

Development of workflow for
picornavirus genome sequence

analysis

Mrunalini Lotankar

Master’s Thesis

Master’s Degree Programme in Digital Health and Life Sciences

Department of Future Technologies

University of Turku

June 2020

The originality of this thesis has been checked in accordance with the University

of Turku quality assurance system using the Turnitin OriginalityCheck service

ii

ABSTRACT

UNIVERSITY OF TURKU

Department of Future Technologies/Faculty of Science and Engineering

LOTANKAR, MRUNALINI: Development of workflow for picornavirus

genome sequence analysis

Master’s Thesis, 53 p, 14 p. appendices

Bioinformatics

June 2020

--

Picornaviruses are small, non-enveloped, icosahedral, positive stranded RNA

viruses and among the most common human pathogens. Some of the clinically

important genera for humans are Enterovirus, Hepatovirus, Parechovirus and

Cardiovirus. The symptoms for the picornaviral infections range from mild,

asymptomatic to fatal disease. Threats posed to human health by these viruses is

observed in the constant outbreaks of enteroviruses and parechoviruses in the

different parts of the world. Next generation sequencing provides an efficient way

to detect and identify known or novel micro-organisms. Advantages of NGS are

rapid sequencing methods, high-throughput process and affordable costs. On the

other hand, NGS also requires advanced technical and computational skills, and

creates a bottleneck owing to necessity of standardization of bioinformatic tools.

It is therefore imperative to optimize and determine parameters, which provide

accuracy in every stage of NGS workflow.

The aim of this thesis was to develop a rapid and straightforward, user-friendly

workflow for the assembly and analysis of picornaviral genomes. Chipster

platform was chosen as the primary test platform. The workflow involved use of

automated analysis pipelines (VirusDetect and A5 assembly pipeline), and

alternative approaches, which included pre-processing of raw data, and reference-

mapping or de novo assembly (Velvet and SPAdes) of picornavirus sequences.

Except for de novo assembly and validation and quality assessment of final

outputs, all steps were performed in Chipster. Of these approaches, VirusDetect

and reference-mapping were not successful. A5 pipeline for microbial genome

assembly was found to be very suited for picornavirus identification. Velvet and

SPAdes also performed well, but Velvet assembler was found to more

computationally exhaustive and time consuming. Quality assessment suggested

that performance of SPAdes was relatively better than the performance of A5 or

Velvet. As A5 pipeline does not require any parameter settings, it can be used as

initial identification and contig/scaffold generation method for picornaviral

sequences. Together with implementation of de novo assembler(s) on Chipster

platform a novel, user-friendly NGS workflow for picornavirus sequence

assembly can be established.

Keywords

Picornaviridae, next generation sequencing, de novo assembly, Chipster, A5

microbial genome assembly pipeline, Velvet, SPAdes

iii

Table of contents

1 Introduction .. 1

 Picornavirus virion .. 2

 Picornavirus identification, typing and genome-sequencing 4

 Limitations of traditional virus identification methods 5

 Next generation sequencing in virology ... 5

 NGS sequencing platforms ... 6

 Illumina sequencing platform... 7

 Library preparation ... 7

 Cluster generation .. 7

 Sequencing ... 8

 Paired-end sequencing.. 10

2 Bioinformatic methods ... 12

 Pre-processing of the reads ... 12

 Assembly of the reads .. 13

 Quality assessment and validation ... 14

 Various available platforms and software ... 15

 Chipster .. 16

 External assembly programs .. 17

3 Aim of the study .. 19

4 Materials and methods ... 20

 Material .. 20

 Description of workflow .. 21

 Automated analysis pipelines implemented in Chipster 22

 Alternative approaches for sequence analysis .. 23

 Pre-processing of raw sequence reads .. 23

 RefMap ... 23

 De novo assembly... 24

 Quality analysis and validation of contigs/scaffolds ... 25

5 Results .. 27

 Automated analysis pipelines implemented in Chipster 27

 Alternative approaches for sequence reads analysis .. 29

iv

 Pre-processing of raw sequence reads .. 29

 RefMap analysis ... 33

 De novo assembly... 34

 Quality analysis and validation of contigs/scaffolds ... 39

6 Discussion .. 42

7 References .. 47

8 Acknowledgements ... 53

 Next generation sequencing .. 54

 Software and their output files ... 63

 Supplementary tables for results .. 66

List of Figures

Figure 1.1 Classification of Picornaviridae family ... 1

Figure 1.2 Structure of picornavirus virion.. 3

Figure 1.3 Genome organization of picornavirus .. 4

Figure 1.4 Illumina NGS sequencing workflow .. 10

Figure 2.1 Schematic representation of A5-miseq pipeline ... 17

Figure 4.1 Schematic representation of various bioinformatic approaches 21

Figure 5.1 Output files for A5 assembly pipeline .. 27

Figure 5.2 Part of FastQC analysis report (FFGC_VIR_18_S116) ... 30

Figure 5.3 Effect of trimming and host sequence subtraction on total sequence reads 33

Figure 5.4 Sequence coverage observed with RefMap analysis .. 34

Figure 5.5 BLAST search for a scaffold. ... 39

Figure 5.6 Sample QUAST report for sequence FFGC_VIR_22 .. 40

Figure 5.7 Schematic representation of workflow for picornavirus sequence analysis 41

List of Tables

Table 1.1 Diseases associated with human picornaviruses .. 2

Table 4.1 Reference genomes used in the study for RefMap analysis 20

Table 5.1 Results of A5 assembly pipeline output analysis... 28

Table 5.2 Reduced number of reads with trimming and host subtraction 31

Table 5.3 Final output for Velvet assembler .. 35

v

Table 5.4 Final output for SPAdes assembler .. 37

Table 5.5 Assemblers and their suitability for picornavirus genome 38

List of Tables for appendices

Table A.1 Glossary for NGS .. 54

Table A.2 Common file formats used in NGS analysis ... 55

Table A.3 Commercial platforms available for bioinformatic analysis 56

Table A.4 Various pipelines and tools available for virus NGS analysis 56

Table B.1 A5 assembly output files ... 63

Table B.2 VelvetOptimiser output files and contents .. 63

Table B.3 SPAdes output ... 64

Table B.4 QUAST output files .. 65

Table C.1 Virus names and their abbreviations ... 66

Table C.2 Comparison of final assembly outputs for A5, Velvet and SPAdes programs 66

List of abbreviations

A5 Andrew And Aaron's Awesome Assembly pipeline

BAM Binary alignment/Map

BLAST Basic Local Alignment Search Tool

BWA Burrows wheeler transform

BWA-MEM Burrows wheeler transform-maximal exact matches

cDNA Complementary DNA

CSC Centre for Scientific Computing

DNA Deoxyribonucleic acid

dNTPs Deoxyribonucleotide phosphates

EM Electron microscope

GC Guanine-cytosine

HIV Human immunodeficiency virus

HTS High-throughput sequencing

IDBA-UD Iterative de Bruijn Graph de Novo Assembler for Short Reads

Sequencing data with Highly Uneven Sequencing Depth

IRES Internal ribosome entry site

NCBI National Center for Biotechnology Information

NGS Next genereation sequencing

OLC Overlap layout consensus

ORF Open reading frame

vi

PCR Polymerase chain reaction

QC Quality control

QUAST quality assessment tool

RdRp RNA-dependent RNA polymerase enzyme

RNA Ribonucleic acid

RT-qPCR Reverse transcriptase quantitative polymerase chain reaction

SAM Sequence alignment/Map

SBS sequencing by synthesis

SIB Swiss Institute of Bioinformatics

SNP Single nucleotide polymorphism

SPAdes St. Petersburg genome assembler

UTR Untranslated regions

WHO World health organization

VP1-4 Viral protein 1-4

vii

“Be ready to revise any system, scrap any method, abandon any theory, if the success of the

job requires it.”

— Henry Ford

1

1 Introduction

The family Picornaviridae (Figure 1.1 below) in the order Picornavirales comprises of 63

genera with 147 species (http://www.picornaviridae.com/, March 2020). Picornaviruses are

small, non-enveloped, icosahedral, positive-stranded RNA viruses (Zell, 2018). They play a

vital role as viral pathogens in humans and animals. While most picornavirus infections are

asymptomatic or cause mild illness, some virus types cause serious infections of central

nervous system, respiratory and gastrointestinal tract, skeletal muscle system, heart, liver and

eyes (Yin-Murphy & Almond, 1996; Zell, 2018).

Figure 1.1 Classification of Picornaviridae family
Depiction of clinically important genera, with selected examples of species and

genotypes (van der Linden et al., 2015) (Note: the numbers in the figure are according

to the classification until 2015).

In addition, picornavirus family constitutes of etiological agents, which have global

prevalence, exhibit a wide range of illnesses and play pivotal role in human health impact

(Table 1.1 below). In the lieu of poliovirus eradication, the circulation of non-polio

picornaviruses poses a possible threat to the human health. This is observed in the constant

outbreaks of enteroviruses and parechoviruses in the different parts of the world (Wolthers et

al., 2019).

2

Table 1.1 Diseases associated with human picornaviruses
adapted from (Santti et al., 1999). Nomenclature for the viruses as indicated in brackets

as per (Simmonds et al., 2020).

Disease Virus

Poliomyelitis Polioviruses (PV-1-3)

Paralytic disease Coxsackievirus A7 (CVA7), enterovirus 70

and 71 (EV-D70, EV-A71)

Meningitis/encephalitis Several enterovirus serotypes (EV)

Myocarditis Coxsackie B viruses (CVB)

Neonatal infections Coxsackie B viruses (CVB), echoviruses

(EV)

Pleurodynia Coxsackie B viruses (CVB)

Herpangina Coxsackie A viruses (CVA)

Hand-foot-and-mouth disease Coxsackie A16 (CVA16), enterovirus 71

(EV-A71)

Acute haemorrhagic conjunctivitis Coxsackie A24 (CVA24) and enterovirus 70

(EV-D70)

Respiratory infections Many enteroviruses (EV), parechoviruses

(PeV)

Common cold Rhinoviruses (RV)

Gastroenteritis Parechovirus 1(PeV-A1)

Acute hepatitis Hepatitis A virus

 Picornavirus virion

Picornavirus virion comprises icosahedral, non-enveloped and small (diameter 22-30 nm)

protein particle, which encloses single-stranded RNA genome. Icosahedral particle symmetry

is a characteristic feature of the members within picornavirus family. Viral capsid is densely

packed with 60 protomers. Each protomer consists of external VP1, VP2, VP3 surface

proteins and internal VP4 protein (Figure 1.2). Successful transmission and tropism of virus

is largely dependent on capsid structure. Capsid helps in host cell recognition, virus

attachment and release of viral RNA into the host cells. Additionally, capsid also aids the

3

virus to evade host immune system (Cifuente & Moratorio, 2019; Yin-Murphy & Almond,

1996; Zell, 2018; ViralZone, SIB Swiss Institute of Bioinformatics, 2018).

Figure 1.2 Structure of picornavirus virion
Viral RNA genome is enclosed in a protein capsid. Capsid is composed of four

structural proteins: VP1, VP2, VP3 and VP4. Icosahedral symmetry of a capsid is a

characteristic feature within picornavirus family (Source: https://www.creative-

biolabs.com/vaccine/vaccines-for-virus-from-picornaviridae-family.htm).

Viral genome is monopartite (that is, all viral genes reside in a single molecule), positive-

stranded and linear RNA molecule of 7.1-8.9 kb in size. Genome has covalently bound VPg

(viral protein, genome linked; a non-capsid protein) in the 5’ end and poly-A tail in the 3’

end. Genomic RNA is infectious and functions similarly to mammalian mRNA. Generally,

the genome organisation pattern is common across the picornaviruses (Figure 1.3). A single

ORF (open reading frame) encodes a polyprotein with UTRs (untranslated regions) in 5’ and

3’ ends. An internal ribosome entry site (IRES), which resides in the 5’ UTR region, leads the

translation of the polyprotein. Viral polyprotein is divided into three regions, P1, P2 and P3,

which encode structural proteins and non-structural proteins essential in genome replication.

Short 3’ UTR plays a role in the synthesis of negative-strand. A leader protein (L) is encoded

in some genera (Boros et al., 2012; Zell, 2018; ViralZone Expasy, SIB Swiss Institute of

Bioinformatics, 2018).

4

Figure 1.3 Genome organization of picornavirus
The viral mRNA is translated into a single polyprotein, which is then cleaved into

functional proteins (Source: Kerkvliet et al., 2010).

 Picornavirus identification, typing and genome-sequencing

Picornaviruses are typed based on the capsid protein VP4/2 and VP1 sequences, which are

the most variable gene regions and define the immunogenicity of the virus types

(www.picornaviridae.com). Typing is essential in monitoring and controlling the emerging

epidemics caused by specific picornavirus types and in determining changes in their

pathogenesis and disease-causing potential. However, typing regions are fairly short and

therefore, there is a lack of genetic and evolutionary information regarding the overall

changes in virus genome. The changes in virus genome are results of high mutation rates due

to low fidelity of RNA-dependent RNA polymerase enzyme (RdRp). These mutations, along

with recombination (that is, two different viral strains infect same host cell and give rise to a

new strain) are responsible for genetic diversification of picornaviruses. Next generation

sequencing (NGS) offers an avenue to identify and characterise viral diversification (Joffret

et al., 2018; Posada-Cespedes et al., 2017). While genome sequencing helps in virus typing, it

also contributes to evolutionary analysis and determination of pathogenic variants. In

addition, full length or near-full length genomic sequence information is also useful in

generating cDNA viral clones, which are used in the analyses of viral functions and in the

development of viral vectors for gene and oncolytic virotherapy. This approach of NGS has

http://www.picornaviridae.com/

5

been successfully reported in studies of poliovirus, enterovirus A71 and enterovirus species C

(Bessaud et al., 2016; Montmayeur et al., 2017; Sahoo et al., 2017, Tan et al., 2015).

 Limitations of traditional virus identification methods

One of the hallmarks of disease diagnostics is the ability to identify the causal agent(s).

Conventional methods in virus identification include electron microscopy (EM), culture-

based methods (virus culture) and detection of antibodies against viruses with serological

testing (serology). Virus culture accompanied with morphological changes in cells, i.e.

cytopathic effect caused by viruses, enables enrichment of virus particles in clinical sample

for use in further genetic analysis. Previously, viruses were sequenced using overlapping

PCR-amplified viral fragments and Sanger sequencing. However, these methods are time

consuming and tedious, require experienced personnel and have a risk of failure. Sanger

sequencing results in a single sequence, which is complicated if the primers bind and amplify

several target sequences. Clinical isolates often fail to grow in cell lines, and if they do,

continuous virus cultivation is likely to increase the risk of changes in the viral genomes,

which may affect the integrity of the sequence and data interpretation (Chun et al., 2018;

Datta, 2015). To overcome these shortcomings, metagenomic approaches, which use the

means of next generation sequencing (NGS), have been developed (Chun et al., 2018; Lim &

Brown, 2018).

 Next generation sequencing in virology

The advent of NGS or high-throughput sequencing technology (HTS) has revolutionized the

field of viral genomics enabling rapid and economical sequencing and further assembly of

vast number of viral genomes. HTS plays crucial role in answering biological questions

related to viruses such as, intra-host diversity and nature of quasispecies, virus transmission

and tropism, antiviral resistance and vaccine evasion. High rate of evolution, short generation

time and low fidelity of polymerases contribute to high viral diversity. Genomic changes also

allow viruses to escape from host immune system and make them resistant to antiviral

therapy. For example, WHO has established global strategies to monitor human

immunodeficiency virus (HIV) drug resistance and the Global Influenza Surveillance and

Response System to monitor, prevent and assess the viral evolution regarding antiviral-

therapy (Radford et al., 2012).

6

Culture-independent methods to characterize genomic information directly from the sample,

allow unbiased analysis of the viruses. They have key roles in virus discovery (influenza

virus, Greninger et al., 2010; Schmallemberg virus of ruminants, Hoffmann et al., 2012; Day

et al., 2010) and in understanding virus ecology in a wide range of environmental habitats

(faeces : Donaldson et al., 2010, Reyes et al., 2010; sewage : Cantalupo et al., 2011; water :

Lopez-Bueno et al., 2009; Rodriguez-Brito et al., 2010; vaccines : Victoria et al., 2010).

Measurement of relative mRNA expression levels by NGS, i.e. RNA-seq, provides insight

into differences in viral genome expression (Epstein- Barr virus: Lin et al., 2010;

Cytomegalovirus: Gatherer et al., 2011) in healthy and diseased individuals (Orton et al.,

2016; Radford et al., 2012).

 NGS sequencing platforms

Variety of NGS sequencing technologies are available in the market, which have different

amplification and sequencing methodologies. These NGS platforms differ in costs, capacities

(read lengths, run time and errors), chemistries and applications. Although modifications and

advancements are observed on routine basis in these technologies, the core principle remains

the same (Metzker, 2010). The current sequencing platforms include Illumina (Illumina),

PacBio (Pacific Biosciences), Ion Torrent (Life Technologies) and MinIon (Oxford Nanopore

Technologies). Illumina offers versatile platforms like MiSeq, Hiseq, GAIIx, MiSeqDx,

NextSeq, NovaSeq, MiniSeq, and iSeq, which cater the needs regarding capacities and costs.

Ion Torrent/Ion S5 platform is also affordable and easy to use, albeit have higher error rate

than Illumina. Pacific Biosciences (PacBio) with its two platforms, PacBioRS/RSII and the

Sequel offer high throughput with long reads (average read length 10kb). MinIon (compact

sized single molecule sequencer) streams data in real time so that analysis can be performed

during the experiment. MinIon workflows are fully versatile and include PromethION and

GridION platforms (high-throughput platforms for parallel sequencing with stacked multiple

flow cells) (Maljkovic Berry et al., 2020). The methodology regarding each platform and

comparative studies regarding their performances for different genomes are described in

literature elsewhere (Datta, 2015; Hodzic et al., 2017; Kulski, 2016; Liu et al., 2012;

Metzker, 2010; Pereira et al., 2020; Radford et al., 2012). The choice of the platform depends

on the experimental needs. Considerations should be given to the genome size, GC content

and depth, and sequencing coverage. Illumina is found to be consistent in its leading

application amongst NGS market (J & G, 2016; Bentely et al., 2008;

7

https://www.genengnews.com/a-lists/top-10-sequencing-companies-2/, 2018), and is thus

commonly used in viral metagenomics.

 Illumina sequencing platform

Illumina is one of the most preferred sequencing platforms in viral genomic studies (Goya et

al., 2018; Huang et al., 2019; Radford et al., 2012) (Virus detection and research reviews,

Illumina, 2013). The services, the basic principles and the workflows with respective tutorials

can be found on the Illumina online site (https://emea.illumina.com/science/technology/next-

generation-sequencing.html). The sequences used in this thesis were from the samples

sequenced with Illumina HiSeq 3000 instrument. The Illumina workflow is described in

Figure 1.4 (Adapted from Illumina introduction manual, www.illumina.com).

Illumina sequencing is based on sequencing by synthesis chemistry (SBS). During the DNA

synthesis cycle, fluorescently-labelled deoxyribonucleotide phosphates (dNTPs) are

incorporated into a DNA template by DNA polymerase. The nucleotides are detected by

fluorophore excitation at the time of incorporation. This process is followed in massive

parallel fashion. The sample preparation and sequencing steps include library preparation,

cluster generation and sequencing.

 Library preparation

Library preparation means a step, in which sample nucleic acid is fragmented into smaller

units and in which specific adapters are attached on both ends to allow identification of the

fragments. The first step in sample processing is fragmentation of nucleic acid, which is often

an automated and optimized process and mediated by mechanical shearing or enzymatic

treatment. If the sample is RNA, it is converted to a complementary DNA, cDNA, before

fragmentation. This step is followed by 5’ and 3’ adapter ligation. Sequences from the pooled

sample library are identified in the analysis stage based on the unique adapter indices

introduced to the sample during the library preparation step.

 Cluster generation

To prepare the fragment library to the actual NGS sequencing step, the library is loaded into a

flow cell. A flow cell is a glass support, which has patterned nanowells with attached DNA

probes (oligos). These surface-bound oligos are complementary to the library adapters

enabling hybridization of fragments to the oligos on the glass surface. A polymerase is used

http://www.illumina.com/

8

to create a complementary strand using the hybridised fragment as a template. The double-

stranded molecule is then denatured, and the original template strand is washed away. For

bridge amplification, a single-stranded molecule folds over and hybridizes to an adjacent

primer, which forms a bridge. A polymerase synthesizes the reverse strand, which forms the

double stranded bridge. Denaturation of this bridge results in the formation of single stranded

copies of the molecule tethered to the flow cell. This process is repeated several times and

occurs simultaneously for millions of clusters, hence clonally amplifying all the fragments.

After the bridge amplification, the reverse strands are cleaved and washed off, which leaves

only the forward strands. Blocking of 3’ends prevents unwanted priming. When cluster

generation is complete, the templates are ready for sequencing.

 Sequencing

The SBS technology of Illumina employs the reversible terminator-based method, which

detects single bases as they are incorporated into DNA template strands. During sequencing,

fluorescently labelled nucleotides are added to the strand. When the flow cell is imaged, each

base is identified by the emission of unique wavelength intensity. Illumina HiSeq3000

sequencer uses a four-channel sequencing. This type of chemistry utilises unique fluorescent

label for each of the nucleotide bases i.e. adenine, cytosine, guanine and thymine. Each

intensity is captured with four images by the instrument. Sequencing begins with the

extension of the first sequencing primer to produce the first read. With each cycle,

fluorescently tagged nucleotides are competitively added to the growing chain and only one

base is added based on the template sequence. After addition of each base the clusters are

excited by a light source and a characteristic fluorescence is emitted. The length of the read is

determined by the number of the cycles. The base call is determined by the emission

wavelength and the fluorescence intensity. The clusters are sequenced in massive parallel

way. The read product is washed away after completion of the read process. In this step,

index1 read primer is introduced and hybridised to the template. The read is generated similar

to the first read. After completion of index read, the read product is washed off, and 3’ends of

the template are deprotected. The template folds over and binds the adjacent oligo on the flow

cell. Index2 is read in the same manner as index1. Polymerases extend the second flow cell

oligo forming a double stranded bridge. This double stranded DNA is then linearized and

3’ends are blocked. The original forward strand is cleaved off and washed away leaving only

the reverse strand. Read two begins with the introduction of read2 sequencing primer.

Sequencing steps are repeated as in read1 until the desired read length is achieved. The read2

9

product is then washed away. This entire process generates millions of the reads representing

all the fragments. Sample reads with similar stretches of base calls are locally clustered.

Forward and reverse reads are paired, creating contiguous sequences.

10

Figure 1.4 Illumina NGS sequencing workflow
A., B., C. are the basic steps of sequencing workflow, while D. shows the paired end read

(Adapted from Illumina introduction manual, www.illumina.com)

 Paired-end sequencing

The paired-end sequencing involves sequencing both ends of the DNA fragment (as shown in

Figure 1.4-D). In a library, forward strand is sequenced, and then complementary strand is

kept while cleaving the template strand away. Similar step is performed on the reverse strand.

These sequenced ends produced from the original fragments are then aligned as forward and

Read 1

Read 2

D. Paired-End sequencing

http://www.illumina.com/

11

reverse reads, forming a read pair. Paired-end sequencing improves the ability to identify the

relative positions of the reads with respect to the genome and offer more accurate read

alignment as compared to single-end sequencing, where sequencing is performed from only

one end. Hence, the paired-end sequencing is more preferable for de novo assemblies as it

raises the overall confidence of the result by providing read overlap in the otherwise low-

quality areas.

12

2 Bioinformatic methods

Staying up-to-date with the technologies and current research is “a must” in modern virus

diagnostics. Rapid and accurate detection of the emerging pathogens and markers responsible

for virulence plays important roles during prevention and control of the worldwide outbreaks.

Ability to detect a pathogen without a priori knowledge, cost effectiveness, availability of

various platforms and high-throughput output have made NGS the preferred method for virus

detection in a sample. NGS approach results in raw sequence data of gigabases in size for

each experiment run, and therefore computational analysis of the data is necessary.

Bioinformatic analysis of NGS data is a multistep process where multiple algorithms and

programs are used, and hence it may be useful to define optimal workflow with suitable

analysis programs and quality check criteria to minimize errors and to obtain reliable results.

A number of NGS data analysis workflows have been described (Ekblom & Wolf, 2014;

Lambert et al., 2018; Orton et al., 2016). In general, the workflows have the following

generic steps: pre-processing of the reads, assembly of the reads using either reference-based

or de novo approaches and further downstream analyses. These steps are described below,

along with the respective commonly used programs. Different terms and file formats required

for NGS analysis are included tables in appendix A (Table A.1).

 Pre-processing of the reads

Quality control is the first step in every NGS analysis. The output of the sequence run

consists of millions of reads, which is most commonly in FASTQ format. The FASTQ file

contains the sequence and its quality score. Poor base quality due to base miscalls and primer

or adapter contamination are considered as common sequencing errors or artefacts of the

NGS reads. To ensure accuracy of final results quality check is important. The commonly

applied tool for quality check is FastQC

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). FastQC produces summary

statistics, which include sequence quality and distribution, overall GC content, length and

duplicates in the reads. For paired-end reads the quality check is performed on both forward

and reverse reads.

Adapter removal depends on the protocol used during the library preparation of sequencing.

This step is important as adapter sequence can interfere with the read mapping as well as

other analyses like SNP (single nucleotide polymorphism) or variant calling. Trimmomatic

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

13

(Bolger et al., 2014) and Cutadapt (Martin, 2011) are the most common applications for

adapter removal.

Biological samples will predominantly contain host-derived sequences, which in some cases

may overshadow reads for putative pathogen. Hence, mapping the sequencing reads to host

genome sample (host sequence subtraction) and using the remaining unmapped reads for the

assembly is common practice. The common mapping algorithms used are CLC read mapper

(https://resources.qiagenbioinformatics.com/white-

papers/White_paper_on_CLC_read_mapper.pdf), BWA (Li & Durbin, 2009) and Bowtie2

(Langmead & Salzberg, 2013).

 Assembly of the reads

NGS equipment generate a large number of reads, covering different parts of the genome.

With the help of assembly software, these reads are combined into large contigs (contiguous

linear stretches of DNA or RNA consensus sequence, in silico, constructed by aligning a

number of smaller overlapping sequencing reads) or scaffolds (two or more contigs joined

together using read-pair information). There are basically two methods that are used for

genome assembly: reference-based mapping and de novo assembly (Daly et al., 2015; Orton

et al., 2016). Reference-based mapping is preferred method for most of the NGS experiments,

if closely related and well-annotated reference genome is available for the target. Reference-

based mapping is performed by indexing a reference genome and aligning the sequence reads

to this reference index. SAMtools (http://samtools.sourceforge.net.) is a bioinformatic tool

that provides utilities to manipulate the alignments in SAM/BAM formats. SAM (Sequence

alignment/Map) is used to store the mapped reads and BAM (Binary alignment/Map) is a

form of SAM, but the data is stored in binary format. SAMtools allows manipulation of

alignment in per-position format by indexing and sorting. The mapping tools used include

Mosaik (W. P. Lee et al., 2014), Stampy (Lunter & Goodson, 2011), BWA and Bowtie2.

In the absence of known or related sequence, a de novo approach is used. The most popular

assemblers are based on de Bruijn graph. It is considered as an anti-intuition algorithm

(Ramana M. Idury and Michael S. Waterman, 1995). It works by first cutting reads into

shorter k-mers, using all k-mers to capture the de Bruijn graph, which captures the overlaps

between the k-mers for k-1 length and genome sequence can be inferred on this de Bruijn

graph. Short-read assembly programs based on this approach include Velvet (Zerbino &

14

Birney, 2008), SOAPdenovo (Luo et al., 2012), IDBA-UD (Peng et al., 2012), SPAdes

(Bankevich et al., 2012) and ABySS (Simpson et al., 2009).

Overlap layout consensus (OLC) (Staden, 1980) is another assembly approach and works in

three steps; first by finding the overlaps among all reads, then forming the layout of all the

reads and last by overlapping the information on the graph and determining the final

consensus sequence (Ekblom & Wolf, 2014; Liu et al., 2012; Orton et al., 2016). OLC

assemblers include MIRA (Chevreux, 2018) (Chevreux B., Wetter T. & Suhai S., 1999) and

Edena (Hernandez et al., 2008).

 Quality assessment and validation

After successful assembly, it is important to check the quality of the assembled reads. In

absence of an optimized process for the given target, it is advisable to test and compare

different programs. If more than one type of assembler is used, then the different assemblers

can be compared. Comparisons are based on several evaluation metrics like N50 (the shortest

sequence length at 50% of the genome), number of contigs generated and contig length etc.

(Kremer et al., 2017; Lischer & Shimizu, 2017; Song et al., 2019). The bioinformatic tool

commonly used for this purpose is QUAST (quality assessment tool) (Gurevich et al., 2013).

QUAST can be used to evaluate the assemblies and make decision about using the suitable

assembler. BLAST (Basic Local Alignment Search Tool) (Altschul et al., 1990) is a robust

tool to check the validity of the contigs or scaffolds. BLAST uses National Center for

Biotechnology Information (NCBI) sequence database. Both tools are described in brief as

follows.

QUAST employs the Nucmer aligner from MUMmer v3.23 (Kurtz et al., 2004) for reference

guided assemblies. It can also compute and evaluate de novo sequence assemblies. The

various metrics evaluated by QUAST include contig sizes, misassemblies and structural

variations, genome functional elements i.e. GC content, duplicate ratios, indels and

mismatches etc., and N50 variations. The different plots like cumulative plots, GC content

plots and contig alignment plots are used to present statistics. Comparative histograms of

different parameters are also generated. Some of the output files are mentioned in the table.

QUAST supports the file formats like PNG and PDF. The QUAST interface is easy to use

and visualize, is reasonably fast and accepts multiple assemblies to compare. QUAST can be

run on Linux and macOS platforms. It is also available as a web interface application. More

15

details about instructions and output files can be found at

http://quast.sourceforge.net/docs/manual.html.

BLAST performs a sequence similarity search. It compares the sequence of interest to

sequence databases and calculates the statistical significance of the resultant matches. The

BLAST results are generated quickly, and it helps to make a decision about a given alignment

with ‘expect value’ calculation. This provides an idea about probability of matches at a given

score. The BLAST algorithm is based on the modular nature of the proteins. Proteins have

one or more functional domains in them, and different species may have the same domains of

these proteins. The algorithm finds these domains of similarity. Hence, BLAST can also be

used to find evolutionary and functional relationships and identify with the members of the

given family. Two frequently used BLAST algorithm types are BLASTN (nucleotide query

against nucleotide database) and BLASTX (nucleotide query against protein database)

(Madden, 2013). NCBI Virus is the recently developed community portal, which provides

resources for sequence data and related information concerning viruses

(https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/, Hatcher et al., 2017).

 Various available platforms and software

Several commercial and non-commercial laboratories are involved in developing various

viral NGS as well as metagenomic analyses services. Bioinformatic analysis pipelines have

been designed for various purposes and offer options at each analysis point. Various pipelines

are explained in the literature elsewhere (Lambert et al., 2018; Orton et al., 2016), however,

basic information about commercially available platforms and NGS analysis tools is included

in appendix A (Table A.2 and Table A.3). The choice of the pipeline depends on the adequate

sensitivity provided for the detection of the virus and the cost.

Despite the availability of tools in viral NGS analysis, lack of computational skills (necessity

to work in Unix environment and programming skills) often pose the first bottleneck for

wider use. In addition, parameter optimization (different viruses may require different

parameters setup), output format handling and data processing, and large data storage

capacities may prove to be challenging. For example, VSEARCH, a powerful tool for

metagenomic, is an open source and freely available, but it requires command line

knowledge.

http://quast.sourceforge.net/docs/manual.html
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/

16

Considering the need for user-friendly bioinformatic tools and pipelines, Chipster

(http://chipster.csc.fi/) was selected as the primary analysis platform to be evaluated in this

thesis. Various analysis and visualization tools available in Chipster platform are listed in:

(https://chipster.csc.fi/features.shtml). Pipelines in Chipster and external assemblers (not

implemented in Chipster environment) for picornavirus sequence assembly are described

below.

 Chipster

Chipster maintained at Centre for Scientific Computing (Espoo, Finland) (Kallio et al., 2011),

provides an easy access platform and intuitive graphical user interface for non-programming

biologists to analyse and integrate different kinds of data generated with high-throughput

technologies. It has a collection of data analysis methods and integration tools, which allows

the user to perform multiple analysis in a consecutive manner and save the performed tasks as

reproducible and automatic workflows. It facilitates research by collaboration and sharing the

workflows and data analysis sessions. Chipster is an open source, versatile and extendable

platform. It supports integration of command line tools, which can be included manually or

with the help of CSC help service support. Being a client-server system, it allows tasks to be

performed on a laptop or on a single server. Recent version of Chipster is also available as a

web application (https://chipster.rahtiapp.fi/home), which can be accessed by registration.

There are two basic automated pipelines available in Chipster: VirusDetect (both reference-

mapping and de novo assembly) and A5 assembly pipeline for microbial genomes (de novo

assembly).

VirusDetect (Zheng et al., 2017), is an automated bioinformatic pipeline that can detect both

known and novel viruses from small RNA (sRNA) datasets, which has been reported useful

in plant and animal virus detection (Kreuze et al., 2009; Wu et al., 2010, 2015). It performs

reference-guided assembly through mapping sRNA sequence to a curated virus reference

database and de novo assembly. For both approaches automated parameter optimization and

the option of host sRNA subtraction is used. These assembled contigs are then compared with

a reference virus database for virus identification. Details about outputs generated can be

found at https://chipster.csc.fi/manual/virusdetect.html.

A5 assembly pipeline (Coil et al., 2015) for microbial genomes is a revised A5-miseq

pipeline. It is developed by replacing original A5 assembly components with new software

https://chipster.csc.fi/features.shtml
https://chipster.rahtiapp.fi/home
https://chipster.csc.fi/manual/virusdetect.html

17

modules to process and improve assemblies, to allow assembly of Illumina long reads. This

pipeline consists of the following steps:

Figure 2.1 Schematic representation of A5-miseq pipeline
The pipeline follows five steps as described in the figure. No parameter optimization is

necessary.

The use of A5 pipeline is easy, as it does not require any parameter optimization. All the

above-mentioned steps are automated and can be performed on a laptop computer.

 External assembly programs

Although Chipster platform itself does not have a separate de novo assembler, CSC offers a

variety of assemblers in its server. Two of them, Velvet and SPAdes are shortly described

here.

Velvet (Zerbino & Birney, 2008) can be used as a de novo assembler to build contigs or

gapped assemblies of contigs into scaffolds for short-read datasets. Velvet is a de Bruijn

algorithm-based assembler, which builds the reads on the de Bruijn graph, removes the errors

and attempts to resolve repeats if given, paired-end read and long read information. Final

output includes the assembled reads with related statistics. Velvet uses paired-end FASTA

and FASTQ datasets, either as a single merged file or two separate files with reads paired by

•Trimmomatic (Lohse et al., 2012)

•Error correction in reads by SGA’s k-mer based error
correction algorithm (Simpson and Durbin, 2012)

Read cleaning

• IDBA-UD algorithm (Peng et al., 2013)Contig assembly

•Contigs are scaffolded with large insert libraries
using suitable parametersCrude scaffolding

•Detected on the basis mapping or not mapping of
read pairs within expected distance

• If missassembled, contigs and scaffolds are broken.
Mis-assembly correction

•Stringent parameters for final round of scaffolding

•Summary statistics and other results produced
Final scaffolding

18

their ordering. Velveth and velvetg are the main two programs on which Velvet is based on.

Both these programs represent the basic two steps of a single Velvet assembly: hashing and

graph building respectively. Velveth reads sequence files, builds a dictionary of all k-mers of

length k. Here, k is defined by the user. This parameter defines the exact local alignments

between the reads. These alignments are used to build a de Bruijn graph by velvetg. Velvetg

also removes errors, simplifies the graph and resolves repeats based on user-defined

parameters. The hash length or value of k is the most important parameter for a Velvet run.

To define the hash length, the following three technical constraints are a must:

1. k must be an odd number to avoid palindromes.

2. Hash length must be below or equal to MAXKMERHASH length, as Velvet requires

more memory to store longer words.

3. Hash length must be lower than the read length, as no overlap between the reads will

be observed for larger number.

The hash length can be automated with VelvetOptimiser, a script written by Simon Gladman

and Torsten Seeman (https://github.com/tseemann/VelvetOptimiser). The script automatically

scans the specified parameter range to produce the best possible assembly. Details about

application of this script are given in chapter 4 materials and methods. The final outputs in

FASTA file are actually scaffolds, i.e. contigs are constructed into scaffolds by adding N’s to

the corresponding estimated gap length.

SPAdes (St. Petersburg genome assembler) (Bankevich et al., 2012) is an open source de

novo genome assembler. It is primarily designed to assemble small genomes from standard

bacterial sequenced data sets and single cell genomics data sets, which are difficult to

assemble due to highly non-uniform read coverage and high levels of sequencing error and

chimeric reads. SPAdes supports unpaired, paired-end and mate-pairs reads. Important point

to remember while using this assembler is the size of the genome of interest. It is not

designed for large genomes like mammalian genomes. To generate scaffolds from contigs

SPAdes uses two basic methods. Using the read pairs, first the gap size separating the contigs

is determined and second step relies on the assembly graph, i.e. if a complex unresolvable

repeat is observed between two contigs, SPAdes joins these contigs with a fixed gap size of

100bp. The final output does not have any N sequences.

https://github.com/tseemann/VelvetOptimiser

19

3 Aim of the study

The aim of this thesis was to develop a rapid, straightforward and user-friendly workflow for

the assembly and analysis of picornaviral genomes. The specific aim was to generate

consensus near full-length viral genomic sequences from the pool of the short contigs.

In total, 17 picornaviral sequences generated by Illumina HiSeq 3000 (paired end, 2 x 75 bp

in length) were analyzed in the study using programs implemented in Chipster platform and

external assembly programs such as Velvet and SPAdes.

20

4 Materials and methods

 Material

Seventeen (17) picornaviral genomic sequence sets representing five picornavirus types

(Table 4.1) and generated by Illumina HiSeq 3000 (paired end, 2 x 75 bp in length) were used

in the study. The sequence reads were in compressed (.gz) format and used as such in the

analyses. The virus samples represented interesting clinical isolates from different study

cohorts. Viruses were originally diagnosed as entero- or parechoviruses using ENRI-RT-

qPCR protocol followed by genetic typing using VP1 Sanger sequencing. The type name was

used to obtain corresponding reference viral genome from GenBank for reference mapping

(RefMap analysis). The reference genomes are shown in Table 4.1.

Table 4.1 Reference genomes used in the study for RefMap analysis
The following table includes virus nomenclature as per recommended by Simmonds et

al., 2020, the NCBI accession id for the virus genome and its respective genome length.

 Virus NCBI

Accession ID

Definition Length

1 EV-D68

NC_038308.1 Human enterovirus 68

strain Fermon, complete

genome

7367 bp

2 E18 MN749146.1 Echovirus E18 strain 12J3,

complete genome

7422 bp

3 PeV-A3 KM986843.1 Human parechovirus 3

strain VGHKS-2007,

complete genome

7349 bp

4 PeV-A1 FM178558.1 Human parechovirus 1,

complete genome

7380 bp

5 E13 AY302539.1 Human echovirus 13 strain

Del Carmen complete

genome

7410 bp

21

 Description of workflow

Chipster was originally chosen as test platform since it was considered user-friendly and

applicable for picornavirus sequence analysis. To create consensus near full length

picornaviral sequences, Chipster with automated pipelines and other methods were used to

pre-process, assemble and analyse the same sequence set. Figure 4.1 represents the

schematics for the various steps carried out during this study.

Figure 4.1 Schematic representation of various bioinformatic approaches
A. Application of default pipelines without any pre-processing of data. B. Pre-processing

steps required to carry out analysis other than automated pipelines. C. Testing reference-

mapping approach for sequence assembly. D. De novo approach with external assembly

programs. E. Quality assessment and validation of outputs generated by all approaches.

Steps A. to C. were carried out in Chipster environment (white background), while steps

D and E were implemented outside Chipster (light orange background). The dotted blue

lines represent division of work during study.

The work was divided into different parts and tests based on implementation of default

pipelines (VirusDetect and A5 assembly pipeline for microbial genome assembly), pre-

processing raw sequence reads to try different approach for assembly than automated

pipelines, assembly of the pre-processed reads with reference-mapping and de novo assembly

programs and finally, validation and quality assessment of the outputs generated

(contigs/scaffolds) from these different methods. The analysis steps were carried out within

as well as outside Chipster environment as shown in Figure 4.1.

22

The user first logs in to the Chipster platform using login id and password. User accounts are

freely available upon request to CSC helpdesk. Illumina paired-reads are imported with

“import files” option of the file menu. Here, the primary analysis is done with pipelines

available in the Chipster under “utilities” menu. VirusDetect and A5 assembly pipelines for

microbial genomes are two automated assembly programs in Chipster and do not require any

parameter optimization. Thus, in its simplest manner, genome analysis can be performed only

in a few steps in Chipster without pre-processing steps.

For the sequence assembly using approaches other than those included the pipelines

implemented in Chipster, pre-processing of the raw reads is required. Such pre-processing

steps can be performed in Chipster and are as follows: Quality analysis of reads is performed

with FastQC, trimming of reads with Trimmomatic and host sequence subtraction with

Bowtie2. The processed reads are then used for assembly.

Sequence assembly was performed using two approaches: reference-mapping (RefMap) and

de novo assembly. RefMap was done within Chipster with Bowtie2. De novo assembly was

performed outside Chipster environment and with Velvet (VelvetOptimiser) and SPAdes

programs.

Long contigs were submitted to National Center for Biotechnology Information (NCBI) for

BLAST analysis. Quality of contigs/scaffolds produced was assessed with QUAST. Details

about steps and parameters are given below.

 Automated analysis pipelines implemented in Chipster

For VirusDetect pipeline, the input data file should be a FASTQ file. The assembled contigs

are compared to the reference viral genome for identification with the help of BLASTN and

BLASTX. During this study, parameters to set were reference virus database and host

organism (if unavailable in drop down menu, own genome could be uploaded). Other

parameters were used with default settings. VirusDetect produces a large number of files, and

all files can be stored in a single .tar file from the “option”.

A5 assembly pipeline for microbial genomes is suitable for constructing small genomes based

on Illumina MiSeq data, but it is essential that the input data file contains paired-end reads.

23

As mentioned earlier, this pipeline does not require pre-processing of the raw reads or any

parameter settings.

 Alternative approaches for sequence analysis

 Pre-processing of raw sequence reads

All the steps included in the pre-processing step were performed in Chipster platform.

Quality of the sequence reads was checked with FastQC

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The option of “MultiQC”

format allowed a single quality report output file for multiple sequences.

In the following step, the reads were trimmed with the ‘Trimmomatic’ (Bolger et al., 2014),

with parameters:

 Adapter set= none,

 Quality scale used in the fastq file= phred + 33,

 sliding window trimming parameters = 20:30,

 minimum length of reads to keep = 50,

 write a log file = yes.

In the final step of pre-processing, the host sequences were removed with ‘Bowtie2 for

paired-end reads’ (Langmead & Salzberg, 2013) with two or more read files and options:

 strategy = Very Sensitive,

 Put unaligned reads to a separate file = yes.

The unaligned reads were collected into separate file. For the future convenience, the fastq

file were compressed using .gzip (“NGS”-“Utilities” menu of Chipster).

The final output files from pre-processing stage served as input files for the assembly stage.

Two approaches were utilised for assembly.

 RefMap

Trimmed reads were mapped with Bowtie2 paired end reads and own genome, as the

required viral reference genomes were not available in the Chipster. The reference genomes

were uploaded in the fasta file format. The parameters set were strategy = Very Sensitive, Put

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

24

unaligned reads to a separate file = no. The mapped reads were then visualized with built-in

genome browser.

The genome browser uses the .bam file from the mapping step. As the reference genomes are

not indexed, they were indexed in Chipster with option “Index FASTA”, available under

“utilities”.

For visualization process, one chooses the .bam file of the reads and fasta format for

reference sequence. This selection makes the genome browser option visible. After selecting

the correct reference genome from drop down menu, reference genome and mapped reads

alignment can be explored.

 De novo assembly

Currently, there are no separate de novo assembly tools available on Chipster platform,

although one can avail them by contacting CSC. Two tools were successfully employed –

Velvet assembler and SPAdes assembly tool. As both were command line tools, the assembly

run was performed in the Linux environment, Ubuntu 18.4 distribution.

For de novo assembly, first program used was VelvetOptimiser, which is designed as wrapper

script for Velvet assembler, which provides the best possible assembly with hash length

optimisation. The information specified included the working directory name, the hash

length, and a list of filenames, with file format and read type. The steps performed for

assembly were as follows:

1. A range of k-mers (hash length) was determined. For this study, the range of k-mers

was given from 21 to 77.

2. The appropriate file description line for velveth was determined, viz. '-shortPaired -

fastq.gz’. This line described the input reads as a short read of paired-end data. As the

paired-end reads were in separate file, this information was also provided along with

the respective file names.

3. VelvetOptimiser was run with the script below.

4. Output data was collected in the working directory. Upon exiting, VelvetOptimiser

printed out the directory in which it left the output of its final Velvet assembly. This

directory contained the standard Velvet output files.

VelvetOptimiser script

25

velvetoptimiser.pl -s 21 -e 75 -f '-shortPaired -fastq.gz -separate reads1.fq.gz reads2.fq.gz'

Where, -s = starting or lower hash value;

 -e = end or higher hash value;

 -f = velvethfiles (file format options = fastq.gz; read type = shortPaired)

 -separate = separate files for forward and reverse reads of a paired end library

Other program used for de novo assembly was SPAdes. SPAdes supports paired-end, mate-

pairs as well as unpaired reads. As it was initially designed for small genomes, it was chosen

for picornavirus sequence reads. The general command line script was as follows, the file

names and output directories were specified per sequence. The paired-end fastq files (forward

and reverse reads) were provided. The option ‘careful’ was recommended for small genome

assemblies, as it reduces the number of mismatches and short indels. The SPAdes output files

were stored in the output directories specified.

SPAdes script

spades.py -1 illumina_R1.fastq.gz -2 illumina_R2.fastq.gz --careful -o R_spades

where, R defined the name of the sequence under assembly

 -1 = input file of forward reads,

 -2 = input file of reverse reads,

 --careful = minimized mismatches and short indels,

 -o = the output directory.

 Quality analysis and validation of contigs/scaffolds

Longest contigs/scaffolds were identified for putative viral hits with the help of BLAST. This

option is also available in Chipster, but only 10 sequences can be run at a time. The BLAST

analyses were done manually for each contig/scaffold for each sequence run. The additional

setting of BLASTN was used. The hits identified as viral hits, were saved separately in a file.

To compare the contigs/scaffold generated form the applied pipelines and assemblers

QUAST tool was used. It is python-language based tool and the script used was as follows.

26

QUAST accepted assemblies and reference genomes in FASTA format. The output files were

generated into specified directory.

QUAST script

quast.py seq_name_A5.fasta seq_name_SPAdes.fasta seq_name_velvet.fasta -r ref.fasta -o

name_quast

where, input files = contigs/scaffolds in fasta format for each assembly;

 r = reference sequence in fasta format (not mandatory)

 o = name for output directory

27

5 Results

The primary goal of this thesis was to develop a straightforward and user-friendly workflow

for picornaviral genome sequencing and sequence analysis. The basic idea of the thesis was

to test the feasibility of Chipster platform for picornavirus genome analysis. The details about

software used and their respective output files are included in appendix B.

 Automated analysis pipelines implemented in Chipster

Two pipelines implemented in Chipster were tested with the dataset. VirusDetect pipeline

failed to produce any results, while A5 pipeline was successfully applied to the available

sequence sets. The output files obtained from A5 pipeline are listed in appendix B (Table

B.1). The summary statistics of assembly are provided in a tab separated file and provide

information of total number of contigs and scaffolds generated, longest scaffold, N50 etc. The

fasta files for final contigs and final scaffolds contain assembled sequences as contigs and

scaffolds respectively. Both file formats are shown in Figure 5.1.

A. Summary statistics of assembly

B. Fasta file for final contig

>scaffold_0

TTTTTTTTGTGGGGGGTGTCTTTGGGGTTTGGTTGGTTCGGGGTATGGGGTTAGCAGCGGTGTG

TGTGTGCTGGGTAGGATGGGCGAGGGTTGTATTGATGAGATTAGTAGTATGGGAGTGGGAGGG

GAAAATAATGTGTTAGTTGGGGGGTGACTGTTAAAAGTGCATACCGCCAAAAGATAAAATTTG

AAATCTGGTTAGGCTGGTGTTAGGGTTCTTTGTTTTTGGGGTTTGGCAGAGATGTGTTTAAGTG

CTGTGGCCAGAAGCGGGGGGAGGGGGGGTTTGGTGGAAATTTTTTGTTATGATGTCTGTGTGGA

Figure 5.1 Output files for A5 assembly pipeline
A. shows a tab separated file with important statistics such as number of contigs and

scaffolds, longest scaffold and N50. B. A fasta format file for final contig, note: all

sequences are not shown, the single file contains all the contigs or scaffolds generated

which are serially numbered from 0.

28

Results for A5 assembly pipeline output analysis are shown in Table 5.1, which include the

longest scaffolds generated for given sequences. Viral hits of comparatively shorter lengths

are not mentioned in the result here.

Table 5.1 Results of A5 assembly pipeline output analysis
The table provides details about sequence ID, expected hit with Sanger typing, number

of scaffolds generated, longest scaffold generated for a given sequence and respective

putative viral hits identified with BLASTN. The viral hits are mentioned with

abbreviated virus name. The full names of virus with their respective abbreviations are

provided in appendix C (Table C.1).

Sequence
Sanger

typed as

Total

scaffolds

Scaffold

number

length

in bp

Putative Viral

hit

FFGC_VIR_1_S104 EV-D68_19 18829 Scaffold_17 6950 E18

FFGC_VIR_2_S105 EV-D68_21 17826 Scaffold_26 5918 E18

FFGC_VIR_3_S106 EV-D68_23 17166 Scaffold_8 7356 E18

FFGC_VIR_4_S107

EV-D68

Fermon(type

strain).

68

Scaffold_0 7376 EV- D68

Scaffold_1 7107 E18

FFGC_VIR_5_S108 E-18 586 Scaffold_1 7135 E18

FFGC_VIR_6_S109 E-18 104 Scaffold_1 7458 E18

FFGC_VIR_7_S110 E-18 2836 Scaffold_1 7401 E18

FFGC_VIR_8_S115 E-18 146 Scaffold_0 7409 E18

FFGC_VIR_9_S114 E-13 46 Scaffold_0 5774 E13

FFGC_VIR_10_S113

etiology by

unknown

pathogen

114 Scaffold_13 775 EV-B

FFGC_VIR_11_S112 EV-D68 221 Scaffold_0 7339 EV-D68

FFGC_VIR_13_S111 EV-D68 901 Scaffold_0 7340 EV-D68

FFGC_VIR_18_S116
PeV-

A3/Vi988
505 None

FFGC_VIR_19_S117
PeV-

A3/152037
22 Scaffold_0 6749 PeV-A3

FFGC_VIR_20_S118
PeV-A3/145-

8
167 Scaffold_2 3053

PeV-A1, PeV-

A3, PeV-A4

29

FFGC_VIR_21_S119
PeV-A1/101-

17
14949 Scaffold_8 7335 PeV-A1

FFGC_VIR_22_S120
PeV-A1/103-

2
16333 Scaffold_10 7314 PeV-A1

Considering the longest lengths of scaffolds generated for each paired-end sequence reads,

the longest scaffold was 7458bp (FFGC_VIR_6_S109, Scaffold_1), while shortest was 775bp

(FFGC_VIR_10_S113, Scaffold_13). It was interesting to note that for one sequence

(FFGC_VIR_4_S107) two near full length scaffolds of lengths 7376bp (Scaffold_0) and

7107bp (Scaffold_1) were generated. Both scaffolds showed two different putative viral hits

for EV-D68 (expected based on Sanger typing) and E18. For a sequence

(FFGC_VIR_20_S118) with scaffold of intermittent length (3053bp) multiple viral hits were

observed. Only one sequence (FFGC_VIR_18_S116) (shown in bold) failed to produce any

viral hits for A5 pipeline. It should be noted that PCR Ct values were not available for the

samples, and therefore it cannot be concluded whether differences in lengths are due to

differences in the copy number, which ultimately affect the quality of sequenced library.

 Alternative approaches for sequence reads analysis

 Pre-processing of raw sequence reads

Pre-processing of raw reads consists of quality control, adapter removal and host genome

subtraction from the given sequence datasets. All three steps were performed in Chipster.

5.2.1.1 Quality control with FastQC

FastQC analysis generated two output files for each read- a html file of FastQC analysis

report of individual sequence read and a mqc file, to combine all FastQC reports in a single

file. The report included tables and graphical plots for general statistics, sequence counts,

sequence quality histograms, per sequence quality score, per base sequence content, per

sequence GC content, per base N content, sequence length distribution, sequence duplication

levels, overrepresented sequences an adapter content.

FastQC analysis indicated absence of poor-quality bases and any adapter contamination for

all sequences in dataset. For each module run in FastQC analysis, success or warning is

indicated with a colored symbol. For a given module, green tick indicates that module is ok,

30

orange exclamation mark indicates it is slightly unusual and can be further investigated and

red cross indicates it is very unusual and might be wrong. Figure 5.2 shows a part of FastQC

analysis report, with warning for overrepresented sequences for sequence,

FFGC_VIR_18_S116. Assembly of this sequence with A5 pipeline failed to generate any

viral contigs. Later in the study, after implementation of other assembly programs, some of

the sequences resulted into either smaller length contigs or with no contigs of interest at all.

After comparing the FastQC reports, it was observed that all these sequences showed red

cross warning i.e. high percentage of overrepresented sequences as compared to other

sequence reads.

Figure 5.2 Part of FastQC analysis report (FFGC_VIR_18_S116)
The left-hand panel, under title summary indicates the modules run for FastQC analysis

and colored symbols indicating success or warning. Warning for overrepresented

sequences was observed as common for all sequences which either resulted into smaller

contigs or no viral contigs at all. Sequence, FFGC_VIR_18_S116, failed to generate any

viral contigs for A5 pipeline as well as other assemblers.

5.2.1.2 Adapter removal and trimming with Trimmomatic

FastQC was followed by application of Trimmomatic and Bowtie2. With the Trimmomatic,

the sequence reads are trimmed and filtered. Parameters setting is an essential step for

Trimmomatic. The encoding determines the offset of quality scores. Here, phred+33

encoding was set, which suggests ASCII 33 offset (that is, the quality characters in FASTQ

file are equal to their quality plus 33). Adapter clipping parameters trim the adapter set used

during library processing. These details can be found in the sequencing summary reports.

Adapter sets are available in Chipster and if not, the user can upload own set of adapters for

31

trimming. For the given dataset, adapters were removed beforehand, hence adapter set

trimming was not required. Sliding window parameters trim the low-quality sequences in the

reads. The window size determines the average quality within the window and sequences are

trimmed when the quality falls below this threshold. Setting a window considers quality of

multiple bases, which helps to avoid removal of high-quality bases surrounding a single poor-

quality base. The minimum read length parameter decides the minimum length of the read to

retain after clipping. For the study, different settings of the parameters for both window size

and minimum length were tried as suggested in various citations. Current settings

considerably reduced the number of reads than other setting combinations and hence, were

decided to use.

5.2.1.3 Host sequence subtraction with Bowtie2

The trimmed reads were then aligned with human genome as a host with Bowtie2. The ‘very

sensitive’ option is more sensitive and accurate. This resulted in the host sequence depletion

and further decreasing the number of reads. The most significant host sequence depletion was

observed in 10 out of 17 sequences as represented in Figure 5.3. The reduction in number due

to trimming and host subtraction is shown as follows (Table 5.2).

Table 5.2 Reduced number of reads with trimming and host subtraction

32

Sequence Input read pairs Trimmed reads Host subtraction

FFGC_VIR_1_S104 3649440 3223444 788577

FFGC_VIR_2_S105 2872004 2593354 648896

FFGC_VIR_3_S106 2876908 2556630 678412

FFGC_VIR_4_S107 975519 599085 297354

FFGC_VIR_5_S108 2590348 2339714 2157011

FFGC_VIR_6_S109 1908565 1705746 1654351

FFGC_VIR_7_S110 3150044 2861061 2454296

FFGC_VIR_8_S115 732111 616362 613755

FFGC_VIR_9_S114 1668916 1487498 1450294

FFGC_VIR_10_S113 838109 448550 11363

FFGC_VIR_11_S112 855702 508013 118503

FFGC_VIR_13_S111 1203168 968805 660489

FFGC_VIR_18_S116 235935 183996 50599

FFGC_VIR_19_S117 3855605 3480990 3473068

FFGC_VIR_20_S118 194498 176036 59875

FFGC_VIR_21_S119 3306931 2997088 996686

FFGC_VIR_22_S120 3449781 3118051 920137

33

Figure 5.3 Effect of trimming and host sequence subtraction on total

sequence reads

As shown above, the reduction in number of reads was not uniform across the sequences. The

unmapped reads were collected in separate output files and were then used for next step of

assembly.

 RefMap analysis

As the sequences were typed and provided ideas about the related sequences, mapping with

reference genome approach was used. The reference sequences are mentioned before (Table

4.1). The results were visualized using IGV, available in Chipster. As the sequence vir10

(FFGC_VIR_10) was typed as pathogen without known etiology, no reference mapping was

performed with this sequence. The results for mapping were wide-ranging. Sequence

coverage of all ranges (low, intermittent and high) was observed. Figure 5.4 shows coverage

observed with reference mapping for selected sequences.

34

Figure 5.4 Sequence coverage observed with RefMap analysis
Figures A. to D. show the different ranges of coverage achieved in reference mapping for

selected sequence. A. showed very low coverage, B. with slightly more coverage as

compared to A, C. with intermittent coverage, while D. shows the highest coverage as

compared to other three.

 De novo assembly

Until this stage, all previous work- application of automated pipelines (A5 and VirusDetect),

alternative workflow to these pipelines, which included quality control of reads with FastQC,

trimming of reads with Trimmomatic, host sequence subtraction with Bowtie2 and RefMap

(that is, reference-mapping) with Bowtie2 were implemented in Chipster. However, Chipster

platform itself does not have any specific assembly program for de novo assembly. Hence,

the assemblers Velvet and SPAdes were used outside Chipster. As both assemblers are

command line tools, the work was carried out in Linux environment (Ubuntu 18.04).

Trimmed and host depleted sequence reads (final output of steps mentioned in 5.2.1.3) were

exported from Chipster and were utilised as inputs for de novo assembly programs.

5.2.3.1 VelvetOptimiser

The most important parameter for Velvet is a k-mer or hash length. To obtain a successful

assembly, it is suggested to have k-mer value between half to 2/3 of a read length. To ensure

that appropriate k-mer value is chosen, VelvetOptimiser was used in the study. This program

takes a range of values instead of a single value and provides most optimal k-value used to

35

assemble sequence reads. Considering the variable lengths of the reads in the dataset, lower

limit of 21 (default is 19) and higher limit of 77 was chosen. The resultant optimal k-mer

values for each sequence are given in Table 5.3

When finished with VelvetOptimiser run, the files found in output directory were Contigs

file, Graph, PreGraph and Graph2 files, log file, sequences and stats file. The details about

the output files are provided in the appendix B (Table B.2). The important files to consider

were contigs file, log and stats file. The contigs file provided the information about contigs

with k-mer length and k-mer coverage. The assembly with this tool was time-consuming and

required more computational storage and memory. The final output file consisted of the

contigs for the most optimal k-mer value and content format for a file is described below.

>NODE_1_length_7202_cov_271.608429

AAGATTTTTACATTAACCCCATGCCTGGTCTCCACTAGTTGAAGGCAGCTTGCAATAAAA

TGAGTGGGAACAAGACGCTTAAAGCATGGTGTAAATTAACTTTTCTAACTCACACTTTGT

GTGGGGTGGCAGGTGGCGTGCCATAATTCTATTAGTGAGATACCACGCTTGTGGATCTTA

TGCTCACACAGCCATCCTCTAGTAAGTTTGTGAGACGTCTGGTGACGTGTGGGAACTTAT

TGGAAACAACATTTTGCTGTAAAGCATCCTATTGCCAGCGGATTAACACCTGGTAACAGG

 Here, 1 is contig number, 7202 is k-mer length in base pairs and 271.608429 represents k-mer

coverage for a given contig.

Velvet assembler failed to provide putative viral hits for five sequences (FFGC_VIR_1, 2, 3,

18, 20) out of 17 (shown in the Table 5.3). It also failed to identify the pathogen of unknown

etiology (FFGC_VIR_10) (shown in bold).

Table 5.3 Final output for Velvet assembler
The table shows the k-mer value, number of contigs, length of the contig and putative

viral hit for the given sequence.

Sequence k-mer value
Number of

contigs

Length of

longest contig

Putative viral

hits

FFGC_VIR_1 67 687 - No

FFGC_VIR_2 67 574 - No

FFGC_VIR_3 65 1248 - No

FFGC_VIR_4 65 6 3326 EV-D68

36

FFGC_VIR_5 73 2 7384 E18

FFGC_VIR_6 71 1 7189 E18

FFGC_VIR_7 73 1 7199 E18

FFGC_VIR_8 73 16 7066 E6, E11

FFGC_VIR_9 71 2 7361 E13

FFGC_VIR_10 55 20 - No

FFGC_VIR_11 61 11 6987 EV-D68

FFGC_VIR_13 71 6 7344 EV-D68

FFGC_VIR_18 59 28 - No

FFGC_VIR_19 73 4 6719 PeV-A3

FFGC_VIR_20 71 11 - No

FFGC_VIR_21 73 2 7276
PeV-A, PeV-A5,

PeV-A4

FFGC_VIR_22 73 2 7274
PeV-A,PeV-A1,

PeV-A3, PeV-A4

Taking into account longest contigs generated by Velvet, longest contig was observed for

sequence FFGC_VIR_5, contig size 7384bp and smallest with FFGC_VIR_4, contig size

3326bp. Optimised k-mer values were in different ranges.

After completion of analysis with Velvet program, same sets of sequence reads were

assembled with SPAdes.

5.2.3.2 SPAdes

SPAdes assembler was relatively easier to use and required less time than VelvetOptimiser.

SPAdes does not use a single k-value (unlike Velvet) and a range k-mer value is selected

automatically depending on the read length. Another assembly parameter used in SPAdes is

‘careful’ and is recommended for small genome assemblies. Parameter “careful” minimizes

the errors produced by mismatches and indels. As picornaviruses have small genomes, this

option was selected.

37

The final output files consisted of fasta files for final contigs and scaffolds. All output files

and their respective uses are given in appendix B (Table B.3) Contigs/scaffolds names in

SPAdes output FASTA files had the following format-

>NODE_1_length_7647_cov_1644.037408

CTCCTAGAGAGCTTGGCCGTTGGGCCTTATACCCCAACTTGCCGAGCTTCTCTAGGAGAG

TCCCTTTCCCAGCCCTGAGGCGGCTGGTTAATAAAAGCCTCAACTGTAACAAACATCTAA

GATTTTTACATTAACCCCATGCCTGGTCTCCACTAGTTGAAGGCAGCTTGCAATAAAATG

AGTGGGAACAAGACGCTTAAAGCATGGTGTAAATTAACTTTTCTAACTCACACTTTGTGT

GGGGTGGCAGGTGGCGTGCCATAATTCTATTAGTGAGATACCACGCTTGTGGATCTTATG

 Here, 1, 7647 and 1644.037408 represent the number of the contig/scaffold, the

sequence length and the k-mer coverage for the last (largest) k value used

respectively.

The resultant scaffolds were in decreasing order in the length. This made identifying the

putative viral hits moderately simple. Viral assembly results are shown in Table 5.4.

Table 5.4 Final output for SPAdes assembler
The table shows number of scaffolds, length of the longest scaffold and putative viral hit

for the given sequence.

Sequence
Number of

scaffolds

Length of longest

scaffold
Putative viral hit

FFGC_VIR_1 13609 7213 E6, CVB2

FFGC_VIR_2 13309 5102 E18

FFGC_VIR_3 13333 7367 E18

FFGC_VIR_4 36 6904 EV-D68

FFGC_VIR_5 1099 1017 CVB4, E27

FFGC_VIR_6 329 1224 E18

FFGC_VIR_7 3966 - No

FFGC_VIR_8 305 7424 E18

FFGC_VIR_9 14 7418 E13

FFGC_VIR_10 78 2277 E30, CVB1

FFGC_VIR_11 99 7341 EV-D68

38

FFGC_VIR_13 585 7474 EV-D68

FFGC_VIR_18 99 - No

FFGC_VIR_19 840 5037 PeV-A3

FFGC_VIR_20 80 3092 PeV-A1, PeV-A3, PeV-A4

FFGC_VIR_21 6687 7340 PeV-A1

FFGC_VIR_22 7333 7647 PeV-A, PeV-A5, PeV-A4

SPAdes assembler failed to generate viral contigs for two sequences, FFGC_VIR_7 and

FFGC_VIR_18 (shown in bold). Considering the length of longest scaffolds produced,

longest scaffold size was observed for FFGC_VIR_22 (7647bp) and smallest size observed

for FFGC_VIR_5 (1017bp).

The final results for A5 assembly, Velvet and SPAdes assemblers for successful picornavirus

sequence reads assembly into longer contigs/scaffold is given in Table 5.5.

Table 5.5 Assemblers and their suitability for picornavirus genome
Table shows whether assemblers were useful in generating picornaviral contigs from the

sequence sets

Sequence ID A5 assembly Velvet SPAdes

FFGC_VIR_1_S104 Yes No Yes

FFGC_VIR_2_S105 Yes No Yes

FFGC_VIR_3_S106 Yes No Yes

FFGC_VIR_4_S107 Yes Yes Yes

FFGC_VIR_5_S108 Yes Yes Yes

FFGC_VIR_6_S109 Yes Yes Yes

FFGC_VIR_7_S110 Yes Yes No

FFGC_VIR_8_S115 Yes Yes Yes

FFGC_VIR_9_S114 Yes Yes Yes

FFGC_VIR_10_S113 Yes No Yes

FFGC_VIR_11_S112 Yes Yes Yes

FFGC_VIR_13_S111 Yes Yes Yes

FFGC_VIR_18_S116 No No No

39

FFGC_VIR_19_S117 Yes Yes Yes

FFGC_VIR_20_S118 Yes No Yes

FFGC_VIR_21_S119 Yes Yes Yes

FFGC_VIR_22_S120 Yes Yes Yes

A5 assembly program was simplest to use, followed by Spades. VelvetOptimiser was the

most computationally exhaustive program amongst three. As compared to VelvetOptimiser,

A5 assembly and SPAdes assembly programs were quite successful in regards with

successful virus genome assembly for number of sequences. One sequence, FFGC_VIR_18

failed to generate any viral contigs/scaffolds with each program.

The details of comparison between results of A5 pipeline, VelvetOptimiser and SPAdes for

picornavirus sequence assembly is shown in appendix C, Table C.2

 Quality analysis and validation of contigs/scaffolds

The final outputs i.e. final contigs/scaffolds generated by all assembly programs (A5 pipeline,

VelvetOptimiser and SPAdes) were checked with BLAST for validation of viral hits.

Figure 5.5 BLAST search for a scaffold.
Only few hits are shown here. The percent identity of more than 80% was selected for

putative viral hits.

Although Chipster platform offers option of BLAST analysis, as number is limited to 10 jobs

at a time, Blast searches were performed outside Chipster. The contigs/scaffolds identified

with a viral hit, were then saved separately as a fasta file. These files were used for QUAST

analysis.

40

Quality assessment with QUAST produced a number of output files. The final result was

generated in pdf format and also available with Icarus viewer. The QUAST report consisted

of table for genome statistics, mismatches and statistics without reference, with heatmap

indicating worst and best statistics. The example output is shown as follows:

Figure 5.6 Sample QUAST report for sequence FFGC_VIR_22
Figure shows general statistics for contigs/scaffolds generated by all three assemblers,

suggesting best assembly output by SPAdes in this scenario.

From the QUAST reports, overall quality of the assembly outputs for SPAdes was relatively

better than other two programs.

From the results obtained from the analysis of different approaches (outlined before in Figure

4.1 Schematic representation of various bioinformatic approaches), a workflow is suggested

for picornavirus genome assembly. As each assembler has its own pros and cons, using more

than one program is helpful. Currently the workflow uses programs available in Chipster as

well as outside Chipster. In future, with addition of de novo assembly programs in Chipster

environment, one can perform all the tasks within Chipster.

41

Figure 5.7 Schematic representation of workflow for picornavirus sequence

analysis
The workflow can be divided into three parts. A. Represents preliminary analysis with

default pipeline in Chipster. B. Provides stepwise guidance for approaches other than

automated pipeline. A and B can be performed in Chipster (red box). C. Suggests the

application of external de novo assembly programs. Validation of outputs from both A

and C can be performed with BLAST and quality assessment with QUAST shown as D.

Green star suggests that the step of BLAST analysis can also be done in Chipster.

42

6 Discussion

Picornaviridae is a large family of vertebrate viruses with small genome sizes that produce

both clinically asymptomatic infections and mild and fatal disease. The genus Enterovirus

comprises seven species infecting humans (enterovirus A-D and rhinovirus A-C). This genus

contains poliovirus (PV), coxsackieviruses A/B (CVA/B), enteroviruses (EV), echoviruses

(E), and rhinoviruses (RV). Serological classification has indicated existence of more

serotypes. Hepatitis A virus (HAV) is the sole human-virus species in the genus Hepatovirus.

Other human picornaviruses include members of the genera Cardiovirus (Saffold virus—

SAFV), Cosavirus (CoSV), Parechovirus (Ljungan virus—LV), Kubovirus (Aichi virus—

AiV), and Salivirus (Salivirus A—SaVA) (Nielsen et al., 2013).

Next generation sequencing (NGS) allied with bioinformatic analysis provides an efficient

way to detect and identify known or novel micro-organisms. It helps to generate more

accurate sequences than conventional methods. The genome sequence assembly and its

downstream analysis help to determine etiological agents, identify and track outbreak origins

and transmissions of a disease. Its efficiency along with affordable cost for application makes

NGS an quality tool for research. NGS is a powerful, multifaceted tool, which also poses few

challenges during its applications (Ekblom & Wolf, 2014; Lambert et al., 2018; Maljkovic

Berry et al., 2020; Orton et al., 2016; Pereira et al., 2020; Sutton et al., 2019; White et al.,

2017).

The outcome of NGS approaches is dependent on the sample quality and the amount of the

target in it. While it is easy to determine the quantity of human DNA for NGS, it is much

more difficult to determine viral load. In case of picornaviruses, the main criteria is viral copy

number. In most cases this means the Ct value obtained in RT-qPCR diagnostic method. This

relative value can be used to compare the sample to each other and to the sequencing results,

that is, the number of viral sequences in the overall sequence pool and the quality of the

sequences to obtain full genome-length contigs. Quality of reads and coverage depth play a

deciding role in final genome assembly. Both these factors affect the correctness and overall

completeness of assembled genome. This quality will also be dependent on the heuristics

applied for the assembly. Reference-based assembly and de novo assembly are two

commonly used approaches for genome assembly. Reference-based assembly provides an

efficient tool for assembling known genomes in time sensitive manner and in limited

43

computational environment. In order to obtain accurate reference mapping, a closely related

reference genome should be selected for genome of interest. Sample reads are mapped to

reference genome depending on the best match and alignment. BWA (Burrows wheeler

transform), BWA-MEM (maximal exact matches) (Li & Durbin, 2009) and Bowtie2

(Langmead & Salzberg, 2013) are the most commonly used tools for reference-mapping

(Lambert et al., 2018; H. C. Lee et al., 2012; Nooij et al., 2018). However, reference-mapping

can pose difficulties when assembling a novel organism or variable organisms, like RNA

viruses, which show high genetic diversity owing to their high mutation rates and

recombination tendencies (Kasibhatla et al., 2016; Orton et al., 2016). In general, RNA

viruses also contain conserved and non-conserved regions that pose a problem for the

function of reference-mapping techniques. The actual parameters or percentage difference

range where Refmap methods work optimally await to be determined.

De novo assembly is useful in absence of a quality reference genome and is commonly used

to assemble and identify novel organisms by means of metagenomics. It involves connecting

short overlapping sequence reads into longer contigs or scaffolds. Developments in

sequencing technologies have led to advancements in the algorithms for assemblers used. For

example, the overlap layout consensus (OLC) algorithm (Pevzner et al., 2001) was quite

successful with capillary reads (sequencing by capillary electrophoresis, Karger and Guttman,

2009), as it produced high quality genome assemblies. However, use of this algorithm with

short reads assembly was found to be computationally expensive (Zerbino, 2010). This led to

the development of assemblers based on the de Bruijn graph, such as ALLPATHS (Butler et

al., 2008), ABySS (Simpson et al., 2009), SOAPdenovo (Li et al., 2009) and Velvet (Zerbino

and Birney, 2008), which comparatively reduced computational time. Some of the frequently

used de novo assemblers are MIRA, Velvet, ABySS, SOAPdenovo and SPAdes (Blawid et

al., 2017; Ibrahim et al., 2018; H. C. Lee et al., 2012; White et al., 2017).

Although most of the NGS programs are command-line tools, they can be accessed with

commercial platforms (for example, Geneious and CLC Genomics workbench), open source

graphical user interfaces or web-based tools (such as Galaxy platform and EDGE) or

command-line based pipelines (like ngs_mapper and GATK). However, the limited

computational skills is one of the bottlenecks faced during NGS analysis by non-

bioinformaticians. Accessing command line tools through user friendly interfaces provides a

44

way for researchers, who do not have any technical knowledge, to perform NGS related

bioinformatics analysis successfully (Lambert et al., 2018; Maljkovic Berry et al., 2020).

Chipster (http://chipster.csc.fi/) at Centre for Scientific Computing (Espoo, Finland) is a

platform, which allows user to explore multiple tools at a single access. Chipster brings a

powerful collection of data analysis methods including NGS within the reach of bioscientists

via its intuitive graphical user interface (Kallio et al., 2011). It can be used a Java-web start

desktop application (Chipster v3.16.3) or a web-application through browser (Chipster v4). It

is an open source and easy-to-use analysis software, allows user to save the analysis steps as

a workflow and share those workflows with the peers. Chipster handles different file formats

easily and has a provision for converting files to necessary and needful formats (for example,

indexing FASTA files, compressing files to .tar etc). Handling of data through servers and

cloud system provides sufficient memory for computation and storage capacity. However,

Chipster does not have any independent de novo assembler within its environment, unlike

other platforms like Galaxy and Geneious, which offer options such as Velvet, SOAPdenovo,

Spades, MIRA, ABySS and IDBA-UD. It also does not have any quality assessment tool to

compare different assembler outputs. Although Chipster allows addition of tools, it will be

more helpful if it has some options to start with.

In the current study, Chipster was used for picornavirus genome sequence analysis. The

workflows included primary analysis of picornavirus sequence data with automated pipelines

(VirusDetect and A5) within Chipster, and if approaches other than automated pipelines were

used, the pre-processing of the reads followed by subsequent assembly of these trimmed

reads with reference-mapping or de novo methods were used. As Chipster does not have

independent de novo tools, external programs Velvet and SPAdes were used.

Although reference-mapping and application of VirusDetect pipeline was not successful, one

should consider the reasons behind this lack of success. Reference mapping is based on

aligning the query reads with known viral genome. RNA viruses are known for their high

evolution rate and low fidelity of RNA-dependent RNA polymerase (RdRp), which can lead

to the viral sequence diversity. VirusDetect pipeline was originally developed for identifying

viruses based on small RNAs, which might act as a limiting factor for its success in

picornavirus analysis.

45

A5 pipeline for microbial genome assembly was found to be quite successful for picornavirus

identification. With automated steps, A5-miseq could produce nearly complete genome

assemblies. A5-miseq offered automated adapter trimming, reconstruction of reads into

longer sequences, outputs which could be readily uploaded to NCBI and with quality reports

(.qvl files). Being automated and computationally efficient, A5-miseq would be helpful for

researcher with limited computational and bioinformatics experience. Hence, A5 pipeline can

be used as initial identification and contig/scaffold generation method for picornaviruses.

Quality analysis helps to screen sequence reads for any quality issues and flags the reads with

questionable quality. Trimming of reads removes primers and adapters and also filters the

reads with ambiguous lengths. RNA viruses pose difficulty in NGS due to their relatively low

abundance as compared to host sequence. Hence, it is necessary to subtract host sequences

from the total sequence reads. Successful application of these pre-processing steps to

sequence datasets can facilitate viral genome assembly (Daly et al., 2015; Guo et al., 2013;

Kruppa et al., 2018; Marston et al., 2013; Montmayeur et al., 2017). The steps related to

quality control, sequence trimming and cleaning, alignments to subtract host genome

sequence can be easily performed in the Chipster environment. The final trimmed sequences

then can be exported and be used for assembly programs.

Velvet (or VelvetOptimiser) and SPAdes, both were successfully used for sequence

assembly. However, application of Velvet poses two challenges. First, Velvet utilises quite a

lot of memory, hence, without adequate memory it either slows down, or stops working

completely. Second, Velvet attempts to connect contigs into scaffolds by default. It tries to

scaffold contigs which cannot quite connect and adds the N’s sequences in the estimated gap

between these neighbouring contigs. This results in stretches of Ns in the contigs.fa file

output. SPAdes performed well, was simple to employ and generated both contigs and

scaffolds.

Final assemblies by SPAdes and A5-miseq have been reported to be competitive with their

other counterparts (Magoc et al., 2013; Lambert et al., 2018), while most of the times

producing more promising results. This was found true for the current data analysis. All three

assemblers could produce near-full length contigs/scaffolds for most of the picornavirus

sequences. The exception was sequence, FFGC_VIR_18, which failed to generate sequence

assembly with all three programs. This sequence, along with sequences which produced

46

comparatively smaller contigs/scaffolds were observed to have warning for overrepresented

sequences in FastQC analysis report.

QUAST assessed and compared the assemblies generated by different programs and helped

to understand their efficiency.

To summarise, next generation sequencing (NGS) have provided a breakthrough for the viral

genomics and bioinformatics. Applications of NGS in virology include analysis of intra-host

viral diversity, study of quasispecies, viral transmission and resistance to antiviral therapy

and vaccines. It is considered as a powerful tool for virus discovery and metagenomic with its

ability to detect and identify known and emerging viruses with or without a priori

knowledge. Although various tools and algorithms are available in the market, these tools

differ in regards with ease of use, speed, quality control, output format and affordability

(Ekblom & Wolf, 2014; Orton et al., 2016; White et al., 2017). The selection of parameter

settings determines the performance and sensitivity of the bioinformatic tools. The choice of

the tools and assemblers depend on the source and biological relevance of the data. Assessing

the impact of different workflows and parameter settings can affect the quality of the

assembled genome. Combination of different assemblies can help in establishing the

optimized workflow. Different assemblers are based different algorithms and differ in their

accuracy, speed, computational skills and requirements. Hence, it is judicious to get

acquainted with the various algorithms available and then selecting a particular, suitable

approach (Caicedo-Montoya et al., 2019; Datta, 2015).

Finally, Chipster with its comprehensive collection of analysis tools can provide a way to

efficiently perform pre-processing of data and initial analysis with the help of A5 assembly

pipeline for picornaviruses. Alternatively, external assemblers can be used. The quality of the

sequences defines which method is the most optimal for designated virus. For this purpose,

one needs to compare the sequences to larger pool of NGS sequences of the same type.

Inclusion of the external assembler within Chipster environment can help to establish a

straightforward and user-friendly workflow for next generation sequencing of picornaviruses.

47

7 References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local

alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

https://doi.org/https://doi.org/10.1016/S0022-2836(05)80360-2

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin,

V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V.,

Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new

genome assembly algorithm and its applications to single-cell sequencing. Journal of

Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021

Blawid, R., Silva, J. M. F., & Nagata, T. (2017). Discovering and sequencing new plant viral

genomes by next-generation sequencing: description of a practical pipeline. Annals of

Applied Biology, 170(3), 301–314. https://doi.org/10.1111/aab.12345

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for

Illumina sequence data. Bioinformatics, 30(15), 2114–2120.

https://doi.org/10.1093/bioinformatics/btu170

Boros, Á., Nemes, C., Pankovics, P., Kapusinszky, B., Delwart, E., & Reuter, G. (2012).

Identification and complete genome characterization of a novel picornavirus in Turkey

(Meleagris gallopavo). Journal of General Virology, 93(PART 10), 2171–2182.

https://doi.org/10.1099/vir.0.043224-0

Caicedo-Montoya, C., Pinilla, L., Toro, L. F., Yepes-García, J., & Ríos-Estepa, R. (2019).

Comparative analysis of strategies for de novo transcriptome assembly in prokaryotes:

Streptomyces clavuligerus as a case study. High-Throughput, 8(4).

https://doi.org/10.3390/ht8040020

Chevreux, B. (2018). Sequence assembly and mapping with MIRA 5 The Definitive Guide.

Chun, S., Muthu, M., Gopal, J., Paul, D., Kim, D. H., Gansukh, E., & Anthonydhason, V.

(2018). The unequivocal preponderance of biocomputation in clinical virology. RSC

Advances, 8(31), 17334–17345. https://doi.org/10.1039/c8ra00888d

Cifuente, J. O., & Moratorio, G. (2019). Evolutionary and Structural Overview of Human

Picornavirus Capsid Antibody Evasion. Frontiers in Cellular and Infection

Microbiology, 9(August), 1–11. https://doi.org/10.3389/fcimb.2019.00283

Coil, D., Jospin, G., & Darling, A. E. (2015). A5-miseq: An updated pipeline to assemble

microbial genomes from Illumina MiSeq data. Bioinformatics, 31(4), 587–589.

https://doi.org/10.1093/bioinformatics/btu661

48

Daly, G. M., Leggett, R. M., Rowe, W., Stubbs, S., Wilkinson, M., Ramirez-Gonzalez, R. H.,

Caccamo, M., Bernal, W., & Heeney, J. L. (2015). Host subtraction, filtering and

assembly validations for novel viral discovery using next generation sequencing data.

PLoS ONE, 10(6), 1–28. https://doi.org/10.1371/journal.pone.0129059

Datta, S. (2015). Next-generation sequencing in clinical virology: Discovery of new viruses.

World Journal of Virology, 4(3), 265. https://doi.org/10.5501/wjv.v4.i3.265

Ekblom, R., & Wolf, J. B. W. (2014). A field guide to whole-genome sequencing, assembly

and annotation. Evolutionary Applications, 7(9), 1026–1042.

https://doi.org/10.1111/eva.12178

Goya, S., Valinotto, L. E., Tittarelli, E., Rojo, G. L., Nabaes Jodar, M. S., Greninger, A. L.,

Zaiat, J. J., Marti, M. A., Mistchenko, A. S., & Viegas, M. (2018). An optimized

methodology for whole genome sequencing of RNA respiratory viruses from

nasopharyngeal aspirates. PLoS ONE, 13(6), 1–15.

https://doi.org/10.1371/journal.pone.0199714

Guo, Y., Ye, F., Sheng, Q., Clark, T., & Samuels, D. C. (2013). Three-stage quality control

strategies for DNA re-sequencing data. Briefings in Bioinformatics, 15(6), 879–889.

https://doi.org/10.1093/bib/bbt069

Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment

tool for genome assemblies. Bioinformatics, 29(8), 1072–1075.

https://doi.org/10.1093/bioinformatics/btt086

Hodzic, J., Gurbeta, L., Omanovic-Miklicanin, E., & Badnjevic, A. (2017). Overview of

Next-generation Sequencing Platforms Used in Published Draft Plant Genomes in Light

of Genotypization of Immortelle Plant (Helichrysium Arenarium). Medical Archives

(Sarajevo, Bosnia and Herzegovina), 71(4), 288–292.

https://doi.org/10.5455/medarh.2017.71.288-292

Huang, B., Jennsion, A., Whiley, D., McMahon, J., Hewitson, G., Graham, R., De Jong, A.,

& Warrilow, D. (2019). Illumina sequencing of clinical samples for virus detection in a

public health laboratory. Scientific Reports, 9(1), 1–8. https://doi.org/10.1038/s41598-

019-41830-w

Ibrahim, B., McMahon, D. P., Hufsky, F., Beer, M., Deng, L., Mercier, P. Le, Palmarini, M.,

Thiel, V., & Marz, M. (2018). A new era of virus bioinformatics. Virus Research, 251,

86–90. https://doi.org/10.1016/j.virusres.2018.05.009

J, S., & G, S. (2016). Next Generation Sequencing-Current Status. Journal of Next

Generation Sequencing & Applications, 3(1), 1–2. https://doi.org/10.4172/2469-

49

9853.1000e107

Joffret, M.-L., Polston, P. M., Razafindratsimandresy, R., Bessaud, M., Heraud, J.-M., &

Delpeyroux, F. (2018). Whole Genome Sequencing of Enteroviruses Species A to D by

High-Throughput Sequencing: Application for Viral Mixtures. Frontiers in

Microbiology, 9(September), 1–10. https://doi.org/10.3389/fmicb.2018.02339

Kallio, M. A., Tuimala, J. T., Hupponen, T., Klemelä, P., Gentile, M., Scheinin, I., Koski, M.,

Käki, J., & Korpelainen, E. I. (2011). Chipster: User-friendly analysis software for

microarray and other high-throughput data. BMC Genomics, 12(1), 507.

https://doi.org/10.1186/1471-2164-12-507

Kasibhatla, S. M., Waman, V. P., & Kale, Mohan M. and Kulkarni-Kale, U. (2016). Analysis

of Next-generation Sequencing Data in Virology - Opportunities and Challenges. Intech,

i(tourism), 13. https://doi.org/http://dx.doi.org/10.5772/57353

Kerkvliet, J., Edukulla, R., & Rodriguez, M. (2010). Novel Roles of the Picornaviral 3D

Polymerase in Viral Pathogenesis. Advances in Virology, 2010.

https://doi.org/10.1155/2010/368068

Kremer, F. S., McBride, A. J. A., & Pinto, L. da S. (2017). Approaches for in silico finishing

of microbial genome sequences. Genetics and Molecular Biology, 40(3), 553–576.

https://doi.org/10.1590/1678-4685-gmb-2016-0230

Kruppa, J., Jo, W. K., van der Vries, E., Ludlow, M., Osterhaus, A., Baumgaertner, W., &

Jung, K. (2018). Virus detection in high-throughput sequencing data without a reference

genome of the host. Infection, Genetics and Evolution, 66, 180–187.

https://doi.org/https://doi.org/10.1016/j.meegid.2018.09.026

Kulski, J. K. (2016). Next-Generation Sequencing — An Overview of the History, Tools, and

“Omic” Applications. In J. K. Kulski (Ed.), Next Generation Sequencing. IntechOpen.

https://doi.org/10.5772/61964

Lambert, C., Braxton, C., Charlebois, R. L., Deyati, A., Duncan, P., La Neve, F., Malicki, H.

D., Ribrioux, S., Rozelle, D. K., Michaels, B., Sun, W., Yang, Z., & Khan, A. S. (2018).

Considerations for optimization of high-throughput sequencing bioinformatics pipelines

for virus detection. Viruses, 10(10). https://doi.org/10.3390/v10100528

Langmead, B., & Salzberg, S. (2013). Bowtie2. Nature Methods, 9(4), 357–359.

https://doi.org/10.1038/nmeth.1923.Fast

Lee, H. C., Lai, K., Lorenc, M. T., Imelfort, M., Duran, C., & Edwards, D. (2012).

Bioinformatics tools and databases for analysis of next-generation sequence data.

Briefings in Functional Genomics, 11(1), 12–24. https://doi.org/10.1093/bfgp/elr037

50

Lee, W. P., Stromberg, M. P., Ward, A., Stewart, C., Garrison, E. P., & Marth, G. T. (2014).

MOSAIK: A hash-based algorithm for accurate next-generation sequencing short-read

mapping. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0090581

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics, 25(14), 1754–1760.

https://doi.org/10.1093/bioinformatics/btp324

Lim, C. S., & Brown, C. M. (2018). Know your enemy: Successful bioinformatic approaches

to predict functional RNA structures in viral RNAs. Frontiers in Microbiology, 8(JAN).

https://doi.org/10.3389/fmicb.2017.02582

Lischer, H. E. L., & Shimizu, K. K. (2017). Reference-guided de novo assembly approach

improves genome reconstruction for related species. BMC Bioinformatics, 18(1), 1–12.

https://doi.org/10.1186/s12859-017-1911-6

Liu, L., Li, Y., Li, S., Hu, N., He, Y., Ray, P., Lin, D., Lu, L., & and Law, M. (2012).

Comparison ofNext-Generation Sequencing Systems Lin. Journal of Biomedicine and

Biotechnology, 2012, 11. https://doi.org/10.1201/b16568

Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y.,

Tang, J., Wu, G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C., …

Wang, J. (2012). SOAPdenovo2: An empirically improved memory-efficient short-read

de novo assembler. GigaScience, 1, 1. https://doi.org/10.1186/s13742-015-0069-2

Madden, T. (2013). The BLAST sequence analysis tool. The BLAST Sequence Analysis Tool,

Md, 1–17. http://www.ncbi.nlm.nih.gov/books/NBK153387/

Maljkovic Berry, I., Melendrez, M. C., Bishop-Lilly, K. A., Rutvisuttinunt, W., Pollett, S.,

Talundzic, E., Morton, L., & Jarman, R. G. (2020). Next Generation Sequencing and

Bioinformatics Methodologies for Infectious Disease Research and Public Health:

Approaches, Applications, and Considerations for Development of Laboratory Capacity.

The Journal of Infectious Diseases, 221(3), S292–S307.

https://doi.org/10.1093/infdis/jiz286

Marston, D. A., McElhinney, L. M., Ellis, R. J., Horton, D. L., Wise, E. L., Leech, S. L.,

David, D., de Lamballerie, X., & Fooks, A. R. (2013). Next generation sequencing of

viral RNA genomes. BMC Genomics, 14(1). https://doi.org/10.1186/1471-2164-14-444

Martin, M. (2011). Cutadapt Removes Adapter Sequences From High-Throughput

Sequencing Reads. EMBnet.Journal, 17(1), 10–12.

Metzker, M. L. (2010). Sequencing technologies the next generation. Nature Reviews

Genetics, 11(1), 31–46. https://doi.org/10.1038/nrg2626

51

Montmayeur, A. M., Ng, T. F. F., Schmidt, A., Zhao, K., Magaña, L., Iber, J., Castro, C. J.,

Chen, Q., Henderson, E., Ramos, E., Shaw, J., Tatusov, R. L., Dybdahl-Sissoko, N.,

Endegue-Zanga, M. C., Adeniji, J. A., Oberste, M. S., & Burns, C. C. (2017). High-

throughput next-generation sequencing of polioviruses. Journal of Clinical

Microbiology, 55(2), 606–615. https://doi.org/10.1128/JCM.02121-16

Nielsen, A. C. Y., Gyhrs, M. L., Nielsen, L. P., Pedersen, C., & Böttiger, B. (2013).

Gastroenteritis and the novel picornaviruses aichi virus, cosavirus, saffold virus, and

salivirus in young children. Journal of Clinical Virology, 57(3), 239–242.

https://doi.org/https://doi.org/10.1016/j.jcv.2013.03.015

Nooij, S., Schmitz, D., Vennema, H., Kroneman, A., & Koopmans, M. P. G. (2018).

Overview of virus metagenomic classification methods and their biological applications.

Frontiers in Microbiology, 9(APR). https://doi.org/10.3389/fmicb.2018.00749

Orton, R. J., Gu, Q., Hughes, J., Maabar, M., Modha, S., Vattipally, S. B., Wilkie, G. S., &

Davison, A. J. (2016). Bioinformatics tools for analysing viral genomic data. OIE Revue

Scientifique et Technique, 35(1), 271–285. https://doi.org/10.20506/rst.35.1.2432

Peng, Y., Leung, H. C. M., Yiu, S. M., & Chin, F. Y. L. (2012). IDBA-UD: A de novo

assembler for single-cell and metagenomic sequencing data with highly uneven depth.

Bioinformatics, 28(11), 1420–1428. https://doi.org/10.1093/bioinformatics/bts174

Pereira, R., Oliveira, J., & Sousa, M. (2020). Bioinformatics and Computational Tools for

Next-Generation Sequencing Analysis in Clinical Genetics. Journal of Clinical

Medicine, 9(1), 132. https://doi.org/10.3390/jcm9010132

Posada-Cespedes, S., Seifert, D., & Beerenwinkel, N. (2017). Recent advances in inferring

viral diversity from high-throughput sequencing data. Virus Research, 239, 17–32.

https://doi.org/10.1016/j.virusres.2016.09.016

Radford, A. D., Chapman, D., Dixon, L., Chantrey, J., Darby, A. C., & Hall, N. (2012).

Application of next-generation sequencing technologies in virology. Journal of General

Virology, 93, 1853–1868. https://doi.org/10.1099/vir.0.043182-0

Santti, J., Raija, V., & Hyypiä, T. (1999). Molecular detection and typing of human

picornaviruses. Virus Research, 62, 177–183.

Simmonds, P., Gorbalenya, A. E., Harvala, H., Hovi, T., Knowles, N. J., Lindberg, A. M.,

Oberste, M. S., Palmenberg, A. C., Reuter, G., Skern, T., Tapparel, C., Wolthers, K. C.,

Woo, P. C. Y., & Zell, R. (2020). Recommendations for the nomenclature of

enteroviruses and rhinoviruses. Archives of Virology, 0123456789.

https://doi.org/10.1007/s00705-019-04520-6

52

Song, G., Lee, J., Kim, J., Kang, S., Lee, H., Kwon, D., Lee, D., Lang, G. I., Michael Cherry,

J., & Kim, J. (2019). Integrative meta-assembly pipeline (IMAP): Chromosome-level

genome assembler combining multiple de novo assemblies. PLoS ONE, 14(8), 1–15.

https://doi.org/10.1371/journal.pone.0221858

Sutton, T. D. S., Clooney, A. G., Ryan, F. J., Ross, R. P., & Hill, C. (2019). Choice of

assembly software has a critical impact on virome characterisation. Microbiome, 7(1),

1–15. https://doi.org/10.1186/s40168-019-0626-5

van der Linden, L., Wolthers, K. C., & van Kuppeveld, F. J. M. (2015). Replication and

inhibitors of enteroviruses and parechoviruses. Viruses, 7(8), 4529–4562.

https://doi.org/10.3390/v7082832

White, D. J., Wang, J., & Hall, R. J. (2017). Assessing the impact of assemblers on virus

detection in a de novo metagenomic analysis pipeline. Journal of Computational

Biology, 24(9), 874–881. https://doi.org/10.1089/cmb.2017.0008

Wolthers, K. C., Susi, P., Jochmans, D., Koskinen, J., Landt, O., Sanchez, N., Palm, K.,

Neyts, J., & Butcher, S. J. (2019). Progress in human picornavirus research: New

findings from the AIROPico consortium. Antiviral Research, 161(November 2018),

100–107. https://doi.org/10.1016/j.antiviral.2018.11.010

Yin-Murphy, M., & Almond, J. W. (1996). Chapter 53 Picornaviruses.

Zell, R. (2018). Picornaviridae—the ever-growing virus family. Archives of Virology, 163(2),

299–317. https://doi.org/10.1007/s00705-017-3614-8

Zerbino, D. R. (2010). Using Velvet de novo assembler for short-reading sequence

technologies. Current Protocols Bioinformatics, 31(11), 1–13.

https://doi.org/10.1002/0471250953.bi1105s31.Using

Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly

using de Bruijn graphs. Genome Research, 18(5), 821–829.

https://doi.org/10.1101/gr.074492.107

Zheng, Y., Gao, S., Padmanabhan, C., Li, R., Galvez, M., Gutierrez, D., Fuentes, S., Ling, K.

S., Kreuze, J., & Fei, Z. (2017). VirusDetect: An automated pipeline for efficient virus

discovery using deep sequencing of small RNAs. Virology, 500(August 2016), 130–138.

https://doi.org/10.1016/j.virol.2016.10.017

53

8 Acknowledgements

To work sincerely and to best of one’s ability is the imperative for a student. But work

without any proper direction can be in vain. Hence, I would like to express my sincere

gratitude to Dr. Petri Susi, for acting as my supervisor for this thesis and his continued

guidance, support and useful critiques throughout the study. I am deeply grateful to Dr.

Martti Tolvanen for his insights and enthusiastic encouragement throughout the duration of

the studies. Discussions with Petri and Martti have always been illuminating and beneficial.

I would like to thank Eero Hietanen for his valuable inputs and help in thesis work. I warmly

thank Juho Heimonen for his guidance and support throughout the MSc program. I would

also like to thank CSC-Chipster team for their suggestions.

Finally, I would like to thank my family and friends for their unwavering support,

encouragement and confidence in me, which has helped me throughout the journey of my

life.

54

 Next generation sequencing

Table A.1 Glossary for NGS

Term Meaning

Adapters Short sequence-specific oligos ligated to the 5´and 3´ ends of each

DNA fragment in a sequence library

Alignment Matching sequencing reads to a reference genome

Burrows-Wheeler

transformation

(BWT)

BWT is a method of indexing (and compressing) a reference genome

into a graph data structure of overlapping substrings, known as a suffix

tree. It requires a single computational effort to build this graph for a

particular reference genome, then it can be stored and reused when

mapping multiple NGS data sets to this genome. The BWT method is

particularly efficient when the data contain runs of repeated sequences

Consensus sequence When two or more DNA sequences are aligned, the overlapping

portions can be combined to create a single consensus sequence. In

positions where all overlapping sequences have the same base (a single

column of the multiple alignment), that base becomes the consensus.

Contigs A contiguous linear stretch of DNA or RNA consensus sequence, in

silico, constructed by aligning a number of smaller overlapping

sequencing reads

Coverage

(depth/level)

The average number of sequenced bases that align to known reference

bases

de Bruijn graph

(DBG)

This is a graph theory method for assembling a long sequence (like a

genome) from overlapping fragments (like sequence reads). The de

Bruijn graph is a set of unique substrings (words) of a fixed length

(a k-mer) that contain all possible words in the data set exactly once.

De novo sequencing Sequencing of genetic material with no reference sequence available

DNA fragment A small piece of DNA, often produced by a physical or chemical

shearing of larger DNA molecules.

Illumina sequencing The NGS sequencing method developed by the Solexa company, then

acquired by Illumina Inc.

k-mer Short, unique element of DNA sequence of length k, used by many

assembly algorithms

55

Library

Collection of DNA (or RNA) fragments modified in a way that is

appropriate for downstream analyses, such as high-throughput

sequencing in this case

Mapping A term routinely used to describe alignment of short sequence reads to

a longer reference sequence

N50

A statistic of a set of contigs (or scaffolds). It is defined as the length

for which the collection of all contigs of that length or longer contains

at least half of the total of the lengths of the contigs.

Next-generation

sequencing (NGS)

DNA sequencing technologies that simultaneously determine the

sequence of DNA bases from many thousands (or millions) of DNA

templates in a single biochemical reaction volume.

Oligonucleotide

(oligo)

A short DNA or RNA sequence

Paired-end

sequencing

A process of sequencing from both ends of a DNA fragment in the

same run

Quality score A metric in NGS that predicts or estimates the probability of an error in

base calling

Read Data output (Short base-pair sequence inferred) from the analysis of a

single fragment or sequence of DNA/RNA template by sequencing

Reference genome A fully sequenced and assembled genome; A curated consensus

sequence for all of the DNA in the genome (all of the chromosomes) of

a species of organism.

Scaffold Two or more contigs joined together using read-pair information

Sequence assembly Computational reconstruction of a longer sequence from smaller

sequence reads by finding overlaps of identical (or nearly identical)

strings of letters among a set of sequence fragments and iteratively

joining them together

Throughput The amount of data produced by a next-generation sequencing

instrument

Table A.2 Common file formats used in NGS analysis

File format Description

FASTA Text file representing nucleotide or protein sequences

56

FASTQ* Text file storing raw sequence and its corresponding quality

score for each nucleotide in ASCII code

SAM Output of short-read sequence aligners, storage of sequence

alignments and their mapping coordinates

BAM Binary form of SAM

BED Used for viewing alignments in a genome browser as annotation

track.

* typically, gzip compressed, extension. fastq.gz or fq.gz

SAM- Sequence Alignment/Map

BAM- Binary Alignment/Map

BED- Browser Extensible Data

Table A.3 Commercial platforms available for bioinformatic analysis

Platform Link Application

platform

Cost

CLC

Genomics

Workbench

http://www.clcbio.com/download Command

line interface,

Graphical

user interface

Paid

Galaxy https://usegalaxy.org/ Web-based Free but

Registration

required

Geneious https://www.geneious.com/ Graphical

user interface

Paid

Table A.4 Various pipelines and tools available for virus NGS analysis

Tool Reference Source Purpose Platform

ABySS Simpson et

al, 2009

https://codeload.github.com/bcgsc/aby

ss/tar.gz/2.0.2

De novo

assembly of

short reads

Command

line

interface

ALLPATHS-

LG

Gnerre et

al, 2010

http://software.broadinstitute.org/allpa

ths-lg/blog/

De novo

assembly of

short reads

Command

line

interface

57

drVM

Hsin-Hung

Lin and

Yu-Chieh

Liao, 2017

https://sourceforge.net/projects/sb2nhr

i/files/drVM/

Rapid viral

read

identification, ,

de novo

assembly

Command

line

interface,

Graphical

user

interface

GLUE Singer et

al, 2018

http://glue-tools.cvr.gla.ac.uk/#/home A flexible

software

system support

for rapid

development of

virus sequence

data

Command

line

interface

IDBA-UD Peng et al,

2012

http://www.cs.hku.hk/~alse/idba_ud De novo

assembler for

single-cell and

metagenomic

sequencing

data

Command

line

interface

IVA Hunt et al,

2015

http://sanger-pathogens.github.io/iva De novo

assembler

designed to

assemble virus

genomes that

have no repeat

sequences

Command

line

interface

Kaiju Menzel et

al, 2016

http://kaiju.binf.ku.dk Taxonomic

classification of

metagenomic

NGS reads

Command

line

interface

Kraken Davis et al,

2013

http://www.ebi.ac.uk/research/enright/

software/kraken

Suite of tools

for quality

control and

Command

line

interface

58

analysis of

NGS datasets

Metavir 2 Roux et al,

2014

http://metavir-meb.univ-bpclermont.fr Viral

metagenome

comparison and

assembled

virome analysis

Web user

interface

MIRA Chevreux,

2018

http://mira-

assembler.sourceforge.net/docs/Defini

tiveGuideToMIRA.html

De novo

assembly of

short reads

Command

line

interface

MOSAIK Lee et al,

2014

http://gkno.me;

https://github.com/wanpinglee/MOSA

IK/wiki

Reference-

guided aligner

Command

line

interface

PANDAseq Masella et

al, 2012

https://github.com/neufeld/pandaseq Assembles

paired-end

reads

Command

line

interface

PRICE Ruby et al,

2013

derisilab.ucsf.edu/software/price/ or

sourceforge.net/projects/pricedenovo/

De

novo assembly

of short gun

metagenomic

data

Command

line

interface

RIEMS Scheuch et

al, 2015

No working link available Taxonomic

classification of

all individual

reads in

metagenomics

sequence

datasets

Command

line

interface

RINS Bhaduri et

al, 2012

http://khavarilab.stanford.edu/tools-

1#tools

Workflow for

identification

of non-human

sequences in

Command

line

interface

59

metagenomic

datasets

SOAPdenovo

2

Luo R et

al, 2012

https://github.com/aquaskyline/SOAP

denovo2

De novo

assembly of

short reads

Command

line

interface

SPAdes Bankevich

et al, 2013

http://cab.spbu.ru/files/release3.10.1/

manual.html

De novo

assembly of

short reads and

single cell

assembler

Command

line

interface

SSAKE Warren et

al, 2007

 http://www.bcgsc.ca/bioinfo/software

/ssake

De novo

assembly of

short reads

Command

line

interface

SURPI Naccache

et al, 2014

https://github.com/chiulab/surpi Pipeline for

pathogen

identification

from complex

metagenomic

NGS data from

clinical

samples

Command

line

interface

Trinity Grabherr et

al, 2011

https://github.com/trinityrnaseq/trinity

rnaseq/wiki

De novo

transcriptomes

reconstruction

from RNA-seq

data

Command

line

interface

Velvet Zerbino

and Birney,

2008

https://www.ebi.ac.uk/~zerbino/velvet

/

De novo

assembly of

short reads

Command

line

interface

V-GAP Nakamura

et al, 2015

No link available An automated

pipeline for de

novo assembly

and rapid

-

60

genome typing

of viruses

VICUNA Yang et al,

2012

http://www.broadinstitute.org/scientifi

c-community/science/projects/viral-

genomics/viral-genomics-analysis-

software

De

novo assembly

Command

line

interface

VIP Li et al,

2016

https://github.com/keylabivdc/VIP Virus

identification

and discovery

metagenomic

NGS data

Command

line

interface

Vipie Lin J et al,

2017

https://binf.uta.fi/vipie;

https://sourceforge.net/projects/vipie/

De novo

assembly,

taxonomic

classification of

viruses as well

as sample

analyses

Web user

interface,

Registration

required

VirFinder2 Wang Q et

al, 2015

https://bioinfo.uth.edu/VirusFinder/ Intra-host

viruses in NGS

data

Command

line

interface

VIROME

Wommack

et al, 2012

http://virome.dbi.udel.edu/ Bioinformatics

pipeline for

metagenomic

analysis

Web user

interface,

Free

registration

required

VirSorter Roux et al,

2015

https://github.com/simroux/VirSorter Designed and

optimized for

detection of

bacterial and

archaeal

viruses

Web user

interface

61

VirusHunter Zhao G et

al, 2013

http://www.ibridgenetwork.org/wustl/

virushunter

Detects both

novel and

known

sequence of

microbial

origin

Command

line

interface

VirusSeeker Zhao et al,

2017

https://github.com/guoyanzhao/Virus

Seeker-Virome

Pipeline for

both novel

virus discovery

and virome

composition

analysis

Command

line

interface

VirusSeq Chen et al,

2013

http://odin.mdacc.tmc.edu/∼xsu1/Viru

sSeq.html

Detecting

known viruses

and their

integration sites

in the human

genome using

NGS data

Command

line

interface

VirusTAP Yamashita

et al, 2016

https://gph.niid.go.jp/cgi-

bin/virustap/index.cgi/.

Assembles

virus genomes

from NGS

reads

Web user

interface

(Firefox

only)

Vy-PER

Michael

Forster et

al, 2015

https://www.ikmb.uni-kiel.de/vy-per/ Detection of

virus

integration

Command

line

interface

drVM-detect and reconstruct known viral genomes from metagenomes

GLUE-Genes Linked by Underlying Evolution

IVA-Iterative Virus Assembler

NGS-next generation sequencing

PRICE- paired-read iterative contig extension

RIEMS-Reliable Information Extraction from Metagenomic Sequence datasets

RINS-Rapid identification of non-human sequences

SURPI-sequence-based ultra-rapid pathogen identification

V-GAP-Viral genome assembly pipeline

62

VIP-Virus Identification Pipeline

VIROME- Viral Informatics Resource for Metagenome Exploration

Virus TAP-Virus genome-Targeted Assembly Pipeline

 Vy-PER-Virus integration detection bY Paired End Reads

63

 Software and their output files

Chipster

Java- web start desktop application (Chipster v3.16.3)

A5 assembly pipeline

Table B.1 A5 assembly output files

a5_assembly.contigs.fasta Contigs

a5_assembly.final.scaffolds.fasta Final scaffolds (checked for misassemblies,

and re-scaffolded)

a5_assembly.final.scaffolds.fastq Final scaffolds in FastQ format with base

call qualities

a5_assembly.final.scaffolds.qvl Quality values for the final scaffolds in

QVL format for submission to NCBI

a5_assembly_stats.csv A tab-separated file with assembly summary

statistics

VelvetOptimiser

VelvetOptimiser-2.2.5

Dependencies:

• Velvet => 0.7.51

• Perl => 5.8.8

• BioPerl >= 1.4

• GNU utilities: grep sed free cut

Table B.2 VelvetOptimiser output files and contents

Contigs.fa Fasta file with sequences of the contigs

Graph a textual representation of the contig graph

Graph2 Detailed representation of the de Bruijn

graph

Log commands you typed to get this assembly

result, for reproducing results later on

PreGraph --

64

Sequences Sequences used as input

stats Simple tab-limited description of the nodes

SPAdes

SPAdes requires a 64-bit Linux system or Mac OS and Python (supported versions are

Python2: 2.4–2.7, and Python3: 3.2 and higher) to be pre-installed on it.

Table B.3 SPAdes output

 SPAdes stored all output files in the output directory specified at the start of the run.

corrected/ directory contains reads corrected by

BayesHammer in fastq.gz files;

scaffolds.fasta contains resulting scaffolds

contigs.fasta contains resulting contigs

assembly_graph.gfa contains SPAdes assembly graph and

scaffolds paths in GFA 1.0 format

assembly_graph.fastg contains SPAdes assembly graph in FASTG

format

contigs.paths contains paths in the assembly graph

corresponding to contigs.fasta

scaffolds.paths contains paths in the assembly graph

corresponding to scaffolds.fasta

params.txt information about SPAdes parameters in

this run

spades.log SPAdes log

dataset.info internal configuration file

input_dataset.yaml internal YAML data set file

QUAST

QUAST can be run on Linux (64-bit and 32-bit with slightly limited functionality) or macOS

(OS X).

Its default pipeline requires:

• Python2 (2.5 or higher) or Python3 (3.3 or higher)

• GCC 4.7 or higher

• Perl 5.6.0 or higher

65

• GNU make and ar

• zlib development files

Table B.4 QUAST output files

report.txt assessment summary in plain text format

report.tsv tab-separated version of the summary

report.tex LaTeX version of the summary

icarus.html Icarus main menu with links to interactive viewers

report.pdf all other plots combined with all tables

report.html HTML version of the report with interactive plots

contigs_reports/ generated only if a reference genome is provided

66

 Supplementary tables for results

Table C.1 Virus names and their abbreviations
The following table includes virus nomenclature as per recommended by Simmonds et

al., 2020

Virus name Abbreviation of virus name

Coxsackievirus A9 CVA9

Coxsackievirus B1 CVB1

Coxsackievirus B2 CVB2

Coxsackievirus B3 CVB3

Coxsackievirus B4 CVB4

Coxsackievirus B5 CVB5

Echovirus E13 E13

Echovirus E18 E18

Echovirus E27 E27

Echovirus E30 E30

Echovirus E30 E30

Echovirus E6 E6

Echovirus E9 E9

Enterovirus D68 EV-D68

Hu-Parechovirus 1 PeV-A1

Hu-Parechovirus 3 PeV-A3

Hu-Parechovirus 4 PeV-A4

Hu-Parechovirus 5 PeV-A5

Table C.2 Comparison of final assembly outputs for A5, Velvet and SPAdes

programs
The table informs about sequence and virus it was typed for (Sanger typed), longest

scaffold produced by all three assembly programs and their respective BLASTN viral

hits.

Sequence Typed as
A5 Velvet Spades

Length Putative viral hit Length Putative viral hit Length Putative viral hit

FFGC_VIR_1 EV-D68_19 6950 E18 None 7213 E6, CVB2

FFGC_VIR_2 EV-D68_21 5918 E18 None 5102 E18

FFGC_VIR_3 EV-D68_23 7356 E18 None 7367 E18

FFGC_VIR_4

EV-

D68Fermon

(type strain).

7376 EV-D68

3420 EV-D68 6904 EV-D68
7107 E18

67

FFGC_VIR_5
A2269 (E-

18)
7135 E18 7383 E18 1017 CVB4, E27

FFGC_VIR_6
A2326 (E-

18)
7458 E18 7189 E18 1224 E18

FFGC_VIR_7
A2262 (E-

18)
7401 E18 7310 E18 None

FFGC_VIR_8
A2283 (E-

18)
7409 E18 7273 E18 7424 E18

FFGC_VIR_9
B3612 (E-

13)
5774 E13 7309 E13 7418 E13

FFGC_VIR_10

1S AFP

etiology by

unknown

pathogen

775
EV-B, CVB3,

CVB4
None

2277 E30, CVB1

2223 EV-D68

FFGC_VIR_11
CB103 (EV-

D68)
7339 EV-D68 6994 EV-D68 7341 EV-D68

FFGC_VIR_13
TU44 (EV-

D68)
7340 EV-D68 7344 EV-D68 7474 EV-D68

FFGC_VIR_18
PeV-

A3/Vi988
None None None

FFGC_VIR_19
PeV-

A3/152037

6749 PeV-A3 6719 PeV-A3 5034 PeV-A3

4344 PeV-A4 4132 PeV-A, PeV-A4 1428 PeV-A3, PeV-A4

FFGC_VIR_20
PeV-A3/145-

8
3053

PeV-A1, PeV-

A3, PeV-A4
None 3092

PeV-A1, PeV-A3,

PeV-A4

FFGC_VIR_21
PeV-A1/101-

17
7335 PeV-A1 7274

PeV-A, PeV-A1,

PeV-A3, PeV-A4
7340 PeV-A1

FFGC_VIR_22
PeV-A1/103-

2
7314 PeV-A1 7276

PeV-A, PeV-A1,

PeV-A5, PeV-A4
7647

PeV-A, PeV-A5,

PeV-A4

