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The framework of low-cost interconnected devices forms a new kind of cryptographic

environment with diverse requirements. Due to the minimal resource capacity of the

devices, light-weight cryptographic algorithms are favored. Many applications of IoT

work autonomously and process sensible data, which emphasizes security needs, and

might also cause a need for speci�c security measures.

A bilinear pairing is a mapping based on groups formed by elliptic curves over extension

�elds. The pairings are the key-enabler for versatile cryptosystems, such as certi�cate-

less signatures and searchable encryption. However, they have a major computational

overhead, which coincides with the requirements of the low-cost devices. Nonetheless,

the bilinear pairings are the only known approach for many cryptographic protocols so

their feasibility should certainly be studied, as they might turn out to be necessary for

some future IoT solutions. Promising results already exist for high-frequency CPU:s

and platforms with hardware extensions.

In this work, we study the feasibility of computing the optimal ate pairing over the

BN254 curve, on a 64 MHz Cortex-M33 based platform by utilizing an optimized open-

source library. The project is carried out for the company Nordic Semiconductor. As

a result, the pairing was e�ectively computed in under 26 · 106 cycles, or in 410 ms.

The resulting pairing enables a limited usage of pairing-based cryptography, with a

capacity of at most few cryptographic operations, such as ID-based key veri�cations

per second. Referring to other relevant works, a competent pairing application would

require either a high-frequency � and thus high consuming � microprocessor, or a

customized FPGA. Moreover, it is noted that the research in e�cient pairing-based

cryptography is constantly taking steps forward in every front-line: e�cient algorithms,

protocols, and hardware-solutions.
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Chapter 1

Introduction

The emerging �eld of interconnected, smart devices has posed new challenges in the

�eld of information security. The embedded devices are usually very small-scale and

endowed with constrained resources, which limits the usage of security algorithms.

Low-weight protocols utilizing elliptic curve cryptography (ECC) are adopted as the

main component for accomplishing security. The devices may handle sensitive data,

and the composed applications might have special requirements, comparing to the

usual computer networks.

In cryptography, the concept of bilinear pairing was originally brought forth in 1993,

in the form of MOV-attack [27] which exploits pairings to attack the elliptic curve pro-

tocols that utilize a speci�c class of curves. However, after a two decades of research,

it has turned out that bilinear pairings enable a novel class of cryptographic applica-

tions. These include the identity based encrypiton [11], various certi�cateless signature

schemes, searchable encryption [26], a signcryption in wireless sensor networks [19],

and many other applications with interesting properties.

A major bottleneck in the pairing implementations is posed by the massive runtime

and resource requirements of the computations. Consequently, a lot of research con-

tribution has been given to algorithmic, arithmetic and implementation issues of the

pairings. Research has attained the implementations on constrained, embedded plat-

forms. A single pairing has been computed in 3.88ms, with a 1.2 GHz Rasberry Pi3

platform [22]. Even smart card implementations have been presented [17]. However,

the majority of the implementations for the ultra-low-power devices are quite imprac-

tical, taking hundreds of milliseconds to compute a single pairing.

The pairings o�er unique, new kind of security mechanisms, which would be di�cult,
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if not impossible, to construct with other known cryptographic primitives. Hence the

possibility of using them in embedded platform should certainly be studied. The ac-

celerating increase of interconnected devices and new kinds of applications will pose

new challenges on information security and privacy, which may emerge a need for

novel kinds of security protocols. This is where the pairing protocols might show

their signi�cance. Pairing-based cryptography has already found innovative applica-

tions in various systems, such as in Industrial Internet of Things (IIoT)[34], wearable

technologies and health record systems [25] and sensor networks [19].

1.1 Thesis Objective and Research Questions

The objective of this thesis is to evaluate the performance of optimal ate pairing over

the BN254 curve in resource-constrained single microprocessor embedded platform.

The study gives a reference for the feasibility of pairing-based cryptography on a low-

cost general-purpose embedded platform. The pairings enable novel kinds of security

features in IoT and other embedded solutions, which gives a reason to study them.

The main research problem of the thesis is studying the feasibility of optimal ate pairing

in a resource-constrained single microprocessor platform. The problem is divided into

three research questions: 1) is the computation of optimal ate-pairing in constrained

microprocessor feasible? 2) does the resulting pairing enable adopting the pairing-

based protocols and related approaches? 3) how the existing implementation could be

further enhanced?

1.2 Thesis Structure

This thesis is structured as follows. Chapters 2-3 form the preliminary theory part,

including requisite cryptography, mathematical fundamentals � such as �elds and

elliptic curves, and ultimately the topic of pairing-based cryptography. Elliptic curve

cryptography (ECC) is presented shortly. Chapter 4 covers the key methodology

for e�cient pairing computations, focusing on the methods adopted in this work.

In chapter 5, our proposed implementation and results are presented, in addition to

a discussion of the further improvements and the current situation of pairing-based

cryptography. Chapter 6 contains the conclusions.
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Chapter 2

Some Preliminary Concepts

This chapter starts by outlining the preliminary terminology and concepts behind the

bilinear pairings. The �rst section gives a brief overview of cryptographic terminology,

with emphasis on relevant themes. The second section introduces some necessary

mathematical concepts that are in a key role in understanding the concept of elliptic

curve cryptography, and furthermore the bilinear pairings. The third section contains

the elliptic curve subject. It introduces the elliptic curves over �nite �elds and discusses

brie�y their security and usage in cryptography.

2.1 Overview of Cryptography

Cryptography is the science and study of methodology for secure communication over

an insecure channel. The goal is to ful�ll con�dentiality, integrity, authenticationn

and non-repudiation of information, or transactions. Con�dentiality is ful�lled with

encryption of the data, making it uninterpretable for unauthorized parties. Integrity

is accomplished with checksums and digital signatures, which ensure that the data has

not been altered by a third party. Authentication, and in some cases, non-repudiation

is ful�lled with digital signatures and Message Authentication Codes (MACs), which

ensure that certain transaction is indisputably performed by a certain party.[33]

Encryption is a process of transforming a plain text into apparent noise, ciphertext.

Decryption is the reversal process, converting the ciphertext back into readable form.

A key is closely related to cryptographic processes, such as message encryption and

performing digital signing. The keyspace is the set of all possible keys. Cryptanalysis,

in turn, is the science of breaking cryptographic systems. It can refer to �nding out
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the secret key or reversing the cryptographic process without the required key.[33]

Cryptography is usually divided into symmetric and asymmetric algorithms, and into

di�erent cryptographic protocols. In a symmetric algorithms, one secret key is used for

both encryption and decryption of data. Asymmetric algorithms rather incorporate

a key pair, of which one key is public and one is kept secret. They are also known

as public-key algorithms. Cryptographic protocols deal with the actual applications,

employing both symmetric and asymmetric techniques.[33] In this document, a set of

algorithms for achieving a certain security attribute is called a cryptosystem.

Symmetric algorithms are mainly used for data encryption and integrity verifying algo-

rithms. Advanced Encryption Standard (AES) is one of the most common symmetric

ciphers1. Public-key algorithms have more versatile applications. Public-key cryptog-

raphy addresses two fundamental problems � secure distribution of the secret value

over an insecure channel, and the creation of unforgeable digital signatures. With a

key distribution protocol, the actual key for message encryption can be exchanged over

an untrusted channel. Digital signatures, as mentioned, provide authentication and

non-repudiation for a piece of information or action. Public-key systems are also capa-

ble of encryption and verifying integrity, but they are primarily used in key exchange

and signature-generating. Common public-key algorithms are RSA, ElGamal and the

elliptic curve-based systems.[33]

2.2 Security of Cryptosystems

Security of a cryptosystem is dependent on the keyspace but more importantly of the

complexity of the equivalent hard problem that is needed to be solved in order to break

the system. The cryptographic operation should be infeasible2 to be inverted without

knowledge of the secret key. Similarly, the information generated by the cryptographic

process should not reveal any information about the key. A secure cryptosystem should

have resilience against all known applicable methods of cryptanalysis.

The principle behind public-key cryptosystems is the one-way property. A function

f : X → Y ful�lls the one-way property if f(x) = y can be e�ciently computed for any

x ∈ X, but solving f−1(y) = x is computationally infeasible. Meaning that the x ∈ X
for corresponding f(x) = y ∈ Y cannot be found in polynomial time. In practice,

1A cipher is here de�ned as a pair of algorithms; for encryption and decryption
2Infeasibility is here loosely de�ned as "no e�cient attempts or methods known to compute or

solve a problem in polynomial time".

4



the one-way property is accomplished with a certain di�cult problem, which has a

back door � a secret piece of information for inverting the function.[33] Examples

of one-way properties (and corresponding cryptosystems based on it) are the discrete

logarithm problem (ElGamal), integer factorization problem (RSA) and elliptic curve

discrete logarithm problem (ECC and bilinear pairings).[23]

Cryptosystems are also vulnerable to physical attacks, which take advantage of leaked

information of the physical implementation of the system. By monitoring some by-

product generated by the corresponding device, an adversary might gather information

about the internal state or operations, and thus, piece-by-piece, construct the secret

key.

As mentioned in [30], physical attacks against elliptic curve based systems are di-

vided into Side-Channel Analysis (SCA) and fault attacks. Attacks based on SCA

utilize leaked power traces, timing, and electromagnetic radiation. For instance, Sim-

ple Power Analysis-attack (SPA) makes use of key-dependent patterns that occur on

power traces, which can be used to deduce information about the key. Calculations

with dummy variables can be used to reduce the predictability of the process to some

extend. However, the usage of dummy calculations poses another weakness. In fault

attacks, the adversary aims to disturb the cipher to derive secrets by injecting faults

during certain computation phases. Faults can be induced with glitches in the clock

or with a laser beamer, for instance. An error induced during dummy calculation can

reveal parts of the secret key.[30]

2.3 Some Mathematical Prerequisites

Foundations of abstract algebra provide the basis for the majority of public-key cryp-

tosystems, as well as for ECC and pairing-based protocols. As the focus of this thesis

is more on practical side, a detailed mathematical presentation and derivation of the

cryptographic structures is not appropriate. However, the very essential theory is

presented in a non-rigorous manner. The goal is that a reader with a minor mathe-

matical background gets a brief overview of the necessary mathematical elements for

understanding the elliptic curves and bilinear pairings adequately.

This section includes basics of groups and �elds, compressed in under three pages, and

some distinct notions. The main source for this section is [30] and [39] which can be

referred for further information.
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The notion of a group is a constitutive building block in cryptography.

Group (G, ◦) is a set of elements G endowed with a binary operation ◦ that satis�es
the following properties:

1. Group is closed under the group operation ◦, i.e. ◦ : G×G→ G.

2. Operation ◦ is associative: (a ◦ b) ◦ c = a ◦ (b ◦ c) ∀a, b, c ∈ G.

3. Exists an unique neutral element e ∈ G such that a ◦ e = e ◦ a = a ∀a ∈ G.

4. Each element a ∈ G has an inverse a−1 ∈ G for which a ◦ a−1 = a−1 ◦ a = e.

If also a ◦ b = b ◦ a for all a, b ∈ G, the group is Abelian, or commutative. Groups can

be �nite or in�nite. In this document, only �nite groups are considered. The size, also

called order of a group G is denoted as #G.[30]

Some common groups are Zn = {0, 1, 2, . . . , n−1} (integers modulo n) under addition,
and Z∗n = {a ∈ Zn | gcd(a, n) = 1} under multiplication.

If a certain set H ⊂ G is a group under the restriction of binary operation de�ned on

G, then H is a subgroup of G, denoted as H < G. Every element a ∈ G generates a

subgroup of G. This subgroup is composed of elements constructed from a, applying

the group operation consecutively. The size of the subgroup generated by a is denoted

as ord(a), which refers to the order of the element a.[30] The next theorem gives

valuable information about subgroups.

Theorem 2.1 ([30]). Lagrange's Theorem. Let G be a �nite group. If H is a subgroup

of G, then the order of H divides the order of G, i.e. #H|#G. In other words, if

g ∈ G, then ord(g)|#G.

As a consequence, the groups with prime order, i.e. #G = p ∈ P, have only trivial

subgroups: the group G itself and the trivial group {1}.

If a group G is generated by one element a, it is called cyclic, and is denoted as

〈a〉 = G. Subgroups of cyclic groups are cyclic. I.e. if G = 〈g〉 and H < G, then

∃k ∈ Z, 〈gk〉 = H.[30] This gives an intuition to the fact that the order ord(a) can

be thought as the smallest positive integer h for which a ◦ a ◦ · · · ◦ a︸ ︷︷ ︸
h times

= 1, where 1 is

the identity element of the group. The following theorem completely characterizes the

subgroups of a (�nite) cyclic group.
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Theorem 2.2 ([33]). Let G = 〈g〉 be �nite cyclic group, with #G = n. For every

m ∈ Z such that m|n exists a subgroup H ≤ G of order m. This subgroup is generated

as 〈gn/m〉. There are no other subgroups.

Cryptosystems based on cyclic groups are usually endowed with a strong one-way

property called Discrete logarithm problem (DLP). If α◦α◦· · ·◦α = β (group operation

◦ is applied k times), the DLP is to �nd the corresponding k.[33] In other words, solving

logα β = k. The logarithm here is quite ambiguous as it depends of the used group

operation. Usually the question of interest is to solve DLP in the multiplicative group,

i.e. αk ≡ β (mod p) for some integer k. The most e�cient known method for solving

DLP in Z∗p is the index calculus method which has a sub-exponential time complexity.

DLP for elliptic curves is revisited in chapter 3.1.

De�nition 2.1 ([30]). Homomorphisms. Let (G, ∗) and (G′, ◦) be groups. The map-

ping f : G→ G′ is called a homomorphism if f(a∗ b) = f(a)◦f(b) for all a, b ∈ G. In
other words, the mapping f takes the operations in G to the corresponding operations

in G′. The kernel of f is Ker(f) = {a ∈ G | f(a) = 0} = f−1({0}) and the image of

f is f(G).

If the mapping f is bijective, the groups G and G′ are isomorphic � denoted as

G ' G′.[30]

Arithmetic over �nite �elds is employed in elliptic curve cryptosystems, and conse-

quently in bilinear pairings.

De�nition 2.2 ([30]). Field. A triplet (F,+, ·) is a �eld if following properties satisfy:

1. (F,+) is Abelian group with a neutral element 0.

2. (F \ {0}, ·) = (F ∗, ·) is Abelian group with a neutral element 1.

3. Distributivity law holds: ∀a, b, c ∈ F : a(b+ c) = (ab) + (ac).

A �eld can be thought as a group with some additional properties. In elliptic curve

cryptography and bilinear pairs, large (but �nite) �elds and a certain �eld extensions

are involved. Next, the basic outline of these �elds and their structures is given in a

simpli�ed form.

Majority of elliptic curve cryptography is based on two �elds: the prime �eld and the

binary �eld. A prime �eld, with respect to certain prime p is denoted as

Fp = Z/pZ = {0, 1, 2, . . . , p− 1}.
7



Which is similar to the group Zm de�ned earlier, but with m = p ∈ P. The notation
G/N refers to a quotient ring.[30]

The binary �eld is actually a �eld extension. Field extensions Fpn , where p ∈ P and

n ∈ N \ {0} are constructed with irreducible polynomials. Polynomial f(x) ∈ K[x] =

{a0 + a1x + . . . + anx
n | n ≥ 0, ai ∈ K} is irreducible if and only if f(x) is neither

a constant polynomial nor a product of two polynomials of positive degree. Let n be

the degree of irreducible polynomial f(x), then the prime �eld extension is de�ned as

Fpn = {a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 | ai ∈ Fp, f(x) = 0}

If p = 2, then the prime �eld extension is a binary �eld, with coe�cients from F2 =

{0, 1}.[23] An element of a binary �eld can be interpret as a binary string. For instance,
x12 + x9 + x5 + x + 1 corresponds to a 13 bit value 1001000100011. Consequently,

arithmetic of the binary �eld elements is e�ciently carried out with logical operations.

Example 1. In a prime �eld Fp, the equality (a + b)p = ap + bp applies. This is

easily proven as (a+ b)p = ap + bp +
∑p−1

k=1

(
p
k

)
akbp−k ≡ ap + bp (mod p). This property

simpli�es exponentiation over prime �elds and �eld extensions.

Example 2. Example of addition and multiplication over a prime �eld extension F25 =

{a0 + a1x+ a2x
2 + a3x

3 + a4x
4 | ai ∈ {0, 1}, 1 + x+ x5 = 0}.

As x5 + x + 1 = 0, x5 is reduced to x + 1 in computations, recalling that −1 ≡ 1 and

2 ≡ 0 in F2. Now proceeding the computation with two elements of F25:

(x3 + x2 + 1) + (x3 + x2) = 1

(x3 + x2 + 1) · (x3 + x2) = x6 + x5 + x5 + x4 + x3 + x2

= x · x5 + x4 + x3 + x2

= x(x+ 1) + x4 + x3 + x2

= x4 + x3 + x

Let K and L be �elds such that K ⊆ L. Element α ∈ L is said to be algebraic over

K, if there exists a non-constant polynomial f(x) = xn + an−1x
n−1 + . . . + a0, with

a0, . . . , an−1 ∈ K, such that f(α) = 0. If every element of L is algebraic over K, then

L is an algebraic extension of K.[39]

De�nition 2.3 ([39]). Algebraic closure. An algebraic closure of a �eld K is a �eld

K̄, K ⊂ K̄ such that

1. K̄ is algebraic extension of K

8



2. Every non-constant polynomial f(x) with coe�cients in K̄ has a root in K̄. In

other words: K̄ is algebraically closed.

Example 3. Field R is not an algebraic closure, as the polynomial x2 + 1 = 0 has no

roots over the �eld of real numbers.

9



2.4 Elliptic Curves over Finite Fields

The insight of using elliptic curves in cryptography was formed in the middle '80s,

independently by two researchers Neal Koblitz and Victor Miller [24, 29]. After two

decades of research, Elliptic Curve Cryptography (ECC) is standardized and widely

used. ECC is based on the foundation that elliptic plane curves over �nite �elds form

an Abelian group, under a certain geometric operation. This allows group-theoretic

machinery to be applied, resulting in e�cient and secure cryptographic protocols.

Elliptic curves provide e�cient tools for key agreement, digital signatures, but also

for non-cryptographic applications, such as integer factorization. Besides, groups over

elliptic curves form the basis for all known bilinear pairings. The ECC protocols have

many advantages compared to prior public key protocols. Whilst ful�lling the same

security level as RSA, they o�er more e�cient implementations and smaller key sizes.

The main sources for this section are [23], [39], [30] and [7].

The Elliptic Curve concept originates from an idea of combining geometric properties

of elliptic curves and calculations over �nite �elds. The �eld elements satisfying the

elliptic curve-equation form an Abelian group. The elliptic curve E is de�ned by a

non-singular generalized Weierstrass equation over a �nite �eld K as

y2 + a1xy + a2y = x3 + a3x
2 + a4x+ a5, ai ∈ K. (2.1)

An elliptic curve is thereby de�ned by the set of points (x, y) ∈ K2 satisfying the

curve equation (2.1), and is denoted by E(K). Weierstrass equation is the generalized

version of elliptic curves. With a linear change of variables, variants of the curve (2.1)

can be derived for di�erent �elds, and di�erent applications. In case of a prime �eld

(p 6= 3), the equation has a form of

y2 = x3 + ax+ b (2.2)

where a, b ∈ Fp, and ∆ = −4a3 − 27b2 6= 0.[23]

In case of binary �eld, the equation is:

y2 + xy = x3 + ax2 + b (2.3)

where a, b ∈ F2m , and it is further required that ∆ = b 6= 0. This curve is labeled as

the binary curve.[23]

The curves above are of Short-Weierstrass form. The discriminant property ∆ 6= 0

ensures that the roots of the elliptic curve are distinct, i.e. the curve does not contain
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"bad points" such as cusps or self-intersections. By the de�nition, this non-singularity

is required for a curve to be an elliptic curve.[33]

2.4.1 The Group Structure

An elliptic curve is de�ned as the set of coordinates (elements of K) on the plane curve

E as follows:

E(K) = {(x, y) ∈ E : x, y ∈ K} ∪ {O} (2.4)

As will be shown, E(K) forms a group under the de�ned geometric operation. The

point O is called a point at in�nity � a point to in�nitely far on the y-axis. It is used

as the neutral element of the group.[23]

The additive group operation ⊕ is called chord-tangent process. The process is best

visualized with a picture (see �g. 2.1). A straight line through P and Q is formed, as

y = λx + ν, and its intersection with the curve E is calculated. The resulting point

P ⊕ Q locates on the opposite intersection point of the curve.[39] It should be noted

that in �nite �elds, the curve is a set of scattered points, as depicted in �gure (2.2).

Figure 2.1: Chord-tangent process

Next, the formation of the group operation will be studied more in detail, based on [39].

The group operations are presented for a�ne coordinates. First let P = (x1, y1) 6= O
and Q = (x2, y2) 6= O be two points on the curve y2 = x3 + ax+ b, over a prime �eld

(p > 3). Let us now proceed with the aforementioned geometrical steps in terms of

computations for P ⊕Q = (x3, y3).

First, the chord y = λx + ν, connecting P to Q is computed. The slope of the line y

11



is calculated as

λ =


y2 − y1

x2 − x1

if P 6= Q

3x2
1 + a

2y1

if P = Q

(2.5)

and ν = y1 − λx1. Note that if P = Q, λ represents the tangent of the curve at point

P = (x1, y1), and is thus derived by implicit di�erentiation of the curve equation.

Now substituting the equation of the chord to the eq. 2.2 gives (λ+νx)2 = x3 +ax+b.

As x1 and x2 are known solutions of x3 + ax+ b− (λ+ νx)2 = 0, the third solution x3

is easily found: x3 = λ2 − x1 − x2. Therefore y3 = −λx3 − ν, and �nally

P ⊕Q = (x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1). (2.6)

It can be shown that group rules are satis�ed under this group operation: P⊕(Q⊕R) =

(P ⊕Q)⊕R and P ⊕Q = Q⊕P for all P,Q,R ∈ E (associativity and commutativity

of the group); P ⊕ O = O ⊕ P = P and P ⊕ (−P ) = (−P ) ⊕ P = O for any

P ∈ E (identity and inverse elements of a group). Therefore, (E,⊕) indeed forms

an Abelian group. For rigorous proofs for group rules, one may refer to [39]. The

obtained formulas apply in prime �elds as-is. For other types of �elds and equations,

the operations are derived in a similar fashion. In example 4, the group operation on

a curve over F19 is illustrated.

The scalar multiplication kP on Elliptic curve E is de�ned as k repeated additions of

a point P ∈ E to itself: kP = P ⊕P ⊕ . . .⊕P . Order of an element P is the smallest

positive integer n for which nP = O.[39]

Theorem 2.3 ([39]). (Hasse's Theorem). Let E be an elliptic curve over the �eld K

with q elements. Then the size of an elliptic curve E has the following bounds:

(
√
q − 1)2 ≤ #E(K) ≤ (

√
q + 1)2.

Inequality can be written as |#E(K)− (q+ 1)| ≤ 2
√
q where #E(K)− (q+ 1) is also

known as the trace of frobenius. It is worth noting that Hasse's theorem only gives

bounds for the size of E � the exact number of points is rather di�cult to determine.

One of the most e�cient methods for point computation is the Schoof's algorithm [35],

which has a complexity of O(log8 q).

De�nition 2.4 ([39]). n-torsion points. Let E(K) be an elliptic curve and n be a

positive integer. The set of n-torsion points of E is de�ned as:

E[n] = {P ∈ E(K̄) | nP = O},
12



where K̄ is the algebraic closure of K. More precisely, the set E[n] contains points of

elliptic curve that have a �nite order.

Torsion points are namely the points that have �nite order. In terms of �nite �elds,

every point is a torsion point.3[39]

Elliptic curves E(Fq), where q = pk are called supersingular, if E(Fq)[p] = {O} i.e.
the curve has no points of order p. This is equivalent to p | #E(Fq)− (q + 1), i.e. the

trace of Frobenius is a multiple of p. If #E(Fq) = q, i.e. the trace of Frobenius is 1,

the elliptic curve is called anomalous.[39]

Supersingular and anomalous curves are considered cryptographically weak.[39] Su-

persingular curves are vulnerable to the MOV-attack [27] which is described brie�y in

chapter 4.1. Anomalous curves have low resilience against DLP over elliptic curves.

Supersingular curves are, however, employed in some use cases. Note: supersingularity

is not to be confused with singularity, which was de�ned in the section 3.1.

Example 4. Considering an elliptic curve E : y2 = x3 − 7x + 10 over a small prime

�eld F19. All the points (x, y) ∈ F2
19 satisfying E, i.e. solutions for y2 ≡ x3 − 7x+ 10

(mod 19) are:

(1, 2) (5, 9) (10, 16) (16, 17)

(1, 17) (5, 10) (12, 1) (17, 4)

(2, 2) (7, 0) (12, 18) (17, 15)

(2, 17) (9, 7) (13, 8) (18, 4)

(3, 4) (9, 12) (13, 11) (18, 15)

(3, 15) (10, 3) (16, 2) O

24 points on E are found (including the neutral element O), which is within Hasse's

bounds as 11 < (
√

19− 1)2 ≤ #E(F19) ≤ (
√

19 + 1)2 < 29.

Let P = (13, 11), Q = (17, 15), P,Q ∈ E(F19). Now P ⊕Q = (x3, y3) can be computed

using the equations (2.5) and (2.6).

As P 6= Q, λ = 15−11
17−13

= 4 · 4−1 = 1. Hence x3 = 12 − 13 − 17 ≡ 9 (mod 19) and

y3 = 1 · (13 − 9) − 11 ≡ 12 (mod 19). Thus P ⊕ Q = (9, 12). The group operation is

visualized in the �gure (2.2) below.

3But there might be no points in E[n] for each n ∈ Fp.
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Figure 2.2: Chord-tangent process on a curve over F19

2.4.2 Elliptic Curve Discrete Logarithm Problem

As the elliptic curve cryptography is based on cyclic groups, the computation of discrete

logarithm is also the underlying hard problem of the protocol. But as the group

operation on elliptic curves is di�erent, the problem of interest is appointed as Elliptic

Curve DLP (ECDLP). For elliptic curves, the problem is to solve the coe�cient k in

scalar multiplication kG = G⊕G⊕ . . .⊕G = P , while knowing the base point G and

P ∈ 〈G〉.[23]

With a proper choice of the curve, the best algorithms for ECDLP are the generic

DL algorithms, that work on arbitrary cyclic groups. Such methods, for example, the

Pollard's rho algorithm can compute generic DLP probabilistically in at most O(
√
n)

steps.[23]

2.5 Elliptic Curve Cryptosystems

Elliptic curve protocols have remarkable advantages over the other respective public-

key systems in terms of key size and performance. Considering a 3072-bit RSA key,

the corresponding security level is obtained with only 256-bit ECC key.[23] Another

advantage within ECC are the standardized curves and parameters; the user only needs
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to generate a random number s as the private key. In RSA, the security speci�cally

relies on the generated parameters. That is, two strong primes with a size over 1000

bits must always be generated and kept secret, when deploying the cryptosystem.

In Elliptic Curve protocols, the system parameters are the used prime p for a prime

�eld, or m in case of binary �eld F2m ; constants a and b de�ning the curve, and the

generator point G, and its order r. Private key of the user is a random integer s ∈ Zr.
Public key is the point Q = sG. If a binary �eld is used, the generator polynomial f

is also included.[7] In this section, two common elliptic curve protocols are presented:

the elliptic curve variant of Di�e-Hellman (ECDH) and elliptic curve digital signature

protocol (ECDLP).

Elliptic Curve Di�e-Hellman

The Di�e-Hellman protocol allows secret key exchange over an insecure channel. Dur-

ing the process, certain pieces of public information are transmitted over the channel,

which is then combined with at least one piece of secret information to obtain the

key. A possible eavesdropper can not obtain the key, as he neither possesses the secret

piece(s) of the information nor is capable to compute it from the public information.

The process is also known as key-agreement.[39]

Elliptic curve version of Di�e-Hellman (ECDH) uses the scalar multiplication of an

elliptic curve point as the operation. The particular �nite �eld Fq, the curve E over

it, and a generator point G and its order r are known to communication parties A and

B. Now the secret key is computed as follows:

1. A and B individually generate random integers a, b ∈ Z∗r, and compute P = aG

and Q = bG respectively.

2. A sends P to B and B sends Q to A.

3. A and B compute the point aQ = a(bG) = b(aG) = bP (commutativity of E

is used). The shared secret key is the extracted x-coordinate of the generated

point.

Now �nding the (ab)G = k would require the eavesdropper to solve either a or b from

k, which is known as Di�e-Hellman problem. The problem is, according to the current

knowledge, computationally equivalent to solving the DLP.[39]
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Elliptic Curve Digital Signature Algorithm

Let E(Fq) be an elliptic curve, G ∈ E a generator point, and r = ord(G). The

parameters are assumed known to communication parties. Also let s ∈ Z∗r be the

private key and Q = sG public key of communication party A. Now, A signs a

message as follows:

1. A computes the hash h(m) of a message, with an agreed hash algorithm.

2. A selects a random, secret integer k ∈ Z∗r, computes the point P = kG and ex-

tracts its x-coordinate as an integer c using a simple, pre-determined conversion

function.

3. The signature is the pair (c, d) where d ≡ k−1(h+ sc) (mod r).

Any other party B is now able to verify the signature of A for message m as follows:

1. B computes h = h(m) with the same hash function as used in signing process.

2. B, knowing the public key Q, calculates the point R = d−1(hG+cQ) and extracts

its x-coordinate as an integer c′.

3. B accepts the signature if c′ = c.

Signature veri�cation works, as

R = d−1(hG+ cQ) = (k−1(h+ sc))−1(hG+ scG) = k(h+ sc)−1(h+ sc)G = kG,

which equals the point calculated by A in the signing process. For an attacker to

counterfeit the signature of A, solving the secret key s from Q = sG is required. This

equals, again, solving the ECDLP.[23]

It is clear that r 6= 0 6= s. Also, notable is that k is considered to be a NONCE (Number

used ONCE), and must be kept secret. If corresponding k for a certain message m is

revealed, the secret key can be computed as s = c−1(dk− h(m)) (mod r). If the same

random k is used more than once with two di�erent messages h(m1) and h(m2), it can

be solved. Considering k = d−1
i (h(mi) + sci), for signatures i = 1, 2 with equivalent

k:s. As k1 = k2 result into c1 = c2, it follows that k ≡ (d1 − d2)−1(h(m1) − h(m2)).

Consecutively, the private key s can be solved.[23]
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2.6 Secure Curve Parameters

This section summarizes some general key-points of suitable elliptic curves for cryp-

tography. The current standards and recommendations for elliptic curve cryptography

are also studied, mainly based on the criteria provided by NIST 800-186 [7]. Certicom

standards [13] are also used for reference.

The used elliptic curve E(K) should have a signi�cantly large subgroup of prime order,

that is, #E = n ·h where n is a large prime factor and h is a relatively small co-factor.

If the co-factor h is too large, the curve is exposed to the Pohlig-Hellman attack,

which takes advantage on small prime factors of the group order.[39] NIST suggests a

co-factor of h ≤ 210 to be used. If the prime factor n is not large enough, the curve is

vulnerable to Pollard's Rho attack for solving ECDLP in the prime subgroup of E.

Moreover, a secure elliptic curve should not be supersingular nor anomalous. Non-

supersingularity is achieved with a large embedding degree, which is explained in

the section 4.1. As mentioned, supersingular curves are vulnerable to MOV-attacks,

whereas anomalous curves are exposed to attacks regarding DLP.

The bit length of an elliptic curve E(Fq) refers to the bit size of q. NIST recommends a

minimum of 224 bits for prime curves and 233 bits for binary curves. Prime curves are

suggested to be used. The NIST prime curves are constructed over a �eld with specially

chosen prime, allowing e�cient reduction modulo p.[23] Commonly used curve NIST

P-256, (or secp256r1 in Certicom standards) is generated over a prime �eld with

p = 2256−2224 +2192 +296−1.[7] Certicom and NIST standards seem to agree on most

of the recommendations.

Other prime curves are Montgomery and Twisted Edward curves, which are yet in

limited use but garnering academic interest. Their curve type di�ers from the usual

Weierstrass form. For instance, the Montgomery curve is de�ned as Ay2 = x3 +Bx2 +

x, A,B ∈ Fq, where A 6= ±2 and B 6= 0. Montgomery and Twisted Edward curves are

claimed to o�er enhanced performance and resilience against side-channel attacks.[7]

One alternative for standardized curves is Curve25519 [9], which is a Montgomery

curve y2 = x3 + 486662x2 + x over a prime �eld with p = 2255 − 19. It is constructed

to be e�cient as well as to avoid many implementation pitfalls.

Communication parties deploying ECC can agree on the used curve, and simply use

the parameters in the standards. Only the random scalar value s is left as the user's

responsibility (the private key). For instance, standardized curve NIST P-224 as in

[7], is given by the parameters:
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p = 2224 − 296 + 1

= 26959946667150639794667015087019630673557916260026308143510066298881

(= 0xffffffffffffffffffffffffffffffff000000000000000000000001)

b = 1895828628556660800040866854449392641550468096867932107578723467256

(= 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4)

E : y2 ≡ x3 − 3x+ b (mod p), with an order

#E = 26959946667150639794667015087019625940457807714424391721682722368061

(= 0xffffffffffffffffffffffffffff16a2e0b8f03e13dd29455c5c2a3d)

which is a prime, i.e. h = 1. Standards also includes the base point G = (Gx, Gy)

and the seed value for SHA-1 algorithm, whose output is used to generate the curve

parameters. Thus, the seed can be used to verify the validity of the curve parameters.[7]

In addition to the secure curve parameters, the used algorithms can fortify security.

The choice of algorithms for point arithmetic is usually a trade-o� between e�ciency

and side-channel security. Appropriate algorithms for elliptic curve arithmetic are

discussed in chapter 5.

2.6.1 Algorithms

Scalar multiplication causes the most workload on elliptic curve computations. The

goal is to compute kP for some k ∈ N and P ∈ E. One convenient method is the

double-and-add approach for elliptic curve points. Let k = k0+k1 ·2+k2 ·22+. . .+kt ·2t,
where ki ∈ {0, 1} for i = 0, 1, . . . , t − 1 and kt = 1. The double-and-add algorithm is

de�ned as follows:

input : Elliptic curve E, curve point P and scalar k as binary representation

output: P ′ = kP

1 Initialize P ′ ← P

2 for i← t− 1 to 0 do

3 P ′ ← 2P ′ + kiP

4 end

5 Return P ′

Algorithm 1: Double-and-Add algorithm

The algorithm scans the bit representation of k bit by bit. Doubling is performed in

every iteration, and if ki = 1, addition of P is performed. On average, for a random

t+ 1 bit scalar, the algorithm needs 1, 5t point doubles and additions.[33]
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Although the Double-and-Add method is e�cient, it is vulnerable to side-channel

attacks. As the point addition and doubling consume di�erent amounts of power, the

attacker may distinguish the value of kj, using the Simple Power-Analysis attack.[30]

Another, more suitable algorithm for cryptographic applications is the Montgomery

ladder, as depicted in Algorithm 2.

input : Elliptic curve point P ∈ E and scalar k as binary representation

output: Q = kP

1 Initialize R0 ← P , R1 ← 2P

2 for i← t− 1 to 0 do

3 b← ki, R1−b ← R1−b +Rb

4 Rb ← 2Rb

5 end

6 Return R0

Algorithm 2: Montgomery ladder

Montgomery ladder has several advantages for cryptographical purposes. As it per-

forms the same curve operations in every iteration, the adversary can not inspect the

bits of k from the power traces. Thus, attacks based on power-analysis are prevented.

Besides, certain fault-injection attacks are thwarted, as dummy operations are not

needed.[30]
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Chapter 3

Pairing Based Cryptography

The �eld of pairing-based cryptography is the enabling factor for a new class of se-

curity schemes, such as identity-based cryptosystems [11], searchable encryption [26]

and certi�cateless signatures [34]. Originally, pairings were invented for purposes of

cryptanalysis [27], utilizing the Weil pairing. Pairings have been adopted as an indis-

pensable tool for protocol designers, and a lot of contribution is given for enhancing

their performance. Currently, one of the most e�cient pairings is the optimal ate

pairing by Vercauteren [38], which is used in this work.

The fundamental idea of bilinear pairings is to construct a mapping between two con-

venient cryptographic groups, reducing a problem in one group to a di�erent, usually

easier task in another group. The bilinear pairing itself is not directly associated with

elliptic curves. However, the majority of the pairings utilize subgroups or quotient

groups of elliptic curves over prime �elds or prime �eld extensions. In this work,

groups over pairing-friendly Barreto-Naehrig [8] curves are employed.

This chapter serves as an introduction to pairing based cryptography, containing the

generalized notion of the bilinear pairing, some security aspects, and an example of

pairing-based protocol; the Boneh-Boyen cryptosystem. Furthermore, the optimal ate

pairing and the related concepts are presented. The main sources are [30], [18] and

[38].

Note: due to frequent usage of ∞ as the neutral element in the relating literature, it

is henceforth used as the neutral element instead of O.
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3.1 Bilinear Pairings

Let G1, G2 be two groups of prime order n, under a group operation ◦, and GT a cyclic

multiplicative group of the order n. A bilinear pairing, (or simply, a pairing) is an

e�ciently computable mapping e : G1 × G2 → GT satisfying the following conditions

([30]):

1. Bilinearity: Mapping e is linear in both arguments: ∀P,Q ∈ G1, ∀P ′, Q′ ∈ G2 :

e(P ◦Q,P ′) = e(P, P ′)e(Q,P ′)

e(P, P ′ ◦Q′) = e(P, P ′)e(P,Q′).

2. Non-degeneracy: For any P ∈ G1 exists Q ∈ G2 for which e(P,Q) 6= 1, and for

any Q ∈ G2 exists P ∈ G1 such that e(P,Q) 6= 1.

The operation ◦ for groups G1 and G2 is usually addition of elliptic curve points,

but it can as well be a multiplicative operation. From the bilinearity it follows that

e(aP, bQ) = e(P,Q)ab, ∀a, b ∈ Z. It is possible that G1 = G2, the pairing is then

symmetric. For a symmetric pairing: e(P,Q) = e(Q,P ).[30]

As previously mentioned, majority of pairings are constructed from elliptic curves.

Considering an elliptic curve E with an order of #E = n · h. Now if n is a prime,

then G1 is the subgroup of E(Fq) of order n: G1 = {hP | P ∈ E(Fq)}. Then for a

proper choice of k, there exists a pairing e : G1 × G2 → GT , where G2 ⊂ E(Fqk) and

GT ⊂ F∗
qk
. It follows that #GT |(qk − 1).[18]

The actual computation of a certain pairing depends on the type of the pairing and the

used curve type. As mentioned, the idea is to form an e�cient mapping to transform

a problem in a certain group into an easier problem in another group. The ate pairing

and it's optimized variant is presented in sections 3.5 and 3.6.

3.1.1 Security of Bilinear Pairings

The following property is closely related to security but also in the e�ciency of the

computation of pairing:

De�nition 3.1 ([18]). Embedding degree. Let P ∈ E(Fq) be a point of prime order n

such that gcd(n, q) = 1. The embedding degree of 〈P 〉 is the smallest k ∈ Z>0 such

that n | qk − 1.
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As mentioned, the curves with low embedding degree are exposed to the MOV attack.

The MOV attack utilizes Weil-pairing to transform an instance of ECDLP into a

corresponding instance of DLP over GT ⊂ F∗
qk
, where k is the embedding degree. Let

P, aP ∈ G1 and Q ∈ G2. Then compute g = e(P,Q) and h = e(αP,Q). Now by

linearity: h = e(P,Q)α = gα. Thus, computing the discrete logarithm of αP in G1 is

equal to �nding the dicrete logarithm of gα in GT . Hence the index calculus algorithm

can be applied to attack the system.[18][27]

The intractability of Bilinear Di�e-Hellman problem is the underlying concept for

secure pairing-based protocols. It is formulated as follows.

De�nition 3.2 ([18]). Bilinear Di�e-Hellman problem. Let e : G1 × G2 → GT be a

bilinear pairing. The bilinear Di�e-Hellman problem (BDHP) is de�ned as: Given

P, aP, bP ∈ G1 and Q ∈ G2, compute e(P,Q)ab.

Hardness of BDHP implies hardness of DHP in both G1 and GT . That is, computing

of abP is di�cult for known aP and bP . Moreover in GT , �nding g
a = e(aP,Q),

gb = e(bP,Q) and then computing gab.[18]

To choose an appropriate curve for pairing operations, the parameters q, n and k

of the relation n|qk − 1 should meet certain conditions. Prime divisor n of #E(Fq)
should be su�ciently large to preclude the attack with Pollard's rho. The embedding

degree k should be large enough to thwart the MOV-attack. Cryptographically weak

supersingular curves have embedding degree k ∈ {1, 2, 3, 4, 6}. On the other hand,

k should be small enough so that pairing with Fqk can be computed e�ciently. In

addition, low Hamming weight of n speeds up the doubling operations.[18][30]

Curves satisfying these properties are called pairing friendly. The vast majority of

elliptic curves have an extremely large embedding degree, rendering the pairing com-

putation infeasible, as well as the MOV attack.[18] Pairing friendly curves are relatively

rare, as k ≈ n for a majority of curves as shown in the work of Balasubramanian et

al. [5] for prime-order elliptic curves over prime �elds.

3.2 Barreto-Naehrig Curves

Barreto and Naehrig [8] composed a method for generating pairing-friendly elliptic

curves with prime order and embedding degree k = 12. The equation of the Barreto-

Naehrig (BN) curve is E : y2 = x3 + b, b 6= 0. BN-curves utilize a certain parametri-

sation of the trace of Frobenius of the curve, the curve order #E and the group order
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#Fq, as follows:

t(u) = 6u2 + 1

p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1.

Due to parameterization, the memory needed for information of a BN curve is

small: only the parameter u su�ces. Parameter u must be chosen such that both

n = n(u) and p = p(u) are prime. Parametrisation also enables more e�cient

computations.[8][30]

Another bene�t from BN-curves is that they possess an e�ciently computable group

homomorphism, which allows computing points of E(Fp12) as points in E ′(Fp2). The
group E ′(Fp2) : y′2 = x′3 + b/ξ is the sextic twist of E(Fp12), where ζ is an element for

which x6− ζ is irreducible over Fp2 [x]. It is used to construct the Fp12 over the second-
degree �eld Fp2 . The injective group homomorphism is de�ned as ψ : E ′(Fp2) →
E(Fp12), (x′, y′) 7→ (x′z2, y′z3). The mapping produces a point whose x-coordinate is

in Fp6 , and y-coordinate in Fp4 .[8]

Sextic twist, or generally, a degree-d twist is a certain transformation of an elliptic

curve. The process is also known as point-compressing. It allows pairing values to be

compressed to one-third or even one-sixth of their original length.[8]

3.3 Boneh-Boyen Identity Based Encryption

In the usual public key infrastructure, generating and distributing the public keys

require an agreement between communication parties. This furthermore leads to a

need of certi�cates to verify the ownership of a certain public key.

In the Identity Based Encryption (IBE) the public key is constituted by a certain

predetermined string. The corresponding private key is generated by (and only by)

the Private Key Generator (PKG), which knows the certain master secret. Each user

of the system has some value bound to his identity, for example, an e-mail address,

from which the public key is derived. The user authenticates himself to PKG, which

assigns him the private key, corresponding to his identity.[11]

The �rst applicable version of identity-based cryptosystem was brought up by Boneh

and Franklin [12] with their solution using the Weil-pairing. Another, more secure1

version is the Boneh-Boyen IBE algorithm [11], which is represented next.

1Boneh-Boyen does not require the random-oracle assumption, whereas the former Boneh-Franklin
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Boneh-Boyen IBE utilizes collision-resistant hash-functions and its security is based

on Decisional BDH assumption. Boneh-Boyen IBE makes use of a symmetric pairing

G1 ×G1 → GT , where G1 and GT are multiplicative groups. Let
∑

= {0, . . . , s} be
an alphabet with size of s, and {Hk : {0, 1}w →

∑n}k∈K with w > 0 be a family of

hash functions. The identi�cation (ID) is assumed to be a w-length bit string {0, 1}w.
The algorithm has four di�erent operations: setup, key generation, encryption, and

decryption.

Setup. First, a random generator g ∈ G∗1 and α ∈ Zp are chosen and g1 = gα is set.

Next, a random g2 ∈ G1 is chosen and a random n × s matrix U = (ui,j) ∈ Gn×s is

constructed, where each ui,j is uniform in G. Moreover, a random k ∈ K is picked as

the key for the hash function. Now the system parameters are (g, g1, g2, U, k), and the

master-key is gα2 .

Key generation. Denote a = Hk(ID) = (a1 . . . an) ∈
∑n (n-length vector of al-

phabets) and pick random r1, . . . , rn ∈ Zp. The private key corresponding an identity

ID ∈ {0, 1}w is generated as

dID =

(
gα2 ·

n∏
i=1

urii,ai , g
r1 , . . . , grn

)
∈ Gn+1.

Encryption. Let M ∈ G1 be a message and a, and Hk(ID) as above and let t be a

random element in Zp. Now the encryption of M under the given parameters and the

public ID is as follows:

C =
(
M · e(g1, g2)t, gt, , ut1,a1 , . . . , u

t
n,an

)
∈ GT ×Gn+1

1 .

The cryptotext C is thus (n + 2)-tuple of elements in GT and G1. For simpli�cation,

we denote A = M · e(g1, g2)t and utj,aj = Cj.

Decryption. The owner of the private key dID = (d0, d1, . . . , dn) can decrypt the

message C = (A, gt, C1, . . . , Cn) as

A ·
∏n

j=1 e(Cj, dj)

e(gt, d0)
= M.

Let's go through the calculations more in detail to justify the process.

The goal is to solve the M from M · e(g1, g2)t using the information of the private key

dID and elements gt and Cj of the vector C. Now recalling the bilinearity of a pairing,

version does.
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i.e. e(P,Q ·R) = e(P,Q) · e(P,R) and the notations for Cj and dj above:

A ·
∏n

j=1 e(Cj, dj)

e(gt, d0)
=A ·

∏n
j=1 e(u

t
j,aj
, grj)

e(gt, gα2 ·
∏n

j=1 u
rj
j,aj

)
= A ·

∏n
j=1 e(uj,aj , g)trj

e(gt, gα2 )e(gt,
∏n

j=1 u
rj
j,aj

)

=A ·
∏n

j=1 e(uj,aj , g)trj

e(g, g2)αte(gt,
∏n

j=1 u
rj
j,aj

)

?
= A ·

∏n
j=1 e(uj,aj , g)trj

e(gα, g2)t
∏n

j=1 e(g, uj,aj)
trj

=M · e(g1, g2)t
1

e(g1, g2)t
= M.

The equality at (?) follows from applying the bilinearity property consecutively on the

pairing in the denominator. Also, the property e(Pα, Qβ) = e(P,Q)αβ = e(P β, Qα),

and the commutativity of symmetric pairing was used, i.e. e(P,Q) = e(Q,P ).

For proofs of security and further details, one may refer to [11].

3.4 Divisors and Rational Functions

The notion of a divisor of an elliptic curve and rational functions on elliptic curves are

closely related on evaluation of a pairing. All known pairings include an evaluation

of a certain rational function, with a certain divisor.[18] Divisors contain information

about the function of interest, namely of the special points; poles and zeros. A function

is said to have a pole at P if it gets the value ∞ at that point, and a zero if it gets

the value 0.

De�nition 3.3 ([18]). Divisor. A divisor on an elliptic curve E(K) is a formal sum

D =
∑

P∈E aPP of points P on the curve such that

1. The sum is �nite,

2. The coe�cient aP is an integer for each point P ,

3. Two sums equal only if the all the coe�cients equal. That is, the sum is unique.

The degree D of a divisor is de�ned as deg(D) =
∑

P∈E aP . The empty divisor is

denoted as ∅, and it's degree is 0.[18]

De�nition 3.4 ([18]). Rational function over E. Let E be an elliptic curve (eq. 2.1)

over a �eld K. A rational function on E is a function f : E → K of the form

f(x, y) =
f1(x, y)

f2(x, y)

where f1 and f2 are polynomials in the variables x and y.
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De�nition 3.5 ([18]). Let f(x, y) 6= 0 be rational function over E as de�ned above.

The order of f for any point P ∈ E, denoted as ordP (f) is de�ned as follows:

1. If f(P ) 6= 0 and 1
f(P )
6= 0, then ordP (f) = 0.

2. If f(P ) = 0, then ordP (f) is the multiplicity of the root at P of the numerator

f1(x, y).

3. If 1
f(P )

= 0, then ordP (f) equals the negative of the multiplicity of the root at P

of the denominator f2(x, y).

Summarizing, the function f has non-zero order on a point P , only if the point is pole

or zero of the function.

De�nition 3.6 ([18]). Principal divisor. Let f 6= 0 be a rational function on an elliptic

curve E. The principal divisor div(f), generated by f is denoted as

div(f) =
∑
P∈E

ordP (f) · (P ).

Principal divisor expresses the �nite sum of all the points P ∈ E on which either f1

or f2 equal to zero. In other words, it is a linear combination of poles and zeros of the

function f on elliptic curve E.

Furthermore, a divisorD on E is called a principal divisor if div(f) = D for some ratio-

nal function f on E. Also, the mapping div(f) is a homomorphism from multiplicative

to additive group: div(fg) = div(f) + div(g) and div(1) = ∅.[18]

Theorem 3.1 ([18]). For any rational function f on elliptic curve E: deg(div(f)) = 0.

Example 5. Let E : y2 = x3 − x be an elliptic curve, and let f(x, y) = x
y
on E. The

principal divisor div(f) can be computed as follows. First considering f1(x, y) = x,

which equals zero when P = (0, 0). Multiplicity of the root is 2, so ord(0,0)(f1) = 2.

Moreover, 1/f1 = 0 when P =∞, and by thm. (3.1): ord∞(f1) = −2.

Similarly for the function f2(x, y) = y. As y2 = x3 − x = x(x − 1)(x + 1), f2 equals

zero on P = (0,±1) and P = (0, 0). For 1/f2 = 0, P = ∞, with order of −3 (thm

(3.1)).

Now by utilizing div(f/g) = div(f)− div(g), the principal divisor is

div(f) =
∑
P∈E

ordP (f) · (P ) =
∑
P∈E

ordP (x) · (P )−
∑
P∈E

ordP (y) · (P )

= {2((0, 0))− 2(∞)} − {((0, 0)) + ((1, 0)) + ((−1, 0))− 3(∞)}

= ((0, 0))− ((1, 0))− ((−1, 0)) + (∞)
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Thus, the function has zeros at (0, 0) and∞, and poles at (1, 0) and (−1, 0). Note that

the function x
y
as itself is not de�ned at the point (x, y) = (0, 0). But on the elliptic

curve E: y2 = x3 − x ⇐⇒ x

y
=

y

x2 − 1
, which is de�ned at the point (0, 0).

3.5 The Ate Pairing

As de�ned in [38], the ate pairing is a non-degenerated bilinear asymmetric pairing

G1 ×G2 → GT , de�ned over the groups

G1 = E(Fp)[n] ∩Ker(πp − [1]),

G2 = E(Fpk)[n] ∩Ker(πp − [p]),

GT = F∗pk/(F
∗
pk)n,

where E(Fpk)[n] denotes the n torsion group of E(Fpk), πp is the Frobenius endomor-

phism E → E : (x, y) 7→ (xp, yp) and [n] denotes the scalar multiplication of a curve

point.[38] The group can be interpret as follows: G1 is r-torsion points of E(Fp), for
which πp(P ) − [1]P = 0, i.e. πp(P ) = P . This applies for points with coordinates in

non-extension �eld Fp. The group GT is a quotient group, where (F∗
pk

)n is the elements

of F∗
pk

raised to the nth power.

The ate pairing for P ∈ G1 and Q ∈ G2 (the arguments are swapped) is de�ned as:

e(Q,P ) = fλ,Q(P )(pk−1)/n. (3.1)

For derivation of the pairing and proofs for bilinearity and redundancy, see [38]. The

computation of ate pairing consists of two phases: evaluation of a certain Miller func-

tion fλ,P (·), and a �nal exponentiation process.

3.5.1 Miller's Algorithm

The Miller function fr,P (·) is a rational function with r zeros at P , a pole at [r]P and

r − 1 poles at ∞:

div(fr,P ) = r(P )− ([r]P )− (r − 1)∞. (3.2)

The idea of Miller's function is to map two elliptic curve points into a single point in

�nite �eld. In general, the function can not be evaluated directly, but the following

observation enables e�cient computation of it.

27



Lemma 3.2 ([28]). Let P ∈ E[n] and i, j ∈ N \ {0}. Let lA,B be a line through points

A = (xA, yA) and B = (xB, yB), and v be a vertical line through a point A+B, where

A = [i]P and B = [j]P . Then

fi+j,P = fi,Pfj,P
l[i]P,[j]P
v[i+j]P

. (3.3)

Proof. Using the fact of eq. (3.2) and that the divisor is a homomorphism:

div(fi,Pfj,P
l

v
) = div(fi,P ) + div(fj,P ) + div(l)− div(v)

= {i(P )− ([i]P )− (i− 1)(∞)}+ {j(P )− ([j]P )− (j − 1)(∞)}

+ {([i]P ) + ([j]P ) + (−[i+ j]P )− 3(∞))}

− {([i+ j]P ) + (−[i+ j]P )− (i+ j − 1)(∞)}

= (i+ j)(P )− ([i+ j]P )− (i+ j − 1)(∞)

= div(fi+j)

As a consequence, the function fr,P (·) can be constructed e�ciently with Miller's

algorithm, as depicted in Algorithm 3, from [38]. The algorithm computes the function

with O(log n) steps, utilizing the double-and-add approach.[28] For further details and

more rigorous reasoning of the presented information, one can refer to the original

article by Miller [28].

input : P,Q ∈ E[n], P 6= Q and r ∈ N.
output: fr,P (Q).

1 Let r =
∑L

i=0 ri2
i, with ri ∈ {0, 1} and rL = 1.

2 T ← P , f ← 1

3 for i← L− 1 to 0 do

4 f ← f 2 · lT,T (Q)

v[2]T (Q)

5 T ← [2]T

6 if ri = 1 then

7 f ← f · lT,P (Q)

vT⊕P (Q)

8 T ← T ⊕ P
9 end

10 end

11 return f

Algorithm 3: Miller's algorithm for computing fr,P (Q)
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One common optimization in Miller function computation is the denominator elimi-

nation. With certain conditions, the element vT⊕P (Q) is in Fqd ⊂ Fqk . As the order of
the sub�eld divides the order of the �eld Fqk , the denominator is eliminated in �nal

exponentiation. Therefore, computation of it can be ignored. Namely if x ∈ Fqd , then
x(qk−1)/n = 1. This applies especially when embedding degree k is even.[30]

3.5.2 Final Exponentiation

The �nal exponentiation process ensures the unique result of the pairing. The output

of the Miller loop is raised to the power of (pk−1)/n to obtain an unique representative

of an element in the coset F∗
pk
/(F∗

pk
)n. Let k = 2d, then:

pk − 1

n
= (pd − 1) · p

d + 1

Φk(p)
· Φk(p)

n
,

where Φk(p) is a certain k:th cyclotomic polynomial. The �rst two coe�cients of

the exponentiation are called the easy part of the �nal exponentiation, whereas the

coe�cient Φk(p)/n forms the hard part.[30]

In the context of BN curves, the exponential (p12 − 1)/n is factorized into (p6 − 1),

(p2 + 1) and (p4 − p2 + 1)/n. The �rst two terms form the easy part, which is easily

computed owing to cheap Frobenius mapping. The hard part, i.e. the exponentiation

by (p4 − p2 + 1)/n needs extra treatment, as the fraction will be decomposed into a

large polynomial by expanding the parametrizations.

The process of calculating depends of the used curve and �elds. In this work, the

modi�ed variant of �nal exponentiation by Fuentes-Castaneda [20] for BN curves are

used, in addition to squaring in cyclotomic subgroups [21]. The �nal exponentiation

process is inspected more in detail in the section 4.4.

3.6 Optimal Ate pairing over Barreto-Naehrig

Curves

Vercauteren [38] presented an idea of constructing optimal pairings, with a reduced

Miller loop length (1/ϕ(k)) log2 n, where k is the embedding degree. The idea of

optimal ate pairing (or O-ate) is on �nding base-q expansion for λ =
∑l

i=0 ciq
i, divisible
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by n. The optimal bilinear pairing is then given as

(P,Q) 7→

(
l∏

i=0

f q
i

ci,Q
(P ) ·

l−1∏
i=0

l[si+1]Q,[ciqi]Q(P )

v[si]Q(P )

)(qk−1)/n

(3.4)

where si =
∑l

j=i cjq
j. It is required that mkqk−1 6= ((qk−1)/n) ·

∑l
i=0 iciq

i−1 (mod n)

for the pairing to be non-degenerate.

Vercauteren showed that by choosing a polynomial λ with small coe�cients ci, the

Miller loop has at most (1/ϕ(k)) log2 n iterations. Barreto-Naehrig curves can be

utilized in this purpose.

Recalling the curve order and the group order for BN curves: p(u) = 36u4 + 36u3 +

24u2 + 6u+ 1 and n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1. By direct computation it can

be observed that

(6u+ 2) + p(u)− p(u)2 + p(u)3 ≡ 0 (mod n(u)).

This represents the q = p(u) based expansion for λ, as it also divides the n(u) = #Fpk .
As the BN curves are used, the denominator from l[si+1]Q,[ciqi]Q(P )/v[si]Q(P ) can be

eliminated. Now by applying λ in 3.4, an optimal ate pairing over BN curve is obtained:

(Q,P ) 7→(f6x+2,Q(P )f p1,Q(P )f p
2

−1,Q(P )f p
3

1,Q(P )

· l[p−p2+p3]Q,[6x+2]Q(P )l[−p2+p3]Q,[p]Q(P )l[p3]Q,[−p2]Q(P ))(pk−1)/r

=
(
f6x+2,Q(P ) · l[p−p2+p3]Q,[6x+2]Q(P )l[−p2+p3]Q,[p]Q(P )l[p3]Q,[−p2]Q(P )

)(pk−1)/r

The equality follows from f1,Q(P ) = f−1,Q(P ) = 1. Now with a further �ne-tuning, as

in [31], the �nal version of optimal ate pairing is

aopt = (f6x+2,Q(P ) · l[6x+2]Q,πp(Q)(P ) · l[6x+2]Q+πp(Q),−π2
p(Q)(P ))(p12−1)/r (3.5)

where πp(Q) is the Frobenius endomorphism.
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Chapter 4

High Level Arithmetic

As mentioned, the pairing implementation contains many sub-processes that can be

optimized further to obtain a more enhanced version of the pairing. As demonstrated

in Figure 4.1, the arithmetic of bilinear pairings occurs in several layers. Miller's

loop phase constructs the rational Miller function using arithmetic of elliptic curve

points. The curve operations, as well as the �nal-exponentiation process, ultimately

break down into operations in large extension �elds. These consecutively reduce into

prime-�eld arithmetic, and eventually into machine instructions with large integers.

The used pairing implementation by Unterluggauer et al. [37] follows the state-of-art

design of [10] and [16]. The e�cient formulas by Costello et al. [15] are used for curve

point arithmetic in the Miller loop. For �nal exponentiation, a modi�ed variant by

Fuentes-Castaneda et al. [20], and e�cient squaring formulas in cyclotomic subgroups

[21] are used. Also, in the O-ate pairing function itself, an inversion trick by Aranha

et al. [1] is utilized.

This chapter presents the key methodology employed within the O-ate pairing over the

BN curves, keeping the scope on the methods relevant for this work. In section 4.1, the

arithmetic on the �nite �elds, the construction of extension �elds, and some optimizing

tricks are outlined. The second section presents the used curve point arithmetic.

Section 4.3 explains the computations used in the �nal exponentiation, containing less

memory consuming optimization.
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Figure 4.1: Operation �ow of the pairing process

4.1 Field Arithmetic

Careful implementation of �eld and integer arithmetic has a crucial role in achieving

e�cient pairing implementations. The operations with �eld extensions such as Fp12
and Fp2 are reduced into operations on the prime �eld Fp. These, in turn are processed
as a set of word-size multi-precision integer values and computed as CPU instructions.

In this section, we outline the basic ideas of �eld arithmetic and present the essential

methods used in this work. The implementation aspects in hardware level are also

considered. The �eld multiplication is emphasized, as it will be optimized in this work

at the instruction level. The �eld arithmetic is mainly based on the techniques used

by Beuchat et al. [10] , Devegili et al. [16] and Aranha et al. [1]. Another supportive

literature used is [30].

4.1.1 Extensions Fields

To perform extension �eld arithmetic e�ciently, the high degree �eld extensions are

constructed as a tower of lower degree sub-�elds. The main idea is expressing the
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prime �eld extension Fpk = Fp[z]/f(z) as Fpm , where m|k such that

Fpk = Fpm [v]/g(v), where g(v) ∈ Fpm [v] , deg(g) = k/m

Fpm = Fp[u]/h(u), where h(u) ∈ Fp , deg(h) = m,

also recalling that g(v) and h(u) must be irreducible polynomials. Low-degree poly-

nomials of low hamming weight are commonly used as the irreducible polynomials, as

they provide e�cient multiplications and reductions.[30]

The used BN-curve parameter in this work is u = −262 − 255 − 1, which applied to

the parametrization, yields p(u) ≡ 3 (mod 4). Therefore x2 − β, where β = −1 can

be used as the irreducible polynomial for Fp2 . This results in faster arithmetic, as the

multiplication by β corresponds to a simple subtraction.[1]

In order to utilize the sextic twist of BN curves, the �eld Fp12 must be built as an

extension of Fp2 for certain operations. The following tower extensions are used in this

work:

Fp2 = Fp[u]/(u2 + 1)

Fp4 = Fp2 [s]/(s2 − ζ), where ζ = 1 + i

Fp12 = Fp2 [v]/(v6 − ζ) or Fp12 = Fp4 [v]/(v3 − s)

The towering Fp → Fp2 → Fp4 → Fp12 is mostly adopted for arithmetic in this work,

but another variant can be applied by permuting the order of coe�cients.[1][37]

In the hardware level, a �eld element x ∈ Fp is presented according to the size of p

and the word length W of the processor in bits. In this work p is a size of 256 bits

and W = 32. An arbitrary x ∈ Fp is presented in the memory as x7232·7 + x6232·6 +

x5232·5 + x4232·4 + x3232·3 + x2232·2 + x1232 + x0, or (x7, x6, x5, x4, x3, x2, x1, x0), where

xi is a size of under 32 bits. An element x of an extension �eld Fpk would consist of

k aforementioned 8-word arrays of prime �eld elements. For more details, one might

refer to [30].

4.1.2 Prime Field Multiplication

An e�cient prime �eld multiplication is a standard building block of the pairing func-

tion. The general method for multiplying a, b ∈ Fp consists of computing t = a · b and
then applying reduction, i.e. computing t (mod p). In this work, e�cient Karatsuba

multiplier paired with Montgomery multiplication is used.
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The Karatsuba multiplier exploits a certain base presentation and "divide and con-

quer" approach, allowing the number of required word-multiplications to be reduced.

Let a = (a1, a0) and b = (b1, b0) be two integers with a bit size of 2W . The Karatsuba

product can be written as:

a · b = (a12W + a0) · (b12W + b0)

= a1b122W + (a1b0 + a0b1)2W + a0b0 (4.1)

= a1b122W + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)2W + a0b0

As can be observed, the last expression requires only three word multiplications: a0b0,

a1b1, (a0 +a1)(b0 +b1), which is less than in the basic "schoolbook" multiplication. For

n-word multiplications, the complexity of Karatsuba is O(nlog2 3), whereas the "School-

book" method requires O(n2) steps. Karatsuba can be e�ectively used recursively for

larger inputs.[30]

To scale the result to Fp, a reduction is needed. This could be achieved with a costly

division by p and taking the remainder. Fortunately, more e�cient methods exist.

The Montgomery multiplication takes advantage of a certain mapping, which allows

trading the division by p with a division by R = 2k. TheMontgomery representation is

the mapping ã = a ·R (mod p), which maps the element a into a Montgomery domain.

The Montgomery product for c = a · b (mod p) is de�ned as c̃ = ã · b̃ · r−1 (mod p).

The result is easily mapped back to the integer domain as c = c̃ · r−1 (mod p). The

products can be computed with e.g. Karatsuba multiplier.[30]

The algorithm 4 demonstrates the classical variant of Montgomery multiplication,

which additionally requires a parameter p′ such that R ·R−1 − p · p′ = 1, i.e p′p ≡ −1

(mod p). First (step 1), the elements are mapped into the Montgomery domain. Then,

a certain parameter q is computed (step 2), followed by the reduction (step 3). The

value is then scaled, and returned.[30] The variable q = t · p′ (mod R) ensures that

t + q · p is a multiple of R, as t + q · p ≡ t + tp′ · p ≡ t − t ≡ 0 (mod R). Now, as

u · R ≡ t + q · p ≡ t (mod p), it follows that u = t · R−1 ≡ ã · b̃ · R−1 (mod p) as

required. After �nishing, the value u must be mapped back to the integer domain.[30]
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input : n-word prime p, R = 2n·W , parameters ã, b̃, p′

output: u = MontPr(ã, b̃) = ã · b̃ ·R−1 (mod p).

1 t← ã · b̃
2 q ← t · p′ (mod R)

3 u← (t+ q · p)/R
4 if u > p then

5 return u− p
6 else

7 return u

8 end

9 return u

Algorithm 4: Montgomery multiplication

The division by 2k is a cheap operation, as it corresponds to a k-bit shift in the

CPU level. The variable k ∈ Z such that 2k−1 < |p| < 2k is required to be precom-

puted, as well as the parameter p′. The Montgomery multiplication has little bit of

overhead due to conversion between Montgomery and integer domain, and from the

computation of q. However, it is not signi�cant as the required multiplications and

additions can be performed sequentially without the need to move back to the integer

domain. The reduction is especially useful in exponentiation with the square-and-

multiply approach.[30]

4.1.3 Prime-Field Inversion

This work utilizes an optimized prime-�eld inversion. The parametrization of the

BN-curve enables the usage of an exponent-based inversion instead of the common

Euclidean algorithm. The algorithm makes use of Fermat's little theorem, and the

parametrization of p. Applying these, the inverse of a−1 ∈ Fp can be expressed as

a−1 (mod p) = ap(u)−2 (mod p) = a36u4+36u3+24u2+6u−1 (mod p)

= a6u−1 · a24u2 · a36u3 · a36u4 (mod p)

As the exponents are public information, the side-channel protected, and thus more

costly exponential algorithms are not needed. The exponentiation is carried out ef-

�ciently by a certain chain of computations. A clear bene�t is gained from the low

hamming weight of the parameter u. Additionally, the parameter 6u − 1 can be

precomputed.[37]
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4.1.4 Extension Field Arithmetic

As mentioned, the computations of high-degree �elds are reduced into lower degree

arithmetic, ultimately into big-integer operations. The main optimization from this

standpoint is to optimize the high-degree arithmetic to consume the minimum amount

of such primitive operations. It is best achieved with the combination of the curve

parameters the pairing function is constructed with, and the e�cient �eld arithmetic.

As already noted, the parameter u = −262 − 255 − 1 = −40800000 00000001h, in

addition to the sextic twist of the BN-curve family provide optimizations. The low-

hamming weight parameter provides e�cient computations involving p(u), and e�-

cient tower construction. The sextic-twist, in turn, provides savings due to point-

compression, recalling from section 3.2. This allows to use "sparse" multiplication as

the point in E(Fp12) can be presented as smaller elements; in this work as elements of

Fp2 and Fp4 .

The extension �eld arithmetic follows the design philosophy of Beuchat et al. [10] and

Devegili et al. [16]. The multiplication in Fp2 utilizes a lazy reduction as in [1] for multi-
plying. It computes the arithmetic at the big-integer level, and performs the reductions

directly in the Fp2 . Computationally it corresponds to 3 integer multiplications, 5 ad-

ditions, and 2 reductions, which is less than in a plain Karatsuba implementation. The

inversion in Fp2 is computed as (a+bu)−1 = (a−bu)·(a2−βb2)−1 = (a−bu)·(a2+b2)−1.

In Fp12 , the Chung-Hasan complex squaring is utilized. Karatsuba multiplier is exten-

sively used in all �elds, except for the sparse multiplication in Fp12 . In the �nal

exponentiation process the fast squaring in cyclotomic subgroups is used. This will be

brie�y discussed in section 4.4.1.

Table 4.1 summarizes the costs of the basic operations over �elds used in this work, in

addition to the cyclotomic subgroup GΦ6 < Fp12 . The sets (a,m, s, i) and (â, m̂, ŝ, î)

correspond to addition, multiplication, squaring and inversion in the �elds Fp and Fp2
respectively. Notable is that m̂ζ corresponds to only 1 negations and 2 additions, i.e.

3 additions computationally.
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Table 4.1: Computational costs of the �eld extension arithmetic

Field Add./Sub. Multiplication Squaring Inversion

Fp2 â = 2a m̂ ŝ = 2m+ 3a
î =

2m+ 2s+ 3a+ i

Fp4 2â 3m̂+ m̂ζ + 5â 2m̂+ 2m̂ζ + 5â
2m̂+ 2ŝ+ m̂ζ +

2â+ î

Fp12 6â 18m̂+8m̂ζ +60â 11m̂+11m̂ζ+45â
35m̂+ 2ŝ+

22m̂ζ + 70â+ î

GΦ6(Fp2) 6â 18m̂+8m̂ζ +60â 6m̂+ 7m̂ζ + 42â Conjugation

4.1.5 Frobenius Operator

In this section, the concept of Frobenius operator is brie�y outlined. Frobenius operator

is the Frobenius mapping with prime-�eld characteristic p; π(x) = xp in an extension

�eld Fpd . It is especially used in the �nal exponentiation phase.

Considering the �eld Fp2 = Fp[u]/(u2 + 1). As u2 + 1 = 0, it follows that u = i =
√
−1. Thus, an element x ∈ Fp2 can be presented as x = a + ib. Now observing the

exponential:

xp = (a+ ib)p = ap + ipbp = a+ ipb

= a+ i3b (As p ≡ 3 (mod 4))

= a− ib = x̄.

Hence, the Frobenius mapping in the given extension �eld corresponds to one conju-

gation, which is computationally equivalent to a prime �eld addition. Furthermore, it

is easy to verify that xp
2n

= x and xp
2n−1

= x̄ for every positive integer n and x ∈ Fp2 .

Now using the extension f ∈ Fp12 = Fp2 [v]/(v6 − ζ), also noting that p ≡ 1 (mod 6),

one can write (vp)j = (v6·(p−1)/6)jvj = ζj·(p−1)/6vj = ζjv
i. Thus f p can be computed as

f p =(a0 + a1v + a2v
2 + a3v

3 + a4v
4 + a5v

5)p

ā0 + ā1v
p + ā2v

2p + ā3v
3p + ā4v

4p + ā5v
5p

ā0 + ā1ζ1v + ā2ζ2v
2 + ā3ζ3v

3 + ā4ζ4v
4 + ā5ζ5v

5.

The expression above costs 6 prime-�eld additions and 5 multiplications in Fp2 . A

similar approach works for powers such as f p
2
and f p

3
, which are required in the hard

part of the �nal exponentiation.[10]

37



4.2 Curve Arithmetic

The Miller's algorithm consists of curve point doubling and additions, line evaluations,

and squaring and multiplications in the extension �eld Fp12 . The algorithm 5 below

describes the Miller's algorithm in this work. The curve arithmetic in the Miller loop is

computed with e�cient formulas by Costello et al. [15]. The formulas take advantage

of the curve twist of the BN curve and projective coordinates.

In order to speed up computations, the line functions are computed simultaneously

with the curve point doubling and addition.

The homogeneous projective coordinates (X, Y, Z), Z 6= 0 represent the a�ne point

(X/Z, Y/Z) with x 7→ X/Z and y 7→ Y/Z. Similarly, the a�ne point (x, y) accepts the

homogeneous coordinates (X, Y, 1). The use of the homogeneous coordinates removes

the need for costly division, i.e. inversions in �nite �elds on calculating the slope λ, thus

resulting in faster elliptic curve point addition and doubling. For further justi�cation,

see [15].

Using the homogeneous coordinates, the curve equation y2 = x3 + b becomes

Y 2Z = X3 + bZ3. For computing the point doubling, line addition and point ad-

dition, the e�cient formulas by Costello et al. [15] are used. The formulas uti-

lize projective coordinates and take advantage of the sextic twist of BN-curves. Let

P = (X1, Y1, Z1) ∈ E ′(Fp2). Then 2P = (X3, Y3, Z3) is given as:
X3 = 2X1Y1(Y 2

1 − 9bZ2
1)

Y3 = Y 4
1 + 18bY 2

1 Z
2
1 − 27b2Z4

1

Z3 = 8Y 3
1 Z1

The corresponding line function, evaluated at S = (xs, ys) is as follows:

l2P (S) = 3X2
1 · xs − 2Y1Z1 · yS + 3bZ2

1 − Y 2
1

The point (X3, Y3, Z3) and the line function, hereafter denoted as l2P (S) = L1 · xs −
L2 · ys + L3, are computed with the following steps:

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = 3bC, E = (X1 + Y1)2 − A− B,

F = (Y1 + Z1)2 − B − C, G = 3D, X3 = E(B −G), Y3 = (B +G)2 − 12D2,

Z3 = 4BF, L1 = 3A, L2 = −F, L3 = D − B.

Addition is performed with mixed use of a�ne and projective coordinates to obtain

the best e�ciency. Let P = (X1, Y1, Z1) ∈ E ′(Fp2) and Q = (X, Y, 1), i.e. the a�ne
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representation can be used. The mixed addition and the line are computed as follows:

lP+Q(S) = (Y1 − Y2Z1)X2 − (Y1 − Y2Z1) · xs + (X1 −X2Z1) · ys − (X1 −X2Z1)Y2

For more details, see [15].

input : P ∈ G1, Q ∈ G2, r = |6u+ 2| =
∑log2 (r)

i=0 ri2
i

output: f|r|,Q(P ) · l[−|r|]Q,πp(Q)(P ) · l−|r|Q+πp(Q),−π2
p(Q)(P )

1 T ← Q, f ← 1

2 for i = blog2 (r)c − 1 to 0 do

3 f ← f 2 · lT,T (P ), T ← 2T

4 if ri = 1 then

5 f ← f · lT,Q(P ), T ← T +Q

6 end

7 end

8 Q1 ← πp(Q), Q2 ← π2
p(Q)

9 if u < 0 then

10 T ← −T , f ← f−1

11 end

12 f ← f · lT,Q1(P ), T ← T +Q1

13 f ← f · lT,−Q2(P ), T ← T −Q2

14 return f

Algorithm 5: Miller's (revised) algorithm used in this work.

4.3 Inversion Trick

The Miller function for optimal-ate pairing is de�ned as aopt = fr,Q(P ) · l[r]Q,πp(Q)(P ) ·
l[r]Q+πp(Q),−π2

p(Q)(P ), where πp(Q) is the Frobenius endomorphism and r = |6u+ 2|. As
the parameter u is negative, resulting into r < 0, a special treatment is required. A

cheap negation inG2 is required to compensate the terms with [−|r|]Q. As f−|r|,Q(P ) =

(f|r|,Q(P ))−1, an expensive inversion in GT = F∗
pk
/(F∗

pk
)r is also needed.[1]

The inversion trick by Aranha et al. [1] allows to replace the expensive inversion with

a simple conjugation. Let aopt(Q,P ) = [g−1 · h](p
12−1)/12, where g = f|r|,Q(P ) and

h = l[−|r|]Q,πp(Q)(P ) · l−|r|Q+πp(Q),−π2
p(Q)(P ). Factorizing the power, we obtain

(g−1 · h)
p12−1

n = g
1−p12

n · h
p12−1

n = g
(1+p6)(1−p6)

n · h
p12−1

n = g
(1+p6)(p12−p6)

n · h
p12−1

n

= gp
6

g
(1+p6)(p6−1)

n · h
p12−1

n = gp
6(p12−1)/n · h

p12−1
n

= (gp
6 · h)

p12−1
n .
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The expensive inversion is thereby replaced with an exponentiation by p6, which is

equivalent to one conjugation in the corresponding group (details to follow). The

conjugation costs 3 negations in Fp2 .

4.4 Final Exponentiation

Recalling from section 3.5.2, the �nal exponentiation process provides the unique result

of the pairing. In case of embedding degree k = 12, the goal is to compute f (p12−1)/n,

where f ∈ F∗p12/(F
∗
p12)

n is the output of the Miller's loop. The exponential can be

factored as (p12−1)/r = (p6−1) · (p2 + 1) · (p4−p2 + 1)/r, dividing it into two distinct

computation processes.

The computation of f (p6−1)(p2+1) is the easy part of the �nal exponentiation. The ex-

pression corresponds to (f̄ ·f−1)p
2+1, which costs a cheap conjugation, a �eld inversion,

two multiplications, and one Frobenius mapping in the �eld Fp12 .[10]

For the hard part, i.e. f (p4−p2+1)/n, a slightly optimized version of the Fuentes-

Castaneda exponentiation [20] is used. Again, recalling the parametrization for BN

curves: p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1 and n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1.

The hard exponent can now be rewritten as a polynomial in respect to the parameter

u as follows:

p(u)4 − p(u)2 + 1

n(u)
=− 36u3 − 30u2 − 18u− 2

+ p(u)(−36u3 − 18u2 − 12u+ 1)

+ p(u)2(6u2 + 1)

+ p(u)3.

To proceed, the following chain of operations is �rst calculated:

fu → f 2u → f 4u → f 6u → f 6u2 → f 12u2 → f 12u3

Then, let a = f 6u · f 6u2 · f 12u3 and b = a · (f 2u · f)−1. The �nal result of the pairing is

obtained as

f = [f 6u2 · f · f p · a][b]p[a]p
2

[b]p
3

.

The proposed method requires altogether 3 exponentiations by u, 3 squarings and 11

multiplications of Fp12 , which is one multiplication more than in the original method

by Fuentes-Castaneda1. As an exchange, three large temporary variables of Fp12 are

only required, instead of four, reducing the amount of needed RAM.[37]

1Relatively inexpensive Frobenius operations and inversions are ignored.
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4.4.1 Cyclotomic Subgroups

The easy part of �nal exponentiation has an important consequence. After the expo-

nentiation of the easy part, the element f becomes a member of a cyclotomic subgroup

GΦ6(Fp2) = {α ∈ Fpk | αΦ12(p) = 1}, where Φ12(p) = p4 − p2 + 1. Rewriting the easy

part, one obtains

(p6 − 1)(p2 + 1) = (p6 − 1)
p6 + 1

p4 − p2 + 1
=
p12 − 1

Φ12(p)
.

It follows that (f (p6−1)(p2+1))Φ12(p) = f p
12−1 = 1, and thus f ∈ GΦ6(Fp2).

The elements of cyclotomic subgroups have several bene�cial properties; they especially

enable e�cient formulas for squaring. In cyclotomic squaring formulas by Granger and

Scott [21], the elements are compressed during the squaring and then decompressed.

The method especially suits for the square-and-multiply process, as squaring can be

done sequentially without decompressing. It is especially useful as the hard part

requires costly exponentiations by the 128-bit parameter u.
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Chapter 5

Implementation and Results

The implementation of this thesis builds on the library provided by Unterluggauer

et al. [37], which targets the 32-bit Cortex-M0+ architecture. The proposed library

was built and analyzed on the nRF9160 development kit [32] equipped with the ARM

Cortex-M33 [3] microprocessor. The goal was to optimize the cycle consumption and

run time of the O-ate pairing for the given design and analyze the feasibility of the

usage in practice.

The use of a more capable, backwards binary compatible M33-architecture enabled an

optimization on the multiplication, giving a signi�cant speedup. Moreover, allocating

the heavy and frequently used routines on the RAM gives a slight improvement in the

performance.

In the �rst section, an overview of the used library is given. The second section presents

the setup used in this implementation; the pairing parameters and the used hardware.

The third section presents the results along with a brief comparison. Fourth chapter

contains the discussion, analyzing the results, the situation of pairings in research and

further improvements. Fifth section covers the learning outcome of the thesis.

5.1 Overview of the Library

The library1 is written in C and supported with optimized assembly routines for in-

teger arithmetic. The target platform is 32-bit ARM Cortex-M0+. The Cortex-M

microprocessor family is optimized for constrained embedded platforms. The library

1Available in https://github.com/IAIK/pairings_in_c.
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provides a comprehensive set of routines for both pairing and elliptic curve-based cryp-

tography for Cortex-M based embedded platforms. It provides functions for the O-ate

pairing, as well as for multiplication and division of the pairing functions. The pro-

vided curves are BN2542 and BN158. The arithmetic is layered, as described in chapter

4. The library also provides several pairing-based protocols, for example, the Identity

Based Encryption (IBE) [11] protocol, as well as integrated tools for benchmarking

and analyzing.

The hardware requirements of the library are low; considerably below 100kGE3, which

is required in many related libraries. The library is designed to be applied for interac-

tive protocols, feasible for embedded applications, such as wireless sensor nodes.[37]

Three di�erent hardware architectures are supported: a plain microprocessor platform,

a microprocessor with a multiply-accumulate instruction-set extension, and a CPU

with a dedicated hardware accelerator. The designated hardware, such as a drop-

in module or MAC instruction set extension provide signi�cant speedup but require

additional hardware development. The drop-in hardware utilizes separate arithmetic

units for �eld computations and is memoryless and requires neither multi-master bus

nor direct memory access.[37]

The prime �eld arithmetic is realized with SPS (Separated Product Scanning) variant

of Montgomery multiplication. The reduction step is always performed after the prime-

�eld operation to ensure constant runtime, which provides side-channel security.[37]

5.2 Testbench

For this implementation, we chose the plain microprocessor design. The BN254 curve

was chosen i.e. the parameter u = −40800000 00000001h. The used elliptic curve is

y2 = x3 + 2, embedding degree k = 12 and the tower extensions as presented in 4.1.1.

The 64-bit parameter u satis�es log2 n(u) ≤ 256 and 3000 ≤ k · log2 p(u) ≤ 5000 which,

by the time of the article [10], correspond to a security level of 128-bit AES. However,

after the recent study [6], the security of BN254 fell to roughly 100 bits. The option

of BN158 was ignored, as it can be considered insecure.

As mentioned, the used platform was nRF9160 cellular IoT development kit (DK),

which contains 64 MHz ARM Cortex-M33 CPU, 1 MB �ash and 256 KB RAM. The

experiment was carried out on actual hardware. It contains manifold connectivity;

2Where u = −262 − 255 − 1 as described earlier
3GE refers to Gate-Equivalents, which is a measure for the complexity of a digital circuit
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bluetooth, LTE-M/NB-IoT modem and GPS.[32]

The software uploaded to the DK was a minimalistic, bare-metal solution. It consists

of the CMSIS (Cortex Microcontroller Software Interface Standard) (version 5.7.0),

nRF SDK (Software Development Kit) (version 16.0.0) and the pairing library with

the integrated benchmark tool. The CMSIS is the HAL (Hardware Abstraction Layer)

for ARM Cortex based microcontrollers, providing the generic tool interfaces for in-

teracting with the CPU. nRF SDK in turn provides the �rmware functionality for the

nRF on-board hardware, such as UART and memory controlling. The software was

compiled with the bare metal ARM gnu toolchain[4], with the O3 optimization level.

1 .macro mulacc

2 @ Fetch the l e a s t and most s i g n i f i c a n t 16−b i t s o f the input v a l u e s .

3 uxth r6 , r1

4 uxth r7 , r2

5 l s r r1 , r1 , #16

6 l s r r2 , r2 , #16

7

8 mov r0 , r6

9 mul r0 , r0 , r7 @ low ∗ low

10 mul r6 , r6 , r2 @ low ∗ high

11 mul r2 , r2 , r1 @ high ∗ high

12 mul r1 , r1 , r7 @ high ∗ low

13

14 l s l r7 , r6 , #16 @ Add the l e a s t s i g n i f i c a n t 32−b i t va lue s

15 l s r r6 , r6 , #16

16 add r0 , r7 , r0

17 adc r2 , r6 , r2

18

19 l s l r7 , r1 , #16 @ Add the most s i g n i f i c a n t 32−b i t va lue s

20 l s r r6 , r1 , #16

21 add r0 , r7 , r0

22 adc r2 , r6 , r2

23

24 mov r7 , #0

25 @ Set the car ry va lue s to be added to the next output element

26 add r5 , r5 , r0

27 adc r4 , r4 , r2

28 adc r3 , r3 , r7 @ Clear the carry−f l a g
29 .endm

Listing 5.1: The original multiply-accumulate unit for M0 design.
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5.2.1 Optimizations

Two optimizations on the hardware level were conducted to accelerate the pairing com-

putation. Firstly, the big-integer multiplication was accelerated owing to the extended

instruction set of the used M-33. Secondly, the code of two frequently used functions

were allocated to the RAM to decrease the cycle consumption of the memory fetch.

The optimizations are presented brie�y in the following.

The assembler optimizations are designed for Cortex-M0 architecture which supports

32 × 32 → 32 multiplication. Therefore, the code needs to split the multiplication

into several parts to obtain the 64-bit output of two word-length integers. The mul-

tiplication and reduction with 128-bit values are carried out as numerous 32-bit mul-

tiplications that are chained in a multiply-accumulate fashion. The original multiply-

accumulate macro is depicted in Listing 5.1.

The Cortex-M33, in turn, is capable of performing direct 32× 32→ 64 multiplication.

As a result, the four multiplications and several shifts and additions could be replaced

with a single instruction umull. The resulting macro is depicted in the Listing 5.2.

As a result, the cycle consumption of the Karatsuba multiplication and Montgomery

reduction algorithms decreased signi�cantly. For instance, the cycle consumption of

Karatsuba multiplier reduced from 2380 cycles to 1400 cycles, which is around 41%

improvement.

1 .macro mulacc

2 umull r6 , r0 , r1 , r2

3

4 mov r7 , #0

5 @ Carry va lue s to be added to the next output element

6 add r5 , r5 , r6

7 adc r4 , r4 , r0

8 adc r3 , r3 , r7 @ Clear the car ry f l a g

9 .endm

Listing 5.2: Optimized multiply accumulate for m33

Initially, we aimed to utilize instruction cache as-is for a better performance. The

instruction cache is a fast memory between the processor and the main non-volatile

�ash, allowing the CPU to execute code without wait states. Naturally, loading the

cache from �ash has a delay, and thus instruction cache should be loaded with code,

that is used frequently. The instruction cache of nRF9160 has a size of 2048 bytes.[32]

However, after enabling it we observed no improvement in the cycle consumption, and

by pro�ling the memory usage, there appeared to be numerous cache read misses. It
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appeared that the used algorithms exceeded the size of the cache, and the remaining

instructions had to be fetched from the FLASH, causing delay.

Therefore, we instead allocated two weighty and frequently used functions to the RAM,

which also enables instruction fetching without wait states. We placed the main multi-

plier � 256-bit Karatsuba and the Montgomery reduction algorithms. The algorithms

take 3,170 bytes of RAM in total, which is under 5% of the total RAM in nRF9160.

As a result, the pairing computation decreased by 4 MCycles, which is roughly 12%

improvement.

5.3 Results

The improvements in the key operations of pairing are depicted in Table 5.1. The table

describes the cycle consumption in (i) the library built as-is4, (ii) with the optimized

multiplication, (iii) after the RAM-allocation, and (iv) the �nal build, containing the

compiler optimizations. The percentages below present the total improvement gained

from optimizations. The squaring in GT corresponds to the e�cient formulas in cy-

clotomic subgroups.

Table 5.2 presents the cycle consumption and run time of the additional operations

utilized in many pairing-based cryptosystems, in the �nal setup. It contains the cycle

cost of a key-encapsulation protocol which is based on the Boneh-Boyen ID-based

encryption (as described in section 3.3). It gives an estimate of how costly an actual

actual cryptographic action might be5.

Table 5.1: The e�ect of optimizations in various arithmetic operations

Fp GT e(P,Q)

Add. Mul. Inv. Sqr. Mul. Pairing

Optimization (Cycles) (Cycles) (kCycles) (kCycles) (kCycles) (kCycles)

Initial setup 260 4,580 1,262 144 224 50,768

Optimized mul. 270 2,770 723 93 141 32,006

RAM allocation 254 2,270 595 80 120 27,211

Final 217 2,190 552 76 115 25,917

Improvement 16.5% 52.5% 56.3% 47.2% 48.7% 48.9%

4Without any compiler optimizations
5The referred Boneh-Boyen ID-based encryption is considered impractical for actual implementa-

tions due to its complexity
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Table 5.2: Time and cycle consumption of various pairing-related operations

G1 G2 GT e(P,Q) ID. based protocol

Mul. Mul. Exp. Mul. Div. Encaps. Decaps.

kCycles 8,086 19,367 39,189 35,471 40,998 63,964 35,581

Time (ms) 131 310 623 565 651 1,012 567

Table 5.3 presents the performance results of a single O-ate pairing and the memory

consumption of the pairing library. The identity-based encryption interface is not

counted in the memory mapping, as we only aimed to analyze the key functions for

O-ate pairing, and the pairing-based protocols. RAM memory contains the allocated

functions and the maximum stack usage within the library functions.

Table 5.3: Performance results of the pairing library

Optimal ate pairing

kCycles Cache misses (%) Runtime(ms) RAM (Byte) Flash (Byte)

25,917 0.45 410 5,386 15,946

5.3.1 Comparison and Analysis

Table 5.4 presents our results among a few other related ate pairing implementations

over BN254 curves: a smartcard design by Devegili et al. [17], the underlying library

we utilized, and a Rasperry Pi3 solution by Hajny et al. [22]. All the implementations

are embedded "plain microprocessor" designs.

Table 5.4: Embedded platform designs for optimal ate pairing over BN254 curve

CPU Freq. Runtime RAM Flash

Work Platform (MHz) (kCycles) (ms) (Byte)

[17] Philips HiPerSmart 36 90,462 2,513 <16,000 -

[37] Cortex-M0+ 48 47,643 993 2,828 18,116

Ours nRF9160, Cortex-M33 64 25,917 410 5,386 15,946

[22] Rasberry Pi3, Cortex-A53 1200 - 13 - -

The runtime decreased by over 500ms comparing to the original work. The runtime is

likely decreased by a factor due to the higher clock frequency of the M33. The most

signi�cant bene�t arises from the utilized single-instruction 32-bit multiplication. On

the other hand, the extended multiplication also increases the amount of required

gate-equivalents. The RAM usage is slightly larger but certainly not a bottle-neck.

The Rasberry Pi3 solution is not directly comparable, due to the clock frequency and
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bigger caches, but it is still a good reference. Also, the power consumption of the

Cortex-A family greatly exceeds the M-family.

The question of whether the pairing implementation in this form is feasible depends on

the used protocol and how frequently the pairings are required to be used. The recent

work of Rezaeibagha et al. [34] provides a secure and, by the time, the most e�cient

ID-based signature scheme with a cost of one exponentiation, i.e. scalar multiplication

in G for signature generation, and two pairings for veri�cation6. Within this setup,

assuming that G = G1, the signing and verifying would require 131 ms and 2·410 = 820

ms, correspondingly. Even with all the resources available, the presented setup could

perform only a few signatures or one veri�cation per second. Considering a network

of multiple nodes requiring high integrity, authenticity, and non-repudiation between

actions, this doesn't su�ce. However, if an identity-based signature is used only to

authenticate when establishing a connection, the present delay should be in sensible

bounds. Such a situation could be a single sensor node joining a sensor network,

and identifying itself to the base station, e.g. a server. A digital "handshake" of few

seconds in the beginning of connection seems reasonable.

5.4 Discussion

The question of feasibility of our implementation is ambiguous � it depends on the

use-case. The current setup is not capable of highly interactive protocols, such as digi-

tally signing each frequently occurring action. For a more passive use, such as a single

ID-based authentication, the setup su�ces. Such a situation could be a device iden-

tifying itself to a server, which in turn has computational resources to verify multiple

signatures in a second.

The further improvement of our work could include the further optimizing of the

assembler routines. The ASM-optimizations of the utilized library seem to contain

mostly unrolled code, leading to larger-size algorithms. The nRF9160 might bene�t

from looped structures, as they could �t better in the 2kB instruction cache. Also, the

M33 supports direct multiply-accumulate instruction to 64-bit output, which could

save some additions. Unfortunately, the instruction did not directly suit into the

pre-existing library as-is.

The trend for embedded, constrained pairing implementations, from 2015 onwards

seems to favor the usage of FPGA solutions or other hardware extensions. For instance,

6Excluding the setup- phase and parameter generation
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the work of Sghaier et al. [36] provides a 225 MHz Virtex-6 FPGA design for pairings,

capable of computing the O-ate pairing in 350 µs. In [2], the pairing is performed on

multiple platforms with 1.0-1.7 GHz ARM CPUs, having the run time between 3.4-

55 µs. A versatile pairing-based protocol would require either a sole high-frequency

CPU or customized drop-in hardware. The higher frequency CPU would be more

energy-consuming but easily deployed, whereas the FPGA solution requires a lot of

development time.

Another considerable issue is the used Barreto-Naehrig curve family. An improvement

found in Number Field Sieve (NFS), which computes DLP in Fpk , lowered the pair-

ing extension �eld security such that BN curves with 256-bit primes p(u) correspond

slightly under 100 bits of security, instead of 128.[6] For 128 bits of security, a curve

with 384-bit prime p(u), for example, BN384, should be used. Moreover, the novel

Barreto-Lynn-Scott (BLS) curves seem to o�er signi�cantly better performance than

BN curves, with the same security level. In fact, many research suggests that BLS127

is the most e�cient (known) curve to compute the pairing. In [6], at the 128-bit se-

curity level, the optimal ate pairing with BN curves costs 17774m+ 4i, whereas with

BLS12, it costs 14028m+ 6i.

However, neither the code optimizations nor enhanced methodology for pairings would

signi�cantly increase the performance of this work; the pairing would still require a

few hundred milliseconds. A hardware improvement would certainly be needed to have

the capabilities for practical pairing-solutions.

7Curve over the extension �eld, with k = 12

49



Chapter 6

Conclusions

In this work, optimal ate pairing over the BN254 curve is implemented on the nRF9160

platform, endowed with a single 64 Mhz ARM Cortex-m33 microprocessor. An open-

source library is used, with optimized assembly routines to support the 64-bit multi-

plication of the m33 instruction set. As a result, the optimal ate pairing is e�ectively

computed in 410 ms.1 In practice, the resulting implementation is applicable for infre-

quent use, such as in the authentication process. The work shows that the full-extent

pairing-based cryptography for single-microprocessor ultra-low-power devices is yet

out of reach. A practical approach requires to include a hardware-accelerator, for ex-

ample, a customized FPGA. However, the devices with over 1.0 GHz microprocessors

seem to be capable of performing the pairing-based cryptography.

The pairing-based cryptography overall seems to be in a phase of continuous develop-

ment. The computation of Miller's algorithm and �nal exponentiation constantly take

small improvement steps. The optimal ate pairing over BLS and BN curves seems to

have been established as the main tool for pairing-based cryptography. Many open-

source libraries exist for pairings, but it has not yet found its place as the part of larger

cryptography libraries, such as the OpenSSL or MBEdtls. Despite the improvements,

pairing-based cryptography will likely remain computationally heavy. The pairing-

based cryptosystems are also developed at an accelerating pace, getting more and

more optimized, as can be seen in comparison by [34]. Also, there doesn't seem to be

concern about their security; the basis is in the BDH-problem, and DLP over prime

and extension �elds which have withstood for many years of security research.

The research on bilinear-pairings is clearly important, both in the general and the

embedded platform framework. The novel protocols can enable innovative and more

1Version available in https://github.com/mhspes/pairings_in_c.
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secure applications and might be a good response to the security needs for future IoT

applications, such as sensor networks, autonomous systems, and many other applica-

tions. The current research has already been promising but the pairings still need few

more years to stabilize its place in the cryptographic scene.
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