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This thesis proposes a method to preserve the dynamic range of frequency samples power
in the physical layer of 5G base-station by using an exponent. Keeping the resource
usage to its minimum while increasing performance and preserve a high Signal-to-Noise
ratio SNR. Operations such as addition and subtraction on samples with different
exponent is made possible by implementing a common exponent block that unifies
exponent with varying powers. The scope also examines multiple rounding mechanisms
to keep quantization as low as possible. Unlike Block Floating-Point technique which
usually operates on the multiplication stages of fast Fourier transform, Dynamic scale
gives more flexibility by separating block floating-point into two parts, the first part
operates on a sample level extracting individual exponents, while the second extracts the
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case implementation is proposed to give a performance comparison against full precision
floating point model in Matlab.
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1 Introduction

T
his work introduces some telecommunication concepts and their corresponding

mathematical basics, such as Beamforming, Fixed-Point and Floating-point rep-

resentation of numbers in Chapter 2. The mathematical models and detailed functional-

ities of IP blocks implemented in this thesis are described in Chapter3. The Setup and

RTL implementation are described in the Implementation Chapter 4. Performance testing

in Chapter5 discusses the performance results of a hypothesised use case for Dynamic

Scale block using Matlab, it also provides synthesis results for the RTL implementation.

Finally a conclusion is drawn in Chapter 6.



2 Background

2.1 LTE and 5G

2.1.1 From LTE to 5G

The fifth generation wireless communication (5G) faces many challenges to be solved and

goals to be achieved, from coping with massive increasing number of mobile connected

devices, rising demands for a low latency and higher connection speed, and more battery

life for low power devices, while there is only limited increase in frequency spectrum

from its predecessor Long term evolution (LTE) or fourth generation wireless commu-

nication 4G. Albeit there are many incremental and new technologies implemented/to

be implemented in 5G, to understand where the scope of this thesis operates in 5G, it is

important to know some of the key concepts in both 5G and its predecessor 4G. These

common key concepts are Up-link, Down-link, massive MIMO and Beamforming. Mas-

sive MIMO and Beamforming are covered in more details in the next sections, while

the following scenario gives an idea on what Up-link, Down-link, massive MIMO and

Beamforming are, and where are they used. When a base-Station, also known as Next

Generation Node B (gNodeB) or (gNB) sends data to two user equipment (UEs) residing

in different locations in line of sight, this is called Down-Link path (DL), the gNB can

direct the carrier signal that contains data towards the targeted user, simultaneously it can

forward the corresponding data for the second user using the same frequency of carrier

signal. If the two UEs started broadcasting data to communicate with the gNB, the gNB
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will start receiving data to be processed and uploaded to servers simultaneously, this is

called the Up-Link path (UL). If the two users simultaneously used the same frequency

band to transmit their data to the same gNB, gNB can still manage to listen to both UEs

and separate their data respectively. This spatial multiplexing is achieved using combina-

tion of many antennas forming a large array i.e. massive MIMO and Beamforming that

exploits properties of that antenna array. Beamforming is an inherited technology from

LTE, while massive MIMO is an upgraded technology from Multi-User MIMO of LTE.

2.2 Massive MIMO (mMIMO)

Massive MIMO is an up scaled version of Multi-User MIMO in LTE which serves mul-

tiple users simultaneously, it increases the data transfer rate by transmitting simultaneous

data streams from plenty of antenna elements. Massive MIMO has an increased spatial

multiplexing by performing relatively small signal processing for each antenna.[1] While

Multi-User MIMO in 4G is limited to a maximum of 8 large high powered antennas, 5G

mMIMO has practically dozens or hundreds of low powered small antennas. This gives

many advantages for mMIMO some of which are:

1. Reliability, increasing the number of antennas will increase the capacity of Base-

Station to handle more user elements, which also gives more robustness as there

can be multiple spatial stream to serve the same user element.[2]

2. Better spatial multiplexing, When using more antennas more spatial streams are

available thus more throughput, this gives higher spectral efficiency which is up to

10 times more efficient than multi-user MIMO in LTE.[3][4]

3. Energy efficiency, by superposition combining of transmitted signals from each

antenna, the total transmitted power is inversely proportional to the number of used

antennas.[5] Since each antenna in 5G uses less power than in LTE [6], the overall
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energy usage is drastically reduced, another point is the reduced radiated power and

increased throughput.

4. Security, signal jamming becomes harder due to multiple spatial streams where

each antenna has a distinct propagation path.[7]

5. Reduced Cost, Antennas in mMIMO have cheaper amplifiers that uses power in

range of milliwatts.[8]

6. Signal processing, using more antennas will give less interference effects and fast

fading, so signal processing is simpler. [9]

7. Scalability: increasing the number of antennas in the Radio unit antenna array will

enhance the performance and beams power. [2]

2.3 Beamforming

Beamforming is used to utilise the benefits of antennas in mMIMO. Similarly to a traf-

fic signal system, Beamforming directs the beam of data transmitted from a cellular base

station gNB towards the most efficient data delivery route for a UE. Another trait of beam-

forming is the reduced interference by avoiding the transmission into undesired directions.

Beamforming helps the array of antennas in mMIMO to use the spectrum around them

more efficiently. The main challenge facing mMIMO is the reduction of interference to

other UEs while transmitting more information to the targeted UE using more antennas at

once. Signal processing algorithms including channel estimation are used at the gNB to

plot the best transmission route to reach each UE. This route may even include bouncing

the carrier signal off walls and other objects in a coordinated and precise manner. In the

UL path, the angle in which information is received from each UE is computed by com-

puting the delay time in which the signal hits neighbouring antennas in the antenna array,

since the distance between each antenna in the array is known. This will allow the Radio



CHAPTER 2. BACKGROUND 5

Figure 2.1: Cross polarised antenna

unit to super position the signals received at each antenna by using phase shifting to am-

plify the received signal for each UE while cancelling out simultaneous signals received

from the rest of UEs. In order to form the beam in which each antenna in the array will

beam, a matrix of beamforming weights is constructed, then multiplied by each stream

of data inside the Radio unit. One complex beamforming weight for each antenna will

generate the signal of each individual antenna. A beam of data transmitted or received

from a certain space is called spatial stream or (SxC). A stream of data coming from each

antenna in the antenna array is called transceiver stream or (TRx. If for example a radio

unit has antenna array of size 4x2x2 where 4x2 is the number of array elements while

each antenna has 2 polarities referred as cross-polarised, then the total number of TRxs

will be 16. A cross-polarised antenna means there are two planes from which the electric

field component of the EM radiation is oscillating, a cross-section of these two planes

looking at the antenna will give the shape of letter (X) as shown in figure 2.1.

The basic concept that beamforming relies heavily on is super positioning of signals,

for example, if two sinusoidal waves with the same amplitude and frequency are sent or

received from two adjacent antennas as shown in figure 2.2, the combined resulting signal

will be four times (x4) the power of one of the component signals, That is due to P = U2

R
.

In contrast when adding those two signals with a phase difference of 180◦ the resulting

signal will be zero and the two components will completely cancel out each other as in

figure 2.3. The power gain in overlapping received or sent signals is called Antenna gain

which is the result of signals being added in super positioning. [10] By beaming the
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Figure 2.2: Superposition Addition of two sinusoidal waves.

Figure 2.3: Addition of two sinusoidal waves with 180◦ phase difference.

same signal from the antenna array using its many small antennas that are placed apart

by a small known distance in a way that will overlap the transmitted signals travelling in

a certain direction and combine their power 2.4, the resulting signal transmitted in that

direction will have a power sum of all the signals beamed in that direction plus a gain

power from the antennas forming the beam. In summary the more overlapping signals in

a constructive interference direction the more gain will be achieved.
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Figure 2.4: Phased array antenna setup
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2.4 IQ samples

In Up-Link path (UL) data is received as time domain samples which are sampled from

antennas using a sampler. The time domain samples containing the amplitude and an-

gular frequency of the received signal are represented in the complex plane as Cartesian

coordinates IQ Sample. The in-phase (I) is represented on the Real axis coordinate and

the quadrature Q is represents on the Imaginary axis. Components are called in-phase

and quadrature because they represent the received signal sin(x + φ) using two orthogonal

sinusoid components sin(x) cos(φ) + sin(x+π
2 ) sin(φ), having x = 2πft, where f is the

frequency and t represents time, while φ is the signal phase. in both components, cos(φ)

and sin(φ) are called carrier signals. The first component sin(x) has the same frequency

hence it is in-phase with the represented signal, whereas the second component sin(x+π
2 )

has π
2 or quarter of a cycle difference, hence the quadrature.[11]

Received time domain signal is passed to a Fast Fourier Transform block (FFT) that

gives out Frequency domain samples, these samples are also represented in IQ sample

format in the complex plane. Frequency samples represents data of users carried over

many orthogonal sub-carriers, this is known as Orthogonal frequency division multiple

access (OFDMA). In a real industry hardware application, IQ samples are represented in

either fixed-point (FXP) or floating-point (FLP) format.

2.4.1 Fixed- and Floating-point representations

Digital Signal Processors (DSPs) are categorised into Fixed-point number and Floating-

point number DSPs. The difference between the two representations is related to the

Radix point. In binary terms, a floating-point number consists of a mantissa part and an

exponent part, the amount of bits for mantissa defines the accuracy a number can repre-

sent, and the number of exponent bits defines the range a number can have. In decimal

terms a floating-point number is able to have a Radix point that can "float" representing a
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Sgn Int Frac.

0 1 1. 1 0 0 0 0 1 1. 1 0

0.11.1002 = 3.5 0.011.102 = 3.5

Figure 2.5: Example of representing 3.5 in two different Fixed-point formats

Figure 2.6: Single precision IEEE 754 floating-point Example

Sign Exponent(8-bit) Fraction(23-bit)

0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 23 0

Biased exponent: 011111002 = 124 = −3 + 127 (bias)

Fraction: 1.012 ∗ 2−3 = 0.001012 = 0.1562510

Note the implicit 1 and Radix point in the fractional part

wide dynamic range between represented numbers, for example 1.7654321 and 1234567.5

In fixed-point the Radix point position has a predefined fixed place, a represented

number contains certain amount of bits for representing its integer part and another for

its fractional part. Figure 2.5 illustrates how to represent decimal 3.5 in two different

6 bits fixed-point formats, first format is 1.3.2 (3 integer, and 2 fractional bits) and the

second format being 1.2.3 (2 integer, and 3 fractional bits). A fixed-point representation

has limited dynamic range of numbers that it can represent, however it provides better

accuracy than floating point given a fixed word length numbers.

Some standards for floating point representation includes the IEEE Standard 754

which is an industry standard, it has multiple levels of precision, the commonly used

two are single precision 32 bits and double precision 64 bits. A single precision can rep-

resent ±1.18 ∗ 10−38 to ±3.4 ∗ 1038. The structure of a single precision floating point

number can be found in figure 2.6 [12]

Floating-point numbers stored and operated on represent numbers with a trade off

between precision and range. In floating-point representation the Radix point can "float"
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Integer

0 0 1 1 0 0 = 23 + 22

−25 24 23 22 21 20 = 8 + 4 = 12

Fractional

1 . 1 0 1 1 0 = −21 + 2−1 + 2−3 + 2−4

−21. 2−1 2−2 2−3 2−4 2−5 = −1 + 0.5 + 0.125 + 0.0625

↑ Assumed Radix point = −0.3125

Figure 2.7: Example of Fixed-point representation for integer and fractional numbers

between digits of a represented number, giving more bits to represent the fractional part,

or the integer part depending on the size of the number. For example, representing the

number 0.00005 can be done by 5 ∗ 10−5 while the number 500000 is done as 5 ∗ 105, So

with the use of exponent to indicate the Radix point position, a wide range is represented

using less digits.

Multiplication in Fixed-point format

When multiplying two numbers in a Digital signal processor (DSP) using fixed-point for-

mat, the resulting number has a width equals to the sum of both multiplied numbers. In

a defined width DSP, it is necessary to represent numbers in operations using fractions

i.e. < |1| to give mathematically correct results because only accuracy will be lost when

LSB bits are dropped. If numbers are not representing fractions and instead represent-

ing integers, then dropping LSB bits will change the actual value of that number, thus

giving wrong results. Results of addition and multiplication DSP operations will have

more bits (bit growth) than their respective input, to represent these results correctly and

perform further DSP operations in the same FXP format without overflow, LSB bits must

be dropped. The integer part width in a result of multiplying two numbers equals to the
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Sgn Int Frac.

0 0 1. 1 1 0 × 0 0 1 1. 1 0

0.01.1102 = 1.75 0.011.102 = 3.5
0 0 0 0 1 1 0. 0 0 1 0 0

Results: 110.0012 = 6.12510

Note that dots are implicit and used only for clarity

Figure 2.8: Different Fixed-point formats multiplication

sum of integer parts of its components +1 bit which is a sign extended bit. The fractional

part of resulting number equals to the sum of its component fractional parts. For example,

when multiplying two number having the format 1.2.3 * 1.3.2 the resulting number will

have the format 1.6.5 as illustrated in figure 2.8.

2.5 FFT operation in UL

IQ samples at FFT output represents a frequency signal that consists of sub-carriers, the

phase and amplitude of each sub-carrier has been already modulated by the user’s data

received by gNB. This data is extracted from each sub-carrier in the demodulation phase.

In 5G multiple users can share the same sub-carrier frequency if they reside in different

spatial location, this is achieved with beamforming as discussed earlier, in later processing

stages data is separated for each corresponding user. For simplicity and without loss of

generality, cases involving multiple users sharing the same frequency bandwidth will not

be considered in this thesis scope.
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2.5.1 FFT

Mathematics of FFT

Fast Fourier Transform (FFT) is an algorithm for computing Discrete Fourier Transfor-

mation (DFT) that is defined, for N-point transformation, by the following equation:

X(k) =
N−1∑
n=0

x(n)W nk
N

Where X(k) is frequency bin number k and the twiddle factors are:

W nk
N = e−j

2π
N
nk

Cooley–Tukey FFT algorithm breaks down the previous equation into butterfly stages (ad-

dition and subtraction) and a twiddle factor multiplication as shown in figure 2.9. log2N

is the total number of stages for a radix-2 FFT size of N . Even frequency bins and odd

frequency bins are computed in the following equations.

X(2k) =
N
2 −1∑
n=0

[x(n) + x(n+ N

2 )]W n2k
N , k = 0, 1, 2, .., N2 − 1

And:

X(2k + 1) =
N
2 −1∑
n=0

[x(n)− x(n+ N

2 )]W n(2k+1)
N , k = 0, 1, 2, .., N2 − 1

Figure 2.10 illustrates the amplitude of a complex signal eiθ∗t having frequency θ =

50Hz is translated into frequency spectrum with maximum amplitude of N = 4096 for

the real part.

Power in FFT

When computing a frequency bin, multiplying with twiddle factors then summing at the

butterfly stage may result in high amplitude for that frequency, this is due to signals in

time domain input having the same or close frequency to that frequency bin. Since an
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Figure 2.9: Cooley-Tukey FFT stages

Figure 2.10: Time and Frequency domain complex signal



CHAPTER 2. BACKGROUND 14

FFT is only a different representation of the same signal, the energy of both FFT input

and output should be the same. A normalisation process on FFT output is required to

that. Energy of time signal is represented by the left hand side of the following equation,

while energy of frequency bins is represented by the right hand side, this is also known as

Parseval’s theorem:

OR

Thus normalising the resulting IQ samples at the FFT output is done by dividing each

frequency sample by
√
N where N is the FFT size. [13]

Bit growth in FFT

Assuming that each time domain sample entered to FFT IP block is represented in fixed-

point, with format 1.0.15 for both I and Q parts. Frequency domain IQ samples at the

FFT IP block output have the format: 1.L.15 where the first MSB bit corresponds to

the sign bit, the 15 LSB corresponds to the fractional bits and L are integer bits corre-

sponding to maximum bit growth, which is dependant on FFT window size. In figure

2.10 that size is 4096, which needs 13 bits to represent in binary. The bit growth of

FFT butterfly and multiplication stages can be formulated into the following equation:

L = Log2(FFT_SIZE) + 1 The supported FFT window sizes done in this thesis are of

power 2 (radix-2) and can have one of the following values: [256, 512, 1024, 2048, 4096].

Accordingly the following FFT size values [256, 512, 1024, 2048, 4096] will correspond

to a bit growth part in the output IQ samples of width [9, 10, 11, 12and13] respectively.

After normalising the IQ samples by dividing them over
√
FFT_SIZE, their format be-

comes 1.K.15, K being the new integer bit growth width that is derived from the following
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bit growth

FFT_SIZE L bLog2(
√
FFT_SIZE)c K

4096 13 6 7

2048 12 5 7

1024 11 5 6

512 10 4 6

256 9 4 5

Table 2.1: Value of bit growth after FFT Normalisation

equation: K = L−bLog2(
√
FFT_SIZE)c Consequently K will have the corresponding

values shown in table 2.1.



3 IP blocks Mathematics

In this section the mathematical functionality of implemented IP blocks are discussed in

details. The blocks are first modelled in C++ to give a correct mathematical representation

that is later used for verification and performance testing. The RTL code of IP blocks and

test-benches are implemented using VHDL.

3.1 Basic concepts

3.1.1 Exponent value and sign

IEEE Standard 754 Floating-point representation covers a very wide range of numbers,

however it uses at least 32 bits to represent a number, which can be cumbersome and

computationally heavy. A fixed-point (FXP) representation requires less HW resources

and computation complexity, yet it does not use an exponent at all, which limits the range

of numbers it can represent to −2N through 2N − 1 with N being the number of bits in

the FXP representation. A hybrid solution is to keep the lightweight FXP to represent

samples while using a separate exponent number to represent the power of these samples

caused by the bit growth after FFT operation. A similar concept in the sense of having

a common exponent for multiple numbers is implemented in DIT FFT which is called

block floating-point [14].

Suppose the results of multiplying 4×4 in fixed point format 1.3.0 needs to be stored in

the same fixed point format. Ideally the results should be stored in format 1.(1+3+3).0 =
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1.7.0 or 0100 × 0100 = 00010000 which is more hardware resource demanding. To

represent using the format 1.3.0, first, the sign extended bits can be reduced since they

equal to the sign bit and removing them will not change the result i.e. 00010000 =

010000. So far the number 010000 has two excess bits to fit into the format 1.3.0, to

resolve this issue an exponent of 2 is introduced 010, and the multiplication results is

stored as 0100 To reproduce the original number, the results is left shifted by the value of

exponent i.e. 0100 << 010 = 010000.

As results only grow in size, exponent will always be positive, thus it can be repre-

sented as unsigned in the format 0.3.0.

3.1.2 Down scaling and Rounding

When scaling down numbers due to design constraints on how many bits can be used to

represent numbers quantization noise increases. In order to reduce the level of quantiza-

tion noise, down scaled numbers are also rounded. There are multiple rounding mecha-

nisms implemented in this thesis and different options have different level of quantization

noise on the overall set of scaled down numbers, albeit a very effect.

1. Directed rounding: x is the rounded number

(a) Ceiling dxe, i.e. the largest integer not exceeding x. This is achieved in binary

form by adding 1 to the number after truncation if the truncated fraction is not

equal to 0. Example of a positive rounding from fraction to integer:

3.0625 ≈ 4

0011.00012 = 3 + 0.0625 = 3.0625

0.0625 6= 0

0011.00012 >> 4 + 1 = 01002 = 4

The same applies to negative numbers: −3.9375 ≈ −3

1100.00012 = −8 + 4 + 0.0625 = −3.0625
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0.0625 6= 0

1100.00012 >> 4 + 1 = 11012 = −8 + 4 + 1 = −3

This is equivalent to adding 2#Truncated_Bits Ceiling introduces large bias to-

wards positive infinity.

(b) Floor bxc, i.e. the smallest integer not exceeding x, This is achieved by simple

truncation to reach the desired length. An example for a positive rounding of

fractional number to an integer is:

3.9375 ≈ 3

011.11112 = 3 + 0.5 + 0.25 + 0.125 + 0.0625 = 3.9375

011.11012 = 011.0110 >> 4 = 3

similarly for negative numbers:

−3.0625 ≈ −4

1100.11112 = −8 + 4 + 0.5 + 0.25 + 0.125 + 0.0625 = −3.0625

1100.11112 >> 4 = 11002 = −8 + 4 = −4

Floor introduces large bias towards negative infinity.

(c) Round to infinity sign(x)d|x|e This achieved in binary numbers by adding 1 to

the truncated results in case of positive numbers i.e. ceiling, In case of negative

number only by truncation is applied. Round to infinity is symmetrical when

rounded numbers are uniformly distributed between negative and positive.

(d) Round to zero sign(x)b|x|c Contrast to round to infinity, Round to zero will

truncate positive numbers, and add 1 to truncated negative numbers. Round

to zero is also symmetrical in case of uniformly distributed rounded numbers

between negative and positive signs. All four previous rounding methods in-

troduce large quantization error.

2. Rounding to nearest: has less quantization error than Directed rounding. If a frac-

tional number is less than exactly half then it is rounded towards the smaller nearest

number, if that number is greater than half the amount, it will be rounded towards
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the largest nearest number. However when the number to be rounded resides ex-

actly between the two numbers that can be represented, then one of the following

methods is applied:

(a) Round half up, This will round numbers residing exactly in the middle to-

wards positive infinity. In binary terms this is achieved by adding half of the

smallest number that can be represented, in the following example the result-

ing rounded numbers are integers thus half (0.5) is added.

3.5 ≈ 4

0011.10002 = 2 + 1 + 0.5 = 3.5

0011.10002 + 0.10002 = 0100.00002 >> 4 = 01002 = 4

And in case of negative numbers:

−3.5 ≈ −4

1100.10002 = −8 + 4 + 0.5 = −3.5

1100.10002 + 0.10002 = 1101.00002 >> 4 = 11012 = −3

This rounding mechanism introduces a small bias towards positive infinity,

but is the cheapest in terms of resource usage.

(b) Round half down, Conversely from Round half up, this method will round

numbers falling exactly in the middle of two possibly represented numbers (in

this example integers 3 and 4) towards negative infinity. A simple check to

see if the number to be rounded falls exactly in the middle is by adding 1’s to

all digits that will be truncated except the MSB bit as follows: 3.5 ≈ 3

0011.10002 = 2 + 1 + 0.5 = 3.5

2(4−1) − 1 = 0.10002 − 1 = 0.0111 = 0.4375

0011.10002 + 0.01112 = 0011.11112 >> 4 = 00112 = 3

similarly for negative numbers: −3.5 ≈ −4

1100.10002 = −8 + 4 + 0.5 = −3.5

1100.10002 + 0.01112 = 1100.11112 >> 4 = 11002 = −4
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This method requires a little bit more resource than the previous one, and

introduces small bias towards negative infinity.

(c) Round half even, Numbers falling exactly at the middle are rounded towards

the nearest even number, a binary number is even when its integer part ends

with 0 and it is positive, or 1 in case it is negative. As a result, rounding an

even number will be toward zero, and an odd number will round it towards in-

finity (negative infinity if it is negative number). For example, 5.5 is rounded

up to 6, while 4.5 is rounded down to 4. To find if the number to be rounded

is even or odd, the last bit before truncation chunk is checked, if it equals to 1

then half is added, and the number is truncated. If the last bit before truncated

chunk equals to 0 then 0.1 − 1 = 0.0111 is added to the number then trunca-

tion is done. This will ensure that the number resides exactly in the middle.

Adding the number of fractional bits -1 e.g. 0.0111 will have no effect on the

number if it resides less than or exactly in the middle (half), but if it is greater

than half, the addition will round it to the next integer. An example of positive

even round truncating the last 4 bits:

4.5 ≈ 4 : 0100.10002 ≈ 01002

The 5th LSB bit equals to 0, then 0.10002−1 = 0.01112 is added: 0100.10002+

0.01112 = 0100.1111 >> 4 = 01002. The last 4 bits are truncated which re-

sults in 01002 = 4. Another example of positive odd number i.e. integer part

ends with 1, then it will be rounded up to the nearest even integer:

3.5 = 0011.1000 is rounded to 4 by adding half 0.5 or 0.1000 the result is then

truncated: 0011.10002 + 0.10002 = 0100.00002 >> 4 = 01002 = 4.

If the number is negative and its integer part ends with 1 then it is an even

negative number, and the way it is rounded is exactly the same as positive odd

number where the integer part ends with 1. if it ends with exactly half then it

is rounded up by adding 0.5, e.g.



CHAPTER 3. IP BLOCKS MATHEMATICS 21

−2.5 = 1101.10002 = 1101.10002 + 0.1000 >> 4 = 11102 = −2

In case the integer part is negative and odd (ends with 0), then it is rounded

down by truncation similarly to a positive odd number. −3.5 = 1100.10002 =

1100.10002 + 0.0111 = 1100.1111 >> 4 = 11002 = −4.

Round half even method gives a more symmetrical rounding than the previ-

ous two methods since it rounds numbers exactly in the middle up and down

depending on its sign and if it is even or odd, However it is more resource

expensive than the previous two methods.

(d) Round half odd, Contrary to round half even, round half odd rounds number

residing exactly in the middle of two numbers to the nearest odd one. So even

numbers are rounded to infinity, while odd numbers are rounded towards zero.

for example: 4.5 is rounded to 5, while 3.5 is rounded to 3. -4.5 is rounded

to -5 and -3.5 is rounded to -3. if number is positive and the last integer bit

is 0 then add 0.1000 or half then truncate: 4.5 = 0100.10002 + 0.10002 =

0101.00002 >> 4 = 5. When the number is positive and odd then:

3.5 = 0011.10002 + (2(4−1) − 1)

0011.10002 + 0.10002 − 1 = 0011.1000 + 0.0111

0011.1111 >> 4 = 00112 = 3.

If number is negative and its integer part ends with 1 then it’s treated the

same way as a positive integer ending with 0. e.g. −3.5 = 1101.10002 =

1101.10002 + 0.0111 = 1101.1111 >> 4 = 11012 = −3

Similarly to rounding a positive integer ending with 0, a negative number with

its integer part ending with 1 (even) is rounded by adding half then truncating.

e.g. −4.5 = 1011.10002 + 2(4−1) = 1100.00002 >> 4 = −4
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3.2 Dynamic scale

The main idea behind using the exponent for IQ samples in Dynamic Scale is to preserve

the dynamic range power for IQ samples. When a high power difference between received

samples exists, then samples with high power can have an exponent value to indicate their

power level, while samples with low power are kept and not dropped. Preserving the dy-

namic range of FFT output samples could be a potential use case for the Dynamic Scale

block. Because the received power of different UEs (transmitting in different frequen-

cies) can vary significantly. Consider performing an FFT operation on a time domain

signal that consists of three sine waves with an overall peak-to-peak amplitude of 2 such

as the one depicted on the left side of figure 3.1 will give a frequency output response as

depicted on the bottom side of figure 3.1. The absolute value of frequency bin 50Hz is

equal to 57.5994, while frequency bins 100Hz and 200Hz are equal to 3.1867 and 3.1914

respectively, since numbers are represented in fractions within boundary of ]1, -1], the

value of FFT output should be normalised by the largest possible value which is 64, thus

the corresponding frequency bin values will be 57
64 , 3.1867

64 and 3.1914
64 , or 0.89998, 0.04979

and 0.04986 respectively, this equates to 0.111001100110010, 0.000011001011111 and

0.000011001100001 respectively in binary fixed-point format with 15 bits fractional part.

Assuming that a hardware setup only supports 5 digits of fractional part, this will results

in the large frequency bin of 50Hz to become 0.11100 or 0.875 and the frequency bins of

100Hz and 200Hz to be dropped to 0.00001 or 0.0313. This amounts to 2.77% loss for

frequency bin 50Hz and about 37.13% loss for the other two signals which is relatively a

high loss. If Dynamic Scale IP is used then the results will be 0.11001 with a correspond-

ing exponent of 2 (computation will be explained later). 0.11001 is then scaled down to

0.000011001 or 0.04736 by multiplying with it’s exponent 22 and dividing by 64. giving

a loss of 4.87% of the original signal. This example has an intentional bad design choice

used only to illustrate the functionality of exponent, in reality HW bit width is chosen

to accommodate 15 bits for the fractional part, which makes much less SNR loss even
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Figure 3.1: Time and Frequency domain complex signal

without using the exponent.

3.2.1 Design constraints

Some design decisions taken in designing this IP block are presented here.

Exponent value in Dynamic Scale

The number of bits to represent IQ samples in this design is chosen to be 32 bits where 16

bits are used to represent the imaginary part (Q) and 16 bits to represent the real part (I),

both I and Q have the format 1.0.15. An exponent is also introduced in order to represent

IQ samples of form 2x 1.K.15 as 2x 1.0.15. Since K can have a maximum value of 7 bits

when the maximum FFT size is 4096, the exponent used to represent K is 3 bit wide, i.e.
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the exponent indicates how many right shifts were applied to 1.K.15 to make it 1.0.15.

Down scaling and Rounding in Dynamic Scale

IQ samples provided at the input of Dynamic scale block are 29+29 bits wide, while at the

output the bit width is 16+16. This calls for scaling down at multiple stages. To reduce

the quantization error while scaling down, rounding is used whenever down scaling is

applied. The two stages in which scaling and rounding down happens are:

1. pre-multiplication rounding

2. post-multiplication rounding

The multipliers provided by hardware used to normalise I and Q sample have 27 bits wide

input. Those multipliers are depicted in figure 3.2 as an encircled x which depict a multi-

plication in a DSP. I and Q parts of the sample should be scaled down and rounded from

29 to 27 bits and from 28 to 27 bits in cases of 4096 and 2048 FFT_SIZE respectively.

At the output of the DSP multiplication another rounding takes place where samples are

scaled down from 1.15.38 to 1.0.15 bits, DSP output gives numbers with implicit format

of 1.15.38 as explained in 2.4.1. For both rounding stages round half up to nearest mech-

anism is chosen, this is because it has the least resource usage while still providing low

quantization noise results.

3.3 Common Exponent Scale

The main idea of Common exponent is to unify the exponent power of multiple samples

received at its input in parallel, this is necessary to ensure the correctness of mathematical

operations such as addition and subtraction on these samples. Common exponent scale

will choose the maximum exponent between all input samples and scale the reset of the

samples according to the difference between their exponent and the maximum found.
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Figure 3.2: Dynamic scale block diagram
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Imaginary part of a Sample 1 Exponent 1

0. 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 − > 0 0 1

Imaginary part of a Sample 2 Exponent 2

0. 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 − > 0 0 0

Max exponent = 1, Resulting two samples

Imaginary part of a Sample 1 Common

0. 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 Exponent

Imaginary part of a Sample 2 0 0 1

0. 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1

Figure 3.3: Example of common exponent, Sample2 is right shifted by 1 to match the

exponent power.

When samples are scaled according to the maximum common exponent, samples with

lower exponent will loose some accuracy due to scaling down (right shift) to increase their

exponent. Down scaling and rounding lower exponent samples is necessary to match their

exponent with the maximum exponent found. Samples with maximum exponents have the

sign extended bits already reduced in Dynamic scale, i.e. they are saturated, so they cannot

be left shifted to reduce their exponent power, and only samples with lower exponent

power can be right shifted instead to reach the same power level. Figure 3.3 illustrates an

example of how two random imaginary parts of complex samples with different exponents

are scaled. sample 2 has an exponent of zero while sample 1 has exponent one, so the first

sample is scaled down by one bit which is the difference between the two exponents to

match the exponent of sample 1. Common Exponent Scale also rounds the down scaled

samples using the same half up to nearest mechanism Dynamic scale block uses.

Because the exponent represent the power of a sample, it is common between the

imaginary part and the real part of that sample. When Common exponent scales down
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Figure 3.4: Common Exponent Scale functionality

the sample to increase the value of its exponent, both the imaginary and the real parts are

scaled of the sample are scaled by the same amount. Figure 3.4 illustrates how multiple

samples are provided to the input of Common exponent scale block, each sample has its

exponent at the MSB 3 bits, then the imaginary part occupying 16 bits, then the real part

in the 16 LSB bits. After comparing exponents of all provided samples, a maximum ex-

ponent of 3 or 0112 is found, and each sample is scaled by the difference as mentioned be-

fore. Notice how both the imaginary part and the real part are scaled by the same amount.

Notice how the rounding is used in both the positive real part of the first sample, and the

negative imaginary part of the second sample. 0.000000000001110->0.00000000000100

And 1.100000000011100->1.11100000000100.



4 Setup and Implementation

4.1 Hardware Setup

In this section the platform in which the project is implemented on is described. There

are many commercial FPGAs and development boards available on the market nowadays.

Altera stratix family provides a comprehensive industrial benchmarking to test the perfor-

mance and functionality of these IP blocks. The IP blocks are developed and tested using

Intel Quartus, and the Altera Stratix 10 board is chosen to compile the design. Stratix 10

board has multiple types of DSP multiplication blocks the block used is the 27x27 input

bits wide block that has output of 54 bits wide. [15] The FPGA chosen in this project is

the Startix 10 SX 2800 FPGA [15], this choice is arbitrary and can be replaced by any

other FPGA that can satisfy the basic resource usage requirement. Although the Stratix

10 SX has a maximum processor frequency of 1.5 GHz, the actual fabric runs at a lower

speed, usually around 300 MHz. Thus the maximum fabric frequency chosen for syn-

thesis is 500 MHz in which the implemented IP blocks can operate in under a maximum

temperature of 100 degrees Celsius. Intel utilises FPGAs using Adaptive Logic Modules

or ALM which is the basic resource usage block for optimized performance.[16] Quartus

synthesises a function with up to eight inputs and eight outputs as a single ALM. Each

ALM contains two or four register logic cells, two combinational logic cells, and two ded-

icated full adders, a register chain, a carry chain and a 64-bit Lookup Table LUT mask. An

ALM can operate in arithmetic mode, extended LUT mode, combinational logic mode,
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or shared arithmetic mode. A shared arithmetic mode is when two functions share some

common inputs and the total of their combined inputs is equal or less to eight, in such case

Quartus may synthesis those functions in one ALM. In this particular FPGA model, there

are 933,120 ALMs, which corresponds to 3,723,480 ALM registers. The total number

of Variable-precision digital Signal Processing (DSP) blocks in the Stratix 10 SX 2800 is

equal to 5,760 DSPs.

4.2 Software Setup

The RTL design is implemented using VHDL based on the block diagrams and design

specifications. RTL code is verified over three stages, these are

1. C reference model.

2. Sanity check.

3. Universal Verification Methodology.

Each stage is explained in this section.

4.2.1 Reference Models

A bit exact implementation of Dynamic scale and Common Exponent Scale blocks are

created using C++ language and compiled using a GCC compiler on a Linux machine

running Ubuntu 16.04.12. The GCC version is: 5.4.0 Each HDL process in the RTL

code has a peer function in C++ that replicates the same mathematical process. The ref-

erence model is made by modelling Dynamic scale and Common Exponent Scale design

functionality with a bit accurate mathematical C model, the reference model is used for

comparison against the RTL results. The performance and mathematics of C models are

tested using Matlab for different scenarios.
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An extra functionality the C Reference Model has is that it generates random input

file which is used as a stimulus for RTL test-bench and the reference model itself.

4.2.2 ModelSim

ModelSim is a tool provided by Mentor Graphics used to simulate the RTL IP blocks

via their respective test-benches. The Revision of ModelSim used in this project for

simulation is 2019.01. Sanity check and simple Test-benches (TB) are implemented in

VHDL to test the functionality and correctness of signals going through the IP blocks.

After each individual functionality of each IP block is tested, the collective functionality is

tested. The Test-benches for Dynamic Scale and Common Exponent Scale are stimulated

by the C reference Model file of randomly generated input. The generated input file is

constrained by the corresponding Hardware bit width of the RTL implementation. Test-

benches output signals value are written to an output sink file. Collected results in the sink

file are compared against the output of C reference model which is fed the same input.

4.2.3 Universal Verification Methodology (UVM)

The RTL code has been formally verified by the verification team to match the expected

behaviour for all the specified functionalities. Sanity check and in simple verification

however is covered in the scope of this thesis.

4.2.4 Quartus

Intel Quartus Prime is the platform in which the IP blocks are synthesised on. The chosen

Stratix 10 FPGA is selected as the platform in which IP blocks are synthesised on. The

version of Intel Quartus Prime used for synthesising the IP blocks on a virtual Stratix 10

FPGA is 10.1.0 build 240.
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Figure 4.1: Dynamic Scale Core Ports

4.3 Implementation

4.3.1 Dynamic scale

Dynamic Scale shown in the block diagram 3.2 depicts a wrapper that contains a single

Dynamic Scale core. The number of cores instantiated in the wrapper is defined in a

generic that corresponds to the FFT engine architecture requirements. IO ports of a single

Dynamic Scale core are depicted in figure 4.1. A brief functionality of ports of each core

are:

1. CLK : input logic bit for clock signal.

2. SQRT_2_I: input control bit used to define the multiplication factor.

3. R_SHIFT_I: input number of bits to right shift in normalisation process.

4. INT_WIDTH_I: input specifying the number of integer bits in IQ samples.

5. DATA_R: input data of I and Q parts of the sample.
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6. DATA_O: Output data of IQ sample and its extracted exponent.

Each Dynamic Scale core can be divided into sub-blocks that performs mathematical

functionality, these sub-blocks are:

1. Pre-Multiplication Rounding and resizing.

2. DSP multiplication.

3. Normalisation.

4. Bit reduction and Exponent finder.

5. Post-Multiplication Rounding.

Pre-Multiplication Rounding and resizing

The allocated hardware DSP for multiplication has only 27 bits wide input ports, while

the provided input is 29 bits wide, 1 or 2 LSB bits of I and Q parts of samples will be

dropped before multiplication to occupy 27 bits depending on the FFT_SIZE. FFT_SIZE

of 4096 and 2048 gives an integer part of 13 and 12 respectively, when 1 bit sign and

15 bits fractional parts are taken into account, the total number amounts to 29 and 28

bits respectively. For FFT_SIZE of 4096 two LSB bits are dropped, one bit is truncated

while choosing the 28 bits MSB slice then a second LSB bit is dropped in the Rounding

sub-block when rounding the sample part to 27 bits. In 2048 FFT_SIZE, one LSB bit is

dropped in the Rounding sub-block before DSP input. No LSB bits are dropped for other

FFT sizes, this is achieved by choosing the 27 LSB bit slice from the sample since the 2

MSB bits are sign extended. For FFT_SIZEs of 1024 and less, the 27 bits of LSB slice

is taken as input of DSP. No rounding is needed in this case, so ’0’ is appended to LSB

and the 28 bits number is passed to the Rounding sub-block to be truncated back to 27

bits without rounding before the DSP input, this is done to avoid an extra if condition and

give a uniform operation of Rounding sub-block for all FFT_SIZE cases. As discussed
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IQ DSP input

FFT_SIZE Format

4096 1.13.13

2048 1.12.14

1024 1.11.15

512 1.11.15

256 1.11.15

Table 4.1: DSP IQ input format for each FFT_SIZE

in the previous chapter, Rounding half up to nearest is achieved by checking the LSB bit

of provided input, if it is equal to ’1’ then 1 is added to the original number. In contrast

if LSB bit is equal to ’0’ then it will be simply truncated and the resulting operation

is similar to right shifting the original number by one. The input of Pre-Multiplication

Rounding sub-block is always 28 bits and the output is always 27 bits.

Each FFT_SIZE and its corresponding IQ sample format is listed in this table 4.1 Note

that for 512 and 256 cases of FFT_SIZE even though the actual integer part length might

be up to 10 and 9 bits respectively, the rest of bits will always be sign extended bits.

A psudo code of resizing the IQ signals before Pre-Multiplication Rounding sub-block

is depicted in the following listing:

1 P_RESIZE:process(CLK)

2 begin

3 if rising_edge(CLK) then

4 if (INT_WIDTH_R0 < "1100") then --reduce 2 MSBs

5 QDATA_R <= signed(DATA_R(29*2 -3 downto 29)) & ’0’; -- append ’0’

to be

6 IDATA_R <= signed(DATA_R(29 -3 downto 0)) & ’0’; -- truncated

in rounding

7 elsif (INT_WIDTH_R0 = "1100") then

8 QDATA_R <= signed(DATA_R(29*2 -2 downto 29));
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9 IDATA_R <= signed(DATA_R(29 -2 downto 0));

10 else -- in case (INT_WIDTH_R0 > "1100"), use only MSB bits

11 QDATA_R <= signed(DATA_R(29*2 -1 downto 30));

12 IDATA_R <= signed(DATA_R(29 -1 downto 1));

13 end if;

14 end if;

15 end process P_RESIZE;

Listing 4.1: Resize before DSP in DS core

DSP multiplication

To normalise the power of FFT output samples, division over
√

2 is required in two cases,

when FFT_SIZE = 2048 and 512. In those two cases, IQ parts of each sample should

be multiplied by 1√
2 factor. For other FFT_SIZE cases, Q and I part of samples are

simply multiplied by 1. this multiplication configuration is set independently by Software

regardless of FFT_SIZE to give more control to Software.

the DSP operation is built by modifying the original template provided by Intel Quar-

tus to give an optimized block during synthesis.

1√
2 ≈ 0.70710678110 ≈ 0.1011010100000100111100110011001112 converting this to

fixed representation format of 1.0.26 to fit into DSP input:

010110101000001001111001100.

To achieve a unified IQ samples format at DSP output for all cases of FFT_SIZE, differ-

ent multiplication factor format is chosen according to current FFT_SIZE configuration.

The 4.2 table: Note that the reciprocal of
√

2 for the smallest three FFT_SIZE cases is

also rounded up. The multiplication resulting format for all cases will be 1.15.38, this is

because resulting parts width is the addition of both parts from each input, as shown in

4.3 table:
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DSP factor

FFT_SIZE Format 1√
2 1

4096 1.1.25 0010110101000001001111001102 0100..02

2048 1.2.24 0001011010100000100111100112 0010..02

1024 1.3.23 0000101101010000010011110102 0001..02

512 1.3.23 0000101101010000010011110102 0001..02

256 1.3.23 0000101101010000010011110102 0001..02

Table 4.2: DSP multiplication factor format for each FFT_SIZE

DSP output format

FFT_SIZE IQ format factor format output

4096 1.13.13 1.1.25 1.15.38

2048 1.12.14 1.2.24 1.15.38

1024, 512 and 256 1.11.15 1.3.23 1.15.38

Table 4.3: DSP input and output format
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Normalisation

Since FFT window size is specified only as Radix-2, dividing the IQ samples at FFT

output can be done by right shifting the binary samples bits. The amount of right shifting

is derived in the second chapter as bLog2(
√
FFT_SIZE)c. This results in an integer

width of K = INT_WIDTH −bLog2(
√
FFT_SIZE)c that the exponent finder operates

on to extract an exponent.

Bit reduction and Exponent finder

MSB bits of IQ sample will have sign extended bits after DSP multiplication, these bits

are due to the multiplication factor format, as explained previously in Chapter 2. The

following example illustrated in figure 4.2 shows one part of a sample (only Q or I) before

and after DSP multiplication for different FFT window sizes. The minimum number of

bits that can be reduced at the DSP output can be computed from INT_WIDTH value, for

FFT_SIZE cases of 256 and 512 i.e. INT_WIDTH of 10012 and 10102 there should be 2

and 1 sign extended bits respectively. After DSP multiplication sign extended bits are also

added from the multiplication factor for all FFT window sizes, these are 2 bits for 4096

FFT_SIZE, 3 bits for 2048 FFT_SIZE and 4 bits for 1024, 512 and 256 window sizes.

The maximum number of bits that should be checked for reduction is also dependant on

INT_WIDTH value, only integer bits left after applying right shift from normalisation,

i.e. K should be checked if they equal the sign bit or differ from sign bit. All those sign

extended bits should be reduced to find the exponent.

An example showing reduction of a sample part (I or Q) for FFT window size of 4096

is illustrated in the figure 4.3. The example also shows the compressed Floating-Point

format which results at the output of Dynamic Scale, and a Decompression scenario which

translates the Floating-Point format back to Fixed-Point format and the quantization error

related to it which will be discussed in more details in Performance Chapter 5.

There are two attributes that affects the functionality of exponent finding for an IQ
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Figure 4.2: DSP input/output bit width for different FFT_SIZE cases
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Figure 4.3: Example of Bit reduction for FFT_SIZE case 4096

Compression (FXP -> FLP), and Decompression (FLP -> FXP)
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sample, these attributes are INT_WIDTH and right shift Normalisation, both of which

can be derived from FFT_SIZE. However, control of these two parameters is left separate

to give more Software configuration flexibility.

The following Psudo code snippet gives more detailed functionality of Exponent

Finder:

1 P_FINDEXP:process(CLK)

2 variable REDUCED_V : integer;

3 begin

4 if (CLK’event and CLK = ’1’) then

5 REDUCED_V := 0;

6 for B in 0 to 10 loop -- loop through first 11 MSB bits

7 if (QNORM(27*2-2-B) = QNORM(27*2-1) and

8 INORM(27*2-2-B) = INORM(27*2-1)) then

9 -- if MSB of I and Q are equal to the sign bit

10 REDUCED_V := REDUCED_V +1;

11 else

12 exit -- MAX EXPONENT REACHED

13 end if;

14 end loop;

15 if (INT_WIDTH_I =13 AND REDUCED_V > 9) then -- limit REDUCED_V to 9

16 REDUCED_V := 9;

17 elsif (INT_WIDTH_I =12 or INT_WIDTH_I =11 and REDUCED_V > 10) then

18 REDUCED_V := 10; --limit REDUCED_V to 10

19 end if;

20 EXPONENT <= 15- REDUCED_V- R_SHIFT_I;

21 QNORM_R <= resize(QNORM(27*2 -1 -REDUCED_V downto 0), 27*2);

22 INORM_R <= resize(INORM(27*2 -1 -REDUCED_V downto 0), 27*2); --

choose appropriate chunk and resize it

23 end if;

24 end process P_FINDEXP;

Listing 4.2: Finding the sample Exponent in DS core
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The line in P_FINDEXP process:

1 EXPONENT_R <= 15- REDUCED_V- R_SHIFT_I;

Listing 4.3: Final Exponent

shows that 15- REDUCED_V- R_SHIFT_I is the resulting exponent. REDUCED_V is

the number of bits that are sign extended for both I and Q parts of the sample.

Post-Multiplication Rounding

The rounding mechanism chosen in this stage is the same as Pre-Multiplication Rounding

stage, i.e. round half-up, this mechanism is chosen due to its resource usage efficiency

since it only requires comparing one bit before truncating it. Samples are truncated down

to 1.0.16 (leaving one extra LSB bit) then rounded to 1.0.15 by the rounding sub-block.

There are two instances of Post-Multiplication Rounding sub-blocks, each corresponding

to a different sample part (I or Q). Adding one to the rounded number may cause over-

flow, this is checked by comparing the high bit of numbers both before and after adding

1. in case the MSB has changed from ’0’ to ’1’ then an overflow has occurred, so a SAT-

URATION flag is set to high, and the final results will be rounded by truncation of the

specified chunk without adding one.

4.3.2 Common exponent

The block diagram of Common Exponent Scale is shown in figure 4.4. There are N

samples at the input each having an exponent of 3 bits, these exponents are first compared

to give the maximum exponent in the MAX sub-block. The difference between each

samples’ exponent and the maximum found exponent is then computed and used to scale

the IQ parts of that sample. While down scaling samples with the difference between

exponents. Rounding is used in RND sub-block to ensure a low quantization noise in a

similar fashion to Dynamic Scale block, i.e. rounding half-up to nearest.

The ports of Common Exponent Scale entity includes:
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Figure 4.4: Common Exponent Scale block diagram

Exponent(3-bit) Q or imaginary part(16-bit) I or real part(16-bit)

0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

34 31 15 0

Table 4.4: I, Q and Exponent parts of each sample provided as input for Common Expo-

nent

1. SAMPLE_NUM_G: Generic specifying the number of input samples.

2. DATA_I: Vector of all provided samples.

3. EXPO_O: The maximum exponent out of all provided sample exponents.

4. DATA_O: Vector of all samples after being scaled down and rounded. Only I and

Q parts are provided, while the original exponent is discarded.

Each sample of the DATA_I input vector has the format specified in table 4.4.

Common Exponent Scale can be functionally divided into two sub-blocks, these are:

1. MAX
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2. Resize.

3. RND.

MAX

The exponent of each sample is extracted and fed into a binary tree of max finder, while

IQ parts are sent further for scaling. There is one MAX sub-block instance in Common

Exponent Scale for all provided input samples. The input Width of this MAX sub-block

corresponds to SAMPLE_NUM_G generic when instantiated.

Resize

To reuse the same Rounding sub-block used in Dynamic Scale Pre and Post DSP multipli-

cation, which always rounds the input width down by 1 bit, IQ samples should be resized

accordingly. Only one of the two following cases are possible:

1. Sample should be scaled down by 1 or more bits.

2. Sample does not require any down scaling.

This is found by subtracting the sample’s exponent from the maximum found as discussed

in the previous chapter. In the first case, the sample is truncated by as much down scaling

bits as required minus 1, this LSB will be rounded and cut in RND sub-block. The sample

will have a 0 LSB appended in the second case, which will be truncated in RND sub-block

without changing the rounding results. The following listing provides a psudo code details

of the previous two steps:

1 P_COMPEXP:process(clk)

2 variable DIFF_V : integer;-- range 0 to 7;

3 begin

4 if (clk’event and clk = ’1’) then

5 DIFF_V := 0;
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6 -- compare every sample’s exponent with the maximum exponent by

subtraction.

7 FIND_DIF: for I in 1 to SAMPLE_NUM_G loop

8 DIFF_V := COM_EXP - DATA_R(35*I-1 downto 35*I-3);

9 if DIFF_V > 0 then -- first case.

10 QDATA_R0(I-1)<= resize (QDATA_R(16*I-1 downto 16*I-16+DIFF_V

-1), 17);

11 IDATA_R0(I-1)<= resize (IDATA_R(16*I-1 downto 16*I-16+DIFF_V

-1), 17);

12 else -- no right shift required, ’0’ is appended

13 QDATA_R0(I-1)<= resize (QDATA_R(16*I-1 downto 16*I-16+DIFF_V)

, 16)&’0’;

14 IDATA_R0(I-1)<= resize (IDATA_R(16*I-1 downto 16*I-16+DIFF_V)

, 16)&’0’;

15 end if;

16 end loop;

17 end if;

18 end process;

Listing 4.4: Finding the sample Exponent in DS core

RND

There are two Rounding half-up sub-blocks for each IQ sample, one for imaginary part

and one for real part. The number of generated pairs of Rounding sub-blocks equals to

the number of parallel processed samples.
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Figure 4.5: Rounding ports block diagram



5 Performance

5.0.1 Synthesis results

Dynamic Scale

The synthesising result for the Dynamic Scale Wrapper Block in terms of ALMs in Quar-

tus is equal to 7,000 from a total of 933,120, meaning that the usage is 0.75% of the total

FPGA ALMs. The number of DSPs used in this synthesis is 32 since the number of input

samples is 16, where each sample has an imaginary and real parts to be multiplied. The

achieved maximum frequency or Fmax is 528.82 MHz under operating temperature of

100 Degrees Celsius and 850 mV. A single Dynamic Scale block has utilisation of 354

ALMs and 2 DSP blocks. Total Thermal Power Dissipation in Dynamic Scale Wrapper

(total) equals to 21821.99 mW. While the Core Dynamic Thermal Power Dissipation is

465.05 mW.

Common Exponent Scale

When synthesising the Common Exponent Scale Block for 16 input samples the achieved

ALM results is 3,116 out of 933,120 which is around 0.33% usage of the total FPGA

ALMs. The maximum frequency Fmax achieved under stress conditions of 100 Degrees

Celsius for 850 milli-Volts is 627.35 MHz. Total Thermal Power Dissipation for Com-

mon Exponent Scale equals to 21643.16 mW. While the Core Dynamic Thermal Power

Dissipation is 302.28 mW.

More details can be found in the Appendix A.
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IP block ALMs Area DSP Fmax Total Power

Dynamic Scale 7000 0.75% 32 528.82 MHz 21821.99 mW

Common Exponent 3116 0.33% 0 627.35 MHz 21643.16 mW

Table 5.1: Synthesis results

5.0.2 Matlab

Matlab offers 5G toolbox for testing throughput of Public Shared Channel (PUSCH) in

up-link path. [17] The Dynamic scale C model is integrated to the path using a Matlab

executable (MEX) wrapper. The results of FFT function is tunnelled into Dynamic scale

to test the quantization and functionality. Because the C model should give a bit accurate

representation, IQ parts of samples at the input are declared as int type instead of float,

this allows a maximum of 32 bits for each I and Q separately, while the Hardware input

ports have a maximum of 29 bits for each. IQ samples at FFT output theoretically should

not exceed 29 bits for FFT window size of 4096 or less. Matlab FFT function gives

complex float numbers as output, to cast those float samples into integers with 15 bits

for the fractional part as in the previously mentioned format in 2.1, IQ parts of samples

are multiplied with 215 then fed into the mex wrapper. The mex wrapper also takes the

FFT window size as a parameter in order to normalize samples correctly. At the output

of Dynamic scale, Samples are divided by 215−bLog2(
√
FFT_SIZE)c to cast them back to

floating numbers with the corresponding power.

Throughput

Matlab 5G toolbox testing throughput performance has an FFT window size of 1024 sam-

ples. The simulation is ran for 5 frames of 10 ms for SNR range [-3 8] with a step of 1

and HARQ re-transmission disabled. Due to the limited control parameters that can be

defined in the toolbox provided by Matlab, signals replicating a multiple UEs scenario
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cannot be tested, thus the FFT output is limited to a maximum of 2 digits for the inte-

ger part of IQ samples. i.e. the range of samples at FFT output is ] − 3.000, 3.000[ for

both imaginary and real parts. By default these numbers are not large enough to pro-

duce an exponent to test the quantization effect of dynamic scale, instead, to test the

effect of dynamic scale block on samples, less bits of sample’s fractional part are used.

for example a 256 QAM and 1024 FFT size has the following complex float sample at

the output 2.321 + i1.922 which is equal to 10.0101001000101101000011100101...2 +

i1.11101100000010000011000100100...2 in binary. Full precision of Fixed-point has

15 bits given for the fractional part thus the sample becomes 10.01010010001011012 +

i1.11101100000010002 or 2.320 + i1.921 in decimal, introducing a quantization error of

0.001. Reducing the number of fractional part digits using Dynamic scale to measure

quantization for 1024 FFT size and 256 QAM from 15 bits to 1 bit gives the results in fig-

ure 5.1. The figure shows that when using only 1 bit for the fractional part the throughput

does not reach reach 100 since the quantization error is very large. Using 2 bits achieves a

throughput of 100 at higher Signal-to-Noise Ratio (SNR) than using more bits. When us-

ing 3 bits or 4 bits as fractional part the same throughput is achieved, which falls slightly

behind the full precision floating point in SNR ranging from 4 to 7. When using 5 bits or

more to represent the sample’s fractional part, the same throughput is achieved as using

full precision floating point.

Quantization

When reducing the amount of bits used in the fractional part more quantization is in-

troduced, this is due to loss in precision when representing fixed-point numbers using

floating-point numbers. Matlab offers a quantizer function that defines the number of

bits for both integer and fractional parts using a fixed-point representation on input to

introduce quantization noise. quantizer([11 5], ’fixed’, ’nearest’);. When 5 bits for the

fractional part are specified for both Matlab Quantizer and Dynamic Scale input the result-
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Figure 5.1: Dynamic scale block diagram
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Figure 5.2: Dynamic scale block diagram

ing quantization error can be viewed in figure 5.2. Five bits are chosen for the fractional

part because it provides the same throughput as the full precision floating-point during

the simulation. The Dynamic scale fixed-point maximum and average quantization for all

5 frames to each SNR is collected and compared against Matlab quantize function. The

results in figure 5.2 shows that using Dynamic scale introduces less quantization error on

average for SNR between -1 to 6. While achieving also less maximum quantization error

than Matlab for SNR range from 0 to 4 dB.



6 Discussion

6.1 Conclusion

Careful planning and methods of approaching the solution of any problem can mitigate

bad implementation decisions. This thesis work started by defining the basic mathemat-

ical concepts in 5G and LTE to give a good perspective on where the project can be

deployed, then the mathematical building blocks of needs implementing were explained

in details, and the Hardware constraints imposed by the platform architecture were also

defined, and finally the implementation itself was discussed. During the implementation

phase, many changes and modifications were made to the design to give better overall

performance, this required early performance testing and verification, so test-benches and

C reference models integrated into Matlab were developed in parallel with the RTL de-

sign. The downside of this is that any design changes repelled through all three stages of

C reference Model, Matlab, and of course the RTL design itself.

6.2 Further work

A more thorough and complex testing scenarios that covers wider signals spectrum can

be implemented to test the effects of higher exponents on the overall SNR of the system,

however this partially done on proprietary Nokia tools and the results were not authorised

to be shared in the scope of this thesis.
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Appendix A Resource Usage

A.1 Dynamic Scale
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Figure A.1: Dynamic Scale Wrapper Resource Usage
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Figure A.2: Dynamic Scale Wrapper Resource Usage
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Figure A.3: Dynamic Scale Wrapper Resource Usage

A.2 Common Exponent Scale
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Figure A.4: Common Exponent Scale Resource Usage
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Figure A.5: Common Exponent Scale Resource Usage
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Figure A.6: Common Exponent Scale Resource Usage


