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ABSTRACT 

The gastrointestinal tract starts at the oral cavity and ends at the colon, and both 
habitats are heavily colonised with microbes. The microbial communities are 
modulated by food ingredients such as sugar, xylitol and human milk 
oligosaccharides (HMOs). This thesis aimed to evaluate: 1) the effects of xylitol and 
an HMO, 2´-fucosyllactose (2´-FL), on the growth, adhesion and biofilm formation 
of caries associated bacterium Streptococcus mutans; and 2) the effects of 2´-FL on 
simulated infant microbiota and metabolite compositions. We utilised in vitro model 
systems to mimic the oral cavity and colon. 

The biofilm formation of mutans streptococci was decreased in the presence of 
xylitol and xylitol mints and increased in the presence of sucrose and sucrose mints. 
Planktonic S. mutans grew well on galacto-oligosaccharides (GOS), whereas 2´-FL 
was not utilised by S. mutans as a carbon source, and xylitol inhibited S. mutans 
growth. The adhesion experiments showed no consistent inhibition patterns for 2´-
FL or GOS, and 1% xylitol did not inhibit the adhesion of the S. mutans strains. 2´-
FL, GOS and lactose all promoted the growth of bifidobacteria in a simulated infant 
microbiota experiment. The slight changes in microbiota composition associated 
with 2´-FL were reflected by the production of short-chain fatty acids and the 
reduced production of acetate and lactate in the presence of 2´-FL compared with 
lactose or GOS. The simulations showed differences in 2´-FL fermentation abilities, 
indicating that 2´-FL fermentation requires specific microbial activity compared 
with the fermentation of either lactose or GOS. 

In conclusion, we propose that xylitol can be considered an active ingredient for 
the inhibition of planktonic S. mutans growth and early biofilm formation. 2´-FL did 
not support S. mutans growth and thus should not promote unfavourable changes in 
caries microbiota. Finally, the infant colon and dental simulation models were found 
to serve as functional models for studying the effects of various food ingredients on 
bacterial growth, metabolite production and biofilm formation. 

KEYWORDS: Streptococcus mutans, oral microbiota, adherence, biofilm, infant 
colonic microbiota, human milk oligosaccharides, xylitol, 2´-fucosyllactose, 
galacto-oligosaccharides 
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TIIVISTELMÄ 

Ruuansulatus alkaa suusta ja jatkuu ruuansulatuskanavan kautta paksusuoleen. Sekä 
suussa että suolistossa on tiheä bakteeristo. Mikrobiston koostumusta voi muovata 
eri ruoka-ainella, kuten sokerilla, ksylitolilla ja äidinmaidon oligosakkarideilla 
(HMO:lla). Tutkimuksen tavoitteina oli arvioida 1) ksylitolin ja yhden HMO:n 2´-
fukosyylilaktoosin (2´-FL:n) vaikutusta hampaiden reikiintymiseen kytkeytyvän 
Streptococcus mutans -bakteerin kasvuun, biofilmin muodostumiseen ja kiinnit-
tymiseen pinnoille ja 2) tutkia 2´-FL:n vaikutuksia mallinnettuun vauvan suolisto-
mikrobiston koostumukseen ja sen tuottamiin aineenvaihduntatuotteisiin. Tutkimuk-
sessa käytettiin suuta ja suolistoa jäljitteleviä in vitro malleja. 

Mutans streptokokkien biofilmin muodostus väheni ksylitolilla ja ksylitoli-
minttupastilleilla ja lisääntyi sakkaroosilla ja sakkaroosipohjaisilla minttupastilleilla. 
S. mutans kasvoi hyvin galakto-oligosakkarideilla (GOS:lla), mutta ei 2´-FL:lla ja 
ksylitol hidasti sen kasvua. Kiinnittymiskokeissa ei löydetty 2´-FL:lle ja GOS:lle 
samansuuntaista vaikutusta ja 1% ksylitoli ei estänyt S. mutans bakteerin 
kiinnittymistä. 2´-FL, GOS ja laktoosi, lisäsivät kaikki bifidobakteereiden määrää 
mallinnetussa vauvan mikrobistossa. Pienet 2´-FL:n aiheuttamat muutokset 
mikrobistossa näkyivät myös lyhytketjuisten rasvahappojen tuotossa. Mallinnettu 
mikrobisto muodosti 2´-FL:lla vähemmän asetaattia ja laktaattia kuin GOS:lla ja 
laktoosilla. Mallinnusten välillä oli eroja 2´-FL n käytössä, mikä viittaa siihen että 
2´-FL:n käyttäminen vaatii tarkoin määrätyn mikrobistokoostumuksen verrattuna 
laktoosiin ja GOS:hin. 

Yhteenvetona voidaan todeta, että ksylitolia voidaan pitää aktiivisena ruuan 
ainesosana, joka hidastaa S. mutans:n kasvua ja vähentää biofilmin muodostusta. S. 
mutans ei kasvanut 2´-FL:lla, mikä viittaa siihen, että sen käytöstä ei seuraa 
haitallisia vaikutuksia suumikrobiston koostumukseen. Suun biofilmin ja vauvan 
suolistoa jäljittelevät in vitro mallit todettiin hyödyllisiksi arvioitaessa ruuan 
ainesosia, joilla voidaan vaikuttaa mikrobiston koostumukseen. 

AVAINSANAT: Streptococcus mutans, suun mikrobisto, kiinnittyminen, biofilmi, 
vauvan suolen mikrobisto, äidinmaidon oligosakkaridit, ksylitoli, 2´-
fukosyylilaktoosi, galakto-oligosakkaridi 
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1 Introduction 

The oral cavity represents the first section of the gastrointestinal tract, extending 
from the lips and cheeks and continuing into the oropharynx. The oral cavity is 
composed of both hard (teeth and jaws) and soft tissues (lips, gingiva, oral mucosa 
and tongue, Fig. 1). The primary function of the oral cavity involves the ingestion of 
food, including mastication and swallowing. Other functions include speech and 
ventilation. 

The colon represents the end of the gastrointestinal tract. (Fig. 1). The primary 
components of the colon include the cecum, ascending colon, transverse colon, 
descending colon, sigmoid colon and rectum. The primary physiological functions 
of the colon include the absorption of water and salts and the formation and storage 
of faecal material (Carrington, 2014). Moreover, microbiota in the colon perform 
many essential functions, which are described in more detail below. 

Figure 1. a) The gastrointestinal tract, starting from the oral cavity and ending in the colon 
(Copyright Pinja Kettunen/SciArt and DuPont Nutrition & Biosciences, with permission). 
b) The oral cavity (own drawing). 
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Introduction 

This thesis describes the study of two rich microbial environments: the oral cavity 
and the colon (Huttenhower et al., 2012). Currently, humans are estimated to carry 
1.3-fold more bacterial cells than human cells (Sender et al., 2016); therefore, 
commensal bacteria likely play many important functions, which are specific to their 
habitats. Diet is crucial for the healthy development and function of both oral and 
infant gut microbiota communities, and any disruptions in the quality or quantity of 
diet have major consequences on microbial composition and virulence. The frequent 
intake of fermentable carbohydrates and the subsequent (local) acid production can 
shift the balance of oral microbiota away from a symbiotic relationship between 
commensal oral microbes and the host (Marsh, 2018). This dysbiosis is characterised 
by the production of extracellular polymeric compounds and acidic metabolic 
products, which favours the proliferation of acidogenic and aciduric organisms, such 
as Streptococcus mutans (Lamont et al., 2018; Marsh, 2018). Adjustments in diet, such 
as the habitual consumption of xylitol, may prevent the development of dysbiosis 
associated with a sucrose-containing diet and snacking (Söderling et al., 2015). 

The gut microbiota develops during infancy, and interactions between microbes 
and the host during this period can have long-lasting consequences (Milani et al., 
2017). Breast milk is often the primary food source for infants. When breastfeeding is 
not possible, formula provides an alternative food source. Because the composition of 
breast milk changes during lactation and varies interindividually, formula represents a 
compromise, in both composition and function. Breast milk contains many bioactive 
molecules, including human milk oligosaccharides (HMOs), a collection of over 150 
different structures, which are not digested by infants but can nourish and alter the 
infant microbiota composition because only certain bacteria are able to utilise them as 
an energy source (Li et al., 2020; Milani et al., 2017; Urashima et al., 2018). HMOs 
can be considered an infant’s first prebiotics. During adulthood, microbiota diversity 
and well-being can be augmented by the provision of complex carbohydrates in the 
diet (Sonnenburg & Bäckhed, 2016). The fermentation of these compounds results in 
the generation of metabolites, such as short-chain fatty acids (SCFAs), which have 
beneficial effects on the human host (Li et al., 2020; Sonnenburg & Bäckhed, 2016). 

In vitro methods can be used to study how different compounds affect bacterial 
characteristics. Studying various factors requires different approaches. Bacterial 
characteristics differ between the planktonic state and biofilms. In addition, 
environmental factors such as atmospheric gas, pH, the complexity of the bacterial 
consortia and bacterial density can also affect the characteristics of both specific 
bacteria and the broader bacterial community. Model systems are especially 
important when studying colonic fermentation. The sampling from colon is invasive; 
thus, various in vitro models of colon or other parts of gastrointestinal tract have 
been developed (Dupont et al., 2019; Pham & Mohajeri, 2018) and widely used to 
study the effects of food components, pre-, pro- and synbiotics on microbiota. 
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2 Review of the Literature 

2.1 Oral microbiota 

2.1.1 Introduction 
The oral cavity has very a rich microbiota, with only the colonic microbiota being 
more diverse (Huttenhower et al., 2012). Distinct bacteria preferentially populate 
different sites of the oral cavity, including the hard enamel surface and the soft 
epithelial, palate, vestibule and tongue tissues (Fig. 1b). Preferential colonisation 
depends on the adhesins found on bacterial membranes and their matching 
counterparts on specific oral surfaces, in addition to other environmental factors (Aas 
et al., 2005; Kolenbrander et al., 2010). In addition to bacteria, viruses, fungi, 
archaea and protozoa can also be found in the oral cavity, although they are currently 
less studied (Rosier et al., 2018; Wade, 2013; Zhang et al., 2018). 

Bacteria in the oral cavity exist in both planktonic (in saliva) and biofilm (dental 
plaque) forms. Bacterial numbers have been estimated to be approximately 1011 

bacteria/ml in dental plaque and 109 bacteria/ml in saliva (Sender et al., 2016). 
Biofilms represent a matrix of bacteria and exocellular polysaccharides, which alters 
many important bacterial physiological properties (Lamont et al., 2018; Marsh, 
2012); for example, both 3-day-old and 3-h-old S. mutans cells in biofilms were 
much more resistant to acid stress than the same bacteria in the planktonic form 
(Welin-Neilands & Svensäter, 2007; Welin et al., 2003). In biofilms, bacterial cells 
reside in close proximity to each other, communicating through quorum sensing, 
competing for resources and gaining protection from antimicrobials and shear forces 
(Bowen et al., 2018; Li & Tian, 2012). The environment within the biofilm is 
variable, with gradients of oxygen, pH and nutrients (Lamont et al., 2018). 

Different host factors can influence the compositions of oral microbiota, including 
ageing, genetics, lifestyle (together with diet), medications and environmental factors 
[reviewed in (Cornejo Ulloa et al., 2019)]. Under healthy state conditions, the bacteria 
in the oral cavity live in symbiosis with their human host, preventing the invasion of 
pathogens and providing benefits to host physiology, metabolism and immune 
function (Cornejo Ulloa et al., 2019; Kilian et al., 2016; Marsh, 2018). This delicate 
balance between the host and the microbiota in the oral cavity can lead to mutual 
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Review of the Literature 

benefits. In contrast, in disease states (such as caries or periodontitis), dysbiosis 
disrupts the host-microbiota balance (Lamont et al., 2018; Rosier et al., 2018; Wade, 
2013). Different hypotheses have been proposed regarding the relationship between 
bacterial biofilms and dental diseases. For periodontal disease, complex interactions 
between host immune factors and bacterial biofilms are required for gingivitis to 
progress to periodontitis (Lamont et al., 2018; Zhang et al., 2018). Thus, changes in 
the composition of the bacterial biofilm and the dysregulation of the host inflammatory 
response are important for disease development (Lamont et al., 2018). The frequent 
intake of dietary carbohydrates can shift the microbiota composition to favour 
acidogenic and aciduric species, promoting the development of caries (Lamont et al., 
2018; Tanner et al., 2018; Zhang et al., 2018). The mechanical removal of bacterial 
biofilms, antibiotics, antimicrobials, probiotics, prebiotics and bacteriophages have all 
been used to modulate the microbiota composition and shift the balance from dysbiosis 
back to homeostasis (Zhang et al., 2018). Overall, contemporary research has focused 
on microbial balance at an ecological level, rather than on individual bacterial species. 
This thesis focused primarily on caries microbiota and, more specifically, on the initial 
adhesion, colonisation, and formation of supragingival biofilms, which refers to the 
biofilm found on the enamel surface that is more commonly associated with caries. 

2.1.2 Colonisation of the oral cavity in vivo 
The oral cavity presents a moist, warm and nutrient-rich environment for bacteria to 
inhabit, with various oxygen concentrations (Kilian et al., 2016; Marsh, 2018). More 
than 700 bacterial species have been identified in the human oral cavity; however, the 
number of bacterial species from any given individual mouth has been estimated to 
range between 40 and 200 (Aas et al., 2005; Marsh, 2018). Wide interindividual 
variance exists in the bacterial compositions among healthy individuals. The oral cavity 
is subject to temporal changes in the environment, and bacteria must be able to tolerate 
temperature changes and times of both nutritional abundance and famine (Kolenbrander 
et al., 2010). The established microbiotas are surprisingly resilient to change, possibly 
associated with salivary and gingival crevicular fluid flow, which constantly provide 
nutrients and minerals and neutralise environmental stressors (Rosier et al., 2018). 

Early colonisation of the oral cavity during infancy is not yet a well-understood 
process. Although controversial results have been reported regarding whether bacteria 
are present in utero, recent studies have suggested that oral cavity colonisation may 
begin that early (Nuriel-Ohayon et al., 2016; Tuominen et al., 2019). The mode of 
delivery (vaginal birth or caesarean section) and early feeding (breast milk and/or 
formula) affect also oral cavity colonisation (Al-Shehri et al., 2016; Holgerson et al., 
2013). Streptococcus, Propionibacterium and Lactobacillus (according to the current, 
new nomenclature introduced by Zheng et al., 2020) Ligilactobacillus, 
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Lacticaseibacillus, Limosilactobacillus and Latilactobacillus are among the earliest 
bacteria found in the oral cavities of neonates (Drell et al., 2017; Nelun Barfod et al., 
2011; Tuominen et al., 2019; Zheng et al., 2020). The eruption of teeth alters the oral 
microbiota of infants, providing hard surfaces for bacteria to attach to (Kilian et al., 
2016). However, mutans streptococci (MS, S. mutans and Streptococcus sobrinus) and 
lactobacilli can be detected in the infant oral cavity even before teeth erupt (Nelun 
Barfod et al., 2011; Plonka et al., 2012). Vertical transmission, from mothers or other 
caregivers to infants, represents the most common acquisition route for MS, but 
horizontal transfer from siblings or other children, such as in day-care settings, can 
also occur (Berkowitz, 2006; da Silva Bastos Vde et al., 2015). High maternal MS 
levels increase the risk of early MS transmission, but also other factors like mode of 
delivery affect (Berkowitz, 2006). Preventing the early colonisation of MS can 
maintain good oral health in infancy and can have long-lasting benefits by preventing 
caries (Köhler & Andréen, 2012; Xiao et al., 2019). 

As the infant grows, the oral microbiota diversity increases (Dzidic et al., 2018; 
Lif Holgerson et al., 2015). The factors that affect the development of oral 
microbiota in childhood were recently studied by following children from age 3 
months until 7 years and characterising their salivary microbiota (Dzidic et al., 
2018). Although the mode of delivery affected the microbiota composition during 
the early stages, the differences vanished as the children aged; however, antibiotic 
treatments and breastfeeding had long-lasting effects on bacterial composition 
(Dzidic et al., 2018). 

2.1.3 Caries microbiota 
Under healthy conditions, the supragingival biofilm, which is found above the gum line, 
is primarily composed of Streptococcus, Capnocytophaga, Corynebacterium, 
Veillonella, Rothia, Actinomyces, unclassified Pasteurellaceae, unclassified 
Neisseriaceae and Fusobacterium (Keijser et al., 2008; Li et al., 2013). In caries, the 
compositions of supragingival microbiota changes, and the compositions can also vary 
across different parts of the enamel and during different phases of lesion development 
(Jiang et al., 2014; Xu et al., 2018). S. mutans, S. sobrinus and various lactobacilli have 
long been known as caries-related pathogens; however, other acid-tolerant bacteria can 
also impact caries, including non-mutans streptococci, Actinomyces, Bifidobacterium 
and Scardovia wiggsiae (Aas et al., 2008; Takahashi & Nyvad, 2011; Tanner et al., 
2018; Zhang et al., 2018). Changes in the bacterial composition are accompanied by an 
increase in active carbohydrate metabolism in both caries active adolescents and 
children with early childhood caries (Wang et al., 2019; Xu et al., 2018). 

Saliva is an easily accessible fluid and can provide an estimate of the overall bacterial 
composition in the oral cavity. The salivary microbiota composition is somewhat similar 
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to the microbiota composition of the soft tissues (mucosa, tonsils and tongue) in the oral 
cavity, consisting of Prevotella, Streptococcus, Veillonella, Fusobacterium, unclassified 
Pasteurellaceae, Porphyromonas and Neisseria (Keijser et al., 2008; Li et al., 2013; 
Zhang et al., 2018). However, high salivary MS levels correlate with the severity of early 
childhood caries (Liu et al., 2019). In addition, comparisons of the microbiota 
compositions found in adolescents with and without caries showed clear differences, 
with S. wiggsiae, S. mutans and Bifidobacterium longum being more abundant in the 
saliva samples of participants with caries (Eriksson et al., 2017). 

2.1.4 Bacterial adhesion 
Mechanical cleaning and the removal of biofilm is essential for dental health. However, 
the adherence of salivary components to oral surfaces begins immediately after they are 
cleaned. Bacterial adhesion and colonisation are a well-orchestrated process. 

First, an acquired salivary pellicle is formed on the cleaned enamel. This process 
begins when components with a high affinity for hydroxyapatite (such as proteins 
statherin, histatins and proline-rich-proteins) bind directly to the enamel, through van 
der Waal’s forces, dipole-dipole effects and hydrophobic interactions (Hannig & 
Hannig, 2009) and continues with other proteins and glycoproteins including mucins, 
amylase, lactoferrin, lysozyme and cystatins. Protein-protein interactions are 
important for pellicle formation, and the host contributes to the intrinsic maturation of 
the pellicle providing enzymes that react with salivary proteins. The sources of pellicle 
proteins include salivary gland secretions, gingival crevicular fluid, oral epithelial cell 
products and micro-organisms. [Reviewed in (Siqueira et al., 2012)] 

Oral bacteria colonise the tooth surface by recognising receptors within an 
acquired enamel pellicle that match their surface adhesin molecules, in addition non-
specific mechanisms, such as longer-range interactions and surface roughness affect 
colonisation (Fig. 2a) (Hannig & Hannig, 2009; Marsh et al., 2016; Nobbs et al., 
2009; Siqueira et al., 2012). Therefore, pellicle proteins, other components, and the 
overall bacterial composition can influence bacterial adherence (Marsh et al., 2016). 
Initial colonisers, such as Streptococcus sanguinis, Streptococcus gordonii, 
Streptococcus oralis, Streptococcus mitis and Actinomyces species, tend to have 
weak interactions with pellicle components (Nobbs et al., 2009). Subsequently, some 
bacteria begin to bind more firmly to receptors on the salivary pellicle (Fig. 2b) 
(Nobbs et al., 2009). These bacteria then provide adhesion sites for further bacteria 
to co-adhere, forming a biofilm (Kolenbrander et al., 2010). The specificity of 
bacterial adherence is often related to protein-carbohydrate recognition. Common 
carbohydrates include galactose, N-acetyl-galactosamine, sialic acid (neuraminic 
acid), fucose (Fuc), N-acetyl-glucosamine and glucose (Glu) (Nobbs et al., 2009). 
Because colonisation is a necessary first step for biofilm formation, the prevention 
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of colonisation, using anti-adhesive compounds, represents an important area of 
research, which is relevant to the study of caries and periodontal diseases. 

Figure 2. The adherence and colonisation of surfaces in the oral cavity. a) Initial colonisers, such 
as Streptococcus spp. approach a conditioned surface and adhere to it, using longer-
range interactions (e.g. pili penetrating mucus) or shorter-range interactions (e.g. 
surface molecules and bacterial adhesins). b) Bacteria adapt to different environments, 
multiply, and interact with each other (arrows). Extracellular polymeric substances are 
produced and other bacterial species adhere, increasing the bacterial concentration and 
forming a community [own drawing, modified from (Nobbs et al., 2009)]. 

2.1.5 Dental biofilm formation 
After an acquired enamel pellicle has formed and primary colonisers have adhered 
to it, the process of biofilm formation continues. However, adhered bacteria require 
an appropriate environment that supports growth on the attached surface, including 
the availability of nutrients and appropriate pH, oxygen concentrations, and redox 
potential (Nobbs et al., 2009). Under suitable conditions, the initial colonisers will 
begin to multiply and begin to form a small community (Nobbs et al., 2009). 
Increased bacterial numbers promote the occurrence of interactions and provide new 
surfaces for other bacteria to bind (Nobbs et al., 2009). Interspecies communication 
is important and has been linked to the cell-cell proximity between bacteria in the 
biofilm (Kolenbrander et al., 2010). 

Another important factor for biofilm formation is the production of extracellular 
polymeric substances (EPS). EPS are composed of (exo)polysaccharides and proteins 
but can also contain lipids and extracellular DNA (Di Martino, 2018; Klein et al., 2015). 
Exopolysaccharides, especially glucan- and fructan-based polysaccharides, are produced 
by oral streptococci and contribute to the biofilm matrix (Bowen & Koo, 2011; Nobbs 
et al., 2009). EPS provide binding sites for bacterial adherence, retain the bacteria in the 
biofilm and form a polymeric matrix that provides protection, stability and nutrients (Fig. 
2 and Fig. 3) (Flemming et al., 2016; Koo et al., 2017; Lamont et al., 2018). As the 
biofilm matures, the EPS provide gradients of habitable zones, consisting of various 
concentrations of nutrients, oxygen and pH, enabling more bacteria to grow (Flemming 
et al., 2016; Koo et al., 2017). Dietary sucrose provides substrates for EPS production 
and increases acid production by oral bacteria (Bowen et al., 2018). 
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Biofilm formation contributes to a healthy oral ecosystem. In a healthy 
individual, biofilm formation does not harm the host if proper oral hygiene is 
maintained to inhibit excessive bacterial accumulation. The extended ecological 
plaque hypothesis describes how bacteria in the oral cavity exist in a symbiotic 
relationship with the host under normal conditions; however, when conditions 
change, dynamic adaptations can shift the balance in a detrimental direction 
(Takahashi & Nyvad, 2011). In caries, the frequent consumption of carbohydrates 
can trigger a change from normal conditions. Oral bacteria can utilise carbohydrates 
to produce acids locally within a biofilm on the enamel, causing enamel 
demineralisation and the slow formation of cavities. 

Figure 3. The formation of biofilms on the tooth surface. Increased bacterial numbers and the 
production of extracellular polymeric substance (EPS), especially after sucrose 
consumption, contributes to biofilm growth. This biofilm matrix provides protection and 
stability and forms gradients of habitable zones featuring various concentrations of 
nutrients, oxygen and pH. Bacteria that are able to thrive in biofilm-form alter many of their 
characteristics [own drawing, modified from (Bowen et al., 2018; Lamont et al., 2018)]. 
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2.1.6 Streptococcus mutans 
S. mutans is one of the most well-studied bacteria in relation to caries (Loesche, 
1986; Tanzer et al., 2001). Although caries can occur in the absence of S. mutans, 
this species features many capabilities that increase its cariogenic potential, 
facilitating its role as a key player in caries pathogenesis. S. mutans can synthesise 
large quantities of extracellular polymers and develop the matrix for biofilm growth 
(Lemos et al., 2019). S. mutans can also produce acids efficiently from many carbon 
sources, and it thrives in acidic conditions (Lemos et al., 2019). 

S. mutans produces glucan-binding proteins (Gbps), which contribute to its 
abilities to build a biofilm matrix (Lemos et al., 2019). In addition, S. mutans 
produces three types of glycosyltransferases (Gtfs)—GtfB, GtfC and GtfD—each of 
which synthesises different extracellular polysaccharide glucans from sucrose and 
other sources (Bowen & Koo, 2011; Koo et al., 2010). Secreted Gtfs bind to the 
salivary pellicle and help other bacteria adhere to the biofilm (Abranches et al., 
2018). Gtfs also promote the aggregation and co-aggregation of oral bacteria 
(Bedoya-Correa et al., 2019). Thus, both Gtfs and Gbps function as components of 
sucrose-dependent adhesion and contribute to the formation of the biofilm matrix 
(Bowen & Koo, 2011). Surface adherence can also be mediated through various 
high-affinity (sucrose-independent) adhesin molecules, which interact with 
substrates in the acquired enamel pellicle (Abranches et al., 2018; Lemos et al., 
2019). 

In addition to efficient adherence to the enamel and the production of 
exopolysaccharides, S. mutans also generates organic acids and ferments various 
carbohydrates (Abranches et al., 2018; Bedoya-Correa et al., 2019). This low-pH 
(micro-) environment may be harmful to some other bacterial species [e.g. non-
mutans streptococci and Actinobacteria (Takahashi & Nyvad, 2011)] and promotes 
the growth of bacteria that can tolerate acidic conditions (Lamont et al., 2018). S. 
mutans is one of the most acidogenic species found in dental biofilms, with a high 
rate of acid production and the ability to rapidly adapt to alterations in pH condition 
(Bedoya-Correa et al., 2019; de Soet et al., 2000; Welin-Neilands & Svensäter, 
2007). 

S. mutans can also compete and survive in the oral cavity through the production 
of a variety of bacteriocins (Huang et al., 2018; Merritt & Qi, 2012), which are short 
peptides that can inhibit the growth or kill closely related bacteria (Merritt & Qi, 
2012). Bacteriocins produced by S. mutans, are called mutacins (Merritt & Qi, 2012). 
Mutacin production depends on many factors, including cell density, nutrient sources 
and oxygen levels (Merritt & Qi, 2012), and mutacins serve to improve the 
competitiveness of S. mutans. As with other bacteria, strain-dependent differences 
in the virulence of S. mutans strains exist (Bedoya-Correa et al., 2019; Lemos et al., 
2019). 
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2.2 Microbiota of the colon 

2.2.1 Introduction 
The microbiota composition varies across different sections of the gastrointestinal 
tract, due to differing conditions. The colon features the highest bacterial density, 
which is currently estimated to be approximately 1011 bacteria/g (Sender et al., 
2016). In addition to bacteria, the colon contains archaea, viruses, fungi and eukarya 
(Hillman et al., 2017). The colon environment is characterised by low levels of 
oxygen, a near-neutral pH and a quite constant level of complex polysaccharides, 
which bacteria utilise for energy (Donaldson et al., 2016; Evans et al., 1988; Pereira 
& Berry, 2017). The dominant bacterial phyla include Bacteroidetes and Firmicutes, 
together with Actinobacteria, Proteobacteria, Fusobacteria and Verrucomicrobia 
(Donaldson et al., 2016; Rinninella et al., 2019). 

Bacteria and the human host have a mutualistic relationship, and the highly 
complex colonic microbiota performs many functions that benefit the host 
metabolism, immunity, development and behaviour (McBurney et al., 2019; 
Woloszynek et al., 2016). High microbial diversity has also been linked to the 
microbiota resilience, which refers to its ability to return to its original state 
following perturbations and is a key factor associated with healthy microbiota 
(McBurney et al., 2019). 

Fibres and other food products that are not digested and absorbed by the upper 
gastrointestinal tract arrive at the colon, where they are digested into absorbable 
nutrients by various micro-organisms. In a healthy state, the host generally benefits 
from bacterial metabolic products, and the microbiota population remains relatively 
stable, assuming that diet, environment, medications, and health state do not change 
(McBurney et al., 2019). Thus, in a healthy state, following the development of the 
microbiota community during infancy, some subtle changes will occur during 
childhood, and then change occur again during older ages (Nuriel-Ohayon et al., 
2016). 

2.2.2 Composition of colonic microbiota 
The microbial composition and diversity can vary in the same individual and 
between individuals at various times. Many other factors can contribute to the 
composition of microbiota, including age, weight, lifestyle, diet, diseases, 
medications, immune function and ethnicity (Donaldson et al., 2016; Rinninella et 
al., 2019). Similarly, the compositions of colonic microbiota vary among different 
niches in the colon. Antimicrobials, dietary nutrients, pH, oxygen levels and the level 
of host immune activity can all shape the composition of microbial populations and 
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can vary along the length of the colon (Donaldson et al., 2016). The mucus layer, 
which surrounds crypts in the lumen, creates a boundary between the host epithelium 
and the gut lumen (Donaldson et al., 2016). Some bacterial species, such as 
Akkermansia muciniphila and Bacteroides fragilis, can degrade and utilise mucin 
glycans, generating distinct habitats near the host epithelium and gaining a 
competitive advantage (Donaldson et al., 2016). 

Early infant microbiota colonisation is important and can affect immune and 
metabolic maturation. Elements that disrupt healthy colonisation can, therefore, 
have long-lasting effects, including on the development of diseases (Rautava et al., 
2012). 

2.2.3 Infant colonic microbiota 
Until quite recently, the placenta and the developing foetus were thought to be 
sterile; however, several studies have reported that bacterial colonisation may begin 
in utero (Collado et al., 2016; Nuriel-Ohayon et al., 2016). Collado et al. showed 
that the amniotic fluid and the placenta have distinct microbiota populations, which 
may indicate infant gut colonisation, in utero (Collado et al., 2016). The maternal 
microbiota composition changes during pregnancy and may affect infant microbiota 
development, and interactions between maternal microbes or microbial components 
and the foetus have been described (Nuriel-Ohayon et al., 2016). However, the first 
major bacterial exposure for an infant occurs at birth (Fig. 4). During the first months 
of life, the developing microbiota composition undergoes many short-term changes, 
and interpersonal variation during this stage of life is greater than in adults (Koenig 
et al., 2011; Nuriel-Ohayon et al., 2016). Gestational age and the mode of delivery 
are key factors that affect the composition of the infant microbiota (Rinninella et al., 
2019). The microbiota of preterm infants is less diverse and is characterised by the 
increased colonisation of potentially pathogenic species compared with full-term 
infants (Rinninella et al., 2019). 

Vaginally delivered infants are colonised first by bacterial species from the 
mother’s vagina and gut, such as Lactobacillus, Bifidobacterium, Bacteroides, 
Prevotella, Enterococcus, Escherichia, Streptococcus and Rothia (Bäckhed et al., 
2015; Nuriel-Ohayon et al., 2016; Zhuang et al., 2019). Infants born by caesarean 
section feature a gut microbiota characterised by bacterial species from the 
maternal skin and oral cavities, in addition to bacteria from the surrounding 
environment, such as Staphylococcus, Propionibacterium, Corynebacterium and 
Streptococcus (Fig. 4) (Bäckhed et al., 2015; Nuriel-Ohayon et al., 2016; 
Rinninella et al., 2019; Vandenplas et al., 2018). The prevalence of bifidobacteria 
increases in infants over time, regardless of the mode of birth (Bäckhed et al., 
2015; Zhuang et al., 2019). 

22 



 

  

   
    

   
      

       
    

         
     

  
     

    
   

      
          

     
   

  
      

  
     

     
    

   
 

     
    

       
    

     
   

     
    

     
   

Review of the Literature 

Mothers appear to represent an important source of early colonisers for the 
infant microbiota (Bäckhed et al., 2015). The early feeding mode is another 
important factor (Fig. 4). Human breast milk features its own microbiota, which 
affects the development of an infant’s gut microbiota (Nuriel-Ohayon et al., 2016). 
Breast milk contains multiple bioactive components, including nutrients and 
immunomodulatory molecules, and the composition of breast milk changes 
throughout lactation (Chong et al., 2018; Moore & Townsend, 2019). HMOs are 
the third-most-abundant components in human milk (after lactose and lipids), 
passing through the infant digestive system mostly intact to feed the developing 
microbiota (Bode, 2012). Some infant bacteria, including certain Bifidobacterium, 
Bacteroides and Lactobacillus (according to the current, new nomenclature 
introduced by Zheng et al., 2020) Lactobacillus and Lactiplantibacillus, are able 
to digest HMOs (Bode, 2012; Nuriel-Ohayon et al., 2016; Thongaram et al., 2017; 
Zheng et al., 2020; Zúñiga et al., 2018); thus, breast-fed infants commonly present 
greater numbers of Bifidobacterium spp. than infants fed with a non-prebiotic 
formula (Rinninella et al., 2019). HMOs also have other functions, which are 
discussed in more detail in Section 2.3.2.2. 

The microbiota of formula-fed infants tends to be more diverse than that of 
breast-fed infants, dominated by enterococci and clostridia, whereas in breast-fed 
infants bifidobacteria are abundant (Bezirtzoglou et al., 2011; Chong et al., 2018; 
Nuriel-Ohayon et al., 2016). The next key event is the introduction of solid foods 
to provide nutrition to an infant. This event increases bacterial diversity and 
changes the infant microbiota to more resemble that in an adult, featuring bacterial 
species such as Clostridium, Ruminococcus, Faecalibacterium, Roseburia and 
Anaerostipes (Bäckhed et al., 2015; Zhuang et al., 2019). The initial bacterial 
colonisation process is very important to both the development and maturation of 
the gastrointestinal tract (Wampach et al., 2017). Likewise, it can influence infant 
development and the maturation of the immune system and creates a niche in which 
adult-like microbiota can later grow (Zhuang et al., 2019). However, many 
environmental factors including siblings, farm animals, pets, geographical 
location, genetics, medications, disease and city or countryside living can affect 
microbiota compositions (Fig. 4) (Nuriel-Ohayon et al., 2016; Zhuang et al., 
2019). The composition of the microbiota determines the metabolite profiles 
produced by these complex communities. 
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Figure 4. Some factors that influence infant microbiota during development [own drawing, 
information based on (Chong et al., 2018; Nuriel-Ohayon et al., 2016; Zhuang et al., 
2019)]. 

2.2.4 Metabolites of the microbiota 
The composition of the microbiota is one aspect, but another is the combined activity 
of the bacteria; which metabolites they produce, communally. Undigested fibres 
serve as an energy source for bacteria and the fermentation process results in the 
production of SCFAs and other metabolites. This increase the energy obtained from 
food (Sonnenburg & Bäckhed, 2016; Woloszynek et al., 2016). Colonic bacteria 
contribute to vitamin synthesis (especially vitamins B and K), and the metabolites 
produced by microbiota influence intestinal health and immune functions, even 
during infancy (Dominguez-Bello et al., 2019; LeBlanc et al., 2017; Rowland et al., 
2018). In the complex bacterial community, the metabolites produced by some 
bacteria can serve as food for others, and the carbohydrates that are broken down by 
some bacteria can be further metabolised by others, in a process referred to as cross-
feeding (Ríos-Covián et al., 2016; Rowland et al., 2018). Therefore, some bacterial 
metabolites are used by other members of the colonic bacterial community, others 
are absorbed into the host’s circulation, and the remainder is excreted in faeces and 
urine (Sonnenburg & Bäckhed, 2016). In pure culture experiments, the metabolites 
produced by a single bacterial strain can be evaluated; however, in a complex 
consortium, how any specific bacterial species affect measurable metabolites can 
only be speculated. SCFAs (acetate, propionate and butyrate) are produced in the 
colon, primarily by bacterial carbohydrate fermentation, and are efficiently absorbed 
by the host (Macfarlane & Macfarlane, 2003; Ríos-Covián et al., 2016). Many 
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bacterial species, including lactobacilli and bifidobacteria, also produce lactate, 
which is not an SCFA (Ríos-Covián et al., 2016) but is typically further metabolised, 
through cross-feeding, into SCFAs. SCFAs, especially butyrate, provide energy 
(adenosine triphosphate, ATP) to epithelial cells (colonocytes), whereas acetate and 
propionate are further metabolised by the liver (Ríos-Covián et al., 2016). Propionate 
is integrated into gluconeogenesis, whereas acetate and butyrate are integrated into 
lipid synthesis (Ríos-Covián et al., 2016; Sonnenburg & Bäckhed, 2016). SCFAs 
also lower the luminal pH and may contribute to protection from bacterial pathogens 
and viral infections (Ríos-Covián et al., 2016). SCFAs have also been shown to 
promote infant intestinal health and growth (Jacobi & Odle, 2012). 

Dietary and host-derived proteins represent important energy sources for 
bacteria, especially when carbohydrates are scarce, which may be the case in the 
distal colon. Proteins and peptides are hydrolysed by bacteria and pancreatic 
proteases, and their fermentation contributes to the production of SCFAs, N-nitroso 
compounds, phenolic and indolic compounds, branched chain fatty acids (BCFAs), 
biogenic amines, hydrogen sulphite and carbon dioxide (Yao et al., 2016). These 
metabolites are either utilised by other members of the microbiota, absorbed by the 
host, excreted (in faeces, urine and breath) or detoxified by the epithelium (Yao et 
al., 2016). Some of these proteolytic fermentation products may potentially be 
harmful to the host, especially if luminal concentrations increase; thus, 
carbohydrates are considered to represent the preferred energy source for gut bacteria 
(Yao et al., 2016). Current knowledge regarding the BCFAs levels and functions in 
infants remains very limited. Longer, 11-26-carbon-chain BCFAs that are 
synthesised by the normal skin, including vernix caseosa in infants, and can be found 
in the meconium (Ran-Ressler et al., 2008). Longer BCFAs can also be found in 
breast milk (Dingess et al., 2017; Jie et al., 2018). Thus, BCFAs can be found in the 
normal infant gastrointestinal tract and may impact bacterial colonisation (Ran-
Ressler et al., 2008; Ran-Ressler et al., 2013). 

The microbiota composition of breast-fed infants is largely defined by the 
constituents of the mother’s milk, and the metabolites produced by bacteria enhance 
adaptive immune response (Dominguez-Bello et al., 2019). The beneficial effects 
associated with an abundance of bifidobacteria in early life have been suggested to 
be mediated through the modulation of the immune system and reduction in colonic 
pH due to the production of SCFAs and lactate (Milani et al., 2017). Changes in the 
infant diet during the first year of life are associated with changes in the gut bacteria, 
including adaptations to different carbon sources that are associated with more adult-
like microbiota (Bäckhed et al., 2015). The transition to solid foods also results in 
higher levels of SCFAs (Koenig et al., 2011). 
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2.3 Modulating oral and gut microbiota 
Our understanding of what constitutes healthy microbiota in different parts of the 
body continues to grow; however, interindividual variations can be large. Aside from 
environmental and genetic factors, methods have been developed to purposefully 
enhance the microbiota composition. The oral microbiota is modulated by the 
composition of the diet, eating frequency, oral hygiene habits, the secretion of saliva, 
smoking, oral infections and age (Yamashita & Takeshita, 2017). In addition, the use 
of pro- or prebiotics may modulate the composition of oral microbiota. 

To alter the gut microbiota composition and/or function, pro- and prebiotics are 
commonly used. A ‘probiotic’ is defined as “live microorganisms that when 
administered in adequate amounts, confer a health benefit on the host” (Hill et al., 
2014). The current definition for the term ‘prebiotic’ is “a substrate that is selectively 
utilised by host microorganisms conferring a health benefit” (Gibson et al., 2017).” 
This new definition has broadened the term prebiotic to include substances other 
than carbohydrates, areas of the human body other than the gastrointestinal tract and 
methods for providing prebiotic other than in food (Gibson et al., 2017). In this 
thesis, I focused on the prebiotic-like effects of an HMO, 2´-fucosyllactose (2´-FL), 
and xylitol which affect some oral bacteria. 

2.3.1 Modulating oral microbiota 
Caries is a multifactorial disease, in which changes in the composition of dental 
biofilm bacteria, diet and other factors can affect pathogenesis (Baker & Edlund, 
2018; Philip et al., 2018a). A diet containing fewer fermentable carbohydrates that 
are consumed less frequently, combined with good oral hygiene, can improve the 
balance of dysbiotic microbiota. Broad-spectrum antimicrobial agents, including 
chlorhexidine and triclosan, have also been used to decrease dental biofilms; 
however, these agents also disrupt beneficial commensal bacteria and can represent 
a hazard to the environment (Jesus et al., 2013; Olaniyan et al., 2016). Some 
possibilities for modulating oral microbiota are discussed below. 

2.3.1.1 Xylitol 

Xylitol is a five-carbon polyol (Fig. 5) that has been studied for its preventive effects 
against caries, especially against MS. Xylitol is widely used in confectionery (tablets 
or pastilles and gums) and dental care products, including toothpaste, mouthwashes 
and varnishes. The beneficial effects of xylitol can be obtained by adding 5–7 g 
xylitol/day to a normal diet (Mäkinen, 2011; Söderling, 2009). Xylitol stimulates 
salivary secretion (Mäkinen, 2010), similar to many other sweet products as a non-
specific effect. Xylitol has primarily been studied for its effects on MS or S. mutans 
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[reviewed in (Li & Tanner, 2015; Mäkinen, 2011; Söderling, 2009)]. Xylitol has 
been shown to affect S. mutans numbers, both in vitro and in vivo, as described in 
more detail below. In addition, xylitol consumption has been shown to decrease 
dental plaque amounts and acidogenicity (Maguire & Rugg-Gunn, 2003; Splieth et 
al., 2009; Söderling, 2009; Wennerholm et al., 1994). However, the effects of xylitol 
on oral bacteria other than MS are not well-known. Studies have indicated a decrease 
in plaque or salivary MS levels in the presence of xylitol, but no other changes in 
plaque or salivary bacterial composition have been reported (Söderling et al., 2015; 
Söderling et al., 2011). A recent systematic review focusing on the effects of xylitol 
on MS found that xylitol decreased MS levels but did not alter the overall oral 
microbiota (Söderling & Pienihäkkinen, 2020). 

2.3.1.1.1 Overview of clinical studies with xylitol on caries and mutans 
streptococci 

The positive effects of xylitol on dental health were discovered in the Turku sugar 
studies, performed in the 1970s [I -XVII, overviewed in (Scheinin & Mäkinen, 
1976)]. In these studies, the early aim was to replace almost all carbohydrates in the 
diet with xylitol, fructose and sucrose. After this, the use of xylitol gum as an adjunct 
to a normal diet was found to provide a similar result and was easier, in practice. 
Since then, several studies, using different doses and vehicles for xylitol delivery, 
have evaluated the effects of xylitol, either on caries prevention directly or on 
cariogenic micro-organisms, such as MS. For practical reasons, many early clinical 
studies were performed using randomisation by classrooms, not by individual 
participants. Although these studies were able to recruit large numbers of children, 
they do not qualify as randomised controlled trials, the current standard for clinical 
trials. Systematic reviews that have evaluated the efficacy of xylitol for caries 
prevention have reported evidence that supports xylitol or found no correlation 
between xylitol use and caries prevention (Deshpande & Jadad, 2008; Newton et al., 
2019; Riley et al., 2015). The lack of efficacy in xylitol clinical studies is often 
associated with a low xylitol dose, sometimes combined with a short study duration 
or a cohort with low caries prevalence (Mäkinen, 2010). However, in those studies 
performed on populations in which caries prevalence is high, the preventive effects 
of xylitol (in adequate doses) has been reliably and repeatedly demonstrated in the 
literature, verifying the caries-preventive effects of xylitol (Hietala-Lenkkeri, 2016). 
The European Food Safety Agency (EFSA) has approved the health claim that 
“xylitol chewing gum reduces the risk of caries in children” (EFSA, 2008). 

An important aspect of microbiota modulation is reducing the transmission of 
MS from mothers (or caregivers) to children. The regular use of xylitol by mothers 
has been shown to result in a decrease in future caries occurrence of children 
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[reviewed in (Li & Tanner, 2015; Lin et al., 2016)]. The effects of maternal xylitol 
use continued to be apparent at the 10-year follow-up, with reduced caries 
occurrence and a lower need for restorative treatments in children (Laitala et al., 
2013). 

Figure 5. Chemical structure of xylitol (own drawing). 

2.3.1.1.2 The effects of xylitol on Streptococcus mutans growth and 
adhesion in vitro 

To understand the mechanism of action underlying the positive effects of xylitol, 
several in vitro studies have been conducted. Many studies have focused on the 
growth of MS in the planktonic state because xylitol is non-fermentable by MS, 
which inhibits bacterial growth (Bradshaw & Marsh, 1994; Söderling et al., 2008; 
Trahan et al., 1996). Xylitol is incorporated into S. mutans via the 
phosphoenolpyruvate-phosphotransferase system (Miyasawa-Hori et al., 2006; 
Trahan, 1995). Xylitol-5-phosphate inhibits glycolytic enzymes, and the futile cycle 
of dephosphorylating xylitol-5-phosphate consumes energy, hindering the growth 
and acid production of S. mutans (Miyasawa-Hori et al., 2006; Trahan, 1995). 

More recently, S. mutans biofilm formation either in single- or multispecies 
biofilms, was evaluated. The formation of a 6-species biofilm was inhibited by 1% 
and 3% xylitol (Badet et al., 2008). However, the intermittent exposure of a 6-
species biofilm to 7.5% xylitol failed to affect biofilm growth (Giertsen et al., 
2011). In contrast, the young biofilm formation of three species (S. mutans, S. 
sanguinis, and Actinomyces naeslundii) was inhibited by 5% xylitol (Marttinen et 
al., 2012). A very recent study evaluated the biofilm formation dynamics of nine 
S. mutans strains and found that the biofilm formation of all strains was inhibited 
by 5% xylitol; however, sensitivity to xylitol varied among the strains (Loimaranta 
et al., 2020). In addition to growth inhibition, xylitol affects biofilm formation by 
modifying bacterial adherence properties, such as the EPS production of S. mutans 
(Ferreira et al., 2015; Lee et al., 2009; Söderling et al., 1987; Söderling & Hietala-
Lenkkeri, 2010). A recent study suggested that xylitol also impairs oral biofilm 
formation, by inhibiting bacterial β-glucosidase activity in human saliva (Teixeira 
Essenfelder et al., 2019). 
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2.3.1.2 Other polyols, probiotics and prebiotics 

In addition to xylitol, other polyols have been evaluated according to caries related 
parameters (Mäkinen, 2011). Sorbitol is consumed by some of the oral bacteria but 
can be considered cariostatic (Birkhed et al., 1984; Gupta, 2018; Kalfas et al., 
1990; Mäkinen, 2011). Maltitol has historically been used as a control, in many 
xylitol studies, but limited data are available on caries-related parameters (Gupta, 
2018; Prosdocimi et al., 2017). Erythritol has demonstrated contradictory effects 
on the levels of MS (Mäkinen, 2010; Mäkinen et al., 2001; Runnel et al., 2013; 
Söderling & Hietala-Lenkkeri, 2010) but may be effective for caries prevention; 
however, the clinical data remain very limited (de Cock et al., 2016). Erythritol is 
better tolerated in the gastrointestinal tract than sorbitol, maltitol or xylitol 
(Mäkinen, 2016). 

Although not as clear as in the gut, some substances can be regarded as oral 
prebiotics. Commensal oral bacteria, such as S. sanguinis and S. gordonii can utilise 
arginine to produce ammonia, generating higher pH conditions in their surroundings 
(Baker & Edlund, 2018; Bowen et al., 2018; Philip et al., 2018b). This process also 
generates ATP, which is beneficial for the commensal bacteria (Bowen et al., 2018). 

Lactobacilli and bifidobacteria, which are common probiotics used to target 
the gut microbiota, have been evaluated for the prevention of caries. Although 
results have been encouraging, both species are acidogenic and aciduric (Baker & 
Edlund, 2018; Philip et al., 2018b). However, some strains of lactobacilli and 
bifidobacteria have demonstrated anti-S. mutans effects, such as decreasing 
adherence and reducing MS counts (Haukioja et al., 2008; Laleman et al., 2014). 
Among the studies examining caries as an outcome, the current evidence is 
insufficient (Gruner et al., 2016). Recent probiotics with promising data include 
Streptococcus dentisani and Streptococcus A12, which are both able to colonise 
the tooth surface, raise the pH of the dental biofilm and inhibit MS growth (Huang 
et al., 2016; López-López et al., 2017); however, clinical data are scarce. 

Other possible methods to modify oral microbiota include the specific targeting 
of antimicrobial peptides, bacteriophages and natural products, such as polyphenols 
from propolis and cranberry, proanthocyanidins and quorum-sensing targets (Baker 
& Edlund, 2018; Philip et al., 2018b; Zhan, 2018; Zhang et al., 2018). 

2.3.2 Modulating gut microbiota 
Many diseases, including irritable bowel disease, asthma, allergy, eczema, obesity, 
neuropsychiatric disorders, necrotising enterocolitis and late-onset sepsis, have been 
linked to disturbances in the microbiota (Zhuang et al., 2019). Therefore, developing 
means to modulate the compositions and activity of microbiota is important. Diet 
represents one of the most impactful methods to regulate microbiota (Woloszynek 
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et al., 2016). Foods that are rich in plant-based polysaccharides and resistant starches 
act as bacterial substrates. When foods or prebiotics are fermented by selected 
bacteria, SCFAs and other metabolites are produced, lowering the luminal pH, 
providing energy for gut epithelial cells, increasing mucin production, altering 
metabolite and mineral absorption and enhancing epithelial barrier integrity 
(Miqdady et al., 2020; Woloszynek et al., 2016). The most common probiotics 
consist of species from the genera Bifidobacterium and Lactobacillus (Zhuang et al., 
2019). Many probiotic effects are strain-specific (Sánchez et al., 2017). However, 
some properties may be more general and common among the probiotic strains. 
Probiotics can normalise disturbed intestinal microbiota compositions, strengthen 
the gut epithelial barrier, affect SCFA and BCFA production and modulate the 
immune system, by producing immunomodulatory molecules, including anti-
inflammatory cytokines and other antimicrobial substances that prevent pathogen 
growth through competitive exclusion [reviewed in (Plaza-Diaz et al., 2019)]. This 
thesis has focused on the prebiotic modifications of microbiota. 

2.3.2.1 Prebiotics 

One approach used to modify microbiota compositions is the addition of non-
digestible nutrients that can only be utilised by specific bacteria. Common prebiotics 
include various oligosaccharides, such as ˜ (2–1) fructans, inulin, fructo-
oligosaccharides (FOS), glucose-based polydextrose and lactulose and galactose-
based galacto-oligosaccharides (GOS), all of which can be fermented by colonic 
bacteria (Ackerman et al., 2017b; Woloszynek et al., 2016; Zhuang et al., 2019). 
The consumption of prebiotics often stimulates the growth of beneficial bacteria, 
including bifidobacteria and lactobacilli (Hillman et al., 2017). Other properties of 
prebiotics include improving specific lipid and mineral metabolism biomarkers, 
increasing microbial mass, the relief of constipation and the modulation of immune 
functions (Ouwehand et al., 2005). Metabolites produced by bacterial fermentation, 
such as SCFAs, can lower the intestinal pH, enhance cellular proliferation, inhibit 
pathogens and improve mineral availability (Hillman et al., 2017; Ouwehand et al., 
2005). 

Limited data exist on the effects of xylitol on gut microbiota composition. In 
vitro colon simulations suggest that simulated colonic microbiota can ferment 
xylitol, and xylitol fermented by the microbiota increased butyrate production 
compared with control simulations (Mäkeläinen et al., 2007). Animal studies (mice) 
have associated xylitol consumption with decrease in Bacteroides, increase in 
Prevotella and suppression of Candida [reviewed in (Salli et al., 2019)]. 
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2.3.2.2 Human milk oligosaccharides 

HMOs represent a diverse group of oligosaccharides found in human milk and can 
be considered to be first prebiotics for infants (Plaza-Diaz et al., 2019; Sánchez et 
al., 2017; Zhuang et al., 2019). Approximately 200 different HMO structures have 
been identified, and the most abundant individual HMO is 2´-FL (Bode, 2012; Hegar 
et al., 2019; Urashima et al., 2018). The compositions of HMOs are largely 
determined by genetic variations in the genes that affect fucosylation, including 
secretor and Lewis blood group genes (Cabrera-Rubio et al., 2019; Kunz et al., 2017; 
Samuel et al., 2019; Thurl et al., 2010). Additionally, the concentrations of different 
HMOs vary over the course of lactation (Thurl et al., 2017; Thurl et al., 2010). 

Many possible functions have been suggested for HMOs. They can function as 
selective prebiotics, only utilised by some bifidobacteria, such as Bifidobacterium 
longum subspecies infantis, Bifidobacterium bifidum, Bifidobacterium breve and 
Bacteroides spp., including Bacteroides fragilis, Bacteroides vulgatus and 
Bacteroides thetaiotaomicron (Chichlowski et al., 2011; Marcobal et al., 2010; Yu 
et al., 2013). In vitro studies have shown that HMOs can prevent the adhesion of 
certain gut pathogens by functioning as decoy receptors (Akkerman et al., 2019; 
Bode, 2015; Ruiz-Palacios et al., 2003). These effects are both bacterial strain- and 
HMO structure-specific. For example, 2´-FL can reduce the adherence and 
colonisation of Campylobacter jejuni (Ruiz-Palacios et al., 2003). HMOs also inhibit 
group B Streptococcus proliferation and biofilm formation, but the effects of 
individual HMOs vary extensively (Ackerman et al., 2017a; Craft & Townsend, 
2019; Lin et al., 2017). 

To date, most clinical studies examining individual HMOs have focused on 
safety and tolerance; 2´-FL and another individual HMO, lacto-N-neotetraose have 
been found to be safe for infants and adults (Elison et al., 2016; Marriage et al., 2015; 
Puccio et al., 2017). Data regarding the effects of various HMOs on microbiota 
composition and activity remain scarce; however, observational studies have shown 
that maternal secretor status (which affects fucosylation) changes both the HMO 
composition (Kunz et al., 2017) and the infant gut microbial composition. Therefore, 
fucosylation appears to increase the bifidobacterial abundance in breast-fed babies 
(Bai et al., 2018; Lewis et al., 2015; Smith-Brown et al., 2016). 

2.3.2.3 Galacto-oligosaccharides 

GOS are established prebiotics, produced by the transglycosylation of lactose by ˜-
galactosidases, and are composed by a mixture of galactose-based oligosaccharides 
with terminal glucose (Ackerman et al., 2017b; Torres et al., 2010). Their lengths 
vary from 2–10 monosaccharides, their structures may contain branching and 
common linkages include ˜ (1–3), ˜ (1–4) and ˜ (1–6), depending on the enzyme 
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used and other processing conditions (Ackerman et al., 2017b; Torres et al., 2010). 
GOS are not hydrolysed by digestive enzymes but are instead fermented in the colon, 
primarily by bifidobacteria and lactobacilli (Davani-Davari et al., 2019; Torres et 
al., 2010). 

Infants fed with GOS (or GOS:FOS at a 9:1 ratio) had larger populations of 
bifidobacteria and lactobacilli, and the overall composition of the microbiota was 
more similar to that observed for breast-fed infants than to that observed for formula-
fed infants, without GOS (Akkerman et al., 2019; Macfarlane et al., 2008). In a piglet 
model, the fermentation of GOS resulted in lower colonic pH and the increased 
production of butyrate (Alizadeh et al., 2016). In vitro data showed the positive 
effects of GOS on intestinal barrier integrity [reviewed in (Akkerman et al., 2019)], 
and results of a piglet model, examined with and without GOS, were supportive by 
showing increased villus surface area and upregulated tight junction protein mRNA 
expression, with GOS supplementation (Alizadeh et al., 2016). This study also 
suggested that GOS supplementation can stimulate the mucosal immune system by 
increasing secretory IgA in saliva (Alizadeh et al., 2016). GOS consumption by 
elderly individuals has been shown to increase anti-inflammatory cytokines and 
decrease pro-inflammatory cytokines (Davani-Davari et al., 2019). Both murine 
models and human clinical trials have indicated that dietary GOS can diminish 
asthma and allergic responses (Ackerman et al., 2017b; Davani-Davari et al., 2019). 

2.4 Microbial modelling of oral cavity and colon 
To address specific questions, various in vitro models can be useful, providing the 
opportunity to simplify complex conditions and representing controllable, repeatable 
systems that can be used to test experimental hypotheses. 

Sampling from the oral cavity is quite easy and generally non-invasive. 
However, depending on the sampling technique used, the results can be diverse, as 
the oral microbiota varies significantly in different parts of the oral cavity. For caries-
related biofilms, the first requirement for a micro-organism is the adherence to a 
surface and survival. Therefore, evaluating the properties of bacteria in biofilm 
models is important because the bacterial form (planktonic vs. biofilm) affects many 
bacterial characteristics. Ideally, a model system should feature a diverse bacterial 
biofilm comprised of relevant bacterial species and growth conditions that mimic 
those found in the oral cavity, such as a medium that resembles saliva and a surface 
similar to enamel (Sim et al., 2016). 

For the gut microbiota, in vitro models are even more important because 
sampling from the colon is highly invasive. Great interest exists in understanding 
how various dietary components and other compounds affect microbiota 
compositions and metabolism. Commonly, faecal samples are used as the inocula 
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for model systems. The conditions used to mimic the colon, include a pH gradient 
from 5–7, a temperature of 37°C and an anaerobic atmosphere (Evans et al., 1988; 
Macfarlane et al., 1998; Venema & van den Abbeele, 2013). In vitro models offer 
the means to reproducibly cultivate a complex microbial community in a controlled 
environment and allow for the screening of various effects associated with different 
compounds or bacteria, facilitating the testing of research hypotheses using models 
that coincide with different parts of the colon (Venema & van den Abbeele, 2013). 
Several in vitro colonic models have been presented in the literature, from static 
batch incubations of faecal suspensions (usually short-term) to more complex 
dynamic models (for which the durations vary). In this thesis, I primarily focused on 
dynamic models that have previously been used to evaluate changes in infant 
microbiota. 

2.4.1 Adherence of oral microorganisms 
Various types of adherence experiments are reported in the literature. Usually, the 
adherence of biofilm-forming bacteria in the oral cavity is tested on hydroxyapatite or 
other hard surfaces used to model the tooth surface. Bacteria are allowed to adhere to 
a surface, for a certain period of time, after which all unbound bacteria are removed, 
and the bound bacteria are detected. The methods used for detection include plate 
counting, to determine colony forming units (Lassila et al., 2009), the measurement of 
turbidity with a spectrophotometer (Mattos-Graner et al., 2000), scanning electronic 
microscopy (Tanner et al., 2001), visualisation, using colour dyes such as crystal violet 
(Esberg et al., 2017), fluorescent dyes, which can be detected by a plate reader (Halpin 
et al., 2008), enzyme-linked immunosorbent assay with biotinylated bacteria (Ito et 
al., 2017) or radioactive labels, detected by scintillation counting (Danielsson Niemi 
et al., 2009; Esberg et al., 2017; Haukioja et al., 2008). 

To evaluate adhesin-mediated adherence, the surface may be covered with either 
whole or parotid saliva, to allow pellicle formation and to mimic the conditions of 
the oral cavity. Alternatively, the surface may be covered with only a buffer, to 
decrease variability associated with saliva composition (Halpin et al., 2008). Whole 
and parotid saliva differ in their compositions and are susceptible to individual 
variations (Humphrey & Williamson, 2001; Jakubovics, 2015; Jensen et al., 1992). 
For example, S. mutans Ingbritt adhesion to parotid saliva-coated HA varied among 
19 people, ranging from almost 20% to 70% (Wernersson et al., 2006). However, 
the saliva-promoted adhesion of S. mutans also correlated well with dental plaque 
formation, making this a valuable tool for many experiments (Shimotoyodome et al., 
2007). When comparing different experiments, it is important to remember that 
many factors such as adherence time, cell numbers and the adhesion properties of 
bacterial strains vary (Van Laar et al., 1996). 
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For bacteria that also adhere to tooth surfaces through glucans, such as S. mutans, 
alternative methods have been utilised. S. mutans requires sucrose for Gtfs to break 
the bond between glucose and fructose, allowing glucose to be utilised for the 
production of glucan polymers (Banas, 2004). S. mutans can also adhere to glucans 
synthesised by Gtfs on the tooth surface, via Gbps (Banas, 2004; Bowen & Koo, 
2011; Koo et al., 2010). Commonly, bacteria are allowed to grow and adhere in the 
presence of sucrose, and then, adhered bacteria are quantified, either 
spectrophotometrically (Hamada et al., 1981; Mattos-Graner et al., 2000) or using 
imaging techniques (Hamada et al., 1981; Koo et al., 2010; Söderling et al., 1987). 

2.4.2 Oral biofilms in batch culture 
The simplest way to evaluate oral bacterial biofilms is the closed-batch culture method. 
A biofilm is formed on a plate wall, disc, peg, or human or animal enamel (Maciá et 
al., 2014; Salli & Ouwehand, 2015). A batch system allows the use of either single or 
multiple bacterial species, including salivary or plaque bacteria, as a biofilm source 
and choosing suitable medium and oxygen conditions (Sim et al., 2016). Often these 
experiments are performed in small quantities, and the length of biofilm formation and 
the material on which the biofilm forms can vary. One limitation is the restricted (or 
overly abundant) nutrient availability and the accumulation of metabolites. However, 
depending on the research question, batch cultures can be useful, enabling the 
screening of potential materials, substances or conditions, increasing the 
reproducibility, and is economically less demanding than other methods (Salli & 
Ouwehand, 2015). The most commonly used batch biofilm models are the Zürich 
biofilm model and the Calgary biofilm device, which have both been widely used in 
caries-related research [reviewed in (Salli & Ouwehand, 2015; Sim et al., 2016)]. 

2.4.3 Continuous culture oral biofilms 
More complex systems attempt to mimic more conditions in the oral cavity than 
batch systems. These open systems commonly utilise continuous nutrient (saliva) 
flow, waste removal, and pH, temperature and humidity control (Maciá et al., 2014; 
Salli & Ouwehand, 2015). Continuous systems include chemostats, flow cells and 
artificial mouth models (Marsh, 1995; Salli & Ouwehand, 2015; Sim et al., 2016). 
For a chemostat to be meaningful for caries-related research, it must include solid 
surfaces, to which the bacteria can adhere for biofilm formation (Bradshaw et al., 
1996; Sim et al., 2016). Flow cells allow the formation of sequential biofilms and 
the opportunity for the real-time microscopic evaluation of biofilm development; 
however, the conditions can vary within the reactor (Salli & Ouwehand, 2015; Sim 
et al., 2016). Artificial mouth models have been used to study microbial interactions 
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in a modelled biofilm and to evaluate their characteristics (Tang et al., 2003). 
Continuous culture models usually utilise fewer replicates than batch systems; 
however, they offer a more controlled environment for addressing specific research 
questions. They are often used to evaluate bacterial consortia or a microcosm 
(salivary or plaque) of bacteria, but mono-species models may also be used (Salli & 
Ouwehand, 2015). The research question should define the appropriate experimental 
system. The pros and cons of the different methods have been discussed by Salli and 
Ouwehand (2015). 

2.4.4 Dynamic colon models 
The Reading simulator of the large intestine is three-stage (ascending, transverse and 
distal colon), continuous culture system (Gibson et al., 1988; Macfarlane et al., 1998). 
The working volume of the simulator vessels is 0.3–0.8 l, and the run time requires 
approximately 60 h to reach microbiological steady-state conditions (Macfarlane et al., 
1998). The simulator of the human intestinal microbial ecosystem (SHIME) simulates 
the entire gastrointestinal tract in five reactors, from the stomach to the colon (the last 
three reactors), with volumes ranging from 0.3–1.6 l (Molly et al., 1993; Reygner et 
al., 2016). The SHIME has an initial two-to-three-week microbiota stabilisation period 
before a test substrate can be added, and the retention time varies from 24 to 72 h 
(Pham & Mohajeri, 2018; Van de Wiele et al., 2015; Van den Abbeele et al., 2010; 
Venema & van den Abbeele, 2013). The EnteroMix colon simulator, which was used 
in this study, utilises smaller working volumes (6–12 ml) and models the colon in four 
compartments (ascending, transverse, descending and rectum) (Mäkivuokko et al., 
2005). The TIM-2, TNO dynamic computer-controlled in vitro model of the proximal 
colon is made from four glass jackets, connected by flexible membranes, which allows 
peristaltic movements to be modelled (Minekus et al., 1999). The duration is shorter 
(1–3 days), the pH is 5.8 and the fermentation volume is approximately 0.1–0.2 l 
(Minekus et al., 1999; Venema & van den Abbeele, 2013). TIM-2 is the only model 
that contains an absorption phase, simulating the intake of metabolites by the host 
(Minekus et al., 1999; Venema & van den Abbeele, 2013). In contrast with other 
models, the polyfermentor intestinal model (PolyFermS) uses faecal inocula 
immobilised on gel beads (Zihler Berner et al., 2013). PolyFermS allows the parallel 
testing of a control fermentation and up to four test fermentations, which are all seeded 
from the same inoculum reactor. However, this system utilises rather long 
fermentation runs, ranging from 38–79 days (Le Blay et al., 2010; Pham et al., 2019; 
Zihler Berner et al., 2013). One advantage of in vitro colon models, in general, is the 
potential to mimic disturbed microbiota compositions, by adding known pathogens to 
the inocula (Doo et al., 2017; Fehlbaum et al., 2016; Forssten et al., 2015). Table 1 
summarises the main features of these model systems. 
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Table 1. The main features and differences of the common dynamic colon models [the 
information in the table is based on (Doo et al., 2017; Dupont et al., 2019; Pham & 
Mohajeri, 2018)]. 

Reading SHIME Enteromix TIM-2 PolyFermS 

Volume 0.3–0.6 l 0.3–1.6 l 6–12 ml 0.1–0.2 l 0.1–0,4 l 

Inoculum 
donor 

Single donor Single donor Single donor Combined or 
single donors 

Immobilised 
faecal sample 

Replicates no Up to 4 Up to 8 Up to 10 Up to 5 

Inocula 
stabilisation 
time 

14–17 days 14–21 days 24 hours 16 hours 5–16 days 

Run time 20–96 hours 
–> up to17 
weeks 

24–72 hours 
–> up to 7 
weeks 

48 hours 1–3 days Up to 5 weeks 

Single or
multi 
component
model of 
colon 

Multi (3-stage) Multi (3-stage) Multi (4-stage) Single 
(proximal 
colon) 

Single and 
Multi-(3-stage) 
versions 

Advantages Pioneering 
system, 
validated with 
sudden death 
victims. 
Includes 
mucin gels, to 
mimic the 
mucosal 
surface. 

Includes also 
the stomach 
and small 
intestine. 
Mucosal-
SHIME 
mimics 
mucosal 
colonisation. 
The 
absorption 
phase and 
host 
microbiota 
interaction 
modules can 
also be 
added. 

Many 
replicates. 
Small volumes 
enable the 
testing of 
scarce test 
products. Can 
be combined 
with cell-
culture. 

Mimics 
peristaltic 
movements 
and has an 
absorption 
phase. If 
combined with 
TIM-1, can 
simulate also 
the stomach 
and small 
intestine. 

Immobilisation 
of faecal 
material to gel 
beads 
increases the 
bacterial cell 
density. 
Parallel 
testing option. 

Limitation No host cells. 
Lack of 
dialysis and 
peristalsis 

Lack of 
peristalsis 

No host cells. 
Lack of 
dialysis and 
peristalsis 

No host cells No host cells, 
lack of dialysis 
and peristalsis 
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Review of the Literature 

2.4.5 In vitro infant colon models 
The interest in understanding the effects of HMOs on the infant microbiota has 
increased the need to develop colonic models that focus on infants. 

Previously, an infant in vitro colonic model has been developed in a single-
culture system (Cinquin et al., 2004) and a three-stage chemostat model (proximal, 
transverse and distal colon), using faecal bacteria immobilised on gel polysaccharide 
beads (Cinquin et al., 2006). The experimental set-up required a stabilisation period 
(from 9 to 16 days), after which the fermentation was continued for 29–54 days 
(Cinquin et al., 2004, 2006), which generated one bacterial population on gel beads 
and another population that was no longer adhered to the beads. In a variation of 
their previous system, a PolyFermS model has been used to evaluate the effects of 
non-protein nitrogen sources, including nucleosides and yeast extracts, on infant 
microbiota (from a 6-month-old, formula-fed donor) and infant microbiota when 
enteropathogens were included (8-month-old, formula-fed donor) (Doo et al., 2017). 
The volumes ranged from 200 ml to 400 ml, and these fermentations lasted for 40 d 
and 18 d, respectively (Doo et al., 2017). Increased metabolic activity and the 
reduced colonisation of Salmonella (in the infection model) were reported (Doo et 
al., 2017). Yet another PolyFermS study evaluated the effects of lactate on the 
microbiota from two 2-month-old infants, for 57 days and 79 days (Pham et al., 
2019). These results showed that pH reductions were associated with increased 
lactate-producing bacteria, reduced lactate-utilising bacteria and lactate 
accumulation (Pham et al., 2019). 

An infant modification of the SHIME model (baby-SHIME) was developed, 
using six reactors which represent the stomach, duodenum, jejunum and ileum, 
ascending colon, proximal colon and distal colon, with volumes between 0.2–0.5 l, 
pH 3.8–6.5, and a total retention time of 28 h (De Boever, 2001). Three infants who 
consumed a mixed diet and solid foods (aged 3–12 months) donated faecal samples 
for the inoculation of colonic microbiota (De Boever, 2001). 

The Copenhagen Mini Gut (CoMiniGut) model was used to evaluate the effects 
of 1% (w/v) 3-fucosyllactose, 3´-sialyllactose, 6´-sialyllactose and FOS on infant 
microbiota, representing the first report on HMOs evaluated in a colon model (Wiese 
et al., 2018). CoMiniGut consists of five, parallel, single-vessels (each 5 ml), which 
are stirred under anaerobic and pH-controlled conditions, for 24 h (Wiese et al., 
2018). Infant faecal inocula were obtained from two vaginally born, breast-fed 
infants, at six months of age, and inocula were frozen until use (Wiese et al., 2018). 
Considerable variations were observed in the simulated microbiota compositions 
between the two donors (Wiese et al., 2018). 

In another study using the Baby-SHIME model, the effect of 2g/L 2´-FL on the 
microbiota derived from the faecal inocula of three donors (all 6 months old, 
formula-fed, and started solid foods at 4 months) were used (Van den Abbeele et al., 
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2019). This model comprises three reactors which represent the stomach and small 
intestine (combined in one reactor), proximal colon and distal colon with volumes 
and pH respectively: 140 ml, pH 3 with addition of 60 ml, pH 6; 300 ml, pH 5.4– 
5.6; and 500 ml, pH 6.0–6.5 (Van den Abbeele et al., 2019). The system included a 
mucosal compartment, allowing the colonisation of the mucus layer, and required a 
two-week start-up period, to allow the microbiota to evolve, followed by a two-week 
control period and a three-week treatment period (Van den Abbeele et al., 2019). 2´-
FL especially increased acetate production, whereas propionate and butyrate levels 
were higher in the presence of 2´-FL than in controls. Differences between donors 
were observed in terms of lactate production (Van den Abbeele et al., 2019). Only 
minor effects for 2´-FL were observed for the microbiota composition, although 
interindividual variability associated with the donors was clear (Van den Abbeele et 
al., 2019). 
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3 Aims 

In the present PhD thesis, we hypothesised that functional food ingredients can 
modulate the adhesion, colonisation, biofilm formation and virulence properties of 
caries-related MS and gut bacteria. 

This thesis aimed to evaluate the effects of xylitol, 2´-FL and GOS on oral MS 
and gut microbial compositions, using developed in vitro methods. 

The specific aims were as follows: 

• To evaluate the in vitro effects of xylitol and sucrose, in addition to mints 
containing xylitol, peppermint oil and sucrose, on the early biofilm 
formation of S. mutans, using a novel dental simulator. 

• To evaluate the in vitro effects of 2´-FL, xylitol, GOS and lactose on the 
growth and adhesion properties of S. mutans. 

• To evaluate the in vitro effects of 2´-FL, compared with GOS and lactose, 
on infant colon microbial compositions and metabolites, using a novel 
infant colon simulation model. 

39 



  

   

 
 

 
 

  
    

    
           
        

  
      

  
 

 
  

 

     

    

    

    

    

    

    
  

1 1 

1 1 

1 1 

4 Materials and Methods 

A summary of the materials and methods is described here. More information can 
be found in the original publications I–IV. 

4.1 Bacterial adherence and biofilm formation (I, II, 
III) 

4.1.1 Micro-organisms and growth media 
Table 2 summarises the bacterial strains used in original publications I-III: type 
strain S. mutans DSM 20523 (ATCC 25175), a reference strain S. mutans Ingbritt 
(Krasse, 1966), and S. mutans clinical isolates Cl 2366 and Cl 117. The origins, 
isolation, and identification of clinical isolates were described earlier (Söderling et 
al., 2000; Söderling et al., 2008; Söderling & Hietala-Lenkkeri, 2010). In addition, 
S. sobrinus DSM 20381 was studied (I). S. mutans strains and S. sobrinus were 
grown in brain heart infusion (BHI, LAB049, LabM Limited, Lancashire, United 
Kingdom, I and II; Becton Dickinson, Le Pont de Claix, France, III), under aerobic 
conditions at 37°C. For the pure culture bacterial growth experiment, tryptic soy 
broth (TSB, Bacto™; Becton Dickinson and Company, Sparks, MD, USA), with and 
without glucose, was used. 

Table 2. Bacterial strains used in original publications I–III. 

Bacteria Strain Origin Original publication 

Streptococcus mutans DSM 20523 carious dentine I, II, III 

Streptococcus mutans Ingbritt dental plaque III 

Streptococcus mutans CI 2366 clinical isolate I, III 

Streptococcus mutans CI 117 clinical isolate I 

Streptococcus sobrinus DSM 20381 dental caries I 
* DSM = Deutsche Sammlung von Mikroorganismen, CI = clinical isolate. 
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Materials and Methods 

4.1.2 Saliva 
Paraffin-stimulated whole saliva, used in the dental biofilm simulator model (I and 
II), was collected previously, from 13 volunteers, pooled, filtered, pasteurised and 
stored at −20°C, until use (Björklund et al., 2011). 

Parotid saliva for the evaluation of adhesion to hydroxyapatite (III) was collected 
using Lashley cups, by stimulation with a Salivin lozenge (Pharmacia Ltd, Vantaa, 
Finland). Freshly collected parotid saliva was diluted 1:1 with buffered KCl (50 mm 
KCl, 0.35 mm K2HPO4, 0.65 mm KH2PO4, 1.0 mm CaCl2, 0.1 mm MgCl2, pH 6.5) 
and stored on ice before experimental use. 

4.1.3 Planktonic bacterial growth 
The ability of three S. mutans strains to grow on different carbon sources was evaluated 
in a Bioscreen©C system (Labsystems, Helsinki, Finland) in an anaerobic cabinet (80% 
N2, 10% CO2, 10% H2), as described earlier (Mäkeläinen et al., 2010c). S. mutans 
strains were first cultured from stocks at −70°C, in BHI medium. Then, bacteria were 
grown overnight, in TSB with glucose, at 37°C, under aerobic conditions. For the 
growth experiment, 1% (v/v) bacterial suspensions were generated, in TSB devoid of 
glucose or any other carbon source and used immediately. 

Stock solutions [10% (w/v)] of 2´-FL (DuPont Nutrition & Biosciences, Kantvik, 
Finland and Inbiose, Ghent, Belgium), xylitol (DuPont Nutrition & Biosciences, 
Kotka, Finland), glucose (J. T. Baker, Deventer, The Netherlands), lactose (Sigma-
Aldrich, St. Louis, MO, USA) and GOS (kindly provided by Clasado Biosciences, 
St Helier, Jersey, United Kingdom) were prepared using sterile water. All stock 
solutions were sterile filtered (0.2 µm Minisart, Sartorius AG, Göttingen, Germany) 
and stored at −20°C, until use. A 20 µl volume of stock suspension for each carbon 
source was added to a well with 180 µl of bacterial suspension. TSB without glucose 
or other added carbon sources was used as a negative control. Bioscreen measured 
the optical density at 600 nm, every 0.5 h for 24 h. Growth curves were generated, 
and the area under the growth curve (AUC) for carbon sources was calculated 
(Mäkeläinen et al., 2010c). Three independent experiments, each with triplicate 
samples for each carbon source, were performed. 

4.1.4 Adhesion to a smooth glass surface 
The exopolysaccharide mediated adhesion of S. mutans to a glass surface was 
determined, as described earlier (Mattos-Graner et al., 2000). Briefly, S. mutans was 
grown in BHI, with additional 1% (w/v) sucrose (Suomen Sokeri Oy, Kirkkonummi, 
Finland) and 1% (w/v) of the following carbon sources: 2´-FL, xylitol, GOS, lactose 
and buffer, as a control. Cultures were grown in a glass tube, at a 30° angle, in an 
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anaerobic atmosphere at 37°C. After 18 h of growth, the unbound bacteria were 
transferred to another tube (planktonic bacteria). Then, the original growth tubes 
were rinsed with potassium-phosphate buffer (0.05 mol/l, pH 7) and lightly mixed, 
and the unbound bacteria were transferred to the tube containing planktonic bacteria. 
Potassium-phosphate buffer was added to the original growth tubes and subsequently 
vortexed and sonicated (Heraeus Biofuge Stratos, Kendro Laboratory Products, 
Langenselbold, Germany) for 30 s, to release the adhered bacteria. The tubes 
containing planktonic bacteria were also vortexed and sonicated. Both planktonic 
bacteria and adhered bacteria were quantified using a plate reader and compared 
against potassium-phosphate buffer (Ensight, Perkin Elmer, Waltham, MA, USA). 
The adhered bacteria were calculated as the ratio of adhered bacteria to all bacteria, 
and the results were expressed as relative adhesion, with the controls set to one. 
Three independent experiments, in triplicate, were performed. 

4.1.5 Adhesion to saliva-coated hydroxyapatite 
The adhesion to parotid saliva-coated hydroxyapatite was assessed, as described 
previously (Haukioja et al., 2008). Briefly, S. mutans bacteria were first grown in 
BHI, overnight at 37°C. The culture was renewed with 5 µl (50 µCi) 35S-labeled 
methionine (Perkin Elmer LifeSciences, Inc., Boston, MA, USA) and grown to the 
mid-logarithmic phase. Then, bacteria were washed three times with buffered KCl. 
Hydroxyapatite powder (Clarkson Chromatography Products Inc., South 
Williamsport, PA, USA) was coated with diluted parotid saliva for 1 h, under mild 
agitation (IKA loopster, IKA®-Werke GmbH & Co. KG, Staufen, Germany), and 
then hydroxyapatite was washed three times with buffered KCl. To evaluate 
adhesion, bacteria, parotid saliva-coated hydroxyapatite, and the tested carbon 
sources [1% (w/v) 2´-FL, xylitol, GOS, lactose, and plain buffer as a control] were 
combined, and the bacteria were allowed to adhere for 1 h, under mild agitation. 
Unbound bacteria were washed three times with buffered KCl, and bound bacteria 
were determined using a scintillation counter (MicroBeta 1450, Perkin Elmer 
Wallac, Waltham, MA, USA), using scintillation cocktail (Optiphase 
Supermix/Optiphase Hisafe 3, PerkinElmer, Waltham, MA, USA). Experiments 
were repeated at least twice, with 6 replicates (among which, the highest and lowest 
values were omitted to decrease variability). The control was set to one, and relative 
changes were calculated. 

4.1.6 Dental biofilm simulator model 
The in vitro dental simulator model was utilised in original publications I and II. The 
simulator is a bacterial biofilm model, using artificial saliva (AS) as a medium, 
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Materials and Methods 

hydroxyapatite discs to model teeth and a continuous flow of AS to mimic the 
salivary flow of the oral cavity (Figs. 6 and 7). The system was briefly mentioned 
previously (Forssten et al., 2010; Salli & Ouwehand, 2015); however, original 
publication I contains the first results reported using the model system. 

Prior to the simulation, a fresh bacterial culture was grown to the mid-
exponential phase, in BHI. Then, the culture was centrifuged, washed once with AS, 
and diluted to 1/4 of the original suspension. Each of the 16 simulation vessels was 
inoculated with 0.5 ml of the diluted bacterial suspension. 

A 20% (w/v) stock suspension of the tested products was prepared in sterile 
water. The suspensions were then sterile-filtered (0.2 µm Minisart®, Sartorius AG). 
Table 3 shows the test compounds used in studies I and II. The test compounds were 
dissolved in AS to achieve the desired final concentration. 

Table 3. Test compounds used in dental simulator studies, original publications I and II. 

Test compound Manufacturer Original 
publication 

sucrose Suomen Sokeri Oy, Kantvik, Finland I and II 

xylitol DuPont Nutrition & Biosciences, Kotka, Finland I and II 

commercial mint product with 
xylitol 

Peppersmith Ltd, London, United Kingdom II 

commercial mint product with 
sucrose 

Nestle UK Ltd, York, United Kingdom II 

peppermint oil SALUS Haus Gmbh & Co KG, Bruchmühl, 
Germany; Emendo Oy, Vaasa, Finland, 
Urtegaarden Aps, Allingåbro, Denmark 

II 

4.1.6.1 Artificial saliva 

In the dental simulator model, mucin-containing AS, mimicking bacterial growth in 
human saliva was used to study bacterial growth (Björklund et al., 2011). The 
composition (salts, amino acids, vitamins, albumin, urea, myo-inositol and 5 g/l 
mucin) and preparation of AS were described, in detail, previously (Björklund et al., 
2011; Wong & Sissons, 2001). 

4.1.6.2 Operation of the simulator 

The in vitro biofilm simulator model consists of 16 bottles, in a temperature-
controlled hood (B. Braun Biotech International, Sartorius AG, Göttingen, 
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Germany), at 37°C with continuous flow (Minipuls 3, Gilson1, Villiers le Bel, 
France and 202U, Watson-Marlow Ltd, Falmouth, Cornwall, England) of AS 
through the bottles (Figs. 6 and 7). Hydroxyapatite discs mimic teeth to offer 
adhesive support. Before the simulation was started, 15 ml of AS was inserted into 
the bottles, and the hydroxyapatite discs (Ø 7 mm, Clarkson Chromatography 
Products Inc.) were attached to the stainless-steel support with nail polish 
(Maybelline, L’Oreal, Paris, France) and covered with human whole saliva, for 1 h 
at 37°C, to allow pellicle formation and then inserted into the bottles. The bacterial 
suspension was added to the bottles and the flow was started. A constant stirring in 
the bottles was used to create shear forces. Samples of planktonic AS and HA discs 
were collected after the flow was stopped and stored at −20°C until analysed. During 
these experiments, the initial flow of AS was 10 ml/h, with no test products, for 0.5 
h. Then, the test compounds in AS were run at 20 ml/h, for 3 h, followed by 0.5 h of 
incubation and a final rinsing with 10 ml/h plain AS, for 1 h. AS without the added 
test compounds was used as a control. 

Figure 6. A schematic of the principle underlying the in vitro dental simulator model (reproduced 
from Salli and Ouwehand, 2015, under Creative Commons Attribution-Non-
commercial 4.0 International License). 1. Artificial saliva container 2. Pump 3. 
Simulation vessel (one of 16 parallel vessels) 4. Sample collection during simulation 
5. Outlet pump 6. Waste. 
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Materials and Methods 

Figure 7. Photo of the dental simulator vessels (copyright Krista Salli). 

4.1.6.3 DNA extraction 

DNA was extracted from bacteria that adhered to hydroxyapatite discs, as described 
by Wilson, with minor modifications (Wilson, 2001). First, the hydroxyapatite discs 
were rinsed to remove the loosely adhered bacteria. Hydroxyapatite discs were then 
placed in a solution of 12% sucrose, in 25 mM Tris-HCl (pH 8.0), lysozyme was 
added and the discs were incubated for 2 h, at 37°C. Then, 10% SDS, 250 mM EDTA 
(pH 8.0) and proteinase K were added, and the mixture was incubated for 2 h at 
37°C, followed by the addition of NaCl, mixing, the addition of cetyl trimethyl 
ammonium bromide, and incubation for 20 min at 65°C. Finally, DNA was extracted 
using a chloroform:isoamyl alcohol (24:1) mixture and precipitated using 
isopropanol. DNA was collected by centrifugation, washed with 70% ethanol, 
resuspended in elution buffer (Ambion Inc., Austin, TX, USA) and stored at −20°C. 

DNA from planktonic AS samples was extracted using the MagMAXTMTotal 
Nucleic Acid Isolation Kit (Ambion Inc.), according to the manufacturer’s 
instructions, using the MagMAXTM Express 96 sample preparation system (Life 
Technologies, Halle, Belgium). Bead beating was performed with Precellys24 
(Bertin Technology, Montigny le Bretonneux, France), and DNA concentration was 
measured using a Nanodrop ND-1000 Full-spectrum UV/Vis Spectrophotometer 
(NanoDrop Technologies, Wilmington, DE, USA). 
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4.1.6.4 qPCR 

In original publication I, S. mutans and S. sobrinus from the planktonic AS samples 
and HA discs were quantified using quantitative polymerase chain reaction (qPCR) 
with Applied Biosystems Real-Time PCR equipment (ABI 7500 FAST, Applied 
Biosystems, Foster City, CA, United States) and software. An S. mutans-specific 
assay utilised TaqMan Master Mix, without AmpErase UNG (Applied Biosystems), 
300 nmol of forward and reverse primers and 200 nmol of the probe. To detect S. 
sobrinus DSM 20381, a Streptococcus-specific assay was utilised with Power SYBR 
Green Master Mix, without AmpErase UNG (Applied Biosystems, Bridgewater, NJ, 
USA) and 300 nmol of each primer. The reaction volume used in both assays was 25 
ml, and 1 ng of template DNA was used. The primers used in this study are shown 
in Table 4. In original publication II, S. mutans was determined using a 
Streptococcus assay. 

The amplification profile for both assays was as follows: 95°C for 10 min and 
40 cycles of denaturation at 95°C for 15 s, annealing at 60°C for 30 s and extension 
at 72°C for 30 s. A 10-fold dilution series, from 1 pg to 1 ng, of the target species S. 
mutans type strain was included to create a standard curve. Water was used as a no 
template control, and assays in which the no template controls had Cq values 5–10 
cycles below that of the lowest sample were accepted. Triplicate samples were 
analysed, and the results were expressed as log10 genomes per ml AS or per 
hydroxyapatite disc, considering the size and the 16S rDNA copy number of the 
standard species genome. 

Table 4. Primers and probe used in the qPCR analysis 

Designation Sequence Target 
gene 

Reference Original 
publication 

Smut_fwd 
primer 

50-GTCTACAGCTCAGAGATGCTATTCT-30 gtfB Modified 
from a 

I 

Smut_rev 
primer 

50-GCCATACACCACTCATGAATTGATAAT-30 Modified 
from a 

I 

Smut_fwd 
probe 

50-FAM-TGGAAATGACGGTCGCCGTTATGAA-BHQ1-30 Modified 
from a 

I 

Str1 primer 50-GTACAGTTGCTTCAGGACGTATC-30 tuf b I, II 

Str2 primer 50-ACGTTCGATTTCATCACGTTG-30 b I, II 
* a is (Yoshida et al., 2003); b is (Picard et al., 2004). 
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Materials and Methods 

4.1.7 Statistical analysis 
Statistical analyses were performed using GraphPad Prism for Windows (GraphPad 
Software, La Jolla, CA, USA), version 6.04 (original publications I and II) and 
version 8.1 (original publication III). P-values less than or equal to 0.05 were 
considered significant. In the dental simulator studies (I and II) the differences 
between treatment groups were analysed by one-way analysis of variance (ANOVA) 
and Tukey’s multiple comparisons test. In original publication I, the effects of 
increasing concentrations of xylitol combined with 1% sucrose were tested using 
nonlinear regression, semi logline analysis. In original publication II, comparisons 
of the ratios of HA-attached to planktonic bacteria were performed using two-sided, 
non-paired, student’s t-test (Excel in Microsoft Office 365 ProPlus). The results were 
analysed from at least three (Study I) or two (Study II) independent experiments. 
Original publications I and II examined each treatment in duplicate for each 
experiment. In original publication III, significant differences between groups were 
analysed using one-way ANOVA and Dunnett’s multiple comparisons test, for the 
growth experiment, and Tukey’s multiple comparisons test, for the adhesion 
experiments. 

4.2 EnteroMix colon model (IV) 
The semi-continuous EnteroMix colon simulator model was first described by 
Mäkivuokko et al. (2005, 2006). This model was developed based on the Reading 
three-stage model (Gibson et al., 1988; Macfarlane et al., 1998) and has previously 
been used to study the effects of pre- and probiotics on the microbiota composition 
and metabolites of microbial inocula obtained from adult volunteers (Mäkeläinen et 
al., 2010a; Mäkivuokko et al., 2010; van Zanten et al., 2012). The original 
publication IV was the first to investigate the effects of HMOs on the infant 
microbiota composition and metabolites with EnteroMix model. The present study 
was reviewed and approved by the Coordinating Ethical Committee of the University 
of Helsinki (Decision number 139/13/03/00/16). All methods were performed in 
accordance with the national guidelines of Finland. One simulator unit is composed 
of four parallel vessels, V1 to V4 (Figs. 8 and 9). The conditions of the vessels were 
adjusted to mimic the different parts of the colon: ascending (V1), transverse (V2), 
descending (V3) and the end of the descending/rectum area (V4). The pH increased 
as the system moved from V1-V4 (5.5–7.0) and was adjusted using gaseous 
ammonia if it fell below the set target value. The volumes increased from V1–V4 (6 
ml–12 ml), to model reduced flow. The temperature of the simulator was maintained 
at 37°C, in an anaerobic atmosphere, and customised software was used to control 
the pH and the gas and liquid transfers during the simulation. 
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Figure 8. A schematic showing a single unit of the EnteroMix colon simulator system. Vessel 1 
(V1, proximal) to vessel 4 (V4, distal) represent different parts of the colon. Nitrogen 
was used to maintain anaerobiosis and as a carrier gas for ammonia and liquid transfers. 
The system was computer-controlled [own drawing, modified from (Mäkivuokko et al., 
2006)]. 

Figure 9. A picture of one unit of the colon simulator, with vessels representing the proximal to 
distal parts of the colon (copyright by Krista Salli). 
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Materials and Methods 

4.2.1 Artificial ileal fluid 
A version of synthetic ileal fluid is often used as a medium in colon simulator runs. As 
described previously (Gibson et al., 1988), a slightly modified version of artificial ileal 
fluid was used in these colon simulations (Macfarlane et al., 1998; Mäkivuokko et al., 
2005). The components were dissolved in water in the following amounts (g/l): starch, 
5.0; peptone, 0.05; tryptone, 5.0; yeast extract, 5.0; NaCl, 4.5; KCl, 4.5; mucin 
(porcine, type II), 4.0; casein, 3.0; pectin, 2.0; xylan (oat spelt), 2.0; arabinogalactan, 
2.0; NaHCO3, 1.5; MgSO4, 1.25; guar gum, 1.0; inulin, 1.0; cysteine, 0.8; KH2PO4, 
0.5; K2HPO4, 0.5; bile extract (porcine), 0.4; CaCl2 × 6 H2O, 0.15; FeSO4 × 7 H2O, 
0.005; hemin, 0.05 and Tween 80, 1.0. Before being used in the simulator, the medium 
was prepared by mixing 1 part of the above described, anaerobic, autoclaved fluid with 
2 parts of pre-reduced 20 mM NaH2PO4, pH 6.5 and 1 part of pre-reduced 0.9% NaCl. 

4.2.2 Tested products 
To evaluate the effects of 2´-FL (DuPont Nutrition & Biosciences and Inbiose), 
lactose (Sigma-Aldrich) and GOS (Clasado Biosciences), 2% (w/v) solutions were 
prepared in artificial ileal fluid. Artificial ileal fluid, without added carbohydrates, 
was used in a control simulation. 

4.2.3 Inocula donated by infants 
Infant faecal samples were used to inoculate the colon simulator system. Infants who 
donated faecal samples were between 0.5 and 8 months old, in good health, and had 
not been medicated with antibiotics. A parent for each infant provided informed 
consent and background information, including the age, food, supplements, allergies 
and delivery mode of the infant. Parents were provided with materials for sample 
collection and handling. They were instructed to freeze the faecal samples, 
immediately, at −20°C, before the samples were transported to the laboratory and 
stored at −80°C. Faeces from a single infant donor was used to inoculate a set of four 
parallel simulations. To obtain sufficient faeces from the same infant, we used frozen 
faeces and pooled all samples from a single infant that were collected within one 
week. The samples from a single donor were mixed with three parts artificial ileal 
fluid, filtered through a 0.3-mm metal mesh, and incubated anaerobically, for 24 h 
at 37°C, before being added to the simulator. 

4.2.4 Operation of the simulator 
Before the simulation began, the simulator system was first flushed with nitrogen 
gas, and vessels V1, V2, V3 and V4 were filled with water and an anaerobic 
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physiological salt solution containing resazurin, to volumes of 3, 5, 7 and 9 ml, 
respectively. Then all units were inoculated with faecal samples in V1. The faecal 
inoculum was then transferred to V2, from there to V3, and then to V4, before being 
deposited in the waste container. When a simulation run was started, the media was 
transferred at three-hour intervals by a pressurised gas, in the following order: V4 to 
effluent, V3 to V4, V2 to V3, V1 to V2, and 3 ml of new artificial ileal fluid, with 
and without test products (control), to V1. After 48 h, the simulation was stopped, 
and samples were removed from each vessel. The final volumes in vessels V1, V2, 
V3 and V4 were 6, 8, 10 and 12 ml, respectively. 

4.2.5 Sample analysis 
Samples were taken from each vessel at the end of the 48-h simulation and 
maintained at –20°C until analysis. 

4.2.5.1 2´-FL and fucose concentration 

The 2´-FL and fucose concentrations (from the simulation units to which 2´-FL was 
added) were determined, as described in original publication IV. Briefly, standard 
fucose (Sigma-Aldrich, St. Louis, MO, USA) and 2´-FL (DuPont Nutrition and 
Biosciences) solutions with known concentrations were made. Samples were 
centrifuged, mixed with ethanol, incubated and re-centrifuged, and the supernatant 
was evaporated to dryness, dissolved in water and filtered. High-performance anion-
exchange chromatography, with a mobile phase consisting of water and NaOH 
gradient, was applied. The retention times for fucose and 2´-FL were 6.3 min and 
22.8 min, respectively. 

4.2.5.2 Analysis of microbial numbers 

The total bacterial numbers were analysed using flow cytometry, as described 
previously (Apajalahti et al., 2002). Briefly, the samples for flow cytometry analysis 
were fixed with 4% formaldehyde when the simulation was stopped, and the samples 
were stored at 4°C until analysis. Bacteria were stained with SYTO24 dye 
(Molecular Probes, Leiden, The Netherlands) and counted with the FACSCalibur 
system (BD Biosciences, San Jose, CA, USA). 

DNA was extracted using the MagMAX™ with Total Nucleic Acid Isolation Kit 
(Ambion Inc.) and the Mag MAX™ Express 96 sample preparation system (Life 
Technologies), according to the manufacturer’s instructions. A Precellys24 
homogeniser (Bertin Technology) was used for bead beating, and DNA was further 
purified with the One-Step-96TM PCR Inhibitor Removal Kit (Zymo Research, 
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Materials and Methods 

Irvine, CA, USA). DNA concentrations were measured using a Qubit® 3.0 
Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). 

Total bifidobacteria were quantified by real-time qPCR, using TaqMan and 
Applied Biosystems Real-Time PCR equipment and software (ABI 7500 FAST, 
Applied Biosystems), as described previously (Mäkeläinen et al., 2010a; 
Mäkivuokko et al., 2005). The amplification assays were performed as follows: 
activation at 95°C for 20 s, and 40 cycles of denaturation at 95°C for 3 s and 
annealing at 60°C for 30 s. Standard curves, consisting of 10-fold dilutions of target 
species DNA, were used for quantification. 

4.2.5.3 Microbial composition by sequencing 

DNA extraction and purification were described in the previous section. The 16S 
rRNA gene, at the V4 variable region, was amplified from all simulation samples, as 
described previously (Caporaso et al., 2012; Raza et al., 2017). The amplicon pool 
was sequenced using the Illumina MiSeq system, with 2 × 250 bp reads (DuPont 
Pioneer, Johnston, IA, USA), and examined using the Quantitative Insights Into 
Microbial Ecology pipeline (QIIME v. 1.9.1) (Caporaso et al., 2010; Caporaso et al., 
2012; Raza et al., 2017). Sequences were clustered into operational taxonomic units, 
at 97% sequence similarity, against the Greengenes database (v. 13.8) (DeSantis et 
al., 2006). Taxa compositions were reported as relative abundance (% of total 
sequences) and visualised using Microsoft Excel. 

4.2.5.4 The concentrations of SCFAs and BCFAs 

The concentrations of SCFAs and BCFAs from the simulation samples were 
analysed, as described previously, using gas chromatography (Ouwehand et al., 
2009). In brief, pivalic acid, as an internal standard, was added to each sample. After 
mixing, centrifugation, the addition of oxalic acid, incubation, and re-centrifugation, 
the supernatant was analysed using a glass column, packed with 80/120 Carbopack 
B-DA/4% on Carbowax 20M stationary phase (Supelco, Bellefonte, PA, USA), at 
175°C, using helium as the carrier gas and a flame ionisation detector. The 
concentrations of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric 
acid, isovaleric acid, 2-methylbutyric acid and lactic acid were determined. 

4.2.5.5 The concentrations of biogenic amines 

Biogenic amines were determined, as described by Saarinen, using high performance 
liquid chromatography (Saarinen, 2002). Methylamine, ethylamine, tryptamine, ˜-
phenyl-ethylamine, 2-methyl-butylamine, putrescine, cadaverine, histamine, 
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tyramine, spermidine and spermine were analysed. In brief, the samples were 
prepared by the addition of heptylamine, as an internal standard, and then all amines 
were extracted, and the proteins were precipitated with perchloric acid. The 
derivatisation of the samples and standards was performed by first adding NaOH, 
saturated sodium bicarbonate solution, and a derivatisation reagent (1% dansyl 
chloride in acetone). Then, the samples were mixed, incubated, and ammonia was 
added, followed by mixing, incubation, the addition of acetonitrile, mixing, and 
centrifugation. The separation was performed under reversed-phase conditions, with 
a Spherisorb ODS-2 column (Waters, Helsinki, Finland), using a gradient elution of 
0.02 M ammonium acetate and acetonitrile, and detected with an ultraviolet detector. 

4.2.6 Statistical analysis 
The statistical analysis was explained, in detail, in original publication IV. 
Differences in microbial composition, based on the relative abundance of taxa (> 
0.1% abundance), were determined using the Kruskal-Wallis test, and p-values were 
adjusted by the Benjamini-Hochberg false-discovery rate (FDR) correction 
(Benjamini & Hochberg, 1995). Taxa with FDR corrected p-values <0.05 were 
considered significantly different. 

Data for all microbial metabolites were analysed as longitudinal data, across 
multiple vessels, using the nonparametric and robust methods that were developed 
by Brunner and colleagues (Brunner et al., 2002), which are part of the R package, 
nparLD (Noguchi et al., 2012). P-values from multiple, simultaneous tests were 
Benjamini-Hochberg FDR-corrected (Benjamini & Hochberg, 1995), and p-values 
of 0.05 or less were considered significant. 

Data regarding the numbers of bifidobacteria and total bacteria were analysed, 
using a linear, mixed-effects model, with random intercepts and slopes for the 
subjects, and using vessel number as a continuous covariate. Another fixed, second-
order slope was added to account for the nonlinear growth of bacteria in the vessels. 
Statistically non-significant interaction terms were excluded, to obtain increased 
power for the estimation of the parameters of interest. 
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5 Results 

The results of original publications I-IV are presented here. 

5.1 Effects of 2´-FL, GOS and xylitol on the 
planktonic growth of Streptococcus mutans (III) 

We evaluated the ability of three S. mutans strains, DSM 20523, Ingbritt and Cl 
2366, to grow on different carbon sources. The growth medium, without any added 
carbon source, was used as a negative control (TSB– + inocula), whereas medium 
with glucose added was used as a positive control. Optical density (OD) at 600 nm 
was measured, using Bioscreen equipment under anaerobic conditions, every 30 min 
for 24 h. All tested S. mutans strains grew well with 1% (w/v) glucose, lactose and 
GOS; however, they did not grow with 1% (w/v) 2´-FL as their carbon sources. 
Xylitol, at 1% (w/v), significantly inhibited the growth of the studied S. mutans 
strains, compared with the control with no added carbon sources (Fig. 10). 

Figure 10. The growth of S. mutans DSM 20523, CI 2366 and Ingbritt, using different carbon 
sources. * p < 0.05; ** p < 0.001 in comparison to TSB– + inocula. TSB– = tryptic soy 
broth without glucose; 2´-FL = 2´-fucosyllactose; GOS = galacto-oligosaccharides; AUC 
= area under the growth curve; TSB = tryptic soy broth. This represents a modification 
of the Figure 1 in original publication III. 
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5.2 Effects of 2´-FL and GOS on Streptococcus 
mutans adherence to a smooth glass surface 
(III) 

We evaluated the exopolysaccharide-mediated adhesion of the S. mutans strains 
DSM 20523, Ingbritt and Cl 2366 to a glass surface, in the presence of 1% (w/v) 2´-
FL, xylitol, GOS and lactose. No increases in S. mutans adhesion were observed for 
any of the studied test compounds. For S. mutans Ingbritt, no significant changes 
were found with any of the studied compounds. The relative adhesion of type strain 
DSM 20523 was significantly (p < 0.05) reduced by 2´-FL, GOS, and lactose, 
compared with the control, whereas the strain CI 2366 only showed a reduction with 
GOS. 

5.3 Effects of 2´-FL, GOS and xylitol on 
Streptococcus mutans adherence to saliva-
coated hydroxyapatite (III) 

We evaluated the adhesin-mediated adhesion to a parotid saliva-coated 
hydroxyapatite surface for the S. mutans strains DSM 20523, Ingbritt and Cl 2366, 
in the presence of 1% (w/v) 2´-FL, xylitol, GOS and lactose. Compared with the 
control, no changes in adhesion were found with any of the studied compounds for 
the strains DSM 20523 and Ingbritt. In contrast, 2´-FL and GOS decreased the 
adhesin-mediated adhesion to parotid saliva-coated HA for the strain CI 2366 (p < 
0.05). 

5.4 Effects of xylitol concentrations on the biofilm 
formation of Streptococcus mutans (I) 

We studied the effects of increasing 2%–5% (w/v) xylitol concentrations, with and 
without 1% (w/v) sucrose, using the S. mutans type strain DSM 20523. The results 
for both hydroxyapatite-adhered and planktonic AS bacteria are presented in Table 
5. The addition of sucrose to AS significantly increased both the adhered and 
planktonic bacterial numbers. In contrast, the addition of xylitol to AS, at 
concentrations ranging from 2% to 5%, significantly decreased the amount of S. 
mutans that adhered to hydroxyapatite, compared with AS. For planktonic bacteria, 
significant decreases were found at xylitol concentrations of 2% and 4%. The 
addition of xylitol (2% to 5%) to 1% sucrose in AS resulted in a decrease in bacterial 
numbers adhered to hydroxyapatite with increasing xylitol concentration in 
comparison to AS with 1% sucrose. In AS samples, the addition of xylitol to sucrose-
AS, showed no changes. 
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Results 

Table 5. Bacterial numbers for S. mutans DSM 20523 (mean ± std) biofilm adhered to 
hydroxyapatite (HA) discs and from planktonic artificial saliva (AS) in a dental simulator. 
DNA was extracted and quantified using real-time qPCR. Significance was determined 
by ANOVA and Tukey’s multiple comparisons test. P- values: p < 0.05 (a) in comparison 
to AS alone, and (b) in comparison to AS with 1% sucrose. 

Test compound added 
to AS 

Log10 S. 
mutans/HA 
disc 

Sample 
n 

Signi-
ficance 

Log10 S. 
mutans/ml 
AS 

Sample 
n 

Signi-
ficance 

AS alone 4.5 ± 0.4 19 - 6.9 ± 0.4 20 -

1% sucrose 5.9 ± 0.3 20 a 7.4 ± 0.3 20 a,b 

2% xylitol 3.6 ± 0.3 10 a, b 5.9 ± 0.4 10 a 

2% xylitol + 1% sucrose 5.8 ± 0.4 10 a 7.1 ± 0.5 10 

3% xylitol 3.7 ± 0.7 11 a, b 6.5 ± 0.4 11 b 

3% xylitol + 1% sucrose 5.6 ± 0.4 10 a 7.2 ± 0.5 10 

4% xylitol 3.0 ± 0.5 6 a, b 6.2 ± 0.4 5 a,b 

4% xylitol + 1% sucrose 5.2 ± 0.4 6 a, b 7.0 ± 0.2 6 

5% xylitol 3.5 ± 0.3 6 a, b 6.4 ± 0.2 6 b 

5% xylitol + 1% sucrose 5.2 ± 0.7 6 a 7.0 ± 0.4 6 

5.5 Effect of xylitol and sucrose mints on biofilm
formation of Streptococcus mutans (II) 

We evaluated the effects of commercial xylitol mints and sucrose mints on the early 
biofilm formation of S. mutans DSM 20523 (Fig. 11). The mint pastilles also 
contained peppermint oil (PO); therefore, PO, xylitol and sucrose were also 
evaluated separately. Both 3% sucrose and 3% sucrose mints significantly increased 
the numbers of S. mutans in the hydroxyapatite adhered biofilm, whereas 3% xylitol 
and 3% xylitol with PO decreased the numbers, compared with the AS control. For 
3% xylitol mints, however, the decrease did not reach significance. The combination 
of xylitol with PO resulted in significantly reduced biofilm bacterial numbers 
compared with PO alone. 

Sucrose increased the planktonic bacterial S. mutans numbers, whereas xylitol, 
xylitol mints, and xylitol with PO decreased the numbers. In addition, both xylitol 
and xylitol with PO decreased S. mutans numbers in comparison with PO alone. 
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Figure 11. The effects of 3% (w/v) sucrose, sugar mints, xylitol mints, xylitol, xylitol with 0.02% 
peppermint oil (PO) and 0.02% PO, in artificial saliva (AS), on the numbers (mean ± std) 
of hydroxyapatite (HA)-attached biofilm and planktonic S. mutans DSM 20523, in a 
dental simulator. DNA was extracted from A) HA discs and B) planktonic AS, and 
bacteria were quantified by real-time qPCR. Significance (P < 0.05) is indicated by (a) 
compared with AS control, (b) compared with sucrose and sugar mints (b* is only 
significant in comparison to sucrose) and (c) compared with PO (ANOVA and Tukey’s 
multiple comparisons test). This represents a modification of the Figures 1 and 2 in 
original publication II. 

5.6 Effects of xylitol and sucrose on the biofilm 
formation of mutans streptococci (I) 

We studied the ability of the S. mutans strains DSM 20523, Cl 2366 and Cl 117 and 
the S. sobrinus strain DSM 20381 to form early biofilms on hydroxyapatite in the 
presence of 2% (w/v) xylitol, 1% (w/v) sucrose and 2% (w/v) xylitol combined with 
1% (w/v) sucrose. The numbers of hydroxyapatite adhered and planktonic AS 
salivary bacteria are presented in Table 6. Sucrose increased the biofilm formation 
of all tested bacteria compared with the AS control. Xylitol (2%) decreased biofilm 
formation for all strains, except the clinical isolate Cl 117, compared with the AS 
control. Xylitol combined with sucrose decreased the biofilm formation of clinical 
isolate Cl 2366 compared with sucrose alone. The effects observed for planktonic 
bacteria were smaller. Sucrose increased planktonic bacterial numbers only for S. 
mutans DSM 20523 but not for S. sobrinus DSM 20381 or the two clinical isolates. 
Xylitol decreased the bacterial numbers of S. mutans DSM 20523, CI 2366 and S. 
sobrinus DSM 20381, whereas xylitol increased the numbers of CI 117. 
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Results 

Table 6. Bacterial numbers (mean ± std) for 1) S. mutans DSM 20523, 2) S. mutans CI 2366, 3) 
S. mutans CI 117 and 4) S. sobrinus DSM 20381 adhered to hydroxyapatite (HA) discs 
and in planktonic artificial saliva (AS) samples, in a dental simulator. DNA was extracted 
and quantified using real-time quantitative polymerase chain reaction. Significance was 
determined by ANOVA and Tukey’s multiple comparisons test. P- values: p < 0.05 (a) 
in comparison to AS alone, and (b) in comparison to AS with 1% sucrose. 

1)  DSM 20523 
Test compound added 
to AS 

Log10 S. 
mutans/HA 
disc 

Sample 
n 

Signi-
ficance 

Log10 S. 
mutans/ ml 
AS 

Sample 
n 

Signi-
ficance 

AS alone 4.3 ± 0.3 8 - 6.6 ± 0.4 8 -
1% sucrose 6.0 ± 0.2 8 a 7.4 ± 0.4 8 a, 
2% xylitol 3.6 ± 0.3 8 a, b 5.9 ± 0.3 8 a,b 
2% xylitol + 1% sucrose 5.8 ± 0.4 8 a 7.1 ± 0.6 8 

2)  CI 2366  
Test compound added 
to AS 

Log10 S. 
mutans/HA 
disc 

Sample 
n 

Signi-
ficance 

Log10 S. 
mutans/ml 
AS 

Sample 
n 

Signi-
ficance 

AS alone 4.5 ± 0.4 10 - 6.5 ± 0.4 10 -

1% sucrose 5.7 ± 0.6 10 a 6.6 ± 0.6 9 

2% xylitol 3.6 ± 0.4 10 a, b 5.5 ± 0.4 10 a,b 

2% xylitol + 1% sucrose 5.0 ± 0.7 10 b 5.8 ± 0.5 10 a,b 

3)  CI 117   
Test compound added 
to AS 

Log10 S. 
mutans/HA 
disc 

Sample 
n 

Signi-
ficance 

Log10 S. 
mutans/ ml 
AS 

Sample 
n 

Signi-
ficance 

AS alone 3.7 ± 0.2 8 - 5.3 ± 0.4 8 -

1% sucrose 4.9 ± 0.3 8 a 5.7 ± 0.3 8 

2% xylitol 3.9 ± 0.3 8 b 6.0 ± 0.3 8 a 

2% xylitol + 1% sucrose 5.1 ± 0.6 8 a 6.0 ± 0.4 8 a 

4)  DSM 20381    
Test compound added 
to AS 

Log10 S. 
mutans/HA 
disc 

Sample 
n 

Signi-
ficance 

Log10 0 S. 
mutans/ml 
AS 

Sample 
n 

Signi-
ficance 

AS alone 3.6 ± 0.4 8 - 6.6 ± 0.3 8 -

1% sucrose 5.2 ± 0.4 8 a 6.7 ± 0.2 8 

2% xylitol 3.0 ± 0.4 8 a, b 5.9 ± 0.4 8 a,b 

2% xylitol + 1% sucrose 5.2 ± 0.5 8 a 6.8 ± 0.4 8 
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5.7 Effects of 2´-FL and GOS on simulated infant 
colonic microbiota and metabolites (IV) 

Infant colon simulations were performed, to evaluate the effects of 2% (w/v) 2´-FL, 
GOS, lactose and control (no added carbohydrates in the synthetic ileal fluid) on the 
in vitro simulated, infant microbiota composition and microbial metabolites. The 
results from vessels V1-V4 were combined in some analyses, to improve the 
comprehensibility of the results. The results were evaluated by combining the results 
from all nine simulations combined. The nine simulations were then divided into 
breast-fed (BF) and formula-fed (FF) groups, based on the information provided for 
the faecal sample inocula donors. In addition, the simulations were grouped 
according to the utilisation of 2´-FL by microbiota, into 2´-FL fast-fermenting and 
slow-fermenting groups. In this thesis, I focused primarily on the effects of 2´-FL, 
GOS and lactose, compared against the no-added-carbohydrate control. 

5.7.1 Infants who donated faecal inocula 
Nine in vitro colon simulations were performed. The infants who donated the faecal 
samples for inocula ranged from 2 weeks to 8 months old. The group of BF donor 
infants (n = 5) included one infant who was rarely fed with formula, whereas the 
others were exclusively BF. The three FF donors used commercially available 
formula as their primary source of food. One FF infant donated two samples (008 
and 013), at different time points (5.5 and 7.5 months). One BF donor and two FF 
donors had started the use of solid foods at the time of sample collection. Only one 
infant was delivered by caesarean section, and all but one used probiotic 
supplementation. The total bacterial numbers were high in all inocula with a mean 
population of log10 9.6 ± 0.3 cells/ml (mean ± std, n = 9). In addition, total 
bifidobacteria, as analysed by qPCR, was relatively high, at log10 9.6 ± 0.4 
cells/ml (mean ± std, n = 7); however, for two infants (002, BF and 012, FF), 
bifidobacterial levels were below the detection limit. 

5.7.2 2´-fucosyllactose and fucose levels 
2´-FL and fucose utilisation were analysed from the simulator units to which they 
were added. Fig. 12 shows the 2´-FL levels, which were used to group the 
simulations according to the 2´-FL fermentation capability, into 2´-FL fast-
fermenting (004, 008 and 011, circled in Fig. 12) and 2´-FL slow-fermenting groups 
(n = 6), to better compare the differences in the microbiota compositions and 
metabolites. Fucose is a secondary metabolite of 2´-FL utilisation. The results of the 
fucose levels were reported in Study IV. 
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Figure 12. The concentrations of 2´-fucosyllactose (2´-FL) from each simulation in each simulation 
vessel. 

5.7.3 Total bacterial and total bifidobacterial numbers 
We determined the total bacterial numbers by flow cytometry and the total 
bifidobacterial numbers by qPCR, from the simulation samples. Total bacterial 
numbers increased from V1–V4 in all simulations (p < 0.001), as did bifidobacterial 
numbers (p < 0.001), regardless of the groupings. However, the 2´-FL fast-
fermenting group had larger bacterial numbers than the 2´-FL slow-fermenting 
simulations (p < 0.001). 

2´-FL, GOS and lactose simulations resulted in higher bifidobacterial numbers 
(2′-FL, p = 0.023; lactose, p = 0.009 and GOS, p = 0.005) compared with the control 
simulations, when all simulations were combined. The grouping of simulations into 
BF and FF or 2´-FL fast- and slow-fermenting groups was also evaluated. 

5.7.4 Microbiota composition 
The microbiota composition was determined by 16S rRNA sequencing performed 
for each vessel. To simplify the visualisation of the results, the results from V1-
V4 were pooled. Fig. 13 a–c shows the effects of treatments with 2´-FL, lactose 
and GOS, compared with the control, in addition to comparisons according to both 
the feeding mode of the inocula donors (BF vs. FF) and the 2´-FL fermentation 
rate (slow vs. fast), on the relative abundance of bacteria at the phylum level. 2´-
FL, GOS and lactose increased the abundance of Firmicutes compared with the 
control, and Proteobacteria abundance decreased in both lactose and GOS 
simulations. Verrucomicrobia was more abundant in FF compared with BF 
infants. Actinobacteria increased in the 2´-FL fast-fermenting simulations, 
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whereas more Proteobacteria was observed in the 2´-FL slow-fermenting 
simulations. 

Figure 13. The microbiota compositions at the phylum level. a) The effects of 2´-fucosyllactose (2´-
FL), lactose and galacto-oligosaccharides (GOS), compared with the control. b) 
Simulations were grouped according to the inocula donor feeding type, as either breast-
fed or formula-fed. c) Simulations were grouped according to the 2´-FL fermentation 
type, into either 2´-FL fast or slow-fermenting groups. All vessels and all simulations 
were combined for this analysis. 

Figure 14. The relative abundances of microbiota, at the genus level, for 2´-fucosyllactose (2´-FL), 
lactose, and galacto-oligosaccharides (GOS), compared with the control simulation. 
Bacteria with relative abundances below 0.9% were combined into the Other category. All 
vessels were combined within each treatment group. * indicates significance p < 0.05 
[Kruskal-Wallis tests, with Benjamini-Hochberg false-discovery rate (FDR) adjustments]. 

At the genus level, common changes observed for the 2´-FL, GOS and lactose 
treatments, compared with the control, included a significantly reduced abundance 
of two minor genera, Achromobacter and Pseudomonas. The primary changes that 
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were observed in the microbiota compositions, according to treatment, are shown in 
Fig. 14. Generally, 2′-FL shifted the microbiota in the same direction as GOS and 
lactose, but the effect was smaller for 2´-FL. 

The effect of inocula donor feeding type on the microbiota composition at the 
genus level was also assessed by dividing the simulations into BF and FF groups. 
Akkermansia, unclassified Clostridiaceae, Lactobacillus, Citrobacter and 
unclassified Peptostretococcaceae were significantly more abundant in the FF group, 
whereas Streptococcus was more abundant in the BF group. Prevotella and 
Peptoniphilus were detected in BF samples but not in FF simulation samples. 

The effects of microbial compositions were examined by grouping the 
simulations according to the rate of 2´-FL fermentation, which showed that the 2´-
FL slow-fermenting group had a significantly higher abundance of unclassified 
Enterobacteriaceae, Enterococcus, Achromobacter and Citrobacter, whereas 
Coprococcus and Ruminococcus were more abundant in the 2´-FL fast-fermenting 
simulations. The 2´-FL fast-fermenting group also showed a trend toward the higher 
abundance of Bifidobacterium (FDR-corrected p = 0.05). 

5.7.5 Microbial metabolites 
The results regarding the production of microbial metabolites are described below. 

5.7.5.1 SCFAs, lactic acid and BCFAs 

The levels of SCFAs (acetic acid, propionic acid and butyric acid), lactic acid and 
BCFAs (isobutyric acid, 2-methylbutyric acid and isovaleric acid) in the simulation 
samples are shown in Fig. 15. Valeric acid was only found in 11.8% of the samples 
and was not examined further. 

Overall, 2´-FL, lactose and GOS increased the total concentration of SCFAs and 
lactic acid compared with the control simulations. The differences between 
treatments were primarily observed in the levels of acetic and lactic acids (Fig. 15a). 
For 2´-FL simulations, acetic acid was the main metabolite produced, followed by 
lactic acid and propionic acid. In contrast, lactic acid was the main metabolite 
product from lactose and GOS simulations, followed by acetic acid and propionic 
acid. Only small amounts of BCFAs were produced. These changes were primarily 
due to differences in the colonic model stages in which BCFAs were detected. 
Control simulations showed an increase in BCFAs from V1–V4. In lactose and GOS 
simulations, small amounts of BCFAs were found in vessels 1 and 2, after which the 
levels increased in vessels 3 and 4. BCFA levels in the 2´-FL simulations were 
between those of the control and lactose and GOS simulations (Fig. 15b). 
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Figure 15. Smoothed averages of the treatment effects on short-chain fatty acids, lactic acid and 
branched-chain fatty acids, for all nine simulations. Dots represent the measurements 
from individual simulations. (Reproduced from the original publication IV: Salli et al. 
2019, Sci Rep, Under Creative Commons Attribution 4.0 License, Supplementary Figure 
S5 a, b. Valeric acid omitted). 2´-FL = 2´-fucosyllactose, GOS = galacto-
oligosaccharides. 

When the simulations were divided into BF and FF groups, lactose and GOS (with 
higher acetic and lactic acid levels) showed increased the sum of SCFAs and lactic 
acid in the BF group compared with the FF group. In the FF group, 2´-FL, lactose 
and GOS showed significant increases in total SCFAs and lactic acid, compared with 
the control simulations. In both the BF and FF groups, for the lactose and GOS 
simulations, BCFAs were primarily detected in vessels 3 and 4. 

Grouping simulations according to differences in 2´-FL utilisation, revealed that 
2´-FL, lactose and GOS in the fast-fermenting group increased the total SCFA and 
lactic acid levels, whereas only lactose and GOS showed this effect in the slow-
fermenting group. In the fast-fermenting group, 2´-FL and GOS increased acetic acid 
levels. BCFAs levels were lower than those in the control group for 2´-FL, lactose 
and GOS in the fast-fermenting group. 
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5.7.5.2 Biogenic amines 

A total of 11 biogenic amines were measured; however, the results for ˜-phenyl-
ethylamine, 2-methyl-butylamine and histamine were not reported because they 
were only detected in a few samples. Ethylamine was only detected in the inocula 
and simulation samples from BF donors. Fig. 16 shows 8 biogenic amines, in nine 
simulations, divided according to treatment. No significant changes were observed 
for total levels of biogenic amines between the control and treatment groups. When 
individual biogenic amines were examined, GOS and lactose simulations showed 
reduced putrescine levels compared with control simulations. 

Figure 16. Smoothed averages showing the treatment effects on biogenic amines, for all nine 
simulations. Dots represent the measurements from individual simulations. (Re-
produced from original publication IV: Salli et al. 2019, Sci Rep, Under Creative 
Commons Attribution 4.0 License, Supplementary Figure S5c). 2´-FL = 2´-
fucosyllactose, GOS = galacto-oligosaccharides. 

Only small differences were observed when the simulations were divided into BF 
and FF groups. In the BF group, compared with the BF control simulation, lactose 
simulations decreased the overall total level of biogenic amines, whereas 2´-FL 
changed the biogenic amine production profile. In contrast, for the FF group, the 
only change observed was for the production profile of the GOS simulation. 

When the simulations were grouped according to the 2´-FL fermentation type, 
no changes in the biogenic amines were observed between the groups, only small 
changes in individual biogenic amines were observed for the GOS simulation. 
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6 Discussion 

This thesis is composed of four in vitro studies. The use of in vitro experiments is 
essential to scientific research, both as a base for the design of animal and clinical 
experiments and to gain insights into the mechanisms of action for drugs, nutrients 
or other studied compounds. However, the interpretation of the results requires 
careful consideration because even advanced in vitro model system represent 
simplifications of in vivo systems. Thus, in vitro results should always be confirmed 
in preclinical or clinical settings. 

6.1 Streptococcus mutans growth, adhesion and 
biofilm formation in the presence of xylitol and 
2´-FL (I-III) 

To our knowledge, our study was the first to report the effects of an HMO, 2´-FL, 
on caries-associated oral bacteria. Evaluating the effects of prebiotics and other food 
components is important from the perspective of oral health, especially during 
infancy, when the consumption of breast milk or formula occurs very frequently and 
the oral microbiota is still developing. Breast milk is the first nutrient received by an 
infant, and differences in the microbiota compositions and caries risks have been 
reported between BF and FF infants (Avila et al., 2015; Holgerson et al., 2013). 
Some components of breast milk (e.g. casein, lactoferrin and IgA) have already been 
studied with regard to the oral microbiota (Allison et al., 2015; Danielsson Niemi et 
al., 2009; Vacca-Smith et al., 1994). 

We evaluated the effects of the most abundant individual HMO, 2-FL, on 
planktonic S. mutans growth, using a batch model (growth for 24 h in TSB, a 
relatively rich media). We found that the studied S. mutans strains, DSM 20523, 
Ingbritt and CI 2366, were unable to utilise 2´-FL as a sole carbon source. In contrast, 
all strains grew well in the presence of GOS and lactose, whereas xylitol inhibited 
the growth of planktonic S. mutans. The inhibition of planktonic S. mutans growth 
by xylitol has been reported, using both lower (Söderling et al., 2008) and higher 
xylitol concentrations (Misra et al., 2012; Mäkinen et al., 2005). In addition, the 
results in the present study for GOS and lactose were consistent with those reported 
in the existing literature (Moye et al., 2014; Ooshima et al., 1988; Zeng et al., 2010). 
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Discussion 

2´-FL consists of fucose attached to lactose, through an ˝-1,2 linkage (Bode, 
2012). For bacteria to utilise 2´-FL, they require an enzyme, ˝-1,2 fucosidase, which 
can cleave fucose from lactose (Sakanaka et al., 2019). HMO-utilising bacteria, such 
as B. longum subsp. infantis, B. bifidum and some Bacteroides spp., have an 
extensive set of genes designed to hydrolyse glycosidic bonds, transport different 
carbohydrates across bacterial membranes, and bind specific carbohydrates 
(Marcobal & Sonnenburg, 2012). Geographical differences in the abundance of 
genes intended for the utilisation of HMOs and GOS have also been reported, in 
addition to differences in the abundance of typical infant bifidobacteria (Sakanaka et 
al., 2019). In FF infants from the United States, the abundance of Bifidobacterium 
correlated with genes associated with GOS transport, whereas in BF infants from the 
United States, the abundance of Bifidobacterium correlated with genes for 
extracellular HMO digestion (Sakanaka et al., 2019). In contrast, among BF infants 
from Malawi and Venezuela, the abundance of Bifidobacterium correlated with 
genes for intracellular HMO digestion (Sakanaka et al., 2019). Although S. mutans 
is capable of metabolising various carbon sources (Abranches et al., 2018; Moye et 
al., 2014; Zeng et al., 2010), this species appears to lack the enzymes necessary to 
degrade 2´-FL. The utilisation of other HMOs by oral bacteria requires further 
research, as the structures of HMOs vary considerably. 

First the acquired enamel pellicle forms on the tooth surface (Siqueira et al., 
2012). The adhesion of bacteria to the tooth surface is the next requirement for 
biofilm formation. S. mutans adheres to tooth surfaces using both sucrose-
independent and sucrose-dependent means (Abranches et al., 2018; Banas, 2004). 
We wanted to evaluate whether 2´-FL, GOS, xylitol and lactose influenced the 
adhesion process. We studied both the adhesion to saliva-coated hydroxyapatite, 
reflecting the initial adhesion to salivary components within the pellicle, and 
polysaccharide-dependent adhesion to a glass surface, in the presence of sucrose 
(Haukioja et al., 2008; Mattos-Graner et al., 2000). During the latter adhesion model, 
the incubation time was 18 h, allowing bacteria to both adhere and form a biofilm. 
In the saliva-coated hydroxyapatite adhesion experiments, we used parotid saliva 
from two donors with similar adhesion-promoting properties, as parotid saliva can 
differ in its adhesion-promoting properties among individuals. The adherence of S. 
mutans Ingbritt to parotid saliva-coated hydroxyapatite showed huge interindividual 
variances, ranging from 3%–81%, among 41 participants, and the changes in 
adherence were not associated with differences in S. mutans numbers (Carlén et al., 
1996). HMOs have been suggested to inhibit the adherence of some pathogens to the 
colonic epithelium; however, these interactions and inhibitory effects are HMO-
structure- and bacterium-specific (Akkerman et al., 2019; Bode, 2015; Newburg, 
2005). To our knowledge, the effects of HMOs on the adherence of oral bacteria 
have not yet been studied. We chose to examine a 1% (w/v) concentration for all 
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studied compounds because this is similar to the concentration of combined HMOs 
in breast milk, although this represents a higher concentration than can be observed 
for any individual HMO (Thurl et al., 2017). 

In our study, two S. mutans strains, DSM 20523 and Ingbritt, showed no 
significant differences in their adhesion abilities to parotid saliva-coated 
hydroxyapatite in the presence of any of the studied compounds, whereas the 
adherence of strain CI 2366 was decreased by the presence of 2´-FL and GOS. 
Strain-dependent differences were previously reported for S. mutans and S. sanguinis 
for adherence to saliva-coated hydroxyapatite and the adhesion of other oral 
streptococci to hard surfaces (Dorkhan et al., 2012; Rosan et al., 1982). When we 
evaluated sucrose-dependent adhesion, strain-dependent differences were observed. 
Here, the adhesion of the type strain DSM 20523 decreased in the presence of 2´-
FL, GOS and lactose, whereas the strain CI 2366 decreased in the presence of GOS. 
No differences were observed for the strain Ingbritt. The decreased adhesion of S. 
sobrinus 6715 and S. mutans MT8148R in the presence of GOS was studied 
previously, using a similar experiment (Ooshima et al., 1988). The effect of 2´-FL 
on S. mutans polysaccharide-mediated adhesion has not been previously reported. 

We found no effects for 1% xylitol in the saliva-coated hydroxyapatite adhesion 
tests, a result that has not been previously reported. Xylitol binds to water molecules 
and forms complexes with polyvalent cations, such as Ca2+, but is inert in other 
aspects (Mäkinen, 2010). Thus, the chemical properties of xylitol could, at least in 
theory, suggest that it might interfere with the saliva-coated hydroxyapatite adhesion 
test. Earlier studies reported decreased adhesion to a glass surface for 4% xylitol 
when using the same S. mutans strains we used, for 6% xylitol using the strain DSM 
20523 and for 10% xylitol using the strain ATCC 31989 (Park et al., 2014; Söderling 
et al., 1987; Söderling & Hietala-Lenkkeri, 2010). The concentration we used was 
smaller than those used in previous studies, suggesting that a 1% xylitol 
concentration may be too low to inhibit polysaccharide-mediated adhesion in the 
experimental conditions used. This concentration was chosen as a comparable 
concentration as the concentrations of 2´-FL, GOS and lactose used in other 
experiments. 

We have presented a continuous-culture, biofilm model for studying the early 
steps of dental biofilm formation. The effects of increasing xylitol concentrations, 
both with and without sucrose, on S. mutans biofilm formation were studied. A 
concentration as low as 2% xylitol in AS was able to reduce both biofilm and 
planktonic S. mutans numbers, which agrees with the results reported by similar 
studies examining planktonic S. mutans (Söderling et al., 2008; Söderling & Hietala-
Lenkkeri, 2010) and biofilm S. mutans (Marttinen et al., 2012). The addition of 1% 
sucrose, together with xylitol, at xylitol concentrations between 2% to 5%, was also 
evaluated. The concentrations of xylitol in the saliva after the consumption of xylitol 
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products peaks as high as 9% and remains above 1% for 3 to 15 min after the use of 
the product (Lif Holgerson et al., 2006; Tapiainen et al., 2002). The presence of 
carbohydrates in combination with xylitol might represent a more realistic condition, 
increasing the exopolysaccharide production by S. mutans (Bowen & Koo, 2011; 
Koo et al., 2010). A decrease in S. mutans numbers with increasing xylitol 
concentrations was observed also with 1% sucrose, for biofilm bacteria. 

We further examined the differences between S. mutans strains and S. sobrinus. 
The type strain of S. mutans, two clinical isolates and one S. sobrinus strain were 
evaluated. The common features for all four strains in the experimental set up 
included an increase in biofilm bacterial numbers in the presence of 1% sucrose and 
a decrease in the presence of 2% xylitol, except for strain CI 117. In another model, 
the continuous real-time monitoring of biofilm formation showed that the addition 
of 0.1% to 1% sucrose increased the biofilm formation of S. mutans, with the strain 
CI 2366 being more affected by increasing sucrose concentrations than the strain 
DSM 20523 (Gutiérrez et al., 2016). Here, differences between the studied strains 
were primarily identified combining 2% xylitol with 1% sucrose. The bacterial 
numbers of the strain CI 2366, which is known to adhere and form biofilms on glass 
surfaces (Söderling & Hietala-Lenkkeri, 2010), were significantly reduced by the 
combined use of 2% xylitol and 1% sucrose, for both biofilms and in planktonic AS, 
which suggested that xylitol impairs the properties associated with S. mutans 
colonisation on hydroxyapatite. Sucrose increased the biofilm formation for all four 
MS strains, and the effects of sucrose and xylitol on S. sobrinus DSM 20381 were 
similar to those observed for the S. mutans type strain. 

The same model system was used to separately evaluate the cariogenicity of 
xylitol and sucrose mint pastilles and their main ingredients, using S. mutans DSM 
20523. In addition to the sweetener, either xylitol or sucrose, the mint pastilles also 
contained PO. The effects of xylitol and sucrose were similar to those reported in 
original publication I; sucrose and sucrose pastilles promoted, whereas xylitol and 
xylitol pastilles impaired, S. mutans growth in planktonic AS and the numbers of 
bacteria in biofilms. In our experimental model, we did not observe any effects for 
PO alone on S. mutans growth or biofilm formation compared with controls. We 
evaluated three commercial mint oils and pooled the results because no differences 
were found among the studied POs. The available results regarding the antimicrobial 
effects of PO against S. mutans at the time of original publication II were 
controversial (Chaudhari et al., 2012; Da Silva et al., 2012; Rasooli et al., 2008). 
Recent literature has indicated anti-S. mutans effects for PO; however, the effects 
are often observed when using longer adherence and growth (both planktonic and 
biofilm) times than those used in our study (Raghavan et al., 2018; Shafiei et al., 
2016; Shafiei et al., 2020). Likewise, the concentration of PO is important, and our 
goal was to use similar levels as were used in the mint pastilles. Comparisons against 

67 



 

  

       
 

 

  
 

    
          

 
  

 
 
 
 
 

    
   

 
 

        
 
 

     
  

 
    

     
  

 
  

     
     

   
  

   
  

   
   

    

Krista Salli 

other studies are also complicated because POs are often extracted from plant leaves 
using variable methods, which may affect their exact compositions and, therefore, 
affect study outcomes. 

6.2 2´-FL, GOS and lactose in infant colon 
simulator (IV) 

The development of the microbiota during infancy is affected by various factors 
(Zhuang et al., 2019). To better understand some of these factors, especially the 
effects of dietary carbohydrates, the existing EnteroMix colon model was used to 
study changes in the infant colonic microbiota composition and the metabolites 
produced. We performed nine simulations using infant faecal samples as the inocula 
(donors were aged between 0.5 and 8 months). We found considerable variations, 
especially for the microbiota compositions among the simulations, due to the infant 
donors. Two currently available studies that focus on HMOs in infant colon models 
have also faced this challenge, even though the age range of their donors was smaller 
than ours and they used fewer donors, two infants aged six months (Wiese et al., 
2018) and three infants aged six months (Van den Abbeele et al., 2019). 
Phylogenetic microarray analysis of faecal samples from three-month old Finnish 
infants showed relatively high interindividual variations for microbial compositions 
(Korpela et al., 2017). The diets of the donor infants shape their microbiota 
compositions. Our study included both BF and FF infants and some infants who had 
already started eating solid foods. In contrast, other study populations were formed 
of exclusively BF (Wiese et al., 2018) or exclusively FF infants, who had started 
solid foods two months prior to faecal sample donation (Van den Abbeele et al., 
2019). 

Firmicutes was the main bacterial phylum identified in both our study and the 
only other in vitro colon study examining 2´-FL (Van den Abbeele et al., 2019); 
however, the Actinobacteria abundance was lower in the baby-SHIME model (below 
10%) than in our model. Despite the challenges associated with interindividual 
variability, common features were detected among the nine simulations. 2´-FL, GOS 
and lactose treatments decreased the abundance of the potentially harmful minor 
genera Achromobacter and Pseudomonas (De Weerth et al., 2013; Jiang et al., 
2019). GOS and lactose increased Lactobacillus and decreased unclassified 
Enterobacteriaceae. When the simulations were grouped into BF and FF according 
to the faecal sample donors, only minor changes were observed in microbiota 
compositions, which is likely due to the relatively small number of simulations. The 
main differences observed were the increased abundance of Lactobacillus, 
unclassified Clostridiaceae and Akkermansia in FF samples. Thus, we also grouped 
the simulations according to the 2´-FL contents remaining in the vessels after the 
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simulations. Three simulations had no or very little 2´-FL remaining in V2, V3 or 
V4, indicating the presence of specific bacteria that are capable of metabolising 2´-
FL. This group, which was classified as the 2´-FL fast-fermenting group, had 
significantly increased levels of Actinobacteria and a trend toward increased 
Bifidobacterium compared with the other simulations. In addition, the 2´-FL fast-
fermenting group showed the increased abundance of Lactobacillus, Coprococcus 
and Ruminococcus and the decreased abundance of unclassified Enterobacteriaceae, 
unclassified Clostridiaceae and Enterococcus. Explaining all of these changes better 
would require a more detailed method for determining the compositions of 
microbiota, preferably to the sub-species level. Using our current 16S rRNA 
sequencing pipeline, we were unable to obtain this depth. In addition, the qPCR 
assay used in the present study was Bifidobacterium-specific, not species or sub-
species specific. The current results highlighted the selectivity of 2´-FL fermentation 
by distinct bacteria compared with lactose and GOS, which can support the growth 
of a wider range of microbes. 

Overall, the production of SCFAs and lactic acid was found to be the highest 
with lactose and GOS. 2´-FL was intermediate between these carbon sources and the 
control. These differences were primarily due to the higher production of acetic, 
propionic and lactic acids in the presence of lactose and GOS. Similarly, an earlier 
batch fermentation experiment using infant faecal material found more acetate and 
lactic acids produced in the presence of GOS compared with 2´-FL (Vester Boler et 
al., 2013). Also, both GOS and 2´-FL both produced more of these metabolites than 
the other studied substrates (lacto-N-neotetraose, 6´-sialyllactose, gum Arabic and 
inulin) (Vester Boler et al., 2013). In accordance with an earlier study (Vester Boler 
et al., 2013), in this study, the FF donor simulations produced more SCFAs and lactic 
acid than the BF donor simulations. Controversially, other studies have found more 
SCFAs produced by fermentations with faecal inocula from BF than those from FF 
infants, in vitro (Parrett & Edwards, 1997). Our earlier colon simulation experiment 
using GOS and lactose combined with an inoculum from adult donors did not find 
such an increase in lactic acid production (Mäkeläinen et al., 2010b; Mäkivuokko et 
al., 2006); however, the Lactobacillus numbers were also lower with GOS than in 
the control (Mäkeläinen et al., 2010b). The reasons for increased lactic acid levels 
in infants may be associated either with increased lactic acid production, by lactate-
producing bacteria, the decreased utilisation of lactic acid, by lactate-utilising 
bacteria or differences in the intestinal absorption of lactic acid (which cannot occur 
in the model system) (Pham et al., 2016). Thus, the differences in lactic acid levels 
observed in the current study and adult colon simulations might indicate differences 
in the cross-feeding of lactate between infant and adult microbiota. While less well-
studied than adult lactate-utilising bacteria, Veillonella has been suggested to act as 
the main lactate-utilising bacteria in infants (Pham et al., 2016). 
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The overall production of BCFAs (2-methylbutyric acid, isobutyric acid and 
isovaleric acid) was small in the simulations. Treatment with GOS and lactose 
significantly decreased total BCFA levels, whereas 2´-FL decreased the levels but 
did not reach significance, along the whole length of the colon model. The levels of 
total BCFAs were similar to those reported for the baby-SHIME (Van den Abbeele 
et al., 2019). Similarly, the sum of biogenic amines was not affected by treatments, 
although putrescine production was decreased with GOS and lactose. When 
comparing biogenic amines between BF and FF samples, ethylamine was only found 
in the inocula or simulation samples of infants who were BF. A recent study 
indicated that breast milk has a higher amine content than formula, and breast milk 
amines increased during the first month of life; however, 2-week FF infants had 
higher amine levels in their stool samples than BF infants (Suárez et al., 2019). 
Knowledge regarding BCFAs and biogenic amines, especially their effects on infant 
physiology and the development of microbiota, remains scarce; thus, no definite 
conclusions can be made. 

6.3 The strengths and limitations of the dental and 
colon simulators 

To mimic the conditions found in the oral cavity, our model used AS (Björklund et 
al., 2011) as a growth medium. Often, BHI is used as a culturing medium for in vitro 
experiments that study MS, including biofilm formation (Park et al., 2019; Söderling 
& Hietala-Lenkkeri, 2010). However, BHI is a rich medium; thus, the growth 
observed in BHI is not comparable to the growth that occurs in human saliva (Park 
et al., 2019; Wong & Sissons, 2001). The composition of human saliva varies, and 
many models, including the one used here, require large volumes of saliva, making 
AS a more feasible choice. Our AS was mucin-based, and S. mutans has high 
proteolytic activity (Kindblom et al., 2012) enabling the utilisation of nutrients from 
AS. Human whole saliva was used to form the pellicle and to provide natural 
adhesion sites for bacteria before the simulation began. The continuous flow of AS 
and mixing contributed to fluid shear forces, and constantly diluting the bacteria and 
studied compounds. In contrast to our model, many other oral biofilm model 
systems, which have been described previously, are batch systems (Badet et al., 
2008; Decker et al., 2014; Giertsen et al., 2011; Marttinen et al., 2012). The biofilm 
formation times used in experiments is often much longer than in our experiment, 
ranging from 24 h to 5 days (Badet et al., 2008; Decker et al., 2014; Giertsen et al., 
2011), with 8 h being the closest to our model (Marttinen et al., 2012). We chose a 
relatively short biofilm formation time to reflect the normal oral hygiene procedures, 
which feature frequent biofilm removal. It may also be easier to alter the properties 
of a young, developing biofilm. Because we focused on young biofilm formation, 
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Discussion 

our model system functions in aerobic conditions. The primary limitation of our 
current model was the use of a single bacterial species, preventing interactions 
between different bacteria. Other models that utilise 3-6 species more accurately 
reflect this aspect (Badet et al., 2008; Giertsen et al., 2011; Marttinen et al., 2012). 
In the current study, the aerobic conditions were relevant to study the formation of a 
young biofilm. However, longer biofilm incubation periods would likely require the 
transformation of the environment to anaerobic conditions. S. mutans is highly 
competitive in a biofilm and can form biofilms as a single species, growing well 
under both aerobic and anaerobic conditions. 

Sampling from the colon is invasive, and the use of in vitro models provides an 
ethical method to study colonic contents. However, these models have inherent 
limitations, such as the absence of host cells and the use of end-point faecal material 
as a starting point for fermentation (Pham & Mohajeri, 2018). Yet, these models also 
enable samples to be collected from various sections of the simulated colon and 
metabolites can be measured that would normally be absorbed by the human host, in 
vivo. The EnteroMix colon model includes four compartments, modelling 
fermentation from the proximal to the distal colon (Mäkivuokko et al., 2005, 2006). 
The main benefits of EnteroMix model include small working volumes, (it requires 
less test compounds than some other models), short running time and a possibility to 
run up to seven test compounds and a control, using the inocula obtained from a 
single donor. However, the acquisition of sufficient starting material from infants is 
considerably more challenging than collecting material from adults; therefore, in this 
study, we evaluated 2´-FL, GOS and lactose, in addition to the control (only artificial 
ileal fluid, without added carbon sources), in parallel. To accomplish this study, we 
used frozen faecal materials, to allow parents the time to collect sufficient faecal 
material for four units. Some other model systems have combined faecal materials 
from multiple donors (Minekus et al., 1999) which has been suggested to affect 
cross-feeding (Van de Wiele et al., 2015). Other studies, similar to ours, used only 
one donor at a time. In previous studies using adult faecal inocula, the variations due 
to donors have been relatively small (Mäkeläinen et al., 2007, 2010a, 2010b; 
Mäkivuokko et al., 2005, 2006, 2007). 

6.4 General discussion 
Both in the oral cavity and in the gastrointestinal tract, host-bacteria interactions are 
affected by the quality and quantity of dietary components. Humans are exposed to 
various dietary components, throughout their lives. Sweeteners, such as sucrose and 
other mono-, di- and oligosaccharides, are commonly used in many food products, 
and their increased and frequent consumption increases the risk for dental caries. 
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The goal for infant formula development is to achieve a composition and 
functionality that approaches breast milk as closely as possible. GOS and an HMO, 
2´-FL have recently been added to infant formulas, to mimic the benefits of HMOs. 
Our understanding of the effects of individual HMOs and various combinations of 
HMOs on the gut microbiota composition continues to grow. However, the effects 
that HMOs may have on oral bacteria have been unexplored. 

This study was the first to report that 2´-FL does not support the growth of S. 
mutans, whereas both GOS and lactose do. The studied compounds, 2´-FL, GOS, 
lactose and xylitol, did not have consistent effects on the sucrose-independent 
adhesion of S. mutans to saliva-coated hydroxyapatite or the sucrose-dependent 
adhesion of S. mutans to a glass surface. These results highlighted the importance of 
evaluating several aspects of food ingredients, including the effects on oral health. 
As a limitation, we only evaluated the effect of one HMO, 2´-FL, on the planktonic 
growth and adhesion of one oral bacterium S. mutans. Further studies remain 
necessary to evaluate the effects of other HMOs and HMO combinations on oral 
bacteria (including also bacteria other than S. mutans), to better understand the 
interactions between HMOs and oral health. In addition, it could be useful to evaluate 
bacterial growth in a biofilm and possibly conduct animal or clinical studies to verify 
in vitro experiments. In the future, it would likewise be of interest to evaluate the 
effect of other HMOs, prebiotics and human milk components and their 
combinations on commensal oral microbes or even oral probiotics such as S. 
dentisani. This could broaden the understanding on infant oral microbiota 
development. 

The use of in vitro methods provides ethical and repeatable means for 
determining the effects of food components on various caries risk factors. In this 
thesis, a dental simulator model, using a mucin-based AS as the growth medium, 
was first validated by evaluating the effects of xylitol and sucrose on S. mutans 
growth and biofilm formation, which have been well established. The results were 
found to be in accordance with the existing literature. The system was then applied 
to the evaluation of the effects of actual products, in the form of mint pastilles and 
their components. A further advance of the current dental simulator would include 
the development of a system that would enable the evaluation of multiple bacterial 
species, which was not yet possible during this thesis. 

Our understanding of microbiota development during infancy and the factors that 
affect this development continues to increase. Although clinical studies examining 
the safety and tolerance of individual HMOs among infants have been performed 
[reviewed in (Vandenplas et al., 2018)], the available data regarding their effects on 
microbiota have been from adult population (Elison et al., 2016). Very recently, the 
first report regarding the effects of 2´-FL and lacto-N-neotetraose on infant 
microbiota compositions was published (Berger et al., 2020). Supplementation with 
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Discussion 

2´-FL and lacto-N-neotetraose was found to shift microbial diversity and 
composition towards that of the BF control group, at three months of age (Berger et 
al., 2020). The EnteroMix colon model was used to study the effects of 2´-FL on the 
infant microbiota composition and the metabolites produced, compared with GOS 
and lactose. It was relevant to include another prebiotic and lactose as comparators. 
One limitation of this study was the level of classification of the simulated infant 
microbiota composition. We could only analyse bacteria to the genus level. It would 
be informative to identify bacteria in more detail, preferably to species, subspecies 
or even strain level. Then, we could better understand the changes in the microbiota 
composition due to 2´-FL, GOS and lactose. 

Only one other study has evaluated other HMOs, including 3-fucosyllactose, 3´-
sialyllactose, and 6´-sialyllactose, using the CoMiniGut model system, which was 
published the year before our study (Wiese et al., 2018), and another study, 
comparing 2´-FL to a control group using the baby-SHIME model, was published in 
the same month as our study (Van den Abbeele et al., 2019). Differences exist 
between the models, the parameters measured and the presentation of results, making 
direct comparisons difficult. Overall, a growing interest in the development of 
colonic model systems, especially for examining infant microbiota development, has 
emerged. In the future, using more advanced detection methods, we hopefully will 
be able to more precisely analyse the microbiota composition and increase more 
thorough understanding of the infant microbiota. In addition, knowledge of 
metabolite composition and the effects of infant diet is now well known. Advanced 
in vitro methods enable sampling for different parts of simulated colon and are 
valuable to understand better  the effects on metabolite production. 
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7 Conclusions 

This thesis utilised in vitro methods to evaluate the effects of xylitol, 2´-FL and GOS 
on oral MS and gut microbial compositions, compared against appropriate reference 
components, allowing the following conclusions to be drawn. 

• Increasing the xylitol concentration decreased the numbers of MS in 
biofilm, both with and without sucrose. Early S. mutans biofilm formation 
was decreased by xylitol and xylitol mints. Xylitol inhibited the growth 
but not the adhesion of S. mutans. Thus, xylitol can be considered to 
promote beneficial changes in caries microbiota, based on the inhibition 
of S. mutans growth and early biofilm formation. 

• 2´-FL did not support the growth of three strains of S. mutans, whereas 
GOS and lactose did. No consistent adhesion inhibition patterns were 
found. Thus, 2´-FL, a novel ingredient used in infant formulas, should not 
promote unfavourable changes in the caries microbiota. 

• 2´-FL, similar to GOS and lactose, significantly increased Firmicutes. 
Actinobacteria was increased and Proteobacteria was decreased with 2´-
FL, but these changes did not reach significance. The production of 
SCFAs and lactic acid by 2´-FL was intermediate between the control and 
both GOS and lactose. These results further suggest that infant formulas 
may have important effects on the formation and establishment of the 
infant gut microbiota. 

• Infant colon and dental simulation models were useful methods for 
studying the effects of various food ingredients on bacterial growth, 
metabolite production and biofilm formation. 
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