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ABSTRACT 
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Picornaviruses are small, non-enveloped, icosahedral, positive stranded RNA 

viruses and among the most common human pathogens. Some of the clinically 

important genera for humans are Enterovirus, Hepatovirus, Parechovirus and 

Cardiovirus. The symptoms for the picornaviral infections range from mild, 

asymptomatic to fatal disease. Threats posed to human health by these viruses is 

observed in the constant outbreaks of enteroviruses and parechoviruses in the 

different parts of the world. Next generation sequencing provides an efficient way 

to detect and identify known or novel micro-organisms. Advantages of NGS are 

rapid sequencing methods, high-throughput process and affordable costs. On the 

other hand, NGS also requires advanced technical and computational skills, and 

creates a bottleneck owing to necessity of standardization of bioinformatic tools. 

It is therefore imperative to optimize and determine parameters, which provide 

accuracy in every stage of NGS workflow. 

 

The aim of this thesis was to develop a rapid and straightforward, user-friendly 

workflow for the assembly and analysis of picornaviral genomes. Chipster 

platform was chosen as the primary test platform. The workflow involved use of 

automated analysis pipelines (VirusDetect and A5 assembly pipeline), and 

alternative approaches, which included pre-processing of raw data, and reference-

mapping or de novo assembly (Velvet and SPAdes) of picornavirus sequences. 

Except for de novo assembly and validation and quality assessment of final 

outputs, all steps were performed in Chipster. Of these approaches, VirusDetect 

and reference-mapping were not successful. A5 pipeline for microbial genome 

assembly was found to be very suited for picornavirus identification. Velvet and 

SPAdes also performed well, but Velvet assembler was found to more 

computationally exhaustive and time consuming. Quality assessment suggested 

that performance of SPAdes was relatively better than the performance of A5 or 

Velvet. As A5 pipeline does not require any parameter settings, it can be used as 

initial identification and contig/scaffold generation method for picornaviral 

sequences. Together with implementation of de novo assembler(s) on Chipster 

platform a novel, user-friendly NGS workflow for picornavirus sequence 

assembly can be established. 
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“Be ready to revise any system, scrap any method, abandon any theory, if the success of the 

job requires it.” 

— Henry Ford 

 



1 

 

1 Introduction 

The family Picornaviridae (Figure 1.1 below) in the order Picornavirales comprises of 63 

genera with 147 species (http://www.picornaviridae.com/, March 2020). Picornaviruses are 

small, non-enveloped, icosahedral, positive-stranded RNA viruses (Zell, 2018). They play a 

vital role as viral pathogens in humans and animals. While most picornavirus infections are 

asymptomatic or cause mild illness, some virus types cause serious infections of central 

nervous system, respiratory and gastrointestinal tract, skeletal muscle system, heart, liver and 

eyes (Yin-Murphy & Almond, 1996; Zell, 2018).   

                

            

           

Figure 1.1 Classification of Picornaviridae family 
Depiction of clinically important genera, with selected examples of species and 

genotypes (van der Linden et al., 2015) (Note: the numbers in the figure are according 

to the classification until 2015). 

 

In addition, picornavirus family constitutes of etiological agents, which have global 

prevalence, exhibit a wide range of illnesses and play pivotal role in human health impact 

(Table 1.1 below). In the lieu of poliovirus eradication, the circulation of non-polio 

picornaviruses poses a possible threat to the human health. This is observed in the constant 

outbreaks of enteroviruses and parechoviruses in the different parts of the world (Wolthers et 

al., 2019).  
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Table 1.1 Diseases associated with human picornaviruses 
adapted from (Santti et al., 1999). Nomenclature for the viruses as indicated in brackets 

as per (Simmonds et al., 2020). 

 

Disease Virus 

Poliomyelitis Polioviruses (PV-1-3) 

Paralytic disease Coxsackievirus A7 (CVA7), enterovirus 70 

and 71 (EV-D70, EV-A71) 

Meningitis/encephalitis Several enterovirus serotypes (EV) 

Myocarditis Coxsackie B viruses (CVB) 

Neonatal infections Coxsackie B viruses (CVB), echoviruses 

(EV) 

Pleurodynia Coxsackie B viruses (CVB) 

Herpangina Coxsackie A viruses (CVA) 

Hand-foot-and-mouth disease Coxsackie A16 (CVA16), enterovirus 71 

(EV-A71) 

Acute haemorrhagic conjunctivitis Coxsackie A24 (CVA24) and enterovirus 70 

(EV-D70) 

Respiratory infections Many enteroviruses (EV), parechoviruses 

(PeV) 

Common cold Rhinoviruses (RV) 

Gastroenteritis Parechovirus 1(PeV-A1) 

Acute hepatitis Hepatitis A virus 

 

 

 Picornavirus virion 

Picornavirus virion comprises icosahedral, non-enveloped and small (diameter 22-30 nm) 

protein particle, which encloses single-stranded RNA genome. Icosahedral particle symmetry 

is a characteristic feature of the members within picornavirus family. Viral capsid is densely 

packed with 60 protomers. Each protomer consists of external VP1, VP2, VP3 surface 

proteins and internal VP4 protein (Figure 1.2). Successful transmission and tropism of virus 

is largely dependent on capsid structure. Capsid helps in host cell recognition, virus 

attachment and release of viral RNA into the host cells. Additionally, capsid also aids the 



3 

 

virus to evade host immune system (Cifuente & Moratorio, 2019; Yin-Murphy & Almond, 

1996; Zell, 2018; ViralZone, SIB Swiss Institute of Bioinformatics, 2018). 

        

Figure 1.2 Structure of picornavirus virion 
Viral RNA genome is enclosed in a protein capsid. Capsid is composed of four 

structural proteins: VP1, VP2, VP3 and VP4. Icosahedral symmetry of a capsid is a 

characteristic feature within picornavirus family (Source: https://www.creative-

biolabs.com/vaccine/vaccines-for-virus-from-picornaviridae-family.htm). 

 

 

Viral genome is monopartite (that is, all viral genes reside in a single molecule), positive-

stranded and linear RNA molecule of 7.1-8.9 kb in size. Genome has covalently bound VPg 

(viral protein, genome linked; a non-capsid protein) in the 5’ end and poly-A tail in the 3’ 

end. Genomic RNA is infectious and functions similarly to mammalian mRNA. Generally, 

the genome organisation pattern is common across the picornaviruses (Figure 1.3). A single 

ORF (open reading frame) encodes a polyprotein with UTRs (untranslated regions) in 5’ and 

3’ ends. An internal ribosome entry site (IRES), which resides in the 5’ UTR region, leads the 

translation of the polyprotein. Viral polyprotein is divided into three regions, P1, P2 and P3, 

which encode structural proteins and non-structural proteins essential in genome replication. 

Short 3’ UTR plays a role in the synthesis of negative-strand. A leader protein (L) is encoded 

in some genera (Boros et al., 2012; Zell, 2018; ViralZone Expasy, SIB Swiss Institute of 

Bioinformatics, 2018). 
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Figure 1.3 Genome organization of picornavirus  
The viral mRNA is translated into a single polyprotein, which is then cleaved into 

functional proteins (Source: Kerkvliet et al., 2010). 

 

 

 Picornavirus identification, typing and genome-sequencing  

Picornaviruses are typed based on the capsid protein VP4/2 and VP1 sequences, which are 

the most variable gene regions and define the immunogenicity of the virus types 

(www.picornaviridae.com). Typing is essential in monitoring and controlling the emerging 

epidemics caused by specific picornavirus types and in determining changes in their 

pathogenesis and disease-causing potential. However, typing regions are fairly short and 

therefore, there is a lack of genetic and evolutionary information regarding the overall 

changes in virus genome. The changes in virus genome are results of high mutation rates due 

to low fidelity of RNA-dependent RNA polymerase enzyme (RdRp). These mutations, along 

with recombination (that is, two different viral strains infect same host cell and give rise to a 

new strain) are responsible for genetic diversification of picornaviruses. Next generation 

sequencing (NGS) offers an avenue to identify and characterise viral diversification (Joffret 

et al., 2018; Posada-Cespedes et al., 2017). While genome sequencing helps in virus typing, it 

also contributes to evolutionary analysis and determination of pathogenic variants. In 

addition, full length or near-full length genomic sequence information is also useful in 

generating cDNA viral clones, which are used in the analyses of viral functions and in the 

development of viral vectors for gene and oncolytic virotherapy. This approach of NGS has 

http://www.picornaviridae.com/
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been successfully reported in studies of poliovirus, enterovirus A71 and enterovirus species C 

(Bessaud et al., 2016; Montmayeur et al., 2017; Sahoo et al., 2017, Tan et al., 2015). 

 

 Limitations of traditional virus identification methods 

One of the hallmarks of disease diagnostics is the ability to identify the causal agent(s). 

Conventional methods in virus identification include electron microscopy (EM), culture-

based methods (virus culture) and detection of antibodies against viruses with serological 

testing (serology). Virus culture accompanied with morphological changes in cells, i.e. 

cytopathic effect caused by viruses, enables enrichment of virus particles in clinical sample 

for use in further genetic analysis. Previously, viruses were sequenced using overlapping 

PCR-amplified viral fragments and Sanger sequencing. However, these methods are time 

consuming and tedious, require experienced personnel and have a risk of failure. Sanger 

sequencing results in a single sequence, which is complicated if the primers bind and amplify 

several target sequences. Clinical isolates often fail to grow in cell lines, and if they do, 

continuous virus cultivation is likely to increase the risk of changes in the viral genomes, 

which may affect the integrity of the sequence and data interpretation (Chun et al., 2018; 

Datta, 2015). To overcome these shortcomings, metagenomic approaches, which use the 

means of next generation sequencing (NGS), have been developed (Chun et al., 2018; Lim & 

Brown, 2018). 

  

 Next generation sequencing in virology 

The advent of NGS or high-throughput sequencing technology (HTS) has revolutionized the 

field of viral genomics enabling rapid and economical sequencing and further assembly of 

vast number of viral genomes. HTS plays crucial role in answering biological questions 

related to viruses such as, intra-host diversity and nature of quasispecies, virus transmission 

and tropism, antiviral resistance and vaccine evasion. High rate of evolution, short generation 

time and low fidelity of polymerases contribute to high viral diversity. Genomic changes also 

allow viruses to escape from host immune system and make them resistant to antiviral 

therapy. For example, WHO has established global strategies to monitor human 

immunodeficiency virus (HIV) drug resistance and the Global Influenza Surveillance and 

Response System to monitor, prevent and assess the viral evolution regarding antiviral-

therapy (Radford et al., 2012).  
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Culture-independent methods to characterize genomic information directly from the sample, 

allow unbiased analysis of the viruses. They have key roles in virus discovery (influenza 

virus, Greninger et al., 2010; Schmallemberg virus of ruminants, Hoffmann et al., 2012; Day 

et al., 2010) and in understanding virus ecology in a wide range of environmental habitats 

(faeces : Donaldson et al., 2010, Reyes et al., 2010; sewage : Cantalupo et al., 2011; water : 

Lopez-Bueno et al., 2009; Rodriguez-Brito et al., 2010; vaccines : Victoria et al., 2010). 

Measurement of relative mRNA expression levels by NGS, i.e. RNA-seq, provides insight 

into differences in viral genome expression (Epstein- Barr virus: Lin et al., 2010; 

Cytomegalovirus: Gatherer et al., 2011) in healthy and diseased individuals (Orton et al., 

2016; Radford et al., 2012).  

 

 NGS sequencing platforms 

Variety of NGS sequencing technologies are available in the market, which have different 

amplification and sequencing methodologies. These NGS platforms differ in costs, capacities 

(read lengths, run time and errors), chemistries and applications. Although modifications and 

advancements are observed on routine basis in these technologies, the core principle remains 

the same (Metzker, 2010). The current sequencing platforms include Illumina (Illumina), 

PacBio (Pacific Biosciences), Ion Torrent (Life Technologies) and MinIon (Oxford Nanopore 

Technologies). Illumina offers versatile platforms like MiSeq, Hiseq, GAIIx, MiSeqDx, 

NextSeq, NovaSeq, MiniSeq, and iSeq, which cater the needs regarding capacities and costs. 

Ion Torrent/Ion S5 platform is also affordable and easy to use, albeit have higher error rate 

than Illumina. Pacific Biosciences (PacBio) with its two platforms, PacBioRS/RSII and the 

Sequel offer high throughput with long reads (average read length 10kb). MinIon (compact 

sized single molecule sequencer) streams data in real time so that analysis can be performed 

during the experiment. MinIon workflows are fully versatile and include PromethION and 

GridION platforms (high-throughput platforms for parallel sequencing with stacked multiple 

flow cells) (Maljkovic Berry et al., 2020). The methodology regarding each platform and 

comparative studies regarding their performances for different genomes are described in 

literature elsewhere (Datta, 2015; Hodzic et al., 2017; Kulski, 2016; Liu et al., 2012; 

Metzker, 2010; Pereira et al., 2020; Radford et al., 2012). The choice of the platform depends 

on the experimental needs. Considerations should be given to the genome size, GC content 

and depth, and sequencing coverage. Illumina is found to be consistent in its leading 

application amongst NGS market (J & G, 2016; Bentely et al., 2008; 
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https://www.genengnews.com/a-lists/top-10-sequencing-companies-2/, 2018), and is thus 

commonly used in viral metagenomics. 

 

 Illumina sequencing platform 

Illumina is one of the most preferred sequencing platforms in viral genomic studies (Goya et 

al., 2018; Huang et al., 2019; Radford et al., 2012) (Virus detection and research reviews, 

Illumina, 2013). The services, the basic principles and the workflows with respective tutorials 

can be found on the Illumina online site (https://emea.illumina.com/science/technology/next-

generation-sequencing.html). The sequences used in this thesis were from the samples 

sequenced with Illumina HiSeq 3000 instrument. The Illumina workflow is described in 

Figure 1.4 (Adapted from Illumina introduction manual, www.illumina.com).  

 

Illumina sequencing is based on sequencing by synthesis chemistry (SBS). During the DNA 

synthesis cycle, fluorescently-labelled deoxyribonucleotide phosphates (dNTPs) are 

incorporated into a DNA template by DNA polymerase. The nucleotides are detected by 

fluorophore excitation at the time of incorporation. This process is followed in massive 

parallel fashion. The sample preparation and sequencing steps include library preparation, 

cluster generation and sequencing. 

 

 Library preparation 

Library preparation means a step, in which sample nucleic acid is fragmented into smaller 

units and in which specific adapters are attached on both ends to allow identification of the 

fragments. The first step in sample processing is fragmentation of nucleic acid, which is often 

an automated and optimized process and mediated by mechanical shearing or enzymatic 

treatment. If the sample is RNA, it is converted to a complementary DNA, cDNA, before 

fragmentation. This step is followed by 5’ and 3’ adapter ligation. Sequences from the pooled 

sample library are identified in the analysis stage based on the unique adapter indices 

introduced to the sample during the library preparation step. 

 

 Cluster generation 

To prepare the fragment library to the actual NGS sequencing step, the library is loaded into a 

flow cell. A flow cell is a glass support, which has patterned nanowells with attached DNA 

probes (oligos). These surface-bound oligos are complementary to the library adapters 

enabling hybridization of fragments to the oligos on the glass surface. A polymerase is used 

http://www.illumina.com/
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to create a complementary strand using the hybridised fragment as a template. The double-

stranded molecule is then denatured, and the original template strand is washed away. For 

bridge amplification, a single-stranded molecule folds over and hybridizes to an adjacent 

primer, which forms a bridge. A polymerase synthesizes the reverse strand, which forms the 

double stranded bridge. Denaturation of this bridge results in the formation of single stranded 

copies of the molecule tethered to the flow cell. This process is repeated several times and 

occurs simultaneously for millions of clusters, hence clonally amplifying all the fragments. 

After the bridge amplification, the reverse strands are cleaved and washed off, which leaves 

only the forward strands. Blocking of 3’ends prevents unwanted priming. When cluster 

generation is complete, the templates are ready for sequencing. 

 

 Sequencing 

The SBS technology of Illumina employs the reversible terminator-based method, which 

detects single bases as they are incorporated into DNA template strands. During sequencing, 

fluorescently labelled nucleotides are added to the strand. When the flow cell is imaged, each 

base is identified by the emission of unique wavelength intensity. Illumina HiSeq3000 

sequencer uses a four-channel sequencing. This type of chemistry utilises unique fluorescent 

label for each of the nucleotide bases i.e. adenine, cytosine, guanine and thymine. Each 

intensity is captured with four images by the instrument. Sequencing begins with the 

extension of the first sequencing primer to produce the first read. With each cycle, 

fluorescently tagged nucleotides are competitively added to the growing chain and only one 

base is added based on the template sequence. After addition of each base the clusters are 

excited by a light source and a characteristic fluorescence is emitted. The length of the read is 

determined by the number of the cycles. The base call is determined by the emission 

wavelength and the fluorescence intensity. The clusters are sequenced in massive parallel 

way. The read product is washed away after completion of the read process. In this step, 

index1 read primer is introduced and hybridised to the template. The read is generated similar 

to the first read. After completion of index read, the read product is washed off, and 3’ends of 

the template are deprotected. The template folds over and binds the adjacent oligo on the flow 

cell. Index2 is read in the same manner as index1. Polymerases extend the second flow cell 

oligo forming a double stranded bridge. This double stranded DNA is then linearized and 

3’ends are blocked. The original forward strand is cleaved off and washed away leaving only 

the reverse strand. Read two begins with the introduction of read2 sequencing primer. 

Sequencing steps are repeated as in read1 until the desired read length is achieved. The read2 
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product is then washed away. This entire process generates millions of the reads representing 

all the fragments. Sample reads with similar stretches of base calls are locally clustered. 

Forward and reverse reads are paired, creating contiguous sequences.   
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Figure 1.4 Illumina NGS sequencing workflow 
A., B., C. are the basic steps of sequencing workflow, while D. shows the paired end read 

(Adapted from Illumina introduction manual, www.illumina.com) 

 

 

 

 Paired-end sequencing 

The paired-end sequencing involves sequencing both ends of the DNA fragment (as shown in 

Figure 1.4-D). In a library, forward strand is sequenced, and then complementary strand is 

kept while cleaving the template strand away. Similar step is performed on the reverse strand. 

These sequenced ends produced from the original fragments are then aligned as forward and 

Read 1 

Read 2 

D. Paired-End sequencing 

http://www.illumina.com/
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reverse reads, forming a read pair. Paired-end sequencing improves the ability to identify the 

relative positions of the reads with respect to the genome and offer more accurate read 

alignment as compared to single-end sequencing, where sequencing is performed from only 

one end. Hence, the paired-end sequencing is more preferable for de novo assemblies as it 

raises the overall confidence of the result by providing read overlap in the otherwise low-

quality areas. 
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2 Bioinformatic methods 

Staying up-to-date with the technologies and current research is “a must” in modern virus 

diagnostics. Rapid and accurate detection of the emerging pathogens and markers responsible 

for virulence plays important roles during prevention and control of the worldwide outbreaks. 

Ability to detect a pathogen without a priori knowledge, cost effectiveness, availability of 

various platforms and high-throughput output have made NGS the preferred method for virus 

detection in a sample. NGS approach results in raw sequence data of gigabases in size for 

each experiment run, and therefore computational analysis of the data is necessary. 

Bioinformatic analysis of NGS data is a multistep process where multiple algorithms and 

programs are used, and hence it may be useful to define optimal workflow with suitable 

analysis programs and quality check criteria to minimize errors and to obtain reliable results.  

A number of NGS data analysis workflows have been described (Ekblom & Wolf, 2014; 

Lambert et al., 2018; Orton et al., 2016). In general, the workflows have the following 

generic steps: pre-processing of the reads, assembly of the reads using either reference-based 

or de novo approaches and further downstream analyses. These steps are described below, 

along with the respective commonly used programs. Different terms and file formats required 

for NGS analysis are included tables in appendix A (Table A.1). 

 

 Pre-processing of the reads 

Quality control is the first step in every NGS analysis. The output of the sequence run 

consists of millions of reads, which is most commonly in FASTQ format. The FASTQ file 

contains the sequence and its quality score. Poor base quality due to base miscalls and primer 

or adapter contamination are considered as common sequencing errors or artefacts of the 

NGS reads. To ensure accuracy of final results quality check is important. The commonly 

applied tool for quality check is FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). FastQC produces summary 

statistics, which include sequence quality and distribution, overall GC content, length and 

duplicates in the reads. For paired-end reads the quality check is performed on both forward 

and reverse reads. 

 

Adapter removal depends on the protocol used during the library preparation of sequencing. 

This step is important as adapter sequence can interfere with the read mapping as well as 

other analyses like SNP (single nucleotide polymorphism) or variant calling. Trimmomatic 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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(Bolger et al., 2014) and Cutadapt (Martin, 2011) are the most common applications for 

adapter removal. 

 

Biological samples will predominantly contain host-derived sequences, which in some cases 

may overshadow reads for putative pathogen. Hence, mapping the sequencing reads to host 

genome sample (host sequence subtraction) and using the remaining unmapped reads for the 

assembly is common practice. The common mapping algorithms used are CLC read mapper 

(https://resources.qiagenbioinformatics.com/white-

papers/White_paper_on_CLC_read_mapper.pdf), BWA (Li & Durbin, 2009) and Bowtie2 

(Langmead & Salzberg, 2013).  

 

 Assembly of the reads 

NGS equipment generate a large number of reads, covering different parts of the genome. 

With the help of assembly software, these reads are combined into large contigs (contiguous 

linear stretches of DNA or RNA consensus sequence, in silico, constructed by aligning a 

number of smaller overlapping sequencing reads) or scaffolds (two or more contigs joined 

together using read-pair information). There are basically two methods that are used for 

genome assembly: reference-based mapping and de novo assembly (Daly et al., 2015; Orton 

et al., 2016). Reference-based mapping is preferred method for most of the NGS experiments, 

if closely related and well-annotated reference genome is available for the target. Reference-

based mapping is performed by indexing a reference genome and aligning the sequence reads 

to this reference index. SAMtools (http://samtools.sourceforge.net.) is a bioinformatic tool 

that provides utilities to manipulate the alignments in SAM/BAM formats. SAM (Sequence 

alignment/Map) is used to store the mapped reads and BAM (Binary alignment/Map) is a 

form of SAM, but the data is stored in binary format. SAMtools allows manipulation of 

alignment in per-position format by indexing and sorting. The mapping tools used include 

Mosaik (W. P. Lee et al., 2014), Stampy (Lunter & Goodson, 2011), BWA and Bowtie2.  

 

In the absence of known or related sequence, a de novo approach is used. The most popular 

assemblers are based on de Bruijn graph. It is considered as an anti-intuition algorithm 

(Ramana M. Idury and Michael S. Waterman, 1995). It works by first cutting reads into 

shorter k-mers, using all k-mers to capture the de Bruijn graph, which captures the overlaps 

between the k-mers for k-1 length and genome sequence can be inferred on this de Bruijn 

graph. Short-read assembly programs based on this approach include Velvet (Zerbino & 
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Birney, 2008), SOAPdenovo (Luo et al., 2012), IDBA-UD (Peng et al., 2012), SPAdes 

(Bankevich et al., 2012) and ABySS (Simpson et al., 2009). 

 

Overlap layout consensus (OLC) (Staden, 1980) is another assembly approach and works in 

three steps; first by finding the overlaps among all reads, then forming the layout of all the 

reads and last by overlapping the information on the graph and determining the final 

consensus sequence (Ekblom & Wolf, 2014; Liu et al., 2012; Orton et al., 2016). OLC 

assemblers include MIRA (Chevreux, 2018) (Chevreux B., Wetter T. & Suhai S., 1999) and 

Edena (Hernandez et al., 2008).  

 

 Quality assessment and validation 

After successful assembly, it is important to check the quality of the assembled reads. In 

absence of an optimized process for the given target, it is advisable to test and compare 

different programs. If more than one type of assembler is used, then the different assemblers 

can be compared. Comparisons are based on several evaluation metrics like N50 (the shortest 

sequence length at 50% of the genome), number of contigs generated and contig length etc. 

(Kremer et al., 2017; Lischer & Shimizu, 2017; Song et al., 2019). The bioinformatic tool 

commonly used for this purpose is  QUAST (quality assessment tool) (Gurevich et al., 2013). 

QUAST can be used to evaluate the assemblies and make decision about using the suitable 

assembler. BLAST (Basic Local Alignment Search Tool) (Altschul et al., 1990) is a robust 

tool to check the validity of the contigs or scaffolds. BLAST uses National Center for 

Biotechnology Information (NCBI) sequence database. Both tools are described in brief as 

follows. 

 

QUAST employs the Nucmer aligner from MUMmer v3.23 (Kurtz et al., 2004) for reference 

guided assemblies. It can also compute and evaluate de novo sequence assemblies. The 

various metrics evaluated by QUAST include contig sizes, misassemblies and structural 

variations, genome functional elements i.e. GC content, duplicate ratios, indels and 

mismatches etc., and N50 variations. The different plots like cumulative plots, GC content 

plots and contig alignment plots are used to present statistics. Comparative histograms of 

different parameters are also generated. Some of the output files are mentioned in the table. 

QUAST supports the file formats like PNG and PDF. The QUAST interface is easy to use 

and visualize, is reasonably fast and accepts multiple assemblies to compare. QUAST can be 

run on Linux and macOS platforms. It is also available as a web interface application. More 
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details about instructions and output files can be found at 

http://quast.sourceforge.net/docs/manual.html.  

 

BLAST performs a sequence similarity search. It compares the sequence of interest to 

sequence databases and calculates the statistical significance of the resultant matches. The 

BLAST results are generated quickly, and it helps to make a decision about a given alignment 

with ‘expect value’ calculation. This provides an idea about probability of matches at a given 

score. The BLAST algorithm is based on the modular nature of the proteins. Proteins have 

one or more functional domains in them, and different species may have the same domains of 

these proteins. The algorithm finds these domains of similarity. Hence, BLAST can also be 

used to find evolutionary and functional relationships and identify with the members of the 

given family. Two frequently used BLAST algorithm types are BLASTN (nucleotide query 

against nucleotide database) and BLASTX (nucleotide query against protein database) 

(Madden, 2013). NCBI Virus is the recently developed community portal, which provides 

resources for sequence data and related information concerning viruses 

(https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/, Hatcher et al., 2017). 

 

 Various available platforms and software 

Several commercial and non-commercial laboratories are involved in developing various 

viral NGS as well as metagenomic analyses services. Bioinformatic analysis pipelines have 

been designed for various purposes and offer options at each analysis point. Various pipelines 

are explained in the literature elsewhere (Lambert et al., 2018; Orton et al., 2016), however, 

basic information about commercially available platforms and NGS analysis tools is included 

in appendix A (Table A.2 and Table A.3). The choice of the pipeline depends on the adequate 

sensitivity provided for the detection of the virus and the cost.  

 

Despite the availability of tools in viral NGS analysis, lack of computational skills (necessity 

to work in Unix environment and programming skills) often pose the first bottleneck for 

wider use. In addition, parameter optimization (different viruses may require different 

parameters setup), output format handling and data processing, and large data storage 

capacities may prove to be challenging. For example, VSEARCH, a powerful tool for 

metagenomic, is an open source and freely available, but it requires command line 

knowledge. 

 

http://quast.sourceforge.net/docs/manual.html
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
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Considering the need for user-friendly bioinformatic tools and pipelines, Chipster 

(http://chipster.csc.fi/) was selected as the primary analysis platform to be evaluated in this 

thesis. Various analysis and visualization tools available in Chipster platform are listed in: 

(https://chipster.csc.fi/features.shtml). Pipelines in Chipster and external assemblers (not 

implemented in Chipster environment) for picornavirus sequence assembly are described 

below. 

 

 Chipster 

Chipster maintained at Centre for Scientific Computing (Espoo, Finland) (Kallio et al., 2011), 

provides an easy access platform and intuitive graphical user interface for non-programming 

biologists to analyse and integrate different kinds of data generated with high-throughput 

technologies. It has a collection of data analysis methods and integration tools, which allows 

the user to perform multiple analysis in a consecutive manner and save the performed tasks as 

reproducible and automatic workflows. It facilitates research by collaboration and sharing the 

workflows and data analysis sessions. Chipster is an open source, versatile and extendable 

platform. It supports integration of command line tools, which can be included manually or 

with the help of CSC help service support. Being a client-server system, it allows tasks to be 

performed on a laptop or on a single server. Recent version of Chipster is also available as a 

web application (https://chipster.rahtiapp.fi/home), which can be accessed by registration.  

 

There are two basic automated pipelines available in Chipster: VirusDetect (both reference-

mapping and de novo assembly) and A5 assembly pipeline for microbial genomes (de novo 

assembly). 

VirusDetect (Zheng et al., 2017), is an automated bioinformatic pipeline that can detect both 

known and novel viruses from small RNA (sRNA) datasets, which has been reported useful 

in plant and animal virus detection (Kreuze et al., 2009; Wu et al., 2010, 2015). It performs 

reference-guided assembly through mapping sRNA sequence to a curated virus reference 

database and de novo assembly. For both approaches automated parameter optimization and 

the option of host sRNA subtraction is used. These assembled contigs are then compared with 

a reference virus database for virus identification. Details about outputs generated can be 

found at https://chipster.csc.fi/manual/virusdetect.html.  

A5 assembly pipeline (Coil et al., 2015) for microbial genomes is a revised A5-miseq 

pipeline. It is developed by replacing original A5 assembly components with new software 

https://chipster.csc.fi/features.shtml
https://chipster.rahtiapp.fi/home
https://chipster.csc.fi/manual/virusdetect.html
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modules to process and improve assemblies, to allow assembly of Illumina long reads. This 

pipeline consists of the following steps: 

 

 

Figure 2.1 Schematic representation of A5-miseq pipeline 
The pipeline follows five steps as described in the figure. No parameter optimization is 

necessary. 

 

 

The use of A5 pipeline is easy, as it does not require any parameter optimization. All the 

above-mentioned steps are automated and can be performed on a laptop computer. 

 

 External assembly programs  

Although Chipster platform itself does not have a separate de novo assembler, CSC offers a 

variety of assemblers in its server. Two of them, Velvet and SPAdes are shortly described 

here.  

  

Velvet (Zerbino & Birney, 2008) can be used as a de novo assembler to build contigs or 

gapped assemblies of contigs into scaffolds for short-read datasets. Velvet is a de Bruijn 

algorithm-based assembler, which builds the reads on the de Bruijn graph, removes the errors 

and attempts to resolve repeats if given, paired-end read and long read information. Final 

output includes the assembled reads with related statistics. Velvet uses paired-end FASTA 

and FASTQ datasets, either as a single merged file or two separate files with reads paired by 

•Trimmomatic (Lohse et al., 2012)

•Error correction in reads by SGA’s k-mer based error 
correction algorithm (Simpson and Durbin, 2012)

Read cleaning 

• IDBA-UD algorithm (Peng et al., 2013)Contig assembly

•Contigs are scaffolded with  large insert libraries 
using suitable  parametersCrude scaffolding

•Detected on the basis mapping or not mapping of 
read pairs within expected distance

• If missassembled, contigs and scaffolds are broken.
Mis-assembly correction

•Stringent parameters for final round of scaffolding

•Summary statistics and other results produced
Final scaffolding
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their ordering. Velveth and velvetg are the main two programs on which Velvet is based on. 

Both these programs represent the basic two steps of a single Velvet assembly: hashing and 

graph building respectively. Velveth reads sequence files, builds a dictionary of all k-mers of 

length k. Here, k is defined by the user. This parameter defines the exact local alignments 

between the reads. These alignments are used to build a de Bruijn graph by velvetg. Velvetg 

also removes errors, simplifies the graph and resolves repeats based on user-defined 

parameters. The hash length or value of k is the most important parameter for a Velvet run. 

To define the hash length, the following three technical constraints are a must: 

1. k must be an odd number to avoid palindromes. 

2. Hash length must be below or equal to MAXKMERHASH length, as Velvet requires 

more memory to store longer words. 

3.  Hash length must be lower than the read length, as no overlap between the reads will 

be observed for larger number.  

The hash length can be automated with VelvetOptimiser, a script written by Simon Gladman 

and Torsten Seeman (https://github.com/tseemann/VelvetOptimiser). The script automatically 

scans the specified parameter range to produce the best possible assembly. Details about 

application of this script are given in chapter 4 materials and methods. The final outputs in 

FASTA file are actually scaffolds, i.e. contigs are constructed into scaffolds by adding N’s to 

the corresponding estimated gap length. 

 

SPAdes (St. Petersburg genome assembler) (Bankevich et al., 2012) is an open source de 

novo genome assembler. It is primarily designed to assemble small genomes from standard 

bacterial sequenced data sets and single cell genomics data sets, which are difficult to 

assemble due to highly non-uniform read coverage and high levels of sequencing error and 

chimeric reads. SPAdes supports unpaired, paired-end and mate-pairs reads. Important point 

to remember while using this assembler is the size of the genome of interest. It is not 

designed for large genomes like mammalian genomes. To generate scaffolds from contigs 

SPAdes uses two basic methods. Using the read pairs, first the gap size separating the contigs 

is determined and second step relies on the assembly graph, i.e. if a complex unresolvable 

repeat is observed between two contigs, SPAdes joins these contigs with a fixed gap size of 

100bp. The final output does not have any N sequences.  

 

  

 

https://github.com/tseemann/VelvetOptimiser
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3 Aim of the study 

The aim of this thesis was to develop a rapid, straightforward and user-friendly workflow for 

the assembly and analysis of picornaviral genomes. The specific aim was to generate 

consensus near full-length viral genomic sequences from the pool of the short contigs.  

 

In total, 17 picornaviral sequences generated by Illumina HiSeq 3000 (paired end, 2 x 75 bp 

in length) were analyzed in the study using programs implemented in Chipster platform and 

external assembly programs such as Velvet and SPAdes.   
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4 Materials and methods 

 Material 

Seventeen (17) picornaviral genomic sequence sets representing five picornavirus types 

(Table 4.1) and generated by Illumina HiSeq 3000 (paired end, 2 x 75 bp in length) were used 

in the study. The sequence reads were in compressed (.gz) format and used as such in the 

analyses. The virus samples represented interesting clinical isolates from different study 

cohorts. Viruses were originally diagnosed as entero- or parechoviruses using ENRI-RT-

qPCR protocol followed by genetic typing using VP1 Sanger sequencing. The type name was 

used to obtain corresponding reference viral genome from GenBank for reference mapping 

(RefMap analysis). The reference genomes are shown in Table 4.1. 

 

Table 4.1 Reference genomes used in the study for RefMap analysis 
The following table includes virus nomenclature as per recommended by Simmonds et 

al., 2020, the NCBI accession id for the virus genome and its respective genome length. 

 

 Virus NCBI 

Accession ID 

Definition Length 

1 EV-D68 

 

NC_038308.1 Human enterovirus 68 

strain Fermon, complete 

genome 

7367 bp 

 

2 E18 MN749146.1 Echovirus E18 strain 12J3, 

complete genome 

7422 bp 

3 PeV-A3 KM986843.1 Human parechovirus 3 

strain VGHKS-2007, 

complete genome 

7349 bp 

4 PeV-A1 FM178558.1 Human parechovirus 1, 

complete genome 

7380 bp 

 

5 E13 AY302539.1 Human echovirus 13 strain 

Del Carmen complete 

genome 

7410 bp 
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 Description of workflow 

Chipster was originally chosen as test platform since it was considered user-friendly and 

applicable for picornavirus sequence analysis. To create consensus near full length 

picornaviral sequences, Chipster with automated pipelines and other methods were used to 

pre-process, assemble and analyse the same sequence set. Figure 4.1 represents the 

schematics for the various steps carried out during this study. 

 

 

Figure 4.1 Schematic representation of various bioinformatic approaches  
A. Application of default pipelines without any pre-processing of data. B. Pre-processing 

steps required to carry out analysis other than automated pipelines. C. Testing reference-

mapping approach for sequence assembly. D. De novo approach with external assembly 

programs. E. Quality assessment and validation of outputs generated by all approaches. 

Steps A. to C. were carried out in Chipster environment (white background), while steps 

D and E were implemented outside Chipster (light orange background). The dotted blue 

lines represent division of work during study. 

 

 

The work was divided into different parts and tests based on implementation of default 

pipelines (VirusDetect and A5 assembly pipeline for microbial genome assembly), pre-

processing raw sequence reads to try different approach for assembly than automated 

pipelines, assembly of the pre-processed reads with reference-mapping and de novo assembly 

programs and finally, validation and quality assessment of the outputs generated 

(contigs/scaffolds) from these different methods. The analysis steps were carried out within 

as well as outside Chipster environment as shown in Figure 4.1.  
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The user first logs in to the Chipster platform using login id and password. User accounts are 

freely available upon request to CSC helpdesk. Illumina paired-reads are imported with 

“import files” option of the file menu. Here, the primary analysis is done with pipelines 

available in the Chipster under “utilities” menu. VirusDetect and A5 assembly pipelines for 

microbial genomes are two automated assembly programs in Chipster and do not require any 

parameter optimization. Thus, in its simplest manner, genome analysis can be performed only 

in a few steps in Chipster without pre-processing steps.  

 

For the sequence assembly using approaches other than those included the pipelines 

implemented in Chipster, pre-processing of the raw reads is required. Such pre-processing 

steps can be performed in Chipster and are as follows: Quality analysis of reads is performed 

with FastQC, trimming of reads with Trimmomatic and host sequence subtraction with 

Bowtie2. The processed reads are then used for assembly. 

 

Sequence assembly was performed using two approaches: reference-mapping (RefMap) and 

de novo assembly. RefMap was done within Chipster with Bowtie2. De novo assembly was 

performed outside Chipster environment and with Velvet (VelvetOptimiser) and SPAdes 

programs.  

 

Long contigs were submitted to National Center for Biotechnology Information (NCBI) for 

BLAST analysis. Quality of contigs/scaffolds produced was assessed with QUAST. Details 

about steps and parameters are given below. 

 

 Automated analysis pipelines implemented in Chipster 

For VirusDetect pipeline, the input data file should be a FASTQ file. The assembled contigs 

are compared to the reference viral genome for identification with the help of BLASTN and 

BLASTX.  During this study, parameters to set were reference virus database and host 

organism (if unavailable in drop down menu, own genome could be uploaded). Other 

parameters were used with default settings. VirusDetect produces a large number of files, and 

all files can be stored in a single .tar file from the “option”. 

 

A5 assembly pipeline for microbial genomes is suitable for constructing small genomes based 

on Illumina MiSeq data, but it is essential that the input data file contains paired-end reads. 
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As mentioned earlier, this pipeline does not require pre-processing of the raw reads or any 

parameter settings. 

 

 Alternative approaches for sequence analysis 

 

 Pre-processing of raw sequence reads 

All the steps included in the pre-processing step were performed in Chipster platform. 

Quality of the sequence reads was checked with FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The option of “MultiQC” 

format allowed a single quality report output file for multiple sequences.  

 

In the following step, the reads were trimmed with the ‘Trimmomatic’ (Bolger et al., 2014), 

with parameters: 

              Adapter set= none,  

              Quality scale used in the fastq file= phred + 33,  

              sliding window trimming parameters = 20:30,  

              minimum length of reads to keep = 50,  

              write a log file = yes.  

 

In the final step of pre-processing, the host sequences were removed with ‘Bowtie2 for 

paired-end reads’ (Langmead & Salzberg, 2013) with two or more read files and options:  

             strategy = Very Sensitive,  

             Put unaligned reads to a separate file = yes. 

 

The unaligned reads were collected into separate file. For the future convenience, the fastq 

file were compressed using .gzip (“NGS”-“Utilities” menu of Chipster). 

 

The final output files from pre-processing stage served as input files for the assembly stage. 

Two approaches were utilised for assembly. 

 

 RefMap 

Trimmed reads were mapped with Bowtie2 paired end reads and own genome, as the 

required viral reference genomes were not available in the Chipster. The reference genomes 

were uploaded in the fasta file format. The parameters set were strategy = Very Sensitive, Put 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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unaligned reads to a separate file = no. The mapped reads were then visualized with built-in 

genome browser. 

 

The genome browser uses the .bam file from the mapping step. As the reference genomes are 

not indexed, they were indexed in Chipster with option “Index FASTA”, available under 

“utilities”.  

 

For visualization process, one chooses the .bam file of the reads and fasta format for 

reference sequence. This selection makes the genome browser option visible. After selecting 

the correct reference genome from drop down menu, reference genome and mapped reads 

alignment can be explored. 

 

 De novo assembly 

Currently, there are  no separate de novo assembly tools available on Chipster platform, 

although one can avail them by contacting CSC. Two tools were successfully employed – 

Velvet assembler and SPAdes assembly tool. As both were command line tools, the assembly 

run was performed in the Linux environment, Ubuntu 18.4 distribution. 

 

For de novo assembly, first program used was VelvetOptimiser, which is designed as wrapper 

script for Velvet assembler, which provides the best possible assembly with hash length 

optimisation. The information specified included the working directory name, the hash 

length, and a list of filenames, with file format and read type. The steps performed for 

assembly were as follows: 

1. A range of k-mers (hash length) was determined. For this study, the range of k-mers 

was given from 21 to 77. 

2. The appropriate file description line for velveth was determined, viz. '-shortPaired -

fastq.gz’. This line described the input reads as a short read of paired-end data. As the 

paired-end reads were in separate file, this information was also provided along with 

the respective file names. 

3. VelvetOptimiser was run with the script below. 

4. Output data was collected in the working directory. Upon exiting, VelvetOptimiser 

printed out the directory in which it left the output of its final Velvet assembly. This 

directory contained the standard Velvet output files. 

VelvetOptimiser script 
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velvetoptimiser.pl -s 21 -e 75 -f '-shortPaired -fastq.gz -separate reads1.fq.gz reads2.fq.gz' 

Where, -s = starting or lower hash value;  

            -e =  end or higher hash value; 

            -f =  velvethfiles (file format options = fastq.gz; read type = shortPaired) 

            -separate  = separate files for forward and reverse reads of a paired end library 

 
 

 

Other program used for de novo assembly was SPAdes. SPAdes supports paired-end, mate-

pairs as well as unpaired reads. As it was initially designed for small genomes, it was chosen 

for picornavirus sequence reads. The general command line script was as follows, the file 

names and output directories were specified per sequence. The paired-end fastq files (forward 

and reverse reads) were provided. The option ‘careful’ was recommended for small genome 

assemblies, as it reduces the number of mismatches and short indels. The SPAdes output files 

were stored in the output directories specified.  

SPAdes script 

 

spades.py -1 illumina_R1.fastq.gz -2 illumina_R2.fastq.gz --careful -o R_spades 

where, R defined the name of the sequence under assembly 

          -1 = input file of forward reads, 

          -2 = input file of reverse reads,  

          --careful =  minimized mismatches and short indels,  

          -o = the output directory. 
 

 

 

 Quality analysis and validation of contigs/scaffolds  

Longest contigs/scaffolds were identified for putative viral hits with the help of BLAST. This 

option is also available in Chipster, but only 10 sequences can be run at a time. The BLAST 

analyses were done manually for each contig/scaffold for each sequence run. The additional 

setting of BLASTN was used. The hits identified as viral hits, were saved separately in a file. 

 

To compare the contigs/scaffold generated form the applied pipelines and assemblers 

QUAST tool was used. It is python-language based tool and the script used was as follows.  
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QUAST accepted assemblies and reference genomes in FASTA format. The output files were 

generated into specified directory.  

QUAST script 

quast.py seq_name_A5.fasta  seq_name_SPAdes.fasta  seq_name_velvet.fasta -r ref.fasta -o 

name_quast 

where, input files = contigs/scaffolds in fasta format for each assembly; 

            r = reference sequence in fasta format (not mandatory) 

            o = name for output directory 
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5 Results  

The primary goal of this thesis was to develop a straightforward and user-friendly workflow 

for picornaviral genome sequencing and sequence analysis. The basic idea of the thesis was 

to test the feasibility of Chipster platform for picornavirus genome analysis. The details about 

software used and their respective output files are included in appendix B.  

 

 Automated analysis pipelines implemented in Chipster 

Two pipelines implemented in Chipster were tested with the dataset. VirusDetect pipeline 

failed to produce any results, while A5 pipeline was successfully applied to the available 

sequence sets. The output files obtained from A5 pipeline are listed in appendix B (Table 

B.1). The summary statistics of assembly are provided in a tab separated file and provide 

information of total number of contigs and scaffolds generated, longest scaffold, N50 etc. The 

fasta files for final contigs and final scaffolds contain assembled sequences as contigs and 

scaffolds respectively. Both file formats are shown in Figure 5.1. 

 

A. Summary statistics of assembly  

 

B. Fasta file for final contig 

>scaffold_0 

TTTTTTTTGTGGGGGGTGTCTTTGGGGTTTGGTTGGTTCGGGGTATGGGGTTAGCAGCGGTGTG 

TGTGTGCTGGGTAGGATGGGCGAGGGTTGTATTGATGAGATTAGTAGTATGGGAGTGGGAGGG 

GAAAATAATGTGTTAGTTGGGGGGTGACTGTTAAAAGTGCATACCGCCAAAAGATAAAATTTG 

AAATCTGGTTAGGCTGGTGTTAGGGTTCTTTGTTTTTGGGGTTTGGCAGAGATGTGTTTAAGTG 

CTGTGGCCAGAAGCGGGGGGAGGGGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTGTGTGGA 

 
 

 

Figure 5.1 Output files for A5 assembly pipeline 
A. shows a tab separated file with important statistics such as number of contigs and 

scaffolds, longest scaffold and N50. B. A fasta format file for final contig, note: all 

sequences are not shown, the single file contains all the contigs or scaffolds generated 

which are serially numbered from 0. 



28 

 

Results for A5 assembly pipeline output analysis are shown in Table 5.1, which include the 

longest scaffolds generated for given sequences. Viral hits of comparatively shorter lengths 

are not mentioned in the result here. 

 

Table 5.1 Results of A5 assembly pipeline output analysis 
The table provides details about sequence ID, expected hit with Sanger typing, number 

of scaffolds generated, longest scaffold generated for a given sequence and respective 

putative viral hits identified with BLASTN. The viral hits are mentioned with 

abbreviated virus name. The full names of virus with their respective abbreviations are 

provided in appendix C (Table C.1). 

 

 

Sequence 
Sanger 

typed as 

Total 

scaffolds 

Scaffold 

number 

length 

in bp 

Putative Viral 

hit 

FFGC_VIR_1_S104 EV-D68_19 18829 Scaffold_17 6950 E18 

FFGC_VIR_2_S105 EV-D68_21 17826 Scaffold_26 5918 E18 

FFGC_VIR_3_S106 EV-D68_23 17166 Scaffold_8 7356 E18 

FFGC_VIR_4_S107 

 

EV-D68 

Fermon(type 

strain). 

68 

Scaffold_0 7376 EV- D68 

Scaffold_1 7107 E18 

FFGC_VIR_5_S108 E-18 586 Scaffold_1 7135 E18 

FFGC_VIR_6_S109 E-18 104 Scaffold_1 7458 E18 

FFGC_VIR_7_S110 E-18 2836 Scaffold_1 7401 E18 

FFGC_VIR_8_S115 E-18 146 Scaffold_0 7409 E18 

FFGC_VIR_9_S114 E-13 46 Scaffold_0 5774 E13 

FFGC_VIR_10_S113 

etiology by 

unknown 

pathogen 

114 Scaffold_13 775 EV-B 

FFGC_VIR_11_S112 EV-D68 221 Scaffold_0 7339 EV-D68 

FFGC_VIR_13_S111 EV-D68 901 Scaffold_0 7340 EV-D68 

FFGC_VIR_18_S116 
PeV-

A3/Vi988 
505 None 

FFGC_VIR_19_S117 
PeV-

A3/152037 
22 Scaffold_0 6749 PeV-A3 

FFGC_VIR_20_S118 
PeV-A3/145-

8 
167 Scaffold_2 3053 

PeV-A1, PeV-

A3, PeV-A4 
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FFGC_VIR_21_S119 
PeV-A1/101-

17 
14949 Scaffold_8 7335 PeV-A1 

FFGC_VIR_22_S120 
PeV-A1/103-

2 
16333 Scaffold_10 7314 PeV-A1 

 

 

Considering the longest lengths of scaffolds generated for each paired-end sequence reads, 

the longest scaffold was 7458bp (FFGC_VIR_6_S109, Scaffold_1), while shortest was 775bp 

(FFGC_VIR_10_S113, Scaffold_13). It was interesting to note that for one sequence 

(FFGC_VIR_4_S107) two near full length scaffolds of lengths 7376bp (Scaffold_0) and 

7107bp (Scaffold_1) were generated. Both scaffolds showed two different putative viral hits 

for EV-D68 (expected based on Sanger typing) and E18. For a sequence 

(FFGC_VIR_20_S118) with scaffold of intermittent length (3053bp) multiple viral hits were 

observed. Only one sequence (FFGC_VIR_18_S116) (shown in bold) failed to produce any 

viral hits for A5 pipeline. It should be noted that PCR Ct values were not available for the 

samples, and therefore it cannot be concluded whether differences in lengths are due to 

differences in the copy number, which ultimately affect the quality of sequenced library.  

 

 Alternative approaches for sequence reads analysis 

 

 Pre-processing of raw sequence reads 

Pre-processing of raw reads consists of quality control, adapter removal and host genome 

subtraction from the given sequence datasets. All three steps were performed in Chipster.  

 

5.2.1.1 Quality control with FastQC 

FastQC analysis generated two output files for each read- a html file of FastQC analysis 

report of individual sequence read and a mqc file, to combine all FastQC reports in a single 

file. The report included tables and graphical plots for general statistics, sequence counts, 

sequence quality histograms, per sequence quality score, per base sequence content, per 

sequence GC content, per base N content,  sequence length distribution, sequence duplication 

levels, overrepresented sequences an adapter content.  

 

FastQC analysis indicated absence of poor-quality bases and any adapter contamination for 

all sequences in dataset. For each module run in FastQC analysis, success or warning is  

indicated with a colored symbol. For a given module, green tick indicates that module is ok, 
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orange exclamation mark indicates it is slightly unusual and can be further investigated and 

red cross indicates it is very unusual and might be wrong. Figure 5.2 shows a part of FastQC 

analysis report, with warning for overrepresented sequences for sequence, 

FFGC_VIR_18_S116. Assembly of this sequence with A5 pipeline failed to generate any 

viral contigs. Later in the study, after implementation of other assembly programs, some of 

the sequences resulted into either smaller length contigs or with no contigs of interest at all. 

After comparing the FastQC reports, it was observed that all these sequences showed red 

cross warning i.e. high percentage of overrepresented sequences as compared to other 

sequence reads. 

 

  

 
 

Figure 5.2 Part of FastQC analysis report (FFGC_VIR_18_S116)  
The left-hand panel, under title summary indicates the modules run for FastQC analysis 

and colored symbols indicating success or warning. Warning for overrepresented 

sequences was observed as common for all sequences which either resulted into smaller 

contigs or no viral contigs at all. Sequence, FFGC_VIR_18_S116, failed to generate any 

viral contigs for A5 pipeline as well as other assemblers. 

 

 

5.2.1.2 Adapter removal and trimming with Trimmomatic 

FastQC was followed by application of Trimmomatic and Bowtie2. With the Trimmomatic, 

the sequence reads are trimmed and filtered. Parameters setting is an essential step for 

Trimmomatic. The encoding determines the offset of quality scores. Here, phred+33 

encoding was set, which suggests ASCII 33 offset (that is, the quality characters in FASTQ 

file are equal to their quality plus 33). Adapter clipping parameters trim the adapter set used 

during library processing. These details can be found in the sequencing summary reports. 

Adapter sets are available in Chipster and if not, the user can upload own set of adapters for 
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trimming. For the given dataset, adapters were removed beforehand, hence adapter set 

trimming was not required. Sliding window parameters trim the low-quality sequences in the 

reads. The window size determines the average quality within the window and sequences are 

trimmed when the quality falls below this threshold. Setting a window considers quality of 

multiple bases, which helps to avoid removal of high-quality bases surrounding a single poor-

quality base. The minimum read length parameter decides the minimum length of the read to 

retain after clipping. For the study, different settings of the parameters for both window size 

and minimum length were tried as suggested in various citations. Current settings 

considerably reduced the number of reads than other setting combinations and hence, were 

decided to use. 

 

5.2.1.3 Host sequence subtraction with Bowtie2 

The trimmed reads were then aligned with human genome as a host with Bowtie2. The ‘very 

sensitive’ option is more sensitive and accurate. This resulted in the host sequence depletion 

and further decreasing the number of reads. The most significant host sequence depletion was 

observed in 10 out of 17 sequences as represented in Figure 5.3. The reduction in number due 

to trimming and host subtraction is shown as follows (Table 5.2).  

 

Table 5.2 Reduced number of reads with trimming and host subtraction 
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Sequence Input read pairs Trimmed reads Host subtraction 

FFGC_VIR_1_S104 3649440 3223444 788577 

FFGC_VIR_2_S105 2872004 2593354 648896 

FFGC_VIR_3_S106 2876908 2556630 678412 

FFGC_VIR_4_S107 975519 599085 297354 

FFGC_VIR_5_S108 2590348 2339714 2157011 

FFGC_VIR_6_S109 1908565 1705746 1654351 

FFGC_VIR_7_S110 3150044 2861061 2454296 

FFGC_VIR_8_S115 732111 616362 613755 

FFGC_VIR_9_S114 1668916 1487498 1450294 

FFGC_VIR_10_S113 838109 448550 11363 

FFGC_VIR_11_S112 855702 508013 118503 

FFGC_VIR_13_S111 1203168 968805 660489 

FFGC_VIR_18_S116 235935 183996 50599 

FFGC_VIR_19_S117 3855605 3480990 3473068 

FFGC_VIR_20_S118 194498 176036 59875 

FFGC_VIR_21_S119 3306931 2997088 996686 

FFGC_VIR_22_S120 3449781 3118051 920137 
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Figure 5.3 Effect of trimming and host sequence subtraction on total 

sequence reads 

 

 

As shown above, the reduction in number of reads was not uniform across the sequences. The 

unmapped reads were collected in separate output files and were then used for next step of 

assembly.  

 

 RefMap analysis 

As the sequences were typed and provided ideas about the related sequences, mapping with 

reference genome approach was used. The reference sequences are mentioned before (Table 

4.1). The results were visualized using IGV, available in Chipster. As the sequence vir10 

(FFGC_VIR_10) was typed as pathogen without known etiology, no reference mapping was 

performed with this sequence. The results for mapping were wide-ranging. Sequence 

coverage of all ranges (low, intermittent and high) was observed. Figure 5.4 shows coverage 

observed with reference mapping for selected sequences. 
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Figure 5.4 Sequence coverage observed with RefMap analysis 
Figures A. to D. show the different ranges of coverage achieved in reference mapping for 

selected sequence. A. showed very low coverage, B. with slightly more coverage as 

compared to A, C. with intermittent coverage, while D. shows the highest coverage as 

compared to other three. 
 

 

 De novo assembly 

Until this stage, all previous work- application of automated pipelines (A5 and VirusDetect), 

alternative workflow to these pipelines, which included quality control of reads with FastQC, 

trimming of reads with Trimmomatic, host sequence subtraction with Bowtie2 and RefMap 

(that is, reference-mapping) with Bowtie2 were implemented in Chipster. However, Chipster 

platform itself does not have any specific assembly program for de novo assembly. Hence, 

the assemblers Velvet and SPAdes were used outside Chipster. As both assemblers are 

command line tools, the work was carried out in Linux environment (Ubuntu 18.04). 

Trimmed and host depleted sequence reads (final output of steps mentioned in 5.2.1.3) were 

exported from Chipster and were utilised as inputs for de novo assembly programs.  

 

5.2.3.1 VelvetOptimiser 

The most important parameter for Velvet is a k-mer or hash length. To obtain a successful 

assembly, it is suggested to have k-mer value between half to 2/3 of a read length. To ensure 

that appropriate k-mer value is chosen, VelvetOptimiser was used in the study. This program 

takes a range of values instead of a single value and provides most optimal k-value used to 
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assemble sequence reads. Considering the variable lengths of the reads in the dataset, lower 

limit of 21 (default is 19) and higher limit of 77 was chosen. The resultant optimal k-mer 

values for each sequence are given in Table 5.3 

 

When finished with VelvetOptimiser run, the files found in output directory were Contigs 

file, Graph, PreGraph and Graph2 files, log file, sequences and stats file. The details about 

the output files are provided in the appendix B (Table B.2). The important files to consider 

were contigs file, log and stats file. The contigs file provided the information about contigs 

with k-mer length and k-mer coverage. The assembly with this tool was time-consuming and 

required more computational storage and memory. The final output file consisted of the 

contigs for the most optimal k-mer value and content format for a file is described below.  

 

          

>NODE_1_length_7202_cov_271.608429 

AAGATTTTTACATTAACCCCATGCCTGGTCTCCACTAGTTGAAGGCAGCTTGCAATAAAA 

TGAGTGGGAACAAGACGCTTAAAGCATGGTGTAAATTAACTTTTCTAACTCACACTTTGT 

GTGGGGTGGCAGGTGGCGTGCCATAATTCTATTAGTGAGATACCACGCTTGTGGATCTTA 

TGCTCACACAGCCATCCTCTAGTAAGTTTGTGAGACGTCTGGTGACGTGTGGGAACTTAT 

TGGAAACAACATTTTGCTGTAAAGCATCCTATTGCCAGCGGATTAACACCTGGTAACAGG 

 
 

      Here, 1 is contig number, 7202 is k-mer length in base pairs and 271.608429 represents k-mer 

coverage for a given contig. 

 

Velvet assembler failed to provide putative viral hits for five sequences (FFGC_VIR_1, 2, 3, 

18, 20) out of 17 (shown in the Table 5.3). It also failed to identify the pathogen of unknown 

etiology (FFGC_VIR_10) (shown in bold).   

 

Table 5.3 Final output for Velvet assembler  
The table shows the k-mer value, number of contigs, length of the contig and putative 

viral hit for the given sequence. 

 

Sequence k-mer value 
Number of 

contigs 

Length of 

longest contig 

Putative viral 

hits 

FFGC_VIR_1 67 687 - No 

FFGC_VIR_2 67 574 - No 

FFGC_VIR_3 65 1248 - No 

FFGC_VIR_4 65 6 3326 EV-D68 



36 

 

FFGC_VIR_5 73 2 7384 E18 

FFGC_VIR_6 71 1 7189 E18 

FFGC_VIR_7 73 1 7199 E18 

FFGC_VIR_8 73 16 7066 E6, E11 

FFGC_VIR_9 71 2 7361 E13 

FFGC_VIR_10 55 20 - No 

FFGC_VIR_11 61 11 6987 EV-D68 

FFGC_VIR_13 71 6 7344 EV-D68 

FFGC_VIR_18 59 28 - No 

FFGC_VIR_19 73 4 6719 PeV-A3 

FFGC_VIR_20 71 11 - No 

FFGC_VIR_21 73 2 7276 
PeV-A, PeV-A5, 

PeV-A4 

FFGC_VIR_22 73 2 7274 
PeV-A,PeV-A1, 

PeV-A3, PeV-A4 

 

 

Taking into account longest contigs generated by Velvet, longest contig was observed for 

sequence FFGC_VIR_5, contig size 7384bp and smallest with FFGC_VIR_4, contig size 

3326bp. Optimised k-mer values were in different ranges.  

 

After completion of analysis with Velvet program, same sets of sequence reads were 

assembled with SPAdes. 

 

5.2.3.2 SPAdes 

SPAdes assembler was relatively easier to use and required less time than VelvetOptimiser.  

SPAdes does not use a single k-value (unlike Velvet) and a range k-mer value is selected 

automatically depending on the read length. Another assembly parameter used in SPAdes is 

‘careful’ and is recommended for small genome assemblies. Parameter “careful” minimizes 

the errors produced by mismatches and indels. As picornaviruses have small genomes, this 

option was selected. 
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The final output files consisted of fasta files for final contigs and scaffolds. All output files 

and their respective uses are given in appendix B (Table B.3) Contigs/scaffolds names in 

SPAdes output FASTA files had the following format-  

 

>NODE_1_length_7647_cov_1644.037408 

CTCCTAGAGAGCTTGGCCGTTGGGCCTTATACCCCAACTTGCCGAGCTTCTCTAGGAGAG 

TCCCTTTCCCAGCCCTGAGGCGGCTGGTTAATAAAAGCCTCAACTGTAACAAACATCTAA 

GATTTTTACATTAACCCCATGCCTGGTCTCCACTAGTTGAAGGCAGCTTGCAATAAAATG 

AGTGGGAACAAGACGCTTAAAGCATGGTGTAAATTAACTTTTCTAACTCACACTTTGTGT 

GGGGTGGCAGGTGGCGTGCCATAATTCTATTAGTGAGATACCACGCTTGTGGATCTTATG 

 
 

      Here, 1, 7647 and 1644.037408 represent the number of the contig/scaffold, the 

sequence length and the k-mer coverage for the last (largest) k value used 

respectively. 

 

 

The resultant scaffolds were in decreasing order in the length. This made identifying the 

putative viral hits moderately simple. Viral assembly results are shown in Table 5.4. 

 

Table 5.4 Final output for SPAdes assembler  
The table shows number of scaffolds, length of the longest scaffold and putative viral hit 

for the given sequence. 

 

Sequence 
Number of 

scaffolds 

Length of longest 

scaffold 
Putative viral hit 

FFGC_VIR_1 13609 7213 E6, CVB2 

FFGC_VIR_2 13309 5102 E18 

FFGC_VIR_3 13333 7367 E18 

FFGC_VIR_4 36 6904 EV-D68 

FFGC_VIR_5 1099 1017 CVB4, E27 

FFGC_VIR_6 329 1224 E18 

FFGC_VIR_7 3966 - No 

FFGC_VIR_8 305 7424 E18 

FFGC_VIR_9 14 7418 E13 

FFGC_VIR_10 78 2277 E30, CVB1 

FFGC_VIR_11 99 7341 EV-D68 
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FFGC_VIR_13 585 7474 EV-D68 

FFGC_VIR_18 99 - No 

FFGC_VIR_19 840 5037 PeV-A3 

FFGC_VIR_20 80 3092 PeV-A1, PeV-A3, PeV-A4 

FFGC_VIR_21 6687 7340 PeV-A1 

FFGC_VIR_22 7333 7647 PeV-A, PeV-A5, PeV-A4 

 

 

SPAdes assembler failed to generate viral contigs for two sequences, FFGC_VIR_7 and 

FFGC_VIR_18 (shown in bold). Considering the length of longest scaffolds produced, 

longest scaffold size was observed for FFGC_VIR_22 (7647bp) and smallest size observed 

for FFGC_VIR_5 (1017bp).  

 

The final results for A5 assembly, Velvet and SPAdes assemblers for successful picornavirus 

sequence reads assembly into longer contigs/scaffold is given in Table 5.5. 

 

Table 5.5 Assemblers and their suitability for picornavirus genome  
Table shows whether assemblers were useful in generating picornaviral contigs from the 

sequence sets 

 

Sequence ID A5 assembly Velvet SPAdes 

FFGC_VIR_1_S104 Yes No Yes 

FFGC_VIR_2_S105 Yes No Yes 

FFGC_VIR_3_S106 Yes No Yes 

FFGC_VIR_4_S107 Yes Yes Yes 

FFGC_VIR_5_S108 Yes Yes Yes 

FFGC_VIR_6_S109 Yes Yes Yes 

FFGC_VIR_7_S110 Yes Yes No 

FFGC_VIR_8_S115 Yes Yes Yes 

FFGC_VIR_9_S114 Yes Yes Yes 

FFGC_VIR_10_S113 Yes No Yes 

FFGC_VIR_11_S112 Yes Yes Yes 

FFGC_VIR_13_S111 Yes Yes Yes 

FFGC_VIR_18_S116 No No No 



39 

 

FFGC_VIR_19_S117 Yes Yes Yes 

FFGC_VIR_20_S118 Yes No Yes 

FFGC_VIR_21_S119 Yes Yes Yes 

FFGC_VIR_22_S120 Yes Yes Yes 

 

A5 assembly program was simplest to use, followed by Spades. VelvetOptimiser was the 

most computationally exhaustive program amongst three. As compared to VelvetOptimiser, 

A5 assembly and SPAdes assembly programs were quite successful in regards with 

successful virus genome assembly for number of sequences. One sequence, FFGC_VIR_18 

failed to generate any viral contigs/scaffolds with each program.  

 

The details of comparison between results of A5 pipeline, VelvetOptimiser and SPAdes for 

picornavirus sequence assembly is shown in appendix C, Table C.2 

 

 Quality analysis and validation of contigs/scaffolds  

The final outputs i.e. final contigs/scaffolds generated by all assembly programs (A5 pipeline, 

VelvetOptimiser and SPAdes) were checked with BLAST for validation of viral hits.  

 

 

Figure 5.5 BLAST search for a scaffold. 
Only few hits are shown here. The percent identity of more than 80% was selected for 

putative viral hits.  

 

 

Although Chipster platform offers option of BLAST analysis, as number is limited to 10 jobs 

at a time, Blast searches were performed outside Chipster.  The contigs/scaffolds identified 

with a viral hit, were then saved separately as a fasta file. These files were used for QUAST 

analysis.  



40 

 

Quality assessment with QUAST produced a number of output files. The final result was 

generated in pdf format and also available with Icarus viewer. The QUAST report consisted 

of table for genome statistics, mismatches and statistics without reference, with heatmap 

indicating worst and best statistics. The example output is shown as follows: 

 

Figure 5.6 Sample QUAST report for sequence FFGC_VIR_22 
Figure shows general statistics for contigs/scaffolds generated by all three assemblers, 

suggesting best assembly output by SPAdes in this scenario. 

 

 

From the QUAST reports, overall quality of the assembly outputs for SPAdes was relatively 

better than other two programs.  

 

From the results obtained from the analysis of different approaches (outlined before in Figure 

4.1 Schematic representation of various bioinformatic approaches), a workflow is suggested 

for picornavirus genome assembly. As each assembler has its own pros and cons, using more 

than one program is helpful. Currently the workflow uses programs available in Chipster as 

well as outside Chipster. In future, with addition of de novo assembly programs in Chipster 

environment, one can perform all the tasks within Chipster. 
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Figure 5.7 Schematic representation of workflow for picornavirus sequence 

analysis 
The workflow can be divided into three parts. A. Represents preliminary analysis with 

default pipeline in Chipster. B. Provides stepwise guidance for approaches other than 

automated pipeline. A and B can be performed in Chipster (red box). C. Suggests the 

application of external de novo assembly programs. Validation of outputs from both A 

and C can be performed with BLAST and quality assessment with QUAST shown as D. 

Green star suggests that the step of BLAST analysis can also be done in Chipster. 
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6 Discussion 

Picornaviridae is a large family of vertebrate viruses with small genome sizes that produce 

both clinically asymptomatic infections and mild and fatal disease. The genus Enterovirus 

comprises seven species infecting humans (enterovirus A-D and rhinovirus A-C). This genus 

contains poliovirus (PV), coxsackieviruses A/B (CVA/B), enteroviruses (EV), echoviruses 

(E), and rhinoviruses (RV). Serological classification has indicated existence of more 

serotypes. Hepatitis A virus (HAV) is the sole human-virus species in the genus Hepatovirus. 

Other human picornaviruses include members of the genera Cardiovirus (Saffold virus—

SAFV), Cosavirus (CoSV), Parechovirus (Ljungan virus—LV), Kubovirus (Aichi virus—

AiV), and Salivirus (Salivirus A—SaVA) (Nielsen et al., 2013). 

 

Next generation sequencing (NGS) allied with bioinformatic analysis provides an efficient 

way to detect and identify known or novel micro-organisms. It helps to generate more 

accurate sequences than conventional methods. The genome sequence assembly and its 

downstream analysis help to determine etiological agents, identify and track outbreak origins 

and transmissions of a disease. Its efficiency along with affordable cost for application makes 

NGS an quality tool for research. NGS is a powerful, multifaceted tool, which also poses few 

challenges during its applications (Ekblom & Wolf, 2014; Lambert et al., 2018; Maljkovic 

Berry et al., 2020; Orton et al., 2016; Pereira et al., 2020; Sutton et al., 2019; White et al., 

2017).  

 

The outcome of NGS approaches is dependent on the sample quality and the amount of the 

target in it. While it is easy to determine the quantity of human DNA for NGS, it is much 

more difficult to determine viral load. In case of picornaviruses, the main criteria is viral copy 

number. In most cases this means the Ct value obtained in RT-qPCR diagnostic method. This 

relative value can be used to compare the sample to each other and to the sequencing results, 

that is, the number of viral sequences in the overall sequence pool and the quality of the 

sequences to obtain full genome-length contigs. Quality of reads and coverage depth play a 

deciding role in final genome assembly. Both these factors affect the correctness and overall 

completeness of assembled genome. This quality will also be dependent on the heuristics 

applied for the assembly. Reference-based assembly and de novo assembly are two 

commonly used approaches for genome assembly. Reference-based assembly provides an 

efficient tool for assembling known genomes in time sensitive manner and in limited 
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computational environment. In order to obtain accurate reference mapping, a closely related 

reference genome should be selected for genome of interest. Sample reads are mapped to 

reference genome depending on the best match and alignment. BWA (Burrows wheeler 

transform), BWA-MEM (maximal exact matches) (Li & Durbin, 2009) and Bowtie2 

(Langmead & Salzberg, 2013) are the most commonly used tools for reference-mapping 

(Lambert et al., 2018; H. C. Lee et al., 2012; Nooij et al., 2018). However, reference-mapping 

can pose difficulties when assembling a novel organism or variable organisms, like RNA 

viruses, which show high genetic diversity owing to their high mutation rates and 

recombination tendencies (Kasibhatla et al., 2016; Orton et al., 2016). In general, RNA 

viruses also contain conserved and non-conserved regions that pose a problem for the 

function of reference-mapping techniques. The actual parameters or percentage difference 

range where Refmap methods work optimally await to be determined. 

 

De novo assembly is useful in absence of a quality reference genome and is commonly used 

to assemble and identify novel organisms by means of metagenomics. It involves connecting 

short overlapping sequence reads into longer contigs or scaffolds. Developments in 

sequencing technologies have led to advancements in the algorithms for assemblers used. For 

example, the overlap layout consensus (OLC) algorithm (Pevzner et al., 2001) was quite 

successful with capillary reads (sequencing by capillary electrophoresis, Karger and Guttman, 

2009), as it produced high quality genome assemblies. However, use of this algorithm with 

short reads assembly was found to be computationally expensive (Zerbino, 2010). This led to 

the development of assemblers based on the de Bruijn graph, such as ALLPATHS (Butler et 

al., 2008), ABySS (Simpson et al., 2009), SOAPdenovo (Li et al., 2009) and Velvet (Zerbino 

and Birney, 2008), which comparatively reduced computational time. Some of the frequently 

used de novo assemblers are MIRA, Velvet, ABySS, SOAPdenovo and SPAdes (Blawid et 

al., 2017; Ibrahim et al., 2018; H. C. Lee et al., 2012; White et al., 2017). 

 

Although most of the NGS programs are command-line tools, they can be accessed with 

commercial platforms (for example, Geneious and CLC Genomics workbench), open source 

graphical user interfaces or web-based tools (such as Galaxy platform and EDGE) or 

command-line based pipelines (like ngs_mapper and GATK). However, the limited 

computational skills is one of the bottlenecks faced during NGS analysis by non-

bioinformaticians. Accessing command line tools through user friendly interfaces provides a 
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way for researchers, who do not have any technical knowledge, to perform NGS related 

bioinformatics analysis successfully (Lambert et al., 2018; Maljkovic Berry et al., 2020). 

 

Chipster (http://chipster.csc.fi/) at Centre for Scientific Computing (Espoo, Finland) is a 

platform, which allows user to explore multiple tools at a single access. Chipster brings a 

powerful collection of data analysis methods including NGS within the reach of bioscientists 

via its intuitive graphical user interface (Kallio et al., 2011). It can be used a Java-web start 

desktop application (Chipster v3.16.3) or a web-application through browser (Chipster v4). It 

is an open source and easy-to-use analysis software, allows user to save the analysis steps as 

a workflow and share those workflows with the peers. Chipster handles different file formats 

easily and has a provision for converting files to necessary and needful formats (for example, 

indexing FASTA files, compressing files to .tar etc). Handling of data through servers and 

cloud system provides sufficient memory for computation and storage capacity. However, 

Chipster does not have any independent de novo assembler within its environment, unlike 

other platforms like Galaxy and Geneious, which offer options such as Velvet, SOAPdenovo, 

Spades, MIRA, ABySS and IDBA-UD. It also does not have any quality assessment tool to 

compare different assembler outputs. Although Chipster allows addition of tools, it will be 

more helpful if it has some options to start with.  

 

In the current study, Chipster was used for picornavirus genome sequence analysis. The 

workflows included primary analysis of picornavirus sequence data with automated pipelines 

(VirusDetect and A5) within Chipster, and if approaches other than automated pipelines were 

used, the pre-processing of the reads followed by subsequent assembly of these trimmed 

reads with reference-mapping or de novo methods were used. As Chipster does not have 

independent de novo tools, external programs Velvet and SPAdes were used. 

 

Although reference-mapping and application of VirusDetect pipeline was not successful, one 

should consider the reasons behind this lack of success. Reference mapping is based on 

aligning the query reads with known viral genome. RNA viruses are known for their high 

evolution rate and low fidelity of RNA-dependent RNA polymerase (RdRp), which can lead 

to the viral sequence diversity. VirusDetect pipeline was originally developed for identifying 

viruses based on small RNAs, which might act as a limiting factor for its success in 

picornavirus analysis. 
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A5 pipeline for microbial genome assembly was found to be quite successful for picornavirus 

identification. With automated steps, A5-miseq could produce nearly complete genome 

assemblies. A5-miseq offered automated adapter trimming, reconstruction of reads into 

longer sequences, outputs which could be readily uploaded to NCBI and with quality reports 

(.qvl files). Being automated and computationally efficient, A5-miseq would be helpful for 

researcher with limited computational and bioinformatics experience. Hence, A5 pipeline can 

be used as initial identification and contig/scaffold generation method for picornaviruses.  

 

Quality analysis helps to screen sequence reads for any quality issues and flags the reads with 

questionable quality. Trimming of reads removes primers and adapters and also filters the 

reads with ambiguous lengths. RNA viruses pose difficulty in NGS due to their relatively low 

abundance as compared to host sequence. Hence, it is necessary to subtract host sequences 

from the total sequence reads. Successful application of these pre-processing steps to 

sequence datasets can facilitate viral genome assembly (Daly et al., 2015; Guo et al., 2013; 

Kruppa et al., 2018; Marston et al., 2013; Montmayeur et al., 2017). The steps related to 

quality control, sequence trimming and cleaning, alignments to subtract host genome 

sequence can be easily performed in the Chipster environment. The final trimmed sequences 

then can be exported and be used for assembly programs. 

 

Velvet (or VelvetOptimiser) and SPAdes, both were successfully used for sequence 

assembly. However, application of Velvet poses two challenges. First, Velvet utilises quite a 

lot of memory, hence, without adequate memory it either slows down, or stops working 

completely. Second, Velvet attempts to connect contigs into scaffolds by default. It tries to 

scaffold contigs which cannot quite connect and adds the N’s sequences in the estimated gap 

between these neighbouring contigs. This results in stretches of Ns in the contigs.fa file 

output. SPAdes performed well, was simple to employ and generated both contigs and 

scaffolds. 

 

Final assemblies by SPAdes and A5-miseq have been reported to be competitive with their 

other counterparts (Magoc et al., 2013; Lambert et al., 2018), while most of the times 

producing more promising results. This was found true for the current data analysis. All three 

assemblers could produce near-full length contigs/scaffolds for most of the picornavirus 

sequences. The exception was sequence, FFGC_VIR_18, which failed to generate sequence 

assembly with all three programs. This sequence, along with sequences which produced 
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comparatively smaller contigs/scaffolds were observed to have warning for overrepresented 

sequences in FastQC analysis report. 

QUAST assessed and compared the assemblies generated by different programs and helped 

to understand their efficiency.  

To summarise, next generation sequencing (NGS) have provided a breakthrough for the viral 

genomics and bioinformatics. Applications of NGS in virology include analysis of intra-host 

viral diversity, study of quasispecies, viral transmission and resistance to antiviral therapy 

and vaccines. It is considered as a powerful tool for virus discovery and metagenomic with its 

ability to detect and identify known and emerging viruses with or without a priori 

knowledge. Although various tools and algorithms are available in the market, these tools 

differ in regards with ease of use, speed, quality control, output format and affordability 

(Ekblom & Wolf, 2014; Orton et al., 2016; White et al., 2017). The selection of parameter 

settings determines the performance and sensitivity of the bioinformatic tools. The choice of 

the tools and assemblers depend on the source and biological relevance of the data. Assessing 

the impact of different workflows and parameter settings can affect the quality of the 

assembled genome. Combination of different assemblies can help in establishing the 

optimized workflow. Different assemblers are based different algorithms and differ in their 

accuracy, speed, computational skills and requirements. Hence, it is judicious to get 

acquainted with the various algorithms available and then selecting a particular, suitable 

approach (Caicedo-Montoya et al., 2019; Datta, 2015). 

 

Finally, Chipster with its comprehensive collection of analysis tools can provide a way to 

efficiently perform pre-processing of data and initial analysis with the help of A5 assembly 

pipeline for picornaviruses. Alternatively, external assemblers can be used. The quality of the 

sequences defines which method is the most optimal for designated virus. For this purpose, 

one needs to compare the sequences to larger pool of NGS sequences of the same type. 

Inclusion of the external assembler within Chipster environment can help to establish a 

straightforward and user-friendly workflow for next generation sequencing of picornaviruses. 
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 Next generation sequencing 

Table A.1 Glossary for NGS 
 

Term Meaning 

Adapters Short sequence-specific oligos ligated to the 5´and 3´ ends of each 

DNA fragment in a sequence library 

Alignment Matching sequencing reads to a reference genome 

Burrows-Wheeler 

transformation 

(BWT) 

 

BWT is a method of indexing (and compressing) a reference genome 

into a graph data structure of overlapping substrings, known as a suffix 

tree. It requires a single computational effort to build this graph for a 

particular reference genome, then it can be stored and reused when 

mapping multiple NGS data sets to this genome. The BWT method is 

particularly efficient when the data contain runs of repeated sequences 

Consensus sequence When two or more DNA sequences are aligned, the overlapping 

portions can be combined to create a single consensus sequence. In 

positions where all overlapping sequences have the same base (a single 

column of the multiple alignment), that base becomes the consensus. 

Contigs A contiguous linear stretch of DNA or RNA consensus sequence, in 

silico, constructed by aligning a number of smaller overlapping 

sequencing reads 

Coverage 

(depth/level) 

The average number of sequenced bases that align to known reference 

bases 

de Bruijn graph 

(DBG) 

This is a graph theory method for assembling a long sequence (like a 

genome) from overlapping fragments (like sequence reads). The de 

Bruijn graph is a set of unique substrings (words) of a fixed length 

(a k-mer) that contain all possible words in the data set exactly once. 

De novo  sequencing Sequencing of genetic material with no reference sequence available 

DNA fragment A small piece of DNA, often produced by a physical or chemical 

shearing of larger DNA molecules. 

Illumina sequencing The NGS sequencing method developed by the Solexa company, then 

acquired by Illumina Inc. 

k-mer Short, unique element of DNA sequence of length k, used by many 

assembly algorithms 
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Library 

 

Collection of DNA (or RNA) fragments modified in a way that is 

appropriate for downstream analyses, such as high-throughput 

sequencing in this case 

Mapping A term routinely used to describe alignment of short sequence reads to 

a longer reference sequence 

N50 

 

A statistic of a set of contigs (or scaffolds). It is defined as the length 

for which the collection of all contigs of that length or longer contains 

at least half of the total of the lengths of the contigs. 

Next-generation 

sequencing (NGS) 

DNA sequencing technologies that simultaneously determine the 

sequence of DNA bases from many thousands (or millions) of DNA 

templates in a single biochemical reaction volume. 

Oligonucleotide 

(oligo) 

A short DNA or RNA sequence 

Paired-end 

sequencing 

A process of sequencing from both ends of a DNA fragment in the 

same run 

Quality score A metric in NGS that predicts or estimates the probability of an error in 

base calling 

Read Data output (Short base-pair sequence inferred) from the analysis of a 

single fragment or sequence of DNA/RNA template by sequencing 

Reference genome A fully sequenced and assembled genome; A curated consensus 

sequence for all of the DNA in the genome (all of the chromosomes) of 

a species of organism. 

Scaffold Two or more contigs joined together using read-pair information 

Sequence assembly Computational reconstruction of a longer sequence from smaller 

sequence reads by finding overlaps of identical (or nearly identical) 

strings of letters among a set of sequence fragments and iteratively 

joining them together 

Throughput The amount of data produced by a next-generation sequencing 

instrument 

 

Table A.2 Common file formats used in NGS analysis 
 

File format Description 

FASTA Text file representing nucleotide or protein sequences 



56 

 

FASTQ* Text file storing raw sequence  and its corresponding quality 

score for each nucleotide in ASCII code 

SAM Output of short-read sequence aligners, storage of sequence 

alignments and their mapping coordinates 

BAM Binary form of SAM 

BED Used for viewing alignments in a genome browser as annotation 

track. 

* typically, gzip compressed, extension. fastq.gz or fq.gz 

SAM- Sequence Alignment/Map 

BAM- Binary Alignment/Map 

BED- Browser Extensible Data 

 

Table A.3 Commercial platforms available for bioinformatic analysis 
 

Platform Link Application 

platform 

Cost 

CLC 

Genomics 

Workbench 

 

http://www.clcbio.com/download Command 

line interface, 

Graphical 

user interface 

Paid 

Galaxy https://usegalaxy.org/ Web-based Free but 

Registration 

required 

Geneious https://www.geneious.com/ Graphical 

user interface 

Paid 

 

Table A.4 Various pipelines and tools available for virus NGS analysis 
 

Tool Reference Source Purpose  Platform 

ABySS Simpson et 

al, 2009 

https://codeload.github.com/bcgsc/aby

ss/tar.gz/2.0.2 

De novo 

assembly of 

short reads 

Command 

line 

interface 

ALLPATHS-

LG 

Gnerre et 

al, 2010 

http://software.broadinstitute.org/allpa

ths-lg/blog/ 

De novo 

assembly of 

short reads 

Command 

line 

interface 
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drVM 

 

Hsin-Hung 

Lin and 

Yu-Chieh 

Liao, 2017 

https://sourceforge.net/projects/sb2nhr

i/files/drVM/ 

Rapid viral 

read 

identification, , 

de novo 

assembly 

Command 

line 

interface, 

Graphical 

user 

interface 

GLUE Singer et 

al, 2018 

http://glue-tools.cvr.gla.ac.uk/#/home A flexible 

software 

system support 

for rapid 

development of 

virus sequence 

data  

Command 

line 

interface 

IDBA-UD Peng et al, 

2012 

http://www.cs.hku.hk/~alse/idba_ud De novo 

assembler for 

single-cell and 

metagenomic 

sequencing 

data 

Command 

line 

interface 

IVA Hunt et al, 

2015 

http://sanger-pathogens.github.io/iva De novo 

assembler 

designed to 

assemble virus 

genomes that 

have no repeat 

sequences 

Command 

line 

interface 

Kaiju Menzel et 

al, 2016 

http://kaiju.binf.ku.dk Taxonomic 

classification of 

metagenomic 

NGS reads 

Command 

line 

interface 

Kraken Davis et al, 

2013 

http://www.ebi.ac.uk/research/enright/

software/kraken 

Suite of tools 

for quality 

control and  

Command 

line 

interface 
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analysis of 

NGS datasets 

Metavir 2 Roux et al, 

2014   

http://metavir-meb.univ-bpclermont.fr Viral 

metagenome 

comparison and 

assembled 

virome analysis 

Web user 

interface 

MIRA Chevreux, 

2018 

http://mira-

assembler.sourceforge.net/docs/Defini

tiveGuideToMIRA.html 

De novo 

assembly of 

short reads 

Command 

line 

interface 

MOSAIK  Lee et al, 

2014 

http://gkno.me; 

https://github.com/wanpinglee/MOSA

IK/wiki 

Reference-

guided aligner 

Command 

line 

interface 

PANDAseq Masella et 

al, 2012 

https://github.com/neufeld/pandaseq Assembles 

paired-end 

reads   

Command 

line 

interface 

PRICE  Ruby et al, 

2013 

derisilab.ucsf.edu/software/price/ or 

sourceforge.net/projects/pricedenovo/ 

De 

novo assembly 

of short gun 

metagenomic 

data  

Command 

line 

interface 

RIEMS  Scheuch et 

al, 2015 

No working link available Taxonomic 

classification of 

all individual 

reads in 

metagenomics 

sequence 

datasets 

Command 

line 

interface 

RINS  Bhaduri et 

al, 2012 

http://khavarilab.stanford.edu/tools-

1#tools 

Workflow for 

identification 

of non-human 

sequences in 

Command 

line 

interface 
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metagenomic 

datasets 

SOAPdenovo 

2 

Luo R et 

al, 2012 

https://github.com/aquaskyline/SOAP

denovo2 

De novo 

assembly of 

short reads 

Command 

line 

interface 

SPAdes Bankevich 

et al, 2013 

http://cab.spbu.ru/files/release3.10.1/

manual.html 

De novo 

assembly of 

short reads and 

single cell 

assembler 

Command 

line 

interface 

SSAKE Warren et 

al, 2007 

 http://www.bcgsc.ca/bioinfo/software

/ssake 

De novo 

assembly of 

short reads 

Command 

line 

interface 

SURPI  Naccache 

et al, 2014 

https://github.com/chiulab/surpi Pipeline for 

pathogen 

identification 

from complex 

metagenomic 

NGS data from 

clinical 

samples 

Command 

line 

interface 

Trinity  Grabherr et 

al, 2011 

https://github.com/trinityrnaseq/trinity

rnaseq/wiki 

De novo 

transcriptomes 

reconstruction 

from RNA-seq 

data 

Command 

line 

interface 

Velvet  Zerbino 

and Birney, 

2008 

https://www.ebi.ac.uk/~zerbino/velvet

/ 

De novo 

assembly of 

short reads 

Command 

line 

interface 

V-GAP Nakamura 

et al, 2015 

No link available An automated 

pipeline for de 

novo assembly  

and rapid 

- 
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genome typing 

of viruses 

VICUNA  Yang et al, 

2012 

http://www.broadinstitute.org/scientifi

c-community/science/projects/viral-

genomics/viral-genomics-analysis-

software 

De 

novo assembly 

 

Command 

line 

interface 

VIP Li et al, 

2016 

https://github.com/keylabivdc/VIP Virus 

identification 

and discovery 

metagenomic 

NGS data 

Command 

line 

interface 

Vipie  Lin J et al, 

2017 

https://binf.uta.fi/vipie; 

https://sourceforge.net/projects/vipie/ 

De novo 

assembly, 

taxonomic 

classification of 

viruses as well 

as sample 

analyses 

Web user 

interface, 

Registration 

required 

VirFinder2 Wang Q et 

al, 2015 

https://bioinfo.uth.edu/VirusFinder/ Intra-host 

viruses in NGS 

data 

Command 

line 

interface 

VIROME  

  

 

Wommack 

et al, 2012 

http://virome.dbi.udel.edu/ Bioinformatics 

pipeline for 

metagenomic 

analysis 

Web user 

interface, 

Free 

registration 

required 

VirSorter Roux et al, 

2015 

https://github.com/simroux/VirSorter Designed and 

optimized for 

detection of 

bacterial and 

archaeal 

viruses 

Web user 

interface 
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VirusHunter Zhao G et 

al, 2013 

http://www.ibridgenetwork.org/wustl/

virushunter 

Detects both 

novel and 

known 

sequence of 

microbial 

origin 

Command 

line 

interface 

VirusSeeker Zhao et al, 

2017 

https://github.com/guoyanzhao/Virus

Seeker-Virome 

Pipeline for 

both novel 

virus discovery 

and virome 

composition 

analysis 

Command 

line 

interface 

VirusSeq Chen et al, 

2013 

http://odin.mdacc.tmc.edu/∼xsu1/Viru

sSeq.html 

Detecting 

known viruses 

and their 

integration sites 

in the human 

genome using 

NGS data 

Command 

line 

interface 

VirusTAP  Yamashita 

et al, 2016 

https://gph.niid.go.jp/cgi-

bin/virustap/index.cgi/. 

Assembles 

virus genomes 

from NGS 

reads 

Web user 

interface 

(Firefox 

only) 

Vy-PER 

 

Michael 

Forster et 

al, 2015  

https://www.ikmb.uni-kiel.de/vy-per/ Detection of 

virus 

integration 

Command 

line 

interface 

drVM-detect and reconstruct known viral genomes from metagenomes 

GLUE-Genes Linked by Underlying Evolution  

IVA-Iterative Virus Assembler 

NGS-next generation sequencing 

PRICE- paired-read iterative contig extension  

RIEMS-Reliable Information Extraction from Metagenomic Sequence datasets 

RINS-Rapid identification of non-human sequences 

SURPI-sequence-based ultra-rapid pathogen identification 

V-GAP-Viral genome assembly pipeline 
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VIP-Virus Identification Pipeline 

VIROME- Viral Informatics Resource for Metagenome Exploration  

Virus TAP-Virus genome-Targeted Assembly Pipeline 

 Vy-PER-Virus integration detection bY Paired End Reads 
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 Software and their output files 

Chipster 

Java- web start desktop application (Chipster v3.16.3) 

A5 assembly pipeline 

Table B.1 A5 assembly output files 
 

a5_assembly.contigs.fasta Contigs 

a5_assembly.final.scaffolds.fasta Final scaffolds (checked for misassemblies, 

and re-scaffolded) 

a5_assembly.final.scaffolds.fastq Final scaffolds in FastQ format with base 

call qualities 

a5_assembly.final.scaffolds.qvl Quality values for the final scaffolds in 

QVL format for submission to NCBI 

a5_assembly_stats.csv A tab-separated file with assembly summary 

statistics 

 

VelvetOptimiser  

VelvetOptimiser-2.2.5 

Dependencies:  

• Velvet => 0.7.51 

• Perl => 5.8.8 

• BioPerl >= 1.4 

• GNU utilities: grep sed free cut 

Table B.2 VelvetOptimiser output files and contents 
 

Contigs.fa Fasta file with  sequences of the contigs 

Graph a textual representation of the contig graph 

Graph2 Detailed representation of the de Bruijn 

graph 

Log commands you typed to get this assembly 

result, for reproducing results later on 

PreGraph -- 
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Sequences Sequences used as input 

stats Simple tab-limited description of the nodes 

 

SPAdes 

SPAdes requires a 64-bit Linux system or Mac OS and Python (supported versions are 

Python2: 2.4–2.7, and Python3: 3.2 and higher) to be pre-installed on it. 

Table B.3 SPAdes output 

        SPAdes stored all output files in the output directory specified at the start of the run. 

corrected/ directory contains reads corrected by 

BayesHammer in fastq.gz files;  

scaffolds.fasta  contains resulting scaffolds 

contigs.fasta  contains resulting contigs 

assembly_graph.gfa  contains SPAdes assembly graph and 

scaffolds paths in GFA 1.0 format 

assembly_graph.fastg  contains SPAdes assembly graph in FASTG 

format 

contigs.paths  contains paths in the assembly graph 

corresponding to contigs.fasta  

scaffolds.paths  contains paths in the assembly graph 

corresponding to scaffolds.fasta 

params.txt information about SPAdes parameters in 

this run 

spades.log SPAdes log 

dataset.info internal configuration file 

input_dataset.yaml internal YAML data set file 

 

QUAST 

QUAST can be run on Linux (64-bit and 32-bit with slightly limited functionality) or macOS 

(OS X). 

Its default pipeline requires: 

• Python2 (2.5 or higher) or Python3 (3.3 or higher) 

• GCC 4.7 or higher 

• Perl 5.6.0 or higher 
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• GNU make and ar 

• zlib development files 

Table B.4 QUAST output files 
 

report.txt assessment summary in plain text format 

report.tsv tab-separated version of the summary 

report.tex LaTeX version of the summary 

icarus.html Icarus main menu with links to interactive viewers 

report.pdf all other plots combined with all tables 

report.html HTML version of the report with interactive plots 

contigs_reports/ generated only if a reference genome is provided 
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  Supplementary tables for results 

Table C.1 Virus names and their abbreviations  
The following table includes virus nomenclature as per recommended by Simmonds et 

al., 2020 

 

Virus name Abbreviation of virus name 

Coxsackievirus A9 CVA9 

Coxsackievirus B1 CVB1 

Coxsackievirus B2 CVB2 

Coxsackievirus B3 CVB3 

Coxsackievirus B4 CVB4 

Coxsackievirus B5 CVB5 

Echovirus E13 E13 

Echovirus E18 E18 

Echovirus E27 E27 

Echovirus E30 E30 

Echovirus E30 E30 

Echovirus E6 E6 

Echovirus E9 E9 

Enterovirus D68 EV-D68 

Hu-Parechovirus 1 PeV-A1 

Hu-Parechovirus 3 PeV-A3 

Hu-Parechovirus 4 PeV-A4 

Hu-Parechovirus 5 PeV-A5 
 

 

Table C.2 Comparison of final assembly outputs for A5, Velvet and SPAdes 

programs 
The table informs about sequence and virus it was typed for (Sanger typed), longest 

scaffold produced by all three assembly programs and their respective BLASTN viral 

hits. 

 

Sequence Typed as 
A5 Velvet Spades 

Length Putative viral hit Length Putative viral hit Length Putative viral hit 

FFGC_VIR_1 EV-D68_19 6950 E18 None 7213 E6,  CVB2 

FFGC_VIR_2 EV-D68_21 5918 E18 None 5102 E18 

FFGC_VIR_3 EV-D68_23 7356 E18 None 7367 E18 

FFGC_VIR_4 

EV-

D68Fermon 

(type strain). 

7376 EV-D68 

3420 EV-D68 6904 EV-D68 
7107 E18 
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FFGC_VIR_5 
A2269 (E-

18) 
7135 E18 7383 E18 1017 CVB4, E27 

FFGC_VIR_6 
A2326 (E-

18) 
7458 E18 7189 E18 1224 E18 

FFGC_VIR_7 
A2262 (E-

18) 
7401 E18 7310 E18 None 

FFGC_VIR_8 
A2283 (E-

18) 
7409 E18 7273 E18 7424 E18 

FFGC_VIR_9 
B3612 (E-

13) 
5774 E13 7309 E13 7418 E13 

FFGC_VIR_10 

1S AFP 

etiology by 

unknown 

pathogen 

775 
EV-B, CVB3, 

CVB4 
None 

2277 E30, CVB1 

2223 EV-D68 

FFGC_VIR_11 
CB103 (EV-

D68) 
7339 EV-D68 6994 EV-D68 7341 EV-D68 

FFGC_VIR_13 
TU44 (EV-

D68) 
7340 EV-D68 7344 EV-D68 7474 EV-D68 

FFGC_VIR_18 
PeV-

A3/Vi988 
None None None 

FFGC_VIR_19 
PeV-

A3/152037 

6749 PeV-A3 6719 PeV-A3 5034 PeV-A3 

4344 PeV-A4 4132 PeV-A, PeV-A4 1428 PeV-A3, PeV-A4 

FFGC_VIR_20 
PeV-A3/145-

8 
3053 

PeV-A1, PeV-

A3, PeV-A4 
None 3092 

PeV-A1, PeV-A3, 

PeV-A4 

FFGC_VIR_21 
PeV-A1/101-

17 
7335 PeV-A1 7274 

PeV-A, PeV-A1, 

PeV-A3, PeV-A4 
7340 PeV-A1 

FFGC_VIR_22 
PeV-A1/103-

2 
7314 PeV-A1 7276 

PeV-A, PeV-A1, 

PeV-A5, PeV-A4 
7647 

PeV-A, PeV-A5, 

PeV-A4 

 

 

 

 

 

 


