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1. Introduction 

 

 

1.1 Maternal psychological distress and its effect on the infant 

 

Early life stress (ELS) is known to have adverse, long lasting consequences on an infant’s 

development, capable of persisting into adulthood. ELS initially manifests as maternal 

prenatal psychological distress (PD) during the prenatal period. Maternal prenatal PD is 

defined as distress in an expectant mother that is caused by depression, anxiety, major life 

events or environmental hardships. Exposure to maternal prenatal PD may predispose infants 

to abnormal behavioural, emotional and cognitive development [1]. Other gestational 

stressors, such as infection, obesity, hypoxia and malnourishment, also may result in altered 

brain development.  The child’s behavioural and emotional development may be affected, for 

example, by their attention span and reaction to stress. In regard to cognitive development, 

spatial learning and hippocampal plasticity may be impaired [2]. Maternal prenatal PD is of 

particular interest to researchers because it could potentially account for the 17% of variance 

seen in childhood cognitive ability and for doubling the prevalence of child psychiatric 

disorders [3]. 

 

One of the main mechanisms by which maternal prenatal PD affects the infant’s 

neurodevelopment is the altered maternal hypothalamus-pituitary-adrenal (HPA) axis 

functioning. The maternal HPA axis activates in response to stress and produces cortisol, a 

glucocorticoid hormone, as the end product [1]. Briefly, the hypothalamus reacts to stress by 

secreting two hormones - corticotropin-releasing hormone (CRH) and arginine vasopressin 

(AVP). Both hormones are then released into the anterior pituitary gland, where they trigger 

the release of the adrenocorticotropic hormone (ACTH). In turn, ACTH stimulates the 

synthesis and secretion of cortisol in the adrenal glands (Figure 1) [4]. Exposure to maternal 

prenatal PD ultimately increases the child’s hypothalamic–pituitary–adrenal (HPA) axis 

sensitivity via the altered maternal HPA axis, therefore negatively impacting the infant’s 
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reactivity to stress and making them more susceptible to psychiatric disorders [1, 5].  Other 

mechanisms mediating the effects of maternal prenatal PD on the infant include changes in 

the mother’s and infant’s autonomic nervous system, gut microbiota, immune system, and the 

infant’s telomere length. The mother’s diet, fitness and other lifestyle choices also influence 

maternal prenatal PD [6]. 

 

 

 

                                     

 

 

 

 

 

 

 

 

 

 

Figure 1. Components of the HPA axis.                                                                                         

The hypothalamus secretes CRH and AVP, which are then released into the anterior pituitary 

gland, where they trigger the release of ACTH. In turn, ACTH stimulates the synthesis and 

secretion of cortisol in the adrenal glands [4]. 
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1.2 Role of maternal psychological distress and cortisol concentrations as biomarkers 

 

 

 

Cortisol, an end product of the HPA stress response system, is perhaps responsible for 

imparting the effects of maternal prenatal PD on the fetus - via altered cortisol signalling 

patterns. High maternal prenatal cortisol concentration has been observed to be associated 

with impaired neurodevelopment in the infant, with motor development, cognitive 

development, regional brain volumes being affected. Maternal prenatal PD can be assessed 

by maternal prenatal cortisol concentrations and self-reported maternal prenatal PD. Maternal 

prenatal cortisol concentrations have traditionally been measured using the maternal saliva, 

blood or urine samples, all which have in studies been linked with altered neurodevelopment 

in the infant [3]. On the other hand, self-reported maternal prenatal PD is measured in 

expectant mothers using a variety of questionnaires that target distinct components of the 

stress response, such as depressive symptoms, overall anxiety, and pregnancy-specific 

anxiety [1,3].  

 

 

Associations between maternal prenatal cortisol concentrations and self-reported maternal 

prenatal PD have been weak or inconsistently significant in prior studies [3]. For instance, 

maternal salivary cortisol measurements taken between 24 and 38 weeks gestation, or at 

earlier gestation points in other related studies, didn’t correspond with self-reported maternal 

prenatal PD [7]; whereas in another study, maternal morning salivary cortisol in late 

pregnancy was significantly inversely associated with positive life events [8].  

 

 

 Assessing cortisol levels by short-term measurements, such as saliva, plasma or urine, is 

problematic for several reasons: daytime and seasonal fluctuations in the circadian clock and 

homeostatic regulatory mechanisms can cause high variability in baseline cortisol levels 

between and within subjects; multiple sampling is required for short-term measurements, 

which often isn’t performed enough; and maternal HPA axis functioning changes during 

pregnancy [9,3]. To explain, maternal cortisol levels normally increase at the end of 

pregnancy since they’re essential for the maturation of organs in the fetus and initiating 

childbirth, consequently making cortisol concentration readings at separate time points non-
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generalizable to other trimesters. Assessment of cortisol levels by hair cortisol concentration 

(HCC) has gained popularity as an alternative sampling method, since it addresses some 

limitations of the previously mentioned methods. Cortisol accumulates into hair, with hair on 

average growing by one centimetre per month, hence cortisol in hair segments of a selected 

length represent the mean levels of cortisol during the corresponding months. A single HCC 

measure is enough to assess cumulative, long-term cortisol levels in a non-invasive manner 

[3].   

 

 

 

1.3 Maternal and infant gut microbiota as stress-mediating mechanisms 

 

  

One of the main issues is that the existing association between maternal prenatal PD and 

altered child neurodevelopment isn’t completely understood. Composition of the gut 

microbiota could potentially serve as one of the underlying stress-mediating mechanisms 

[10]. 

 

Gut bacteria start to colonize the infant’s gut as early as in the gestational period but expand 

greatly during delivery and the first months of life. Gut microbiota are involved in the 

maturation of the hypothalamic pituitary-adrenal system in infants, metabolism of host 

nutrients and drugs, immunomodulation, protecting against pathogens, production of vitamins 

and bioactive compounds, etc [2]. Gut microbiota metabolizes host nutrients via 

hydrolyzation and fermentation of complex, indigestible polysaccharides into simpler 

products. For instance, gut microbiota produces compounds such as short chain fatty acids 

and the neurotransmitters serotonin and gamma-aminobutyric acid (GABA). The microbial 

diversity of the gut has been linked to the health of the gut ecosystem, with high diversity 

indicating a healthy gut ecosystem and low diversity being associated with conditions such as 

obesity, inflammatory bowel disease. Therefore, gut microbiota plays an essential role in 

human health and disease, including in the development of the stress response in infants [2].  
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There are at least three pathways by which maternal prenatal cortisol concentrations could 

affect the infant gut microbiota. Cortisol has several functions such as controlling bile acid 

production, gut motility, cholesterol and bile acid homeostasis. Firstly, high maternal cortisol 

levels may cause increased bile acid production, which would hinder the normal development 

of the maternal gut microbiota during pregnancy, hence potentially impacting the 

transmission of maternal gut microbiota to the infant at birth. Secondly, maternal cortisol can 

pass through the placenta, if the placental 11beta-HSD2 is downregulated, and increase the 

fetal cortisol concentrations, which could alter development of the fetal HPA axis, causing 

higher base cortisol concentrations and cortisol sensitivity later in life. The higher infant 

cortisol concentrations would alter the permeability of the gut, disturb the gut barrier, and 

change the gut microbiota composition. Thirdly, mothers with high prenatal cortisol 

concentrations could potentially, through their breast milk, transfer cortisol to the infant in 

the postnatal period, therefore affecting the infant’s HPA axis, gut permeability, and gut 

microbiota composition (Figure 2) [11].   
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Figure 2. Three pathways by which maternal prenatal PD can affect the infant gut 

microbiota. High maternal cortisol concentrations may cause increased bile acid production 

that alters the mother’s gut microbiota, can increase the fetal cortisol concentrations by 

passing through the placenta, or can transfer to the infant through breast milk during the 

postnatal period. As a result, development of the infant gut microbiota is altered [11]. 
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1.4 Maternal prenatal PD and cortisol concentrations associate with infant gut 

microbiota 

 

 

Previous animal and human studies have shown that either or both reported maternal prenatal 

PD and maternal salivary cortisol concentrations are associated with the infants’ gut 

microbiota composition. Rhesus monkey infants of high-stress mothers had lower 

abundances of Bifidobacteria and Lactobacilli than infants whose mothers were not stressed 

during pregnancy [2,11]. In humans, infants whose mothers had both high reported prenatal 

PD and high cortisol concentrations during pregnancy had higher relative abundances of the 

phylum group Proteobacteria, including members such as Escherichia, Serratia, and 

Enterobacter, and lower relative abundances of lactic acid bacteria, such as Lactobacillus, 

Lactoccus, Aerococcus, and Bifidobacteria. Genus level groups like Escherichia, Serratia, 

and Enterobacter contain species that are potentially capable of causing infections and harbor 

Lipopolysaccharide (LPS) in their outer membrane, which is an inflammatory endotoxin that 

has been linked in inflammation in metabolic diseases and regulating stress responses; while 

Bifidobacterium and Lactobacillus have been found to be associated with healthy microbiota 

development in children [11]. 

 

1.5 Statistical methods in gut microbiota analysis 

 

Microbiota abundance data is typically organized into a table containing operational 

taxonomic units – also referred to as OTU tables, where columns represent samples and the 

rows depict observed counts of clustered sequence reads [12]. Microbial abundances are 

either calculated using small-subunit ribosomal RNA (16SrRNA) gene sequences of each 

species, which serve as sufficient proxies for the microbes’ full-length sequences, or the 

entire community DNA via shotgun sequencing. While the former can be used to recover 

whole genomes and to assess the functional potential of the microbial community, 

determining abundances with 16SrRNA sequences is much cheaper [13]. OTU tables are 

often normalized or transformed before conducting any downstream analyses [12].  
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Statistical considerations - microbiota samples have different library sizes, and hence can’t 

be compared to each other without first normalizing. The two popular approaches are either 

to rarefy counts or to transform absolute abundancies into compositional data. Rarefaction of 

counts involves the selection of a minimum library sample, and then random subsampling 

without replacement of the remaining libraries so that each sample has an equal number of 

sequences. Transforming absolute abundances into compositional data results in relative 

abundances that are non-negative and sum to 1 within a sample [12]. After running 

multivariate analyses, some p-values will be less than the significance level entirely by 

chance and hence will be false positive, even though the null hypothesis is true. The null 

hypothesis is rejected and the alternative hypothesis is accepted if a p-value is less than the 

significance level, for instance 0.05. Correction for multiplicity can be done by methods such 

as Benjamini–Hochberg, which controls for the false discovery rate (FDR) [14].  

 

 

Alpha-diversity (α-diversity) - is defined as the variation in species identity and abundances 

within a sample. Various alpha-diversity metrics hold different views on true diversity and 

perform differently [15]. These metrics can be either qualitative - also referred to as richness 

metrics - or quantitative, analysing presence-absence data or relative abundance data, 

respectively [13].  Furthermore, while traditional diversity metrics consider species to be 

equally different from one another, some diversity metrics have expanded to utilize extra 

information such as phylogenetic, functional, and other differences among species [16]. 

Chao1 index is an example of a qualitative metric that uses abundances to estimate species 

richness; it is based on the idea that rare species can deduce the most information about the 

number of missing species, consequently Chao1 index gives more weight to species with low 

abundances. Shannon index is an example of a quantitative metric that estimates both species 

richness and species evenness, in other words, how close in numbers are the different species’ 

relative abundances within a sample [17]. 

Multiple linear regression models can test the association between the alpha-diversity values 

and a host trait, while also adjusting for host covariates [15].  The continuous dependent 

variable, in this case alpha-diversity, will be to some extent predicted by the independent 

variables: host trait and host covariates. The line of best fit in a regression models partially 



12 
 

explains the variance in a dependent variable as well as the relationship between a dependent 

variable and independent variables. The regression models can be evaluated by statistics such 

as R-squared, F-test, and t-test. R-squared is a measure of the percentage of variation in a 

dependent variable that is explained by the model. However, adding more independent 

variables to the model always increases the R-squared statistic. Its extension, adjusted R-

squared, takes the number of independent variables into consideration and doesn’t necessarily 

increase with the addition of a new independent variable [18]. The F-test evaluates multiple 

independent variables simultaneously to assess whether the regression model provides a 

better fit, therefore is significant, compared to a model with no independent variables [19]. 

On the other hand, the t-test tests the significance of individual independent variables [20].  

 

Beta-diversity (β-diversity) - is defined as the variation in species identity and abundances 

between samples; it is measured by pairwise sample-to-sample distances based on either 

presence-absence data or relative abundance data and is organized into a square distance 

matrix (Figure 3). The distance matrix is constructed using beta-diversity metrics, such as the 

Jaccard and Bray-Curtis indices that have been adopted in microbial ecology. Jaccard index 

relies on the presence/absence of OTUs to check for similarity between the sample sets; it’s 

calculated as the size of intersection, divided by the size of the union of the sample sets [21]. 

In contrast, the Bray-Curtis index takes OTU abundances into account and estimates the 

dissimilarity between the sample sets; it’s calculated as the sum of the minimum counts for 

species in common between the samples sets, divided by the total amount of counts for all 

species present in both sample sets [22]. 
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Figure 3. Measurements of biodiversity: α-diversity and β-diversity. Alpha-diversity (α-

diversity) is defined as the variation in species identity and abundances within a sample [15], 

while beta-diversity (β-diversity) is defined as the variation in species identity and 

abundances between samples [21]. 

 

 

 

Multiple linear regression analysis and many other multivariate analyses aren’t appropriate 

for testing the association between multiple dependent variables, in this case the beta-

diversity distance matrix, and a host trait and its covariates. For example, Parametric 

multivariate analysis of variance (MANOVA) assumes multivariate normality and 

homogeneity of the distance matrix, but the presence of many zeros in the beta-diversity 

distance matrix, due to rare species, violates the normality assumption. Furthermore, 

MANOVA can’t handle data sets containing more variables than replicates, yet it’s common 

for ecological data to have more species than replicates [23]. As a solution, a nonparametric, 

distribution free multivariate analysis called permutational MANOVA (PERMANOVA) can 

be run instead. PERMANOVA compares the variances of between-sample and within-sample 



14 
 

sum of squares of distances. The significance of this ratio, called pseudo F-ratio, is calculated 

by shuffling, aka permutations. First, the order of species (rows) is randomly shuffled a 

certain number of times to generate empirical F distributions. Then, the significance between 

samples can be derived from the empirical F distribution. The underlying null hypothesis is 

that the samples aren’t different, and hence species (rows) are exchangeable among the 

different samples [24]. 

 

 

Clustering into enterotypes – Samples can be clustered into enterotypes based on their 

abundances of key microbial taxa, where samples within the same cluster are similar to one 

another and dissimilar to samples in other clusters. Interpretation of enterotypes is subjective, 

since their selection is affected by distance metrics, clustering approaches, etc. used, and 

there’s a lack of universal practices [25].  

Cluster analysis is comprised of choosing a distance measure to depict the data’s variability, 

the clustering method, and an appropriate number of clusters. Clustering methods fall into 

two categories: hierarchical and non-hierarchical. Hierarchical algorithms sort the data into 

clusters that are nested hierarchically within other clusters, while non-hierarchical algorithms 

partition the data into separate clusters. The standard agglomerative strategy for hierarchical 

clustering is to start with each observation in its own cluster, and merge pairs of clusters until 

all observations are in the same cluster. Hierarchical clustering also depends on the linkage 

criteria, such as average, median, centroid, which dictate how the distance between two 

clusters is defined [26]. Some of the most widely used non-hierarchical methods are k-means 

and k-medoids/ partitioning around medoids (PAM). k-means and PAM both partition the 

data into separate groups by trying to minimize the distance between the center point in a 

cluster and points inside that cluster. The main differences between them is that k-means 

assigns the average between the points in a cluster as center points of clusters, while PAM 

assigns input data points as center points [27]. Determining the optimal number of clusters 

(k-value) is required to perform partitioning clustering methods, such as k-means and PAM. 

k-value selection algorithms include the Gap Statistic, Elbow method, Silhouette coefficient, 

etc. The Gap Statistic computes performance scores for each k-value by comparing changes 

in within-cluster dispersion, aka variation, with those expected under an appropriate null 

reference distribution [28]. 
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PAM is preferred over k-means when clustering ecological data. Compared to PAM, the 

means statistics used by k-means is a poorer indicator of centrality due to its higher 

sensitivity to outliers and noise (Figure 4) [26]; and the distance measure used by k-means, 

Euclidean distance, is insensitive to small changes in absolute species abundances and is 

incapable of distinguishing if a species is truly absent from two samples or just under 

sampled (referred to as the “double zero” problem) [29]. On the other hand, PAM can be run 

with any chosen distance metric, such as Bray-Curtis or Jaccard [27]. Unlike the Euclidean 

distance, Bray-Curtis and Jaccard indices don’t suffer from the “double zero” problem, since 

they ignore double zeros [30]. Other clustering algorithms have previously been applied to 

microbiota data, such as the hierarchical methods Agnes, Hclust, and Dirichlet Multinomial 

Mixture, with various linkage criteria [31]. 

 

Figure 4. Differences between k-means and PAM clustering methods. k-means assigns 

the average between the points in a cluster as center points of clusters, while PAM assigns 

input data points as center points [27]. Compared to PAM, the means statistics used by k-

means is a poorer indicator of centrality due to its higher sensitivity to outliers and noise [26]. 
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Analysis of individual taxa – Microbial communities can also be profiled by testing which 

species, genera, or etc. are differentially abundant between two ecosystems or groups [12].  

Differential abundance analyses were initially applied to transcript abundances, which are 

estimated from RNA-sequencing data to identify genes whose expression levels varies 

between different conditions, for example, cancer versus normal condition [32]. Although 

rarefying counts or transforming absolute abundances into relative abundances serve as 

common normalization approaches, their usage can result in a high rate of false positives in 

differential abundance analyses. For example, rarefying equalizes variances between samples, 

but it comes at the cost of underestimating the true variance due to the loss of information 

during subsampling. Instead, it’s more data-efficient to model the noise and extra species. 

Differential abundance analysis packages such as DESeq2 and edgeR incorporate their own 

normalization algorithm and fit count data using negative binomial regression models. As 

count data are a discrete type of variable, they can’t be modelled with a normal distribution. 

Poisson distribution is better suited for modelling the discrete count data; however, due to the 

high variance of taxon counts compared to their mean (aka overdispersion), an extension of 

the Poisson distribution called negative binomial distribution is ultimately used to account for 

this high variance [33]. 

DESeq2 first normalizes the count data by estimating the size factors in order to handle the 

differing sequencing depth between the libraries [24]. Specifically, DESeq2 implements the 

median of ratios as its normalization method; it’s calculated as the ratio of each sample to the 

geometric mean of each taxon across all samples [34]. Dispersion parameters are then 

estimated to account for the within-group variability and variability between replicates; and 

finally, a negative binomial model is fitted, and the resulting log fold changes between the 

two conditions are checked by the Wald test for significant differentially abundant taxa [24].  
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1.6 Objectives 

 

 

While only one past study has investigated the association between maternal saliva 

concentration and the infant gut microbiota, there have been no studies that have utilized 

HCC as a measure for maternal prenatal PD to examine its association with the infant gut 

microbiota [3]. This is mainly because HCC is a newer and not yet widely used method. The 

aim of this thesis was to examine if and how maternal prenatal HCC associates with the 

infant gut microbiota.  

In greater detail, the aim was to study whether the maternal hair cortisol concentration (HCC) 

taken during the 24th week of pregnancy associates with the infant gut microbiota’s 

operational taxonomic units (OTU’s), genera, enterotype clusters, diversity, and richness at 

the age of 2.5 months. HCC taken during the 40th week of pregnancy and its association with 

the infant gut microbiota was also briefly investigated. In addition, important maternal and 

infant covariates were selected and adjusted for in the above analyses. 
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2. Methods 

 

 

2.1 Study design 

 

 

The study population originated from the FinnBrain Birth Cohort Study [1]. The following 

datasets were available for this study population - an OTU table storing the analysed infant 

stool samples collected at around 2.5 months of age, and a sample data table containing 

complete or missing maternal HCC observations taken during the 24th week of pregnancy and 

other information. The OTU table gave the number of reads per sample per OTU, while the 

HCC samples represented the average maternal cortisol concentration of the last 5 months 

[1]. Out of the original 445 observations and 274 variables in the sample data table, only 120 

observations containing the complete HCC cases were used for majority of the analyses.  

Furthermore, only hair samples weighing 5-15 mg were included in the analyses to 

incorporate the hair weight covariate into the HCC variable, and HCC was log transformed to 

make the original HCC variable less skewed. The other 273 variables contained extensive 

information about the infant and mother, from which 11 covariates were deemed as of 

potential interest based on preliminary evidence from the FinnBrain group and its Birth 

Cohort Study. These covariates included the mother’s age, level of  education, freezer time of 

HCC sample, mother’s BMI, breastfeeding at 2.5 months, infant sex, mode of delivery, stool 

sampling age in weeks, number of previous deliveries, selective serotonin reuptake inhibitor 

(SSRI) use by mother, and season of HCC_24 sampling (Table 1). Usage of antibiotics, 

another covariate, was discarded as a covariate of interest because there were too few 

observations (~ 50). Furthermore, HCC data collected at week 40 was also available, even 

though there were only 20 complete observations, and the HCC_24 variable was modified 

into a new variable divided by its quantiles 1 & 4 (Table 1). Therefore, there were three HCC 

measures in total that could be utilized in analyses. 
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Table 1. Overview of HCC variables and covariates 

 

Variable Type of 

variable 

 

Values 

HCC_24 

 

continuous NA 

HCC_24 Q1/Q4 quantiles 

 

 

categorical 

(binary) 

1st quantile 

4th quantile 

HCC_40 

 

continuous NA 

Mother’s age 

 

discrete NA 

Level of education 

 

 

 

 

categorical 

(ordinal) 

1: basic to upper secondary level 

2: vocational school diploma 

3: lower degree level tertiary education to                                

doctorate or equivalent diploma 

Freezer time of HCC_24 sample 

 

 

 

 

categorical 

(ordinal) 

0: 0 days 

1: 1-2 days 

2: 98-103 days 

3: > 103 days 

Mother’s BMI 

 

continuous NA 

Breastfeeding at 2.5 months 

 

 

 

 

categorical 

(nominal) 

0: never breastfed 

1: no breastfeeding anymore 

2: partial 

3: exclusive 

Infant sex 

 

 

categorical 

(binary) 

1: male 

2: female 

Mode of delivery 

 

 

categorical 

(binary) 

1: all vaginal 

2: all caesarean section 

Stool sampling age in weeks 

 

continuous NA 

Number of previous deliveries 

 

discrete NA 

SSRI use by mother 

 

 

categorical 

(binary) 

0: no 

1: yes 

Season of HCC_24 sampling 

 

 

 

 

categorical 

(nominal) 

1: winter 

2: spring 

3: summer 

4: autumn 
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2.2 HCC & stool sample collection 

 

 

HCC and stool samples were collected and analysed prior to the project’s beginning as part of 

the FinnBrain Birth Cohort Study. Parents collected the stool samples at their homes, stored 

the samples at +4 C, and brought the samples to the laboratory within 24 hours after 

collection to have the DNA extracted from them [35, 36]. The V4 region of bacterial 16S 

ribosomal RNA was sequenced with Illumina MiSeq approach. The read quality was then 

checked using FastQC (v. 0.10.1) and downstream analyses were conducted using QIIME 

(v.1.9) [36]. Reads were quality filtered to at least 20 Phred quality, chimeric sequences were 

filtered out by the usearch tool, and Operational Taxonomic Units (OTUs) were selected 

using UCLUST with 97% sequence similarity and excluded if total sequence count was less 

than 0.05%. OTUs were annotated using the GreenGenes database [36]. 

 

 

The HCC measuring procedure consisted of two isopropanol washes of the collected hair 

strands, powdering of the clean & dried hair, 24-hour long methanol extraction, reconstitution 

of the dried extract in an assay buffer, and quantification of extracted cortisol using a specific 

enzyme immunoassay [37].  

 

 

 

 

 

2.3 Covariate selection   

 

 

To test the association between microbial alpha-diversity indices (Shannon index and Chao1 

index) and HCC_24 via a linear regression model, 11 infant and maternal covariates deemed 

as of potential interest based on preliminary evidence from the FinnBrain group had to be 

first reduced in number. Several variable selection methods were employed – filter methods 

(correlations), and wrapper methods (backwards elimination). Initially, correlations and 

associations between HCC_24 and maternal and infant covariates of interest were assessed 

using Spearman’s correlation, Kruskal–Wallis test, or Mann-whitney U test. Specifically, 
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associations between HCC_24 and nominal/ordinal variables - the level of education, freezer 

time of HCC sample, season of HCC_24 sampling, breastfeeding at 2.5 months - were 

assessed using the Kruskal–Wallis test. Associations between HCC_24 and binary variables - 

infant sex, mode of delivery, SSRI use by mother - were assessed using the Mann-whitney U 

test. Correlations between HCC_24 and continuous variables - mother’s age, mother’s BMI, 

number of previous deliveries, stool sampling age in weeks - were assessed using the 

Spearman’s correlation. However, after p-value adjustment using the Benjamini & Hochberg 

method, all covariates were identified as insignificant [38]. As a solution, the final alpha- 

diversity linear regression models were obtained via the backward elimination method, which 

based on the Akaike information criterion (AIC) involved repeatedly removing insignificant 

covariates till only significant covariates remained [39]. Infant covariates considered crucial 

by the FinnBrain group- infant sex, stool sampling age in weeks, mode of delivery – were 

always included in the models. The selected covariates were permanently incorporated into 

most downstream analyses, such as analysis of beta-diversity, differential abundance analysis 

of individual genera, etc.  

 

 

 

2.4 Statistical analyses 

 

All statistical analyses were run with the R software. Alpha-diversity indices were calculated 

using phyloseq R package [40]. Shannon index represented species richness and evenness, 

while the Chao1 index represented estimated species richness. Regression analyses of alpha-

diversity indices was performed in relation to the following independent variables – one of 

the three HCC measures (24,40 weeks, or quantiles), infant covariates, and maternal 

covariates. To evaluate the gut microbiota’s enterotypes, subjects were clustered based on 

their core OTUs (where OTU's representing less than 0.1% abundance and with less than 5% 

prevalence were excluded) with the Bray-Curtis distance matrix via the Partitioning Around 

Medoids (PAM) method from the cluster R package [41]. The optimal number of clusters 

was calculated using the gap statistics on core OTUs with the Bray-Curtis distance matrix 

[41]. Correlations and associations between clusters and HCC_24, alpha-diversity, maternal 
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and infant covariates of interest were assessed using Kruskal–Wallis test, or chi-squared test 

(χ2). Differential expression analysis, performed using the DESeq2 R package, was run to 

identify infant gut genera that were differentially abundant for HCC_24 when adjusted for 

infant covariates [42]. Non-rarefied absolute data was used to generate results at genus and 

core genus level. All maternal covariates were left out because there were initially very few 

results at genus level. Individual effects of each categorical infant covariate on the 

associations between infant gut genera and HCC_24 were examined by subsetting the data. A 

permutational analysis of variance (PERMANOVA) was performed using adonis function 

from the vegan R package to test whether the overall microbial community, in other words 

beta-diversity, differs by the variable of interest and covariates. In addition to 

PERMANOVA, betadisper and anosim functions from the vegan R package were run to 

further confirm that the data divided by various covariates have equal beta dispersion, and 

therefore holds the assumptions of PERMANOVA [43]. The variable of interest was either 

HCC_24, Q1/Q4 quantiles of HCC_24, or HCC_40. Jaccard and Bray-Curtis distances were 

utilized to assess the beta richness and diversity, respectively, of the community. The 

PERMANOVA analyses were always run with 1000 permutations. Model coefficients were 

extracted for the top taxa separating HCC_24 Q1/Q4 quantiles’ groups using the generic 

coefficients function from the stats R package [44]. p-values were adjusted after multiple 

testing in an analysis using the Benjamini & Hochberg method (R function p.adjust), where 

p-values less or equal to 0.05 were considered statistically significant [38,45]. 
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3.Results 

 

 

 

3.1 Maternal & infant covariates selection 

 

 

Reduction of covariates was necessary for performing analyses. Otherwise, these analyses 

would have lost their statistical power due to the large number of covariates and the 

comparatively small number of available observations.  Linear regression analysis of alpha-

diversity was the first planned analysis for this thesis project. 

 

Initially, the correlations and associations between HCC_24 and the 11 maternal and infant 

covariates of interest were checked for. However, after p-value adjustment all 11 covariates 

were identified as insignificant. Therefore, significant covariates were determined while 

constructing the alpha-diversity linear regression models. Both the Shannon and Chao1 index 

models fitted with HCC_24 were obtained via the backwards elimination method, which 

based on the AIC value involved repeatedly removing insignificant covariates till only 

significant covariates remained. Crucial infant covariates - infant sex, stool sampling age in 

weeks, mode of delivery – were always included in the models. After backwards elimination, 

the Shannon index model kept the mother’s age, breastfeeding at 2.5 months, and season of 

HCC_24 sampling maternal covariates. On the other hand, the Chao1 index model kept the 

mother’s age, season of HCC_24 sampling, breastfeeding at 2.5 months, and SSRI use by 

mother maternal covariates. Overall, the Shannon and Chao1 index models shared the 

mother’s age, season of HCC_24 sampling, and breastfeeding at 2.5 months covariates. 

Along with the infant covariate - breastfeeding at 2.5 months, only mother’s age was the sole 

shared maternal covariate picked for future analyses. To explain, season of HCC_24 

sampling was left out midway because its role has been contradictory in preliminary studies 

from the FinnBrain group. 
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Generally, the mother’s age was positively associated with both the Shannon and Chao1 

indices, while partial (breastfeeding at 2.5 months group 2) and exclusive (breastfeeding at 

2.5 months group 3) breastfeeding were negatively associated with these indices. The 

HCC_40 models had different associations, but they hadn’t yielded any significant 

covariates. Finally, according to the F-test, which is a test that is incorporated into linear 

regression, nearly all the models had non-significant F-test results, except for the Chao1 

index model with HCC_24 Q1/Q4 quantiles. A significant F-test would have indicated that 

the observed R-squared is reliable.  

 

 

 

3.2 Linear regression analyses of alpha-diversity and maternal HCC 

 

 

The relationship between alpha-diversity indices, hair cortisol concentration, and previously 

selected maternal/infant covariates - mother’s age, breastfeeding at 2.5 months, infant sex, 

mode of delivery, stool sampling age in weeks, was assessed by building alpha-diversity 

linear regression models fitted with either HCC_24, HCC_24 Q1/Q4 quantiles, or HCC_40. 

Neither of the alpha-diversity indices, Shannon and Chao1, were associated with HCC_24 

(Table 2-3), HCC_24 Q1/Q4 quantiles (Table 4-5), or HCC_40 before or after p-value 

adjustment. However, several covariates were significant before p-value adjustment. 

 

For both Shannon and Chao1 index models fitted with HCC_24, the exclusive breastfeeding 

(breastfeeding at 2.5 months group 3) group was the only significant covariate, and mother’s 

age was only significant for the Chao1 index model fitted with HCC_24 (Table 3). However, 

there were no significant covariates left after p-value adjustment. The exclusive breastfeeding 

(breastfeeding at 2.5 months group 3) covariate was the only significant covariate in both 

Shannon and Chao1 index models fitted with HCC_24 Q1/Q4 quantiles, and the mother’s age 

and partial breastfeeding (breastfeeding at 2.5 months group 2) were only significant for the 
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Chao1 index model fitted with HCC_24 Q1/Q4 quantiles (Table 5). The results were quite 

similar to those of the HCC_24 models. However, again there were no significant covariates 

left after p-value adjustment. The Chao1 and Shannon index models fitted with HCC_40 

didn’t have any significant covariates before or after p-value adjustment.  

 

 

 

Table 2. Shannon index model fitted with HCC_24.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Estimate Standardized Std.Error T-value Pr(>|t|) 

(Intercept) 1.551 0 0.536 2.893 0.005  ** 

HCC_24 0.003 0.006 0.043 0.067 0.947 

Mother’s age 0.019 0.179 0.010 1.937 0.055  . 

Sample week 0.025 0.105 0.023 1.119 0.266 

Breastfeeding 1 -0.724 -0.314 0.387 -1.868 0.064  . 

Breastfeeding 2 -0.600 -0.475 0.346 -1.732 0.086  . 

Breastfeeding 3 -0.767 -0.686 0.332 -2.312 0.023  * 

Birth mode 2 -0.063 -0.052 0.114 -0.551 0.582 

Gender 2 -0.025 -0.027 0.085 -0.288 0.774 

Residual standard error: 0.456 on 111 degrees of freedom 

Multiple R-squared:  0.096     

Adjusted R-squared:  0.031  

F-statistic: 1.478 on 8 and 111 DF 

p-value: 0.173 

 

Signif. codes: 0 = ***   0.001 = **    0.01 = *    0.05 = .     0.1  = “   “    1 = “   “ 
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Table 3. Chao1 index model fitted with HCC_24. 
 

Estimate Standardized Standard 

Error 

T-value p-value 

(Pr(>|t|)) 

(Intercept) 307.800 0 111.187 2.768 0.007   ** 

HCC_24 -2.365 -0.025 8.900 -0.266 0.791 

Mother’s age 4.025 0.189 1.984 2.029 0.045   * 

Sample week 2.997 0.060 4.720 0.635 0.527 

Breastfeeding 1 -138.860 -0.292 80.353 -1.728 0.087   . 

Breastfeeding 2 -11.239 -0.505 71.808 -1.828 0.070   . 

Breastfeeding 3 -150.396 -0.653 68.827 -2.185 0.031   * 

Birth mode 2 -24.813 -0.099 23.557 -1.053 0.295 

Gender 2 -6.977 -0.037 17.641 -0.395 0.693 

Residual standard error: 94.470 on 111 degrees of freedom 

Multiple R-squared:  0.083 

Adjusted R-squared:  0.017  

F-statistic: 1.259 on 8 and 111 degrees of freedom   

p-value: 0.272 

 

Signif. codes: 0 = ***   0.001 = **    0.01 = *    0.05 = .     0.1  = “   “    1 = “   “ 

 

 

 

 

Table 4. Shannon index model fitted with HCC_24 Q1/Q4 quantiles. 
 

Estimate Standardized Standard 

Error 

T-value p-value 

(Pr(>|t|)) 

(Intercept) 1.910 0 0.691 2.763 0.008   ** 

HCC24_quantilesQ4 -0.003 -0.003 0.121 -0.026 0.980 

Mother’s age 0.021 0.211 0.013 1.548 0.128 

Sample week -0.019 -0.068 0.038 -0.499 0.620 

Breastfeeding 1 -0.271 -0.107 0.471 -0.575 0.568 

Breastfeeding 2 -0.691 -0.567 0.362 -1.908 0.062   . 

Breastfeeding 3 -0.804 -0.749 0.335 -2.401 0.020   * 

Birth mode 2 -0.011 -0.009 0.163 -0.066 0.948 

Gender 2 -0.015 -0.016 0.122 -0.119 0.906 

Residual standard error: 0.446 on 51 degrees of freedom 

Multiple R-squared:  0.180 

Adjusted R-squared:  0.052  

F-statistic: 1.403 on 8 and 51 degrees of freedom 

p-value: 0.218 
 

Signif. codes: 0 = ***   0.001 = **    0.01 = *    0.05 = .     0.1  = “   “    1 = “   “ 
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Table 5. Chao1 index model fitted with HCC_24 Q1/Q4 quantiles. 
 

Estimate Standardized Standard 

Error 

T-value p-value 

(Pr(>|t|)) 

(Intercept) 324.191      0  141.084   2.298 0.026   * 

HCC24_quantilesQ4 -12.167               -0.063      24.690    -0.493 0.624 

Mother’s age 6.270       0.298        2.727    2.3 0.026   * 

Sample week -6.574 -0.112        7.702   -0.854 0.397 

Breastfeeding 1 -6.900 -0.013  96.005   -0.072 0.943 

Breastfeeding 2 -169.700             -0.650        73.847   -2.298 0.026   * 

Breastfeeding 3 -168.686 -0.734        68.304   -2.47 0.017   * 

Birth mode 2 -20.335 -0.081        33.218   -0.612 0.543 

Gender 2 -1.314 -0.007  24.985 -0.053 0.958 

Residual standard error: 91 on 51 degrees of freedom 

Multiple R-squared:  0.256 

Adjusted R-squared:  0.139  

F-statistic: 2.187 on 8 and 51 degrees of freedom 

p-value: 0.044 
 

Signif. codes: 0 = ***   0.001 = **    0.01 = *    0.05 = .     0.1  = “   “    1 = “   “ 

 

 

3.3 HCC and clusters in infant gut microbiota 

 

The infant gut microbiota was clustered, via the PAM method, into enterotypes in order to 

assess its association with HCC_24. The association between enterotypes and alpha-diversity, 

or selected maternal/infant covariates was also checked. Prior to clustering, the optimal 

number of clusters had to be found. The gap statistics was calculated using dimensionally 

reduced core OTUs, where OTU's representing less than 0.1% abundance and with less than 

5% prevalence were excluded, and the Bray-Curtis dissimilarity measure. The gap statistics 

showed that 3 was the optimal number of clusters (Figure 5). The number of clusters was also 

validated by using all the OTUs instead of core OTUs, and various distance matrices – Bray-

Curtis, Jaccard. At first only 120 samples that had the HCC_24 measurements were looked at 

when testing the association between the clusters and HCC_24, but this reduced the statistical 

power of future analyses because the association of covariates with the clusters would have 

been limited to only those 120 samples. Therefore, clustering was repeated using all the 445 

samples with all the available alpha-diversity, HCC_24, and 11 maternal/infant covariate 

measurements. Multidimensional scaling (MDS) was utilized using the Bray-Curtis 

dissimilarity measure to construct a plot showing the clusters (Figure 6). 
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Figure 5. Calculated gap statistics using dimensionally reduced core OTUs & Bray-

Curtis distances. The gap statistics showed that 3 was the optimal number of clusters.  

 

Figure 6. MDS plot of the 3 infant gut microbiota clusters. 
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Since the infant gut microbiota clusters are a categorical variable, associations between the 

clusters and HCC_24 & other covariates could be tested. Associations between the clusters 

and continuous variables – HCC_24, Shannon, Chao1, mother’s age, mother’s BMI, number 

of previous deliveries, stool sampling age in weeks - were assessed using the Kruskal–Wallis 

test. Associations between the clusters and categorical variables - the level of education, 

freezer time of HCC sample, season of HCC_24 sampling, breastfeeding at 2.5 months, 

infant sex, mode of delivery, SSRI use by mother - were assessed using the chi-squared test. 

However, HCC_24 wasn’t significantly different among the clusters before or after p-value 

adjustment. Only number of previous deliveries, mode of delivery, and Chao1 seem to be 

different among the clusters after p-value adjustment out of the 14 listed variables (Table 6).   

 

 

 

 

Table 6. Associations between infant gut microbiota clusters and HCC_24 & covariates 

 

Names Adjusted p-value 

 

HCC_24 0.952 

Mother’s age 0.929 

Previous deliveries 0.007 

Mother’s BMI 0.683 

Season sampling 0.583 

Freezertime 0.289 

SSRI use 0.349 

Education level 0.431 

Sample week 0.683 

Gender 0.349 

Birth mode 2.6 ×10−6 

Breastfeeding 0.114 

Shannon 0.106 

Chao1 0.002 
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Re-running alpha-diversity linear regression analyses with clusters indicated that cluster 3 

was a significant group in the Chao1 index regression model with HCC_24, although it 

wasn’t significant after p-value adjustment (Table 7-8). Shannon and Chao1 index models 

formulated with HCC_24 Q1/Q4 quantiles and HCC_40 didn’t yield any significant cluster 

groups.  

 

 

 

 

Table 7. Chao1 index model with infant gut microbiota clusters fitted with HCC_24 
 

Estimate Standardized Standard 

Error 

T-value p-value 

(Pr(>|t|)) 

(Intercept) 310.881     0   98.063   3.170 0.002  ** 

HCC_24 0.561     0.007   6.903   0.081 0.935 

Mother’s age 3.831     0.185   1.711   2.240 0.027  * 

Sample week 4.145  0.092  3.765  1.101 0.273 

Breastfeeding 1 -143.268  -0.284  76.734  -1.867 0.064  . 

Breastfeeding 2 -109.743  -0.456  67.458  -1.627 0.106 

Breastfeeding 3 -147.886 -0.671  65.693  -2.251 0.026  * 

Birth mode 2 -14.162    -0.060 20.970  -0.675 0.501 

Gender 2 -8.932   -0.048  15.868  -0.563 0.575 

Cluster 2 -37.865   -0.172  20.068 -1.887 0.061  . 

Cluster 3 -39.521 -0.192 19.065 -2.073 0.040  * 

Residual standard error: 90.180 on 130 degrees of freedom 

Multiple R-squared:  0.139 

Adjusted R-squared:  0.073  

F-statistic: 2.095 on 10 and 130 degrees of freedom 

p-value: 0.029 
 

Signif. codes: 0 = ***   0.001 = **    0.01 = *    0.05 = .     0.1  = “   “    1 = “   “ 
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Table 8. Shannon index model with infant gut microbiota clusters fitted with HCC_24 
 

Estimate Standardized Standard 

Error 

T-value p-value 

(Pr(>|t|)) 

(Intercept) 1.489     0  0.493    3.021 0.003 ** 

HCC_24 -0.002     -0.005    0.035   -0.057   0.954 

Mother’s age 0.022      0.211    0.009    2.573   0.011 * 

Sample week 0.027 0.118    0.019    1.425   0.157    

Breastfeeding 1 -0.717     -0.280    0.386   -1.859   0.065 . 

Breastfeeding 2 -0.509 -0.417    0.339   -1.502   0.135    

Breastfeeding 3 -0.738     -0.660    0.330   -2.236   0.027 * 

Birth mode 2 -0.098     -0.081    0.105   -0.927   0.356    

Gender 2 0.008 0.008 0.080    0.100   0.921    

Cluster 2 -0.153     -0.137    0.101   -1.515   0.132    

Cluster 3 -0.174     -0.167    0.096   -1.817   0.071 . 

Residual standard error: 0.453 on 130 degrees of freedom 

Multiple R-squared:  0.155 

Adjusted R-squared:  0.090 

F-statistic: 2.387 on 10 and 130 degrees of freedom  

p-value: 0.012 
 

Signif. codes: 0 = ***   0.001 = **    0.01 = *    0.05 = .     0.1  = “   “    1 = “   “ 

 

 

  

 

3.4 Gut microbiota composition and HCC 

 

 

DESeq2 analyses were run to identify which genera in infant gut microbiota were 

differentially abundant for HCC_24, when adjusted for the covariates. Non-rarefied data was 

used to generate results at genus and core genus levels. All maternal covariates, except 

HCC_24, were left out, as suggested by the FinnBrain group, because there were initially 

very few results at genus and core genus levels. Therefore, DESeq2 analyses were run only 

with the infant covariates - breastfeeding at 2.5 months, infant sex, mode of delivery, and 

stool sampling age in weeks. Individual effects of each categorical infant covariate - 

breastfeeding at 2.5 months, infant sex, and mode of delivery – on the association between 

the gut microbiota composition and HCC_24 was examined by subsetting the data. HCC_24 
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in the overall model, containing all the infant covariates, had negative associations with the 

phyla Bacteroidetes (e.g. genera Paraprevotella, Odoribacter) and Actinobacteria (e.g. 

genera Actinobaculum, Corynebacterium), while Proteobacteria (e.g. genera Sutterella, 

Erwinia, Citrobacter) and Firmicutes (e.g. genera Clostridium, Streptococcus, Lactobacillus) 

showed both positive and negative associations (Figure 7). 

 

 

In the breastfeeding at 2.5 months subset, partial breastfeeding (breastfeeding at 2.5 months 

group 2) had mainly positive associations, while exclusive breastfeeding (breastfeeding at 2.5 

months group 3) had slightly more negative associations than positive. Bifidobacteria, which 

is high in mother's milk, was negatively associated in exclusive breastfeeding at genus and 

core genus level [2]. Firmicutes members were the most abundant phylum in both the partial 

and exclusive breastfeeding groups. Additionally, the exclusive breastfeeding group had more 

associations than the partial breastfeeding group, which was mainly due to the partial and 

exclusive breastfeeding groups possessing different number of observations - 19 and 94, 

respectively. In the mode of delivery subset, cesarean section (mode of delivery group 2) was 

associated with more Actinobacteria and oral, skin, and placental species 

(Propionibacterium) than vaginal delivery (mode of delivery group 1). Specifically, the 

association with Propionibacterium was negative in the cesarean section group. On the other 

hand, vaginal delivery was associated with more Firmicutes and Bacteroidetes members 

(Figure 7). The vaginal delivery group had more associations than the caesarean section 

group, which was mainly due to them having different number of observations – 99 and 21, 

respectively. Finally, in the infant sex subset, no prominent differences were observed 

between the two genders. 
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Figure 7. Plots of associations between HCC_24 and infant gut microbiota genera/core 

genera.  DESeq2 analyses were run without the maternal covariates to construct a reduced 

overall model, and models for each of the infant covariates - breastfeeding at 2.5 months, 

infant sex, and mode of delivery. The breastfeeding at 2.5 months and mode of delivery 

subset groups were visually different.  
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3.5 Linear regression analyses of beta-diversity 

 

 

A permutational analysis of variance (PERMANOVA) was run to test  

whether the overall microbial community differs by the variable of interest and covariates. 

The variable of interest was either HCC_24, HCC_24 Q1/Q4 quantiles, or HCC_40. Jaccard 

and Bray-Curtis distances were utilized to check the community’s beta-diversity qualitatively 

and quantitatively, respectively. 

 

In addition to PERMANOVA, Multivariate homogeneity of groups dispersions (betadisper) 

and Analysis of similarities (ANOSIM) tests were run to further confirm that HCC and each 

covariate holds the assumptions of PERMANOVA. To explain, while PERMANOVA does 

not assume normality, it does assume equal beta dispersion between the variable’s groups. 

Therefore, betadisper, which calculates the average distance of group members to the group 

centroid in multivariate space, along with a permutation test for homogeneity of multivariate 

dispersions (permutest), were run to check whether the variable’s variance is homogenous. 

Since betadisper only accepts categorical data, only the HCC_24 Q1/Q4 quantiles variable 

and categorical covariates - breastfeeding at 2.5 months, infant sex, and mode of delivery- 

were tested. In cases where the betadisper showed that the beta dispersion between groups 

was significantly different, ANOSIM was run in addition to PERMANOVA for each 

categorical variable to further confirm this. Only the breastfeeding at 2.5 months covariate 

had non-equal beta dispersions, so ANOSIM was especially run for it (Figure 8). There were 

no significant results for breastfeeding with ANOSIM, which meant that its significance in 

the PERMANOVA analyses would be dubious. 
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HCC_24 Q1/Q4 quantiles with Bray-Curtis distances                          HCC_24 Q1/Q4 quantiles with Jaccard distances  

 

 

 

 

Mode of delivery with Bray-Curtis distances                                          Mode of delivery with Jaccard distances              

  

 

 

 

Infant sex with Bray-Curtis distances                                                            Infant sex with Jaccard distances 

 

 

 

 

Breastfeeding at 2.5 months with Bray-Curtis distances                   Breastfeeding at 2.5 months with Jaccard distances                              

 

 

 

 

 

Figure 8. Plots of beta dispersion between variables’ groups.  Centroids of groups of all 

categorical variables - HCC_24 Q1/Q4 quantiles, breastfeeding at 2.5 months, infant sex, and 

mode of delivery, were in similar positions in the ordination space. However, the dispersions 

of breastfeeding at 2.5 months covariate groups differed more than for other covariates or 

HCC_24 Q1/Q4 quantiles. 
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Neither HCC_24 or the infant/maternal covariates, excluding the breastfeeding covariate, 

were significant for both Jaccard and Bray-Curtis distances in the PERMANOVA analysis 

run with HCC_24 (Table 9-10). The breastfeeding covariate was significant for both Jaccard 

and Bray-Curtis distances in the PERMANOVA analysis run with HCC_24, but because 

breastfeeding at 2.5 months has non-equal beta dispersions, the significance wasn’t 

conclusive.  

HCC_24 Q1/Q4 quantiles were significant for the PERMANOVA analysis run with the 

Jaccard distance (Table 11), and insignificant with the Bray-Curtis distance (p=0.087) (Table 

12). ANOSIM run on the HCC_24 Q1/Q4 quantiles confirmed that HCC_24 Q1/ Q4 

quantiles are statistically significant in the PERMANOVA analysis. Although, adjusted p-

values were not significant for HCC_24 Q1/Q4 quantiles with either Bray-Curtis or Jaccard 

distances; it was around 0.07 for the HCC_24 Q1/Q4 quantiles variable with the Jaccard 

distance. The PERMANOVA analysis run with HCC_40 didn’t yield any significant results.  

 

 

Table 9. Jaccard distance matrix model fitted with HCC_24  
 

Degrees 

of 

freedom 

(Df) 

Sequential 

sums of 

squares 

(SumsOfSqs) 

Mean 

squares 

(MeanSqs) 

F 

statistic 

(F.Model) 

R-squared 

(R2) 

p-value 

(Pr(>F)) 

HCC_24 1 0.425 0.425 1.108 0.009 0.201 

Mother’s age 1 0.375 0.375 0.977 0.008 0.488 

Breastfeeding 3 1.349 0.450 1.172 0.029 0.032 * 

Gender 1 0.367 0.367 0.957 0.008 0.542 

Sample week 1 0.398 0.398 1.038 0.009 0.326 

Birth mode 1 0.354 0.354 0.922 0.008 0.650 

Residuals 111 42.581 0.384 
 

-0.929 
 

Total 119 45.849 
  

1 
 

Signif. codes: 0 = ***   0.001 = **    0.01 = *    0.05 = .     0.1  = “   “    1 = “   “ 
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Table 10. Bray-Curtis distance matrix model fitted with HCC_24  
 

Degrees 

of 

freedom 

(Df) 

Sequential 

sums of 

squares 

(SumsOfSqs) 

Mean 

squares 

(MeanSqs) 

F statistic 

(F.Model) 

R-

squared 

(R2) 

p-value 
(Pr(>F)) 

HCC_24 1 0.411 0.411 1.185 0.010 0.280 

Mother’s age 1 0.221 0.221 0.637 0.005 0.788 

Breastfeeding 3 1.475 0.492 1.419 0.035 0.058 . 

Gender 1 0.310 0.310 0.893 0.007 0.513 

Sample week 1 0.427 0.427 1.231 0.010 0.255 

Birth mode 1 0.356 0.356 1.026 0.009 0.403 

Residuals 111 38.459 0.346 
 

-0.923 
 

Total 119 41.658 
  

1 
 

Signif. codes: 0 = ***   0.001 = **    0.01 = *    0.05 = .     0.1  = “   “    1 = “   “ 

 

 

 

 

 

Table 11. Jaccard distance matrix model fitted with HCC_24 Q1/Q4 quantiles 
 

Degrees of 

freedom 

(Df) 

Sequential 

sums of 

squares 

(SumsOfSqs) 

Mean 

squares 

(MeanSqs) 

F statistic 

(F.Model) 

R-

squared 

(R2) 

p-value 

(Pr(>F)) 

HCC24_quantiles 1 0.595 0.595 1.552 0.026 0.006  ** 

Mother’s age 1 0.414 0.414 1.082 0.018 0.247 

Breastfeeding 3 1.073 0.358 0.933 0.047 0.796 

Gender 1 0.341 0.341 0.890 0.015 0.756 

Sample week 1 0.352 0.351 0.917 0.015 0.682 

Birth mode 1 0.395 0.395 1.030 0.017 0.352 

Residuals 51 19.542 0.383 
 

-0.860 
 

Total 59 22.712 
  

1 
 

Signif. codes: 0 = ***   0.001 = **    0.01 = *    0.05 = .     0.1  = “   “    1 = “   “ 
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Table 12. Bray-Curtis distance matrix model fitted with HCC_24 Q1/Q4 quantiles 
 

Degrees of 

freedom 

(Df) 

Sequential 

sums of 

squares 

(SumsOfSqs) 

Mean 

squares 

(MeanSqs) 

F statistic 

(F.Model) 

R-

squared 

(R2) 

p-value 
(Pr(>F)) 

HCC24_quantiles 1 0.572 0.571 1.669 0.028 0.091 . 

Mother’s age 1 0.414 0.414 1.208 0.020 0.275 

Breastfeeding 3 0.943 0.314 0.918 0.047 0.609 

Gender 1 0.252 0.251 0.734 0.012 0.685 

Sample week 1 0.188 0.188 0.549 0.009 0.862 

Birth mode 1 0.369 0.369 1.078 0.018 0.366 

Residuals 51 17.463 0.342 
 

-0.865 
 

Total 59 20.200 
  

1 
 

Signif. codes: 0 = ***   0.001 = **    0.01 = *    0.05 = .     0.1  = “   “    1 = “   “ 

 

 

 

Investigation into which top taxa in HCC_24 Q1/Q4 quantiles contributed most to the 

community differences showed that Bifidobacteriaceae, Lactobacillaceae, Clostridiaceae 

taxa are dominant in the 1st quantile for both distances, while Bacteroidaceae is dominant in 

the 4th quantile for both distances. Porphyromonadaceae is dominant in the 4th quantile for 

only the Jaccard distance (Figure 9).  
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Figure 9. Top taxa in HCC_24 Q1/Q4 quantiles that contributed most to the community 

differences. Top taxa calculated by either Bray-Curtis or Jaccard for the 1st quantile are 

represented by the top and bottom diagrams, respectively. The top taxa members and their 

positive or negative association with the 1st quantile were identical for both distances. 
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4.Discussion 

 

 

 

4.1 Covariate selection & linear regression analyses 

 

Linear regression analyses revealed that HCC isn’t associated with alpha-diversity. There 

were several issues as well regarding the covariate selection. Shannon and Chao1 models 

fitted with HCC_24 kept slightly different covariates in the final selected models, which 

made it harder to pick the optimal covariates. For example, the Chao1 model fitted with 

HCC_24 also kept the SSRI use by mother covariate, unlike the Shannon model fitted with 

HCC_24. Secondly, at least one significant maternal covariate had to be left out because the 

role of several maternal covariates was found to be contradictory in preliminary studies by 

the FinnBrain group.  For example, season of HCC_24 sampling covariate was left out 

midway, even though it was present in the final models selected by AIC.  

 

Thirdly, the final models selected during backward elimination may differ depending on the 

criterion used and its definition of goodness of fit, among which are AIC, Bayesian 

information criterion (BIC), and adjusted R-squared criteria. Both AIC and BIC are 

information criteria that aim for the simplest model with the greatest explanatory power, but 

usage of BIC would have led to simpler models because it applies a larger penalty for 

complex models than AIC; whereas adjusted R-squared aims for better models according to 

their predictive power rather than explanatory power [46]. For example, the last eliminated 

maternal covariate in the Shannon index model fitted with HCC_24 was the number of 

previous deliveries covariate, and it interestingly, contributed a lot to the Shannon index 

model’s explained variance, aka adjusted R-squared, even though it wasn’t picked during 

model selection by the AIC criterion and was never a statistically significant covariate in any 

of the linear regression models. Lastly, covariate selection depends on the method used, 

whose performance may be less or more conservative than that of other methods.  Variable 
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selection methods can be divided into stepwise selection methods (forward selection, 

backward elimination), penalized regression methods (lasso, elastic net), Bayesian model 

averaging (BMA), etc. Penalized regression methods would have given more conservative 

estimates of coefficients, standard errors and number of variables than stepwise selection 

methods. BMA utilizes prior knowledge about the variables during the estimation procedure 

and would have produced more robust results than stepwise selection methods. Despite the 

limitations of stepwise selection methods, they remain the standard in epidemiology and 

other disciplines [47]. 

 

Past studies have reported active breastfeeding as being associated with lower gut microbiota 

diversity, and therefore the findings confirmed that partial (breastfeeding at 2.5 months group 

2) and exclusive (breastfeeding at 2.5 months group 3) breastfeeding groups have negative 

associations with the alpha-diversity indices [36]. It was hard to assess the impact of mother’s 

age on the infant gut microbiota. The HCC_24, HCC_40, HCC_24 Q1/Q4 quantiles linear 

regression models had mostly insignificant p-values for the F-test, suggesting that the 

adjusted R-squared values weren’t optimal. Furthermore, the adjusted R-squared values were 

quite low. Only the Chao1 index model fitted with HCC_24 Q1/Q4 quantiles had a 

significant p-value for the F-test and a high adjusted R-squared value.  These poor statistical 

values, in the case of the F-test and adjusted R-squared values, may have been obtained due 

to the low number of available samples. There were 120 HCC_24 samples, and only 20 

HCC_40 samples. HCC_40 variable’s very low sample size prevented its usage during 

covariate selection, in the DESeq2 analysis, and most likely affected the results’ 

interpretation. A larger study may be required in order to improve the statistical power and to 

find an association between HCC and the alpha-diversity. Alternatively, HCC may not at all 

be associated with alpha-diversity. 
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4.2 Associations between the infant gut microbiota clusters and the covariates 

 

Clustering of the infant gut microbiota into enterotypes revealed that HCC isn’t associated 

with the clusters. Nevertheless, several infant covariates were significantly associated with 

the clusters after p-value adjustment, and most infant covariates had significant associations 

before p-value adjustment. Since the clusters represented the infant gut microbiota, 

associations between the clusters and infant covariates were expected. However, Chao1 index 

was significantly associated with the infant gut microbiota clusters while Shannon index 

wasn’t, even though Chao1 and Shannon indices are both estimates of microbial diversity. 

Mode of delivery was significantly associated with the infant gut microbiota clusters, but for 

some reason hadn’t been significant in the linear regression analyses of alpha-diversity. 

Interestingly, the number of previous deliveries covariate was significantly associated with 

the infant gut microbiota clusters, even though this covariate was a maternal covariate. This 

may explain why the number of previous deliveries covariate, absent in the final models 

selected by AIC and a non-significant covariate in the linear regression models, raised the 

Shannon index model’s adjusted R-squared value.  

 

 

4.3 Gut microbiota composition and HCC 

 

 

When controlled for the following infant covariates - breastfeeding at 2.5 months, infant sex, 

and mode of delivery, The DESeq2 analysis revealed several associations between the infant 

gut microbiota and HCC_24. Nonetheless, sequencing wasn’t conducted at the strain level 

due to its lack of reliability and wasn’t always possible at the species level, which limited the 

resolution of the infant gut microbiota to the genera level and reduced the number of 

identified associations. The association patterns found in the overall model could only be 

compared with results from past studies examining the association of saliva, blood, urine 

cortisol concentrations or reported stress with the infant gut microbiota, since few studies 

have utilized HCC as a maternal prenatal PD marker. Past studies examining how each infant 
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covariate affects the gut microbiota diversity will be used below to roughly assess the 

observed association patterns in the subset models and the differences between two or more 

subset groups. For the most part, the subsetting approach has been problematic because it can 

only point out potential interactions by the selected covariate; interaction analyses in DESeq2 

would have to be conducted to accurately assess the interaction between an infant covariate 

term and HCC_24. 

  

As previously mentioned in the introduction part, infants of mothers with high cumulative 

stress, meaning mothers who had high levels of both reported stress and cortisol 

concentrations, had higher relative abundances of Proteobacteria, such as Escherichia, 

Serratia, and Enterobacter, and lower relative abundances of Bifidobacteria and lactic acid 

bacteria, such as Lactoccus, Aerococcus, and Lactobacillus. Furthermore, infants of mothers 

with high cumulative stress had a decreased abundance of Actinobacteria. The overall 

models’ association patterns partially matched those seen in past studies. In detail, 

Actinobacteria and Lactobacillus were present and had negative associations with HCC_24 in 

the overall model [11]. 

 

The two mode of delivery subset groups followed very few of the patterns observed in past 

studies examining how mode of delivery affects the gut microbiota diversity. For example, 

the differences between important phyla such as Bacteroidetes, Firmicutes and Actinobacteria 

were occasionally opposite to findings from past studies. It was also hard to evaluate whether 

the composition of the vaginal delivered and caesarean section subset groups differed greatly, 

as there were a lot more associations for the vaginal delivered group than the caesarean 

section group. Most likely it was due to the different sizes of the subsets, with the vaginal 

delivery group being much bigger. According to one past study, cesarean section delivery 

was supposed to be associated with a higher abundance of Firmicutes, and lower abundance 

of Actinobacteria and Bacteroides in the first 3 months of life. Contrary to these findings, the 

vaginal delivery group had more associations with Firmicutes members than the cesarean 

section group. Furthermore, vaginally delivered infants are known to harbour more 

Bifidobacteria than cesarean section delivered infants, yet no Bifidobacteria were present in 

neither of the mode of delivery subset groups [48]. On the other hand, Bacteroidetes were 

present in the vaginal delivery group and completely absent in the caesarean section group. 
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The breastfeeding at 2.5 months subset groups followed several of the patterns observed in 

past studies examining how breastfeeding at 2.5 months affects the gut microbiota diversity. 

It was hard to evaluate whether the composition or diversity of the partial and exclusive 

breastfeeding subset groups differed greatly, as there were a lot more associations for the 

exclusive breastfeeding subset than the partial breastfeeding subset. Most likely it was due to 

the different sizes of the subsets, with the exclusive breastfeeding subset being much bigger. 

According to one past study, exclusive breastfeeding was associated with a higher relative 

abundance of Bifidobacteriaceae and Enterobacteriaceae and with less Lachnospiraceae, 

Veillonellaceae, and Ruminococcaceae [49]. Another past study demonstrated that non 

breastfed infants had a higher relative abundance of Peptostreptococcaceae and 

Verrucomicrobiaceae [50]. Both subset groups had associations with Enterobacteriaceae, 

Lachnospiraceae, and Ruminococcaceae. Interestingly, the exclusive breastfeeding group had 

associations with Bifidobacteriaceae, while the partial breastfeeding group had associations 

with Verrucomicrobiaceae. The differences between the two subsets should have been more 

noticeable because even a small degree of formula milk supplementation to breastfeeding at 

2.5 months infants, which presumably happened in the case of the partial breastfeeding 

group, can change the gut microbiota pattern [49]. 

 

Past studies have demonstrated that the gut microbiota differs between male and female 

preterm infants. Female infants tend to have a more diverse gut microbiota, a higher 

abundance of  Clostridiales and lower abundance of Enterobacteriales than male infants 

during early life [51]. According to another study, after 3 months of age males have a lower 

relative abundance of Bacteroides species than females [51, 52]. Results of the infant sex 

subset groups were contrary to findings from past studies, as few differences had been 

observed between the two genders in the infant sex subset, or they were opposite of those in 

past studies. For example, Clostridiales members were present in both subset groups, and 

they had both negative and positive associations with HCC_24. Enterobacteriales 

(Citrobacter) was present in the female group but not in the male group, while Bacteroides 

species were absent in both the female and male groups. 
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The lack of similarities between past study findings and any of the infant covariate subset 

results is mainly due to the problematic nature of the subsetting approach and different aims 

of the DESeq2 analysis. Instead of directly testing the association between some infant 

covariate and the infant gut microbiota, the infant covariate subset groups tested their 

respective gut microbiota for associations with HCC_24. The different associations with 

HCC_24 in subset groups indicate that mode of delivery and breastfeeding at 2.5 months may 

interact with HCC and future studies should consider them as interaction terms in interaction 

analyses. Sequencing using the shotgun sequencing method, which permits the sequencing of 

entire organisms, would have offered better resolution of the infant gut microbiota at species 

and strain level, and hence would’ve revealed more associations. The next step would be to 

determine whether there’s any biologically meaningful associations, which could be tested 

for experimentally or by replication in independent future studies. 

 

 

 

4.4 Association between HCC and beta-diversity of the infant gut microbiota 

 

 

PERMANOVA was the only analysis in the entire thesis that clearly showed an association 

between HCC and the infant gut microbiota - in this case beta-diversity. The other analyses 

had at most revealed associations or correlations between infant or maternal covariates and 

the infant gut microbiota. 

 

 

However, the inclusion of the breastfeeding at 2.5 months covariate in the PERMANOVA 

analyses may have affected the reliability of the results and they may be an artifact of 

heterogeneous dispersions, since the breastfeeding at 2.5 months covariate didn’t have equal 

beta dispersion between its groups. In other words, the results could have been influenced by 

differences in composition within groups and not by the difference in composition between 

groups. In addition, the p-values of the covariate in the PERMANOVA analysis varied 

depending on the run and number of permutations, affecting the HCC_24 Q1/Q4 quantiles’ 

significance in the process; although the HCC_24 Q1/Q4 quantiles always remained 

insignificant after p-value adjustment. The PERMANOVA analysis was also limited to 



47 
 

covariates selected during the backwards elimination of alpha-diversity linear regression 

models, therefore significant maternal covariates could have been left out from the 

PERMANOVA analyses. 

 

The top taxa present in HCC_24 Q1/Q4 quantiles for both the Jaccard and Bray-Curtis 

distances partially matched the previously mentioned findings from past studies regarding the 

infant gut microbiota [11]. However, the top taxa, Bacteroidaceae and Porphyromonadaceae, 

were entirely absent in past studies and instead were found to have positive associations with 

other conditions such as malnourishment and Chrohn’s disease. A past study, concerning the 

gut microbiota dysbiosis in children due to malnutrition, reported that malnourished children 

had an increase in abundance of Bacteroidaceae and Porphyromonadaceae bacteria [53].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

 

5.Conclusion 

 

 

This thesis aimed to investigate whether HCC is associated with the infant gut microbiota. 

Based on linear regression analyses of alpha-diversity and beta-diversity, analysis of 

individual genera, and cluster analysis of the gut microbiota, it can be concluded that HCC is 

associated with individual infant gut genera and perhaps with the infant gut microbiota’s 

beta-diversity. Association patterns of the DESeq2 overall models and the top taxa that 

contributed most to the community differences in HCC_24 Q1/Q4 quantiles partially 

matched those seen in a past study examining the association of saliva cortisol concentrations 

with the infant gut microbiota. A larger, independent cohort study and better sequencing 

resolution, obtained using the shotgun sequencing method, are required to confirm the 

association between HCC and beta-diversity. 
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