
Cereal grain and ear detection with

convolutional neural networks

Master’s thesis
University of Turku
Department of Future Technologies

2020
Joonas Mäkinen

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the
Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Information Technology
JOONAS MÄKINEN:
Cereal grain and ear detection with convolutional neural net-
works
Master’s thesis, 61 p., 0 app. p.

September 2020

High computing power and data availability have made it possible to combine
traditional farming with modern machine learning methods. The profitability and
environmental friendliness of agriculture can be improved through automatic data
processing. For example, applications related to computer vision are enabling
automation of various tasks more and more efficiently.

Computer vision is a field of study which centers on how computers gain
understanding from digital images. A subfield of computer vision, called object
detection focuses on mathematical techniques to detect, localize, and classify
semantic objects in digital images. This thesis studies object detection methods
that are based on convolutional neural networks and how they can be applied in
precision agriculture to detect cereal grains and ears.

Cultivation of pure-oats poses particular challenges for farmers. The fields
need to be inspected regularly to ensure that the crop is not contaminated by other
cereals. If the quantity of foreign cereals containing gluten exceeds a certain
threshold per kilogram of weight, that crop cannot be used to produce gluten-free
products. Detecting foreign grains and ears at the early stages of the growing
season ensures the quality of the gluten-free crop.

Keywords: Object detection, neural networks

TURUN YLIOPISTO
Informaatioteknologian laitos
JOONAS MÄKINEN:
Viljan jyvien ja tähkien tunnistaminen konvoluutioneuroverkoilla
Masters, 61 s., 0 liites.

Syyskuu 2020

Suuri laskentateho ja tiedon saatavuus ovat mahdollistaneet modernien koneop-
pimismenetelmien käytön perinteisen maanviljelyn yhteydessä. Maatalouden
kannattavuutta ja ympäristöystävällisyyttä voidaan parantaa automaattisen tieto-
jenkäsittelyn avulla. Yhä useampia tehtäviä voidaan automatisoida tehokkaammin
esimerkiksi tietokonenäön avulla.

Tietokonenäkö on tutkimusala, joka tutkii sitä, miten tietokoneet ymmärtävät
digitaalisten kuvien sisältämää informaatiota. Hahmontunnistus on yksi tietoko-
nenäön osa-alueista, jossa keskitytään matemaattisiin tekniikoihin, joiden avulla
kuvista havaitaan, paikallistetaan ja luokitellaan hahmoja.

Puhdaskauran viljely asettaa viljelijöille erityisiä haasteita. Pellot on tarkis-
tettava säännöllisesti, jolla varmistetaan se, että sato ei ole muiden viljojen
saastuttama. Satoa ei voida käyttää gluteenittomien tuotteiden tuottamiseen,
jos gluteenia sisältävien viljojen määrä ylittää sallitun rajan painokiloa kohden.
Gluteenittoman sadon laatu voidaan varmistaa varhaisessa vaiheessa havaitsemalla
vieraiden lajien jyvät ja tähkät.

Asiasanat: Hahmontunistus, neuroverkot

Contents

1 Introduction 1
1.1 Problem statement . 1

1.1.1 Gluten-free oat cultivation 2
1.2 Related work . 4

1.2.1 Detection of maize tassels from UAV RGB imagery with
Faster R-CNN . 4

1.2.2 Using a fully convolutional neural network for detecting lo-
cations of weeds in images from cereal fields 4

1.2.3 Computer vision-based method for classification of wheat
grains using artificial neural network 5

2 Theoretical background 6
2.1 Machine learning . 6

2.1.1 Supervised learning . 7
2.1.2 Generalization . 7
2.1.3 Linear model . 8

2.2 Neural networks . 9
2.2.1 Neuron . 9
2.2.2 Activation . 10
2.2.3 Layers . 11
2.2.4 Loss function . 12
2.2.5 Gradient descent . 13
2.2.6 Backpropagation . 14
2.2.7 Regularization . 15

2.3 Convolutional neural networks . 16
2.3.1 Convolution layer . 16
2.3.2 Padding and stride . 17
2.3.3 Pooling . 19

2.3.4 Sparse interaction . 19
2.3.5 Parameter sharing . 19
2.3.6 Image preprocessing . 20
2.3.7 Image augmentation . 21

3 Object detection 22
3.1 Region proposal . 22

3.1.1 Selective search . 23
3.1.2 Edge boxes . 23

3.2 Convolutional object detection . 24
3.2.1 Region-based convolutional neural network 24
3.2.2 Fast R-CNN . 25
3.2.3 Faster R-CNN . 26

4 Experiment overview 27
4.1 Dataset . 28

4.1.1 Cropping . 28
4.1.2 Annotation . 28

4.2 Object detector architecture . 29
4.3 Evaluation metrics . 30

4.3.1 Precision-recall curve . 31
4.3.2 Average precision . 32

5 Experiment implementation 34
5.1 Environment . 34
5.2 Network implementation . 35

5.2.1 Region proposal network 35
5.2.2 Classifier . 36
5.2.3 Optimizer . 37
5.2.4 Loss function . 37

5.3 Pipeline overview . 38
5.3.1 Image preprocessing and augmentation 38
5.3.2 Drawing the minibatch . 38
5.3.3 Training the RPN . 38
5.3.4 Non-maximum suppression 39
5.3.5 Sampling from the RPN output 39
5.3.6 Classifier training . 39

6 Results 40

6.1 Training details . 40
6.2 Evaluation details . 43
6.3 Effect of non-maximum suppression 44
6.4 Mean average precision . 45
6.5 Precision-Recall curves . 46
6.6 Summary of results . 48

7 Discussion 49
7.1 Small objects . 49
7.2 False positives . 51
7.3 Network depth . 52
7.4 Synthetic data . 53

8 Conclusions 55

References 57

Chapter 1

Introduction

The continuing expansion of the human population will increase pressure on the
agricultural system. Precision farming or sometimes referred to as digital agricul-
ture is a field that uses data-driven applications to enhance agricultural productivity
while minimizing its environmental impact. This has created opportunities for ma-
chine learning technologies with high-performing computing to unravel possible
problem areas of traditional agriculture. [1, p. 1]

In recent years interest in using image processing and computer vision applications
in agriculture has grown. One of the factors contributing to this is that the price of
the equipment needed for computational power has decreased. Also, the use of au-
tomated technologies presents advantages when compared to traditional agriculture.
[2, p. 69]

1.1 Problem statement

Inspecting and assessing grain manually is challenging and often a time-consuming
process. With machine learning, it is possible to quickly assess large amounts of
data. Combining high-performance computing and computer vision techniques
have shown potential solving a variety of problems included in traditional agri-
culture. [2, p. 70]

The goal of this thesis is to study object detection methods and implement a pro-
totype of the detector pipeline based on these findings. The requirements for the

CHAPTER 1. INTRODUCTION 2

detector are that it must be possible to implement and train on a consumer computer
and the quality of the data must be considered when choosing the architecture of the
object detection system. Also, the training time must be taken into account when
deciding on implementation details.

The detector is trained to identify oats, barley, and wheat from aerial images taken
from approximately 4 meters altitude. The goal is to detect individual grains from
the oats and whole ears from the barley and wheat. Detection based on these fea-
tures is natural because each of these cereal plants is identifiable from the traits
appearing on grains or ears.

Identifying individual cereals from images opens up opportunities for practical ap-
plications. Information can be used in purity control of the grain fields which is
essential for the cultivation of gluten-free oats. Foreign grains can contaminate
the entire grain crop and it cannot be used in the production of gluten-free prod-
ucts. With the early detection of foreign grains in fields, contamination could be
avoided.

The growth density of the cereal plants affects the quantity and quality of the crop.
A sufficiently accurate system could be used to estimate plant density and this infor-
mation could be used to improve the quality of the crop. For example, the amount of
water required for high-quality crops varies depending on the density of the plants.
This is the one variable that could be assessed with an automated inspection sys-
tem. It has been stated, that in most growing conditions, nitrogen availability has
the greatest impact on cereal quality compared to other nutrients. Also, it does not
matter if the nitrogen is released from the soil and crop residues, spread as manures,
or applied as artificial fertilizer. Increasing nitrogen availability has positive effects
on grain number per unit area. [3, p. 506] Object detection system could be used
to estimate grain numbers in certain regions and based on that analysis the nitrogen
levels could be optimized.

1.1.1 Gluten-free oat cultivation

People with celiac disease can consume oats as part of gluten-free diet [4] [5]. How-
ever, commercial oat products may have been contaminated with grains that contain
gluten. Contamination may happen during harvesting, transporting, milling, and
processing. The goal of the pure oat production is to produce a gluten-free crop
that contains no grains of other cereal or only small quantities. The suitability of a
batch of cereal for gluten-free oats is determined by the number of foreign grains in

CHAPTER 1. INTRODUCTION 3

a batch [6, p. 3-4].

To be classified as gluten-free, cereals must not contain more than 20 milligrams
of gluten per kilogram. On average, 5 gluten-containing grains evenly mixed with
oats results in 20 milligrams gluten/kilogram oats, which makes the crop unusable
in commercial gluten-free products. [7, p. 5].

Poor quality oat crop containing foreign grains causes financial losses to the farmers
since if the amount of the foreign grains exceeds permitted limits, the crop cannot
be used in the production of gluten-free products.

According to Satafood, purity of the crop can be assessed by collecting random
grain sample, going through this sample grain by grain, and count the number of
foreign grains [6, p. 6-7]. Detecting foreign cereals by this method requires time-
consuming manual labor and this activity could be made more efficient in part by
automating inspection-related tasks. If problem areas in fields could be inspected
already during the growing season of cereals based on image analysis, financial
losses could be avoided.

Careful eradication of gluten-containing cereals from fields is the only effective
way to ensure a gluten-free crop. In the first years of gluten-free oat cultivation,
weeding the fields from foreign crops must be performed up to three or more times.
[7, p. 7]

Fields should be inspected at least twice a year when identifying and uprooting other
cereals is as easy as possible. [6, p. 7][7, p. 7]. Automated inspections could be used
to estimate workloads in advance and provide information on potential problem
areas in the fields. The automated inspection also has the advantage that if it is
found that the crop is contaminated with other cereals and it is too laborious to
weed the area in question, the cereals can be collected separately from the cereals
going to the production of gluten-free products without the need for weeding.

The major risk factor for the cultivation of gluten-free oats is the common wild oat.
Sections, where gluten-free oats are produced, must be free of common wild oat
because chemical control or weeding it from the oats is impossible and risk areas
must be inspected each year at the beginning of the growing season [6, p. 7].

CHAPTER 1. INTRODUCTION 4

1.2 Related work

In this section studies related to the object detection and problem stated in this thesis
are presented. The presented studies show that object detectors based on neural
networks can achieve high-performance and accurate results.

1.2.1 Detection of maize tassels from UAV RGB imagery with

Faster R-CNN

Liu et al. suggested an object detection system based on Faster R-CNN, resid-
ual network (ResNet), and a visual geometry group neural network (VGGNet) for
detecting maize tassels from RGB images. The images were collected with an un-
manned aerial vehicle with flight height of 15 meters from the ground level. Another
dataset was collected using mobile phone camera, 3 meters from ground level. [8,
p. 1-7]

Their object detection system reached 94.99% average precision with ResNet101
architecture with UAV images taken from 15 meters from the ground level. VGG16
network achieved 91.51% average precision with the same dataset. [8, p. 8-9]

1.2.2 Using a fully convolutional neural network for detecting

locations of weeds in images from cereal fields

In 2018 Dyrmann et al. proposed convolutional object detection system to detect
and locate weeds from cereal field images. The goal was to detect mono and di-
cotyledonous weeds in cereal fields despite possible occlusion. Images were col-
lected from several fields containing different cereals. [9, p. 2-4]

The architecture is based on the SSD512 architecture by Liu et al., (2016). This
architecture enables that for locating plants in image it needs only a single forward-
pass. Network uses multiple convolution layers to extract features from the input
and after the feature extraction the input size is progressively decreased layer by
layer to capture multiple scales of the objects. [9, p. 4-5]

Dyrmann et al. reported that the network yielded 0.60 recall and 0.82 precision.
Images used in testing phase were relatively similar to those which were used in
training phase, resulting that detection accuracy probably will lower when images
differ greatly from training data. [9, p. 5-7]

CHAPTER 1. INTRODUCTION 5

1.2.3 Computer vision-based method for classification of wheat

grains using artificial neural network

Sabanci et al. introduced a computer vision system which acquired high accuracy
with simplified classification approach. Their goal was to classify Triticum aes-
tivum and Triticum durum wheat grains based on their visual characteristics. Sa-
banci et al. used RGB images at an angle perpendicular to the grain, which they
converted to grayscale, binarized using the Otsu method and segmented using the
thresholding operation. The article stated that the visual features each grain is rep-
resented by dimension, color and texture. For texture feature extraction they used
the gray-level co-occurrence matrix (GLCM). With GLCM contrast, correlation,
energy, homogeny, and entropy features were extracted. Artificial neural network
with three layers was able to classify wheat grains with 99.9273 percent accuracy
and 0.000727 mean absolute error using the whole data set and 21 features. [10,
p. 2588-2593]

Chapter 2

Theoretical background

This chapter provides a theoretical overview for machine learning and neural net-
works which are essential areas of object detection. Some mathematical definitions
are covered to explain important concepts related to machine learning. More de-
tailed explanations of mathematics behind machine learning can be found in [11]
[12] [13].

Firstly, we will undergo some basic principles of machine learning and briefly dis-
cuss a simple linear model and its pitfalls. The linear model, which is presented in
this thesis does not directly relate to object detection but it is useful to understand
the limitations of this kind of model before discussing more advanced concepts.
Secondly, neural network and how they gain insight from the data is discussed.
Finally, convolutional neural networks are presented.

2.1 Machine learning

To understand the theory behind neural networks and object detection, we need
a brief introduction to the basics of machine learning. Learning done by neural
networks is based in part on the same principles as elementary machine learning
models. In this section, we will go through some of those relevant main principles
which are necessities to gain insight to object detection.

A machine learning algorithm is an algorithm that can learn to perform tasks from
the given data. Tasks can vary from classification, regression, machine translation,

CHAPTER 2. THEORETICAL BACKGROUND 7

etc. Usually, these tasks are hard or impossible to solve with computer programs
written by humans. [11, p. 99]

Generally, traditional computer programs are designed to perform computations
very fast and follow a list of predefined instructions. For example, if we like to
build a system that is able to automatically recognize faces from image, predefining
rules for it would be cumbersome. In machine learning, exact rules are not defined
but instead, we create a machine learning model that can learn from examples and
adjust its parameters to solve the problem. [13, p. 3-4]

2.1.1 Supervised learning

Machine learning and object detection methods considered in this thesis fall into the
category of supervised learning. In supervised learning, the training data contains
input vectors and the targets. The algorithm will learn the function from this training
data, and will output predicted target value for its input vector [6, p. 2-3].

In classification problems, the training data is divided into predefined categories
which represent the correct target values for corresponding input vectors [12, p. 2-
3]. Classification algorithms have a crucial part in machine learning and object
detection. The learning algorithm produces a function which can classify inputs in
k categories.

f : Rn → {1, ...k} (2.1)

Model can be described as function where x is the input vector and output y is the
predicted category [11, p. 100].

y = f(x) (2.2)

2.1.2 Generalization

Generalization can be defined as a machine learning model’s ability to perform
correctly with the data that differs from the training data. Traditionally, the training
data can hold only a small fragment of all possible input vectors. Consequently,
the model must be able to produce the exact form of the function y(x) based on the
learning phase. [12, p. 2]

Effectively, finding the best fitting function means that the model is minimizing the
training error [11, p. 113]. Training error can be measured by running the model
with training data. Generalization error or test error is the expected value of the

CHAPTER 2. THEORETICAL BACKGROUND 8

error on a new input [11, p. 110]. Overfitting will be effected if the gap between
training error and test error grows too large. The model is underfitting when it
cannot produce low training error. Inhibiting overfitting and underfitting, the model
can minimize the gap between training and test error and making training error
small. [11, p. 111]

2.1.3 Linear model

The perceptron algorithm is an example of an algorithm which produces a linear
discriminant model, which can be used to solve linearly solvable two-class classifi-
cation problem [12, p. 192].

f(x) =

1 if w · x+ b > 0,

0 otherwise
(2.3)

Where w is a vector of weights, x is the input, and b is the bias which shifts the
decision boundary. The output of the function is 0 or 1, which represents the classes.
[14]

By calculating error function and applying stochastic gradient descent, while iterat-
ing through training data, we have created a simple machine learning model. If the
training data is linearly separable, the algorithm will find a solution to the binary
class problems. However, the perceptron will not be able to solve the problem, if
the data is not linearly separable. [12, p. 192-195]

A phenomenon called the curse of dimensionality is arising in many fields in com-
puter science, and especially in machine learning. This phenomenon occurs when
the number of dimensions in data is high. Machine learning problems become com-
plex and the number of possible configurations of a set of variables increases expo-
nentially as the number of variables increases. [11, p. 155-156]

With high dimensional data, there might not be enough training data in some regions
in the feature space [15, p. 55]. Simple machine learning models that form linear
combinations of fixed basis functions are limited by the curse of dimensionality
[12, p. 225]. Neural networks address this problem by adaptive basis functions and
adjustable parameter values which are learned during training [12, p. 226].

CHAPTER 2. THEORETICAL BACKGROUND 9

2.2 Neural networks

The neural network consists of layers and neurons, which are connected to each
other. This structure is loosely based on neuroscience. Neural networks form the
basis for object detection and many other real-world applications. [11, p. 168] The
computing power of a neural network is derived from the parallel distributed struc-
ture and ability to learn from data [16, p. 2]. Neurons in the network can adapt
their weights to changes in the surrounding environment. This forms the basis for
retraining the network in different environments. [16, p. 3]

2.2.1 Neuron

Neuron is a unit, which receives information as inputs from other neurons, processes
this information and finally sends it forward to other neurons. Input is in form of
x = [x1, x2...xn] which are multiplied by some weights w = [w1, w2...wn]. After
receiving input, neuron processes the information by summing the dot product of
the inputs and weights. In some cases constant value called bias is added to dot
product. [13, p. 7-8]

z =
n∑
i=0

xiwi (2.4)

Figure 2.1: Illustration of neuron.

This sum is then processed by neuron’s activation function which produces the final
output and which can be passed to other neurons [13, p. 7-8].

y = f(x · w + b) (2.5)

CHAPTER 2. THEORETICAL BACKGROUND 10

2.2.2 Activation

Previously, perceptron and its ability to output values 0 or 1 were discussed. Slight
changes in weights or bias values might flip perceptrons output from 0 to 1 or vice
versa. This behavior can affect the whole network and altering weights and biases
can become complicated. [14] However, the structure of the data and nature of the
problem will affect the choice of the activation function [12, p. 227]. This section
covers the three most commonly used [13, p. 13] activation functions.

Sigmoid function outputs a value between 0 and 1, and when the input is large the
output is close to 1, or if the input is small the output will be close to 0. The output
from this neuron is always a positive value. [13, p. 13-14] With extreme values
sigmoid saturates, meaning that output becomes flat [11, p. 68]. Saturation can
shrink the gradients, which will affect the learning process in a negative way [11,
p. 184].

f(z) =
1

1 + e−z
(2.6)

A similar kind of S-shaped nonlinearity occurs on neurons using hyperbolic tangent
(tanh) activation function. However, tanh neurons output ranges from -1 to 1 [13,
p. 13-14].

The shape of the rectified linear unit (ReLU) differs from sigmoid and tanh, resem-
bling hockey-stick shape using function f(z) = max(0,z). ReLU is widely used in
tasks related to computer vision [13, p. 13-14]. The ReLU is a broadly reminis-
cent of a linear unit but differs from it by outputting zero values half of its domain.
With active ReLU derivatives are large which makes gradients consistent and large
[11, p. 193]. According to Krizhevsky et al. ReLUs carry the property that they
do not require input normalization to prevent them from saturating. ReLU requires
only some training examples to produce positive input, and that unit will learn. [17,
p. 4]

When the network is trained with gradient descent, saturating nonlinearities are
slower than non-saturating nonlinearity [17, p. 3]. Krizhevsky et al. reported that
deep convolutional neural network with ReLUs reached 25 percent training error six
times faster than the network with tanh units on CIFAR-10 dataset [17, p. 3].

CHAPTER 2. THEORETICAL BACKGROUND 11

2.2.3 Layers

In feedforward networks the data is fed through the layers of network, while it learns
parameters which will result function approximation. Combining the layers allows
network to chain functions f(1), f(2) and f(3) to form f(x) = f(3)(f(2)(f(1)(x))). In this
example the f(1) represents the first layer and f(2) represents the second layer. [11,
p. 168]

Figure 2.2: Illustration of network layers.

The layer on the left can be referred as input layer, which contains input neurons.
Middle layers contain hidden neurons, and they are not used as inputs or outputs
of the network. This layer is usually referred as a hidden layer. The output layer
contains the output neurons of the network. The number of neurons can vary on
each layer, depending on the data and the problem the network is trying to solve.
[14]

In feedforward network, the number of input neurons is the same as measurements
in data set [18, p. 26]. For example, each pixel in a picture can be seen as one
measurement. The number of neurons in the output layer is determined by the
number of output classes. Each neuron representing one of the possible classes.
[18, p. 26]

A multi-layer feedforward network has three characteristics that make learning from

CHAPTER 2. THEORETICAL BACKGROUND 12

training data possible. Firstly, each neuron has a nonlinear activation function. Non-
linearity in input-ouput relation is important because that is what sets it apart from
the single-layer network. Secondly, the network contains at least one hidden layer.
Hidden layers enable learning more complex features from data. Lastly, the network
has a high degree of connectivity between neurons. [16, p. 157]

2.2.4 Loss function

The loss function measures the fitness of the model by quantifying the distance
between the real and predicted value of the target. The function’s output is called
loss and it is usually a non-negative number. The more accurate predictions are, the
closer the loss is to 0. [19, p. 91]

The loss can be calculated in many ways however one of the most used loss func-
tions in regression problems is the sum of squared errors. For prediction ŷ(i) when
true label is y(i), squared error is defined by:

l(i)(w, b) =
1

2
(ŷ(i) − y(i))2 (2.7)

To obtain loss over entire dataset:

L(w, b) =
1

n

n∑
i=1

l(i)(w, b) =
1

n

n∑
i=1

1

2
(wTx(i) + b− y(i))2 (2.8)

Ultimately, the goal is to find parameters (w*, b*) that minimize the total loss over
entire training data.

w∗, b∗ = argminw,bL(w, b) (2.9)

Another loss function for regression is Smooth L1 loss, which is less sensitive to
outliers and may prevent exploding gradients in some cases. Smooth L1 loss avoids
exploding gradient problem by calculating squares only for values less than 1.

L(x, y) =

1
2
(x− y)2 if |x− y| < 1,

|x− y| − 1
2
otherwise

(2.10)

For classification problems, we can measure performance with cross-entropy loss.
The model outputs a probability value between 0 and 1. The loss value increases as

CHAPTER 2. THEORETICAL BACKGROUND 13

the predicted value diverge from the actual value. The cross-entropy loss function
penalizes those decisions more if the confidence of the prediction is high but the
predicted label is wrong. For binary classification problems the loss function can
be defined as the following:

L(y, p) = −(y log(p) + (1− y) log(1− p)) (2.11)

Cross-entropy can also be used for multi-class problems. In these problems, we cal-
culate a separate loss for each class label per observation and sum the result.

L(y, p) = −
M∑
c=1

yo,c log(po,c) (2.12)

Where M is the number of classes, log is the natural log, y binary indicator if the
label c is the correct classification for observation o, and p is the predicted proba-
bility.

2.2.5 Gradient descent

In many cases, finding parameters that will land on functions global minimum is
not an easy task. With non-convex functions with multiple local minimums, simple
analytical solutions cannot be applied. However, when the loss surfaces are non-
convex and high-dimensional gradient descent can be applied in the training phase
to find some local minimum. Gradient descent updates parameters iteratively in the
direction that incrementally lowers the loss function. There is no guarantee that
gradient descent will converge to a global minimum but it will descent towards a
local minimum. [19, p. 92]

Gradient descent is a rather naive approach to update parameters since it consists
of taking the derivative of the true loss. In other words, it computes the average
of losses on entire training data and updates parameters based on that calculation.
Traditionally, this is computationally inefficient and slow. [19, p. 92] Stochastic
gradient descent (SGD) uses a small proportion of training data called minibatch β
on each iteration. The derivative of average loss is calculated based on minibatch
instead of the entire training data and parameters are adjusted accordingly. This
produces the gradient which is multiplied with some predetermined step size η.
Finally, this multiplication is subtracted from current parameter values to obtain
updated values. [19, p. 92-93]

CHAPTER 2. THEORETICAL BACKGROUND 14

(w, b)← (w, b)− η

|β|
∑
i∈β

∂(w,b)l
(i)(w, b) (2.13)

SGD cannot achieve local minima in finite number of steps but it will slowly con-
verge towards it. This means that the training phase must be stopped when a prede-
termined number of iterations is reached or some other stopping criteria is fulfilled.
[19, p. 93]

Adaptive Moment Estimation (Adam) is an extension of SGD. The idea behind
Adam is to compute adaptive learning rates for each parameter. First, exponentially
weighted average of past gradient are computed (vdW). Second, the exponentially
weighted average of the squares of past gradients are computed (sdW). Third, bias
correction is applied to computed averages (vcorrecteddW , scorrecteddW). Lastly, the param-
eters are adjusted based on corrected averages.

vdW = β1vdW + (1− β1)
∂J

∂W

sdW = β2sdW + (1− β2)(
∂J

∂W
)2

vcorrecteddW =
vdW

1− (β1)t

scorrecteddW =
sdW

1− (β1)t

W = W − α vcorrecteddW√
scorrecteddW + ε

(2.14)

Where vdW is the exponentially weighted average of past gradients, sdW is the ex-
ponentially weighted average of past squares of gradients, β1 and β2 are tunable
hyperparameters, ∂J

∂W
is the cost gradient with respect to current layer, W is the

weight matrix, α is the learning rate and ε is a small value to avoid dividing by zero.
[20]

2.2.6 Backpropagation

In feedforward networks, input x flows through network producing some estimation
of y as output. This operation is known as forward propagation. After the input vec-
tor is propagated forward through network, the estimate of y is compared then to the
true value of y. This comparison is done by using loss function. [11, p. 204]

CHAPTER 2. THEORETICAL BACKGROUND 15

The backpropagation algorithm computes the gradient of loss function by using the
chain rule of calculus. This technique allows the algorithm to adjust weight and
bias values in a manner that the total error is minimizing. [11, p. 204-207] In other
words, backpropagation calculates how much changing the weights and biases in
the network will affect the loss function. This can be achieved by calculating partial
derivatives ∂C/∂wljk and ∂C/∂blj [14].

2.2.7 Regularization

A central problem in training a machine learning model is how to train such a model
that performs well on new inputs that are not included in the training data. There are
strategies that are designed to reduce testing error costing increased training error.
These strategies are referred as regularization. [11, p. 228] Regularization can be
seen as a modification of the objective function of the model. [13, p. 35]

With the dropout regularization strategy, overfitting can be prevented. Dropout
keeps neuron active with certain probability during the training phase or sets it to
zero. This prevents network to become dependent on certain neuron or combina-
tions of neurons since it has to perform accurately even when some parts of the
network are dropped out. [13, p. 36]

Figure 2.3: Illustration of network before and after dropout has been applied.

Combining models improves the performance of machine learning methods, but
with large networks that require long training times this strategy becomes too ex-
pensive. Training different architectures and finding optimal hyperparameters for

CHAPTER 2. THEORETICAL BACKGROUND 16

each architecture is a cumbersome task. Dropout provides a way to combine differ-
ent network architectures efficiently. [21, p. 1930]

Srivastava et al. reported that training the network with dropout may take 2-3 times
longer compared to the model without dropout. This creates a trade-off between
training and training time since we are training a slightly different architecture of
the model at every training batch when using dropout. [21, p. 1952]

2.3 Convolutional neural networks

The feature selection process in machine learning is cumbersome and limiting fac-
tor, especially in computer vision related tasks. In fully connected networks 28x28
pixels input would add up to 784 incoming weights in the hidden layer and 200x200
pixels input would add up to 120 000 weights. This technique runs into problems
when image size grows. [13, p. 89]

Convolutional neural network (CNN) finds solution to this problem by reducing
parameters and connections in adjacent layers. In the convolutional layer, neurons
are connected to a small local region of the previous layer. [13, p. 89] Arranging
neurons this way ensures that the network is extracting local features that are located
in small subregions of the input. Usually, pixels in an image that are close to each
other, are strongly correlated and these local features can be combined and later
used to detect higher-order features in the image. [12, p. 267-268] CNNs have
thrived in computer vision applications such as object detection, face recognition,
robotics, and self-driving cars [22, p. 2].

2.3.1 Convolution layer

The most common architecture of a convolutional neural network consists of convo-
lutional layers, pooling layers, and fully connected layers. The convolutional layer
utilizes kernels to process the image with convolutional function which produces a
feature map as output. [22, p. 2-3], [11, p. 331-332] This function takes two argu-
ments first being the input and second the kernel. In the machine learning context,
the input is usually a multidimensional array of data while the kernel is a multidi-
mensional array of parameters. [11, p. 331-332] For a two-dimensional image I and
two-dimensional kernel K, convolution (K ∗ I)(i, j) can be expressed as

CHAPTER 2. THEORETICAL BACKGROUND 17

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.15)

In many cases, machine learning libraries implement cross-correlation and call it
convolution. This is done because usually cross-correlation is easier to implement
traditionally and the effect on network performance is the same. [11, p. 332-333] In
the convolutional layer, the cross-correlation is calculated between input and kernel
to produce an output. Typically, in the training phase, the kernels are initialized to
random values. [19, p. 234]

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.16)

Figure 2.4: Simplified example of convolution where kernel slides on top of the
input matrix. Starting position is up-left corner and ending position is the bottom-
right corner.

2.3.2 Padding and stride

The shape of the input and kernel defines the shape of the output of the convolu-
tional layer. Because the filter is often smaller than the actual input, after several
convolution operations some information is lost at the edges of the original images.

CHAPTER 2. THEORETICAL BACKGROUND 18

With padding and stride, it is possible to determine the output size of the layer. [19,
p. 237-239]

The padding adds extra pixels to the edges of the image and typically these added
pixels are in the value of 0. This operation increases the image size and thus af-
ter convolution operation, the size of the input image is preserved. By using odd
kernel size and padding with the same amount at each side of the image, spatial
dimensionality can be preserved. [19, p. 237-239]

Figure 2.5: Convolution with padding.

The computational efficiency of the network or downsampling of the image can be
affected with stride. Stride defines how many pixels are skipped in the image when
kernel is moved to the next location. Stride size does not always have to be the same
on the X-axis and Y-axis, and they can separately be defined. Using large stride size
reduces resolution of the image [19, p. 240].

Figure 2.6: Convolution with stride of 3 and 2 for height and width.

CHAPTER 2. THEORETICAL BACKGROUND 19

2.3.3 Pooling

In convolutional neural networks pooling layers are used after convolutional layers.
These pooling layers simplify the output from the convolutional layer by condensing
feature maps. [14] The network obtains summary statistics of certain locations by
using pooling. This process enables that small changes in input do not change
the pooled values in outputs. In other words, representations become invariant to
small translations of the input. This is a useful property if the goal is to identify
if some specific feature is present in the picture but its location is irrelevant. [11,
p. 342]

Pooling reduces memory requirements for storing the parameters and improves the
computational efficiency of the network. Usually, in convolutional networks, fewer
pooling units are used than detector units. This will lead to that the next layer of the
network will have fewer inputs than its predecessor. The reduction of input size can
result in improved statistical efficiency. [11, p. 342]

Simply put, pooling replaces the output of certain regions of the net with some func-
tion. Commonly used function is max pooling where function outputs the maximum
value of a rectangular neighborhood. Also, the average of a rectangular neighbor-
hood, the L2 norm of a rectangular neighborhood, or a weighted average can be
used as metrics [11, p. 339-342].

2.3.4 Sparse interaction

Convolutional networks have typically sparse interactions, opposite to fully con-
nected networks where each input unit interacts with each output unit. Sparse inter-
actions are accomplished with kernels that are smaller than actual input. This means
that fewer parameters are stored and thus reducing memory requirements and im-
proving statistical efficiency. Due to sparse interaction computing output requires
fewer operations compared to a fully connected network. [11, p. 335]

2.3.5 Parameter sharing

The traditional feedforward network does not share parameters between computa-
tions. Meaning that each element in the weight matrix is considered only once when
computing the output of a layer. However, convolutional networks use parameter
sharing which refers to using the same parameter for more than one computation.

CHAPTER 2. THEORETICAL BACKGROUND 20

Instead of learning separate parameters for every location, the convolutional net-
work learns a set of parameters. [11, p. 335-338]

2.3.6 Image preprocessing

Pal and Sudeep state that preprocessing image data is a vital step to archive valid
classification accuracy[23, p. 1778]. Images can be preprocessed in many ways and
some techniques can be combined to achieve different results.

In mean normalization brightness of the training set is normalized by calculating the
mean along the data set and subtracted from each image [23, p. 1779]. Applying
normalization helps to control gradients during the training phase when backpropa-
gation is used.

X ′ = X − µ (2.17)

After the mean is normalized, the standardization can be applied. This can be per-
formed by computing the standard deviation of the training samples and then divid-
ing each image with the computed value. After this process, the mean and variance
are normalized. [23, p. 1779]

X ′ =
(X − µ)∑ (2.18)

Where µ is mean vector computed over the given data and
∑

is the standard devia-
tion across all the given data.

Convolutional neural networks can detect features based on the object’s edges present
in the image. Zero component analysis (ZCA) transformation makes edges more
distinguishable in the image. [23, p. 1779] This transformation is also referred to as
ZCA whitening. It is a linear transformation between random variables and known
covariance matrix. ZCA whitening can be applied as follows:

Usually, in RGB image pixel values range from 0 to 255. These values can be scaled
to obtain range [0, 1]

X ′ =
X

255
(2.19)

CHAPTER 2. THEORETICAL BACKGROUND 21

After the scaling, the mean is normalized by (2.17). Singular values and the vectors
of the covariance matrix are calculated and used to perform ZCA transformation.
[23, p. 1779]

XZCA = U.diag(
1√

diag(S) + e
).UT .X (2.20)

Where diag(a) corresponds to a matrix with the vector a as a diagonal and 0 in
all other cells, with U the left singular vectors, S values of the covariance of the
normalized images, and the X the normalized data. e being the hyper-parameter
called the whitening coefficient.

Pal and Sudeep tested mean normalization, standardization, and ZCA transforma-
tion with three convolutional neural networks, each having different architecture.
The training set consisted of 40000 randomized 32x32 color images. As a base-
line, all three networks were trained without preprocessing. With no preprocessing,
51-56% accuracy were achieved. Mean normalization resulted in 55-58% accuracy,
standardization 63-66% accuracy, and ZCA increased to 64-68% accuracy. [23,
p. 1780]

2.3.7 Image augmentation

Training a neural network for object detection requires large-scale dataset and usu-
ally obtaining this large-scale image dataset is a daunting process. Fortunately, with
the image augmentation scale of the existing dataset can be expanded. Image aug-
mentation makes a series of changes to training data while still retaining its impor-
tant features. This produces more training data from a single image. For example,
images can be cropped and rotated in different ways to achieve different positions
of the object in the image. This can reduce the model’s sensitivity to the object’s
position. Sensitivity to brightness and color can be reduced by adjusting brightness
and color. [19, p. 537]

Chapter 3

Object detection

The ability to see and tasks related to vision are endogenous for humans and for
some animals but not for computers. Humans can easily distinguish three-dimensional
shapes of objects while machines require mathematical techniques to extract infor-
mation about the shape and appearance of the object. [24, p. 3] Computer vision is
an active research area that studies deep learning techniques and image processing
to produce a diversity of applications [11, p. 452].

Object detection is a complex task compared to regular image classification because
besides classification it demands object localization. Localization creates two pri-
mary challenges. First, there are numerous rough object locations to be processed.
Second, these rough locations must be refined to gain more accurate locations. Usu-
ally, finding a solution to these problems requires sacrifice to speed, accuracy, or
simplicity. [25, p. 452]

The general approach to this problem is to create a large set of candidate regions and
then use CNN to extract features from them. After feature extraction, the regions are
classified and the decision is then made whether the area contains a certain object.
[22, p. 7]

3.1 Region proposal

Searching for an object at every image location and scale with sliding windows
paradigm is computationally costly and inefficient [26, p. 391-392] and according

CHAPTER 3. OBJECT DETECTION 23

to Kong et al. object detection methods are moving from dense window sliding
approaches to sparse proposal techniques [27]. High-quality detectors promote the
development of object detection by reducing the number of windows that need to
be classified [27, p. 845].

Current object proposal generators have a high recall, and they perform with effi-
ciency as they use a modest number of candidate bounding boxes [26, p. 391-392].
In other words, the goal is to generate just enough regions that the true objects are
found in the image.

Region proposal can be performed with a convolutional neural network and this
technique is used in the experimental part of this thesis and is discussed in 3.2.3.
Next, selective search and edge boxes are presented as they can be utilized in object
detection architectures which are discussed in 3.2.

3.1.1 Selective search

The goal of the selective search is to generate class-independent object locations
based on input data [28, p. 155]. As the scale of the objects and visibility of exact
boundaries in images usually vary, the above-mentioned algorithm uses hierarchi-
cal grouping to overcome this problem. Hierarchical grouping uses a bottom-up
approach where it starts from smaller locations and continues grouping until the
whole image becomes a single region. The algorithm calculates similarities between
neighborhooding regions and groups the two most similar regions. This process is
repeated until the whole image becomes a single region. This way all scales of the
objects can be captured. [28, p. 156]

Selective search has a diverse set of strategies for grouping regions together. Re-
gions may form an object based on many features like color, texture, or size. Color
of light or shading may affect how regions form and object. To take account for
different conditions of lightning selective search performs hierarchical grouping in
a variety of color spaces. In addition to color space, regions are grouped based on
similarity measures based on color, texture, size, and fill. [28, p. 157-159]

3.1.2 Edge boxes

Zitnick et al. proposed that the object in images can be found based on their contour.
The number of contours that are contained by the bounding box is indicative of the
likelihood of the box containing an object. [26, p. 391]

CHAPTER 3. OBJECT DETECTION 24

Edge boxes use a Structured Edge detector to find an initial edge map. With this
detector, the number of possible bounding boxes can be reduced. Edge groups are
formed from neighboring edge pixels that contain similar orientations. The score
for the bounding box is computed by summing the edge strength of all edge groups
which are located inside the suggested box. [26, p. 393]

The sliding window approach is used to assess if the suggested bounding box con-
tains an object. At each promising location, the score is calculated for the object
being present. Locations with high scores are further refined using a coarse-to-fine
search. [26, p. 393]

Zitnick et al. reported that with PASCAL VOC dataset they achieved over 96 per-
cent object recall at an overlap threshold of 0.5 and 75 percent recall at an overlap
of 0.7. [26, p. 393]

3.2 Convolutional object detection

Due to the progress of recent years in the field of convolutional object detection, it
has made it possible to deploy object detection systems in consumer products. Some
of these systems are fast enough to run on mobile devices. Running time, precision
and memory usage are critical aspects of deploying real-time object detection in
consumer platforms. For example, self-driving cars require real-time detection and
mobile devices require low memory consumption. [29, p. 7310-7311]

In this thesis, the main focus is on region-based convolutional neural network (R-
CNN) [30], Fast R-CNN [25] and Faster R-CNN [31], although it has been stated
that Faster R-CNN tends to run slower than other cutting-edge convolution-based
object detection systems but producing more accurate models. [29, p. 7315] How-
ever, if the grain and ear detection from drone images is not done in real-time (dur-
ing flight), time criticality is not a requirement for the implementation of an object
detection system. In this thesis, we focus on analyzing images afterward the flight,
and not real-time detection.

3.2.1 Region-based convolutional neural network

Region-based convolutional neural networks (R-CNNs) published in 2013 by Gir-
shick et al. [30] are an innovative approach to object detection. R-CNN divides an
image into several regions which are then fed to CNN to extract features from each

CHAPTER 3. OBJECT DETECTION 25

separated region. After the feature extraction model predicts the category of each
region and draws a bounding box around the found object [19, p. 581].

R-CNN consists of multiple stages of operations. On the input, the selective search
is performed. This allows for selecting several proposition regions. Size, scale,
and shape usually varies between these selected regions. After the region selection,
pre-trained CNN is used in truncated form and it transforms proposed regions into
the network’s input dimension. CNN extracts the features from the input and these
features are combined to the labeled category of each proposed region. These com-
binations are passed to multiple support vector machines (SVM) to perform training
for object classification and trained SVMs determine which category example be-
longs. [19, p. 581]

A drawback of R-CNN is slow speed due to the model independently extracts the
features of each proposed region. The problem multiplies as the number of proposed
regions grows. This could cause thousands of computations for a single image.
Usually proposed regions are overlapping in large measure and independent feature
extraction results in repetitive computations. [19, p. 581-582]

3.2.2 Fast R-CNN

In 2015 Girshick published a method called Fast R-CNN [25] which performs the
convolutional operation on the whole image instead of performing forward pass
on each object proposal. This improves computational efficiency on images where
object regions have a high degree of overlap [19, p. 582]. Object proposal regions
are extracted using some external methods like selective search. Fast R-CNN takes
an image and extracted proposal regions as input and uses several convolutional and
max-pooling layers to produce a feature map. From the feature map, the region of
interest (RoI) pooling layer produces a fixed-length feature vector. This is done for
each object proposal. After the RoI pooling layer fully connected (FC) layers are
used with fixed-length feature vectors as input which are produced by RoI pooling.
At the final stage the FC layer branches into two separate output layers. The other
output layer uses softmax function to estimate the probability for object classes and
the other layers are used to output bounding box location using regression. [25,
p. 1441]

CHAPTER 3. OBJECT DETECTION 26

3.2.3 Faster R-CNN

Region proposal network (RPN) is a convolutional neural network that uses an im-
age as input and outputs set of object proposals. An object detection system called
Faster R-CNN is composed of RPN and Fast R-CNN, where RPN and Fast R-CNN
uses shared convolutional layers. In this composition, RPN tells the Fast R-CNN
where to look for the objects. The popular term for this kind of network is neural
network with attention. [31, p. 3-4]

Region proposals are generated by sliding small network over the shared convolu-
tional feature map. Anchor boxes are used in sliding windows to capture multiple
scales of the objects in the image. At each location, multiple region proposals are
predicted and each of these sliding windows are mapped to a lower-dimensional
feature which are fed to the box-regression layer and box-classification layer. [31,
p. 3-4]

If maximum possible proposals for individual locations are denoted as k, then the
regression layer has 4k outputs encoding the coordinates of k boxes. The classifi-
cation layer outputs 2k scores that estimate the probability if an object appears in
each proposal. These proposals are called anchor boxes. Each anchor is associated
with scale and aspect ratio and anchors are fixed at the center of a sliding window.
Ren et al. stated that they have used 3 scales and 3 aspect ratios, resulting in k = 9
anchors at each sliding position. For feature map of a size W x H (typically 2,400),
resulting WHk anchors. [31, p. 3-4]

Faster R-CNN anchor boxes have two important properties. Firstly, anchor boxes
and the functions that compute proposals relative to anchors, are translation invari-
ant. Meaning, if the object is translated in the image, the Faster R-CNN should still
be able to predict the location of the object. Secondly, Faster R-CNN can produce
predictions in multiple object scales. [31, p. 4]

Training the RPN can be done utilizing backpropagation and stochastic gradient de-
scent. Mini-batches are drawn from a single image that has an example of anchors.
256 samples of anchors are randomly chosen for mini-batch to compute the loss
function. [31, p. 5]

Chapter 4

Experiment overview

In this thesis, an object detector pipeline for detecting cereal grains and ears is
implemented. The implementation is done using a consumer computer and free
open-sources resources. The results are evaluated using the metrics introduced in
4.3. The object detector pipeline in this experiment uses only one dataset containing
oats, barley, and wheat images but the system is generic in the sense that with small
changes it can be modified to identify other objects as well.

The dataset is divided so that the training dataset does not contain the same images
as the testing dataset. This division is crucial because the intent is to evaluate how
well the detector would perform on unseen images. This would reflect the situation
where such an object detector is deployed in a real-world application, where the
user could fly the drone over the cultivation while the detector would for example
detect the foreign grains or count the number of wheat ears.

Building such a system that can detect cereal grains and ears could be used to mon-
itor the quality of gluten-free cultures to detect foreign grains from oat fields. The
problems related to pure-oat cultivation and foreign grains were described in 1.1.1.
This experiment suggests an object detector that could be used in early detection of
problem areas of cultivation.

For the development of the networks, Keras deep learning framework was chosen.
With Keras API, the network layers are easy to implement, yet it offers enough po-
tential to customization that the object detector can be implemented. Also, one se-
lection criterion for the deep learning framework was that it has to support NVIDIA
graphic card. Using TensorFlow and Keras, it is possible to utilize GPU on compu-

CHAPTER 4. EXPERIMENT OVERVIEW 28

tations required for the training and testing of the network.

Some other possible frameworks and technologies were studied for the implemen-
tation of the object detector. Some of them proved to be not compatible with the
available environment or too complicated to install, so they were ruled out.

4.1 Dataset

The dataset consists of drone overflight digital RGB images taken from an altitude
of approximately 4 meters. Dataset was collected in summer 2019 from various
locations. In this thesis images from three cereal plant fields are used to compile
training and testing datasets. Both datasets consist of images of oats, barley, and
wheat.

One pitfall of this dataset is that it does not contain images from the whole grow-
ing season. For a general object detector, it would require the dataset to contain
images from different growing stages of the plants. Also, each field location was
photographed on a single day which may affect the results.

4.1.1 Cropping

Original images are the size of 4864 x 3648 pixels. Due to the high resolution, one
individual image contains numerous areas where visible grains occur. Given this
fact, the images were cropped so that areas of 256 x 256 pixels were selected from
multiple samples. The selection criterion for the choice of the region was considered
to include as much variation as possible in the result. In the original images, there
are multiple regions that vary in lightning condition, number of grains, occlusion
of the grains, sharpness of the image, and the stance of the cereal crops. As a note,
cropping an image does not change the size of the actual object in the cropped
image.

4.1.2 Annotation

The main reason for selecting smaller regions from original images and not to use
the whole image was the vast number of grains in one sample. Annotating images
of cereal crops is a time-consuming and quite challenging process. In some cases, it
is difficult to distinguish individual grains from each other or from the background

CHAPTER 4. EXPERIMENT OVERVIEW 29

Those cropped regions where it is not possible to annotate objects unambiguously
are discarded. Incorrect annotation of the objects can result in invalid results.

Oats Barley Wheat

Figure 4.1: Each object in the image is marked with a bounding box. The bounding-
box consists of four coordinates that denote its location on the image.

Annotation was performed using LabelImg software, which is a free open-source
graphical image annotation tool written with Python. The oats were annotated so
that the individual grains were labeled with bounding-box and leaves and straws
were not annotated. Marking the whole plant was not an option since from the
aerial image it is not possible to distinguish the exact boundaries of the individual
plants. Barley and wheat images are annotated so that the individual ears were
marked. Also, with wheat and barley, the leaves and straws were left out of the
process.

4.2 Object detector architecture

One limiting factor for the experiment was limited computing resources. The ar-
chitecture of the network had to be chosen so that the training time was reasonable
with a single computer with a single GPU. In addition to the training time, there
was a need to consider how much graphics card memory could be allocated to the
training and testing of the network. Adding more parameters to the network would
consume more memory from the GPU. On the other hand, a model with too few
parameters would not be able to learn more complicated features.

In this thesis, the network architecture and the adjustment of the parameters re-
quired ad hoc design and implementation. Meaning that decisions related to net-
work structures were made based on the results obtained using test data during the
development phase. Using testing data in the development phase creates a situation

CHAPTER 4. EXPERIMENT OVERVIEW 30

where the results are partly biased. The reader must consider this fact when reading
the chapter 6 where the results are presented.

Since there are many open-source examples of implementations of Faster R-CNN
available, it was chosen to be the reference architecture of the object detector. Also,
in previous studies, good performance of Faster R-CNN was reported [31, p. 7-11].
Keras implementation of the networks provided the opportunity for fast customiza-
tion and prototyping.

There are pre-trained weights available for varying network architectures which
could be used with Keras implementation of Faster R-CNN. Using these weights
would defeat the purpose of this thesis since one of the goals was to determine
if it is possible to train the network without using pre-learned weights and with a
relatively small dataset.

4.3 Evaluation metrics

In this thesis, the performance evaluation of the object detection system is based on
the same metrics as used in The PASCAL Visual Object Classes Challenge (VOC).
[32]

The confidence score measures the probability of the anchor box containing an ob-
ject. In Faster R-CNN, this score is predicted by the classifier. Intersection over
Union (IoU) is the area of the intersection divided by the area of the union of a
predicted bounding box and a ground-truth box. [32, p. 11]

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(4.1)

CHAPTER 4. EXPERIMENT OVERVIEW 31

Figure 4.2: In the numerator, the blue area describes the intersection between the
bounding box and the ground-truth box. In the denominator, the blue area describes
the union between the bounding box and the ground-truth box.

Definition for true positive (TP), false positive (FP), and false negative (FN) are
defined in [33]. True negatives (TN) can be ignored, and they are not included in
metrics used in this thesis. For some objects, there are more than one predicted
bounding box overlapping the ground-truth. For those predictions, we consider the
prediction with the highest IoU as TP, and the rest predictions are considered as FP.
This rule is derived from the PASCAL VOC 2012 metric. [33]

TP A correct detection. Detection with IOU >= threshold
FP A wrong detection. Detection with IOU < threshold
FN A ground-truth not detected

Figure 4.3: The table explains how predictions are defined [33]

precision =
TP

TP + FP
(4.2)

recall =
TP

TP + FN
(4.3)

4.3.1 Precision-recall curve

When calculating the precision-recall rates of the object detector, we consider only
one class at the time. This way the problem can be seen as a binary classification
problem: is the object present in the predicted bounding box or not. These deci-
sions can be represented in confusion matrix, where decisions are divided into true

CHAPTER 4. EXPERIMENT OVERVIEW 32

positives, false positives, true negatives, and false negatives. Using this confusion
matrix, we can plot the precision-recall curve, where recall is plotted on the x-axis,
and precision is plotted on the y-axis. Precision measures a fraction of examples
classified as positive that are truly positive and recall measures true positive rate
which is the rate of correctly labeled positive examples. [34, p. 234]

Figure 4.4: Example of precision-recall curve.

The precision-recall curve can be used to evaluate the performance of an object
detector. The curve is plotted for each object class and detect can be considered
good if its precision stays high when the recall increases. A poor object detector
increases the number of detections to detect all ground-truth boxes, which increases
the number of false positives and leads to lower precision. [33]

4.3.2 Average precision

Average precision (AP) is summarization of precision-recall curve 4.3.1. In VOC
metrics, interpolated precision is used to calculate AP. r1, r2, ...rn is the recall levels
at which the precision is first interpolated.

AP =
n−1∑
i=1

(ri+1 − ri)pinterp(ri+1) (4.4)

CHAPTER 4. EXPERIMENT OVERVIEW 33

In object detection problems there are usually more than one class. The calculation
of AP involves only one class but calculating mean average precision (mAP), the
average precision across all K classes can be obtained.

mAP =

∑K
i=1APi
K

(4.5)

Chapter 5

Experiment implementation

This chapter describes the implementation and training pipeline of the object detec-
tor. The implementation is based on the original Faster R-CNN, VGG-16 network,
and various open-source GitHub repositories with Apache 2.0 license [35]. Apache
license allows usage and modification of the original source code.

Since this experiment is not aiming to produce a real-time object detector, the time
performance of the implementation is not critical. Utility components are not criti-
cally evaluated and can affect how fast the whole implemented system works. These
components refer to those parts of the program which handles the tasks related to
data processing.

The components that affect the network’s detection capability have been imple-
mented with the official TensorFlow machine learning platform and Keras neural
networks abstract programming interface. The performance of the network is mon-
itored with TensorBoard and the final evaluation is performed with metrics intro-
duced in 4.3. A review of the results is presented in chapter 6.

5.1 Environment

The experiment was implemented with Windows 10 desktop computer with Intel i5-
8600k 3,60Mhz CPU, GeForce GTX 1070 Ti 8,0 GB GPU, and 16 GBs of RAM.
The object detector was implemented with TenforFlow 2.0.0 and Keras 2.3.1. The
programming was done with Python 3.6, Anaconda virtual environment, and the

CHAPTER 5. EXPERIMENT IMPLEMENTATION 35

PyCharm 2019.3.1 IDE.

5.2 Network implementation

The original implementation of Faster R-CNN framework used VGG-16 [36] as
base network [31]. In this experiment modified version of the VGG-16 is used to
preserve computational resources and on the other hand to enhance the detection of
the small objects. The layers are implemented with Keras 2D convolutional layers
(Conv2D) and Keras max-pooling layers (MaxPooling2D)

Figure 5.1: Illustration of base layers. Each individual blue box describes a convo-
lutional layer. In this context, the depth is the channel number of the convolutional
layer and the entry below it indicates the filter size. The green boxes reflect 2x2
max-pooling layers.

Since the VGG-16 network is used as a base network for the object detector and not
stand-alone image classifier, last max pooling, fully connected and soft-max layers
of the original VGG-16 are not implemented. Instead, we are connecting the last
Conv2D block to the region proposal network and classifier to share the base layers
with RPN and classifier. Also, the number of layers and depth is reduced. Only
three max-pooling layers are used to preserve the feature map size which enables
stride size of 8 px instead of 16 px which was used in the original implementation
[31, p. 6]. This change helps identify oat grains since they often appear in dense
groups in images, making the 16 px stride often too large.

5.2.1 Region proposal network

Region proposal network uses the last convolutional layer of the shared layers to
generate region proposals by sliding a small network over the convolutional feature
map [31, p. 3]. During implementation, it was noted that the performance of the
RPN improved when two convolutional layers with 512 channels were used instead
of one. In this experiment, the RPN is using two Conv2D layers with 512 output
channels and a kernel size of (3,3).

CHAPTER 5. EXPERIMENT IMPLEMENTATION 36

Figure 5.2: Illustration of RPN layers. Convolutional layers are illustrated as blue
boxes and In this context, the depth is the channel number of the convolutional layer
and the entry below it indicates the filter size. The purple boxes describe the outputs
of the network.

RPN has two outputs the first being for the classification to predict if the object is
present or not and second being the regression for the bounding box coordinates.
Classification output is constructed from Conv2D layer and its input size depends
on the number of anchor boxes. Since 3 different ratios and 4 scales are used, we
get 3 x 4 = 12 anchor sizes. Regression output uses the input size of anchors * 4.
For both outputs, we use (1,1) kernel sizes.

5.2.2 Classifier

The last step of the Faster R-CNN is to classify the proposed object regions and
refine the bounding box coordinates. To do this we implement RoI pooling layer,
fully connected layers, classification output, and regression output for the bounding
box coordinates.

Since fixed-size input vectors are needed for the fully connected layers, RoI pooling
is used to transform the regions of interest into fixed-size vectors. For this experi-
ment, we output 7x7 regions. Larger regions caused memory allocation problems
in the system and could not be implemented. In the original Fast R-CNN article,
Girshick stated the implemented RoI pooling layer used max-pooling on the pool-
ing region [25, p. 1441]. In this experiment, the max-pooling is substituted with
the Tensorflow resize method, as it proved to be a more effective option with this
pipeline.

CHAPTER 5. EXPERIMENT IMPLEMENTATION 37

Figure 5.3: Illustration of classification layers where the yellow box denotes the
RoI-pooling layer and the dense layers are illustrated as blue boxes. In this context,
the depth is the unit number of the dense layer. The red box signifies the dropout
with 0.3 rate. The purple boxes describe the outputs of the network.

Both fully connected layers are implemented with Keras Dense layers with 4069
units. Before the first dense layer, we flatten the input with Keras Flatten. The
flattened layer gets the input from the RoI pooling layer.

Classification output is constructed with Keras Dense layer and has soft-max activa-
tion. This output predicts the class of the object. The input size of the layer depends
on the number of classes used on the training. In this thesis, we use 3 classes for
the cereal plants and 1 class for the background. For the bounding box coordinates,
we use Keras Dense layer with an input size of 4 * (number of classes - 1) and with
linear activation function.

5.2.3 Optimizer

For both RPN and classifier, the Adam optimizer from Keras optimizers library is
used which is explained in 2.2.5. Other parameters are left to default values but the
learning rate is set to 0.00001. Keras documentation states that if default values are
used, their implementation follows those provided in the original paper [20].

5.2.4 Loss function

The loss function is implemented in four parts, which are at the final stage summed
together. For the RPN classification loss, binary cross-entropy is used over all the
selected anchors for minibatch. Binary cross-entropy is used since at this stage
we are only interested if the box contains an object or not. Then, for the RPN
bounding box coordinates smooth L1 loss is used. For the classifier classification
loss, categorical cross-entropy is used and for the bounding boxes, the smooth L1
loss is used.

CHAPTER 5. EXPERIMENT IMPLEMENTATION 38

5.3 Pipeline overview

5.3.1 Image preprocessing and augmentation

First, the standard deviation is calculated over the training data. Second, the pixel
intensity mean values are computed per color channel over the training data. Both
the standard deviation and channel mean values are stored. At the training stage,
when the image is randomly drawn from the training data set, preprocessing is ap-
plied. The first step in preprocessing is subtracting the color channel mean values
from the image. The subtraction is made on a channel-by-channel basis. After the
color channel subtractions, the pixel values are divided by the standard deviation
and finally, values are scaled between 0 and 1.

Augmentation consists of random horizontal and vertical translation and random
rotations. Both horizontal and vertical translations are added at 50% probability
when the training sample is drawn from the dataset. For rotations, 0, 90, 180,
and 270 angles are used. Transformations and rotations are performed so that the
original ground truth values are adjusted accordingly.

5.3.2 Drawing the minibatch

Image is drawn from the training set and augmentation is added. After the aug-
mentation, IoU is calculated for all possible anchor sizes and scales and anchors
are labeled accordingly. Only 256x256 cropped images are used to train the net-
work, even though it would be possible to use the varying sizes of images. IoU is
calculated between ground truth boxes and anchor boxes. In this experiment, we
set the threshold limit 0.7 for positive anchors and the other anchors are labeled as
negative or neutral. If the IoU is larger than 0.3 but smaller than 0.7, the anchor is
labeled as neutral and won’t be used in training. Like in the original Faster R-CNN,
256 randomly selected sampled regions are chosen from all possible samples for
the minibatch [31, p. 5].

5.3.3 Training the RPN

As mentioned above, RPN is implemented so that its input consists of a feature map
of the base network’s output. With the feature map, we input also the previously
calculated anchor boxes. RPN outputs a set of region proposals with the probability
that the object is present in the region. At this stage, objects are not classified.

CHAPTER 5. EXPERIMENT IMPLEMENTATION 39

The output is refined to regions of interest and all those regions which are not in
boundaries of the feature map, are discarded.

5.3.4 Non-maximum suppression

The output of the RPN produces proposals that may overlap over the same object.
To refine further the proposed regions, Non-maximum suppression (NMS) algo-
rithm is used. In the original publication of Faster R-CNN is not stated how they
implemented NMS, but Ren et al. reported that the NMS reduces the number of
overlapping proposals for the same object while not harming the overall detection
accuracy [31, p. 7].

In this experiment, NMS implementation is based on Tomasz Malisiewicz’s vector-
ized version of the NMS. The overlap threshold for the NMS is set to 0.7 which
is the same as used in the original Faster R-CNN NMS [31, p. 7]. We sort the
proposed bounding boxes by the objectiveness score (the probability that the box
contains object) and remove those which ratio of overlap exceeds the threshold set
to 0.7. Ren et al. reported that after the NMS number of proposals was about 2000
[31, p. 7], but because of limited computational resources, we limit the number of
boxes to 300.

5.3.5 Sampling from the RPN output

From the RPN output, the ratio between negative and positive regions are refined.
With this dataset and this training pipeline, negative regions dominate the output
of the RPN. This problem is mitigated by using only 4 regions instead of 300 [31]
from the output, while trying to maintain a 1:1 ratio between positive and negative
regions.

5.3.6 Classifier training

The classifier is trained with feature map outputted by the base layers and the region
proposals of the RPN. As mentioned in 5.2.2, RoI pooling is used to get fixed-size
feature vectors from the RPN output. At this stage, we classify objects in proposed
regions and refine bounding box coordinates.

Chapter 6

Results

This chapter presents the results of the experiment. The loss value curves of the
training the detector are presented, effects of the NMS are analyzed and precision-
recall curves are presented and finally, a summary of the results is provided.

6.1 Training details

For training the network, 340 different images were used. 68 of the images were
from oat fields, 153 from barley, and 119 from wheat. The images consisted of 4981
objects, of which 2400 were oats, 922 barley, and 1659 wheat. The variation in the
number of objects can be explained by the fact that in these three plants the grains
grow differently, especially if oats and the other two plants used in the experiment,
are compared. Although fewer individual images of oats have been used than of the
other two cereal plants, there are significantly more individual objects of oats. In
this dataset, barley ears are on average considerably larger compared to a single oat
grain or wheat ears.

CHAPTER 6. RESULTS 41

Training data details

Plant Images Objects

Oat 68 2400

Barley 153 922

Wheat 119 1659

Figure 6.1: The table shows how many images and objects the training data consists

of.

Network training was performed in sessions so that the network was trained for 30
epochs and then the weight parameters were recorded. The length of a single epoch
was defined as 1000 iterations, in each of which random samples of objects were
selected. For this experiment, using this method, 180 epochs were run.

CHAPTER 6. RESULTS 42

30 60

90 120

150 180

Figure 6.2: The changes in loss value for each training session are plotted. The
x-axis indicates the number of epoch and y-axis the loss value. The number below
each plot indicates the total number of epochs.

Figure 6.2 depicts the changes in loss value for each epoch batch during training
time. The x-axis indicates the number of epoch and y-axis the loss value. As a note,
the scale on the y-axis varies on different graphs, but the scale of the x-axis remains
the same on each graph. Looking at the graph illustrating the first 30 epochs, it
is notable that the loss value decreases rapidly after the first 10 epochs. After this
point, the decrease in the loss value slows, and after 60 epochs curves start to show
increasing fluctuations between epochs. Fluctuations are most likely explained by
that the network is learning to predict one of the three classes better than the two
others.

Despite the fluctuations, the overall trend of the loss decreases. From this, it can be

CHAPTER 6. RESULTS 43

concluded that the network is starting to converge to some local minima. The effect
between the last two training sessions is no longer significant if we are comparing
the loss values. After 150 epochs loss has decreased to 1.90 and after 180 epochs
loss has decreased to 1.83.

6.2 Evaluation details

Evaluating of the network was done using 92 images, of which 35 were images
of oats, 31 of barley, and 26 of wheat. The total number of objects in the testing
dataset was 1662 where 919 was oat objects, 347 barley objects, and 396 wheat
objects. Attempts were made to compile the test data in a way that the annotation of
the objects was as unambiguous as possible. Without proper annotation evaluating
the performance is not possible. However, in some cases, clear borders of certain
objects are not distinguishable and some errors in the annotation process might have
occurred. This may have affected the evaluation process in small amounts.

Evaluation data details

Plant Images Objects

Oat 35 919

Barley 31 347

Wheat 26 396

Figure 6.3: The table shows how many images and objects the testing data consists

of.

For visualization purposes, the IoU threshold is set to 0.5, NMS to 0.2, and the
probability threshold is set to 0.7. This results that only those bounding boxes
are drawn of which IoU with ground truth box is over 0.5 and confidence of the
prediction is 0.7 or higher. Also, the number of overlapping boxes is reduced by
the NMS. Those boxes which are predicting the same object class and overlap more
than 0.2 units in IoU are removed.

CHAPTER 6. RESULTS 44

6.3 Effect of non-maximum suppression

0.2 0.2 0.2

0.5 0.5 0.5

0.8 0.8 0.8

Figure 6.4: Illustration of three different NMS levels. In the first line 0.2 NMS was
used, on the second 0.5 and on the third 0.8. The blue box indicates the prediction
of oat, red box barley and the green box indicates wheat. For all predictions, 0.5
threshold for IoU and 0.7 threshold for probability is used.

The detector tends to produce multiple overlapping bounding boxes without NMS
or when higher threshold values are used for NMS. With this dataset, lower thresh-
old values provided better results and removed almost every overlapping bounding
boxes but still retained true positives with reasonable rates. In figure 6.4 it is shown
how increasing the threshold value increases the number of overlapping boxes and

CHAPTER 6. RESULTS 45

on the other hand, decreasing the threshold value does not remove the true positives.
Although in this experiment, using low threshold values for NMS produced good
results, this might not be the case when using a different dataset. This sensitive
NMS could remove true positives in those cases where objects are partially cov-
ered by each other but still clearly visible. Finding a perfect threshold value would
require meticulous fine-tuning and experimenting.

6.4 Mean average precision

57.55% mAP was reached after training the detector for 180 epochs. Table 6.4
shows that there is a clear increasing trend on mAP after each training session.
However, there is a notch in mAP after 150 epochs. After 150 epochs the average
precision for oats has decreased significantly and this may be because the detector
has started to prioritize the other two classes. However, after 180 epochs the situ-
ation has leveled off and the average precision for the oats has increased to 48.84.
The detector reached 66.30 average precision for wheat after 150 epochs which
were the highest average precision achieved during testing. Training the detector
for 210 epochs lowered the mAP to 54,91% and after 240 epochs continued to de-
cline to 54,68%. This might be an indication of the overfitting and so the last two
training sessions were discarded.

Table 6.4 shows that the lowest average precision was obtained for the oats through
all training sessions and this is most likely due to the nature of the data and the
small size of the oat objects. The quality of the annotation and the images were the
poorest for the images of oats. Also, the imbalance between the quantity of the test
samples may affect evaluation results.

CHAPTER 6. RESULTS 46

Table of AP and mAP

Epochs Oats Barley Wheat mAP

30 35.47 48.08 51.58 45.04

60 47.63 56.34 52.02 52.00

90 42.57 58.44 60.90 53.97

120 43.97 55.66 65.76 55.13

150 37.69 57.14 66.30 53.71

180 48.84 60.57 63.24 57.55

Figure 6.5: Each row of the table is listed with the results of the training sessions.
Epochs column indicates the total number of epochs. Oats, barley, and wheat col-
umn represent the average precision for each object class. mAP column is the mean
average precision obtained after each training session.

6.5 Precision-Recall curves

Figures 6.6, 6.7 and 6.8 represents the precision-recal curves for the oats, barley
and wheat. It is noticeable from the graphs, that detector achieves higher precision
values at every recall threshold for barley and wheat than for oats. If performance
is compared across all classes at recall threshold location 0.6, there is a clear dis-
tinction in precision levels. Detector achieved less than 0.5 precision at 0.6 recall
threshold for the oats while for the barley it achieved slightly below 0.6 precision
and for the wheat almost 0.7 precision.

Although the detector does not reach high precision levels at end of the curves, still
it can be seen from the curves that the detector is able to detect objects from the
testing samples and in fact, can distinguish classes from each other.

CHAPTER 6. RESULTS 47

Figure 6.6: Precision-recal curve for the oat class.

Figure 6.7: Precision-recal curve for the barley class.

CHAPTER 6. RESULTS 48

Figure 6.8: Precision-recal curve for the wheat class.

6.6 Summary of results

Although high average precision scores for all the classes were not reached, based
on mAP and precision-recall curves, it can be said that the detector learned to de-
tect different cereal plants and make distinction between them. The results sup-
port the idea that an object detector based on Faster R-CNN design can be used to
solve problems related to precision-agriculture and detection of cereal grains and
ears.

Also, this experiment shows that it is possible to implement and train an object
detector using open-source resources, custom datasets, and limited computational
resources. However, for fully comprehensive results it would require more training
and testing data. The considerable challenge of this experiment was that the data
was not annotated and it took great efforts to compile dataset even this size.

It is realistic to assume that with larger quantity and more varied data, such a sys-
tem capable to supervise the quality of the gluten-free oat cultivation with aerial
images and object detectors, could be implemented. This opens up the possibility
that methods based on object detection can be combined more and more effectively
with traditional farming and that the development of such methods with modern
tools does not require enormous resources.

Chapter 7

Discussion

In this chapter, the results are further analyzed. Also, the problems of this experi-
ment are being discussed and how those could be solved in the future. Discussion is
based on referenced literature and how those techniques could be used to improve
the implementation used in this thesis.

7.1 Small objects

Faster R-CNN object detector relies on convolutional neural networks to extract
abstract feature representations of the objects and their locations. Using multi-
ple convolutional layers and pooling layers results in down-sampled feature maps.
With large objects, this does not cause significant problems as in these cases ob-
jects occupy a major portion of the image. [37, p. 2] However, with small objects
down-sampling feature maps causes problems.

During the experiment of this thesis, it was noted that using 4 pooling layers at
the base layers of the detector caused problems in detecting oat grains. In some
cases, ground-truth box for the single oat grain can be less than 16 x 16 pixels, and
most often oat grains reside side by side or even in some cases overlap in images.
This of course is a major problem if the resulting stride for the detector is 16 pixels
when using 4 pooling layers [31, p. 6]. By removing one pooling layer enables that
the feature map is not scaled down so that the final stride is 16 pixels but 8 pixels
instead. However, this has immediate effects on memory consumption and training
times since the RPN and classifier has to work with larger feature maps.

CHAPTER 7. DISCUSSION 50

Ren et al. designed an object detection model which is based on Faster R-CNN
and modified ResNet-50 [38] as the backbone [37, p. 3]. The main idea was to use
lateral connections between convolutional layer blocks and merge the up-sampled
feature outputs by element-wise addition. 3 x 3 convolutional layer produces the
final feature map and degrades the aliasing effect of up-sampling. [37, p. 3]

[37, p. 4]

Figure 7.1: Illustration of the modified Faster R-CNN.

The model was tested on the dataset which consisted of images of ship and plane
objects. The size of the object varied between 10 x 10 pixels and 100 x 100 pixels.
Using their dataset and modified Faster R-CNN with 102, 402, and 1002 anchor
scales, they reached 78.9% mAP. Using the original version of the Faster R-CNN
with the original anchor scales 1282, 2562, and 5122 they achieved 66.6% mAP. [37,
p. 8]

The results clearly indicate that using this method improves the detection of small
objects. Adapting a similar kind of lateral connection between layer blocks and up-
sampling the feature maps could improve the detection of small oat grains.

CHAPTER 7. DISCUSSION 51

7.2 False positives

Figure 7.2: Barley ears falsely identified as wheat ears. The image also shows false
positives for the oats (blue boxes).

In some cases, the object detector incorrectly classified barley ears as wheat ears.
The training data is unbalanced in a way that it contains more wheat objects than
barley objects which can be seen from the table 6.1. This may lead to false positives
since barley and wheat have some similar features.

Ren et al. stated that they had a similar kind of imbalance in their dataset when
conducting their experiment. Dataset consisted of 5216 ship images and 706 plane
images. To address this, they applied a balanced sampling strategy, where the aim
is to draw training samples from the dataset as uniform as possible within an epoch
regarding classes. [37, p. 5-6] This strategy could be implemented to mitigate the
problems associated with data imbalances in the dataset used in this thesis. The
intuition is, if the training data consisted of the same number of examples of barley
and wheat, the amount of miss classification of barley ears as wheat ears should
decline.

Another way of looking at this problem of incorrect classifications is that since in
some images the ears of these plants resemble each other, the downgrading effect
of pooling layers might cause false positives. In the experiment of this thesis, three
max-pooling layers are used in the base layers of the detector which means that the
feature maps are downgraded three times before they are passed to RPN and clas-
sifier. In this process, some crucial features might be lost which could differentiate
the objects from each other.

Otsuzuki et al. proposed regularized pooling which could be used to substitute max-
pooling. They have stated that the max-pooling may over-compensate for essential
differences between similar classes. [39, p. 1-2] In regularized pooling, the pooling
operation is regularized to fit the characteristics of actual deformations of the ob-
ject. This is done by taking the average of max value directions in the neighboring

CHAPTER 7. DISCUSSION 52

kernels in a window which leads to that a non-maximum value can be selected and
over-compensation does not occur. [39, p. 3]

Regularized pooling was experimented with convolutional network based on VGG
[36], MNIST [40] and EMNIST [41] datasets [39, p. 7]. Otsuzuki et al. reported
that the learning convergence is faster when using regularized pooling instead of
max-pooling and also the excessive deformation compensations were suppressed
[39, p. 8].

The strategy of using balanced sampling and regularized pooling might have the
desired effect of overcoming the problem of false positives on miss classifying the
barley ears as wheat ears. Ren et al. made a note in their article that their sampling
strategy is cost-effective and easy to implement [37, p. 6]. Given this fact, this
strategy could be implemented and used in the environment run by a consumer
computer.

7.3 Network depth

During the implementation and training of the network, it was experimentally found
that using the original VGG-16 architecture as a backbone for Faster R-CNN did
not give good results. After decreasing the number of layers and also the channels
per layer, the network started to converge faster and performance increased. How-
ever, finding the optimal number of layers is difficult using only one computer and
training one instance of a network at the time. Experimenting on this matter would
require a system that allows training multiple instances simultaneously without de-
pleting computing time or resources from each other.

One explanation for this phenomenon is that the network simply does not converge
in a reasonable time and the number of epochs used in experimenting was not suffi-
cient or the dataset does not contain enough information. It is a known fact that re-
garding deep neural networks that too many parameters in hidden layers may cause
overfitting when the training data does not contain all the necessary information to
train all the neurons in the hidden layers. On the other hand, increasing the number
of hidden layers may increase the training time beyond the limit that the training
would be possible in practice.

He et al. stated that deep networks may be exposed to degradation problem. Increas-
ing the number of network layers causes accuracy to saturate and degrade rapidly.
Their experiments show that adding more layers to suitably deep networks leads to

CHAPTER 7. DISCUSSION 53

a higher training error and it is not caused by overfitting. A deep residual learn-
ing network is suggested to encounter the degradation problem. The main idea is
to allow the network to skip connections or skip over the layers which solve the
problem where deep models have difficulties in approximating identity mappings
by multiple nonlinear layers. [38, p. 770-773]

Figure 7.3: Illustration of a residual layers.

7.4 Synthetic data

As noted earlier in this thesis, the amount of data was one of the most limiting
factors in the training of the object detector. Data augmentation offers limited op-
portunities for artificial expansion of the dataset, but there are other ways that have
been studied and proven to work for expanding dataset. The training dataset can be
expanded with computer-generated synthetic images.

Rozantsev et al. presented a system that could produce 3D models of objects of
interest and use them as training data for object detector [42, p. 25]. Using a sliding
window approach, convolutional neural network, and their Unmanned Aerial Vehi-
cle (UAV) dataset, Rozantsev et al. reported that their model reached 0.85 average
precision without synthetic images and with synthetic images, the model achieved
0.89 average precision. [42, p. 31]

Data annotation proved to be a very time-consuming process in this experiment be-
cause the images used in training the network contained a particularly large number
of objects. Because of this, only a limited number of images could be prepared for

CHAPTER 7. DISCUSSION 54

the training of the network. This resulted that the objects in images appeared with
similar kind of backgrounds and lighting conditions. Tremblay et al. developed a
pipeline that produced synthetic images with objects of interest appearing in dif-
ferent lighting conditions and with random backgrounds [43, p. 1082]. They used
a domain randomization technique where generated objects are placed in random
locations and random camera angles are used. Also, lightning conditions are ran-
domized, and random geometric shapes were added to these scenarios. All objects
were automatically annotated by implemented pipeline and Tremblay et al. reported
that the pipeline is capable of outputting 1200 × 400 images with annotations at 30
Hz. Using synthetic training data created by the pipeline and Faster R-CNN object
detector, they achieved 78.1 average precision.

Georgakis et al. studied a different approach for creating synthetic data. Instead
of using 3D modeling, they used images of real environments and cropped objects.
The main idea was to create a pipeline that can produce synthetic training data from
real images of different environments and blend objects of interest in the images.
They reported that when using 50% real data and 50% synthetic data, Faster R-CNN
performance increased 1.3%. [44]

These studies show the potential of using synthetic data and automated pipelines
to create data when training object detector. The referenced studies evaluated their
methods on Faster R-CNN which supports the conclusion that the synthetic data
could be used to train the object detector presented in this thesis. Generating syn-
thetic images of whole cereal plants, grains, and ears would expand the training data
set significantly and would help to train a more general model.

Chapter 8

Conclusions

On basis of the referred studies on Faster R-CNN and the experiment conducted in
this thesis, it has been shown that this type of object detection system is suitable
to solve problems related to precision-agriculture and detecting cereal grains and
ears. The original Faster R-CNN design struggles to detect small objects which
are common in data related to agriculture and aerial images, thus in that sense, the
Faster R-CNN needs re-design. This thesis suggests that using fewer max-pooling
layers than original VGG-16, improves the detection of small objects. However,
this also increases need for more computing power since the object detector has
to work with larger feature-maps. Studies [37] and [8] show that ResNet architec-
ture provides better results than VGG-16 with Faster R-CNN. In light of this fact,
substituting VGG-16 with modified ResNet suggested in [37] could improve the
results.

Compiling a full-scale dataset for object-detection problems is a difficult and time-
consuming process. The type of experiment conducted in this thesis would greatly
benefit from using readily available large datasets. However, it was noted that there
was no freely available dataset that would be suitable for this experiment. Lack of
the right form of data seems to be a recurring difficulty related to object detection
problems and this is also reported in [9] and [42]. 7.4 presented a few ways to solve
these problems and studying more these methods is important since the demand for
more and better quality data is ever-growing.

From the point of view of pure oat cultivation, the results obtained from the studies
look bright. Object-detection designs based on convolutional methods have reached

CHAPTER 8. CONCLUSIONS 56

high average precision on agricultural data that they would have a substantial im-
pact on detecting foreign grains from the oat fields. A study conducted by Liu et
at. based on Faster R-CNN and ResNet detected maize tassels with 91.51% average
precision from 15 meters altitude promises good future for automatic field inspec-
tions with unmanned aerial vehicles [8]. With near real-time detection performance
of Faster R-CNN design combined with the accuracy of methods suggested in [8],
[37], [39], and [38] would greatly benefit the quality control of the pure-oat cul-
tivation. With these suggested methods it is credible that the financial losses due
to contamination of crops and manual activity related to the inspections could be
reduced.

References

[1] Konstantinos G Liakos, Patrizia Busato, Dimitrios Moshou, Simon Pearson,
and Dionysis Bochtis. Machine learning in agriculture: A review. Sensors,
18(8):2674, 2018.

[2] Diego Inácio Patrı́cio and Rafael Rieder. Computer vision and artificial intelli-
gence in precision agriculture for grain crops: A systematic review. Computers
and electronics in agriculture, 153:69–81, 2018.

[3] Michael Gooding. Chapter 18 - the effects of growth environment and agron-
omy on grain quality. In Colin Wrigley, Ian Batey, and Diane Miskelly, ed-
itors, Cereal Grains (Second Edition), Woodhead Publishing Series in Food
Science, Technology and Nutrition, pages 493 – 512. Woodhead Publishing,
second edition edition, 2017.

[4] Esko K Janatuinen, Pekka H Pikkarainen, Tarja A Kemppainen, Veli-Matti
Kosma, Ritva MK Järvinen, Matti IJ Uusitupa, and Risto JK Julkunen. A
comparison of diets with and without oats in adults with celiac disease. New
England Journal of Medicine, 333(16):1033–1037, 1995.

[5] Tricia Thompson. Oats and the gluten-free diet. Journal of the American
Dietetic Association, 103(3):376–379, 2003.

[6] Satafood Kehittämisyhdistys ry. Puhdaskauran tuotanto-ohje 2018 ,gluteenit-
tomasta viljelykierrosta erikoistumisvaihtoehto tiloille -hanke.

[7] Kinnusen Mylly. Puhdaskauran viljelyohjeet kinnusen myllyn sopimusvil-
jelijöille, 2019. Version 5.

[8] Yunling Liu, Chaojun Cen, Yingpu Che, Rui Ke, Yan Ma, and Yuntao Ma.
Detection of maize tassels from uav rgb imagery with faster r-cnn. Remote
Sensing, 12(2):338, 2020.

REFERENCES 58

[9] Mads Dyrmann, Søren Skovsen, Morten Stigaard Laursen, and Rasmus Ny-
holm Jørgensen. Using a fully convolutional neural network for detecting lo-
cations of weeds in images from cereal fields. In International Conference on
Precision Agriculture. International Society of Precision Agriculture, 2018.

[10] Kadir Sabanci, Ahmet Kayabasi, and Abdurrahim Toktas. Computer vision-
based method for classification of wheat grains using artificial neural network.
Journal of the Science of Food and Agriculture, 97(8):2588–2593, 2017.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[12] Christopher M Bishop. Pattern recognition and machine learning. Springer
Science+ Business Media, 2006.

[13] Nikhil Buduma and Nicholas Locascio. Fundamentals of Deep Learning: De-
signing Next-Generation Machine Intelligence Algorithms. O’Reilly Media,
Inc., 1st edition, 2017.

[14] Michael A. Nielsen. Neural networks and deep learning, 2018.

[15] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition,
Fourth Edition. Academic Press, Inc., USA, 4th edition, 2008.

[16] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 1998.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural informa-
tion processing systems, pages 1097–1105, 2012.

[18] Hassan Ramchoun, Mohammed Amine Janati Idrissi, Youssef Ghanou, and
Mohamed Ettaouil. Multilayer perceptron: Architecture optimization and
training. IJIMAI, 4(1):26–30, 2016.

[19] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into
Deep Learning. 2020. https://d2l.ai.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[21] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

REFERENCES 59

from overfitting. The journal of machine learning research, 15(1):1929–1958,
2014.

[22] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Efty-
chios Protopapadakis. Deep learning for computer vision: A brief review.
Computational intelligence and neuroscience, 2018, 2018.

[23] K. K. Pal and K. S. Sudeep. Preprocessing for image classification by con-
volutional neural networks. In 2016 IEEE International Conference on Re-
cent Trends in Electronics, Information Communication Technology (RTE-
ICT), pages 1778–1781, May 2016.

[24] Richard Szeliski. Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[25] Ross Girshick. Fast r-cnn. In The IEEE International Conference on Computer
Vision (ICCV), December 2015.

[26] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals
from edges. In European conference on computer vision, pages 391–405.
Springer, 2014.

[27] Tao Kong, Anbang Yao, Yurong Chen, and Fuchun Sun. Hypernet: Towards
accurate region proposal generation and joint object detection. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[28] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM
Smeulders. Selective search for object recognition. International journal of
computer vision, 104(2):154–171, 2013.

[29] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korat-
tikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadar-
rama, and Kevin Murphy. Speed/accuracy trade-offs for modern convolutional
object detectors. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[30] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2014.

REFERENCES 60

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-
wards real-time object detection with region proposal networks. In Advances
in neural information processing systems, pages 91–99, 2015.

[32] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (voc) challenge. Interna-
tional journal of computer vision, 88(2):303–338, 2010.

[33] Rafael Padilla; Sergio Lima Netto; Eduardo A. B. da Silva. Survey
on performance metrics for object-detection algorithms. International
Conference on Systems, Signals and Image Processing (IWSSIP), 2020.
https://github.com/rafaelpadilla/Object-Detection-Metrics.

[34] Jesse Davis and Mark Goadrich. The relationship between precision-recall and
roc curves. In Proceedings of the 23rd international conference on Machine
learning, pages 233–240, 2006.

[35] Apache Software Foundation. Apache license 2.0, 2004.
https://www.apache.org/licenses/LICENSE-2.0.

[36] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[37] Yun Ren, Changren Zhu, and Shunping Xiao. Small object detection in optical
remote sensing images via modified faster r-cnn. Applied Sciences, 8(5):813,
2018.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[39] Takato Otsuzuki, Hideaki Hayashi, Yuchen Zheng, and Seiichi Uchida. Reg-
ularized pooling. arXiv preprint arXiv:2005.03709, 2020.

[40] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[41] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Em-
nist: Extending mnist to handwritten letters. In 2017 International Joint Con-
ference on Neural Networks (IJCNN), pages 2921–2926. IEEE, 2017.

[42] Artem Rozantsev, Vincent Lepetit, and Pascal Fua. On rendering synthetic
images for training an object detector. Computer Vision and Image Under-
standing, 137:24–37, 2015.

REFERENCES 61

[43] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jam-
pani, Cem Anil, Thang To, Eric Cameracci, Shaad Boochoon, and Stan Birch-
field. Training deep networks with synthetic data: Bridging the reality gap by
domain randomization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 969–977, 2018.

[44] Georgios Georgakis, Arsalan Mousavian, Alexander C Berg, and Jana
Kosecka. Synthesizing training data for object detection in indoor scenes.
arXiv preprint arXiv:1702.07836, 2017.

