
Enforcing open source software licenses as a

contributor

Ilari Lahtinen
Master Thesis
University of Turku
Faculty of Laws
August 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTUPub

https://core.ac.uk/display/347180866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF TURKU
Faculty of Laws

Ilari Lahtinen: Enforcing open source software licenses as a contributor

Master Thesis, 70 p.
Intellectual property right law
August 2020
The originality of this thesis has been checked in accordance with the University of
Turku quality assurance system using the Turnitin OriginalityCheck service.

The importance of open-source software licenses has increased over recent years. One
reason for the trend is the companies are more and more interested in open-source
software. At the same time, with the increased use of the open-source license also
disputes relating to them have increased. In my master thesis, I aim to discover who
and within which limitations can raise a claim in the case of open-source software
license infringement.

Main research questions in my thesis are what are requirements for the open-
source software project contributor to raise a claim in case of license infringement
and on the other hand in which extend the contributor can raise a claim. The thesis
also discovers whether every contributor has to be involved in raising the claim and
running the case in the court. In other words, the question is whether one contributor
may run the case on behalf of all contributors as a class action or some else way.
Another perspective in the thesis is in which form the contributor have copyrights
to the open-source code they have contributed. It is discovered whether source
code is considered as collective work, jointly authored work or adaptive work when
contributions are made over time.

The thesis covers both relevant Finnish and European Union legislation. Also,
some US legislation and case law are included as a preference because contributing
open-source projects is an international phenomenon. The thesis also discovers what
are the di�erences between legal and technical perspective when it comes to the
open-source software development process and its result, the software.

The outcome of the thesis is that every contributor has to take part in the in-
fringement dispute process because it is not possible to run class action about an
intellectual property dispute. There is also no way to move right to raise a claim to
someone other with the contract, and therefore, that kind of action is not possible in
license infringement cases either. One point which is also noticeable is that to get the
right to raise a claim; the contributor must contribute to the project such that the
contribution is intellectual enough to be alone protected with the copyright.

Keywords: Open source license, Copyright, Intellectual property right litigation

TURUN YLIOPISTO
Oikeustieteellinen tiedekunta

Ilari Lahtinen: Enforcing open source software licenses as a contributor

Pro Gradu -tutkielma, 70 s.
Immateriaalioikeus
Elokuu 2020
Turun yliopiston laatujärjestelmän mukaisesti tämän julkaisun alkuperäisyys on
tarkastettu Turnitin OriginalityCheck-järjestelmällä.

Avoimen lähdekoodin lisenssien merkitys ohjelmistotuotannossa on kasvanut viime
vuosina. Syynä tähän on ollut yritysten kasvanut kiinnostus avointa lähdekoodia
kohtaan. Samalla kun avoimen lähdekoodin ohjelmistojen käyttö on lisääntynyt myös
niihin liittyvät lisenssiriidat ovat lisääntyneet. Tutkielmassa tarkoituksena on selvittää
kuka ja missä laajuudessa voi nostaa kanteen lisenssirikkomuksen sattuessa.

Tutkielman keskeisimpinä tutkimuskysymyksiä käsittelevät sitä, miten avoimen
lähdekoodin sovelluksen kehittämiseen osallistunut henkilö voi lähteä ajamaan
kannetta lisenssin loukkaustilanteessa ja toisaalta mitkä ovat edellytykset tälläisen
kanteen nostamiselle. Selvitettävänä on täytyykö kaikkien kehittäjien osallistua
kanteen nostamiseen ja sitä mahdollisesti seuraavaan oikeusprosessiin vai voiko yksi
kehittäjistä ajaa asiaa kaikkien puolesta esimerkiksi joukkokanteena. Tutkielmassa
käsitellään myös sitä, millaisen kokonaisuuden avoimen lähdekoodin ohjelmisto
muodostaa tekijänoikeusnäkökulmasta. Tässä erityisenä tutkimuksen kohteena on
se, muodostuuko ohjelmistosta yhteisteos, kokoelmateos vai muunnettu teos, kun sen
kehittämiseen osallistuu useita kehittäjiä mahdollisesti eriaikoina.

Tutkielma keskittyy Suomen ja Euroopan Unionin lain säädäntöön, mutta eräis-
sä kohdissa myös Yhdysvaltojen lainsääntöä on käytetty vertailukohtana sillä avoimen
lähdekoodin sovellusprojektit ovat yleensä kansainvälisesti kehitettyjä. Tutkielmassa
tutkitaan myös, miten oikeustieteellinen näkökulma avoimen lähdekoodin sovelluksen
syntymisestä poikkeaa teknisestä näkökulmasta ohjelmiston synnystä.

Tutkielma päätyy johtopäätökseen, että jokaisen avoimen lähdekoodin kehittä-
jän tulee omalta osaltaan ajaa kannetta lisenssiehtojen rikkomistilanteessa, koska
suomalainen lainsäädäntö estää joukkokanteen nostamisen muissa kuin kuluttajan-
suojariidoissa ja lisäksi myöskään kanneoikeuden siirtäminen sopimuksen avulla ei ole
mahdollista. Kanneoikeutta rajoittaa myös se, että kehittäjän panoksen ohjelmistoon
täytyy itsessään olla sellainen, että se ylittää ohjelmiston lähdekoodille asetetun
teoskynnyksen.

Asiasanat: Avoimen lähdekoodin lisenssit, Tekijänoikeudet, Immateriaalioikeusriidat

Contents

Contents II

O�cial sources and bibliography VI

Articles . VI

Books . VIII

Web sources . IX

Case law XII

Finnish case law . XII

EU case law . XII

US case law . XIII

Legislation XIV

Finnish Legislation . XIV

EU Legislation . XIV

II

International treaties . XV

Abbreviations XV

1 Introduction 1

1.1 Background . 1

1.2 Research question and scope limitation 5

1.3 Methodology . 7

1.4 Structure . 10

2 De�nition of open source 12

2.1 History . 12

2.2 De�nition of open source license . 15

2.2.1 Free software Foundation . 15

2.2.2 The Open Source Initiave . 16

2.3 Di�erent open-source licenses . 19

2.3.1 General Public License . 22

2.3.2 MIT license . 24

2.3.3 Artistic license . 24

3 Software engineering and software development process 26

III

3.1 Phases of open source development . 26

3.2 Software development roles . 27

3.3 Open source software development . 28

4 Legal frame of copyright 30

4.1 Copyright as a Intellectual property . 30

4.1.1 International copyright treaties 31

4.1.2 Copyright in European Union 34

4.1.3 Copyright in Finland . 36

4.2 Software copyrights . 37

5 Authorship of software 39

5.1 Problems in open-source authorship . 39

5.2 Proving authorship with Git . 40

5.2.1 Git version control system . 40

5.2.2 Solution with GIT . 42

5.3 Proving authorship with Blockchain . 44

5.3.1 Blockchain technology . 44

5.3.2 Solving authorship with blockchain 46

5.4 Intellectual creation requirement for softwares 48

IV

6 Enforcebility of Open source licenses 50

6.1 Legal status of Open source licenses . 50

6.2 Joint authored, adaptive or collective work 52

6.2.1 Technical perspective . 54

6.2.2 Legal perspective . 56

7 Open source infringement litigation 59

7.1 Raising a claim on behalf of other contributors 59

7.2 Possible Claims . 61

7.2.1 EU Legislation . 61

7.2.2 National Legislation . 63

7.3 E�ect of license type . 65

8 Conclusion 67

V

O�cial sources and bibliography

Articles

Alexander Hars SO, �Working for free? Motivations for participating in open-source

projects� (2002) 6(3) International Journal of Electronic Commerce 25.

Crosby M and others, �Blockchain technology: Beyond bitcoin� (2016) 2(6-10) Applied

Innovation 71.

Hamano JC, �GIT�A stupid content tracker� (2006) 1 Proc. Ottawa Linux Sympo 385.

Hemel A and Coughlan SM, �Making Sense Of Git In A Legal Context� (2017) 9 IFOSS

L. Rev. 19.

Hertel G, Niedner S, and Herrmann S, �Motivation of software developers in Open

Source projects: an Internet-based survey of contributors to the Linux kernel� (2003)

32(7) Research policy 1159.

Husa J, �Valkoista yksisarvista pyydystämässä vai mörköä paossa � �oikeaa oikeusver-

tailua�?� (2010) 2010(5) Lakimies 700.

Lakhani KR and Von Hippel E, �How open source software works:�free� user-to-user

assistance� in Produktentwicklung mit virtuellen Communities (Springer 2004).

Lerner J and Tirole J, �Some simple economics of open source� (2002) 50(2) The journal

of industrial economics 197.

� �The scope of open source licensing� (2005) 21(1) Journal of Law, Economics, and

Organization 20.

Madey G, Freeh V, and Tynan R, �The open source software development phenomenon:

An analysis based on social network theory� [2002] AMCIS 2002 Proceedings 247.

Meeker HJ, �Open Source and the Age of Enforcement� (2012) 4 Hastings Sci. & Tech.

LJ 267.

VI

Mullins L, �Using metadata to support DRM, trading and administration of globally

deployed digital products� (2009) 5(2) Journal of Digital Asset Management 75.

Nyman L and others, �Understanding Code Forking in Open Source Software: An

examination of code forking, its e�ect on open source software, and how it is viewed

and practiced by developers� [2015].

O'Neill JB and Gaspar CJ, �What Can Decisions by European Courts Teach Us About

the Future of Open-Source Litigation in the United States� (2010) 38 AIPLA QJ

437.

O'Mahony S, �Guarding the commons: how community managed software projects

protect their work� (2003) 32(7) Research policy 1179.

Oksanen V and Välimäki M, �Free software and copyright enforcement: A tool for

global copyright policy?� (2006) 18(4) Knowledge, Technology & Policy 101.

Popek GJ and Goldberg RP, �Formal requirements for virtualizable third generation

architectures� (1974) 17(7) Communications of the ACM 412.

Savelyev A, �Copyright in the blockchain era: Promises and challenges� (2018) 34(3)

Computer law & security review 550.

Siau K and Tian Y, �Open Source Software Development Process Model: A Grounded

Theory Approach� (2013) 21(4) Journal of Global Information Management (JGIM)

103.

Tichy WF, �RCS�a system for version control� (1985) 15(7) Software: Practice and

Experience 637.

Udsen H, �Open source licences� in User Generated Law (Edward Elgar Publishing

2016).

Välimäki M, �Avoimen lähdekoodin ohjelmistolisensseistä� (2002) 5 Defensor Legis.

� �Introducing Class Actions in Finland: An Example of Law-making Without Eco-

nomic Analysis�, in The Law and Economics of Class Actions in Europe (Edward

Elgar Publishing 2012).

VII

Welser M von, �Opposing the Monetization of Linux: McHardy v. Geniatech & Ad-

dressing Copyright Trolling in Germany� (2018) 10 IFOSS L. Rev. 9.

West J, �How open is open enough?: Melding proprietary and open source platform

strategies� (2003) 32(7) Research policy 1259.

Books

Aarnio A, Laintulkinnan teoria (Werner Söderström Osakeyhtiö 1988).

� Tulkinnan taito (Werner Söderström Osakeyhtiö 2006).

Bruegge B and Dutoit AH, Object�Oriented Software Engineering. Using UML, Pat-

terns, and Java (Pearson 2014).

Harenko K, Niiranen V, and Tarkela P, Tekijänoikeus. Kommentaari ja käsikirja (Tal-

entum 2006).

Hervey T and others, Legal research methodologies in EU and international law (Hart

Publishing 2011).

Husa J, Oikeusvertailu (Lakimiesliiton kustannus 2013).

McKusick MK, �Twenty years of Berkeley Unix: From AT&T-owned to freely redis-

tributable� [1999] Open Sources: Voices from the Open Source Revolution 31.

Ojanen T, EU-oikeuden perusteita (Edita Publishing Oy 2016).

Pila J and Torremans P, European intellectual property law (Oxford University Press

2016).

Robert E, Order without Law�How Neighbors Settle Disputes (Harvard University Press

1991).

Schwab K, The fourth industrial revolution (Currency 2017).

Stallman R, The GNU Operating System and the Free Software Movement. Open

Sources: Voices from the Open Source Revolution. C. Dibona, S. Ockman and M.

VIII

Stone. Calif (O'Reilly 1999) ⟨http://www.oreilly.com/catalog/opensources/book/

stallman.html⟩.

Välimäki M and others, The rise of open source licensing: a challenge to the use of

intellectual property in the software industry (Helsinki University of Technology

2005).

Välimäki M, Oikeudet tietokoneohjelmistoihin (Talentum 2009).

Vigna P and Casey MJ, The age of cryptocurrency: how bitcoin and the blockchain are

challenging the global economic order (Macmillan 2016).

Williams S, Free as in Freedom: Richard Stallman's Crusade for Free Software (2002)

⟨https://www.oreilly.com/openbook/freedom/⟩.

Web sources

�2017 State of Linux Kernel Development� (Linux foundation) ⟨https://www.linuxfoundation.

org/2017-linux-kernel-report-landing-page/⟩ accessed 31 May 2020.

�Apple Public Source License 2.0� (Open Source Initiative) ⟨https://opensource.org/

licenses/APSL-2.0⟩ accessed 10 July 2020.

�Artistic License 2.0� (Open Source Initiative) ⟨https : //opensource . org/ licenses/

Artistic-2.0⟩ accessed 23 May 2020.

�Berne Convention contracting parties� (World Intellectual property organization)

⟨https ://www.wipo. int/treaties/en/ShowResults . jsp?treaty_id=15⟩ accessed

23 May 2020.

�Bill Gates: A timeline� (BBC News, 15 June 2006) ⟨http://news.bbc.co.uk/2/hi/

business/5085630.stm⟩ accessed 5 August 2020.

�Bitcoin Energy Consumption Index� (Digiconomist) ⟨https : / / digiconomist . net /

bitcoin-energy-consumption⟩ accessed 28 July 2020.

IX

http://www.oreilly.com/catalog/opensources/book/stallman.html
http://www.oreilly.com/catalog/opensources/book/stallman.html
https://www.oreilly.com/openbook/freedom/
https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/
https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/
https://opensource.org/licenses/APSL-2.0
https://opensource.org/licenses/APSL-2.0
https://opensource.org/licenses/Artistic-2.0
https://opensource.org/licenses/Artistic-2.0
https://www.wipo.int/treaties/en/ShowResults.jsp?treaty_id=15
http://news.bbc.co.uk/2/hi/business/5085630.stm
http://news.bbc.co.uk/2/hi/business/5085630.stm
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption

�Class Action� (Cambridge Dictionary) ⟨https://dictionary.cambridge.org/dictionary/

english/class-action⟩ accessed 30 May 2020.

�Common Public License, version 1.0� (Open Source Initiative) ⟨https://opensource.

org/licenses/cpl1.0.php⟩ accessed 10 July 2020.

�Copyright assignment at the FSF� (Free Software Foundation) ⟨https://www.fsf.org/

bulletin/2014/spring/copyright-assignment-at-the-fsf⟩ accessed 31 May 2020.

�Developer Survey Results 2018� (Stackover�ow) ⟨https://insights.stackover�ow.com/

survey/2018/#work-_-version-control⟩ accessed 6 June 2020.

�Free Software Foundation� ⟨https://fsf.org⟩ accessed 23 May 2020.

�git-push documentation� (Git documentation) ⟨https : / / git - scm . com/docs / git -

push#Documentation/git-push.txt--f⟩ accessed 6 June 2020.

�GNU General Public License, version 1� ⟨https://www.gnu.org/licenses/old-licenses/

gpl-1.0.html⟩ accessed 23 May 2020.

�GNU General Public License, version 3� ⟨https://www.gnu.org/licenses/gpl-3.0.html⟩

accessed 23 May 2020.

�GNU Software� ⟨https://www.gnu.org/software⟩ accessed 23 May 2020.

Ha� G, �The mysterious history of the MIT License� (Opensource, 26 April 2019)

⟨https://opensource.com/article/19/4/history-mit-license⟩ accessed 23 May 2020.

�History of the OSI� (Open Source Initiative) ⟨https://opensource.org/history⟩ ac-

cessed 23 May 2020.

�History of the OSI� (Open Source Initiative) ⟨https://opensource.org/osd⟩ accessed

23 May 2020.

�Mozilla Public License 2.0� (Open Source Initiative) ⟨https : / / opensource . org /

licenses/MPL-2.0⟩ accessed 9 August 2020.

�Nokia Open Source License Version 1.0a� (Open Source Initiative) ⟨https://opensource.

org/licenses/Nokia⟩ accessed 10 July 2020.

X

https://dictionary.cambridge.org/dictionary/english/class-action
https://dictionary.cambridge.org/dictionary/english/class-action
https://opensource.org/licenses/cpl1.0.php
https://opensource.org/licenses/cpl1.0.php
https://www.fsf.org/bulletin/2014/spring/copyright-assignment-at-the-fsf
https://www.fsf.org/bulletin/2014/spring/copyright-assignment-at-the-fsf
https://insights.stackoverflow.com/survey/2018/#work-_-version-control
https://insights.stackoverflow.com/survey/2018/#work-_-version-control
https://fsf.org
https://git-scm.com/docs/git-push#Documentation/git-push.txt--f
https://git-scm.com/docs/git-push#Documentation/git-push.txt--f
https://www.gnu.org/licenses/old-licenses/gpl-1.0.html
https://www.gnu.org/licenses/old-licenses/gpl-1.0.html
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/software
https://opensource.com/article/19/4/history-mit-license
https://opensource.org/history
https://opensource.org/osd
https://opensource.org/licenses/MPL-2.0
https://opensource.org/licenses/MPL-2.0
https://opensource.org/licenses/Nokia
https://opensource.org/licenses/Nokia

�Open source license usage on GitHub.com� (The GitHub Blog) ⟨https://github.blog/

2015-03-09-open-source-license-usage-on-github-com/⟩ accessed 10 July 2020.

�Popular Licenses� (Open Source Initiative) ⟨https://opensource.org/licenses/⟩ ac-

cessed 30 May 2020.

Stallman RM, Initial announcement of the gnu project (1983) ⟨http://www.gnu.org/

gnu/initial-announcement.html⟩.

�The MIT License� (Open Source Initiative) ⟨https://opensource.org/licenses/MIT⟩

accessed 23 May 2020.

XI

https://github.blog/2015-03-09-open-source-license-usage-on-github-com/
https://github.blog/2015-03-09-open-source-license-usage-on-github-com/
https://opensource.org/licenses/
http://www.gnu.org/gnu/initial-announcement.html
http://www.gnu.org/gnu/initial-announcement.html
https://opensource.org/licenses/MIT

Case law

Finnish case law

KKO 1989:151.

KKO 1998:91.

KKO 1999:151.

KKO 2004:18.

MAO:285/19.

EU case law

Case 26/62 NV Algemene Transport- en Expeditie-Onderneming van Gend en Loos v

Nederlandse Administratie der Belastingen [1963] ECR.

Case 6/64 Flaminio Costa v ENEL [1964] ECR 585.

Case 106/77 Simmenthal [1978] ECR 629.

Case 14/83 Sabine von Colson and Elisabeth Kamann v Land Nordrhein-Westfalen

[1984] ECR.

Case 393/09 Bezpe£nostní softwarová asociace - Svaz softwarové ochrany v Ministerstvo

kultury [2009] ECR.

Case C-5/08 Infopaq International A/S v Danske Dagblades Forening [2009] ECR.

Case 406/10 SAS Institute Inc v World Programming Ltd, [2012] ECR.

Case 666/18 IT Development SAS v Free Mobile SAS [2019] ECR.

XII

US case law

Jacobsen v Katzer 609 F Supp 2d 925 (ND Cal 2009).

XIII

Legislation

Finnish Legislation

Act on Class Actions, 444/2007.

Copyright Act, 404/1961.

Tort Liability Act, 412/1974.

EU Legislation

Corrigendum to Directive 2004/48/EC of the European Parliament and of the Council

of 29 April 2004 on the enforcement of intellectual property rights [2004] OJ L195/

16.

Directive 2001/29/EC of the European Parliament and of the Council of 22 May 2001

on the harmonisation of certain aspects of copyright and related rights in the in-

formation society [2001] OJ L167/10.

Directive 2006/116/EC of the European Parliament and of the Council of 12 December

2006 on the term of protection of copyright and certain related rights [2006] OJ

L372/12.

DIRECTIVE 2009/24/EC OF THE EUROPEAN PARLIAMENT AND OF THE

COUNCIL of 23 April 2009 on the legal protection of computer programs [2009]

OJ L111/16.

Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996

on the legal protection of databases [1996] OJ L77/20.

XIV

International treaties

Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886,

revised at Paris July 24, 1971 1161 UNTS 3.

International Covenant on Economic, Social and Cultural Rights 993 UNTS 3.

Rome Convention for the Protection of Performers, Producers of Phonograms and

Broadcasting Organizations 496 UNTS 43.

The Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS)

(1994) 1869 UNTS 299.

WIPO Copyright Treaty (1996) 2186 UNTS 121.

XV

Abbreviations

ECJ European Court of justice

EU European Union

InfoSoc Information Society Directive

KKO Finnish supreme court

MAO Finnish market court

WIPO World Intellectual Property Organization

XVI

1 Introduction

1.1 Background

Open-source software projects are software which developers have published under

open source licenses in a way the source code of the software is available for everyone.

Commonly, contributing these projects is a hobby for its contributors. On the other

hand, there are also projects where companies pay their employees who contribute

projects.

The importance of open source licenses has grown over time. The reason for the

importance of open source is that more and more people contribute to the open-source

software project. There are also more cases for open source software than ever before.

The empiric research has revealed there are three main reasons for the contribution.1

The �rst reason for contributing open-source software project is that contributing is

directly bene�cial to either contributor or its employer. For instance, a developer can

contribute software development tools, making his or her work more comfortable. That

1Shaosong Ou Alexander Hars, �Working for free? Motivations for participating in open-source

projects� (2002) 6(3) International Journal of Electronic Commerce 25; Josh Lerner and Jean Tirole,

�Some simple economics of open source� (2002) 50(2) The journal of industrial economics 197; Guido

Hertel, Sven Niedner, and Stefanie Herrmann, �Motivation of software developers in Open Source

projects: an Internet-based survey of contributors to the Linux kernel� (2003) 32(7) Research policy

1159; Karim R Lakhani and Eric Von Hippel, �How open source software works:�free� user-to-user

assistance� in Produktentwicklung mit virtuellen Communities (Springer 2004).

CHAPTER 1. INTRODUCTION 2

way contributing open source project makes contributors life easier many ways.2

The second reason for contributing open-source software project is that contributors

see contributing as an opportunity to learn new skills. It is easy to see contributing

open-source software teach new skill because, in any project, there is an instance which

checks all contributions and accepts or decline them depend on quality. In this process,

contributors get feedback about his or her contributions and learn.3

The third reason for contributing open-source software project is that contributors

present software development skills in the form of the contribution and hope employers

�nd him or her that way. As many companies use open-source software today, con-

tributing them increase remarkable chances to become noticed. Increased attention for

the contributor is because an employer can see who is a coder in a certain part of the

source code and also what is the quality of code in this part. That way, contributors

with great quality of code can become recruited, and the employer knows right away

2Shaosong Ou Alexander Hars, �Working for free? Motivations for participating in open-source

projects� (2002) 6(3) International Journal of Electronic Commerce 25; Josh Lerner and Jean Tirole,

�Some simple economics of open source� (2002) 50(2) The journal of industrial economics 197; Guido

Hertel, Sven Niedner, and Stefanie Herrmann, �Motivation of software developers in Open Source

projects: an Internet-based survey of contributors to the Linux kernel� (2003) 32(7) Research policy

1159; Karim R Lakhani and Eric Von Hippel, �How open source software works:�free� user-to-user

assistance� in Produktentwicklung mit virtuellen Communities (Springer 2004).
3Shaosong Ou Alexander Hars, �Working for free? Motivations for participating in open-source

projects� (2002) 6(3) International Journal of Electronic Commerce 25; Josh Lerner and Jean Tirole,

�Some simple economics of open source� (2002) 50(2) The journal of industrial economics 197; Guido

Hertel, Sven Niedner, and Stefanie Herrmann, �Motivation of software developers in Open Source

projects: an Internet-based survey of contributors to the Linux kernel� (2003) 32(7) Research policy

1159; Karim R Lakhani and Eric Von Hippel, �How open source software works:�free� user-to-user

assistance� in Produktentwicklung mit virtuellen Communities (Springer 2004).

CHAPTER 1. INTRODUCTION 3

how skilled programmers they are.4

Another part of the popularity of open-source software is that many software companies

have moved to use open source components in their products. The reasons for the

increasing popularity of open-source software in the software companies are e�ciency

and better quality of the code. It is e�cient for companies to use open source because

they do not have to pay all software development expenses in that case. There may

already be some open-source project which satis�es the needs of the company, and

therefore, there is no need for developing the company's own solution. On the other

hand, if there is no suitable open source solution available, it can establish its open-

source project. After the establishment of the open-source, it is possible also developers

who do not work in the company start to contribute to the project.5

On the other hand, the quality of the code increases when more developers �nd pos-

sible bugs from code. It is easy to see that more developers see more errors in code.

The quality of the code also increases because when more developers are involved in

the project, the probability that someone invents a way to make the program more

e�cient.6

Using open-source licenses can also be problematic for companies because the licenses

4Shaosong Ou Alexander Hars, �Working for free? Motivations for participating in open-source

projects� (2002) 6(3) International Journal of Electronic Commerce 25; Josh Lerner and Jean Tirole,

�Some simple economics of open source� (2002) 50(2) The journal of industrial economics 197; Guido

Hertel, Sven Niedner, and Stefanie Herrmann, �Motivation of software developers in Open Source

projects: an Internet-based survey of contributors to the Linux kernel� (2003) 32(7) Research policy

1159; Karim R Lakhani and Eric Von Hippel, �How open source software works:�free� user-to-user

assistance� in Produktentwicklung mit virtuellen Communities (Springer 2004).
5Joel West, �How open is open enough?: Melding proprietary and open source platform strategies�

(2003) 32(7) Research policy 1259.
6Joel West, �How open is open enough?: Melding proprietary and open source platform strategies�

(2003) 32(7) Research policy 1259.

CHAPTER 1. INTRODUCTION 4

require that source code is published. The requirement of source code publication is

the reason why many companies also use a hybrid strategy. In this strategy, part

of the company's projects are open source, but some are under proprietary licenses.

That way the company collects bene�ts from open source but try to keep control using

proprietary licenses in their end products.7

On the other hand, also the number of legal problems has increased over time.8 The

situation with open source licenses was long in such that many court judgments were

not related to open source licenses. The reason for the lack of the judgment was that

most open source projects were hobby projects, and nobody had time and interest

to control who use of the end product of the hobby project and what way. And if

there was a dispute, these disputes where settled because there was no case law about

whether open-source licenses are legally binding in the court.9

It was unclear whether or not these licenses were contracts or intellectual property

licenses. Now there are judgments both from the EU member states10 and the US11,

which makes it clear that open source licenses can be both contract and intellectual

property license. Although this problem is solved, there are still some problems un-

solved. Because there are many contributors to open source projects, there are problems

regarding who can raise a claim when somebody breaches the license.

7Joel West, �How open is open enough?: Melding proprietary and open source platform strategies�

(2003) 32(7) Research policy 1259.
8Jennifer Buchanan O'Neill and Christopher J Gaspar, �What Can Decisions by European Courts

Teach Us About the Future of Open-Source Litigation in the United States� (2010) 38 AIPLA QJ

437, p. 444.
9Heather J Meeker, �Open Source and the Age of Enforcement� (2012) 4 Hastings Sci. & Tech.

LJ 267, p. 268.
10Armijn Hemel and Shane Martin Coughlan, �Making Sense Of Git In A Legal Context� (2017) 9

IFOSS L. Rev. 19, p. 19.
11Heather J Meeker, �Open Source and the Age of Enforcement� (2012) 4 Hastings Sci. & Tech.

LJ 267, p. 269.

CHAPTER 1. INTRODUCTION 5

1.2 Research question and scope limitation

In this research, the question is that if open-source licenses are enforceable, who can

start the process against the party, which breaches the license. Capability to start

the process is an interesting problem because, typically, many persons contribute to

the open-source project. While multiple software developers contribute to the project

raises the subquestion about whether these contributors can raise a claim as a group

or must everyone raise a claim as an individual.

It is also possible that these contributors have entirely di�erent interests regarding the

open-source software project. The changes are that most contributors do not have time

or other resources to participate in the legal process. Can somebody participate on

behalf of them?

The study's goal is to analyze, especially those who are the right owners in an open-

source software project, and their relationship with each other. It is essential to un-

derstand how complex copyright ownership can go when the number of contributors

increases. The literature has not much covered that question.

Problems can occur, for instance, if many developers contribute to open-source soft-

ware. Suppose some party breaches a license who raise a claim. The question is not

easy because copyright ownership is not always clear, and there can even be di�erent

opinions about whether raising a claim is necessary among the developers.

One possibility is that everyone who has ever contributed the project raises a claim. In

this case, the question can be whether every contributor even has the copyright to the

project. An individual developer's contribution can be too little or trivial to establish

the right to raise a claim about copyright infringement. Another practical problem

can be some contributors, who have widely contributed the project in the past, do

CHAPTER 1. INTRODUCTION 6

not contribute to the project anymore, and other contributors cannot contact these

contributors.

Another scenario is that one copyright owner can raise a claim on behalf of the whole

project. Claiming behalf of others is possible if it considers the open-source soft-

ware project as jointly authored work where it is not possible to identify separate

contributors' contributions from each other. This approach makes the process more

comfortable, but it requires some way to distribute money to contributors equally. It

can be practically hard to contact all contributors and maybe even harder to establish

consensus about money distribution.

Open source license enforcement is an exciting topic because, in many companies, open-

source software compliance is not proper. In this situation, it is essential to know who

can raise claims, or can anyone, who has ever contributed open-source software project,

raise claim behalf all contributors.

The second research question, which has a clear connection to the �rst is what is the

status of open-source software in the copyright sense. Is it jointly authored work or

collective work? This question is fundamental when determining contributors' rights

to raise a claim.

Because the question is processual and process rules are di�erent in every country, this

research mostly covers Finnish legislation. Occasionally also US legislation is considered

as a preference. The EU copyright legislation related to the research question is also

covered as Finland is a member state of EU and therefore its legislation is binding in

Finland.12

This research discovers only open-source software copyrights, although there are open-

12the EU legislation is even superior when compared to Finnish legislation. See Case 6/64 Flaminio

Costa v ENEL [1964] ECR 585; Case 106/77 Simmenthal [1978] ECR 629

CHAPTER 1. INTRODUCTION 7

source licensing in other types of work, which copyrights can protect.13 Although the

fundamental idea about open-source is similar for all works, working processes can be

di�erent, and henceforward analyzing all is too complex for this research.

1.3 Methodology

The method for this research is the source of law doctrine. The main focus is on Finnish

and EU legislation. Order of the source is adapted from Aulis Aarnio because his source

of law doctrine is the standard way to systematize Finnish sources of law. In his book

'Tulkinnan Taito'14, Aarnio presents three di�erent types of norms. The highest level

is strongly binding sources.15 Strongly binding sources must always take into account

if they apply to the legal problem. These sources are National legislation and EU

legislation. Aarnio also states that same European court justice(ECJ) judgment are

strongly binding, but others are not.16

The next group of the norms is weakly binding norms. Norms in this group have

interpretation power in solving the legal problem but not as much as strongly binding

norms. Weakly binding norms are the legislator's aim, national case law, and these

ECJ judgments, which are not strongly binding.17

The last category is the accepted sources. These sources are such that it is not pun-

ishable to use them in interpretation. Accepted sources are, e.g., legal literature.18

13e.g. Creative common licenses for visual works and TAPR for open-source hardware.
14Aulis Aarnio, Tulkinnan taito (Werner Söderström Osakeyhtiö 2006).
15Aarnio introduced his source of law doctrine in his book 'Laintulkinnan teoria'Aulis Aarnio,

Laintulkinnan teoria (Werner Söderström Osakeyhtiö 1988) in 1982, but this doctrine does not include

EU legislation since Finland was not a member state at that time.
16Aulis Aarnio, Tulkinnan taito (Werner Söderström Osakeyhtiö 2006).
17Aulis Aarnio, Tulkinnan taito (Werner Söderström Osakeyhtiö 2006).
18Aulis Aarnio, Tulkinnan taito (Werner Söderström Osakeyhtiö 2006).

CHAPTER 1. INTRODUCTION 8

Although the background of Aulis Aarnio's source of law doctrine is sort law sources

by how punishable it is for a judge to not use the particular source in his or her

judgment process, this doctrine is suitable for legal research too. The di�erence is

the legal research search general solution when judge only tries to make the judgment

in one speci�c case. Besides, legal research is not bound to current legislation, and

argumentation mentioned above. The researcher can also use other argumentation and

make statements about how current legislation should be changed.19

Because the ECJ case law's hierarchic status is quite confusing in Aarnio's theory, This

research use for the relation between European Union jurisdiction and national law

systematization which Tuomas Ojanen have expressed it in EU-oikeuden perusteita20.

According to Ojanen, there are three principles which control the relation between

national and EU jurisdiction. They are the primacy of European Union law, the direct

e�ect of European Union law and the indirect e�ect of European Union law.21

The primacy of European Union law is a principle which states that, if there is a con-

�ict between national legislation of the member state and European Union legislation,

European Union legislation overrule national legislation. The primacy of European

Union law principle is recognized in ECJ case law, and the �rst case where is applied

is Costa v. ENEL.22

According to the direct e�ect of European Union law principle, EU legislation is ap-

plicable in the national court of the member state even when the member state has

failed to implement it to the national legislation. The principle states EU legislation is

applicable not only horizontally between member state and individual but also verti-

19Aulis Aarnio, Laintulkinnan teoria (Werner Söderström Osakeyhtiö 1988).
20Tuomas Ojanen, EU-oikeuden perusteita (Edita Publishing Oy 2016).
21Tuomas Ojanen, EU-oikeuden perusteita (Edita Publishing Oy 2016) p. 66.
22Case 6/64 Flaminio Costa v ENEL [1964] ECR 585; Tuomas Ojanen, EU-oikeuden perusteita

(Edita Publishing Oy 2016) p. 86

CHAPTER 1. INTRODUCTION 9

cally between two individual in the member state. The development of the direct e�ect

principle started from the Van Gend & Loos case.23

The undirect e�ect of European Union law is the principle which states that national

court should interpret national jurisdiction of the member state with the aim that it is

in line with EU legislation. The case which started the formation of the principle was

Von Colson24.

Although the source of laws doctrine is the primary method for this research, the

research use also the comparative law method in some situations. As Jaakko Husa

states in his book Oikeusvertailu, comparative law is a �exible term, but common to

all comparative law is that it has a target and compares jurisdiction between two or

more countries.25 This research compares Finnish and US jurisdiction, which related

to open-source licenses and copyright. The aim of that is to use the US as a reference.

This kind of method is not demanding in theoretical comparative law sense but give a

broader view about the topic.26

The reason for using comparative law as a supportive method is that many open source

projects are contributed worldwide, especially from the EU and the US. Necessarily it is

essential to determine how these two jurisdictions di�er from each other when it comes

to enforcing copyright licenses in the open-source context. US legislation is essential

also because many information technology companies have headquarters there.27

23Case 26/62 NV Algemene Transport- en Expeditie-Onderneming van Gend en Loos v Nederlandse

Administratie der Belastingen [1963] ECR; Tuomas Ojanen, EU-oikeuden perusteita (Edita Publishing

Oy 2016) p. 72
24Case 14/83 Sabine von Colson and Elisabeth Kamann v Land Nordrhein-Westfalen [1984] ECR;

Tuomas Ojanen, EU-oikeuden perusteita (Edita Publishing Oy 2016) p. 91
25Jaakko Husa, Oikeusvertailu (Lakimiesliiton kustannus 2013).
26Jaakko Husa, �Valkoista yksisarvista pyydystämässä vai mörköä paossa � �oikeaa oikeusver-

tailua�?� (2010) 2010(5) Lakimies 700, p. 702.
27For instance Microsoft HQ is located in Seattle, and Facebook HQ is in California.

CHAPTER 1. INTRODUCTION 10

As the law is not a separate part of the society, this thesis uses socio-legal method28

to discover how the matters change when discovering the phenomenon from a software

engineering perspective compared to the legal perspective. The sociological method is

adopted to research because open source development is a software engineering process.

This process has an impact on the copyrights of the end product of the open-source

project. For this reason, it is essential to look at the situation also from the software

developer perspective.

1.4 Structure

The structure of the research will be such that �rst, it explains open-source licenses

as a legal construction. The explanation includes a description of the history of open-

source licenses and an introduction about the most used types of open source licenses.

The chapter aims to explain open-licenses as a legal concept that the reader is familiar

with the concept.

Chapter three of this writing describes software development both non-open source and

open source perspective. The chapter cover phases of the software development process

and also how they are di�erent in open source development. In addition to introduc-

ing the software development process, the chapter introduces the roles of the people

involved in the development process. The aim in this chapter is to get understanding

about the process which generate the open-source software.

After that, chapter four describes copyright as a legal concept. The chapter will in-

troduce copyright legislation from the international, European Union, and the Finnish

national level. Especially that chapter discover legislation which is related to the com-

28Tamara Hervey and others, Legal research methodologies in EU and international law (Hart

Publishing 2011) p. 86.

CHAPTER 1. INTRODUCTION 11

puter program.

Chapter �ve discover how to �nd authors of the code in open source projects and

determine which are their contributions. Decentralized version control system Git is

also introduced in this chapter as it is one possible answer for authorship problems.

Also, the solution which uses blockchain is introduced, and its bene�ts and challenges

are determined.

After that, the research will describe the condition for open-source licenses to be en-

forceable. In this chapter, relevant legislation and case law are covered both from

Finland and the EU level. It is also discovered who generally raises copyright claims if

there more than one author for work. The last chapter will conclude.

2 De�nition of open source

2.1 History

The story of Open source licenses starts from early 1980s29. Furthermore, it all started

with printer30. Alternatively, more preciously from printing jam in the printer in

Massachuset Institute of Technology Arti�cial Intelligence Lab where Richard Stallman

worked at the time. From the printing jam started the chain of events that established

foundations for Open Source movement.

At the beginning of the 1980s, there was no personal computer in the same way as

currently. Big central computers performed nearly all electronic information processing,

and they could take tens of cube meters space. In addition to those central computers,

there was also a terminal that had no other function than providing access to the central

computer. Terminals made it possible for multiple persons can use the computational

power of the central computer at the same time.31

Because central computers were costly and electronically complex systems, the manu-

facturer's primary focus was on the computer's electronic side, not on the software side.

Therefore hardware was the main component of the product, and companies provided

29In addition to the following thread of history, which is related to Richard Stallman, there is also a

branch in this story which roots are in Berkeley Software Distribution. This story is told in Marshall

Kirk McKusick, �Twenty years of Berkeley Unix: From AT&T-owned to freely redistributable� [1999]

Open Sources: Voices from the Open Source Revolution 31
30Sam Williams, Free as in Freedom: Richard Stallman's Crusade for Free Software (2002) ⟨https:

//www.oreilly.com/openbook/freedom/⟩.
31Sam Williams, Free as in Freedom: Richard Stallman's Crusade for Free Software (2002) ⟨https:

//www.oreilly.com/openbook/freedom/⟩.

https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/

CHAPTER 2. DEFINITION OF OPEN SOURCE 13

the human-readable source code of the software free because there was not yet an idea

about the business value of the software32. Or there were some �rst software �rms

already, but that industry just took its �rst steps. For instance, Bill Gates and Paul

Allen founded Microsoft already in 1975 and released its �rst software product in the

same year.33

At the beginning of the 1980s, printer jams were frequent. Printer jams were a problem

because when the person sent documents to the printer, it was not possible to know

whether the printer had jammed. When the person went deliver his prints, it could be

that they were not ready because of jam. These printing jams cause a lot of frustration

and unnecessary walking back and forth around the printer.34

To solve the problem with printer jams, Richard Stallman, who worked in MIT AI

Labs, modi�ed the software of the printer of the MIT AI Labs such that in case of

a printer jam, it sent each person who had works in print queue message. In such

wise, anyone who wanted to receive a printout would then know to �x the problem.

Sending information about printing jams was possible because Stallman had access to

source code of the printer software. With the source code, Stallman could make needed

modi�cations to the software to make it notify about the jam.35

Stallman's �x for the printer jams worked until MIT AI Lab received a new Xerox

printer, which the manufacturer did not provide source code with it. Although the new

32Sam Williams, Free as in Freedom: Richard Stallman's Crusade for Free Software (2002) ⟨https:

//www.oreilly.com/openbook/freedom/⟩.
33�Bill Gates: A timeline� (BBC News, 15 June 2006) ⟨http://news.bbc.co.uk/2/hi/business/

5085630.stm⟩ accessed 5 August 2020.
34Sam Williams, Free as in Freedom: Richard Stallman's Crusade for Free Software (2002) ⟨https:

//www.oreilly.com/openbook/freedom/⟩.
35Sam Williams, Free as in Freedom: Richard Stallman's Crusade for Free Software (2002) ⟨https:

//www.oreilly.com/openbook/freedom/⟩.

https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
http://news.bbc.co.uk/2/hi/business/5085630.stm
http://news.bbc.co.uk/2/hi/business/5085630.stm
https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/

CHAPTER 2. DEFINITION OF OPEN SOURCE 14

printer was more sophisticated than the previous one, it still had the same problem with

jamming papers. This time di�erence was that Stallman could not �x the jamming

problem because the source code was not available. Without the source code, it was

not possible to modify the software.36

The missing source code was why Stallman contacted the professor who Stallman knew

participated development process of the printer. The professor could not help because

he had signed a non-disclosure agreement about software in the printer. The moment

when Stallman heard about non-disclosure agreement was the turning point in which

Richard Stallman realized that the software development industry was in change. Or

the value of the software had become more and more noticeable.37

Stallman could not accept that change. His opinion was that people should always

share software because it is almost free to make a copy of the software. Stallman's

ideology was the reason why he started to develop an operating system in which source

code would be available for everyone. Stallman called the project "GNU" 38.39 As time

pass GNU project has grown to include multiple software. In addition to the operating

system, the GNU project currently includes much other open-source software such as

image manipulation program GIMP and scienti�c writing software TexMacs40.

While Stallman worked with GNU, he also searched copyright licenses for the project.

The license requirement was that it should maximize the sharing of and access the

source code. It was a long process to �nd a suitable way to license the GNU software

36Sam Williams, Free as in Freedom: Richard Stallman's Crusade for Free Software (2002) ⟨https:

//www.oreilly.com/openbook/freedom/⟩.
37Sam Williams, Free as in Freedom: Richard Stallman's Crusade for Free Software (2002) ⟨https:

//www.oreilly.com/openbook/freedom/⟩.
38recursive acronym "GNU is not UNIX"
39Sam Williams, Free as in Freedom: Richard Stallman's Crusade for Free Software (2002) ⟨https:

//www.oreilly.com/openbook/freedom/⟩.
40�GNU Software� ⟨https://www.gnu.org/software⟩ accessed 23 May 2020.

https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
https://www.gnu.org/software

CHAPTER 2. DEFINITION OF OPEN SOURCE 15

because Stallman had strict criteria for the license. Stallman tested many di�erent

licenses for the project in its early days.41 These experiments led to the evolution of

GNU General Purpose License in February 1989.42

2.2 De�nition of open source license

2.2.1 Free software Foundation

Free software Foundation (FSF) is a non-pro�t organization which promotes freedom

of computer user. As a non-pro�t organization, most of the fund for FSF come for

donations. Richard Stallman founded FSF in 1985 to promote free software especially

his GNU project.43

FSF de�nes free software. The de�nition set four requirements for the software that it

should ful�l to be free software. the de�nition states that requirements for free software

are such that

� "You have the freedom to run the program, for any purpose."

� "You have the freedom to modify the program to suit your needs. (To

make this freedom e�ective in practice, you must have access to the

source code, since making changes in a program without having the

source code is exceedingly di�cult.)"

41Sam Williams, Free as in Freedom: Richard Stallman's Crusade for Free Software (2002) ⟨https:

//www.oreilly.com/openbook/freedom/⟩.
42Sam Williams, Free as in Freedom: Richard Stallman's Crusade for Free Software (2002) ⟨https:

//www.oreilly.com/openbook/freedom/⟩ Version 1 of the GNU GPL is available at �GNU General

Public License, version 1� ⟨https://www.gnu.org/licenses/old-licenses/gpl-1.0.html⟩ accessed 23 May

2020
43see. �Free Software Foundation� ⟨https://fsf.org⟩ accessed 23 May 2020.

https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
https://www.oreilly.com/openbook/freedom/
https://www.gnu.org/licenses/old-licenses/gpl-1.0.html
https://fsf.org

CHAPTER 2. DEFINITION OF OPEN SOURCE 16

� "You have the freedom to redistribute copies, either gratis or for a fee."

� "You have the freedom to distribute modi�ed versions of the program,

so that the community can bene�t from your improvements."44

The base of this de�nition is on Stallman's ideology. According to Stallman, there

is "Golden rule" which is that programmer should always share his software.45 The

de�nition is ideological. Ideology can be seen in the wording of the de�nition, which is

quite informal. Because of the ideological nature of the de�nition, there are not many

requirements set at least when compared to the Open Source Initiative's de�nition,

which is introduced in the next subsection.

2.2.2 The Open Source Initiave

When base FSF's de�nition has the ideological background, The Open Source Initiative

(OSI) see more practical bene�ts in open source. OSI was founded in 1998, and its

mission is to promote open source development process. OSI keep also track about

open-source licenses. When compared to the FSF, OSI is much more commercially

44It is essential to make a di�erence between "free" as "freedom" and "free" as "cost." Free software

is free in the former sense not in a latter sense Richard Stallman, The GNU Operating System and

the Free Software Movement. Open Sources: Voices from the Open Source Revolution. C. Dibona, S.

Ockman and M. Stone. Calif (O'Reilly 1999) ⟨http://www.oreilly.com/catalog/opensources/book/

stallman.html⟩.
45Stallman wrote: I consider that the golden rule requires that if I like a program, I must share

it with other people who like it. I cannot, in good conscience, sign a non-disclosure agreement or a

software license agreement. So that I can continue to use computers without violating my principles,

I have decided to put together a su�cient body of free software so that I will be able to get along

without any software that is not free. Richard M Stallman, Initial announcement of the gnu project

(1983) ⟨http://www.gnu.org/gnu/initial- announcement.html⟩ initially posted to net.unix-wizards

Usenet group.

http://www.oreilly.com/catalog/opensources/book/stallman.html
http://www.oreilly.com/catalog/opensources/book/stallman.html
http://www.gnu.org/gnu/initial-announcement.html

CHAPTER 2. DEFINITION OF OPEN SOURCE 17

oriented organization.46 OSI has a de�nition for open software license which include

ten requirements which are

1. "Free Redistribution

The license shall not restrict any party from selling or giving away

the software as a component of an aggregate software distribution con-

taining programs from several sources. The license shall not require a

royalty or other fee for such sale."

2. "Source Code

The program must include source code, and must allow distribution in

source code as well as compiled form. Where some form of a product is

not distributed with source code, there must be a well-publicized means

of obtaining the source code for no more than a reasonable reproduc-

tion cost, preferably downloading via the Internet without charge. The

source code must be the preferred form in which a programmer would

modify the program. Deliberately obfuscated source code is not allowed.

Intermediate forms such as the output of a preprocessor or translator

are not allowed".

3. "Derived Works

The license must allow modi�cations and derived works, and must al-

low them to be distributed under the same terms as the license of the

original software."

4. "Integrity of The Author's Source Code

The license may restrict source-code from being distributed in modi�ed

form only if the license allows the distribution of "patch �les" with the

46see �History of the OSI� (Open Source Initiative) ⟨https://opensource.org/history⟩ accessed

23 May 2020.

https://opensource.org/history

CHAPTER 2. DEFINITION OF OPEN SOURCE 18

source code for the purpose of modifying the program at build time.

The license must explicitly permit distribution of software built from

modi�ed source code. The license may require derived works to carry

a di�erent name or version number from the original software."

5. "No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of per-

sons."

6. "No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program

in a speci�c �eld of endeavor. For example, it may not restrict the

program from being used in a business, or from being used for genetic

research."

7. "Distribution of License

The rights attached to the program must apply to all to whom the

program is redistributed without the need for execution of an additional

license by those parties."

8. "License Must Not Be Speci�c to a Product

The rights attached to the program must not depend on the program's

being part of a particular software distribution. If the program is ex-

tracted from that distribution and used or distributed within the terms

of the program's license, all parties to whom the program is redis-

tributed should have the same rights as those that are granted in con-

junction with the original software distribution."

9. "License Must Not Restrict Other Software

The license must not place restrictions on other software that is dis-

tributed along with the licensed software. For example, the license must

not insist that all other programs distributed on the same medium must

CHAPTER 2. DEFINITION OF OPEN SOURCE 19

be open-source software."

10. "License Must Be Technology-Neutral

No provision of the license may be predicated on any individual tech-

nology or style of interface."47

This de�nition is more precise and practically-oriented than FSF's one. On the other

hand, most of the licenses ful�l both de�nitions.48 Also, the wording was more formal

in the OSI de�nition than in the FSF de�nition. It is also essential to notice that

free software de�nition speaks requirements for software when open source de�nition

speaks requirements for licenses. Then again licenses which ful�l requirements set in

open source de�nition get a certi�cate about it. That certi�cation creates an end-users

assumption that the license ful�ls certain norms set by open-source community49.

2.3 Di�erent open-source licenses

There is two commonly used way to categorize open-source licenses; either based on

their functionalities or their historical origin. Functionality based categorization clas-

si�es licenses by the content of the licenses. Then again, historical categorization

use phases in the history of the open-source movement to set licenses in the cate-

gories. Functional categories are licenses with strong reciprocity obligations, licenses

47see. �History of the OSI� (Open Source Initiative) ⟨https://opensource.org/osd⟩ accessed 23 May

2020.
48Henrik Udsen, �Open source licences� in User Generated Law (Edward Elgar Publishing 2016) p.

104.
49Mikko Välimäki, �Avoimen lähdekoodin ohjelmistolisensseistä� (2002) 5 Defensor Legis, p. 854.

https://opensource.org/osd

CHAPTER 2. DEFINITION OF OPEN SOURCE 20

with standard reciprocity50 obligations and permissive licenses. Copyleft license is the

term to call licenses with strong and standard reciprocity obligations together. Then

again based on historical origin licenses are grouped to GNU, academic, community

and corporate licenses.51

Characteristic for the licenses with strong reciprocity obligations is that they require

that licenses terms remain the same in the adaptive works and derivative works of

the work which is licenses under a license which belongs to that category. Licenses

with standard reciprocity obligations di�er from the licenses with strong reciprocity

obligations such that when the developer combine the work with standard reciprocity

with other work changes in license terms are possible. That is not allowed with the

strong reciprocity licenses. For instance, the General Public License is a license with

strong reciprocity obligations.52

The main di�erence between copyleft licenses (licenses with standard and strong reci-

procity obligations) and permissive licenses is the requirements they set to the licenses

of the derivative works. Permissive licenses leave the author of the derivate work more

freedom to choose what license he or she will use in his or her derivative work. That

does not mean that a permissive license does not set any requirements for derivative

works. For instance, Lesser General Public License is a license with strong reciprocity

obligations.53

50It is possible also to use terms restrictive and highly restrictive licenses. see. Josh Lerner and Jean

Tirole, �The scope of open source licensing� (2005) 21(1) Journal of Law, Economics, and Organization

20
51Mikko Välimäki and others, The rise of open source licensing: a challenge to the use of intellectual

property in the software industry (Helsinki University of Technology 2005) p. 107.
52Mikko Välimäki and others, The rise of open source licensing: a challenge to the use of intellectual

property in the software industry (Helsinki University of Technology 2005) p. 118.
53Mikko Välimäki and others, The rise of open source licensing: a challenge to the use of intellectual

property in the software industry (Helsinki University of Technology 2005) p. 118.

CHAPTER 2. DEFINITION OF OPEN SOURCE 21

In the historical categorization, the earliest license type is GNU licenses. Origin of

these licenses is in the 1980s, and they have an entirely ideological background. The

ideological background is the reason why the target audience for these licenses is other

developers and wording re�ects the audience. GNU licenses have been criticized about

incompatibility problems with many other open-source licenses which are at least partly

caused by Richard Stallman's ideological choices.54

Second historical type of open-source licenses is the academical licenses. Origin of these

licenses is in the US universities and their contributions for the telecommunication.

These licenses are typically easy to read for also other than the developer. They are

also permissive licenses and compatible with other open-source licenses. One example

about academic license is MIT license.55

Third historical type of open-source licenses is community license. Typically these

licenses are written for some free software project. Typically these projects have been

related to Internet or UNIX implementations. The wording in these licenses vary

much as Artistic License which is created for Perl programming language contains

much terminology which is ambiguous. On the other hand, Apache Software license

which is also community license is more clear.56

The fourth category is corporate licenses. Companies who maintain open-source projects

have drafted these licenses. It is typical for the corporate licenses that they have

54Mikko Välimäki and others, The rise of open source licensing: a challenge to the use of intellectual

property in the software industry (Helsinki University of Technology 2005) p. 120.
55Mikko Välimäki and others, The rise of open source licensing: a challenge to the use of intellectual

property in the software industry (Helsinki University of Technology 2005) p. 120.
56Mikko Välimäki and others, The rise of open source licensing: a challenge to the use of intellectual

property in the software industry (Helsinki University of Technology 2005) p. 121.

CHAPTER 2. DEFINITION OF OPEN SOURCE 22

many details and legalese.57 Examples about corporate licenses are Common Public

License(IBM)58, Apple Public Source License (Apple)59 and Nokia Open Source Li-

cense(Nokia)60.

The next subsection introduces two permissive licenses (MIT and Artistic license) and

one copyleft (GPL) license in more detail. MIT and GPL are introduced because they

are viral licenses for open source projects61. Although an Artistic license is not that

common, it is introduced because it has a remarkable role in case law related to the

legal nature of the open-source licenses and described later in this writing.

2.3.1 General Public License

General Public License (GPL) is the license that is initially drafted for the GNU project.

The licensee of the software license under GPL is allowed to make copies about the

source code of the software if the license is added to the copy.62

It states that derivative works must be licensed under GPL. There shall also be a

noti�cation about modi�cation and the date of modi�cation. These requirements do

57Mikko Välimäki and others, The rise of open source licensing: a challenge to the use of intellectual

property in the software industry (Helsinki University of Technology 2005) p. 121.
58see. �Common Public License, version 1.0� (Open Source Initiative) ⟨https://opensource.org/

licenses/cpl1.0.php⟩ accessed 10 July 2020.
59see. �Apple Public Source License 2.0� (Open Source Initiative) ⟨https://opensource.org/licenses/

APSL-2.0⟩ accessed 10 July 2020.
60see. �Nokia Open Source License Version 1.0a� (Open Source Initiative) ⟨https://opensource.

org/licenses/Nokia⟩ accessed 10 July 2020.
61MIT and GPL was most and second most used licenses in the Github in 2015�Open source license

usage on GitHub.com� (The GitHub Blog) ⟨https://github.blog/2015-03-09-open-source- license-

usage-on-github-com/⟩ accessed 10 July 2020
62�GNU General Public License, version 3� ⟨https://www.gnu.org/licenses/gpl-3.0.html⟩ accessed

23 May 2020.

https://opensource.org/licenses/cpl1.0.php
https://opensource.org/licenses/cpl1.0.php
https://opensource.org/licenses/APSL-2.0
https://opensource.org/licenses/APSL-2.0
https://opensource.org/licenses/Nokia
https://opensource.org/licenses/Nokia
https://github.blog/2015-03-09-open-source-license-usage-on-github-com/
https://github.blog/2015-03-09-open-source-license-usage-on-github-com/
https://www.gnu.org/licenses/gpl-3.0.html

CHAPTER 2. DEFINITION OF OPEN SOURCE 23

Figure 2.1: Functional di�erences regarding combination and modi�cation between

open source licenses (Mikko Välimäki and others, The rise of open source licensing: a

challenge to the use of intellectual property in the software industry (Helsinki University

of Technology 2005) p. 119)

not depend on how software is packed.63

In addition to copyright matters, GPL considers the possibility that some contribu-

tors �le a patent regarding the software copyright licensed under GPL. For this situa-

tion GPL requires that the contributor provide "non-exclusive, worldwide, royalty-free

patent license under the contributor's essential patent claims, to make, use, sell, o�er

for sale, import and otherwise run, modify and propagate the contents of its contrib-

utor version".64 The clause prevents a patent owner from limiting rights providing in

General Purpose License.

63�GNU General Public License, version 3� ⟨https://www.gnu.org/licenses/gpl-3.0.html⟩ accessed

23 May 2020.
64�GNU General Public License, version 3� ⟨https://www.gnu.org/licenses/gpl-3.0.html⟩ accessed

23 May 2020.

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

CHAPTER 2. DEFINITION OF OPEN SOURCE 24

2.3.2 MIT license

As MIT license name refers, it is from the Massachusets Institute of Technology. It is

not clear what was an original use case for the MIT license, but it is thought that it

is created for the X Window System in the 1980s.65 This license gives the licensee the

right to do nearly anything they want with the software.

The only exception it that licensee is not allowed to sue right holder about anything

related to software, and there is no warranty that software works as expected.66 This

provision is in line with common sense as an average person would not complain about

something they have got free.

2.3.3 Artistic license

Like MIT license, also an Artistic license is a permissive license. Originally Artistic

license was a license for Perl scripting language. The aim of the Artistic license is for the

author of the software to keep artistic control about the development of the software

while the software is free and open-source. Artistic license allows redistribution of

original work either gratis or with distribution fee.67

The artistic license does not set any limitations for derivative works if these derivative

works are not distributed. On the other hand, the license set requirements for derivative

works if the author of the derivative work distributes derivative work. The requirements

65Gordon Ha�, �The mysterious history of the MIT License� (Opensource, 26 April 2019) ⟨https:

//opensource.com/article/19/4/history-mit-license⟩ accessed 23 May 2020.
66see. �The MIT License� (Open Source Initiative) ⟨https://opensource.org/licenses/MIT⟩ accessed

23 May 2020.
67see. �Artistic License 2.0� (Open Source Initiative) ⟨https://opensource.org/licenses/Artistic-2.0⟩

accessed 23 May 2020.

https://opensource.com/article/19/4/history-mit-license
https://opensource.com/article/19/4/history-mit-license
https://opensource.org/licenses/MIT
https://opensource.org/licenses/Artistic-2.0

CHAPTER 2. DEFINITION OF OPEN SOURCE 25

are that developer of the derivative work shall document changes he or she has made

and do at least one of the following:

1. "make the Modi�ed Version available to the Copyright Holder of the

Standard Version, under the Original License, so that the Copyright

Holder may include your modi�cations in the Standard Version."

2. "ensure that installation of your Modi�ed Version does not prevent

the user installing or running the Standard Version. In addition, the

Modi�ed Version must bear a name that is di�erent from the name of

the Standard Version.

3. allow anyone who receives a copy of the Modi�ed Version to make the

Source form of the Modi�ed Version available to others under"

(a) "the Original License or"

(b) "a license that permits the licensee to freely copy, modify and re-

distribute the Modi�ed Version using the same licensing terms that

apply to the copy that the licensee received, and requires that the

Source form of the Modi�ed Version, and of any works derived

from it, be made freely available in that license fees are prohibited

but Distributor Fees are allowed."68

Above mentioned provision is near to copyleft, but option 2 makes it possible to do

derivative software and freely choose the license for it. That is why the artistic license

is a permissive license.69

68see. �Artistic License 2.0� (Open Source Initiative) ⟨https://opensource.org/licenses/Artistic-2.0⟩

accessed 23 May 2020.
69see. �Artistic License 2.0� (Open Source Initiative) ⟨https://opensource.org/licenses/Artistic-2.0⟩

accessed 23 May 2020.

https://opensource.org/licenses/Artistic-2.0
https://opensource.org/licenses/Artistic-2.0

3 Software engineering and software

development process

3.1 Phases of open source development

The software development process contains �ve phases: requirements elicitation, anal-

ysis, module design, implementation, and testing.70 Aim of the process is to produce

the software which meets the set requirements as well as possible. It depends on used

development methodology whether these phases are in a row or partly side by side.71

Requirements elicitation is a state where developer and end-user decide together what

are requirements for the software. Typically these requirements are either functional

or non-functional. Functional requirements are about the features which are related

to how the software works. For instance, the functional requirement can be how the

software reacts to the error or where some button is in the user interface72. Non-

functional requirements are requirements that consider other parts of the software

than functional. These requirements can be how fast software should fetch data from

the database or how long it can take to start software.73

70Bernd Bruegge and Allen H Dutoit, Object�Oriented Software Engineering. Using UML, Patterns,

and Java (Pearson 2014) p. 14.
71in waterfall model phase is entirely in a row and in scrum the software is initially divided to the

parts, and that is why same part can be in analysis phase when other is in implementation phase
72user interface is the part of the software with which user can interact. Typically it contains

buttons and text
73Bernd Bruegge and Allen H Dutoit, Object�Oriented Software Engineering. Using UML, Patterns,

and Java (Pearson 2014) p. 14.

CHAPTER 3. SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT
PROCESS 27

In the analysis phase requirement generated in requirements, elicitation is converted to

a technical plan of how software should be organized. For instance, it is designed how

software is divided into di�erent modules. Also, the programming language is decided

in this phase is that it is not de�ned in requirements elicitation phase.74

The implementation phase is where the actual code happens. In this phase, the software

is developed based on documents that are from previous phases.75 That is the phase

where all source code is written.

The last phase is testing. In this phase, it is tested whether software ful�ls requirements

that are decided with the client in requirements elicitation. If the software passes the

test, then the software is delivered to the client. Then again if tests fail it returns to the

phase which is responsible for the fail and development is continue until the software

is again in the testing phase.76

3.2 Software development roles

There are at least four di�erent categories for the people in the software development

project. These categories are Management roles, development roles, cross-functional

roles, and consultant roles. A person who is in a management role, for instance, project

manager, tries to organize software development to keep it in budget and schedule. A

74Bernd Bruegge and Allen H Dutoit, Object�Oriented Software Engineering. Using UML, Patterns,

and Java (Pearson 2014) p. 14.
75Bernd Bruegge and Allen H Dutoit, Object�Oriented Software Engineering. Using UML, Patterns,

and Java (Pearson 2014) p. 18.
76Bernd Bruegge and Allen H Dutoit, Object�Oriented Software Engineering. Using UML, Patterns,

and Java (Pearson 2014) p. 18.

CHAPTER 3. SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT
PROCESS 28

person with a development role takes part in the actual software development.77

Cross-functional roles are for communication from one team to others, keep contact

with end-users, and establishing interfaces. Consultants bring temporary knowledge

about �elds in which the core team does not have expertise. This knowledge can

be technical, for instance, about new programming paradigm, or non-technical, for

instance, legal advice.78

3.3 Open source software development

For understanding the challenges in open source licenses, it is fundamentally important

to understand how open-source software development process works. The open-source

software development process happens most likely on Internet.79 It is also good to

notice that some person who participates in the project do it voluntarily, and as a

hobby, in which case, for instance, their motivation in�uence their contribution.

Characteristic for the open-source software development is that amount of developers

can be huge. On the other hand, also, the amount of changes in the team is signi�cant

over time. The typical behaviour is that developers participate in the project when

it has a good reputation, and it is well known (so-called band-wagon e�ect). On the

contrary, developers leave projects which are not successful or attractive in another way.

Leaving developers is a challenge for development because some essential knowledge

77Bernd Bruegge and Allen H Dutoit, Object�Oriented Software Engineering. Using UML, Patterns,

and Java (Pearson 2014) p. 82.
78Bernd Bruegge and Allen H Dutoit, Object�Oriented Software Engineering. Using UML, Patterns,

and Java (Pearson 2014) p.82.
79Keng Siau and Yuhong Tian, �Open Source Software Development Process Model: A Grounded

Theory Approach� (2013) 21(4) Journal of Global Information Management (JGIM) 103, p. 108.

CHAPTER 3. SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT
PROCESS 29

for the project can leave with the developer.80

In most of the cases, there is some instance who control the development of the open-

source project.81 This can be a non-pro�t organization. However, it is also possible

that it is a company.82 The purpose of this instance is to decide which modi�cations

to the project's source code are accepted. On the other hand, the instance decides

guidelines for development. For instance, the guideline can contain information about

what features the project should contain.

Because the source code of the open-source project is available and open-source licenses

give right for derivative works, it is always possible that projects forks. Forking means

that one open-source project divides to the two projects because the maintainer of the

original project does not accept certain modi�cations that a group of contributors sees

essential, and that is why a new parallel software development project is established.

80Gregory Madey, Vincent Freeh, and Renee Tynan, �The open source software development phe-

nomenon: An analysis based on social network theory� [2002] AMCIS 2002 Proceedings 247, p. 1810.
81for instance Mozilla Foundation for Mozilla browser, Apache Foundation for Apache software and

Linux Foundation for Linux Kernel
82for instance, Google controls the TensorFlow machine learning library, which is released under

the Apache License.

4 Legal frame of copyright

4.1 Copyright as a Intellectual property

Intellectual property rights are a group of exclusive rights which aim is to protect a

person who has used his or her creativity to create something new. Intellectual property

rights give its owner the power to control how the target of the right can be used. This

kind protection is internationally recognized for instance in Article 15(1) (c) of the

International Covenant on Economic, Social and Cultural Rights which states that

the states which are parties in the Covenant "recognize the right of everyone � (c)

To bene�t from the protection of the moral and material interests resulting from any

scienti�c, literary or artistic production of which he is the author"83.

Like all other intellectual properties, copyright is an exclusive right that gives its owner

the right to prevent others from doing something with its object. In the case of copy-

right, this object is authorial work or some other expressive work. Unlike many other

intellectual properties, there is no need to register copyright anywhere.84 The protection

starts with the creation of the work. With this de�nition, the scope of the copyright is

quite broad, and nearly all artistic works from videos to computer programs are under

the scope of copyright protection.

There are copyright regulations in international, EU, and national level. The following

subsections will describe which kind of legislation is related to copyright starting from

the international level and moving through the EU legislation to Finnish national

83International Covenant on Economic, Social and Cultural Rights 993 UNTS 3, 15(1)(c).
84Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886, revised

at Paris July 24, 1971 1161 UNTS 3, art 5.2.

CHAPTER 4. LEGAL FRAME OF COPYRIGHT 31

copyright legislation. That order is chosen because international regulation create

foundation to the copyright legislation, which is sharpened in the EU and national

legislation.

4.1.1 International copyright treaties

Berne convention for Literary and Artistic Works85 sets internationally general guide-

lines for copyright. There are some provisions which give signing states more space to

regulate copyright when others are more strict. Berne convention was originally ac-

cepted in 1886, and it was revised in Paris in 1971. According to the World Intellectual

Property Organization(WIPO), 171 states have rati�ed the convention at the time of

writing.86

Berne convention states the term of copyright. According to the Convention minimum

term of copyright is 50 years from the author's death. In a joint authorship case, when

there are multiple creators for the work, the duration of the copyright protection is

counted from the death of the last survivor. However, if the author is anonymized

or pseudonym, the term of copyright is 50 years from the work's publishing date. As

these are the minimum periods for the copyright-protection, states can decide to set

longer-term but not shorter.87

The convention also de�nes these "literary and artistic" works, which are objects for

copyright. The de�nition lists many di�erent types of works, and therefore the scope

85Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886, revised

at Paris July 24, 1971 1161 UNTS 3.
86�Berne Convention contracting parties� (World Intellectual property organization) ⟨https://www.

wipo.int/treaties/en/ShowResults.jsp?treaty_id=15⟩ accessed 23 May 2020.
87Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886, revised

at Paris July 24, 1971 1161 UNTS 3, art 7.

https://www.wipo.int/treaties/en/ShowResults.jsp?treaty_id=15
https://www.wipo.int/treaties/en/ShowResults.jsp?treaty_id=15

CHAPTER 4. LEGAL FRAME OF COPYRIGHT 32

of copyright-protection is de�ned broadly. According to The convention, literary and

artistic work can be

"every production in the literary, scienti�c and artistic domain, whatever

may be the mode or form of its expressions, such as books, pamphlets and

other writings; lectures, addresses, sermons and other works of the same

nature; dramatic or dramatico-musical works; choreographic works and en-

tertainments in dumb show; musical compositions with or without words;

cinematographic works to which are assimilated works expressed by a pro-

cess analogous to cinematography; works of drawing, painting, architecture,

sculpture, engraving and lithography; photographic works to which are as-

similated works expressed by a process analogous to photography; works of

applied art; illustrations, maps, plans, sketches and three-dimensional works

relative to geography, topography, architecture or science."88

The Berne Convention set minimum right for copyright owner. The convention also

divide the right to two category; economical rights and moral rights. Economical rights

are rights which are related to the economical value of the work. Economical values are

movable such that they can be transfered from one person to the other. The convention

give rightowner six exclusive economical rights:

� The right of reproduction89,

� The right of translation90,

88Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886, revised

at Paris July 24, 1971 1161 UNTS 3, 2(1).
89Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886, revised

at Paris July 24, 1971 1161 UNTS 3, art 9.
90Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886, revised

at Paris July 24, 1971 1161 UNTS 3, 8,11,11ter.

CHAPTER 4. LEGAL FRAME OF COPYRIGHT 33

� the right of adaption91,

� the right of public performance and communication to the public92,

� The right of public recitation and communication to the public of recitation93

� optional right to obtain a share on the resale of a work of art94.

In addition to economic rights, the convention also provides moral rights to the author.

Moral rights are right, which are not movable, and these rights are more related to the

artistic values of the work. The idea about moral right is to promote creator's rights as

an artist. Moral rights are for instance right to claim authorship and right to prevent

such modi�cation to the work which would in�uence to the honour and reputation of

the author.95

Also WIPO Copyright Treaty(WCT)96 regulates copyrights in the international level.

WCT is an especially important treaty for information technology because it states

that software shall be protected with copyright97. WCT also states that the selection

or arrangement of their contents in the database is protected with copyright98. On the

91Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886, revised

at Paris July 24, 1971 1161 UNTS 3, arts 12,14.
92Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886, revised

at Paris July 24, 1971 1161 UNTS 3, 11,11bis.
93Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886, revised

at Paris July 24, 1971 1161 UNTS 3, 11ter.
94Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886, revised

at Paris July 24, 1971 1161 UNTS 3, 14ter.
95Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886, revised

at Paris July 24, 1971 1161 UNTS 3.
96WIPO Copyright Treaty (1996) 2186 UNTS 121.
97WIPO Copyright Treaty (1996) 2186 UNTS 121, art 4.
98WIPO Copyright Treaty (1996) 2186 UNTS 121, art 5.

CHAPTER 4. LEGAL FRAME OF COPYRIGHT 34

other hand, data stored to the database is not by de�nition protected with copyright

according to the treaty.

In addition to WCT and Berne Convention, also TRIPS agreement99 regulate copy-

rights matters in countries which are member states in the World Trade Organization.

Aim of the TRIPS is set minimum standards for the Intellectual properties in the WTO

member states. As the World Trade Organization has drafted TRIPS agreement, the

aim of the treaty is also to provide a similar condition for international trade in all

member states of the World Trade Organization. TRIPS agreement also states that

software is in the scope of copyright regulation.100

4.1.2 Copyright in European Union

In EU copyright is regulated with many directives. All of the directives regulate one

speci�c aspect of the copyright, copyright protection in spe�c circustances or copyright

for speci�c type of work such that there is no general copyright directive. Most central

of these directives is Information society directive (InfoSoc)101 which de�nes scope of

copyright protection in EU.102 InfoSoc basically adapt Berne convention103 and Rome

99The Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS) (1994) 1869

UNTS 299.
100The Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS) (1994) 1869

UNTS 299, art 10.
101Directive 2001/29/EC of the European Parliament and of the Council of 22 May 2001 on the

harmonisation of certain aspects of copyright and related rights in the information society [2001] OJ

L167/10.
102Justine Pila and Paul Torremans, European intellectual property law (Oxford University Press

2016) p. 243.
103Berne Convention for the Protection of Literary and Artistic Works, September 9, 1886, revised

at Paris July 24, 1971 1161 UNTS 3.

CHAPTER 4. LEGAL FRAME OF COPYRIGHT 35

convention104 obligations to the EU legislation.105 In addition to InfoSoc, Copyrights

are regulated in Computer Program directive106, term directive107 and Database di-

rective108. Computer Program directive is covered more extensively in section 4.2 and

other directives narrowly in this section.

The term directive is about how long copyright protection is. Most of the cases,

this directive states that copyright protects the work of its author's life long and 70

years after the author's death. If the author is not known, protection is 70 years

from publishing date of the work. When compared to the term provided in Berne

convention Term directive give 20 years longer protection period for the works than

Berne convention.109

The database directive is about how intellectual properties relating to databases are

protected. According to database directive, the design of the database is protected with

copyright if the design is non-trivial.110 Copyright does not protect the data which is

in the database. On the other, the data is protected with Sui generis right for the

104Rome Convention for the Protection of Performers, Producers of Phonograms and Broadcasting

Organizations 496 UNTS 43.
105Justine Pila and Paul Torremans, European intellectual property law (Oxford University Press

2016) p. 247.
106DIRECTIVE 2009/24/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of

23 April 2009 on the legal protection of computer programs [2009] OJ L111/16.
107Directive 2006/116/EC of the European Parliament and of the Council of 12 December 2006 on

the term of protection of copyright and certain related rights [2006] OJ L372/12.
108Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal

protection of databases [1996] OJ L77/20.
109Directive 2006/116/EC of the European Parliament and of the Council of 12 December 2006 on

the term of protection of copyright and certain related rights [2006] OJ L372/12.
110Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal

protection of databases [1996] OJ L77/20, art 3.

CHAPTER 4. LEGAL FRAME OF COPYRIGHT 36

database.111 Sui generis right means that the right which protects database data is

not similar to the protection of any other object which is protected with intellectual

property.

4.1.3 Copyright in Finland

In Finland, copyright is regulated in the Copyright act.112 Its �rst section states that a

person who has created "a literary or artistic work shall have copyright therein, whether

it be a �ctional or descriptive representation in writing or speech, a musical or dramatic

work, a cinematographic work, photographic work or other work of �ne art, a product

of architecture, artistic handicraft, industrial art, or expressed in some other manner

and that maps and other descriptive drawings or graphically or three-dimensionally

executed works and computer programs shall also be considered literary works"113. This

de�nition is the mostly same de�nition for copyright which can be found from Berne

Convention and computer program directive. The similarity is reasonable because both

documents bind Finnish legislators.

Section four of the act is about adaption or conversion of the work. This section states

that if someone has adapted copyrighted work or converted it to another form, the

adaptor or convertor has copyrighted to this form. However, it is limited to extend

in which copyright does not con�ict with the copyright of the original work. The

limitation means that the adapter has copyright only the part of the work which is his

or her creation. On the other hand, if the adaption can seem independent, then the

copyright does not depend on original work.114

111Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal

protection of databases [1996] OJ L77/20, art 7.
112Copyright Act, 404/1961.
113Copyright Act, 404/1961, s 1.
114Copyright Act, 404/1961, s 4.

CHAPTER 4. LEGAL FRAME OF COPYRIGHT 37

Section �ve of the act is about collective work. Collective work is the work which con-

tains part from many other works. In this situation, copyright of the compilation work

belongs to the person who has made the compilation work again with the limitation

that these rights cannot collide with rights that belong to the copyright holders of the

original works.115

Copyright distribution of the work, which has multiple authors, has covered section six

of the act. According to section six of the copyright act, if it is impossible to determine

who has authored which part of the work, then the copyrights belong to each author

equally.116

4.2 Software copyrights

According to Computer Programs Directive117, copyright protects computer programs.

The directive also states that ideas and principles which are useable in many programs

can not be protected. In addition to that computer programs should be its author

intellectual creation and original.118

Computer Programs Directive also states that the author of the software can be a nat-

ural person or group of natural persons. For a group of persons, the directive mentions

two di�erent types of work. Suppose persons create work such that it is impossible

to determine which person has created which part of the work, then all creators are

rightsholders jointly. On the other hand, if parts can be identi�ed, collective work and

115Copyright Act, 404/1961, s 5.
116Copyright Act, 404/1961, s 6.
117DIRECTIVE 2009/24/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of

23 April 2009 on the legal protection of computer programs [2009] OJ L111/16.
118DIRECTIVE 2009/24/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of

23 April 2009 on the legal protection of computer programs [2009] OJ L111/16.

CHAPTER 4. LEGAL FRAME OF COPYRIGHT 38

rights are distributed according to member state legislation. Furthermore, if develop-

ers have made the software program as a part of their job, copyrights of the program

belong to the employer if nothing else is contracted.119

Because copyright protects computer programs, Computer Program directive provides

exclusive rights for rightsholder are similar to exclusive rights for another type of art-

works which are copyright protectable. According to the directive, rightsholder has

exclusive rights to reproduce temporarily or permanently. Rightholder also has the

right to translate and adapt the software. Distribution right is also exclusive right of

the rightsholder.120

Article 6 of the directive set boundaries for reverse engineering. Reverse engineering

is the process in which the object code of the software is converted back to the source

code. Under article 6, reverse engineering is allowed only to make other software com-

municate with the software. There are also requirements that user have rightful access

to the software, and interoperability cannot be achieved without reverse engineering.

Furthermore, only part of the software which is relevant to interoperability can be a

target of the reverse engineering process.

Article 8 of the Computer Programs directive contains special measures of the pro-

tection. The article states that person who put into circulation a copy of a computer

program knowing, or having reason to believe, that it is an infringing copy shall be a

target to remedies. Same applies to the person who uses the commercially infringing

copy of the software.

119DIRECTIVE 2009/24/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of

23 April 2009 on the legal protection of computer programs [2009] OJ L111/16, art 2.
120DIRECTIVE 2009/24/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of

23 April 2009 on the legal protection of computer programs [2009] OJ L111/16, art 4.

5 Authorship of software

5.1 Problems in open-source authorship

There are many problems in the question about right for remedies in license infringe-

ments when it comes to open source licenses. Origin of all problems is in the legal sense

challenging form of the open-source software project. Some of the problems are related

to the fact that the development of the open-source software projects commonly take

place in the global and virtual workspace, where each developer's factual contribution

is not always necessarily clear. The others are related to the software's legal status,

which is the end product of the project.

First of all, it is challenging to identify who are contributors to a particular block of

code. Identifying a contributor is a challenge because development is international,

and in many cases, it is not even necessary to use a real name when contributing open-

source software project. Then again, one may contribute block of code, and after that,

others modify half of this block. After the second modi�cation of the line, there are

two contributors for the one cone line, and it is hard to discover who have contributed

and what is a contribution. One solution for this problem is to check contributions

from the version control but also in this solution have its downsides. Another solution

which has the potential to solve the problem of tracking authorships is blockchain, and

these solutions are also introduced in the following sections.

Another thing to consider is what are the requirements that software even is copyright

protectable. Protectability is an important question because copyright protects only

CHAPTER 5. AUTHORSHIP OF SOFTWARE 40

the author's intellectual creations121 and therefore, not all code is protectable. Some

software is so trivial that they do not have copyright protection. Moreover, if the

partition of the code which a contributor has contributed is not intellectual enough,

then it is not copyright protected.

5.2 Proving authorship with Git

5.2.1 Git version control system

The version control system is software that keeps track of di�erent versions of the

developed software. Version control is essential for the software development process

because it makes it possible to �nd the last version of the software where some feature

works if the feature is broken during development. Because it is possible to identify

the last version where feature works, it is easy to �nd the reason why the feature has

broken just looking what has changed between version where the feature worked and

the version where it does not work.122

Although there are many version control systems123, most used version control for open

source projects is Git124 which nearly 87 % of the software developer use.125 Linus

Torvalds initially developed it for the version control of the Linux operating system

121DIRECTIVE 2009/24/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of

23 April 2009 on the legal protection of computer programs [2009] OJ L111/16, art 1.3.
122More about version control systems, e.g. Walter F Tichy, �RCS�a system for version control�

(1985) 15(7) Software: Practice and Experience 637.
123for instance SVN, Bitkeeper, CVS
124Git is free and open-source software licensed under GPLv2 and can be downloaded at https://git-

scm.com/
125�Developer Survey Results 2018� (Stackover�ow) ⟨https://insights.stackover�ow.com/survey/

2018/#work-_-version-control⟩ accessed 6 June 2020.

https://insights.stackoverflow.com/survey/2018/#work-_-version-control
https://insights.stackoverflow.com/survey/2018/#work-_-version-control

CHAPTER 5. AUTHORSHIP OF SOFTWARE 41

in 2005. The initial reason for the development of Git was that Linux project lost its

license to use Bitkeeper.126

As Git is a commonly used version control system for open source projects, it is a good

starting point when searching for ways to prove authorship. One great feature in Git

is that it collects data about authors for codebase which versions it control. When

Git tracks changes in source code, it is possible that at the same time, it collects data

based on which it is possible to identify the author of each line of code.

Git is a decentralized version control system. Decentralized means that there is no

authoritative repository, which is a di�erence in centralized version control systems.

Because Git is a decentralized version control system, it uses repositories which are

"cloned" from each other and contains full editing history and all other data. These

repositories are initially similar. During the time repositories can vary, and they can

import and export di�erent blocks of code to and from other repositories. Although Git

version control does not by de�nition contain authoritative repository which contains

the newest version about code, in reality, there is in most cases one repository from

which all other are cloned.127

In imports of the code block, which are called commits, repository imports code blocks

from another repository, but in addition to that, it gets metadata about the code block.

The labels of the metadata in commit are commit id, author, author date, committer,

commit date, and Git commit message. Commit id is a unique id that is used to

identify the commit. The author is the person who committed the code block to Git.

The date in which code is committed Git is saved to the author data �eld in metadata.

126Junio C Hamano, �GIT�A stupid content tracker� (2006) 1 Proc. Ottawa Linux Sympo 385, p.

385.
127Armijn Hemel and Shane Martin Coughlan, �Making Sense Of Git In A Legal Context� (2017) 9

IFOSS L. Rev. 19, p. 20.

CHAPTER 5. AUTHORSHIP OF SOFTWARE 42

Then again, the committer is the person who committed the commit to the repository,

and the commit date is the date of that event. Git commit message is a message from

the person who committed the change. Most likely, it contains a description of change

made to the code. The commit can also contain tags which inform for instance that

the commit belongs to the speci�c version of the software.128

5.2.2 Solution with GIT

At �rst, it seems like using metadata from Git to �nd authorship all code block is a

solution for the question about who has written and which part of the code. Some

scholars state that metadata is an e�cient way to maintain the value of copyright in

the digital environment. Maintaining the value of copyright means that it would be

easier to track what rights each party have.129 On the other hand, to bene�t from the

metadata, the form of it must be correct. There is no use for the metadata which

contains unnecessary information or even worse invalid information about copyright

relationships.130

Unfortunately, no mechanism provides that metadata from the Git contains correct

information about, for example, the author of the code block. The code block may be

copied from one project and pasted the other project. In this case, copyright belongs

to the original writer of the code block not to the person who copied it although his

name is in the metadata. There are no evidence about copying other than that same

128Armijn Hemel and Shane Martin Coughlan, �Making Sense Of Git In A Legal Context� (2017) 9

IFOSS L. Rev. 19, p. 24.
129Leo Mullins, �Using metadata to support DRM, trading and administration of globally deployed

digital products� (2009) 5(2) Journal of Digital Asset Management 75, p. 76.
130Armijn Hemel and Shane Martin Coughlan, �Making Sense Of Git In A Legal Context� (2017) 9

IFOSS L. Rev. 19, p. 28.

CHAPTER 5. AUTHORSHIP OF SOFTWARE 43

code is also in the source code of that other project.131 On the other hand, Git is

decentralized version control which provides that it is hard to set incorrect information

to the metadata because there are multiple copies about the repository, but it is not

impossible.132

Another problem is that Git tracks change code line wise. Line wise tracking means

that if the developer change one character in the line, Git considers that this developer

has written this whole line. Although this is not a typical problem current, someone

may rename variables. After committing these changes, he is considered as an author

of all lines in which these variables occur. All this because he was the last person

who modi�ed these lines. It is easy to see that these modi�cations do not ful�l the

requirements set to the copyright protection for computer programs.

There is one law case in Germany133 where Git logs are used as a piece of evidence for

copyright infringement. Hellwig v. VMWare Global Inc. was about Virtual machine

which VMWare has developed. The virtual machine is the software that emulated hard-

ware134. As a part of VMWare's product, VMWare was developed �les vmkernel and

vmlinux. Because vmlinux contained source from the Linux operating system which is

licensed under GPL license, also vmlinux was licensed under GPL, and its source code

131Armijn Hemel and Shane Martin Coughlan, �Making Sense Of Git In A Legal Context� (2017) 9

IFOSS L. Rev. 19, p. 28.
132using git push �force command it possible to change also older commit therefor inject incorrect

data, but that is quite easy to notice because it changes commit date. See. �git-push documentation�

(Git documentation) ⟨https://git-scm.com/docs/git-push#Documentation/git-push.txt--f⟩ accessed

6 June 2020.
133German case law is covered in that and same other occasions in that thesis because many open

source infringement case take place on Germany because of German procedural laws. See. Marcus

von Welser, �Opposing the Monetization of Linux: McHardy v. Geniatech & Addressing Copyright

Trolling in Germany� (2018) 10 IFOSS L. Rev. 9, p. 11.
134See. Gerald J Popek and Robert P Goldberg, �Formal requirements for virtualizable third gener-

ation architectures� (1974) 17(7) Communications of the ACM 412.

https://git-scm.com/docs/git-push#Documentation/git-push.txt--f

CHAPTER 5. AUTHORSHIP OF SOFTWARE 44

was published. Then again vmkernel did not contain code from the Linux project, and

therefore its source code was not revealed. The legal question in the case was whether

vmkernel is derivative work to the GPL licensed Linux code. In its ruling, Hamburg

District Court states Hellwig did not express it clear enough which part of the code is

his contribution, and that code is intellectual enough to be copyright protectable. On

the other hand, Git itself was not questioned as a form of the procedural evidence.135

Although there are evident, practical problems, case law states that Git log data is

enough evidence about authorship at least in Germany.136 On the other hand, it requires

that plainti� express clearly which part are similar and which notations in the Git logs

support the claim that the defendant has committed copyright infringement.

5.3 Proving authorship with Blockchain

5.3.1 Blockchain technology

Blockchain technology is another solution for metadata in which incorrect data is hard

to inject. The validity of the metadata is important because metadata is useless if

it is possible to any change it as they wish, mainly when the metadata shall provide

the information about the author of the code block. The most �nal solution for that

purpose is the blockchain application.

According to the de�nition provided by Founder and Executive Chairman of the World

Economic Forum Klaus Schwab, blockchain is "[i]n essence, the blockchain is a shared,

programmable, cryptographically secure and therefore trusted ledger which no single user

135Hellwig v. VMWare Global Inc., File no: 310 0 89/15, Hamburg District Court (Jul. 8, 2016)
136Armijn Hemel and Shane Martin Coughlan, �Making Sense Of Git In A Legal Context� (2017) 9

IFOSS L. Rev. 19, p. 19.

CHAPTER 5. AUTHORSHIP OF SOFTWARE 45

Figure 5.1: Illustrative image about blockchain

controls and which can be inspected by anyone".137 Blockchain protocol is designed such

that it is tough to make hostile changes to the data stored to the blockchain.138

The basic idea in blockchain as a data structure is that it contains blocks which have

hash part and data part (see. �gure 5.1). Data part has data which belongs to the

block, for instance, who owns the copyright of the speci�c artwork. Then hash part

have cryptographic hash from both previous and current block.139

Hashes are calculated with cryptographic function, which input is the data which is

saved to the current block and also hash from the previous block. The output of the

function is hash which is a series of hexadecimal numbers. A hash of the previous block

137Klaus Schwab, The fourth industrial revolution (Currency 2017) p. 19.
138technically changes are possible with so-called "51% attack", but that requires that attacker have

at least 50% of all computation power in the blockchain. The situation is theoretically possible but

with most of the blockchain nearly impossible in practice. see. Paul Vigna and Michael J Casey,

The age of cryptocurrency: how bitcoin and the blockchain are challenging the global economic order

(Macmillan 2016).
139Michael Crosby and others, �Blockchain technology: Beyond bitcoin� (2016) 2(6-10) Applied

Innovation 71, p. 11.

CHAPTER 5. AUTHORSHIP OF SOFTWARE 46

is one input when computing a hash for the next block, anyone who wants to change

in the earlier block in the blockchain has to compute the new hash for that block and

also all the following block.140

Another factor which validates data storage in the blockchain is the consensus requiring

and decentralized nature of the blockchain technology. Decentralized nature means that

there are multiple copies about blockchain and they are all equally valid. These places

where blockchain copies are stored are called nodes. When a new block is added to

the blockchain, there is a typically same computationally challenging problem which

must be solved before the block can be added to the chain. For instance, in the

Bitcoin blockchain, all block hashes must start which speci�c number of zeros and for

that reason block contains a nonce, which is number selected such that requirement

is ful�lled. When one node �nd the solution, others check that it is correct and after

that, all nodes adds the new block to their versions of the blockchain.141

5.3.2 Solving authorship with blockchain

Technically it is possible to write right owner information to the blockchain, and that

way solve who owns the copyright for the speci�c work. Storing copyright information

can be done with "Trusted Timestamping". That is encoded sequence of characters

which describe for instance date of the creation for the artist work.142

It is also possible to update the information when someone transfers copyright to

140Michael Crosby and others, �Blockchain technology: Beyond bitcoin� (2016) 2(6-10) Applied

Innovation 71, p. 11.
141Michael Crosby and others, �Blockchain technology: Beyond bitcoin� (2016) 2(6-10) Applied

Innovation 71, p. 11.
142Alexander Savelyev, �Copyright in the blockchain era: Promises and challenges� (2018) 34(3)

Computer law & security review 550, p. 553.

CHAPTER 5. AUTHORSHIP OF SOFTWARE 47

another party. Transfer of the rights can be stated with another timestamp with

present time when rights are moved. That way anyone can recognize when rights are

moved and also who own right currently.143

What is problematic for the blockchain is that it requires an increasingly high amount

of the data storage and at least in some implementation computation energy. At the

time of the writing estimated energy usage of the bitcoin blockchain, which is most used

blockchain is 61 terawatt hour per year. The amount of energy is nearly the same as

the amount of energy which is used in Kuwait in one year.144 When it comes to storage

usage, it is clear that over time needed storage increase as blockchain technology to

require that multiple nodes stores all blocks.145

Another storage-related issue is whether copyright-protected work should be stored

in or outside of the blockchain. Both solutions have problems. If works are stored

inside blockchain that increase signi�cantly required storage space and in fact, is in

con�ict with copyright legislation. There is the con�ict because parties who maintain

nodes for blockchain can be considered as an online intermediary. Therefore according

to E-commercial directive, they have to remove copyrighted material if the copyright

holder requires it. The requirement for removing data is problematic in the blockchain

context because it is impossible to remove data from the blockchain. On the other

hand, if works are stored outside the blockchain, the problem is that there should be

a mechanism which ensures that data stored inside the blockchain and data stored

outside the blockchain is synchronized. This solution also requires a trustworthy party

143Alexander Savelyev, �Copyright in the blockchain era: Promises and challenges� (2018) 34(3)

Computer law & security review 550, p. 554.
144�Bitcoin Energy Consumption Index� (Digiconomist) ⟨https://digiconomist.net/bitcoin-energy-

consumption⟩ accessed 28 July 2020.
145Alexander Savelyev, �Copyright in the blockchain era: Promises and challenges� (2018) 34(3)

Computer law & security review 550, p. 551.

https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption

CHAPTER 5. AUTHORSHIP OF SOFTWARE 48

who stores the data which is outside the blockchain.146

5.4 Intellectual creation requirement for softwares

EU legislation states that the work should be its author's own intellectual creation to

get copyright protection. That requirement is initially established in Infopaq147 case,

and for the software, it is also stated in the Computer Program directive article 1.3. In

Infopaq question was whether it infringed copyrights of the newspapers when Infopaq

provided eleven words long extracts about their articles. In its decision, ECJ states that

eleven-word long extraction is not long enough to infringe rightsholder's exclusive right

to reproduce. In addition to that, the court stated that copyright protection requires

that work is the author's own intellectual creation. To end up that decision, the court

interpreted Berne convention such that it contains intellectual creation requirement in

article 2.5 and 2.8148.

In general threshold for computer software, copyright has not been high. The basic

idea is that copyright protects expression in the source code of the software if there

are many ways to express the same thing, but if there is only one way to write one

code then copyright does not protect it because there is no creativity.149 On the other

hand, there are certain clear limits about what kind of subject can be protected with

copyright. These limits are set in ECJ cases SAS v. the WPL150 and BSA151.

146Alexander Savelyev, �Copyright in the blockchain era: Promises and challenges� (2018) 34(3)

Computer law & security review 550, p. 556.
147Case C-5/08 Infopaq International A/S v Danske Dagblades Forening [2009] ECR.
148Case C-5/08 Infopaq International A/S v Danske Dagblades Forening [2009] ECR.
149Mikko Välimäki, Oikeudet tietokoneohjelmistoihin (Talentum 2009) 18.
150Case 406/10 SAS Institute Inc v World Programming Ltd, [2012] ECR.
151Case 393/09 Bezpe£nostní softwarová asociace - Svaz softwarové ochrany v Ministerstvo kultury

[2009] ECR.

CHAPTER 5. AUTHORSHIP OF SOFTWARE 49

Especially the doctrine that copyright protects the expression of the source rather than

functionality is established SAS v. the WPL152 case. Background of the case was thas

SAS Institute was developed statistical programming language and development tools

for that programming language. After that, World Programming Ltd (WPL) developed

software that could compile the SAS programming language.

The legal question in SAS v. the WPL was whether WPL was violated copyrights

owned by SAS Institute. In this case, ECJ ruled that "the functionality of a computer

program nor the programming language and the format of data �les used in a computer

program in order to exploit certain of its functions constitute a form of expression of

that program and, as such, are not protected by copyright in computer programs for

that directive."153

In BSA case legal question was whether the graphical interface is copyright protectable

as a part of the computer program. In its decision, ECJ states that copyright does

not protect the graphical interface of the computer software according to the Com-

puter program directive. On the other hand, the graphical interface may get copyright

protection based on Infosoc directive if it is creator's own intellectual creation.154

152Case 406/10 SAS Institute Inc v World Programming Ltd, [2012] ECR.
153Case 406/10 SAS Institute Inc v World Programming Ltd, [2012] ECR.
154Case 393/09 Bezpe£nostní softwarová asociace - Svaz softwarové ochrany v Ministerstvo kultury

[2009] ECR.

6 Enforcebility of Open source

licenses

One problem with open source licenses is whether one right owner can raise a claim

on behalf of the other. This problem is highly related to the problem of the project's

intellectual property status; in other words, whether the software is considered as

jointly authored work of collective work. The solution is easy if the software is jointly

authored work because, in this situation, every rightsholder can raise a claim. The

problem is more challenging if the software is considered as the collective work. In

this situation, the contributor can raise a claim on behalf of itself but not others. A

possible question is if it is possible to authorize another contributor to run a claim also

on behalf of the others.

6.1 Legal status of Open source licenses

It was long uncertain if open-source licenses are enforceable because there was no case

law about it. One reason for the lack of case law was that nearly all potential cases

were settled before they go to court. Furthermore, the reason for the settlement was at

least partly the fact that without caselaw, there was no certainty about the outcome of

the case, and neither of the parties was ready to take the risk. The primary reason for

the uncertain outcome was that the legal status of open source licenses was unclear.

There was no evidence that they are legally binding and if they are whether they are

CHAPTER 6. ENFORCEBILITY OF OPEN SOURCE LICENSES 51

licenses or contracts.155

It is vital to mention that in that uncertain situation licensees could only lose in the

court. The reason was that even if the court had ruled that open source license is

invalid, the copyright legislation would still apply and the outcome would be same or

worse when compared to the situation in which open source license is valid.156

Another reason for the lack of cases was in the open-source developer community.

According to Ellickson Robert, if community have a more e�cient way to settle disputes

in the community, it will use it.157 That was the case in the open-source community.

The community used many informal ways when sought license compliance. These ways

can be for instance sending email to license infringer or write a post to the online forum

that someone does not act license compliant way.158

The problem for enforceability of open source licenses has also been that according to

FSF, the GPL license is not a contract but a unilateral license. This interpretation

aimed to prevent problems that might occur with contract formation doctrine in the

US in the 1990s. Although doctrine has changed, FSF has kept its position.159

155Heather J Meeker, �Open Source and the Age of Enforcement� (2012) 4 Hastings Sci. & Tech.

LJ 267, p. 268.
156Ville Oksanen and Mikko Välimäki, �Free software and copyright enforcement: A tool for global

copyright policy?� (2006) 18(4) Knowledge, Technology & Policy 101, p. 104.
157Ellickson Robert, Order without Law�How Neighbors Settle Disputes (Harvard University Press

1991) p. 280.
158Ville Oksanen and Mikko Välimäki, �Free software and copyright enforcement: A tool for global

copyright policy?� (2006) 18(4) Knowledge, Technology & Policy 101; Siobhán O'Mahony, �Guarding

the commons: how community managed software projects protect their work� (2003) 32(7) Research

policy 1179.
159Heather J Meeker, �Open Source and the Age of Enforcement� (2012) 4 Hastings Sci. & Tech.

LJ 267.

CHAPTER 6. ENFORCEBILITY OF OPEN SOURCE LICENSES 52

In the US, it was Jacobson v. Katzer 160 case, which clari�ed the legal status of the open-

source licenses. In the case, the facts are that both parties developed software for model

railroads controlling. "Java Model Railroad Interface(JMRI)" was developed by Robert

Jacobsen under Artistic license when Matthew Katzer developed his program under a

proprietary license. Initially, Katzer sued Jacobsen with the claim that Jacobsen was

breached the software patent owned by Katzer. When this case was in the process,

it transpired that Katzer was used code from Jacobsen's JMRI project against license

provisions. The case stated that open-source licenses are not unenforceable because of

their form and on the other hand, there is no con�ict with contract formation rules.161

In Finland, open-source licenses are interpreted as standard licenses and, therefore,

as binding as other standard licenses used in the software market. That is why all

legislation and case laws relating to copyright licenses are also applicable to open

source licenses.162 As licenses are in general interpreted to contract, then open-source

licenses are also contracts in Finnish legislation.163

6.2 Joint authored, adaptive or collective work

It is essential to discover whether open-source software project is considered as jointly

authored, adaptive, or collective work in the copyright sense. Discovering the copyright

type of work is important because enforcing rights is di�erent in these cases. In jointly

authored work, any one of the authors can raise a claim.164 On the other hand in

160Jacobsen v Katzer 609 F Supp 2d 925 (ND Cal 2009).
161Heather J Meeker, �Open Source and the Age of Enforcement� (2012) 4 Hastings Sci. & Tech.

LJ 267, p. 276.
162Mikko Välimäki, �Avoimen lähdekoodin ohjelmistolisensseistä� (2002) 5 Defensor Legis, p. 854.
163Kristiina Harenko, Valtteri Niiranen, and Pekka Tarkela, Tekijänoikeus. Kommentaari ja käsikirja

(Talentum 2006) 488,494.
164Copyright Act, 404/1961, s 6.

CHAPTER 6. ENFORCEBILITY OF OPEN SOURCE LICENSES 53

collective work and adaptive work, creator of the collective or adaptive work can raise

a claim but only such way that it does not collide with the copyrights of the original

work.165 Di�erence of these type of work is de�ned based on Finnish copyright law in

section 4.1.3 and illustrated in �gure 6.1. All of these interpretations are, at least in

theory, possible for open source projects.

In many cases, it is possible to track who has coded which part of the software. There-

fore source code can be seen as a group of authorial work collected to the same work.

That is why collective work is a possible category for the source code of the open-source

project.

On the other hand, the software development process can be seen as a process where

each developer, in turn, adapt the current version and makes it better that way. That

way, contributors not only add new increments to work but also further develop old

parts. From this perspective, adaptive work is a reasonable interpretation.

Then again, all contributions are contextually related to each other such that it is not

possible to separate parts from each other. From that perspective, it is the same to

divide code blocks based on their author than divide sentences from the novel based

on who has written them. With that reasoning, it is possible to end up the conclusion

that open source projects are jointly authored works.

In the following subsection, this problem is discovered from both software engineering

and legal perspective. These perspectives are di�erent because software engineers see

software as an end product of the development process when lawyers see software as

authorial work protected with copyright. It is essential to understand both perspectives

because the law system does not live in a vacuum but is part of the society.

165Copyright Act, 404/1961, ss 4,5.

CHAPTER 6. ENFORCEBILITY OF OPEN SOURCE LICENSES 54

Figure 6.1: Illustrative image about di�erent type of copyrighted works with multiple

authors

6.2.1 Technical perspective

From the software development perspective open source project is one software entity

which contains many separate code �les. These �les then contains rows of source code.

Every line can have separate author but they are still part of the code in functional

sense.

From this perspective, the project is one functional set. All code �les are connected,

and the software works if they are all present. If any line of code is removed, the

program will not work the same way.

CHAPTER 6. ENFORCEBILITY OF OPEN SOURCE LICENSES 55

When contributor modi�es code, it either adds, removes or changes the line of code.

When the contribution is ready, the contributor has to check that the software still

works with contributor contribution. That way also lines which the contributor does

not modify in�uence the way contributor contributes to the code.

The facts mentioned above support the interpretation that the open-source software is

either jointly authored or adaptive work from the software development perspective.

The motivation for this opinion is that the software is one entity, and this limits o�

collective work because it has multiple noticeably di�erent sections.

The fact is also that new version of the end product of the project is not released

after each modi�cation to the code, but multiple modi�cations are published in one

release.166 Thus, it is reasonable to conclude that software engineers see open source

projects in most cases as jointly authored work. The exception can be the �rst versions

of the forked projects because they are adaptions from the original works.

One con�ict between software development and the copyright is also how to system

design should be recognized in the copyright sense. For instance, software architectures

and other design materials are not commonly protected as a part of the computer soft-

ware. On the other hand, these materials can be protected with copyright if their own

artist value is considerable enough, but that does not prevent others from implementing

architectures which are presented in the material.167

As module design is in many software projects essential part which re�ects robust

166Linus Nyman and others, �Understanding Code Forking in Open Source Software: An examination

of code forking, its e�ect on open source software, and how it is viewed and practiced by developers�

[2015] , p. 26.
167Mikko Välimäki, Oikeudet tietokoneohjelmistoihin (Talentum 2009) p. 21.

CHAPTER 6. ENFORCEBILITY OF OPEN SOURCE LICENSES 56

to choices will are made when the software is coded168. It is one question whether

copyright belongs to the programmer if the module design leaves narrow space for the

programmers own artistic choices. In the end, that does not matter if module designer

and programmer work in the same company because copyright belongs to the company

but in some open source project that is not the case.

6.2.2 Legal perspective

Figure 6.2: Picture about �ctional opensource software development process where the

aim is making a program which prints an increasing number of asterisks to every other

line

When software engineering sees code as a product, the legal view is di�erent. From

the legal perspective, computer programs are protected as literate work.169 This form

in�uences the answer because the literate form only considers source code, not the func-

tionalities. Not recognizing the value of functionality is the opposite view than what

is in software engineering because software engineering is more interested in function-

168Bernd Bruegge and Allen H Dutoit, Object�Oriented Software Engineering. Using UML, Patterns,

and Java (Pearson 2014) p. 217.
169DIRECTIVE 2009/24/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of

23 April 2009 on the legal protection of computer programs [2009] OJ L111/16.

CHAPTER 6. ENFORCEBILITY OF OPEN SOURCE LICENSES 57

alities of the code than how it is written.170

From SAS v. the WPL171 case, it can be interpreted that copyright-protection does not

require that software works. This interpretation can be made because the functionality

is not protected, but the expression of source code is. With the fact that the function

of the code is measurable only when the source code is compiled to object code and

program executed in the computer, it is not possible to derive requirements about

protectability when the software is protected as authorial work.

Besides, contributing open source project means in the legal sense that contributor

license his code to the rights owner of the project with the same license as the project

use.172 From this perspective, open-source software seems to be a collection of code

blocks from di�erent authors, and that is collective work.

It is also reasonable to notice that not all contribution is protected with copyright.

There are still some requirements for the code's creativity than are for the "normal"

computer program. Each contribution should be "its author intellectual creation"173

to be protected with copyright.

In German case law contributions to the software is considered to be jointly authored

only if the contribution is from the contributor who has provided to the initial version of

the software174. Another wise contribution is collective and to get copyright protection

for the contribution it is required that contribution independently ful�l requirements

170That does not mean that formation of the code is meaningless in software engineering. Code must

be readable, but it is more important because it does what it aims to do
171Case 406/10 SAS Institute Inc v World Programming Ltd, [2012] ECR.
172In same projects there is also a Contributors license agreement, which states the legal relationship

between the contributor and the rightsholder of the project preciously.
173DIRECTIVE 2009/24/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of

23 April 2009 on the legal protection of computer programs [2009] OJ L111/16.
174German Federal Supreme Court, Judgment of July 14, 1993, File No.: I ZR 47/91

CHAPTER 6. ENFORCEBILITY OF OPEN SOURCE LICENSES 58

for the copyright protection175. In the infringement situation, it is also necessary that

contributors show what their contribution is. The requirement is that contributors show

exactly which lines of the code are their contribution and which lines are intelligent

enough to be protected with copyright. It is also essential to show in which code lines

defendant have used.176

175German Federal Supreme Court, Judgment of Mar. 3, 2005, File No.: I ZR 111/02.; Fash 2000
176Marcus von Welser, �Opposing the Monetization of Linux: McHardy v. Geniatech & Addressing

Copyright Trolling in Germany� (2018) 10 IFOSS L. Rev. 9.

7 Open source infringement litigation

7.1 Raising a claim on behalf of other contributors

According to decision KKO 2004:18 from the Finnish Supreme court, there is no way

to mitigate the right to raise a claim to another person. In that case, person A claims

that real estate in which person A owned part should modify its articles of association

more reasonable. During the court process in the court of appeal, person A sold his

part of the real estate but continued his process in the court with the new owner's

acceptance. In this situation, the Supreme court ruled that although person A has

no right to continue the process anymore because person A does not have ownership,

which was a motive for the process. The court also ruled that it does not change the

situation that the new owner accepted that person A continues to process.

Also, the Finnish market court has made judgment which is based on decision KKO

2004:18 and is related to copyright. In the case of the market court MAO:285/19

critical legal question was whether right performance organization Teosto could raise

a claim on behalf of the right owners which right it protects. Reasoning its decision

with the decision KKO 2004:18, The market court states that although Teosto had

contracts with its member, it cannot present them in the court. The contracts did not

a�ect to outcome because the right to raise a claim cannot move even contractually to

another person.

There is still one way to make it possible to �le cases on behalf of all right owners of

the end product of open source projects. The class action is "a legal action organized

CHAPTER 7. OPEN SOURCE INFRINGEMENT LITIGATION 60

by a group of people who all have the same legal problem"177

Section 2 of the Finnish Act on Class Actions set three conditions for the class action.178

The �rst requirement is that multiple persons have claims against the same defendant

based on the same or similar circumstances. This requirement is ful�lled in open

source license infringement because every copyright owner, whose right infringer has

violated, has claims against the infringer. All claims are based on the same action of

the infringer.

The second requirement is that the hearing of the case as a class action is expedient

given the size of the class, the subject-matter of the claims presented in it and the proof

o�ered in it.179 Clearly, from the perspective of the proof, it is convenient to use class

action as an o�ered proof is the same for all contributors cases. Also, the presented

claims are similar to all contributors. On the other hand, size is the requirement that

some open-source projects fail because they only have few contributors. On the other

hand, there are also open-source projects such as Linux kernel which have over 1500

contributors.180

The third requirement is that the class has been de�ned with adequate precision.181

This requirement is easily ful�lled with open source projects because the group of

claimants is preciously the same as a group of contributors.

Unfortunately, Finnish legislation does not allow the use of class action in the context

of open source license infringement because Act on class action only permits the use

177�Class Action� (Cambridge Dictionary) ⟨https://dictionary.cambridge.org/dictionary/english/

class-action⟩ accessed 30 May 2020.
178Act on Class Actions, 444/2007, s 3.
179Act on Class Actions, 444/2007, s 3.2.
180�2017 State of Linux Kernel Development� (Linux foundation) ⟨https://www.linuxfoundation.

org/2017-linux-kernel-report-landing-page/⟩ accessed 31 May 2020.
181Act on Class Actions, 444/2007, s 3.3.

https://dictionary.cambridge.org/dictionary/english/class-action
https://dictionary.cambridge.org/dictionary/english/class-action
https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/
https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/

CHAPTER 7. OPEN SOURCE INFRINGEMENT LITIGATION 61

of class action in consumer cases. Only customer ombudsman can run class action in

the court. That is why open source license infringement cases can not be class action

as contributors are not in the position of customer relating to the license infringer.

Finnish legislator made that limitation to prevent partisan cases where a class action

is started just to harm defendant company182.

Because open-source license infringements are not suitable for class actions, it means

that in an open-source software project, the contributor can raise claims only on behalf

of himself or herself and on behalf of a company. In other words, it is not possible that

the contributor raises claims in the court on behalf of all contributors to the project.

7.2 Possible Claims

7.2.1 EU Legislation

In general, enforcing methods which are available for intellectual property disputes in

the EU are regulated in Enforcement directive.183 According to its �rst article "[T]his

Directive concerns the measures, procedures and remedies necessary to ensure the

enforcement of intellectual property rights".184

In the case of open-source licenses, it is not that clear if enforcement directive ap-

plies. the reason for that is that the directive does not explicitly state that it applies

182Mikko Välimäki, �Introducing Class Actions in Finland: An Example of Law-making Without

Economic Analysis� in The Law and Economics of Class Actions in Europe (Edward Elgar Publishing

2012) p. 333.
183Corrigendum to Directive 2004/48/EC of the European Parliament and of the Council of 29 April

2004 on the enforcement of intellectual property rights [2004] OJ L195/16.
184Corrigendum to Directive 2004/48/EC of the European Parliament and of the Council of 29 April

2004 on the enforcement of intellectual property rights [2004] OJ L195/16, art 1.

CHAPTER 7. OPEN SOURCE INFRINGEMENT LITIGATION 62

enforcement of licenses but the intellectual property itself.185 Another reason is that

sometimes open-source licenses are interpreted as contracts, and in this case, it is a

national contract law that applies not the intellectual property law.

The solution to this problem can be found from case law. The ECJ case IT Develop-

ment v. Free Mobile186 was about whether the Enforcement directive applies to license

infringement when the licensee was against the license modi�ed the licensed software.

In this case, ECJ ruled that enforcement directive was applicable. The court reason the

judgment with the fact that according to computer directive, the software is protected

with copyright with is an intellectual property right as it is meant in enforcement di-

rective article 1. In addition to that, computer directive states that modifying software

is one type of copyright infringement related to the software.

It is not clear whether IT Development v. Free Mobile states that the Enforcement

directive also applies to the open-source directive. The case was fundamentally about

modifying software against license conditions. Modifying software is not possible in-

fringement in open source licenses because they, by de�nition, allow the licensee to

modify source code and do derivative works. On the other hand, there is no reason

why the Enforcement directive does not apply for Open source licenses because, as

mention above in section 6.1, open-source licenses are as enforceable as other software

licenses.

As enforcement directive applies to the open-source software licenses, all enforcement

methods listed in enforcement directive can be claimed in case of open source software

license infringement. Because of the principle of e�ectiveness in EU which states that

member states have to interpret their procedural and remedy legislation such that it

185Corrigendum to Directive 2004/48/EC of the European Parliament and of the Council of 29 April

2004 on the enforcement of intellectual property rights [2004] OJ L195/16, art 1.
186Case 666/18 IT Development SAS v Free Mobile SAS [2019] ECR.

CHAPTER 7. OPEN SOURCE INFRINGEMENT LITIGATION 63

is not in con�ict with the EU legislation187, enforcement directive is applicable in the

member states even when they are not implemented it.

According to enforcement directive claiming damages and injunction is possible. The

injunction means that the court rules the infringer to stop infringing the right owner's

rights. In the context of open source license, the claimant can require that defendant

publish source code if this is how the defendant infringe open source license.188

7.2.2 National Legislation

When it comes to damages and open source software, it is essential to notice that there

are no punitive damages in Finland, unlike in the US. Non-punitive damages mean

that the maximum amount of damages is the cost of direct damages which can be

seen su�ered from actions of potential damages payer.189 Limitation to direct damages

suggests that amount of damages can not be high in open-source cases because a breach

of open source license does not directly damage anyone �nancially. On the other hand

according to enforcement directive amount of the damages can also be the amount of

money which the infringer save with the copyright infringement.190 some company may

have released their software under open source licenses, which prevents commercial use

of the code. In this situation, direct damage is possible if a competitor starts to use

the code commercially, and that way breaches the license terms.

Reasonable compensation is also possible according to Finnish Copyright act � 57.2.

187Tuomas Ojanen, EU-oikeuden perusteita (Edita Publishing Oy 2016) p. 99.
188Jennifer Buchanan O'Neill and Christopher J Gaspar, �What Can Decisions by European Courts

Teach Us About the Future of Open-Source Litigation in the United States� (2010) 38 AIPLA QJ

437.
189Tort Liability Act, 412/1974.
190Corrigendum to Directive 2004/48/EC of the European Parliament and of the Council of 29 April

2004 on the enforcement of intellectual property rights [2004] OJ L195/16, art 13.

CHAPTER 7. OPEN SOURCE INFRINGEMENT LITIGATION 64

Reasonable compensation does not require that copyright infringement was intentional,

as is the case with the damages. The amount of reasonable compensation has not been

as precise for computer software as it is for other copyright-protected work of art.

For instance, for music, reasonable compensation has commonly been license fee of

the Teosto or Gramex, which are Finnish Central copyright organization for recorded

and live music. Because there is no central organization for the computer programs

situation is not that clear but according to Finnish Supreme Court subjects which

in�uence compensation is at least standard license fee of the software191, whether the

software is used commercially192 and whether the software is used the way it is designed

to use193. The aim in the reasonable compensation is to make it unbene�cial to infringe

copyright.194

There is also a theoretical possibility of getting contractual compensation when the

license is breached because software licenses are considered a contract. On the other

hand, this requires that compensation is speci�ed in the license. As none of the popular

licenses195 contains provision about contract �nes, it is saved to say that this is not

common claim. There are also empirical research which states that damages are not

commonly used remedy.196

191KKO 1998:91.
192KKO 1989:151.
193KKO 1999:151.
194Mikko Välimäki, Oikeudet tietokoneohjelmistoihin (Talentum 2009) p. 70.
195In this context, popular licenses are what is listed in �Popular Licenses� (Open Source Initiative

) ⟨https://opensource.org/licenses/⟩ accessed 30 May 2020. At the time of writing these licenses

were Apache License 2.0, BSD 3-Clause "New" or "Revised" license, BSD 2-Clause "Simpli�ed" or

"FreeBSD" license, GNU General Public License (GPL), GNU Library or "Lesser" General Public

License (LGPL), MIT license, Mozilla Public License 2.0, Common Development and Distribution

License and Eclipse Public License version 2.0.
196Siobhán O'Mahony, �Guarding the commons: how community managed software projects protect

their work� (2003) 32(7) Research policy 1179.

https://opensource.org/licenses/

CHAPTER 7. OPEN SOURCE INFRINGEMENT LITIGATION 65

The injunction is a more used remedy in open source license enforcement. There

are many cases from Germany and France where open source licenser only claims

license breacher to stop breaching license and expenses related to court process but

not damages.197

7.3 E�ect of license type

As mentioned in section 2.3, there are multiple di�erent types of open-source license,

both based on their functionalities and also based on their historical origin. In many

licenses, there is the only provision which is related to the right to use and modify the

software and no provision about litigation. As mentioned earlier, none of the most used

licenses contains provision about the remedies in the license infringement situation. On

the other hand, some licenses contain a clause which is related to litigation.

There is the choice of law and jurisdiction provisions in some open-source licenses.198

Especially corporate licenses contains these provisions. Most of the choice of law provi-

sion in the open-source licenses state that the licenses are governed by the law of some

state of US, but that is not the only used provision type. For instance, the Nokia Open

source license is governed by Finnish law and dispute are settled by a single arbitrator

appointed by the Central Chamber of Commerce of Finland. There are also licenses

which state that jurisdiction is based where the defendant is mainly located. The same

197Jennifer Buchanan O'Neill and Christopher J Gaspar, �What Can Decisions by European Courts

Teach Us About the Future of Open-Source Litigation in the United States� (2010) 38 AIPLA QJ 437

See german cases Welte v Sitecom 21 O 6123/04 and Welte v D-Link 2-6 O 224/06 and France case

AFPA v EDU4 04/24298
198at least Mozilla Public license, Apple Public Source License and Python License contain that kind

of provisions

CHAPTER 7. OPEN SOURCE INFRINGEMENT LITIGATION 66

provision is also used for the choice of law199.

199See, for instance �Mozilla Public License 2.0� (Open Source Initiative) ⟨https://opensource.org/

licenses/MPL-2.0⟩ accessed 9 August 2020.

https://opensource.org/licenses/MPL-2.0
https://opensource.org/licenses/MPL-2.0

8 Conclusion

In the end, it seems that the right to raise claims should be all contributors to the

software projects whose contribution itself is copyright protectable. That means not

all contributors have that right because some contributions may be generic or else way

not enough to be considered as a protectable copyright work. That seems somehow

logical result because, for instance, not all writing is protected with copyright. The

same of the works are not intellectual enough to be protected.

These contributors are �ltered out because open source software is initially jointly

authored work which turns to be collective work overtime. In collective work, original

rightsholder has the copyright to whole software, but this copyright should be used

such that other copyright holders rights are not diminished.200 That is why contributors

whose contribution is not the author's intellectual work201 cannot raise claim as they

do not have any copyrights. This fact is undeniable as a person who does not have

copyright obviously can not claim that someone has infringed his copyright. This

mention is here in the �rst place to point out that contributing open source project

does not automatically generate copyright to the contributor.

On the other hand, the original copyright holder can raise claims according to these

parts of the source code because this does not damage the right holder's right. This

kind of activity is possible because according to copyright act202 the creator of the

collective work have the copyright to control work but only such that these right do

200Copyright Act, 404/1961, s 5.
201requirement for copyright in DIRECTIVE 2009/24/EC OF THE EUROPEAN PARLIAMENT

AND OF THE COUNCIL of 23 April 2009 on the legal protection of computer programs [2009] OJ

L111/16
202Copyright Act, 404/1961, s 5.

CHAPTER 8. CONCLUSION 68

not infringe right which belongs to rightful owners of those works which are part of

the work. As it is impossible to infringe rights that do not exist, the creator of the

collective work can raise a claim.

It is interesting to �nd where there is a line between adaptive work and jointly authored

work. At the beginning of the creative process, it is clear that jointly authored work is

established in a process that continuously creates adaptive works from previous versions

of the work. The joint authors make these versions of the work. That leads to whether

activity where certain groups of people make methodically adaptive works from each

other works, which are connected to the same project, can create jointly authored work.

Because if this is the case, then the open-source projects are jointly authored, and all

contributors can raise a claim.

In some open-source software projects, it is challenging to identify who are right owners

because of the massive amount of contributors who have contributed the project over

time. It is also considered that the copyright does not necessarily belong to the software

developer who contributed. The developer may have contributed as a part of his or

her work. In that case, copyright belongs to the employer. In that case, besides, to

identify contributor also his or her employer is vital to know.

Because �nding the right owners is essential in order to prevent license infringements,

this thesis has introduced two methods to identify owners of the code. One is to

use version control logs to �nd authors, and the other is to use blockchain to save

contributions. The version control method had its bene�ts because it does not need

any additional steps to the development process. Therefore it does not increase the

need for data storage from the current state. On the other hand, it requires work to

fetch information from the logs to show which contribution of the developer such that

it is su�cient enough to be a solid piece of evidence in the court.

CHAPTER 8. CONCLUSION 69

When it comes to using blockchain to identify copyright relations in the open-source

software project, the bene�t is that the system can be designed such that all copyright

sense relevant data is collected. Therefore using the data as a piece of evidence in

court is easier. The downside is that there are technical di�culties to comply with

copyright law. The blockchain also requires more computation power and data storage

than version control. The blockchain system is also a new additional system which

should be added to the software development process.

In some cases, the problems with ownership of the open-source code are solved, trans-

ferring contributors copyrights to the organization which controls the project. That

way, the organization has all rights to the source code of the open-source project, and

it can start legal actions against license infringers. For instance, Free Software Founda-

tion requires that copyright of every non-trivial change in projects it maintains should

transfer to the Free Software Foundation.203

In the end, it seems that all research questions covered in this thesis have only the-

oretical relevance. The situation is that, in most cases, the injunction is the remedy

which claimant requires. That is why there is no practical need to determine how all

right owners can raise a claim, let alone whether some right owners can raise a claim

on behalf of others. The reason for that when one right owner makes injunction claim

and the court rule defendant to stop breaching this right owner's rights consequence is

that defendant stop breaching any right owner's rights.

The nature of the open-source license is such that all right owners of code in the open-

source project give the same rights to the licensee and, on the other hand, set the

same obligations. Therefore even though only one right owner require that term of the

open-source license are followed with source code that the right owner owns, after the

203�Copyright assignment at the FSF� (Free Software Foundation) ⟨https://www.fsf.org/bulletin/

2014/spring/copyright-assignment-at-the-fsf⟩ accessed 31 May 2020.

https://www.fsf.org/bulletin/2014/spring/copyright-assignment-at-the-fsf
https://www.fsf.org/bulletin/2014/spring/copyright-assignment-at-the-fsf

CHAPTER 8. CONCLUSION 70

defendant has changed its action to comply with the license. After that defendant's

action is not only in compliance with terms set by the right owner who sued the

defendant but with all other right owners in the open-source project too. Therefore

only thing which is needed is that somebody who owns some copyrights to the project

starts the legal process. That means that not every contributor can do it because as

mentioned above, there may be contributors to the project which does not have any

copyrighted contribution in the project.

	Contents
	Official sources and bibliography
	Articles
	Books
	Web sources

	Case law
	Finnish case law
	EU case law
	US case law

	Legislation
	Finnish Legislation
	EU Legislation
	International treaties

	Abbreviations
	Introduction
	Background
	Research question and scope limitation
	Methodology
	Structure

	Definition of open source
	History
	Definition of open source license
	Free software Foundation
	The Open Source Initiave

	Different open-source licenses
	General Public License
	MIT license
	Artistic license

	Software engineering and software development process
	Phases of open source development
	Software development roles
	Open source software development

	Legal frame of copyright
	Copyright as a Intellectual property
	International copyright treaties
	Copyright in European Union
	Copyright in Finland

	Software copyrights

	Authorship of software
	Problems in open-source authorship
	Proving authorship with Git
	Git version control system
	Solution with GIT

	Proving authorship with Blockchain
	Blockchain technology
	Solving authorship with blockchain

	Intellectual creation requirement for softwares

	Enforcebility of Open source licenses
	Legal status of Open source licenses
	Joint authored, adaptive or collective work
	Technical perspective
	Legal perspective

	Open source infringement litigation
	Raising a claim on behalf of other contributors
	Possible Claims
	EU Legislation
	National Legislation

	Effect of license type

	Conclusion

