscription

payment. Whitebox source code is more secure by design, since anyone can access

the codebase, review it and freely start a discussion over possible problems. More-

over, the risk of running code that execute something different with respect to what

is stated by the third entity is canceled. Fortunately, as confirmed by the Snyk in

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 37

its annual report about security in open source[35], the open source expansion is

continuously growing and adopted by almost all the products that nowadays are

leading the software development.

Keeping that in mind, it is also meaningful to check the shape of the repository

and how it is maintained. Accessing the repositories from Github1 is always a good

practice, since a lot of insights can be detected from there. The most important

information to detect is if the library is still actively maintained, and this can be

done inspecting the commit history. Moreover, also the list of issues are important

to detect some possible major problems which have been detected by users and that

are still unresolved. Lastly, it is worth to check the number of contributors that

work behind the project: relying on a library maintained by a single person is not

recommended, since the project could easily be abandoned and is too dependent from

the developer’s willing. It is better to rely on libraries developed and maintained by

relatively big and important teams that can properly support users.

Fail securely

Setup the environment means also to create the possibility for the developer to test

developed features in a protected environment in which there are no big availability

constraints. Testing features also in early stages can speedup the entire process,

whether if this is done in a company development environment (as discussed in

2.4.1) or locally, in the developers’ machine. Therefore, sand-boxing the testing

environment as much as possible is crucial for the development effectiveness and the

security-related concerns as well.

1https://github.com/

https://github.com/

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 38

Managing secrets

Hard-coding tokens and passwords in the code, even if just for testing purposes, is

one of the bad habits that most of programmers still commit. Even if for local testing

purposes this can be perceived as a safe operation, at least until the developers

forget about that secret, pushing changes in the repository and therefore exposing

the secret publicly. As evidence of the high frequency of such event occurrence, one

good source of proof is the sshgit live2 website, where fresh new publicly released

usernames, tokens and passwords are collected from new commits on git version

control platforms such as GitHub and GitLab.

Fortunately, tools and platforms to properly handling secrets are available and

represent the best manner how to safely store and access to credentials, tokens and

sensitive files.

When an organization is not able to provide a single solution for secret handling,

employees and developers usually adopt different and risky methods to store cre-

dentials and tokens, most probably exposing the entire system or part of it to huge

dangerous threats. For this reason, the centralization of secrets assumes a key

role. Converging all secrets into a single place helps administrators to build gover-

nance and policies over sensitive information, as well as enabling also the capability

to log and audit access to sensitive information. In that way, also revoking access

to specific resources would be easier and applicable with a better granularity.

One may think that creating a simple database would be enough, but actually

this is not the case: with more sophisticated solutions it is possible to provide

Access control capabilities, enforcing policies that otherwise wouldn’t be used

with a normal database. Thanks to an Access Control List (ACL), both users and

applications are capable of accessing only the relevant information for them.

Another way to increase security with automation is to dynamically rotate

2https://shhgit.darkport.co.uk/

https://shhgit.darkport.co.uk/

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 39

secrets for every different entity/service. User/application will access the creden-

tials in the same way, but under the hood the secret manager will refresh secrets,

refreshing them and cleaning up once the (short) Time To Live (TTL) of the secret

itself expires. Moreover, since there’s no direct access to the secret itself for the user,

it will be possible to generate strong passwords and at the same time, prevent

reusing those.

When speaking about secrets, it is also important to use encryption in all the

steps, so that the information would be useless even if a leak occurs. In this sense,

encryption as a service allows to safely handle users credentials and, at the same

time, release developers from implementing cryptography by themselves.

3.3.2 Threat modeling

Threat Modeling (TM) is the practice that allows a team to create an abstraction

level of their system consequently is examined to discover flaws exploitable by a

hypothetical malicious user. As mentioned in [36], TM can be disassembled in three

main steps:

1. Asset identification, where the most sensitive services and information are

pinpointed as primary target to be protected;

2. Creation of a system overview picture, clearly placing the assets and

defining the data flow as well as the interconnections between the different

parties of the system;

3. Threat identification on top of the previous step, discovering vulnerabilities

that endanger the assets.

Along the years, multiple frameworks to improve efficiency of TM has been

released: in [37] N. Shevchenko managed to describe the 12 most important ones,

while in [36] a bigger analysis was conducted, taking into account 26 methods. This

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 40

proliferation is dependent from small changes that during the time had been made

to the main frameworks. Even though the most relevant methods can be reduced to

few of them, having such a big pool is still worth since the method should be adopted

with respect to many factors. This should push teams to analyze their systems from

different perspective with respect to their specific needs and the purpose of the

product itself. The available amount of time, the experience of the team, the level

of engagement of the stakeholders or the targeted focus (security, privacy, risk) are

just some examples of considerations that may influence the decision of the most

appropriate methodology.

As remarked in [37], the common advice is to organize the TM session as early as

possible in the development process. Be proactive, in this sense, while architectural

decision are still under discussion, as stated in section 2.1.2, reduces the number

and even the impact of all possible threats that may come up.

For the scope of this thesis, there is no meaning to go through all the main meth-

ods adopted by organizations but mentioning STRIDE as the most widely adopted

can be useful to understand how a TM framework can be structured. Therefore, also

TRIM is taken into account because of its different aim with respect to STRIDE:

useful instance of different point of views that a team may want to stick with de-

pending on the specific needs. Following this kind of a guidance, the team won’t

forget to cover all different main aspects to be protected within a system.

Data Flow Diagram

Data Flow Diagram (DFD) plays an essential role in the TM, representing the

most important element where to base all the following assumptions and observa-

tions regarding security. Not only STRIDE-based methods require such an artifact,

but lot of other famous TM methods such as LINDDUN (Linkability, Identifiabil-

ity, Non-repudiation, Detectability, Disclosure of information, Unawareness, Non-

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 41

compliance)[38] and PASTA (Process for Attack Simulation and Threat Analysis)

(reviewed in [37]) but that are not included in this literature.

The main purpose of DFD is offering an overall picture of the system, creating

at the same time a good layer of abstraction but keeping a sufficient level of details

too. The most important entities that need to be included in the DFD usually are:

• System interactions with external entities,

• Processes,

• Data flows,

• Data stores.

Finding the good ratio between details and abstraction is the most difficult side

of creating an effective DFD. Vulnerabilities often rely on tiny small details that

consequently could be exploited to threat the entire system. Therefore, omitting

security assumptions that have been made while conceiving the system architecture

may mislead the TM session itself. In this regard, a detailed analysis has been

conducted in Belgium in 2018[39]. L. Sion and his team highlighted how much

the lack of security and privacy-related information, as well as for traceability of

accomplished decisions, can badly affect the consequent threat discussion.

The proposed solution aims to enrich the base DFD with all the elements that

can influence, even if slightly, security and privacy aspects of the architecture. The

easiest example is shown in figure 3.3. Drawing 2 entities in communication is

worth and can be easily understood, but labelling such connection with HTTPS

is way more informative for the audience, which consequently can take for granted

that from that connection integrity, confidentiality and destination authentication

are enforced because of TLS.

Despite the basic example, many other assumptions can bring to the table impor-

tant notions to be taken into account: the usage of containers, executing a certain

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 42

Figure 3.3: DFD section representing an HTTPS communication.

service in a sandboxed environment, OS protections applied and encryption are just

few instances that are often used in such a context. These details in the DFD can

significantly speed up the TM session, therefore decreasing the number of false pos-

itive and false negatives. Moreover, this will increase the attendees’ confidence and

consequently, the quality of the analysis itself.

STRIDE

Among all different frameworks and methods taken into account in [37] and [36],

STRIDE can be easily elected as the most frequently adopted and, therefore, the

most mature. For this reason, quite a lot of derivations of this method have been

created during the years. STRIDE was created in 1999 and its popularity started

to grow since 2002, when Microsoft decided to adopt it. As many other techniques,

everything starts from the Data Flow Diagram. The success of the session strongly

depends from this step, since it represents a common baseline of knowledge for all

the attendees of the session used to discover new threats in the second phase. In

this stage, the acronym of the name itself is used as a mnemonic reference to take

into account aspects of the architecture.

Within the name of the technique, the following threats are carried:

• Spoofing : threaten authentication when an attacker claims to be someone or

something else to gain privileges;

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 43

• Tampering with data: disrupt the integrity of information contained in mem-

ory storage;

• Repudiation: break the non-repudiation principle through the possibility of

renouncing any taken action, whether the subject is honest or not;

• Information disclosure: leaking information to entities that shouldn’t have

access to it, breaking the confidentiality principle;

• Denial of Service: causing a service breakage, undermining the availability of

a provided service;

• Elevation of privilege: an entity is able to perform actions which should re-

quire an higher set of privileges with respect to the currently owned, escaping

authorization enforcement.

In support of the acronym itself, checklists and collections of questions have been

written to help highlighting possible vulnerabilities.

This method is usually criticized because its tendency to be time-consuming, as

well as the attitude to generate quite a lot false negative cases.

TRIM

Despite TRIM sharing the general idea with STRIDE, this framework is completely

centered in providing a guideline in order to evaluate privacy concerns. The aim is

to capture possible design mistakes in the system which could undermine personal

data. The concepts delivered with such acronym are all about data handling and

protection:

• Transfer of personal data: confidentiality over the transfer and legal con-

straints;

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 44

• Retention and Removal of personal data: definition of a specific life-cycle for

personal data storage and the possibility to completely delete those;

• Interconnections and Inference: destroying pseudonyms and strong correla-

tions between personal data items;

• Minimisation of personal data: reduce the stored information to the minimal

amount necessary for technical requirements.

Despite some letters are shared with STRIDE, it is easy to notice that these two

methods are quite far from one another, offering a different perspective. It is a good

practise to combine both methods in order to get the best result out of the TM

session.

Threat modelling applicability with Agile

On top of all the considerations that have been done so far, it is clear that threat

modelling has a big relevance within the process of development of whatever project.

Futhermore, integrating such process into the normal Software Development Life-

cycle is a step that needs to be carefully carried out to transform TM into effective

tasks to be accomplished in order to enhance security. As pointed out in [37], TM is

completely applicable with Agile development methodologies[3] and can be adopted

with respect to the sprint timeframes. Despite this compatibility, such integration

is still a delicate step that brings some challenges to be faced. In [36], four differ-

ent Agile-based Norwegian organizations, where TM sessions are part of the SDLC,

have been taken under analysis. The study pointed out the difficulty of perceiving

security as a top priority. Employees were interviewed and what came of can be

summarized in a brief list of challenges that reduce the efficiency and the positive

effects of the TM itself:

1. The lack of motivation is quite common in three out of four companies because

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 45

of the small relevance conferred to security in general;

2. Often employees reported the difficulty in identifying threats, which usually is

derived from the lack of experience or from the decision making required when

an identified threat need to be labelled as relevant or not with respect to the

system context;

3. 75% of companies perceive TM as a time-consuming task, which can be the

reality if the session is not facilitated by some experienced figures and if DFD

is not complete or is even missing at the very beginning of the session;

4. Almost all the interviewees mentioned to have difficulties in the "definition of

done" when it comes to evaluate steps to be accomplished and checkpoints to

consider a threat as completely mitigated.

The investigation carried out by K. Bernsmed and M. G. Jaatun also defined three

of the best practices that influx positively in the TM practices:

1. Even if not particularly relevant for assets definition, developers need to be in-

volved in the TM to bring relevant and practical aspects to the table, maturing

in them a critical spirit with regard to security;

2. The usage of checklists is a simple as effective method to clearly define the

process, simultaneously avoiding wasted time and forgetting discussion points;

3. A regular scheduling of the sessions keeps the team aware, helps to completely

integrate TM into the SDLC and therefore reduces the needed effort per each

session.

Tools

In support of the long list of TM methods, some tools have been developed by big

organizations such as Open Web Application Security Project (OWASP) in order to

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 46

be integrated into their processes. Consequently, these have been released to help

other companies to speed up and increase the effectiveness of the sessions. These

utilities don’t have the pretensions of replacing a complete framework, but to support

the latter, making the meetings more dynamic and less heavy. The following list is

a brief collection of the four most widely used proposals:

• OWASP - Threat Dragon

• Microsoft - Threat Modelling

• OWASP - Cornucopia

• Mozilla - Seasponge

Of course, adopting any of these utilities is not required, especially in such teams

where a good level of experience is already achieved. On the other hand, such tools

may help where TM is not a consolidated practice.

3.4 Implementation phase

Developers are the main actors in this step. For this reason, they can also be the

biggest threat: they tend to focus on solving the issue that they have been assigned

to and usually they are pushed to accomplish the task in the fastest way as possible.

Unfortunately, this leaves security in the shadow and that is why it is so important

to invest on the creation of a real sense of security awareness in the developers.

The target to reach for a company is to count on developers to be mature enough

to critically think about the code that has been written and relate it to a possible

threat. For this reason, it is so important for a developer to memorize and digest

the OWASP Top 10 vulnerabilities[40], that, as stated by OWASP itself, is

"Globally recognized by developers as the first step towards more secure

coding."

https://github.com/mike-goodwin/owasp-threat-dragon-desktop
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://owasp.org/www-project-cornucopia/
https://github.com/mozilla/seasponge

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 47

In this way, this collection of threats won’t be anymore a list to check every time

at the end of a coding session, but instead a collection of concepts unconsciously

and constantly recalled while writing the code.

That being said, still a lot of details and precautions can be take in place to push

further the effectiveness of secure coding.

3.4.1 Coding

In the process of coding, the developer can still take into account some aspects that

can decrease the likelihood of introducing flaws. The first step to write secure code

is studying. Being able to consider threats while coding requires the developer to be

aware about common practicalities and problems that may undermine the security

of the overall project. But on top of that, few more points can be highlighted in

order to further help the developer.

Linters

The usage of linters may help to anticipate security-related problems even before the

code is committed in the repository. Those can also be used to help the developer

to improve his coding style, learning new patterns and techniques to avoid flaws.

Usually such tools can be installed as an extension for common IDEs, allowing

the programming environment itself to provide hints and pinpoint possible flaws in

realtime, while the developer is in the process of writing. Usually a linter is strictly

linked to a specific programming language so that specific language-related problems

can be detected more precisely.

A linter can be defined as a software able to run static analysis of the code,

therefore such tools can be also integrated in the CI/CD pipelines (discussed in

2.4.2) or simply fired before committing the code.

The tool is particularly important when used with a team vision: a linter can

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 48

help to maintain a heterogeneous knowledge within a team. Juniors can see liters

as a senior member that gives guidelines and facilitates the growth process. Seniors

can enforce a consistent style on a team.

Language best practices

To integrate the service that linters are already providing, the developer may want

to go through some documentation that can provide a list of best practices and

practicalities to be adopted while coding with a specific programming language.

In fact syntax, design or constraints of a specific language may open the side to

different problems which usually are well known and can be easily mitigated during

the writing process. The collection of best practices for Go, Node.js, Ruby and C#

provided in the UnityTech SSDLC framework (proposed in 3.1) is a good example

of reference, but many other guidelines provided by referenced authorities such as

OWASP can be found for the most common programming languages.

Sanitization

Lastly, it is important to bear in mind to always verify any kind of input with

sanitization methods, as well as checking the provided outputs. Cross-site Script-

ing (XSS) attacks are one of the most common vulnerabilities since they rely on

programmers negligence and are quite difficult to detect. One single defect may

represent a potential huge risk for the entire system.

3.4.2 HTTP security headers

More often enterprise sales relies on a new sort of benchmark assessing a security

evaluation over a company or a product. For this reason, services that provide

that sort of security scorecards are rising in popularity. Because their relevance is

ramping up, it becomes to be important to understand where their score is based

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 49

on. Based on the scoring methodology[41] applied by Mozilla Observatory3, which

is one of the most famous services in this field, such score is assigned based on two

main factors. IP reputation is one of these: it always refers to blacklists or spam

lists where bad nodes are collected. As far as the company taken into account is not

spamming or frequently affected by malware infections, this factor shouldn’t effect

negatively the overall score.

The second and most relevant factor to really take into account is the HTTP

security headers used during the communication. Since the IP reputation is quite

easy to be achieved, security headers set on public websites determine the majority

of the score outcome. Headers can directly address specific problems, mitigating

different possible threats. Therefore, it is meaningful to group and describe them

by purpose, trying to provide a better understanding about where and how headers

can be relevant for mitigation.

A complete overview about all headers which are related to security is provided

by OWASP in their OWASP Secure Headers Project [42].

Cross-origin Resource Sharing

One of the most powerful features that has revolutionized web applications in general

has been the possibility to link resources to allow communication in between different

parties. Despite the improvements carried out by the feature, such feature opens

the application to many possible attacks. Restrictions over the shared data between

parties are needed, and therefore an origin based security model has been created

in order to regulate communications. Even with the security model put in place,

it is particularly difficult to provide a solution which can fit all possibilities. In

fact, Cross-Origin Resource Sharing (CORS) setting are very endpoint dependent.

Despite such preamble, there is still room for general guidance which can be helpful

3Mozilla Observatory online service

https://observatory.mozilla.org/

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 50

to provide a reasonable usage of CORS headers.

CORS can be considered as a whitelisting tool for Same Origin Policy (SOP)

mechanism. For this reason, the usage of wildcard * is strongly discouraged in allow-

headers (such as Access-Control-Allow-Origin or Access-Control-Allow-Methods).

The only situation in which such header can be used is when a publicly open

app/APIs needs to be served.

Lastly, it is worth to bear in mind that CORS policies completely differ from

measures that can be taken into account for Cross Site Request Forgery (CSRF)

attack mitigation. In fact, SOP may help only when trying to prevent any token to

be read form a different malicious domain, which is not a target of a CSRF attacker.

The attacker’s aim is to let the user perform the malicious request performing a

client-side attack and third party origins are not really involved in such mechanism.

Content Security Policy

The purpose of Content Security Policy (CSP) is to mitigate XSS attacks by re-

stricting resources loaded in the browser. JavaScript, CSS, fonts, images are just

intances of what can be controlled by this header. Each different kind of resource

can be treated in a different way. By default, if not specified in the directive, all

resources are allowed to be loaded. As general guidance, the stricter the directive,

the better it is for security of the web application. Therefore, blocking all the un-

necessary resources specifying the policy as: ’none’ is the preferred choice. It is

still worth to define policy to ’self’ in case the domain has only trusted contents.

Many tools are available for different browsers in order to create CSP drafts and

for checking them as well.

An example of CSP header can be the following:

Content−Secur i ty−Pol i cy : de fau l t−s r c ' s e l f ' ; img−s r c ' s e l f ' ;

ob ject−s r c ' none ' ; s c r i p t−s r c ' s e l f ' ; s t y l e−s r c ' s e l f ' ;

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 51

frame−ance s t o r s ' s e l f ' ; base−u r i ' s e l f ' ; form−ac t i on ' s e l f ' ;

In this case the following directives are enforced:

• Default to only allow content from the current site;

• Do not allow objects such as Flash and Java;

• Only allow images, scripts, styles, frames and forms to submit from the current

site;

• Restrict URL’s in the tag to current site.

Cookies

Cookies are particularly interesting for an attacker in order to achieve unauthorized

access over protected resources. Therefore, is particularly important to enforce some

security constraints over the usage of such powerful but potentially dangerous tool.

In the response headers it is possible to specify policies to be applied with cookies.

The Secure directive is important since it enforces the cookie to be transmitted

exclusively via encrypted connection (HTTPS required).

Whenever possible, it is also strongly recommended to use the HttpOnly directive

to deny the possibility to read the cookie using JavaScript. SameSite directive could

be used to forbid the cookie to be sent via cross-origin requests (assigning Strict

value), or at least to limit it (using Lax). This feature is particularly useful for

CSRF attack mitigation.

It is also recommended to apply the shortest expiration date as possible and

assigning the some restricted path as well to limit visibility.

Information leakage avoidance

Sometimes also removing some headers may help to restrict attack surface. It is the

case of headers such as Server or X-Powered-By headers, where information about

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 52

the backend software and version are leaked. Usually an attacker aims to know this

information in order to look for possible public vulnerabilities related to the specific

setup in place in the server. Therefore, is recommended to simply avoid to include

this headers in responses.

Cache control

As for useless headers that may leak relevant information for an attacker, cache can

represent a target for an attacker who is willing to retrieve personal information. It

is a good practice to avoid caching pages where sensitive information is contained,

reserving this feature only for static resources such as images, CSS files or similar.

Cache-Control header can be included in the responses to force the client to not use

cache for specific sensitive data. Pragma header has the same purpose and is used

for backwards compatibility with HTTP/1.0 caches.

Don’t roll your own crypto

As general advice, it is always a bad idea to start implementing customized cryp-

tography algorithms since these require an extensive knowledge in mathematics and

need to be tested for long time. Therefore, relying on well-known and up to date

algorithms is the best choice, which reduces development time and increase security.

Moreover, keeping in mind how and why the used protocols have been imple-

mented will help the developer to correctly apply such protocols. Therefore, studying

at least the basic mechanisms behind adopted protocols is strongly suggested.

3.5 Test phase

Now that the code has been committed, fulfilling the previously defined requirements

is needed. Thus, the source needs to be evaluated from different perspective, trying

to fire the highest number of tests that can be accomplished autonomously.

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 53

There is still room for manual testing of the application in this phase, but such

tasks should be limited to few restricted tasks; reviewing logs of automated tests

is one of those; exploratory testing together with manual penetration testing should

be constantly accomplished in order to look for new vulnerabilities and threats may

not have been caught by automatic testing.

Fuzz testing (or fuzzing) is another great way to discover implementation bugs

and possible malformed payloads that may disrupt the target service. This black

box technique aims to automatically detect problems through the generation of

a multitude of requests with randomly generated (and therefore also malformed)

inputs that may have been left uncovered by developers. The technique, firstly

presented in 1989 by Professor Miller from the University of Wisconsin-Madison[43],

nowadays can be performed by many tools that usually are particularly used in

penetration testing. Fuzzing can be considered as a specific kind of test that can

be placed in between manual and automatic testing, since the point of injection for

random data should be carefully and manually identified.

Automation of tests includes different kind of checks. Firstly, it is worth to con-

stantly monitor performance of the resources involved in serving provided services,

either virtual or physical ones. Most probably, resources that are going outside

boundaries of normal consumption are the sentry of problems. Having good notifi-

cation system may avoid brutal attacks such as a Denial of Service.

Ensuring that security standards are also doable with reasonable amount of ef-

fort: analyzing security headers and TLS configuration is an easy and cheap way to

do so.

In the early 2020, it has been reported by the Snyk State of Open Source Se-

curity Report[35] that more than 75% of all code vulnerabilities reside in indirect

dependencies. This should be enough to convince the reader about the importance

of analyzing dependencies that are involved in the application. In this sense, mi-

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 54

croservices may increase complexity since each service is potentially running with a

different programming language and platform. Therefore, it is difficult to identify

a simple solution able to solve these checks. Each organization needs to craft their

own implementation depending on the architecture in place.

Going deeper into the code inspection, smoke tests are an essential element of

this phase. Main functions are reproduced by an automatic tool that is able to

replicate an user that tries to use every single feature that the application offers.

The aim is to certify the correct behaviour of the application with respect to the

provided inputs.

Smoke tests can highlight possible vulnerabilities exploitable from discovered er-

rors, but more specific and security-centered tests can be written as well. Black-box

approach can be used as well to replicate possible behaviours that an attacker would

try to perform in order to penetrate into the application. This testing technique is

called Dynamic Application Security Testing (DAST) and it may be useful to catch

authentication or session issues, memory leaks or other weaknesses of the system.

This technique tends to produce quite a lot of false positives and it is usually in-

tegrated with a good bug tracking platform to decrease the rate of misdetections.

Moreover, DAST requires to be run in a testing environment where malicious pay-

loads can be pushed without risking corruption of sensitive data.

Static Application Security Testing (SAST) is another kind of investigation which

can be conducted; differently from the previous one, whitebox approach is followed

allowing a security-centered inspection of the source code in order to find specific

dangerous snippets. Those well-known patterns are mostly language dependant,

therefore SAST tools are usually integrated into linters (described in 3.4.1).

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 55

3.6 Deploy phase

A released product includes also assistance to guide the customers and help them

when problems occur. Maintaining a product can be defined in different manners

from assisting end users or feed the developers’ backlog, patching or improving the

project.

The most direct and effective way to predict the future direction of a product is

often considered to be represented by feedback of customers and end users. To do

so, proper methods should be designed in order to process in the best way feedback.

Each suggestion need to be translated into descriptive task(s) for the development

team. The purpose of feedback processing is to close the development cycle, feeding

back the design phase.

As already hinted in 2.4.2 section, it is extremely useful to gather insights about

the usage of the product. Such information can be considered as an implicit feedback

generated by customers that actively use the provided platform.

Insights analysis does not include only statistics over the usage of the platform,

but involves monitoring resources used to provide the service itself as well. It is

usually the DevOps’ prerogative to setup an effective alerting system that can really

help to promptly detect problems that have to be solved as soon as possible. Tra-

ditionally, alerts are delivered to developers and DevOps using email ; despite this

tendency, the raising usage of dedicated instant messaging platforms contributed to

push the development of bots able to directly post alerts into chats. The implemen-

tation of such feature is not complicated itself, since the majority of chats already

come with the possibility of bot integration (whether as native function or through

the usage of third party plugins). Actually, the most difficult part is to fine tune

the occurrences of messages in order to avoid the generation of noise in chats. Thus,

providing too much alerts will increase the likelihood of false positives, therefore

discouraging developers to take seriously such alarms. At the same time, restricting

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 56

too much the triggering range will probably generate false negatives. This respon-

sibility is assigned to DevOps, who have to define a reasonable threshold, as well as

correctly addressing alerts only to the relevant personnel.

The best way to handle incidents that may happen during the lifetime of the

deployed software is to document procedures that should be adopted in such cases.

When an emergency occurs it is difficult to take meditated decisions, therefore it is

desirable to structure procedures with a cool head to speed-up and improve incident

recovery actions.

As stated in [44], the practice of crowdsourcing information security has been

taken more and more popularity within organization. Bug Bounty Programs are one

of the most representative examples of such phenomenon. Organizations may want

to outsource penetration testing of their products to professional testers, offering a

reward in case of discovered and well-reported vulnerability.

Lastly, another good practice for InfoSec figures, developers and DevOps is to

always keep an eye over cybersecurity-related news to be always updated over new

discovered vulnerabilities and zero-days4.

3.7 Retirement

In a future the product that it has been developed will face and end and it will

be retired. Unfortunately, the retirement of a project is not always well treated in

companies and no guidelines are defined. Despite this negligence, implications of

the retirement should be considered and handled in a proper manner. In the worst

scenario, failing to dispose properly the resources that have been used so far may

also lead to information leakages.

That being said, it is important to follow a good migration plan in case a new

4A zero-day vulnerability is a flaw that is unknown or still not mitigated by the vendor of the

software.

CHAPTER 3. SECURITY BEST PRACTICES IN SOFTWARE
DEVELOPMENT 57

product will take the place of the old one. At the same time, all the collected and

sensible data should be archived properly to avoid leakages and legal implications

related to such information. All resources that are not supposed to be used anymore,

whether physical or virtual ones, should be destroyed. Lastly, it could be also

important to clean up DNS names in order to avoid future collisions or takeovers.

4 Cutting-edge approaches for

secure development

After the analysis made in chapter 3 about how development teams try their best

at integrating security into the development process, research has been performed,

trying to identify possible cracks and sanitize them with new approaches. This

chapter provides practical tools and processes to adopt in order to improve the

security analysis in the entire development process. In section 4.2, proposals can be

adopted in every development environment, while in 4.1 more microservice-related

techniques are documented.

4.1 Improvements for microservice environments

Container clustering orchestration has become very popular whenever containerized

services are in use. According to the 2020 Snyk report[35], Kubernetes has been

chosen by the 44% of the interviewees. Despite the wide adoption, the survey

pointed out how users tend to forget about security requirements. In fact, 30%

of the population confessed to not revising K8s manifests at all.

These statistics should be enough to underline the importance of identify specific

tools to help monitoring new flaws in container clusters as well as enhancing the

security level with new measures.

CHAPTER 4. CUTTING-EDGE APPROACHES FOR SECURE
DEVELOPMENT 59

4.1.1 Kubernetes security management

Kubernetes take into account security by default, efficiently handling IP addresses

of the pods contained in the cluster and applying controls in order to ensure a

safe communication in between different nodes. Despite these important features,

the orchestrator provides only basic security measures, leaving room for advanced

security monitoring and compliance enforcement.

Thus, admins and DevOps can count on a set of specific tools which have been

designed for the purpose. Among many good products which solve this demand, the

Aqua Security1 solutions are recommended choice of the Center of Internet Security

(CIS)2.

The Aqua kube-bench tool3 strictly follows all the checks that are listed by the CIS

Kubernetes Benchmark[45]. The tool, written in Go and provided as a container,

is able to discover configuration errors, authorization and authenticaton issues and

checks that data flow is reasonably encrypted.

On the same line, Aqua released kube-hunter 4 as well. This one can be considered

as an extension of kube-bench, which enhance the the effectiveness of the analysis

by enhancing discovery and penetration testing capabilities.

Using such solutions is very important nowadays since K8s package managers

(such as Helm5) are ramping up in their usage. These tools are particularly useful

for versioning, but they can also introduce risks that comes from the usage of third

party images. This assumption is confirmed by 2019 Snyk Helm Report[46], which

states that 68% of stable Helm Charts (Helm packages) contain an image with a

high severity vulnerability.

1Aqua Security: https://www.aquasec.com/
2https://www.cisecurity.org/
3kube-bench Github Repository: https://github.com/aquasecurity/kube-bench
4kube-hunter Github Repository: https://github.com/aquasecurity/kube-hunter
5Helm: https://helm.sh/

https://www.aquasec.com/
https://www.cisecurity.org/
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-hunter
https://helm.sh/

CHAPTER 4. CUTTING-EDGE APPROACHES FOR SECURE
DEVELOPMENT 60

4.1.2 Periodic container scans

As the beating heart of each service of the cluster, the (Docker) container cannot

be forget. In the 2020 Snyk report[35], authors highlight that many vulnerabilities

have been discovered from container images labeled as latest. This means that

even using well-known images as baseline for custom containers may represent a

potential issue.

Therefore, this leads to understand the importance of a periodic and automatic

container scanning. DevSecOps engineers should prioritize this practice using open

source tools that accomplish the task. Currently, the most well known one is Clair6,

which is able to perform static analysis based of known vulnerability signatures

stored in a up-to-date database.

4.1.3 Hacking testing environment

Getting hands on practical examples of vulnerabilities can be really useful and in-

structive for both developers and security practicalities. For this reason, it may be

an optimal idea to craft a sort of sandboxed and vulnerable environment where to

train and experiment with exploitation skills. Such playground can be easily created

thanks to projects that have been ad-hoc developed for this reason.

The most famous is probably WebGoat7: a vulnerable web application which

challenges the user thorugh the exploitation of different kind of security holes.

Recently, KubernetesGoat8 has been released on GitHub with almost the same

aim. As the name suggests, a vulnerable K8s cluster configuration is provided to

offer a playground where to practise Kubernetes security.

6Clair Github Repository: https://github.com/quay/clair
7WebGoat GitHub repository: https://github.com/WebGoat
8KubernetesGoat GitHub repository: https://github.com/madhuakula/kubernetes-goat

https://github.com/quay/clair
https://github.com/WebGoat
https://github.com/madhuakula/kubernetes-goat

CHAPTER 4. CUTTING-EDGE APPROACHES FOR SECURE
DEVELOPMENT 61

ServerlessGoat9 should also be mentioned. The tool is provided by OWASP and

therefore all the vulnerabilities that are listed in the Puresec ten critical risks in

serverless configurations[47] can be reproduced and tested.

Maintaining such testing environments, even combining the mentioned tools or

some other resource, can be really useful to provide test bench for penetration testers:

there it would be possible to safely replicate issues as well as using the environment

as tool for increasing awareness for developers or DevOps.

4.2 General proposals of improvement

Although this work is more focused on analyzing microservice environments, in

this section are collected improvements that can be applied to any development

environment to increase security. Some of the proposals are quite technical and

involve the usage of new tools, but there is room also for more high-level ones that

just aim to increase security awareness.

4.2.1 Periodic vulnerability scans

Every organization should be aware of the critical components that may represent

a potential intrusion vector for an attacker.

As stated by the Certified Information Systems Security Professional (CISSP)

Study Guide[48], each company should establish a routine in order to continuously

audit their systems and network. Such process can be either manual or, preferably,

automatically scheduled and fired.

Many open source tools have been released as well as other commercial solutions.

Each of them can have a narrower or wider scope, respectively resulting in a more

accurate or general reporting system.

9ServerlessGoat GitHub repository: https://github.com/OWASP/Serverless-Goat

https://github.com/OWASP/Serverless-Goat

CHAPTER 4. CUTTING-EDGE APPROACHES FOR SECURE
DEVELOPMENT 62

Nessus10 by Tenable is probably the most famous commercial solution available

on the market. On the other hand, OpenVAS11 represents the open source alterna-

tive. With a more specific scope, even Nmap12 can be seen as a vulnerability tester

due to its advanced network scanning capabilities.

Vulnerability scanners usually are focused on code analysis, vulnerability audit-

ing, network scanning or server/cloud configuration analysis. The most sophisticated

ones can also combine more than one scope, even if sometimes organizations prefer

to adopt different and more specified scanners.

Another distinction can be made between external an internal scanners: the first

type ground their analysis only on the publicly exposed resources, while the second

one has the capability to expand the investigation also to resources that require

privileges to be accessed.

The CISSP Study Guide[48] also highlights how crucial it is for organizations

that use these tools to bear in mind the link between the discovered vulnerability

and the real open threat in the current scenario. Missing such connection may lead

to underestimate a vulnerability or, on the contrary, spend too many resources is

something which is already mitigated by design of the actual configuration.

4.2.2 Interactive Application Security Testing

In the previous chapter, DAST and SAST techniques have been described as good

solutions for vulnerability detections. Despite their importance, both of them still

have their limits. Interactive Application Security Testing (IAST) aims to create

a hybrid solution which can combine strengths of SAST and DAST, solving at the

same time their relative drawbacks.

10Tenable Nessus: https://www.tenable.com/products/nessus
11OpenVAS Github Repository: https://github.com/greenbone/openvas
12Nmap: https://nmap.org/

https://www.tenable.com/products/nessus
https://github.com/greenbone/openvas
https://nmap.org/

CHAPTER 4. CUTTING-EDGE APPROACHES FOR SECURE
DEVELOPMENT 63

The analysis is performed by injecting agents into the web application. Such

sensors are able to monitor reactions of the app with respect to received inputs (ei-

ther automated or manual ones). An analyzer processes the detected information

and raises alerts in case vulnerabilities are detected. Agents are able to capture

configurations, network traffic and external service calls as well as monitoring the

overall data flow within the app. Thanks to this capability, more vulnerabilities can

be discovered and the rate of detected false positive or negatives can be drastically

decreased. In fact, such additional information is used to verify vulnerabilities de-

tected though normal SAST or DAST detection processes. Since IAST solutions

have access to the source code, a more accurate report of the discoveries can be

achieved, pointing the precise location of the vulnerability in the code. As draw-

back, this hybrid solution is always more expensive, demanding more resources and

a complex installation process, due to agents to be setup.

4.2.3 Code review exercising

Despite many different ways to discover possible vulnerabilities have been developed

among the years, reducing the likelihood of generating security holes while coding

is still an challenge. This is the conception that the founders of SecureCodeWar-

rior13 are pursuing: the provided platform offers the possibility to train developers

to recognize inconsistencies, well known anti-patterns and vulnerabilities that may

affect the code. The developers of the companies who decide to subscribe with the

platform will get access to internal tournaments, learning material and challenges

that stimulate the critical thinking with respect to the source code. The challenging

formula can be really beneficial for end users, while earned data will offer important

insights about the security awareness of the development team.

Moreover, code review process should be integrated in the normal development

13SecureCodeWarrior: https://securecodewarrior.com

https://securecodewarrior.com

CHAPTER 4. CUTTING-EDGE APPROACHES FOR SECURE
DEVELOPMENT 64

process, usually through merge request mechanisms that enforce a minimum number

of approval before being accomplished. Gerrit14 is an instance of tool which can be

applied on top of normal git version control to expand review mechanisms.

4.2.4 Penetration testing automation

Trying to break into a system usually requires capabilities that go outside from

what can be automated by a software. Pentesters usually take advantage of their

intuition and lateral thinking, skills that are human prerogatives. Thanks to these

competences, they are able to find a way to compromise a system and, accordingly,

propose a method how to harden the environment in case of attack.

On the other hand, lot of the tasks that may be necessary for information re-

trieval or so can be automated to facilitate and speed up the pentester process. If a

computer is still not able to properly react to certain findings, it is able to highlight

results which may be useful for the tester. For instance, fuzzing or enumeration

techniques in general are processes that requires time to be accomplished. Such

techniques aim to find a valid corrupted payload that may exploit a vulnerabilities,

generating therefore thousands useless requests and, in case, just few valuable out-

comes. This kind of time-consuming tasks can be easily be automated, periodically

repeated and only in case of discoveries an alert can be generated for the tester.

Moreover, not only penetration testers can take advantage of the automation.

Bug bounty hunters may have the possibility to speed up their workflow in an en-

vironment where sometimes be faster than the others make the difference. DevOps

may want to let such test run periodically in order to monitor some critical online

assets or simply to assert that the web application that the development team is

working on is compliant with security standards. Thus, it is worth to integrate such

tests into CI/CD pipelines or to recurrently schedule those.

14Gerrit Code Review: https://www.gerritcodereview.com/

https://www.gerritcodereview.com/

CHAPTER 4. CUTTING-EDGE APPROACHES FOR SECURE
DEVELOPMENT 65

4.2.5 Dashboards

Sometimes, reading through the lines of logs may appear to be confusing. Even

though that is not true when correct tools are used in the analysis, offering an

immediate and self-explanatory visualization is usually very valuable for a team.

The usage of dashboards is useful for many aspects of the development such as the

resource consumption or APIs call statistics.

The same is applicable for security matters: being able to raise alerts in case of

too many wrong login attempts, detect strange connections with malformed pay-

loads or similar is extremely beneficial for security analysts. As demonstrated by

Mullis and his colleagues[49], dashboards are a fundamental tool for cyber situational

awareness and, therefore, an indispensable tool within every Security Operations

Center (SOC).

But the effectiveness of dashboards are not strictly limited to SOCs: DevOps

can create custom dashboards highlighting insights from the data and logs taken by

the system, helping either developers and security specialists in they job. Such task

can be facilitated by the adoption of the measure proposed in 4.2.6.

The most famous products that are used in the creation of dashboards are

Kibana15 (if an Elastic stack is in place) or Grafana16 as open source alternative.

Intermediate solutions can be adopted in order to extract insights from raw logs and

data: Prometheus17 is a perfect instance that allows to create metrics and generate

alerts accordingly.

15Kibana: https://www.elastic.co/kibana
16Grafana Github Repository: https://github.com/grafana/grafana
17Prometheus: https://prometheus.io/

https://www.elastic.co/kibana
https://github.com/grafana/grafana
https://prometheus.io/

CHAPTER 4. CUTTING-EDGE APPROACHES FOR SECURE
DEVELOPMENT 66

4.2.6 Centralized Log Management

Logs are a the most important element which represents the baseline for every kind

of analysis. The more the system is complex, the less intuitive is to get useful

information out of logs. In fact, every entity included in the system itself tend to

produce its own log trace.

Being able to create a common space where all the logs can be directed will offer

to the admins a more comprehensive overview and, therefore, the possibility to get

more useful insights over suspicious patterns.

Such capability of centralize data is not easy to achieve in every environment.

Fortunately, the usage of Server as a Service (SaaS) (discussed in 2.2) helps simplify

the task. Amazon Web Services (AWS)18 gives the possibility to users to convey

logs from different regions and accounts. Third party solutions are also available

on the market: Logstash is the best choice if an Elastic stack is used, otherwise

GrayLog19 or FluentD20 are great solutions too. This kind of tools provide an all-

in-one solution, offering also a visualization of the collected data. Views can be

customized, but most of the times are not flexible enough to satisfy admin needs.

Thus, it is important to choose the correct tool with respect to the current system

configuration.

18AWS Centralized Logging: https://aws.amazon.com/solutions/implementations/centr

alized-logging/
19GreyLog GitHub repositories: https://github.com/Graylog2
20FluentD GitHub repository: https://github.com/fluent/fluentd

https://aws.amazon.com/solutions/implementations/centralized-logging/
https://aws.amazon.com/solutions/implementations/centralized-logging/
https://github.com/Graylog2
https://github.com/fluent/fluentd

5 Currently adopted security

processes and methods

Despite in the last years security is gaining more and more attention, it is still diffi-

cult to identify companies which spent the correct amount of resources in ensuring

their systems and internal processes. Unfortunately, security is more often seen as a

deplorable task that drains resources and provides no tangible results. The reality is

that there is no possibility to achieve a good level of security thinking about it as a

patch which can be applied whenever resources are available. As widely discussed in

chapter 3, security is something that needs to be taken into account from the very

beginning in the design phase, therefore leading to an effective and even cheaper

ecosystem that works in synergy with the rest of the organization’s parts.

In support of the above, the 2020 Snyk report[35] underline that security aware-

ness seems to follow a growing trend within companies, but technical improvements

are still missing in practise. In the same way, GoSecure[50] detected a significant

gap in between the participants’ perceived security and the reality while confronting

the survey’s results with the penetration testers’ experience. Indeed, 26% of the

2020 Skyn report[35] responses stated to completely lack in security practices.

On the base of this assumptions, the aim of this chapter is to underline how far

reality is far from the theoretical model proposed in chapter 3. To better notice the

detachment with expectations, the analysis tries to follow the main SDLC structure.

CHAPTER 5. CURRENTLY ADOPTED SECURITY PROCESSES AND
METHODS 68

5.1 Requirements phase comparison

While discussing about requirements in section 3.2, the ISO 27001 standard has

been reviewed. After a decade is passed from its publication, an analysis over the

adoption has been carried out by Mona Mirtsch and her team[51]. The group used

web mining techniques to retrieve data about a wide landscape of German firms,

either Small-to-Medium Businesses (SMB) and large enterprises.

The outcomes (shown in figure 5.1) bring to light that the growing pace which was

expected for the standard adoption among the last 10 years has not been respected at

all. Reasoning for this insight has been identified into two main points: firstly, a wide

part of the companies that have been taken into account use to take advantage of

commercial partners with a certification to indirectly claim their compliance with the

standard. In fact, SaaS companies and data centers are usually big enterprises that

can easily afford the certification. Therefore, it is convenient for smaller customers

to take advantage of such. Indeed, it is no coincidence that the study showed that

SMBs are the company segment with the lowest adoption rate of the standard. The

second reason, related to this last information, is that a large portion of firms can

also implement their management system standard, simply avoiding to seek the

certification because of the related costs.

Despite the if the research is limited to Germany, there are reasons to think that

the country has been evaluated as representative of the entire continent. In fact,

the research has been mainly supported by the European Commission.

In the light of the latest EU Cybersecurity Act, the authors of the article point

out that, although the adoption of the standard is currently completely voluntary,

it cannot be excluded that it may become mandatory in the near future.

CHAPTER 5. CURRENTLY ADOPTED SECURITY PROCESSES AND
METHODS 69

Figure 5.1: ISO 27001 adoption statistics from [51].

5.2 Design phase comparison

The fast pace of developments and the continuous changing of technologies should

suggest to companies how important would be to share security responsibilities

among developers, security team and operations. Based on the 2020 Snyk report[35],

an improvement under this point of view has been noticed with respect to the pre-

vious years. The interviewees move from a completely unbalanced and unhealthy

developers responsibility towards a more distributed burden with respect to either

software and infrastructure. Despite the encouraging answers, the same report indi-

cates also that firms are lacking in programs to increase this kind of culture across

personnel. In fact, among some common practices with this culture growth aim,

47% of the population reported to have any of those in place. Therefore, still a lot

can be achieved to really establish a balanced perception of security culture.

Another important step that should be done in the design phase is the selection

of tools and packages that will be involved in the development. A package cannot be

choose solely with respect to the technical solutions provided. Software engineers,

together with security team should carefully evaluate their possibilities. Snyk re-

port reveals an encouraging statistics over the interviewees. In fact, 65% of them

CHAPTER 5. CURRENTLY ADOPTED SECURITY PROCESSES AND
METHODS 70

reported to check if an active community is present behind the project, 59% ana-

lyzes the frequency of commits and releases, 58% evaluate the ratings and number

of downloads and the 53% even review known vulnerabilities.

Less encouraging is the figure for the adoption of threat modelling sessions.

Unfortunately, only 19% of respondents use this methodology effectively.

5.3 Implementation phase comparison

As already discussed in section 3.4, software engineers may tend to prefer the devel-

opment phase by underestimating the review of what they produce. Even though

neglecting review phase of your own code is a very difficult task, using the correct

tools may lead to increasing the improve the final result, even before pushing the

commit to the repository. On the same line, restricting capabilities of a service or

forcing the usage of some protocols for the sake of security may sound as a task

which decrease user experience without bringing effective advantages.

5.3.1 Linters usage

As demonstrated by the research conducted by [52], the usage of linters seems to be

strongly linked with the quality of the delivered software. In the study, the authors

took into account the top 30000 starred Javascript repositories in GitHub, analyzing

their configuration files to detect the usage of linters. As shown in table 5.1, there

is an inverse correlation between the number of project taken into account from

the ranking and the related linters usage. In fact, the more low starred projects

are involved in the analysis, the more the linter adopters percentage decrease, until

reaching 28,5% when the entire ranking is taken into account. Instead, 7 out of the

top 10 repositories uses at least one or more of these tools. Taking into consideration

all the repositories involved in the used dataset, the percentage decrease again to

CHAPTER 5. CURRENTLY ADOPTED SECURITY PROCESSES AND
METHODS 71

24,2%. These latter data testify the poor usage of a specific kind of tool that,

looking at the top of the table 5.1, developers should struggle to adopt more and

more within their development environment.

Top projects Projects with linter % of top projects

10 7 70%

100 65 65%

300 185 61.7%

1000 535 53.5%

3000 1371 45.7%

5000 2082 41.6%

10000 3675 36.8%

20000 6306 31.5%

30000 8554 28.5%

83892 20292 24.2%

Table 5.1: Estimation of linters’ usage for 30000 top starred GitHub Javascript

projects, from [52].

5.3.2 HTTP Security Headers usage

HTTPS response headers are a powerful way of enforcing the usage of specific mea-

sures that drastically increase the security of a web application. Despite the re-

markable usefulness, an analysis over the usage of such tool conducted by Artūrs

Lavrenovs and F. Jesús Rubio Melón[53], evidenced the surprisingly low rate of

adoption. Among the one million websites used as test bench for the research, the

29.1% of all HTTPS requests shown incorrect TLS configuration due to untrusted

Certificate Authority (CA), self-signed certificates or expired ones. Implementation

CHAPTER 5. CURRENTLY ADOPTED SECURITY PROCESSES AND
METHODS 72

rates are also linked to the popularity of the website itself. An exponential negative

pattern in adoption rate for all the security headers has been registered following

the popularity curve of the web application taken into account. Specifically, HTTP

Strict Transport Security policy is used by the 17.5% of the entire web resources,

while a 38% of adoption rate has been recorded considering only the first one thou-

sand most popular websites. Only a 1.6% of the one million resources uses CSP,

while 50% uses HttpOnly flag and 19.3% adopt the Secure directive. Information

leakage has been registered to be more frequent among less popular or HTTP sites.

In addition, a recent study conducted by Eman Salem Alashwali[54] highlighted

HTTPS inconsistencies for application and transport layers. A new type of vulner-

ability, called "region confusion", aims to take advantage of the different HTTPS

header protections that the same request from different countries returns as a re-

sult. The paper also provides practical examples of how an attacker can exploit such

inconsistencies.

5.4 Test phase comparison

According to the 2020 Snyk report[35] still the 67% of the interviewees reported to

manually review and discover vulnerabilities inside their code. Still, the 48% of the

population uses audit tools to analyze source code, either automatically of firing the

tool manually. In fact, audits can be easily integrated into pipelines to get the most

out of them together with other sort of controls.

Although the importance of CI/CD processes has been highlighted in section

2.4.2, the DZone trend report[55] presents a good understanding over the real usage

of such tool. Continuous Integration is almost a widely-adopted practise, since the

89% of the teams reported to have automated pipelines to build and test the code.

Following the same nomenclature enforced in 2.4.1, this percentage decrease the

more we move toward production: tests are automatically performed in STAGE

CHAPTER 5. CURRENTLY ADOPTED SECURITY PROCESSES AND
METHODS 73

environment by the 80%, but then in QA and PROD environments the percentage

goes down with respectively 57% and 50%. That being said, more than half of

the respondents (55%) indicate CI as useful to catch problems in the early stage,

estimating around 30% of executed pipelines as failed because of an undetected

error.

According to the 2020 Snyk report[35], the most commonly integrated security

control in pipelines is the SAST, with 57% of adoption among the respondents.

Apparently, SAST is the only control applied by the majority of companies since

only 20% and 19% reported to also respectively use DAST and dependency scanner

tools. Despite Kubernetes is the choice of 44% of companies that leverage over a

container-based infrastructure, only by 28% of the respondents are using security

tools to analyze their manifests.

Speaking about dependencies, their importance and the risk that those introduce

into the source base of a web application seems to be not that well perceived by

most of the organizations: 60% of the organizations involved in the report admit to

miss the analysis of the full dependency tree of their source base, inspecting only

partially the tree or omitting to check it at all.

Back to DZone report[55], Continuous Deployment follows a diminishing trend

of usage nearby the production stage, likewise CI gait. In fact, the 59% reported to

automatically deploy from QA to PROD, followed by 73% and 85% following the

steps backwards. 77% instead, use to deploy to DEV as soon as a commit has been

created. A good practice can be to apply security test cases together with smoke

tests in the CD pipeline: 28% of Snyk report respondents perform such security

controls in QA environment.

DZone report announce a remarkable increment of investments in CI/CD meth-

ods in the last two-three years for SMBs. Despite the positive effects, the integration

of CI/CD methods within the software development process is not immediate. The

CHAPTER 5. CURRENTLY ADOPTED SECURITY PROCESSES AND
METHODS 74

DZone report states that SMBs can achieve the complete process within six up to

nine months, but Large enterprises timing is estimated between six months up to

two years. Even though this shifting periods can be expensive for an organization,

later outcomes (security-wise or not) are remarkable.

5.5 Deploy phase comparison

Supporting the web application once it has been deployed means also patch effec-

tively the system as soon as new potential security holes are discovered. Therefore,

the ability to detect vulnerabilities is important, even if it is even more crucial being

able to solve as soon as possible. According to 2020 Verizon Data Breach Investi-

gation Report[1], 81% of the breaches are contained within days or even less. This

statistic is quite predictable given the severity that can result from an intrusion.

When it comes to fixing vulnerabilities, the readiness to react decreases as there is

no tangible emergency, although the risk may still be very high depending on the

situation. 2020 Snyk report[35] once again provide a good overview on the case:

only 1% of the flaws are fixed within a day from the detection; less then 20 days

is required to handle the 34% of vulnerabilities, while 29% of those are solved in

20-70 days. The remaining 36% of vulnerabilities took more than 70 days in order

to be purged. A reasonable comparison can be made with data provided by 2020

GoSecure report[50], which states that weeks or even more are needed to patch over

the 52% of the vulnerabilities.

It is quite reasonable to think that the urgency of the patch strongly depends

on severity of the vulnerability itself. Perhaps, this is not enough to justify so long

reaction timings, which by average leaves even too much time to potential attackers

to exploit the flaws.

6 Implementation and verification of

the approach: a case study

According to the 2020 Verizon Data Breach Investigation Report[1], the common

shift toward the usage of cloud computing and SaaS solutions hardly contribute to

narrow down the difference of attack rate between large enterprises (which used to

be widely more attractive) and SMB. Even if the split is still high (407 incidents for

SMB against 8666 for large enterprises in the last year), Verizon reports that 28%

of the overall breaches involve SMB. A rising phenomenon, it is useful to observe

how security is treated from a small firm’s perspective.

Having the possibility to have an internal perspective in one of the companies who

decided to implement and use a microservice architecture is a great opportunity to

deeply understand how the workflow is built on the architecture itself. The author of

this thesis had the chance to work for Awake.ai1, a young startup which proposes an

innovative online platform addressed to businesses working in the maritime logistics

field. The company is composed by less then 30 employees in which a small security

team is included. After roughly one year of activity, the company managed to deliver

the Most Valuable Product (MVP) of a web platform which provides to the customer

useful insights and optimization proposals for commercial maritime traffic.

Likewise the previous chapter, the SDLC main structure will be used as backbone

1Awake.ai website: https://www.awake.ai/

https://www.awake.ai/

CHAPTER 6. IMPLEMENTATION AND VERIFICATION OF THE
APPROACH: A CASE STUDY 76

to verify the alignment of the company with either the best practices (chapter 3)

and the real scenario analysis (chapter 5).

6.1 Requirements

Since confidential information is handled by the platform, ensuring that the traffic is

secure in every single step of the dataflow is a priority for the company. Therefore,

it is quite important for the startup to be compliant the ISO 27000 certification.

Security team fixed the certification as a milestone and is working in order improve

what is missing to be fully compliant with the standard. Meanwhile, every time an

architectural decision has to be taken, the security team facilitates the discussion in

order to always take a decision in line with the ISO 27001 standard.

6.2 Design

While software engineers design the architecture of the software, they may need

to integrate the usage of a new library. If that happens, security team is usually

consulted to receive a feedback regarding the third party software and its reliability.

The company uses a cloud computing solution where several different environ-

ments are set up, in line which what described in the section 2.4.1. The development

environment is used as a test bench for testing new features and patches, therefore

every developer is encouraged to use that space without any fear of disrupting the

service. Running each single service locally is still possible and almost every service

is documented with a detailed procedure which explains the steps to take in order

to run the software locally.

The infrastructure is scripted using infrastructure-as-code tools, therefore it is

easy to reestablish a working state of the services in case something goes wrong.

Disaster recovery guidelines are well documented as well and describe every single

CHAPTER 6. IMPLEMENTATION AND VERIFICATION OF THE
APPROACH: A CASE STUDY 77

step that is needed to set from scratch the entire infrastructure.

Secrets are handled using the related service offered by the SaaS provider and

is well adopted among all the teams. Quite a lot of effort has been spent in the

last periods before the MVP to centralize the handling of secrets. In addition, the

company is also evaluating the usage of an ad-hoc third party solution which would

allow to decrease dependency from the cloud computing firm, as well as offering

more advanced tools such as the periodic key rotation.

Threat Modeling was not taken into account from the very beginning, but is

now under process. Most important components have been already analyzed and

the rest of the services are in plan. The Data Flow Diagram is used as baseline to

start the discussion, while the STRIDE pattern is usually always visible during the

meetings to keep in mind crucial points to think about. No special tools are used

than a standard whiteboard in addition to the DFD. Usually the head of security

team facilitate the meeting, where the involved developers and the security team

members take part.

6.3 Implementation

During the implementation phase the developers are free to use and test tools which

can improve the flow. Linters are one of those: it is a software engineer’s choice

to setup a linter in his environment. Therefore there are no written conventions

over the code style. Nevertheless, linters are integrated into the pipelines, basically

working as SAST. Therefore, at least a basic scan of the code is enforced and the

commits can also be rejected in case an error is raised.

Speaking about HTTP Security Headers, security team struggled to work in

cooperation with developers to enhance the overall security level of the platform

before the MVP launch. At first, the usage of HTTPS over HTTP has been forced

using redirects, while CORS and CSP headers, together with Cookies directives

CHAPTER 6. IMPLEMENTATION AND VERIFICATION OF THE
APPROACH: A CASE STUDY 78

have been configured to restrict as much as possible the attack surface. Particular

attention has been dedicated also to all those headers which can leak useful insights

over the system configuration.

6.4 Test

More than 50 smoke tests are usually fired before committing a deploy in production.

Tests are made against the QA environment using different browsers. Together with

standard functional tests, few security-related ones are included like checks against

XSS attacks or similar.

No automated penetration tests or fuzzing have been configured yet. What has

been developed is a dependency scanner. The tool is deployed as a container within

the cluster and it is fired once per day during the night. Only the dependencies

that eventually end up in the production software are tested and alerts in the in-

ternal chat are pushed in case some vulnerability has been discovered. Because of

the characteristics of microservices, each container can be developed with a differ-

ent programming language. Therefore, the scanner goes through all the different

services and, one by one, detect the used languages and fire relative tools against

the codebase.

Recently, container scanning capabilities have been implemented in the company.

Thus, DevOps and security team decided to follow the same idea of the dependency

scanner, creating a parallel service that can run during night as an additional service.

6.5 Deploy

Since the company is using an agile development process, deployment is usually

forced at the end of each sprint (which can last 2 or 3 weeks). Such deadline is not

that strict in reality since a deployment can be semi-automatically made just by

CHAPTER 6. IMPLEMENTATION AND VERIFICATION OF THE
APPROACH: A CASE STUDY 79

tagging a certain repository version as release candidate.

Once the development team creates a release candidate, a CD pipeline is fired

and a small amount of integration test is made. The involved developers are called

to notify the tester that will fire the complete set of smoke tests and, eventually,

will allow software engineers to create deploy to production as well. Such workflow

is not completely in line with the CI/CD philosophy since many manual steps are

still needed in order to deploy a definitive version into the final product, but still

the workflow is lean enough to avoid the acceptance of product owners.

Analytics over the services and the entire platform is available and generates

alerts for DevOps in case strange behaviors are detected. A monitoring tool is

adopted by the company, which allows to retrieve useful insights and logs from the

each single service and from the cluster in general. On top of this information, dif-

ferent dashboards are available to every employee and are generally used to monitor

performance and traffic load among the platform. Since the simplicity of usage, each

developer is encouraged by the DevOps team to craft their own dashboards.

7 Conclusion

A deep analysis over the most up-to-date technologies, best practices and recom-

mendations to ensure web applications based on microservices architecture has been

conducted. Ensuring a web platform effectlively is a task that needs to be accom-

plished working all along the lifecycle that the software development follows. Af-

ter analyzing the ideal Secure Software Development Lifecycle for a company that

adopts microservice architecture, a comparison with the actual measures taken on

average by companies was drawn.

The study showed a clear negative detachment between the current state of the

art and the real approach adopted by the firms. Based on the multiple technical

reports analyzed and in line with the expectations endorsed by the data on attacks

in 2020 reported by Verizon, none of the various phases of the Software Development

Lifecycle can be considered sophisticated in terms of measures taken to avoid possible

cyber attacks.

A virtuous case study was analyzed to understand how much and how the size

of the business can influence the implemented methodologies. Even if not in line

with all the recommendations, the small startup proved to be definitely above av-

erage compared to the previous analysis, suggesting a real advantage brought by

the dynamism of the team and the ability to make changes frequently and quickly,

unlike large enterprises. However, it is not possible to generalise these observations

to all SMBs. Therefore, a possible future study could try to consider more com-

CHAPTER 7. CONCLUSION 81

panies of this size to see if the characteristics found are in line, consolidating the

considerations made in this study.

As an additional future research option, it would be extremely useful to explore

how to accelerate progress for more structured companies, where changes takes al-

ways reasonably more time. In fact, an enterprise needs to carefully evaluate all the

cascade effects of a possible change may provoke, while also the application itself

may require many steps to be accomplished and more policies to be respected.

Acronyms

ACL Access Control List. 38

APIs Application Programming Interfaces. 12, 13, 50, 65

AWS Amazon Web Services. 66

CA Certificate Authority. 71

CAB Change Approval Board. 27

CD Continuous Deployment. 27, 28, 73, 79

CI Continuous Integration. 25–28, 72, 73

CI/CD Continuous Integration and Deployment. 11, 24–26, 28, 47, 64, 72, 73, 79

CIS Center of Internet Security. 59

CISSP Certified Information Systems Security Professional. 61, 62

CNCF Cloud Native Computing Foundation. 17

CORS Cross-Origin Resource Sharing. 49, 50, 77

CPU Central Processing Unit. 9, 16

CSP Content Security Policy. 50, 72, 77

CSRF Cross Site Request Forgery. 50, 51

Acronyms 83

CSS Cascading Style Sheets. 50, 52

DAST Dynamic Application Security Testing. 54, 62, 63, 73

DevOps Software Development Operation. 3, 6, 19, 22, 32, 55, 56, 59, 61, 64, 65,

78, 79

DevSecOps Software Development Security Operation. 60

DFD Data Flow Diagram. 40–42, 45, 77

DNS Domain Name System. 18, 57

DOS Denial of Service. 53

HIPAA Health Insurance Portability and Accountability Act. 34

HTTP Hypertext Transfer Protocol. 49, 52, 72, 77

HTTPS Hypertext Transfer Protocol Secure. 41, 42, 51, 71, 72, 77

IAST Interactive Application Security Testing. 62, 63

IDE Integrated Development Environment. 47

IEC International Electrotechnical Commission. 34

InfoSec Information Security. 3, 56

IP Internet Protocol. 18, 49, 59

ISMS Information Security Management System. 35

ISO International Organization for Standardization. 34, 35, 68, 69, 76

K8s Kubernetes. 17–19, 58–60, 73

Acronyms 84

LFS Log-structured File System. 8

LINDDUN Linkability, Identifiability, Non-repudiation, Detectability, Disclosure

of information, Unawareness, Non-compliance. 40

MVP Most Valuable Product. 75, 77

OS Operating System. 13, 14, 16, 42

OWASP Open Web Application Security Project. 45, 46, 48, 49

PaaS Platform as a Service. 8

PASTA Process for Attack Simulation and Threat Analysis. 41

PCI-DSS Payment Card Industry Data Security Standard. 34

RAID Redundant Array of Independent Disks. 8

SaaS Server as a Service. 66, 68, 75, 77

SAST Static Application Security Testing. 54, 62, 63, 73, 77

SDLC Software Development Lifecycle. 5, 7, 32, 33, 44, 45, 67, 75, 80

SMB Small-to-Medium Businesses. 68, 73–75, 80

SOC Security Operations Center. 65

SOP Same Origin Policy. 50

SSDLC Secure Software Development Lifecycle. 32, 33, 48, 80

STRIDE Spoofing, Tampering, Repudiation, Information disclosure, Denial of ser-

vice, Elevation of privilege. 40, 42–44, 77

Acronyms 85

TLS Transport Layer Security. 41, 53, 71

TM Threat Modeling. 36, 39–42, 44–46, 77

TRIM Targeted Review of Internal Models. 40, 43

TTL Time To Live. 39

UI User Interface. 9

URL Uniform Resource Locator. 51

VM virtual machine. 14

XSS Cross-site Scripting. 48, 50, 78

References

[1] Verizon, 2020 data breach investigations report, 2020. [Online]. Available: ht

tps://enterprise.verizon.com/resources/reports/dbir/ (visited on

10/24/2020).

[2] Verizon, 2019 data breach investigations report, 2019. [Online]. Available: htt

ps://web.archive.org/web/20190726222804/https://enterprise.veriz

on.com/resources/reports/dbir/ (visited on 10/24/2020).

[3] R. Hoda, N. Salleh, and J. Grundy, “The rise and evolution of agile software

development”, IEEE software, vol. 35, no. 5, pp. 58–63, 2018.

[4] K. M. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,

M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Mar-

ick, R. C. Martin, S. J. Mellor, K. Schwaber, J. Sutherland, and D. Thomas,

“Manifesto for agile software development”, 2001. [Online]. Available: https:

//agilemanifesto.org/principles.html.

[5] CollabNet and VersionOne, 13th annual state of agile report, 2018. [Online].

Available: https://stateofagile.com/#ufh-i-613553418-13th-annual-s

tate-of-agile-report/7027494 (visited on 10/24/2020).

[6] CollabNet and VersionOne, 1st annual state of agile report, 2007. [Online].

Available: https://stateofagile.com/# (visited on 10/24/2020).

https://enterprise.verizon.com/resources/reports/dbir/
https://enterprise.verizon.com/resources/reports/dbir/
https://web.archive.org/web/20190726222804/https://enterprise.verizon.com/resources/reports/dbir/
https://web.archive.org/web/20190726222804/https://enterprise.verizon.com/resources/reports/dbir/
https://web.archive.org/web/20190726222804/https://enterprise.verizon.com/resources/reports/dbir/
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html
https://stateofagile.com/#ufh-i-613553418-13th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-613553418-13th-annual-state-of-agile-report/7027494
https://stateofagile.com/#

REFERENCES 87

[7] A. Stellman and J. Greene, Learning agile: Understanding scrum, XP, lean,

and kanban. United States of America: O’Reilly Media, Inc., 2014.

[8] J. Sutherland and J. Sutherland, Scrum: the art of doing twice the work in

half the time. Currency, 2014.

[9] K. Rindell, S. Hyrynsalmi, and V. Leppänen, “Busting a myth: Review of

agile security engineering methods”, in Proceedings of the 12th International

Conference on Availability, Reliability and Security, New York, USA, 2017,

pp. 1–10.

[10] N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood, “Exploring soft-

ware security approaches in software development lifecycle: A systematic map-

ping study”, Computer Standards & Interfaces, vol. 50, pp. 107–115, 2017.

[11] N. B. Ruparelia, “Software development lifecycle models”, ACM SIGSOFT

Software Engineering Notes, vol. 35, no. 3, pp. 8–13, 2010.

[12] A. Alshamrani and A. Bahattab, “A comparison between three sdlc models

waterfall model, spiral model, and incremental/iterative model”, International

Journal of Computer Science Issues (IJCSI), vol. 12, no. 1, p. 106, 2015.

[13] K. Petersen, C. Wohlin, and D. Baca, “The waterfall model in large-scale de-

velopment”, in International Conference on Product-Focused Software Process

Improvement, Springer, Berlin, Heidelberg, 2009, pp. 386–400.

[14] N. Forsgren, D. Smith, J. Humble, and J. Frazelle, “2019 accelerate state of

devops report”, Tech. Rep., 2019. [Online]. Available: http://cloud.google

.com/devops/state-of-devops/.

[15] B. Haskins, J. Stecklein, B. Dick, G. Moroney, R. Lovell, and J. Dabney,

“Error cost escalation through the project life cycle”, in INCOSE International

Symposium, 1, vol. 14, Hoboken, New Jersey: Wiley Online Library, 2004,

pp. 1723–1737.

http://cloud.google.com/devops/state-of-devops/
http://cloud.google.com/devops/state-of-devops/

REFERENCES 88

[16] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli,

and R. Y. Wang, “Serverless network file systems”, in Proceedings of the fif-

teenth ACM symposium on Operating systems principles, New York, USA,

1995, pp. 109–126.

[17] Red Hat, Virtualization: What is a hypervisor? [Online]. Available: https:

//www.redhat.com/en/topics/virtualization/what-is-a-hypervisor

(visited on 10/24/2020).

[18] J. Thönes, “Microservices”, IEEE software, vol. 32, no. 1, pp. 116–116, 2015.

[19] S. Newman, Building microservices: designing fine-grained systems. United

States of America: O’Reilly Media, Inc., 2015.

[20] D. Merkel, “Docker: Lightweight linux containers for consistent development

and deployment”, Linux journal, vol. 2014, no. 239, p. 2, 2014.

[21] D. Liu and L. Zhao, “The research and implementation of cloud comput-

ing platform based on docker”, in 2014 11th International Computer Confer-

ence on Wavelet Actiev Media Technology and Information Processing (IC-

CWAMTIP), IEEE, Chengdu, China, 2014, pp. 475–478.

[22] Docker, Docker overview. [Online]. Available: https://docs.docker.com/ge

t-started/overview/ (visited on 10/24/2020).

[23] T. Combe, A. Martin, and R. Di Pietro, “To docker or not to docker: A security

perspective”, IEEE Cloud Computing, vol. 3, no. 5, pp. 54–62, 2016.

[24] L. E. Hecht, CoreOS, Red Hat and Kubernetes Competition. [Online]. Avail-

able: https://thenewstack.io/coreos-red-hat-kubernetes-competitio

n/ (visited on 10/24/2020).

[25] Kubernetes, Kubernetes concepts. [Online]. Available: https://kubernetes

.io/docs/concepts/ (visited on 10/24/2020).

https://www.redhat.com/en/topics/virtualization/what-is-a-hypervisor
https://www.redhat.com/en/topics/virtualization/what-is-a-hypervisor
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://thenewstack.io/coreos-red-hat-kubernetes-competition/
https://thenewstack.io/coreos-red-hat-kubernetes-competition/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/

REFERENCES 89

[26] Google Container Tools, "Distroless" Docker Images. [Online]. Available: http

s://github.com/GoogleContainerTools/distroless (visited on 10/24/2020).

[27] Docker, Use multi-stage builds. [Online]. Available: https://docs.docker.c

om/develop/develop-images/multistage-build/ (visited on 10/24/2020).

[28] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. United States of America:

Pearson Education, 2010.

[29] M. Shahin, M. A. Babar, and L. Zhu, “Continuous integration, delivery and de-

ployment: A systematic review on approaches, tools, challenges and practices”,

IEEE Access, vol. 5, pp. 3909–3943, 2017.

[30] K. Beck and E. Gamma, Extreme Programming Explained: Embrace Change.

Massachusetts: Addison-Wesley Professional, 2000.

[31] L. Chen, “Continuous delivery: Huge benefits, but challenges too”, IEEE Soft-

ware, vol. 32, no. 2, pp. 50–54, 2015.

[32] J. Bird, DevOpsSec: Delivering Secure Software Through Continuous Delivery.

United States of America: O’Reilly Media, 2016.

[33] Unity Technologies, Unity - Secure Software Development Lifecycle SSDLC.

[Online]. Available: https://github.com/UnityTech/unity-ssdlc/blob/m

aster/Overview.md (visited on 10/24/2020).

[34] G. Disterer, “ISO/IEC 27000, 27001 and 27002 for information security man-

agement”, Journal of Information Security, vol. 4, no. 2, pp. 92–100, 2013.

[35] Snyk, State of open source security report (2020), 2020. [Online]. Available:

https://info.snyk.io/sooss-report-2020 (visited on 10/24/2020).

https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/
https://github.com/UnityTech/unity-ssdlc/blob/master/Overview.md
https://github.com/UnityTech/unity-ssdlc/blob/master/Overview.md
https://info.snyk.io/sooss-report-2020

REFERENCES 90

[36] K. Bernsmed and M. G. Jaatun, “Threat modelling and agile software devel-

opment: Identified practice in four norwegian organisations”, in 2019 Interna-

tional Conference on Cyber Security and Protection of Digital Services (Cyber

Security), IEEE, Oxford, United Kingdom, 2019, pp. 1–8.

[37] N. Shevchenko, T. A. Chick, P. O’Riordan, T. P. Scanlon, and C. Woody,

“Threat modeling: A summary of available methods”, Carnegie Mellon Uni-

versity Software Engineering Institute Pittsburgh United, Tech. Rep., 2018.

[38] K. Wuyts and W. Joosen, “LINDDUN privacy threat modeling: A tutorial”,

CW Reports, 2015.

[39] L. Sion, K. Yskout, D. Van Landuyt, and W. Joosen, “Solution-aware data

flow diagrams for security threat modeling”, in Proceedings of the 33rd Annual

ACM Symposium on Applied Computing, New York, USA, 2018, pp. 1425–

1432.

[40] OWASP Foundation, OWASP top 10 web application security risks. [Online].

Available: https://owasp.org/www-project-top-ten/ (visited on 10/24/2020).

[41] Mozilla, HTTP observatory scoring methodology. [Online]. Available: https:

//github.com/mozilla/http-observatory/blob/master/httpobs/docs/s

coring.md (visited on 10/24/2020).

[42] OWASP Foundation, OWASP secure headers project. [Online]. Available: htt

ps://wiki.owasp.org/index.php/OWASP_Secure_Headers_Project#ect

(visited on 10/24/2020).

[43] B. P. Miller, Fuzz testing of application reliability. [Online]. Available: http:

//pages.cs.wisc.edu/~bart/fuzz/ (visited on 10/24/2020).

[44] S. S. Malladi and H. C. Subramanian, “Bug bounty programs for cybersecurity:

Practices, issues, and recommendations”, IEEE Software, vol. 37, no. 1, pp. 31–

39, 2019.

https://owasp.org/www-project-top-ten/
https://github.com/mozilla/http-observatory/blob/master/httpobs/docs/scoring.md
https://github.com/mozilla/http-observatory/blob/master/httpobs/docs/scoring.md
https://github.com/mozilla/http-observatory/blob/master/httpobs/docs/scoring.md
https://wiki.owasp.org/index.php/OWASP_Secure_Headers_Project#ect
https://wiki.owasp.org/index.php/OWASP_Secure_Headers_Project#ect
http://pages.cs.wisc.edu/~bart/fuzz/
http://pages.cs.wisc.edu/~bart/fuzz/

REFERENCES 91

[45] Center of Internet Security, CIS kubernetes benchmark version 1.6.0, 2020.

[Online]. Available: https://www.cisecurity.org/benchmark/kubernetes/

(visited on 10/24/2020).

[46] Snyk, The untold tale of helm chart security, 2019. [Online]. Available: ht

tps : / / snyk . io / wp - content / uploads / helm - report . pdf (visited on

10/24/2020).

[47] PureSec Ltd., Ten Most Critical Risks for Serverless Applications. [Online].

Available: https://github.com/puresec/sas-top-10 (visited on 10/24/2020).

[48] E. Conrad, S. Misenar, and J. Feldman, Eleventh Hour CISSP®: Study Guide.

United States of America: Syngress, 2016.

[49] R. Mullins, B. Nargi, and A. Fouse, “Understanding and enabling tactical sit-

uational awareness in a security operations center”, in Advances in Human

Factors in Cybersecurity, Cham, Switzerland: Springer International Publish-

ing, 2020, pp. 75–82.

[50] GoSecure, Cybersecurity perceptions versus reality, 2020. [Online]. Available:

https://landing.gosecure.net/W-Report-Cybersecurity-Perceptions

-Versus-Reality-Landing.html (visited on 10/24/2020).

[51] M. Mirtsch, J. Kinne, and K. Blind, “Exploring the adoption of the inter-

national information security management system standard iso/iec 27001: A

web mining-based analysis”, IEEE Transactions on Engineering Management,

pp. 1–14, 2020.

[52] K. F. Tómasdóttir, M. Aniche, and A. Van Deursen, “The adoption of javascript

linters in practice: A case study on eslint”, IEEE Transactions on Software En-

gineering, vol. 46, no. 8, pp. 863–891, 2020.

https://www.cisecurity.org/benchmark/kubernetes/
https://snyk.io/wp-content/uploads/helm-report.pdf
https://snyk.io/wp-content/uploads/helm-report.pdf
https://github.com/puresec/sas-top-10
https://landing.gosecure.net/W-Report-Cybersecurity-Perceptions-Versus-Reality-Landing.html
https://landing.gosecure.net/W-Report-Cybersecurity-Perceptions-Versus-Reality-Landing.html

REFERENCES 92

[53] A. Lavrenovs and F. J. R. Melón, “HTTP security headers analysis of top one

million websites”, in 2018 10th International Conference on Cyber Conflict

(CyCon), IEEE, Tallinn, Estonia, 2018, pp. 345–370.

[54] E. S. Alashwali, P. Szalachowski, and A. Martin, “Exploring https security in-

consistencies: A cross-regional perspective.”, IACR Cryptology ePrint Archive,

vol. 2020, p. 79, 2020.

[55] DZone, The state of CI/CD. [Online]. Available: https://dzone.com/trend

reports/the-state-of-cicd (visited on 10/24/2020).

https://dzone.com/trendreports/the-state-of-cicd
https://dzone.com/trendreports/the-state-of-cicd

	Introduction
	Key principles and tools for Agile Fast Development Workflow
	Agile security engineering method
	The Software Development Lifecycle in Agile
	The Shift Left paradigm

	Serverless
	Advantages
	Disadvantages

	Microservices
	Containers - Docker
	Container orchestration - Kubernetes
	DIE paradigm
	Distroless containers

	Release Management
	Deployment environments
	Continuous integration & continuous deployment
	Pipelines

	Security best practices in software development
	Secure Software Development Lifecycle
	Requirements phase
	ISO/IEC 27000-series standard

	Design phase
	Pre-coding
	Threat modeling

	Implementation phase
	Coding
	HTTP security headers

	Test phase
	Deploy phase
	Retirement

	Cutting-edge approaches for secure development
	Improvements for microservice environments
	Kubernetes security management
	Periodic container scans
	Hacking testing environment

	General proposals of improvement
	Periodic vulnerability scans
	Interactive Application Security Testing
	Code review exercising
	Penetration testing automation
	Dashboards
	Centralized Log Management

	Currently adopted security processes and methods
	Requirements phase comparison
	Design phase comparison
	Implementation phase comparison
	Linters usage
	HTTP Security Headers usage

	Test phase comparison
	Deploy phase comparison

	Implementation and verification of the approach: a case study
	Requirements
	Design
	Implementation
	Test
	Deploy

	Conclusion
	References

