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To mitigate global warming and its adverse effects, more sustainable alternatives for the 

fossil fuel-based production of energy and chemicals are needed. Acetogenic bacteria can 

reduce the greenhouse gas CO2 into hydrocarbons like acetate using reducing equivalents 

supplied via a cathode in a bioelectrochemical system. However, the production process 

needs improvements to enable cost-effective production in an industrial scale. 

To improve the process, a fluidized bed reactor (FluBR) was tested to enhance mass 

transfer. The tubular cathode chamber inside the cylindrical anode chamber hosted a 

mixed culture of acetogens and activated carbon granules, which were fluidized at a flow 

rate of 170 mL/min. As a control for fluidization, a fixed bed reactor (FixBR) was 

prepared by replacing the bed material with heavier graphite granules, while the flow rate 

was 250 mL/min. 

Both reactors supported bioelectrochemical production of acetate reaching their peak 

performance 14 days after the acetate production had started. The maximum volumetric 

productivity was 0.21 g/L/d in the FluBR and 0.22 g/L/d in the FixBR while 37 % and 

40 % of the electrons provided by the cathode were assimilated into acetate in the FluBR 

and the FixBR, respectively. 

The performance of the FixBR and the FluBR were similar, but the differences between 

the reactor setups could have affected the results. The reactors need to be further tested 

for comparable results and optimized to improve the acetate production. 

Keywords: Bioelectrochemical system, Biological fluidized bed, Mixed reactor 

microbiome, Acetogenesis
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Ilmastonmuutoksen ja sen haittavaikutuksien vähentämiseksi tarvitaan kestävämpiä 

vaihtoehtoja fossiilisille polttoaineille ja kemikaaleille. Mikrobielektrosynteesissä 

asetogeeniset bakteerit käyttävät katodilta saatuja elektroneja hiilidioksidin 

pelkistämiseen muodostaen hiilivetyjä kuten asetaattia. Jotta menetelmää voitaisiin 

käyttää kustannustehokkaasti teollisessa mittakaavassa, tuottoprosessia pitäisi parantaa. 

Työn tarkoitus oli parantaa mikrobielektrosynteesin tehokkuutta parantamalla 

massansiirtoa leijupetireaktorin avulla. Reaktorin sylinterimäisen anodikammion sisällä 

oli putkimainen katodikammio, jossa kasvatettiin asetogeeneja sisältävää sekaviljelmää. 

Katodikammioon lisättiin aktiivihiilirakeita, joita leijutettiin 170 ml/min 

virtausnopeudella. Leijupetireaktorin kontrollina käytettiin muuten samanlaista 

kiintopatjareaktoria, jossa aktiivihiilirakeiden sijaan käytettiin raskaampia 

grafiittirakeita, joiden läpi kasvatusmediumia kierrätettiin 250 ml/min virtausnopeudella. 

Molemmat reaktorit tukivat asetaatin biosähkökemiallista muodostusta saavuttaen 

suurimmat tuottonsa ja tehokkuutensa 14 päivää asetaatin tuoton alkamisen jälkeen. 

Suurin volumetrinen tuottavuus oli 0.21 g/L/d leijupetireaktorissa ja 0.22 g/L/d 

kiintopatjareaktorissa. Lisäksi leijupetireaktorissa enimmillään 37 % ja 

kiintopatjareaktorissa enimmillään 40 % katodilta saaduista elektroneista hyödynnettiin 

asetaatin tuottoon. 

Reaktorien tulokset olivat lähes samanlaiset, mutta reaktorien väliset erot esimerkiksi 

virtausnopeudessa ovat voineet vaikuttaa tuloksiin. Reaktoreita tulisi siis tutkia ja kehittää 

edelleen vertailukelpoisempien tulosten sekä parempien tehokkuuksien ja tuottavuuksien 

saavuttamiseksi. 
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1 Introduction 

Fossil fuels have fulfilled the energy demand for the economic growth especially since 

the industrial revolution due to their advantages (Wringley 2013). They are energy-rich, 

available almost at all times and easily stored (Wrigley 2013), but in addition to being an 

energy source, they are suitable for other applications too. They can also be used in the 

chemical industry sector as feedstock to produce plastics and other hydrocarbons (Levi 

and Cullen 2018). 

However, burning fossil resources release carbon, which increases the atmospheric CO2 

levels, which in turn raises the global temperature causing adverse environmental effects. 

Climate change can drive species to extinction, raise the sea level and increase the 

recurrence as well as the severity of storms, which may also affect human life. (Pandey 

2002.) To alleviate the impacts of climate change, it is important to find renewable 

replacements for fossil fuels. Renewable energies such as solar energy have become 

accessible in the energy markets and have become available to the public, but their 

production is dependent on the weather or the sunny hours (Maric and Yu 2019). At the 

same time, nuclear power provides a more continuous electricity supply, but its 

environmental benefits are debated (Groh and Möllendorff 2020; Kim and Alameri 2019). 

The advantage of electricity is its wide range of applications; it can light a bulb or fuel 

electric cars among other possibilities. Additionally, the excess electricity of intermittent 

renewable power could be stored to cover the non-productive phase (Maric and Yu 2019). 

On the other hand, the advantage of fossil fuel as a liquid fuel in the first place is the 

possibility to store it efficiently and use it on demand. Thus, a liquid fuel and chemical 

commodities from a renewable energy source, could have the advantages of a fossil fuel 

while providing a sustainable and environmentally friendly option (Marshall et al. 2012; 

Zhang and Angelidaki 2014). 

However, the production of liquid fuels and chemicals from renewable energy sources by 

cultivating plant biomass on land is unsustainable, because the preparation of soil and the 

clearance of forests release carbon fixed in the biomass as well as in the soil. Production 

on agricultural land is not attractive unless the land has been left aside from food 

production. (Fargione et al. 2008.) On the same grounds, utilizing plant-based products 

(e.g. glucose) as substrates to produce chemicals such as ethanol could be conflicting. 
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The idea of converting atmospheric CO2 into a product is appealing, and also some 

microorganisms are capable of turning CO2 into value-added compounds and fuels 

without farmland (LaBelle et al. 2014). For the conversion of CO2, the microorganisms 

need a power source, which could be the momentary excess electricity of renewable 

energy in an electrochemical cell (Marshall et al. 2012; Zhang and Angelidaki 2014). 

1.1 Bioelectrochemical systems 

Bioelectrochemical system (BES) is a combination of a bioreactor and an electrochemical 

cell, where the anode accepts electrons from oxidative reactions and the cathode donates 

electrons for reductive reactions (Krieg et al. 2018). In BES, microorganisms are 

introduced into the electrochemical system to function as the biocatalyst on the electrodes. 

Furthermore, the electrode catalysing the reactions of interest is the working electrode 

while the opposite electrode is the counter electrode. (Krieg et al. 2014.) 

The mechanisms of the microbes to uptake or donate electrons extracellularly relies on 

extracellular electron transfer (EET), which can be direct or indirect depending on 

microbial capabilities and the involvement of electron carriers. In the case of indirect 

EET, the transfer is mediated by external electron carriers found in the environment or 

produced by some bacteria. The mechanisms of the direct EET are not fully understood, 

but biofilm plays an important role, in which conductive appendages in the cell membrane 

could mediate electrons between the cell and the electrode. (Kracke et al. 2015.) 

Some anaerobic and usually acetogenic or methanogenic bacteria can potentially utilize 

an anode or/and a cathode for redox reactions. The reaction products depend greatly on 

the type of bacteria and the electrochemical mode of operation in addition to other factors. 

(Nevin et al. 2010; Zhang and Angelidaki 2014.) 

1.1.1 Biotic anode applications 

The biological treatment of wastewater requires energy. To make it more economical and 

efficient, different ways to produce energy or biofuels have been integrated into 

wastewater treatment. The biotic anode applications of BES could be used in wastewater 

treatment to generate electricity in a microbial fuel cell (MFC) or to produce biogas in a 

microbial electrolysis cell (MEC). (Haavisto et al. 2017; Zhang and Angelidaki 2014.) 

According to Khanal (2008a) the redox reactions in MFC are similar to a hydrogen fuel 

cell, where H2 is oxidized at the anode into electrons and protons, which are used at the 
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cathode to reduce O2 into water as seen in Figure 1A (Khanal 2008a). Instead of H2, 

organic matter is fed into the anodic chambers of MFC and MEC to be oxidized into CO2 

by anaerobic microbes, with concomitant release and transfer of electrons to the anode 

(Figure 1B & 1C). The transfer of electrons to the anode can be captured as electricity in 

MFC, whereas an additional power source is needed in MEC to make the formation of 

energy carrier like H2 thermodynamically possible. (Logan et al. 2006; Rabaey and 

Rozendal 2010; Rozendal et al. 2006; Zhang and Angelidaki 2014.) 

 

Figure 1. (A) In a hydrogen fuel cell, oxidation of hydrogen at the anode and formation 

of water at the cathode generates electricity. (Adapted from Paul et al. 2019) (B) In 

microbial fuel cell, microbes oxidize organic compounds anaerobically at the anode, 

generating electricity. (Adapted from Vassilev 2019). (C) Additional power is needed in 

a microbial electrolysis cell to form e.g. hydrogen at the cathode anaerobically when 

anaerobic microbes oxidize organic matter at the anode (Adapted from Vassilev 2019).  

1.1.2 Microbial electrosynthesis – a biotic cathode 

The redox reactions can also be triggered by applying electric potential if the reactions 

were otherwise be thermodynamically unfavourable in their ambient conditions such as 

the formation of H2 under nearly neutral pH (Logan et al. 2019). One such example is an 

electrolytic cell, where an external current is applied to oxidize water into O2 and protons 
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at the anode, and to reduce the protons into H2 at the cathode (Figure 2A). A proton 

permeable membrane is used to separate the two chambers while enabling the diffusion 

of the protons from the anode to the cathode. (Maric and Yu 2019.) Additionally, 

microbial electrosynthesis (MES) converts electrical energy and CO2 into chemical 

compounds using microorganisms as catalysts at the cathode (Figure 2B) (Blanchet et al. 

2015). 

 

Figure 2. (A) In the electrolysis of water, the water is oxidized at the anode and the 

released protons are then reduced into hydrogen at the cathode (Adapted from Maric and 

Yu 2019). (B) The same redox reactions happen in a microbial electrosynthesis (MES), 

but the anaerobic acetogens can utilize the hydrogen or electrons directly from the 

cathode to reduce CO2 into acetate (Adapted from Vassilev 2019). 

The cathode in MES hosts autotrophic homoacetogens or hydrogenotrophic 

methanogens, both of which can reduce CO2 (Molenaar et al. 2017). The homoacetogenic 

bacteria can reduce CO2 into volatile fatty acids (VFA) such as acetate as seen in Figure 

2B while the (hydrogenotrophic) methanogenic bacteria can reduce CO2 into methane. In 

an anaerobic, syntrophic culture, the acetogens and the methanogens can acquire the 

reducing equivalents in form of H2, produced by heterotrophic hydrogen-producing 

bacteria breaking up organic acids (Figure 3). (Khanal 2008b.) The bacteria can also 

utilize H2 produced at a cathode or they can accept the electrons directly from the cathode, 

but the indirect EET via the electrochemically produced H2 requires lower cathodic 

potential making it less efficient (Rabaey and Rozendal 2010). On the other hand, biofilm 

can improve the efficiency of the H2 production by reducing the overpotential caused by 

the activation energy, which is required to induce the electrochemical production of H2 

(Jourdin et al. 2018; Paul et al. 2019; Santos et al. 2018 ; Rabaey and Rozendal 2010). 
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Figure 3. Schematic of methanogenesis (yellow), homoacetogenesis (blue), chain 

elongation (violet) and solventogenesis (red). CO2 and H2 are converted into CH4 by 

hydrogenotrophic methanogens and into acetate by homoacetogens, respectively. 

Acetotrophic methanogens can convert acetate into methane. Longer VFAs can further 

be produced through chain elongation and the VFAs can be turned into alcohols via 

solventogenesis. (Adapted from Khanal 2008b; Vassilev et al. 2018.) 

Acetogenesis coupled with MES is favourable due to the production of VFAs, which have 

multiple applications as plasticizer, biofuel and so forth (Jourdin et al. 2018). Acetate is 

synthesised via the Wood-Ljungdahl pathway, which goes through the acetyl 

coenzyme A (Acetyl-CoA) yielding acetate. The acetyl-CoA as well as acetate can be 

converted into longer VFAs via chain elongation or into alcohols via solventogenesis in 

a mixed culture (Figure 3). (Vassilev et al. 2018.) The electrons can also be consumed by 

unwanted reactions. Some heterotrophic, acetotrophic methanogens can also convert 

acetate into methane and back to CO2 while the hydrogenotrophic methanogenesis 

competes with the acetogenesis for the same substrates (Figure 3) (Khanal 2008b). 

Moreover, the acetate and methane production depend greatly on environmental factors 

like pH and the partial pressure of H2 (pH2). However, H2 as well as CO2 have low 

solubilities, which could limit their availability to microorganisms, and thus the efficiency 

and performance of MES (Bajracharya et al. 2016; Blanchet et al. 2015; Saady 2013). 

The concentration in the liquid phase could be increased by increasing the partial 

pressure, because the concentration of a gas in the liquid phase is relative to the partial 

pressure in the gaseous phase according to Henry’s law (Sharma 2008). 

The effects of the pH and the pH2 are illustrated in Figure 4. In MES, the conversion of 

CO2 and H2 into acetate require a high pH2 and prefers a neutral pH above 6, but the 

hydrogenotrophic methanogenesis requires a lower pH2 and preferably a slightly alkaline 
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pH (Molenaar et al. 2017; Vassilev et al. 2019). Thus in mixed cultures, the methane 

production can be inhibited by controlling the environmental factors (LaBelle and May 

2017), but also with chemicals such as 2-bromoethanesulfonic acid (Marshall et al. 2012; 

2013). VFAs can be further reduced into alcohols under mildly acidic (pH ~ 5) conditions 

(Ganigué et al. 2016), in addition to which Batlle-Vilanova et al. (2017) reported that the 

production of ethanol could additionally need a even higher pH2. It has been suggested 

that acetate and ethanol can be converted into butyrate, which can further be reduced into 

caproate, both through reverse β – oxidation chain elongation (Batlle-Vilanova et al. 

2017). 

 

Figure 4. The effect of environmental factors into methanogenesis, acetogenesis, 

solventogenesis and the chain elongation. The ideal pH for methanogenesis is a mildly 

alkaline, but near neutral for acetogenesis. The solventogenesis prefers a pH near 5 and 

the ethanol production has additionally been reported to require a higher partial pressure 

of H2 (pH2). The chain elongation through β-reverse oxidation would also require acetate 

and ethanol to form butyrate and caproate. 

The environmental conditions also affect the electrochemical properties of 

electrochemical cells and MES. Increase in the pH2 and pH would increase the demand 

for electricity, because the thermodynamic equilibrium potential (Et) would become more 

negative according to Nernst equation for H2 evolution as seen in the following equation 

modified from Blanchet et al. (2015) and Vincent et al. (2007). 
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𝐸𝑡 = 𝐸0 −
2.3 ∙  𝑅 ∙  𝑇

𝑛 ∙  𝐹
 ∙ (2 · pH +  log(𝑝𝐻2)) (1) 

where E0 is the standard cathodic potential for H2 evolution, R the gas constant, T the 

temperature, n the moles of electrons (2) needed to produce a mole of H2, and F the 

Faraday constant (96,485 C/mol) (Blanchet et al. 2015; Santos et al. 2018; Vincent et al. 

2007). E0 is 0 V vs. standard hydrogen electrode (SHE) when the H2 forms from protons 

(Maric and Yu 2019). In practice however, overpotential makes the onset potential of 

reductive reactions more negative and the onset potential of oxidative reactions more 

positive than the thermodynamic equilibrium potential (Paul et al. 2019). 

1.2 Analysing bioelectrochemical systems 

Multiple reactor configurations as well as operation methods from batch to continuous 

feeding of CO2 or medium with varying compositions have been used making a 

comparison of MES results from different research groups challenging (Krieg et al. 2018; 

LaBelle et al. 2014; LaBelle and May 2017; Marshall et al. 2013). Therefore, different 

methods for analysing the performance of BES are used to help evaluate the results and 

to compare them with the literature. 

1.2.1 Biological activity 

The performance of the MES producing acetate or methane can be evaluated by the 

volumetric productivity (g/L/d), whereas in an MFC, the removal efficiency of chemicals 

in wastewater mirrors the productivity. One commonly used parameter regarding 

wastewater is the chemical oxygen demand (COD), which is the stoichiometric amount 

of oxygen required to oxidize the organic matter in the wastewater. (Bajracharya et al. 

2016; Kong et al. 2011.) 

1.2.2 Coulombic efficiency – conversion efficiency of electricity 

Because of the differences between the studies, comparing e.g. the volumetric acetate 

productivities of different MES setups can be challenging. This can partly be solved with 

coulombic efficiency (CE) (Krieg et al. 2018), which describes the efficiency of MES to 

capture the electrons provided by the cathode into the product in MES (Equation 2) 

(Bajracharya et al. 2016). 

𝐶𝐸 =
𝐹 ∙ 𝑧 ∙ 𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑡

∫ 𝐼𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 ∙ 𝑑𝑡
∙ 100 % (2)  
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where z is the number of electrons stoichiometrically needed to form n moles of the 

product and Iconsumed is the current supplied over a time period dt also known as charge. 

(Bajracharya et al. 2016; Krieg et al. 2014.) The stoichiometric number of electrons 

required to produce acetate and butyrate are 8 electrons and 20 electrons according to 

Equations (3) and (4), respectively. 

2 𝐶𝑂2 + 8 𝑒− + 7 𝐻+  →  𝐶2𝐻3𝑂2
− + 2 𝐻2𝑂 (3) 

4 𝐶𝑂2 + 20 𝑒− + 19 𝐻+  →  𝐶4𝐻7𝑂2
− + 6 𝐻2𝑂 (4) 

Equation (2) is inverse in the case of MFC (Equation 5), where the CE reflects the number 

of electrons used in generating a current versus the electrons available in the organic 

compounds (Krieg et al. 2014). 

𝐶𝐸 𝑖𝑛 𝑀𝐹𝐶 =
∫ 𝐼𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ∙ 𝑑𝑡

 𝐹 ∙ 𝑧 ∙ 𝑛𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
∙ 100 % (5)  

1.2.3 Cyclic voltammetry – electrochemical properties 

The electrochemical properties such as overpotential of a BES reactor affect the 

bioelectrochemical reactions. Cyclic voltammetry (CV) is used to determine onset 

potential or overpotential for a reaction in a given system (Li et al. 2018). To run a CV, 

a reference electrode with a known potential is placed close to the working electrode. A 

potentiostat is used to scan potentials and record the resulting currents at the working 

electrode in one direction and back to make at least one cycle. (Logan et al. 2006.) The 

potentials are then plotted against the resulting currents in a voltammogram, in which the 

onset potential is the potential, after which the current starts a more rapid decrease or an 

increase in reductive or oxidative reactions, respectively (Li et al. 2018; Logan et al. 

2006; Paul et al. 2019). 

1.2.4 Polarization curve – generated power density 

Similar to a CV, a polarization curve shows the relationship of a potential to a current, 

and it can be used to calculate the maximum achievable electric power in MFC. The 

polarization curve can be run with a potentiostat or with a variable resistor, which is used 

to change the external resistance and to measure the resulting voltage. According to 

Ohm’s law, the current and the power can be calculated when the resistance and the 

voltage are known. (Logan et al. 2006.) 
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1.3 Bioelectrochemical reactor parameters 

One of the challenges in the research about BESs is the lack of standardized reactor 

systems. Because of limited number of readily available reactors suitable for 

bioelectrochemical applications, the majority of the bioelectrochemical cells used are 

custom-made or modified commercial bioreactors. (Krieg et al. 2018.) However, all the 

electrochemical systems have at least a working electrode and a counter electrode, and 

usually a semi-permeable separator as seen in Figures 1 and 2. In three-electrode cell 

systems, a reference electrode is placed close to the working electrode to enable applying 

or recording a known potential (Krieg et al. 2014). 

1.3.1 Electrode material 

Electrode properties are important in electrochemical cells as well as in BES for the redox 

reactions and the interaction between the bacteria and the electrodes. In addition to being 

good conductors (Krieg et al. 2018), the electrode should be cheap, support cell growth 

and be nontoxic to the bacteria (Sharma et al. 2019). The material should also have a high 

surface to volume ratio (SVR) for sufficient mass transfer and to endorse the formation 

of biofilm necessary for the direct EET, which promotes the performance of BES (Dong 

et al. 2018; Jourdin et al. 2016; Kracke et al. 2015; Krieg et al. 2018). 

While metals may be good conductors, they can be expensive in larger quantities as the 

material for the biotic electrode. However, smaller pieces of metal can be used as the 

current collectors that conduct electricity to cheaper electrode materials like carbon, 

which is conductive, cheap and biocompatible. (Krieg et al. 2018; Sharma et al. 2019.) 

Carbon as an electrode material is also diverse; it has been deployed as rods, felts and 

granules, some of which can be seen in Table 1. 
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Table 1. The effect of carbon-based electrode material on the acetate production in MES. 

Volumetric productivities and coulombic efficiencies of acetate achieved using different 

materials in a batch or a semi-batch cultivation in the literature. The semi-batch in here 

is a batch with continuous or regular supply of CO2. 

Electrode Productivity 

(g/L/d) 

CEa 

(%) 

Operation Paper 

4 g/L GACb + 

carbon felt  

0.10 63 Semi-batch, 24 

days 

(Dong et al. 

2018) 

16 g/L GACb + 

carbon felt 

0.14 65 Semi-batch, 24 

days 

(Dong et al. 

2018) 

400 g/L graphite 

granules + 9.0 cm2 

graphite rod 

0.24 (max) N/A Semi-batch, 10 

days 

(Marshall et al. 

2012) 

10 cm2 graphite rod 0.22 (max) 40 

(max) 

Batch, 4 days  (LaBelle et al. 

2014) 

1000 g/L graphite 

granules + 2 cm2 

graphite rod 

3.1 (max) N/A Semi-batch, 20 

days 

(LaBelle et al. 

2014) 

37 cm2 multiwalled 

nanotube with 

reticulated vitreous 

carbon  

0.37  99 Batch with 

HCO3
- additions, 

63 days 

(Jourdin et al. 

2016) 

aAbbreviation: CE, Coulombic efficiency. bAbbreviation: GAC, Granular activated 

carbon. 

In some studies, the increased total area of the cathode improved the performance of MES 

resulting in higher acetate production as can be seen in the Table 1. LaBelle et al. (2014) 

and Marshall et al. (2012) reported higher volumetric production rates when the amount 

of graphite granules and/or the area of the graphite rod was increased. Additionally, Dong 

et al. (2018) observed that increasing the amount of granular activated carbon (GAC) at 

the cathode increased the acetate concentration produced. Because the volume was 

constant with all the GAC concentrations, the volumetric productivity also increased with 

increasing GAC concentration. Jourdin et al. (2016) reported an even higher volumetric 

production rate with a highly porous cathode than what was reported with the graphite 

materials and the GAC listed in Table 1. Though increasing the surface area of the cathode 

may not always improve the production and performance due to the electrode properties 

or other limitations (Bajracharaya et al. 2016; Jourdin et al. 2016). 

To improve the bioavailability and the mass transfer of continuously fed CO2, 

Bajracharya et al. (2016) used a gas diffusion electrode (GDE) as the cathode in MES. 

The maximum production rate reached was 0.24 g/L/d, which is similar to the 400 g/L of 

the graphite granules and the graphite rods seen in Table 1, but lower than, what for 

instance Jourdin et al. (2016) observed with a high SVR cathode. Bajracharya et al. 
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(2016) noted that CO2 was not the limiting factor for the acetate production, but rather 

the other factors such as the availability of the electrons, because the production rate was 

lower than what it could theoretically have been with the CO2 supply. 

1.3.2 Separators  

In MES, the diffusion of oxygen from the anode to the cathode could be detrimental to 

the obligatory anaerobic acetogens, but it could also cause an electron loss by unwanted 

reactions or enable microbial aerobic break down (oxidation) of the products (Batlle-

Vilanova et al. 2017; Blanchet et al. 2015; Vassilev et al. 2018). To avoid this and 

possible short circuits, the anode and the cathode need to be separated (Krieg et al. 2018). 

BES reactors can be roughly divided into two categories based on the separation: single-

chamber and two-cell reactors. In single-chamber reactors, the electrodes are in the same 

space, while in the two-chamber reactors, the electrodes are separated with a selective 

separator that still allows the diffusion of ions from the anode to the cathode. In the single-

chamber reactors, the unwanted mixing of the products can be avoided by increasing the 

distance between the working and counter electrodes, but this increases the internal 

resistance. However, the electric resistance of separators such as ion exchange 

membranes (IEM) can increase the internal resistance as well, but a separator also enables 

shorter distance between electrodes, which in turn reduces the internal resistance. (Krieg 

et al. 2018.) 

IEMs are important to achieve the production of acetate and other VFAs at high rates with 

high efficiencies. They include anion exchange membranes (AEM), proton exchange 

membrane (PEM) and cation exchange membranes (CEM), which allow a selective 

migration of anions, protons and cations, respectively (Gildemyn et al. 2017; Krieg et al. 

2018; Krieg et al. 2014). Because acetate is negatively charged, it would migrate to the 

anode, if the sole separator between the electrodes was an AEM (Gildemyn et al. 2017). 

However, Gildemyn et al. (2017) added an AEM between the CEM and the cathode for 

the simultaneous extraction of acetate. They observed a higher production and efficiency, 

because the acetate levels stayed below inhibitory levels at the cathode (Gildemyn et al. 

2017). Furthermore, Vassilev et al. (2019) utilized a similar CEM-AEM combination to 

introduce a second cathode chamber separated by an AEM from the first cathode 

chamber. The pH could be low enough for simultaneous solventogenesis in the second 
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cathode chamber while still having the optimal pH for acetogenesis and chain elongation 

in the first cathode chamber. 

1.4 Reactor models applied in microbial electrosynthesis to 

produce acetate 

1.4.1 Concentric tubular reactor 

Possibly the first reported BES reactor was a concentric tubular reactor, where Potter 

(1911) introduced yeast Saccharomyces cerevisiae and observed a current being 

generated. In concentric tubular reactors, a cylindrically shaped container is placed inside 

an outer tubular reactor, which contains the opposite electrode. The cylinder either has an 

opening for a semi-permeable separator or the cylinder itself is completely made from a 

porous or semi-permeable material such as an IEM. (Figure 5) (Batlle-Vilanova et al. 

2017; Krieg et al. 2018; Potter 1911; Vassilev et al. 2018.) 

 

Figure 5. A concentric tubular reactor. The cylinder (darker blue) separating the outer 

and inner chambers can be completely semi-permeable, or a semi-permeable window can 

be introduced onto the cylinder. The anode can be in the inner chamber and the cathode 

in the outer chamber or reverse. (Adapted from Krieg et al. 2018.) 

A concentric tubular reactor is relatively adaptable in terms of sizing and operation 

methods. To test the effect of the porosity level of the cathode on the performance of 

MES, Jourdin et al. (2016) built a concentric tubular reactor in a bottle, where a small 

compartment for the anode was added, resembling the reactor in Figure 5 (Jourdin et al. 

2016). Batlle-Vilanova et al. (2017) constructed a bigger reactor, where the inner chamber 

was inside a tubular CEM hosting a carbon cloth, which served as the cathode. The 

medium was recirculated through the tubular cathode chamber from the bottom to the top. 

Vassilev et al. (2018) constructed a similar reactor with graphite granules serving as the 

cathode in the outer chamber. 
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Batlle-Vilanova et al. (2017) and Vassilev et al. (2018) operated the reactors at mildly 

acidic pH to produce longer VFAs than acetate. Batlle-Vilanova et al. (2017) reported the 

maximum butyrate production of 0.16 g/L/d, which is more than double the 0.07 g/L/d 

reported by Vassilev et al. (2018). Additionally, both systems produced ethanol and 

butanol, although even longer VFAs and alcohols were also produced in the latter case 

(Batlle-Vilanova et al. 2017; Vassilev et al. 2018). 

1.4.2 H-cell reactor 

Some of the simplest two-chambered reactor models include the H-cell reactor, which 

consists of two bottles conjoined together in an H-shape. By mounting a membrane 

between the two bottles, the reactor is divided into anode and cathode chambers, but long 

distance between the electrodes can negatively affect the performance (Figure 6). The 

media in the chambers are mixed with magnetic stirrers. (Krieg et al. 2018.)  

 

Figure 6. An H-cell reactor (Adapted from Krieg et al. 2018). 

However, an H-cell is easy to assemble and it has been used to study simple variables 

such as electrode materials and electroactive bacteria (Dong et al. 2018; Krieg et al. 2018; 

Nevin et al. 2010). For example, the graphite granules and the GAC mentioned in Table 1, 

were tested in H-cell reactors (Dong et al. 2018; LaBelle et al. 2014; Marshall et al. 2012). 

1.4.3 Other two-chambered reactors 

In addition to the relatively easily classifiable and recognizable concentric tubular and H-

cell reactors, a range of scalable two-chambered reactors have been developed. These 

reactors have been built in the labs from different materials with varying dimensions and 
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shapes. (Bajracharya et al. 2016; Jourdin et al. 2018; Krieg et al. 2018; LaBelle and May 

2017.) 

Compared to H-cell reactors, the electrodes can be positioned closer to the membrane and 

each other in flat plate reactors like in Figure 2B (Jourdin et al. 2018; Krieg et al. 2018; 

LaBelle and May 2017). LaBelle and May (2017) and Jourdin et al. (2018) operated flat 

plate reactors in continuous mode increasing the productivity: they reported maximum 

acetate productivities of 18.7 and 9.8 g/L/d, respectively. 

In cube-type reactors, cylindrical compartments are carved into two cubes, which are 

mounted together with a membrane between them to create two cylindrical chambers 

(Figure 7) (Krieg et al. 2018). To study the GDE Bajracharya et al. (2016) built and tested 

a similar reactor from cylindrical rings reaching to the maximum acetate production rate 

of 0.24 g/L/d with continuous CO2 supply. 

 

Figure 7. A cube-type reactor. The chambers are cylinders inside a cube. (Adapted from 

Krieg et al. 2018.) 

1.5 Improved reactor configurations 

Acetate production of MES has been improved, but even when the acetate productivity 

reached as high as 18.7 g/L/d, the production costs together with extraction and 

purification could have exceeded the market price making it unprofitable (LaBelle and 

May 2017). More valuable compounds and further increase in productivity and efficiency 

of MES with lower production costs are needed to make MES profitable, competitive and 

applicable to an industrial scale (LaBelle and May 2017; Marshall et al. 2013; Vassilev 

et al. 2018). In addition to the operation, the reactor also has a great impact on the 

performance (Krieg et al. 2018), and therefore, the economic efficiency could be 

improved with reactor design. 
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1.5.1 Fixed bed reactors 

A bed reactor contains particulate or granular material as the catalytic bed, yielding a high 

SVR and consequently increased reactive area and reaction rate. In fixed bed reactors 

(FixBR) the bed remains settled in a “fixed” position inside of a typically tubular reactor 

while a fluid is passed through the bed to ensure mixing (Figure 8A). The bed material 

serves as the catalyst, but also as the support material for microbial growth in cases of 

biological FixBRs. (Bello et al. 2017; Li et al. 2013; Rabaey et al. 2005; Worstell 2014). 

 

Figure 8. (A) A basic fixed bed reactor (FixBR). (B) A FixBR modified into a two-

chamber microbial fuel cell (MFC), where the tubular anode chamber is inside the 

cylindrical cathode chamber and hosts the bed electrode. Li et al. (2013) used a titanium 

mesh tube (1**) while Rabaey et al. (2005) used a graphite rod (1*) as the current collector 

for the bed at the anode. (Adapted from Li et al. 2013; Rabaey et al. 2005). 

In bioelectrochemical FixBRs, the bed material also serves as the electrode (Quejigo et 

al. 2019), thus the bed should also be conductive. As seen in Table 1, the graphite granules 

and the GAC in the H-cell reactors supported acetate production via MES, so they could 

have potential in FixBR-MES combinations. Additionally, LaBelle et al. (2014) sparged 

CO2 continuously into the cathode chamber filled with the granules, hence the setup might 

have been a FixBR, although not a typical one as defined by Worstell (2014). 

Tubular up-flow FixBRs have been adapted MFC applications, where wastewater has 

been passed through the fixed bed. Rabaey et al. (2005) and Li et al. (2013) constructed 

two-chambered FixBR-MFC combinations, which resembled concentric tubular reactors, 

where the inner chamber was a tube filled with the bed material serving as the anode. As 
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seen in Figure 8B, Li et al. (2013) also added a rolled graphite felt as part of the anode 

and a titanium mesh roll between the membrane and the felt to serve as the current 

collector while Rabaey et al. (2005) embedded a graphite rod in the bed as the collector. 

Rabaey et al. (2005) observed that FixBR could be used in MFC to produce electricity 

and to treat wastewater. Since then FixBR-MFC combinations have been further studied 

and improved. Li et al. (2013) and He et al. (2015) reported higher removal of COD with 

different wastewaters, although the power densities were significantly lower than 48 

W/m3 reported by Rabaey et al. (2005). 

The bed of porous particles provides a higher SVR, hence possibly improves the biofilm 

formation and increases the electrode surface area interacting with the electroactive 

bacteria (Sharma et al. 2019). Regarding MES, FixBR might also provide another 

advantage by increasing the level of dissolved H2 produced at the cathode. According to 

a hypothesis, H2 is formed as dissolved H2 at the cathode before it transfers into gas phase 

after reaching its maximum solubility (Trinke et al. 2017). However, poorer mixing of 

phases in FixBR can limit the liquid-to-gas transfer, which promotes the dissolved H2 to 

exceed its maximum solubility and to supersaturate (Castelló et al. 2020). Subsequently, 

FixBR might increase the bioavailability of H2 and thus the bioelectrochemical acetate 

production (Battle-Vilanova et al. 2017; Patil et al. 2015). 

Nevertheless, FixBRs have some disadvantages. The limited mass transfer can create 

temperature gradients, and excessive microbial growth can clog the bed creating dead 

zones (Castelló et al. 2020; Bello et al. 2017). Due to the distances between the granules 

and the current collector, the distribution of the potential across a bed electrode can be 

heterogenous resulting in a higher internal resistance and possibly affecting 

bioelectrochemical reactions (Hiddleston and Douglas 1970; Quejigo et al. 2019). 

1.5.2 Fluidized bed reactors 

The setup of a fluidized bed reactor (FluBR) resemble that of a FixBR, but the solid bed 

is fluidized with an adequate superficial velocity (volumetric flow rate divided by the 

cross-section) of a gas or liquid through the bed. Increasing the velocity increases the bed 

height, until the fluidization velocity exceeds the maximum velocity causing the particles 

to escape the reactor. (Bello et al. 2017.) 

Fluidization causes the particles to move and behave more like a fluid, which ensures 

better heat distribution and higher mass transfer rates. The movement of the particles 

reduces biomass clogging and fouling of a membrane due to the particles rubbing against 
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the membrane. (Bello et al. 2017.) Because FluBRs have improved biological wastewater 

treatments and pollutant removal treatments (Bello et al. 2017), they could benefit BES. 

However, the distance between the particles and the current collector would be further 

increased when the bed is fluidized, which could potentially reduce the conductivity 

(Hiddleston and Douglas 1970; Kim and Kang 1997; Quejigo et al. 2019). 

Although FluBR has not yet been reported in MES applications, Dong et al. (2018) 

fluidized varying concentrations of GAC with a magnetic stirrer in an H-cell reactor. 

However, due to the experimental setup, the improved performance was attributed to the 

higher surface area when the amount of GAC was increased. Dong et al. (2018) did not 

describe a control for fluidization that would have provided the same surface area with as 

good mixing without fluidization, thus the benefits of fluidization itself are unclear. 

FluBRs have been applied in MFC. Huang et al. (2011) and Gao et al. (2019) combined 

MFC and FluBR, where a tube hosts the anode bed material and has an opening to a 

cathode chamber separated from the anode with a membrane (Figure 9). Kong et al. 

(2011) built an otherwise similar tubular one-chamber FluBR-MFC but without a 

membrane and with an air-cathode attached to the perforated reactor wall. 

 

Figure 9. Examples of fluidized bed reactors (FluBR) combined with a microbial fuel cell 

(MFC) (1. Anode/Current collector 2. Cathode 3. Membrane 4. Bed). FluBR-MFCs built 

by Huang et al. (2011) and Gao et al. (2019) had a tubular anode chamber with a window 

for a cathode compartment (Adapted from Huang et al. 2011). 

Kong et al. (2011) reported higher maximum power densities in a single-chamber FluBR-

MFCs, than what Gao et al. (2019) and Huang et al. (2011) reported in two-chamber 

setups (Table 2). The single-chambered FluBR-MFCs and their bed-free control produced 
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the high maximum power densities possibly due to decreased internal resistance in the 

absence of a membrane (Kong et al. 2011; Krieg et al. 2018). On the other hand, the 

maximum power densities were calculated from polarization curves (Kong et al. 2011), 

hence they are the highest achievable power densities. The treated wastewaters also 

differed between the studies, which could have affected the performance (Gao et al. 2019; 

Huang et al. 2011; Kong et al. 2011). 

Table 2. Performance of fluidized bed microbial fuel cell reactors. The power density is 

normalized to the anode surface area. 

Bed material Anode 

chamber 

volume (L) 

Maximum 

power density 

(mW/m2) 

Removal 

of CODa 

Reference 

17 % (v/v) PPCb 10.7 35.4 98.6 (Gao et al. 2019) 

10 % (v/v) PPCb 7.27 120 80 – 90 (Huang et al. 2011) 

100 g GACc 0.75* 400** 86 (Kong et al. 2011) 

100 g graphite 

granules 

0.75* 540** 79 (Kong et al. 2011) 

no bed material 0.75* 240** 50 (Kong et al. 2011) 

*Calculated from dimensions. **Original author determined from polarization curves. 
aAbbreviation: COD, Chemical oxygen demand. bAbbreviation: PPC, porous polymer 

carrier. cAbbreviation: GAC, granular activated carbon. 

 

Kong et al. (2011) reported higher COD removal efficiencies with the bed materials 

compared to the bed-free control, which could have been due to the higher biomass and 

its enhanced activity. However, the amounts of the GAC and the graphite granules were 

the same, but the 340 times higher specific surface area (Aspecific) of the GAC did not 

improve the power density and increased the COD removal by only a few percent (Table 

2). On the other hand, according to Kong et al. (2011), the electric resistance of the GAC 

was higher than the resistance of the graphite granules, which could have increased the 

power density in the reactor with the graphite granules. 

Although, the power densities were high in the FluBR-MFC configurations, higher 

densities have been reported with other MFC configurations. Using a tubular activated 

carbon fiber felt in a tubular MFC reactor, Deng et al. (2010) determined a maximum 

power density 784 mW/m2 from a polarization curve. Though the methods and the 

wastewaters were not the same, which could have affected the results (Deng et al. 2010; 

Gao et al. 2019; Huang et al. 2011; Kim and Kang 1997; Kong et al. 2011). Additionally, 

similar to the study by Dong et al. (2018), there were no controls for fluidization that 

would have provided as good mixing with similar-sized bed particles but without 

fluidization under otherwise identical conditions (Gao et al. 2019; Kong et al. 2011). 
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The effect of FluBR into MES performance needs to be studied. To gain more insight, 

the objective of this Master’s thesis was to test the effect of FluBR on the production of 

acetate from CO2 in MES and a similar FixBR was constructed as a control.  
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2 Materials and methods 

2.1 Media 

The culture medium (2.1 g 2-bromoethanesulfonate 8.5 g Na2HPO4; 3 g KH2PO4; 3 g 

NH4Cl; 1 g yeast extract; 15 mg CaCl2; 9.8 mg MgSO4; 10 mL trace element solution and 

1 mL vitamin solution per litre) used in the biotic reactors contained 2-

bromoethanesulfonate to inhibit methanogenic activity at the cathode. The trace element 

and vitamin solutions were prepared as described in the DSMZ medium 141 for 

Methanogenium strains. The minimal medium for the abiotic reactors was prepared in the 

same way as the medium for biotic experiments, but the vitamin solution and the yeast 

extract were left out to prevent the growth of microorganisms at the cathode chambers in 

the abiotic reactors. The medium for the anode chamber in all the reactors comprised 

6 g/L Na2HPO4. 

2.2 Microbial culture and inoculation 

The inoculum was attained from the Faculty of Engineering and Natural Sciences in 

Tampere University. The uncharacterised mixed culture from a cow’s rumen was 

enriched in a bioelectrochemical system for ca. 5 months, during which it was fed with 

CO2 as the sole carbon source and electricity as the sole energy source. 

Oxygen was removed from the media by sparging it with N2 for at least an hour before 

transferring the medium into the cathodic recirculation bottle, where it was sparged with 

CO2 for ca. 30 – 60 min before filling the cathode chamber. The bioFixBR and the 

bioFluBR were inoculated to the initial optical densities (OD600nm) of 0.23 and 0.25, 

respectively, in the total volume of 800 mL. The working volume in the abiotic reactors 

was also 800 mL. After inoculation, the biotic FixBR (bioFixBR) and the biotic FluBR 

(bioFluBR) were operated for 30 and 33 days, respectively. The abiotic FixBR 

(abioFixBR) and the abiotic FluBR (abioFluBR) were operated for 6 and 7 days after a 

CV, respectively. The reactors were kept at ca. 35 ºC. 

2.3 CO2 feeding and sampling 

After inoculating the biotic reactors, a sample was taken to measure the OD600nm and the 

initial VFA content, while the abiotic reactors were sampled only to measure the initial 
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VFA content after the CV. The bioFluBR was resampled 0.25 days after the inoculation 

to get a more representative sample for the initial pH, OD600nm and VFA concentration. 

Every 1 – 4 days liquid samples were taken from the cathode chamber to measure the pH 

and the VFA content in the abiotic tests while the pH, the VFA content and the OD600nm 

were measured from the biotic experiments. After sampling the microbes were fed with 

CO2, which also decreases the pH as the dissolved CO2 reacts with water to form carbonic 

acid (Vassilev et al.2018). The cathode recirculation bottles were sparged with CO2 for 

15 – 30 min or until the pH was between 6 and 7. The flow rate of CO2 was kept between 

ca. 0.16 and 0.32 mL/min with a rotameter (Kytölä, Finland). 

2.4 Reactor setup & operation 

To test the effect of the bioFixBR and the bioFluBR on acetate production from CO2, two 

up-flow two-chamber reactors were built and set up. To rule out the possibility of acetate 

production without biomass, abiotic controls were also done for both reactors. 

A cylindrical anode chamber (approximately 110 mL) and a tubular cathode chamber 

(200 mL) were separated by a 116.6 cm2 CMI-7000S membrane (Membranes 

International, United States) (Figure 10C), which was remodelled into a tubular shape 

with an inner diameter (ID) of 3.1 cm using 3D printed parts (polyethylene terephthalate 

glycol) (Figure 10A). The reactor was composed from four acrylic glass parts (Figure 

10B), creating a cathodic chamber, where the ID of the top half was approximately 3.2 

cm. The cathode chamber inlet (ID = 0.8 cm) was at the bottom of part 1, which was a 

cone filled with glass beads (Ø = 6 mm) to ensure uniform flow of medium to the reactor. 

Part 2 was placed on top of the cone and a titanium mesh (18 mesh woven from 0.28 mm 

diameter wire, Alfa Aesar, Germany) was fastened between the parts 1 and 2 as cathodic 

current collector. The membrane was secured into its place by fastening part 3 on top of 

the part 2, and the reactor was completed with part 4, which was a flat disk with three 

outlets on top of the reactor (Figure 10B). 
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Figure 10. The two-chamber tubular reactor. (A) The membrane was reshaped in tubular 

form with a holder, which was placed inside (B) the reactor consisting of parts 1, 2, 3 

and 4. (C) In the part 2, the membrane created the tubular cathodic chamber surrounded 

by the cylindrical anode chamber. Drawings by Mika Karttunen with Solidworks 

(Dassault Systémes Solidworks, France). 

To make the cathode gas- and watertight, two rubber gaskets covered with Vaseline were 

added between each part. At the cathode, the titanium mesh served as a current collector, 

which charged the carbon-based material above. In FluBR 30 g (29.5 mL) of more easily 

fluidizable GAC with a diameter of ca. 1.3 mm (Cyclecarb 305, Chemviron, Belgium) 

served as the bed material, while 55 g of EC-100 graphite granules with a diameter up to 

10 mm (Graphite Sales, the USA) were added in FixBR. As the anode electrode, a 12 cm 

platinum wire (0.4 mm diameter, Advent Research Materials Ltd, Great Britain) was 

positioned on the bottom of the anodic chamber, around the membrane. An Ag/AgCl 

reference electrode (3 M NaCl, MF-2052, Bioanalytical Systems, the USA) in a glass 

tube with a frit (QiS, the Netherlands) filled with 3 M NaCl was placed under the mesh. 

The potentials vs. Ag/AgCl in 3 M NaCl are converted into V vs. SHE by adding +0.21 

V (Siegert 2018) and the potentials mentioned hereafter are in V vs. SHE. 
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2.4.1 Fluid recirculation and its optimization 

The liquid chamber contents were recirculated with Masterflex peristaltic pumps (Cole-

Parmer, United States). The content of the anodic chamber was recirculated at the flow 

rate of 44 ± 0.1 mL/min, while the cathodic chamber content was recirculated at 

approximately 250 ± 4 mL/min in the bioFixBR, the abioFixBR and the abioFluBR. In 

the bioFluBR, the flow rate was 170 ± 4 mL/min to overcome issues with the pump. 

However, the pump head had broken, which was noticed and replaced ca. 5 hours after 

inoculation to ensure proper medium-mixing in the bioFluBR. The level of fluidization 

or the increase in the bed height was not measured in the abioFluBR, but in the bioFluBR 

it was measured to be 8.05 ± 0.41 cm which equals a 7 % increase. 

Three-way valves were added between the pumps and the recirculation bottles in the 

anodic and cathodic recirculation loops for sampling (Figure 11). Because the cathode 

recirculation bottles were sparged with CO2 via the same port, the recirculation had to be 

stopped while sparging, but the current was still applied at the cathode to produce H2. 

When the recirculation was turned on again and the flow rate was increased, gases 

escaped the cathode chambers as bubbles. In the bioFluBR and the abioFluBR, those 

bubbles carried GAC into the recirculation bottle. 

 

Figure 11. The cathodic liquid recirculation of the reactors. In the biotic fixed bed 

reactor (bioFixBR) and the abiotic reactors, the sample valve (1) was within the 

recirculation loop between the pump and the recirculation bottle. In the biotic fluidized 

bed reactor (bioFluBR), the valve was removed and a separate sampling port (2) was 

added into the bottle to allow continuous recirculation, while sparging the recirculation 

bottle with CO2. 

Hoses detached below the cathode chamber inlets in the early setups of bioFluBRs 

possibly because of blockages caused by the recirculating GAC. To overcome the issue, 

the recirculation loop and the reactor outlets of the bioFluBR were modified; the valve 
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was removed from the cathodic recirculation loop and a separate port for sampling and 

CO2 sparging was added directly into the recirculation bottle to allow continuous 

recirculation while sparging with CO2 (Figure 11). The differences in the reactors can 

also be seen in Figure 12. 

 

Figure 12. (A) The abiotic fluidized bed reactor (abioFluBR) compared with (B) the 

biotic fluidized bed reactor (bioFluBR) built. The recirculation loops were the same in 

the abiotic reactors and the biotic fixed bed reactor (bioFixBR). The 500 mL bottle in the 

A picture is not connected to the abioFluBR. 

2.4.2 Electric connections 

The reactor was a three-electrode cell, where the Ag/AgCl electrode functioned as the 

reference, the cathode as the working electrode and the anode as the counter electrode. 

The electrodes were connected to a multichannel potentiostat (VMP-3, BioLogic Science 

Instruments, France), which was used to control the potential (chronoamperometry) or 

the current (chronopotentiometry) at the working electrode. 

Before inoculation, the reactors were stabilized for 16 – 19 h. The bioFixBR was 

stabilized by fixing the potential to –1.01 V while the potential and the resulting current 

were recorded every 100 s. After inoculation, the potential was first fixed to –0.69 V, but 

0.7 days after inoculation, it was decreased to –0.74 V to reach negative enough current 

at the same potential with both granule types. To overcome the difference in the H2 
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formation overpotential between the FixBRs and the FluBRs, the operation mode was 

switched into chronopotentiometric mode 7 days after inoculating the bioFixBR. In the 

chronopotentiometric mode, the current was fixed to –70 mA while the current and the 

resulting potential were recorded every 100 s. The rest of the reactors (bioFluBR, 

abioFluBR and abioFixBR) were stabilized and operated chronopotentiometrically from 

the beginning.  

2.5 Analyses 

2.5.1 Cyclic voltammetry 

CV was run to see where the H2 production starts with the abiotic reactors (Blanchet et 

al. 2015; Paul et al. 2019). Before running the first CV at the beginning of each batch 

(before inoculation) the pH was decreased to 6.7 with CO2. Another CV was performed 

at the end of the abioFluBR and the abioFixBR to see, if the onset potential or 

overpotential changed. The current was recorded in response to the applied potential at 

the rate of 1 mV/s. Each CV consisted of three repetitions between the potential ranges 

listed in Table 3. Because of overloads, the CV range was changed between the reactors 

(Table 3). 

Table 3. The potential range of the cyclic voltammetries. 

Granules Reactor Before batch After batch 

GACa bioFluBRb from –0.39 to –1.09 V N/A 

abioFluBRc from –0.39 to –1.09 V from –0.39 to –0.94 V 

Graphite 

granules 

bioFixBRd from –0.54 to –0.84 V N/A 

abioFixBRe from –0.39 to –1.02 V from –0.39 to –0.94 V 
aAbbreviation: GAC, Granular activated carbon. bAbbreviation: bioFluBR, biotic 

fluidized bed reactor. cAbbreviation: abioFluBR, abiotic fluidized bed reactor. 
dAbbreviation: bioFixBR, biotic fixed bed reactor. eAbbreviation: abioFixBR, abiotic 

fixed bed reactor. 

 

The CVs were performed with the recirculation on, but the pump head may have been 

broken already before the CV used in the bioFluBR (data not shown), which potentially 

hindered mixing while adjusting the pH with CO2 and during the CV. The voltammogram 

of the bioFixBR is also not shown. 

2.5.2 Analysing volatile fatty acid content 

The VFA content was measured with a Shimadzu GC-2010 Plus Capillary gas 

chromatography (GC) with AOC-20i autoinjector (Japan) equipped with a flame 
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ionization detector and a ZB-WAX plus column (Phenomenex, United States) as 

described by Haavisto et al. (2017).  

For the VFA analysis, the samples were filtered (Ø = 0.2 µm) and stored at –20 ºC prior 

to the analysis. The standards contained 0.5 – 10 mM of alcohols (ethanol and butanol) 

as well as 0.5 – 10 mM of acetate, propionate, butyrate, isobutyrate and valeric acid. The 

internal standards and the acidification agent were added according to Haavisto et al. 

(2017). 

2.6 Calculations 

To evaluate the performance of the reactors, the CE and the volumetric productivities 

were calculated. The CE was calculated according to Equation 2 and the productivity of 

acetate in g/L/d was normalized to the volume of the cathode medium. To calculate the 

current density of the cathode the current was divided by the projected surface area of the 

membrane.  
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3 Results 

3.1 Abiotic reactors 

The abiotic reactors were tested to demonstrate, if CO2 could be electrochemically 

catalysed into producing acetate in the absence of biomass. The abioFixBR and the 

abioFluBR did not produce acetate or other VFAs. Water was likely electrolysed into O2 

at the anode and H2 at the cathode, but gases were not analysed. 

3.1.1 Cyclic voltammetry 

The CVs were performed to find out the onset potential for H2 production (Li et al. 2018). 

According to the voltammogram before the batch, the current became more notable below 

–0.80 V, reaching a current of –100 mA at –1.09 V in the abioFluBR (Figure 13A). In the 

abioFixBR, the current became more notable below –0.70 V, reaching ca. –130 mA at  

–1.02 V (Figure 13A). At the end of the batches, the onset potential increased by ca. 

0.10 V in both reactors (Figure 13B). The pH was near 6.7 during the CVs before the 

batches, but after the batches, the pH values were 6.87 and 6.95 in the abioFluBR and the 

abioFixBR, respectively. 

 

Figure 13. The cyclic voltammogram of the abiotic fixed bed reactor (abioFixBR) (black) 

and the abiotic fluidized bed reactor (abioFluBR) (red) at (A) the beginning and at (B) 

the end of the 6- and 7-day experiments, respectively. 

3.1.2 Cathode potential and pH 

To provide reducing equivalents at the cathode, the current was fixed to –70 mA in both 

abiotic reactors resulting in a current density of –6.0 A/m2. The potential in response to 

the applied current was recorded during the batches (Figure 14). Despite some 

disturbances in the measured potential caused by CO2 sparging and sampling for the pH 

(Figure 14A, red triangles) and the VFA measurements, the potential remained relatively 
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stable in the abioFluBR while the potential measured in the abioFixBR was noisier 

(Figure 14B). The average potential throughout the run in the abioFixBR was  

–0.90 ± 0.05 V, which is close to the abioFluBR (–0.92 ± 0.05 V). 

 

Figure 14. The potential in V vs SHE (black) and the pH (red triangle) in (A) the abiotic 

fluidized bed reactor (abioFluBR) and (B) the abiotic fixed bed reactor (abioFixBR). The 

upper triangle is pH measured before sparging CO2 and the lower is after the sparging. 

The pH values were relatively similar between the abioFluBR and the abioFixBR (Figure 

14). The pH before the addition of CO2 was on average 7.04 ± 0.16 in the abioFluBR and 

7.14 ± 0.25 in the abioFixBR, but addition of CO2 decreased the pH to 6.82 ± 0.04 and 

6.86 ± 0.05 in the abioFluBR and the abioFixBR, respectively. 

3.2 Biotic reactors 

3.2.1 Current density 

Electrons were provided to the microbes via the cathode by applying a current of –70 mA 

except for the first 7 days of chronoamperometry in the bioFixBR when the potential was 

fixed. The current density was –6.0 A/m2 when the current was fixed to –70 mA. During 

the 7-day period of chronoamperometry in the bioFixBR, the pH decreased and the 

current became more negative right after CO2 was added (Figure 15). Between the 

supplements, the pH increased and the current density became more positive (Figure 15). 
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Figure 15. The current density normalized to the area of the membrane in the biotic fixed 

bed reactor (bioFixBR) (black solid line) and the biotic fluidized bed reactor (bioFluBR) 

(red dashed line). The blue arrows show the sampling and CO2 feeding during the 

chronoamperometric operation of the bioFixBR. 

3.2.2 Cathode potential and pH 

During the chronopotentiometric mode, the potentials were recorded (Figure 16). The 

initial potential was low (–1.12 ± 0.09 V) in the bioFluBR, but soon after changing the 

broken pump head (5 h after inoculation), it increased near –0.90 V and remained stable 

for the rest of the run (–0.99 ± 0.03 V) (Figure 16A). The operation method of the 

bioFixBR was changed to the chronoamperometric mode 7 days after inoculation, and 

the resulting potential was –0.76 ± 0.01 V from the 7th to the 16th day, after which it 

started to become more negative reaching –0.95 ± 0.01 V on the 26th day (Figure 16B). 

Then the potential became more positive again, reaching –0.87 ± 0.02 V (average from 

the last six hours). 
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Figure 16. The potential (black) and the pH (red) at the cathodes of the bioFluBR (A) 

and bioFixBR (B). In bioFixBR, the potential was fixed to –0.69 V, and then to –0.74 V, 

after which the current was fixed to –70 mA from the 7th day onwards. 

While the increased pH was accompanied by a more positive current in the 

chronoamperometric mode, the increased pH was inversely linked to a more negative 

potential during the chronopotentiometric mode (Figures 15 & 16). Before the CO2 

additions, the average pH from the 1st to the 13th day was 7.17 ± 0.19 in the bioFluBR 

and 6.91 ± 0.07 in the bioFixBR, but addition of CO2 decreased the pH to 6.74 ± 0.04 and 

6.63 ± 0.07 in the bioFluBR and the bioFixBR, respectively. 

The pH values before the pH adjustments started to decrease in both reactors over time. 

In the bioFluBR, the initial pH values (pH before CO2) decreased after the 20th day, but 

increased to 6.89 on the 32nd day (Figure 16A). The initial pH values of the bioFixBR 

started to decrease already after the 13th day, but on the 20th day (4 days since the previous 
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CO2 addition) the pH had increased (Figure 16B). The pH values continued to decrease 

again after the 20th day reaching 6.14 on the 30th day. 

3.2.3 Bacterial growth and acetate production 

The OD600nm was measured to estimate the growth of suspended cells in the bioFluBR 

and the bioFixBR (Figure 17). The OD600nm of the bioFixBR increased from the initial 

OD600nm of 0.25 until it reached 1.23 on the 20th day, after which the growth of the 

suspended cells stagnated. Yet, the last measured OD600nm value leapt to 1.30. In the 

bioFluBR, the OD600nm increased slower as it increased from 0.23 to its highest value 

(1.0) 28 days after the inoculation. The OD600nm stayed around 1.0 until the 32nd day. 

 

Figure 17. The development of optical density (OD600nm) in the biotic fluidized bed 

reactor (bioFluBR) (red square) and the biotic fixed bed reactor (bioFixBR) (black 

circle). 

The acetate concentration began to increase a day after inoculation in the bioFixBR, but 

a longer lag-phase was observed in the bioFluBR, where the acetate production started 6 

days after inoculation (Figure 18). While the bioFluBR attained its final concentration of 

5.14 g/L (87.11 mM) of acetate 32 days after inoculation, the final concentration in the 

bioFixBR reached 6.17 g/L (104.53 mM) 30 days after inoculation. The acetate 

concentration in the anode chamber of the bioFluBR was not measured, but 

approximately 2.60 g/L (44.25 mM) was measured from the anode chamber of the 

bioFixBR on the 30th day. 
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Figure 18. The change in the acetate concentration in the biotic fluidized bed reactor 

(bioFluBR) (red square) and the biotic fixed bed reactor (bioFixBR) (black circle). 

If the lag-phase is considered, the bioFluBR obtained its final titer (5.14 g/L) 26 days 

after the acetate production started (from the 6th to the 32nd day after inoculation). The 

bioFixBR had obtained similar concentration (5.31 g/L) 28 days after it started to produce 

acetate (from the 1st day to the 29th day). 

Two weeks after the acetate production had started, the bioFluBR and the bioFixBR had 

reached their maximum acetate production rates and the CE on the 20th and the 15th day, 

respectively. The maximum and total volumetric productivities were similar between the 

bioFluBR and the bioFixBR (Table 4). 

Table 4. The highest and the total volumetric productivities and the coulombic 

efficiencies from the biotic fluidized and fixed bed reactors. 

 Maximum Total 

Productivity 

(g/L/d) 

CEa (%) Days Productivity 

(g/L/d) 

CEa (%) Days 

bioFluBRb 0.21 37 6 - 20 0.20 34 6 - 32 

bioFixBRc 0.22 40 1 - 15 0.21 37 1 - 30 
aAbbreviation: CE, Coulombic efficiency. bAbbreviation: bioFluBR, biotic fluidized bed 

reactor. cAbbreviation: bioFixBR, biotic fixed bed reactor. 

According to the chromatograms, butyrate started to appear in the bioFluBR and the 

bioFixBR. In the bioFixBR, butyrate was detected from the 15th day onwards reaching 

the highest titer of 0.59 g/L (6.80 mM) on the 30th day while the butyrate concentrations 

in the samples from the bioFluBR were below the lowest standard concentration thus not 

quantitated. 
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4 Discussion 

The bioFixBR and the bioFluBR both produced acetate and even butyrate, but the abiotic 

controls did not. Therefore, biomass was required to catalyse the acetogenesis, which 

probably was H2-mediated, because according to the CV analyses, H2 was 

electrochemically produced at the selected current (–70 mA). 

4.1 Acetate concentration and bacterial growth 

As seen in Table 4, the bioFixBR and the bioFluBR reached similar total and maximum 

productivities and CEs. The maximum outputs were also achieved two weeks after the 

acetate production had started, even though the production had started later in the 

bioFluBR. Furthermore, the bioFixBR achieved a titer similar to the final titer of the 

bioFluBR in approximately the same time. 

At the beginning, the acetate concentration (from the inocula) decreased in the bioFluBR 

and the bioFixBR although the concentration of the suspended cells (OD600nm) increased 

from the 1st day. Residual O2 could have been left in the cathode recirculation loop, from 

where it had possibly been removed by facultative anaerobic bacteria oxidizing acetate 

(Marshall et al. 2017), before the acetate concentration increased. The slower increase in 

the concentration of the suspended cells in the bioFluBR could explain the later increase 

in its acetate concentration. However, the relation of the biomass concentration to the 

OD600nm was not determined and the biomass concentration at a certain OD600nm may not 

be equal in the bioFluBR (GAC) and the bioFixBR (graphite granules). The OD600nm 

measurements did not include the biomass immobilized as biofilm on the granules. 

4.2 Comparing biotic reactors with literature 

The granules increased the surface area of the cathode in the bioFixBR and the bioFluBR, 

but in the absence of a bed-free control (only the titanium mesh), the impact of just the 

granules on the performance is unknown. The maximum productivity and the maximum 

CE of the bioFixBR (0.22 g/L/d and 40 %) and the bioFluBR (0.21 g/L/d and 37 %) are 

similar to what Marshall et al. (2012) reported with 400 g/L of graphite granules and 

LaBelle et al. (2014) with a 10 cm2 the graphite rod (Tables 1 & 4) in H-cell reactors. 

LaBelle et al. (2014) reported 14 ± 1 times higher productivity with 1000 g/L of graphite 

granules. 
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Because the graphite granule concentration used in the bioFixBR was approximately 

70 g/Lcatholyte (280 g/Lcathode chamber), similar productivity was reached with less granules. 

Thus, the bioFixBR might have improved the production rate normalized to the cathode 

surface area, but the Aspecific of the graphite granules was unknown. Additionally, the 

concentration of GAC fluidized in the bioFluBR was 40 g/Lcatholyte (150 g/Lcathode chamber), 

which was significantly more than the 16 g/L of GAC Dong et al. (2018) fluidized with 

a magnetic stirrer. The bioFluBR also reached higher volumetric production (0.20 g/L/d), 

than what Dong et al. (2018) reported (0.14 g/L/d), although the difference is not as 

significant as in the GAC concentrations. On the other hand, normalizing the 

productivities to the surface area of a granular bed is not reasonable due to uncertainties 

e.g. in the charge distribution across a bed electrode (Quejigo et al. 2019). Moreover, the 

Aspecific varies between the granules. 

4.3 Electrochemical behaviour 

4.3.1 Cathode potential depended on pH 

Supplementing CO2 decreased the pH due to the formed carbonic acid, but between the 

supplements, the pH increased as the available protons were consumed into H2 (Daniele 

et al. 1996; Marshall et al. 2013). During chronoamperometric mode, the reduced proton 

availability consequently would decrease the H2 production rate and cause the more 

positive current as seen in Figure 15 (Jourdin et al. 2016; Marshall et al. 2013; Santos et 

al. 2018). However, when the current was fixed, the potential was observed to become 

more negative while the pH increased, which complies with Nernst equation (Equation 1). 

Over time, the pH became more acidic in the bioFluBR and more notably in the bioFluBR 

possibly due to the accumulation of produced organic acids (Patil et al. 2015). The pH 

may explain the changes in the potential in the abioFluBR, abioFixBR and the bioFluBR, 

but not entirely in the bioFixBR (Equation 1). 

The potential was fixed to –0.74 V in the bioFixBR for the majority of the first 7 days, 

after which the current was fixed to –70 mA while the resulting potential remained almost 

the same (–0.76 ± 0.01 V). The pH could explain changes in the current and the potential 

until the 16th day, after which the potential started to become more negative despite the 

decreased pH. The lowest potential the bioFixBR reached was –0.95 ± 0.01 V while the 

potentials in the other reactors were on average –0.94 V throughout the runs. Starting the 

bioFixBR chronopotentiometrically would have been important for more reliable results 
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and to see, if the potential would have been closer to –0.94 V from the beginning. 

Additionally, analysing the gas composition could have provided information on the pH2. 

4.3.2 Onset potential shifted in abiotic tests 

According to the voltammograms, the onset potential was ca. 0.1 V more negative in the 

abioFluBR than in the abioFixBR, which could have been caused by fluidization and/or 

the different bed materials. Furthermore, after the 7- and 6-day batches, the onset 

potentials were approximately 0.1 V more positive regardless of the higher pH. A 

decrease in pH2 could have caused the shift, but the gases were not analysed. Because 

biofilm could reduce the overpotential, the abiotic reactors could have been contaminated 

despite no VFAs were detected and potential CH4 formation was inhibited by 2-

bromoethanesulfonate. Another explanation could be a user error while performing the 

CVs. On the other hand, the metals in the medium might deposit on electrodes (Blanchet 

et al. 2015) and possible effects on the granules in the cathode chamber are unknown. 

4.3.3 Does chronopotentiometric operation benefit MES? 

Most of the MES studies referred to in here used chronoamperometry to produce acetate, 

but here the reactors were operated chronopotentiometrically. Because the onset 

potentials differed between the two reactor types, fixing the potential could have distorted 

the current density and possibly the acetate production. 

Additionally, the chronopotentiometric mode possibly provided better tolerance against 

the changes in environmental factors compared to the chronoamperometric mode 

(Molenaar et al. 2017). During the 7-day period of the chronoamperometric operation of 

the bioFixBR, the onset potential for H2 evolution at a higher pH or pH2 could have 

become more negative than the set potential (Equation 1). Because the electrochemical 

production rate of H2 depends on the current density, chronopotentiometry could enable 

better control over the H2 and thus the VFA production rates (Molenaar et al. 2017; Santos 

et al. 2018). However, not that many studies have reported using chronopotentiometric 

mode to produce acetate in MES. 

4.4 Reactor optimization 

Given that the reactors described here were the first iterations of such systems applied in 

MES, the bioFluBR and the bioFixBR reached relatively high acetate productivities 

(0.21 g/L and 0.22 g/L) and CEs (37 and 40 %). However, better results have been 
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reported in literature (Table 1 & 4), thus the reactor should be improved. Suggestions on 

improving the reactor configurations of this study, are discussed in the following chapters. 

4.4.1 Reducing blockages and escape of granules from the reactor 

Pausing the recirculation to sparge CO2 into the recirculation bottle in this study hindered 

mixing inside the cathode chamber, which promoted the accumulation of H2 in the 

cathode chamber (Kim and Kang 1997; Santos et al. 2018). Increasing the flow rate again 

after sparging improved the transfer of dissolved H2 into the gas phase and the detachment 

of H2 bubbles (Kim and Kang 1997; Santos et al. 2018), which were observed to carry 

GAC into the recirculation bottle. Installing the separate sparging port into the cathodic 

recirculation bottle of the bioFluBR probably prevented blockages by enabling the 

constant recirculation. Additionally, e.g. baffles could be installed inside the cathode 

chamber to help break bubbles and reduce the rate of escaping bed particles (Bello et al. 

2017). 

4.4.2 Reducing permeation of acetate through tubular CEM 

Acetate was detected in the anode chamber of the bioFixBR indicating leakage or 

diffusion from the cathode chamber into the anode chamber. Due to the similar 

performance and configuration of the bioFluBR, acetate likely ended up in the anode 

chamber of the bioFluBR too. The seams of the tubular CEM could have leaked, which 

should be prevented by improving the preparation of the tubular CEM. However, in 

addition to cations, other species such as O2, water, salts and possibly H2 could permeate 

CEMs (Rozendal et al. 2006; Villaluenga et al. 2006). 

The possible diffusion of VFAs through the CEM would probably have been driven by 

the greater hydrostatic pressure in the cathode chamber, caused by the higher flow rate 

and the height of the cathode chamber compared to the anode chamber (Trinke et al. 

2016; Villaluenga et al. 2006). Increasing the anodic flow rate would decrease the 

pressure difference, but it could also help reduce the possible migration of O2 into the 

cathode chamber at elevated current densities by decreasing the level of dissolved O2 at 

the anode chamber (Kikuchi et al. 2009; Trinke et al. 2016; 2017). However, unwanted 

diffusion through the membrane could still occur to some extent. 

4.4.3 Repositioning current collector to improve conductivity 

The position of the current collector in the FluBRs and the FixBRs here was probably not 

the most optimum. Because the current collector was at the bottom of the reactor, the 
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maximum distance between a GAC particle and the collector was more than 8 cm (in the 

bioFluBR) and it would be even longer at a higher flow rate, which could negatively 

affect the distribution of electric charge (Hiddleston and Douglas 1970; Quejigo et al. 

2019). 

The configurations of FixBRs and FluBRs applied in MFC could be taken advantage to 

decrease the distance between the granules and the current collector in the reactors studied 

here. The current collector and the counter electrode could be pressed against the tubular 

membrane like Li et al. (2013) did (Figure 8B), although the consequently larger area of 

the current collector could increase the costs depending on the material (Krieg et al. 2018; 

Sharma et al. 2019). The size of a concentrically positioned current collector could be 

smaller while the distance between the collector, the granules and the counter electrode 

could be decreased by decreasing the ID of the cathode chamber. On the other hand, 

reducing the ratio of the ID to the static bed height (before fluidization) could increase 

the minimum velocity, and thus the energy required for fluidization (Bello et al. 2017). 

4.4.4 Adjusting fluid flow rates to improve performance 

The level of fluidization could be increased to improve the performance. Increasing the 

liquid flow would also increase the collisions of gas bubbles and the bed material, 

breaking the bubbles into smaller ones, which in turn increases the mass transfer between 

gas and liquid phases (Kim and Kang 1997). The consequent decrease in gas holdup could 

decrease the electric resistance of bubbles on the cathode surface and the probability of 

H2 supersaturation (Castelló et al. 2020; Kim and Kang 1997; Santos et al. 2018). 

On the other hand, increasing the flow rate could adversely reduce the collision rate 

between the particles, and thus the bed conductivity (Kim and Kang 1997; Quejigo et al. 

2019). For instance, Kong et al. (2011) reported that increasing the superficial velocity 

of the liquid increased the generated current and power densities in FluBR-MFC up to 

6.11 mm/s, after which the power density started to decrease. The flow rates together with 

the current densities should be optimized to provide enough CO2, electrons and other 

substrates while still achieving proper mass transfer rates. 

More research is needed as combining a three-phase biological FluBR, an electrochemical 

FluBR and MES makes the system relatively complex. Most importantly the control 

reactor (FixBR) should be as similar as possible with the FluBR. Another control such as 

a reactor without a carbon bed (with the titanium mesh) should be tested to understand 

the impact of just the current collector. For more comprehensive and reliable 
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understanding, more replicates should be conducted, and more variables should be tested. 

Due to the blockages for instance and leakages, the reactor was relatively challenging, 

which should be improved for industrial and cost-effective application of such a system.  
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5 Conclusions 

The objective of this Master’s thesis was to test the effect of the bioFluBR on 

bioelectrochemical production of acetate compared to the bioFixBR. It was demonstrated 

that both designed reactor types were successful in the production of acetate from CO2 

and electricity using a mixed microbiome. However, the FluBR was not confirmed to 

improve the performance, but more insight about the reactor design was achieved. 

Minimizing the release of bubbles (mainly H2) from the FluBR was important to improve 

the retention of the GAC-bed and to prevent blockages caused by recirculating GAC. This 

was achieved with a CO2 sparging port in the recirculation bottle instead of the 

recirculation loop as the electrochemically produced H2 was not able to accumulate 

during the 15 – 30 min sparging. However, when the bioFluBR was modified to help 

mitigate the issues, more differences were created between the bioFluBR and bioFixBR 

than just the bed material. Therefore, the FixBR is not a control for just the fluidization. 

For more reliable results, the flow rates should be the same between the reactors and they 

should be inoculated at the same time with an identical microbiome, in addition to 

minimizing other variation. Replicates should also be conducted. 

However, the results between the bioFluBR (0.21 g/L/d and the 37 % CE) and the 

bioFixBR (0.22 g/L/d and 40 % CE) were similar despite the differences. The level of 

fluidization was 7 %, which was probably too small to cause significant difference 

between fluidized and fixed beds in terms of the mass transfers between the substrates, 

the biomass and the current collector. Better controls such as a bed-free reactor (with the 

titanium mesh) should be tested to understand how much the current collector alone 

affects the acetate production. If possible, the control bed material for the fluidization 

could be more similar to the GAC and more uniform than the graphite granules used here 

to make it easier to compare the performance. 

More variables should be tested due to the complexity of the system. To enhance the 

acetate production, the liquid and gas flow rates as well as the current and the consequent 

production rate of H2 needs to be adjusted to balance the mass transfer rate between the 

biomass, the bed particles, the current collector and the substrates. The flow rate at the 

anode chamber could be increased to reduce the hydrostatic pressure driven diffusion and 

loss of acetate from the cathode chamber to the anode chamber although the energy 

demand would increase. 
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On the other hand, the reactor needs to be optimized and simplified to enhance the 

production and to enable cost-effective, industrial application of such system. The 

difference of height between the anode and the cathode chambers should be reduced to 

decrease the losses caused by the pressure difference. Replacing the current collector at 

the bottom with a vertical current collector (a concentric rod or a tube along the 

membrane) would enable a higher bed with relatively low ohmic losses by decreasing the 

maximum distance between the bed particles and the collector. The preparation of the 

tubular membrane should also be changed to minimize leakages. 

To replace fossil fuels with bioelectrochemically produced chemicals, further research is 

needed. The bioFixBR and bioFluBR have potential to advance MES, but further testing 

and optimizing is essential.  
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