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Sound event detection is a typical Internet of Things (IoT) application task, which could
be used in many scenarios like dedicated security application, where cameras might be
unsuitable due to the environment variations like lights and movements. In realistic
applications, usually models for this task are implemented on embedded devices with
microphones. And the idea of edge computing is to process the data near the place
where i1t happens, because reacting in real time is very important in some applications.
Transmitting collected audio clips to cloud may cause huge delay and sometime results
In serious consequence. But processing on local has another problem, heavy
computation may beyond the load for embedded devices, which happens to be the
weakness of embedded devices. Works on this problem have make a huge progress
recent year, like model compression and hardware acceleration.

This thesis provides a new perspective on embedded deep learning for audio tasks,
aimed at reducing data amount of audio signals for sound event recognition task. Instead
of following the idea of compressing model or designing hardware accelerator, our
methods focus on analog front-end signal acquisition side, reducing data amount of
audio signal clips directly, using specific sampling methods. The state-of-the-art works
for sound event detection are mainly based on deep learning models. For deep learning
models, less input size means lower latency due to less time steps for recurrent neural
network (RNN) or less convolutional computations for convolutional neural network
(CNN). So, less data amount of input, audio signals gain less computation and
parameters of neural network classifier, naturally, resulting less delay while interference.
Our experiments implement three kind of data reduction methods on this sound event
detection task, all of these three methods are based on reducing the sample points of an
audio signal, using less sampling rate and sampling width, using sigma delta analog
digital converter (ADC) and using level crossing (LC) ADC for audio signals. We
simulated these three kinds of signals and feed them into the neural network to train the
classifier

Finally, we derive the conclusion that there is still some redundancy of audio signals in
traditional sampling ways for audio classification. And using specific ADC modules
better performance on classification with the same data amount in original way.

Keywords: sound event detection; embedded learning; sigma-delta ADC; LC ADC
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Chapter 1. Introduction
1.1 Background

Recent years, Information explosion is growing far beyond the effective processing
scope of human beings. Therefore, the processing of information by computers has
become extremely important and will be widely used. Compared with computer vision,
due to the convenience of audio, human and material resource efficiency, computer
auditory also raised great research interest at home and abroad. In a broad sense, the
auditory object of perception includes all the sounds of vibration, involved varieties
categories [1]. For convenience, computer auditory research generally divides the
sound to be researched into three categories: speech signals, music signals and general
audio signals. Speech signal is a generalized communication way of human beings. It
can be considered as a direct way of information exchange. Musical signals are more
abstract and advanced sounds, often conveying emotions in the form of art, stories,
thoughts, philosophies and other information. While general audio refers to other
sounds that exist in the periphery of human beings, from all kinds of noise to the sound
of water in the natural world, sound of birds, door of human activities, footsteps, street
noise, restaurant background sound, and a variety of industrial machine sounds, etc.
General audio signals contain huge information, but not all of them are valid for a
specific human. Due to the variety of audio, sounds are different with speech and music
in features. So, research on general audio signals are much difficult and have gained
less results.

Sounds signals, usually refers to general audio signal (differ from speech and music
signals), contains a lot of information about our environment and physical events which
take place in there. We human beings could easily senses the sound scene (subway
station, bar, etc.), and identify the various sound events (gun shot, people talking, etc.).
Signal processing methods for extracting information from sound signals automatically
could well solve the problem for lots of realistic applications, like, audio information
retravel, context-aware devices, and intelligent security monitoring systems to monitor
abnormal sound in environments. However, in realistic situation, sounds are usually

polyphonic, which means multi sounds may occur simultaneously, making recognition



much difficult. Thus, related researches are still needed to be proposed for recognizing
sound scenes and individual sound sources reliably in realistic soundscapes.

In real life application scenario, audio signals are often collected by microphone
array embedded devices, put on public environment. So those are typical IoT
application tasks.

In classic IoT scenarios embedded devices mostly play the role of sensor, detecting
information from environment, with little computation ability. With the growth of IoT
devices in edge, a significant amount of data is generated, usually processed with big
data techniques. Complex data processing tasks are completed in cloud due to the
computation limitation of edge devices. In last few years, with development of
hardware side of embedded devices and efficient algorithms, edge computing,
processing needs to be done near the location where the data 1s generated (the edge),
has been proposed to be another feasible way in Artificial Intelligence with Internet of
Things (AIOT) application scenario [60], which could reduce the heavy load of cloud
and gain less latency in some tasks, and in some cases that’s very important.

In this task, audio event detection, we can expect that audio event could be
recognized in local instead of cloud, because of less detection latency could be
important in some application like security monitoring.

Although we wish recognition decision could be done in local embedded devices,
limited computation resource is the biggest challenge get in our way. As audio event
detection task is a very challenge problem, which could be well solved by deep learning
models, and better performance usually means much complex model. If we want to
implement deep neural network on embedded devices which have limited computation
resources, efficient strategies need to be implemented. There are a lot of works concern
about this topic, most of them are on hardware or algorithms, developing specific
hardware logic or compressing the model. Our methods are different from all of them,
we compress audio signal on front analog acquis side, more details are discussed in

chapter 4.
1.2 Sound event detection

Sound event detection (also known audio event recognition), is defined as
recognition of individual sounds in audio, involving also estimation of onset and offset

for distinct sound event instances (possibly for multiple sound classes). It assumes that



similar sounds can be represented as a single class, so the category 1s sufficiently
different from other sound categories to allow recognition [1].

The purpose of audio event recognition is to distinguish between different types of
audio events. The core problem can be divided into two interrelated problems. One is
how to find out the difference between different events, and the other i1s how to find
effective information to distinguish these events. Therefore, the fundamental problem
in audio event recognition research is to find out discriminative information. However,
that could be a challenge problem due to audio event signals’ random distribution and
variety categories.

The following two aspects leads to its randomness. First is the randomness of the
distribution of the audio itself, which is between the same kind of audio. In different
transform domains, representations of the same category audio signals are roughly
similar, but there are still subtle differences, which is likely to cause misclassification.
The second is the randomness of the distribution of audio categories. There are many
kinds of audio. According to the different recognition details, some kinds may be
divided into the same category or different fine level categories. Therefore, the audio
category itself has randomness, it is necessary to define the category fineness clearly to
eliminate the randomness.

Another major difficulty in audio event recognition is the diversity of events. Even
if the audio category of the study is limited, the differences in these different audios are
different, some are very similar, and some are significantly different. Whether in the
time domain, frequency domain or other transform domains, different audio have
similar or different characteristics. It is necessary to combine the characteristics of these
fields to find the most obvious and effective distinguishing information, so that it is
possible to distinguish different audio categories.

Despite these above difficulties, the current research on audio feature selection and
classification models has been very deep and wide result in lots of solutions for these
difficulties. Most of the current solutions use neural networks as classifiers, which
generally feed the audio features into the feedforward neural network, convolutional
neural network (CNN), and the long short-term memory model (LSTM) or a
combination of different networks.

Over the last few years, audio event recognition task has raised increasing interest

due to its potential realistic applications. And it 1s host in DCASE challenge and Kaggle



competition recent years, people do these tasks every year and tasks getting harder by
years. This task we do in our experiment 1s based on DCASE 2018 task 2 [2]. However,
challengers do this for accuracy, which is the most important performance in this
competition, so lots of complicated models are proposed, which could not be run on
embedded devices. So, we need to do extra works to trade off the accuracy and

computation resource.
1.3 Efficient deep learning strategy

Deep learning has been widely applied in many fields, especially in the field of
multimedia processing. Model training based on convolutional neural networks is
significantly better than other traditional methods. However, complexity of the neural
network model continues to increase with the increasing performance. For example, for
ImageNet recognition, the size of winner model from 2012 to 2015 increased 16 times,
and for Baidu’s deep speech, the number of training operations increased 10 times for
just one year. Such large model creates lots of problems. Limited memory, computing
power and energy consumption are the bottlenecks for further training of large-scale
deep learning tasks. To deal with the challenge of computation resource limitations on
embedded devices, we need to make deep learning more efficient. Two keys points need
to be considered in solution. One is to reduce the size of deep neural networks to get
smaller memory footprint. Another is to reduce computation operations to get less
latency. There has been a lot of works in different perspectives researching on these
problems, mainly in two, hardware acceleration and model compression.

Hardware acceleration mainly includes structural optimization, replacing floating-
point data with integer data, reducing model size, or using hardware Application-
Specific Integrated Circuit (ASCI) for deep learning like Google’s TPU [61], mainly in
hardware circuit design, so it has minor changes to the algorithm.

And model compression algorithms mainly include six method, weight sharing,
pruning, low rank approximation, quantization, binary net and Winograd
transformation. The pruning means to remove some of the weights and still have the
similar performance. This is first proposed by Professor Yann LeCun [30] in 1989. The
Basic idea 1s to get rid of the redundancy of neural network, because not all the
parameters are useful. We train a neural network first, and pruning some of the

connections, then we retrain the remaining weights and through this process iteratively.



The basic idea of weight sharing is multiple network connections sharing one value.
The method i1s to cluster weight matrix of each layer into several clusters by using K-
means clustering algorithm, and calculate the center value of each cluster to represent
the weight of each cluster. Since the weights of the same cluster share the same value,
only the indexes of the weight clusters need to be saved. The weight corresponding to
the index value is obtained by the lookup table. usually we compensate the weights by
training the cluster and fine-tuning to reduce the loss of precision. The idea of
quantization is very simple, reducing the resolution of parameters, use less byte of data
type to represent a number. The weights and offsets in the network model are
represented by single precision 4 bytes, 32 bits floating-point numbers or double
precision 8 bytes, 64 bits floating point numbers, and operations between those high-
resolution numbers are much slower and consume more memory. Those high-resolution
operations can be converted to lower-order integer operations, usually 8 bits integer
number operation or the 1-bit Boolean operation. this method can be very practical
because the network model is robust to noise and small disturbances after training.
Those above methods are almost in two perspective, hardware acceleration and
model compression. Here we propose a new perspective, combining the quantization
method with hardware side. The basic idea of method we proposed is very similar to
quantization, use less amount of data to represent an audio signal sequence, aiming at
reducing the length of audio signal sequence directly. The basic assumption is that there
might be some redundancy in audio signals for recognition tasks, so we propose some
methods to reduce signal length directly while keep as much information as possible.
To achieve this goal, we need the help of hardware circuit, the front-end acquis module.
As analog audio signals are converted into digital bit streams by analog-to-digital
converters (ADC) circuit, a proper assumption is that we can use ADC circuit to

implement our proposal.
1.4 ADC techniques

Sampling is the process of converting a signal (such as a temporally or spatially
continuous function) into a sequence of numbers (a discrete function in time or space).
For most signal processing tasks, we use uniform sampling method to get uniform
discrete sequence, following the Nyquist sampling theorem to prevent aliasing. There

could redundancy in digital signals due to the information in the high-frequency



component is only a small part, but takes up part of the bandwidth. To reduce the need
for anti-aliasing filters, some over sampling ADC like Sigma-Delta ADC, which
generates high resolution signals, are developed and used widely. And for audio signals,
in the past we need to recover the analog audio signals as we human beings can only
hear analog signals. But now in this task, audio event recognition, we just need to
extract features from original audio signals and feed them into classifier, it’s not
necessary to recover the original analog signal, so we consider to use non-uniform
sampling method to get rid of the redundancy in uniform discrete audio signal. And
there are also some new non-uniform ADC techniques developed for other signals like
electrocardiographic (ECG), like level-crossing ADC (LC ADC) [40, 41, 42].

With the increasing requirements for signal acquisition accuracy in various fields
such as biomedical, high-fidelity audio, and smart instruments, Sigma-Delta ADC has
been widely used as a class of high-precision ADC. It is mainly composed of an analog
modulator and a digital filter with decimator. The noise in band 1s moved out of the
bandwidth due to the oversampling and noise shaping technology in sigma delta ADC,
producing a higher signal-to-noise ratio. Digital filter mainly filters out the noise
outside the signal bandwidth and down-samples the modulated signal to reduce the
amount of data would be stored. The high precision and high signal to noise ratio are
important properties for us to do the following experiments.

Now the state-of-art ECG signals modelling techniques almost use level crossing
sampling to encode ECG signals. This encoding method gives a variable sampling rate
for signal: high sample rate for fast-varying parts, while low for slowly-varying parts.
As the name suggested, level crossing sampling means we do sampling while the
amplitude cross the quantization level we defined. LC ADC could give a high amplitude
resolution for signals because sampling 1s performed at the signal point where there 1s
exactly the amplitude level value. It is easier for remote sensors generating signals and
transmitting such signals compared to traditional technique. In this application, audio
event detection, if we do not need to listen to the audio signal, just classifying what
event it 1s, it might could be used in audio sound event classification task. We assume
that frequency characteristics of audio event signals are similar with ECG signals, both
are evet driven signals, so we tried to apply level crossing sampling on audio event

signals for further classification task.



1.6 Contributions and related works

This work consists of several research area like sound event detection, efficient deep
learning strategy and ADC techniques. Although there is no mnovation on algorithm or
hardware circuit, we proposal a new perspective for deep learning of audio field on
embedded devices, which combines the works of these areas. So, the idea of this
combination crossing these different areas is an innovation itself. In general, this thesis
analysis the general audio features, and according to the properties of these features,
designed two efficient neural network models for audio event recognition. Based on the
models, we proposed three data reduction methods aimed at reducing the data amount
the input signal. Audio signals are simulated for all of these three methods, and the
simulated signals are feed into neural networks we designed to train a new classifier.
Experiments results show an acceptable performance while we reduce the data amount
of audio signals using the three methods. Thus, we derive the conclusion that for audio
event recognition, there are still redundancy in audio signal sample by classic ADC
method. The methods we proposed could reduce the redundancy efficiently while keep
the performance well.

This thesis consists of 5 chapters, the first chapter introduced the background and
related research areas of this thesis. Chapter 2 discussed the audio features we would
use 1n this thesis, including Mel spectrogram, cepstrum analysis, and Mel Frequency
Cepstrum Coefficients (MFCCs). Chapter 3 detailed the models we used in our
experiments and also introduced the state-of-the-art work with the reason why it 1s not
suitable in our experiment. Chapter 4 is the main part of this thesis, which talks about
our three data reduction method for audio event recognition, with the performance
analysis. Chapter 5 derive a conclusion for all our experiments. For each part, there
many related works on the problem we concerned.

For sound event detection, there is a well-known challenge called detection and
classification of acoustic scenes and events (DCASE), which belongs to the Institute of
Electrical and Electronics Engineers (IEEE). This challenge contains several audio
classification and detection tasks [2]. Sound event detection is a sub task of DCASE.
Except for this competition, audio event recognition has also raised hot research interest
in worldwide. In last decades, traditional feature engineering and machine learning
methods are the main solution for this problem. Some manually selected high level

features such as MFCCs [3], the constant Q transform (CQT) [4], and I-vectors [5] are
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classic sound features for classification tasks. The well-known Mel spectrograms [6] is
a general middle level feature which could be reprocessed by neural networks to extract
further features, so, it has been used widely as input of neural network classifier.
Traditional machine learning models like Mixture Gaussian model (GMM) [7] and
hidden Markov model (HMM) [8] are both effective machine learning models. Recent
years, deep learning techniques have been introduced to audio research area. For
example, fully-connected neural networks with high level manually-selected features
were used in DCASE 2016 [9] and DCASE 2017 [10] to replace the machine learning
models. CNNs based models have archived the state-of-the-art performance for this
challenge [11,13]. Recurrent neural networks (RNNs) [12, 14] are suitable to model the
temporal information of sound events. Models with attention mechanism have the
ability to focus on sound events information which are relative to the information we
concern [15], especially for the data which are labelled weakly [16]. And the generative
adversarial networks (GANSs), proposed in last few years, which are usually applied in
generation tasks, also have been used here for audio classifiers to improve their
robustness [17]. In DCASE 2018, the main progress 1s based on specific tricks like data
augmentation [18, 20], mixed features [20, 21], and multi model decision [19] with
much deeper CNNs network. And the top team of leaderboard even has 55461000
parameters in their model [20]. However, our purpose is to implemented our model in
embedded devices, so complex models like [20, 21] are not our best choice. Instead, we
build a relative shallow model but performed a relative well result.

In on-side deep learning filed, efficient learning is researched on mainly two aspects,
model compression and hardware acceleration. Adjusting the depth of the neural
structure to achieve the best tradeoff between performance and complexity is an active
research topic recently. Improvements on manually architecture searching performed
by several teams in the following areas have led to major improvements in early design,
like AlexNet, VGGNet, GoogleNet and ResNet etc. [22, 23, 24, 25]. Recent advances
in algorithm architecture have been made, including the exploration of hyperparameter
optimization [26,27,28] and various network pruning methods [29, 30, 31, 32, 33,
34] and connectivity learning [35,36]. Many works committed to introduce sparsity [38]
for structures or change the connections between the internal convolutional blocks, like
ShuffleNet [37].

And for ADC techniques, the circuit design of level crossing ADC has been studied



for last several years [40, 41, 42]. The idea of LC-ADC 1is to sample a signal irregularly,
that is to say, sampling moments are the points where the signal amplitude value is
crossing the threshold levels. LC-ADC techniques have been used in several
applications like, sampling of low-power speech [43], processing of ultra sound [44]
and measurements of biological signal [45]. Compared to the conventional Nyquist
ADC, LC-ADC achieves great performance improvement in power consumption, cost
and silicon area [46,47]. The average sampling rate of LC-ADC could be much lower
than conventional ADC with the same amplitude resolution [48]. For sigma delta ADC,
the researches are mainly focused on circuit and product design [48, 49, 50, 51], and

better signal noise ratio are obtained in these designs.



Chapter 2. Feature Extraction of Audio Signal

In this chapter, we will discuss the several widely used audio feature extraction
methods which will be used in later experiments, such as Mel spectrum, Cepstrum
analysis, and Mel Frequency Cepstral Coefficients.

Audio signals are the one-dimensional sequences in time domain, also known as
waveforms, whose frequency variation cannot be visually observed. Although we could
use Fourter transform to transform it into frequency domain, the frequency information
we get 1s the overall distribution of all signal period, we still cannot observe the
variation of frequency distribution with time scale. And if the signal in its whole time
period is a non-stationary process, the frequency distribution for all periods makes non-
sense for us. To deal with this problem, methods like short time Fourier transform
(STFT), discrete wavelet (DWT) are applied for time frequency analysis. Based on
these time frequency analysis methods, some further features for specific information
are proposed to represent specific information of an audio signal, like Mel Frequency
Cepstral Coefficients (MFCCs), is a well-known feature widely used in speaker
recognition and automatic speech. For human speech signals, sounds are produced in
sound channel, so sound channel is just like a system where the detail parts of original
signal need to go through. The shape of the sound channel determines how a speech
signal sounds like, and it 1s described by the envelope of short time power spectral. And
the MFCC are a feature which could describes this envelope accurately, so MFCC is
very suitable feature for speech signal. In our experiments, we assume that nature sound
to be classified has some features in common with speech signal, so we consider to use
MFCC as a feature engineering in audio event classification. Later we will discuss how
MFCC could describe those specific speech information features and cepstrum analysis

in detail.
2.1 Mel spectrogram

STFT is the most classical time-frequency domain analysis method for audio signals,
which performs fast Fourier transform (FFT) on short-time signals. The short-time
signal is derived from long-time signal framing. So, the principle of STFT is to frame
and window a long signal, then we get the short-time frequency information of each
frame by performing FFT on them. Finally, the spectrums of frames are stacked along

the time scale, a two-dimensional matrix is generated, one dimension for time, another
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for frequency, values represent the frequency amplitude. The two-dimensional signal,
also known as sound spectrum map, is obtained by unrolling the original sound signal
through the STFT. Figure 2-1 shows the processing progress of how to get spectrogram

from original audio signal sequence.
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Figure 2-2 shows the progress of how to stack the curve of spectrum of frames in

HHHH

Time

time dimension. The spectrum of one frame is expressed through amplitude-frequency
curve at first, as shown in the left of Figure 2-2. Then, rotates the spectrum in coordinate
by 90 degrees to get the frequency-amplitude curve, as the mid of Figure 2-2. Then we
map the values of amplitude to grayscale representation, where 0 represents black and
255 represents white, that is to say, larger amplitude value displays a darker area in gray

graph. That’s how we get the right of Figure 2-2.
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This spectrogram map derived from STFT are usually called linear spectrum,
because the amplitude varies linearly in Hertz, the unit of frequency. The frequency
range that the human ear can hear is 20-20000 Hz, but human ear does not have a linear
perception relationship to the scale unit of Hz, because our auditory system is a
nonlinear system which has different response to different frequency, and it’s good at
extracting multilevel audio features. For example, when we adapt to a 1000Hz pitch, if
the frequency of this pitch is increased to 2000Hz, our ears can only perceive that the
frequency is increased a little, we will never notice the frequency is doubled.
Experiments on human auditory shows that humans have a better ability at
distinguishing subtle variations at low frequency than in high frequency.

The Mel measure associated with perceived frequency of pitch with its actual natural
frequency. This nonlinear scale is more closed to what humans sensed. To convert linear

frequency to Mel scale, we have formula (2.1):
M(f)=1125In(1+ f/700) (2.1)
and from Mel frequency back to linear frequency, we have formula (2.2):
M~1(m) = 700(exp (m/1125) — 1) (2.2)
According to this formula, the linear spectrum can be mapped into the Mel-based

12



nonlinear spectrum based on auditory perception, as is shown in Figure 2-4.
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Figure 2-5 shows the of Mel spectrum of an audio signal, which is the clip of human

speech, this is derived in professional audio processing software (Adobe Audition).
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2.2 Cepstrum analysis

To understand speech signal, vocal channel model needs to be discussed. Our vocal
tract, whose shape are decided by throat, tongue, mouth and teeth are just like a filter
or system response, filtering the sounds generated by vocal cord vibration. The shape
of our vocal tract determines properties how voice sounds like. So, the accurately
determined shape of vocal channel could represent features of phoneme being produced.
The representation of shape could be represented by the envelope of power spectrum.
To get the envelope, cepstrum analysis is necessary to discuss in detail.

Speech signal is composed of excitation source and vocal tract system components
according to the above analysis. If we want to use these two components in different
speech processing applications, they need to be analyzed independently. So, we have to
separate excitation and vocal channel components from speech signal. Cepstral analysis
gives method for extracting the separated excitation source and vocal tract components

from speech signal without any priori information of each.
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As we can see from the curve of this spectrum in Figure 2-6, there are several peak
values in this spectrum curve. These peak values, also known as formants, represent the
main frequency components of a speech signal, so they carry the identification
properties of a signal. A smooth curve which go through these formant points 1s called
spectral envelope, which contains the information of sound channel. We can assume
that the original spectral 1s combined with two main parts: envelop and details of the
spectral. The details- of spectrum could be treated as excitation source part. so spectral
envelop is the part for vocal tract. We can assume that speech signals are produced by

source excitation with vocal tract system response through source filter theory. Thus,
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the produced sounds can be thought of as a convolution of vocal channel filter and
respective excitation source. We use e(n) to represent the excitation sequence and
h(n) to represent the vocal channel filter, then the speech signal x(n)could be

expressed as follow:

x(n) = h(n) * e(n) (2.3)
which in frequency domain is:

X[k] = H[K] E[k] (2.4)
and the magnitude spectrum is,

IX[k]| = |H[K]| [E[K]] (2.5)

Our purpose is to deconvolved the speech signal into excitation source and vocal
tract system, which is not easy to do in time domain. However, it 1s not much difficult
to convert the multiplication of the excitation and vocal channel to a linear combination
in frequency domain. To get the individual components, cepstral analysis is the key to
transform the linear combination into cepstral domain, then it’s easy to get independent
parts just using a filter liked stuff in cepstrum domain. We take logarithm to the
spectrtum X[k] as well as the multiplication of the two components E[k] and H[K]

to get the linear combination, which gives equation (2.6),

log(X[k]) = log(HIK]) + log(E[k]) (2.6)

We can see from equation (2.6), logarithm operation turns multiplication operation
into addition operation in the frequency domain. Then we take inverse Fourier
transform to both sides, logarithm of signal spectrum log(X[k]) and the linear
combination of these two components, log(H[K]) + log( E[K]) to separate them, just
like Fourier transform on time domain to separate two signals with different frequency.
The inverse Fourier transform of log frequency domain is called quefrency domain,
which is similar to time domain. Relatively, the inverse Fourier transform of log spectral

is called cepstral. This is progress can be described in equation (2.7), (2.8), (2.9),
c(n) = IDFT(log(X[k])) = IDFT (log(H[K]) + log( E[K])) (2.7)

IDFT (log(H[K]) + log(E[k])) = IDFT(log(H[K])) + IDFT (log( E[k]))(2.8)
IDFT (log(H[K])) + IDFT(log( E[k])) = h(n) + é(n) (2.9)
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where equation (2.8) is derived from the linear property of discrete Fourier transform.
In log frequency domain, the vocal channel components are the slowly varying parts,
also known as envelop in Figure 2-6, and the excitation are the fast-varying part, also
named details of spectrum. Relatively, in quefrency domain, the envelop part are
located at low quefrency region as detail part are near the higher quefrency region. As
we can see in Figure 2-6, the spectral envelope varies slowly so it determines the low
quefrency part of speech spectral, while spectral details part varies fast thus determines
the high quefrency part. Then these two parts could be separated easily by a low time
liftering (correspond to low frequency pass filter). Liftering, as the name suggests, is
corresponding operation of filtering in the frequency domain, which means we can get
the interested quefrency region in quefrency domain by multiplying the cepstrum with
a window where has values in the region we are interested. Similar to high frequency
filtering and low frequency filtering in filters, there are also low-time liftering and high-
time liftering for lifters. According to the properties of these two components in
frequency domain, we could get the vocal channel parts by low-time liftering and
extract the excitation parts in the quefrency domain by high-time liftering. Figure 2-7
illustrate the steps of converting a short-term signal waveform representation in time

domain to its representation in cepstral domain.
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Fig. 2-7 Cepstrum analysis produce
2.3 Mel Frequency Cepstral Coefficients

We have discussed Mel spectrum and cepstrum analysis, now we will discuss how to
get MFCCs based on these two progresses. We have already known that how important
the vocal track characteristics is to speech signal and how to extract it from cepstral
analysis. The mainly difference between MFCCs and vocal track extraction in cepstrum
analysis 1s that MFCCs are the cepstrum analysis transformed in Mel spectrum, not
linear spectrum. Generally, the implementation steps are listed below.

Step 1) 1s to frame the signal, which is also the first step of STFT. And the reason is
the same, speech signal is a typical kind of time varying signal while short time speech
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frames could be considered as stationary statically. Thus, we frame the signal into 20-
50ms frames. Frame length 1s very important for STFT, the window length cannot be
either too short nor too long. Short window length results in less frequency resolution
while long window length generates low time resolution spectrogram, signals might has
varied during the window period. We use x(n) to represent the original speech signal
in time domain, when we framed x(n), weuse x;(n) to denote the ith frame, where
i ranges from 1 to the number of frames.

In some cases, there is also a pre-emphasis step to highlight the high frequency

formants., The implementation method is as follows,

si(n) #'=si(n) — B * si(n — 1) (2.10)

s;(n) 1is the framed signal.

Step 2) 1s also very similar to the second step of STFT, but before apply FFT on each
frame, we window each frame with analysis window w(n), like hamming window, to
smooth the edge of each frame and avoid the Gibbs Effect. Then power spectral of ith
frame S;(k) are calculated through FFT:

Si(k) = YN_, si(m)w(n)e /2™n/N 1 <k <K (2.11)

where K 1s the lengths of the DFT. The purpose of windowing is to smooth the
signal, where the sidelobe size and spectral leakage after the Fourier transform can also

be attenuated. Hamming window function is as follows, a is usually taken as 0.46,
wna)=(1—-a)—acos2+*m+*n/(N—1)), 0<sn<N-1 (212)
Signal is windowed by direct multiplication, and the implementation is as follow:
siin) *=wn,a) X s;(n), 0<n<N-1 (2.13)

P;(k) is the power spectrum of frame s;(n). And the power spectrum estimation based

on periodogram is calculated by square the result of FFT, as follow:
Pi(k) = % 1S: (k)7 (2.14)

Step 3) 1s to compute the Mel-spaced filterbank. The obtained periodogram spectral
has redundant information which is not desired for some specific audio application like
Automatic Speech Recognition (ASR). Because our cochlea cannot distinguish two

frequencies spaced closely, especially in high frequency region. Experimental
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observations have shown that our ear is just like a filter bank, only specific frequency
components could be sensed (our ear is selective to frequency). That is to say, our ear
only passes signals of certain frequencies and filters out other frequency signals which
are not expected to be perceived. What’s more, these filters distribute on linear
frequency scale non-uniformly. Many filters concentrate on the low frequency region
while much less filters distributes sparsely in the high frequency region.

Therefore, we sum the periodogram bins of the cluster to see how much energy is
present in each frequency region. Mel filterbank is used to simulate the human ear filter
banks. We only interest in how much energy exist at each frequency range roughly. The
range of first several filters are very narrow and indicates how much energy exists near
low frequency range, for example, the first indicates the energy near 0 Hertz. As the
frequency increase, Mel filters become wider as our attention to frequency variations
get smaller. Mel scale tells us exactly how these filter banks are spaced in frequency
axis and how wide to set for each filter bank. Figure 2-8 shows 10 Mel filter bank which

imitates human auditory perception system about the variation of frequency.
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Fig. 2-8 The filter Mel Filter Banks
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There are usually 20-40 Mel filter banks, we take 26 here. Each filter is a triangular
filter in the form of a vector of the relative length, the length is half the FFT length in
step 2) plus one, which is so called normalized frequency resolution. Most points of a
vector are zeros, only non-zero for a certain frequency region. Then we calculate the
Mel energies for each filter bank by calculate the inner product of each filter vector
with the power spectrum vector. Finally, each filter bank has only one number left which
indicates how much energy exists in each filterbank.

Step 4) is to take the logarithm of each Mel energies as we do in cepstrum analysis.
Then we have 26 log Mel energies.

Finally, the step 5) is to use the discrete cosine transform (DCT) for the log Mel
energies. The reasons for using DCT instead of IDFT are detailed below. The first
reason is that the Mel filter banks are overlapped, so the Mel energies are correlated
with each other. DCT could decorrelates the filter bank energies well so we just need to
take the diagonal values of covariance matrices to extract features. We only keep the
first half of the DCT coefficients, which is the power spectral envelop, as high DCT
coefficients represent the fast-changing parts of Mel energy which is useless for
recognition task according to experiments. So, the kept lower half coefficients after
DCT are the MFCC features we need.

Besides the kept MFCCs, their differential and acceleration coefficients are often
appended to the original MFCC vector. The MFCCs only describes the envelop of log
Mel spectral for a frame, but the speech signal also has dynamic information, like the
trajectories of MFCCs over time. According to experiments, appending the trajectories
to the original MFCCs vector could increase the recognition performance. The length
of feature vectors would double because one delta coefficient generated at the time steps

of original coefficients. We use equation (2.15) to calculate the delta coefficients:

N _
dt — ZN Zn:ln("-_'Hn Ct—n) (2.15)

n=1 2 zgzl n2

where d; represents delta coefficient derived from frame t, which is computed from
the static coefficients ¢,y to c,_y. N is usually set to 2. Delta-Delta (Acceleration)
coefficients are also calculated with the equation, but the static coefficients is replaced

with the deltas.
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Chapter 3. Models for Sound Event Detection
3.1 Datasets
3.1.1 UrbanSound8K dataset

The first dataset used in our experiments is called UrbanSound8K [52] launched in
2014. This labeled urban sounds dataset including 10 classes: children playing, siren,
car horn, drilling, street music, gun shot, jackhammer, dog bark, and engine 1dling. All
the classes are chosen because they occur frequently in city noise complaints, except
for “children playing” and “gunshots”, they are chosen for increasing the diversity of

categories.
3.1.2 FSDKaggle2018 Dataset

The Second dataset used in our experiments is Free Sound Kaggle 2018
(FSDKaggle2018) [53]. As the name suggested, this is the dataset used in competition
of Detection and Classification of Acoustic Scenes and Events 2018 (DCASE2018)
task2, hosted in Kaggle. This dataset provides a total of 11,073 audio files, each file is
uncompressed 16-bit PCM, 44.1 kHz, mono audio wav file. Clips files of each category
1s unequally chosen from the Audio Set Ontology [54] listed in table 3-1, which means
this 1s an unbalanced data set. All audio clips have only one single ground truth label.
Due to the preferences of users in Free Sound [55] when recording sounds and the

variety of sound categories, the duration of audio clips ranges from 300ms to 30s.
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Table 3-1 Categories composing FSDKaggle2018

Name Clips Time Name Clips | Time
Acoustic guitar | 300 52 Electric piano 150 25
Applause 300 58 Fart 300 18
Bark 239 45 Finger snapping | 117 6
Bass drum 300 13 Fireworks 300 48
Burping, 210 12 Flute 300 46
eructation

Bus 109 28 Glockenspiel 94 8
Chime 115 24 Gong 292 42
Clarinet 300 35 Gunshot 147 11
Snare drum 300 18 Harmonica 165 19
Cough 243 22 Hi-hat 300 19
Cowbell 191 11 Keys jangling 139 19
Double bass 300 17 Knock 279 19
Drawer  open, | 158 18 Computer 119 23
close keyboard

Cello 300 37 Meow 155 19
Microwave oven | 146 25 Squeak 300 38
Oboe 299 15 Tambourine 221 10
Saxophone 300 34 Tearing 300 39
Scissors 95 16 Telephone 120 16
Shatter 300 26 Trumpet 300 28
Laughter 300 36 Violin, fiddle 300 27
Writing 270 48

3.2 Solutions for experiments

There has been a lot of work in this area, recently, the performance of neural network
1s much better than other traditional machine learning methods. So, we only discuss the

method of deep learning here.



3.2.1 MFCCs with RNNs

MFCCs (Mel Frequency Cepstral Coefficients) i1s a sequence of features of speech
signals, describing the spectral envelope and energy information. As it’s vector
sequence in quefrency domain (similar to time domain, but not typically in time scale).
An audio event clip could be described with such a sequence of MFCCs feature, so
RNN is suitable classifier for these features to do classification tasks.

As MFCCs are very high-level features following determined human rules, so
structure of neural network is unnecessary to be complicated, just need to capture the
relations between these MFCC vectors. So here we use just to layers of bidirectional
LSTM with 256 hidden cells to manipulate the input features, one fully connected layer
to generate the output value of each class, followed by a softmax layer to generate the
probabilities for each class.

For features extractions, we get rid of the audio clips less than 0.01s, which cannot
even be recognized by human beings. And we skip the audio which are sampled using
24-bit ADC in dataset to keep consistent with most audio clips. For experiment hyper
parameters, sampling rate are all set to 44100 Hz, window length for STFT is 50 milli
second, and step length between each frame is 20ms, applying 1024 point-FFT on each
frame, number of mel filter banks is 26, minimal frequency is 125 Hz, while maximum
frequency is 7500 Hz. We take the lower 12 mel coefficients and their related delta
coefficients, appending energy and delta energy as the whole feature for one frame, so
one frame of audio can be represented by these 26-dimensional vectors. And for training,
cross entropy are used as loss function while Adam as the optimizer, 10e-4 learning rate,

and batch size is 128 to feed into neural network.
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After 10 epochs for all chosen samples, we get a 91.65% accuracy for test set, which
1s 25% random chosen samples of our whole dataset, Figure 3-1 shows the confusion

matrix of our test set.
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Fig. 3-1 Confusion matrix of test set

As we can see from the confusion matrix, our neural network classifier is doing well
to distinguish most classes, except those short time event, like gun shot and dog bark,
this might be related to the determined feature we chose, as we all know that MFCCs

are not good at describe high frequency audio signals.

3.2.2 Log Mel energy with CNNs
Mel spectrogram is a set of frequency information about a short frame stacked in

time domain, so it contains both time domain information and frequency domain

information of an audio signal. As spectrogram could be processed as a picture, so an
audio event clip could also be described with such a mel spectrogram, and CNN 1s more

suitable for these features to do classification tasks. High level features which might be
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useful for classification, can be extracted by convolutional blocks automatically.

For preprocessing, all stereo audio files are converted to mono wav files. We apply
log Mel filter banks on the extracted spectrograms and perform logarithm operation on
the result to get log Mel energy spectrum as our input feature. The number of the Mel
bins is chosen to be 64 because it could be divided by 2 while max pooling and it is
power of 2. The cut off frequency of Mel filter bank is 50 Hz. We subtract the mean and
divide the standard deviation of Mel frequency bins to normalize the log-Mel
spectrogram. We apply the same configuration for CNN4 and CNNS for this task. Here

Figure 3-2 is a spectrum sampled from our training set.
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Fig. 3-2 Sampled Mel spectrum

For structure of neural network, we use CNNs style net. These CNN style net, such
as ResNet and DenseNet, is the state-of-the-art models in image area. But these two
kind nets are typically more than 100 layers to gain the better performance, with much
more layers for little increasement of performance. The typical CNN structures usually
include several convolutional blocks which consists of convolution layer with pooling
layer. And fully-connected layers are connected with the last feature map. Each
convolutional layer has several channels, one channel is a filter. And each filter connects
with every feature map in each channel of the previous layer. The filters could capture
local features of a pattern, such as lower layers might extract edges while complex

contours may be extracted by higher layers’ filters. In our experiments, we use 4
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convolutional blocks and 8 convolutional blocks as models, as they are cost-effective
for the trade of between performance and model complexity. We call the two models
CNN4 and CNNB8 in this thesis. The filter size of convolution layer in CNN4 is 5 x 5,
while 1t is 3 x 3 in CNNBS. to stabilize training, batch normalization (BN) is used after
each convolutional layer, then rectified linear unit (ReLU) nonlinearity follows the BN
layer. Then a global max pooling (GMP) layer follows the outputs of the last
convolutional layer to summarize the last layer’s feature maps. Finally, we use a fully-
connected layer to connect the output vector of GMP, and softmax layer after fully-
connected layer 1s used to calculate the final probabilities for each class. Architectures
of CNN4 and CNNS8 are detailed in Table 3-2.

Table 3-2. CNN model architecture

Feature map size CNN4 CNN8
T x 64 Log mel spectrogram
3x3, BN 64
5x5, 64 '
T/2 x 32 ’ 3x3, BN
2 x 2, max pooling
[3x3, BN]
5x5, 128 , 128
T/4 x 16 [3x3, BN]|
2 x 2, max pooling
[3x3, BN]
5x5, 256 , 256
T/8 x 8 [3x3, BN]|
2 x 2, max pooling
3x3, BN
5x5, 512 , 512
T/16 x 4 3x3, BN
2 x 2, max pooling
Global max pooling
Classes num. fully connected, sigmoid or softmax
Parameters 4309450 4691274
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For training, the optimizer we use is Adam, the learning rate is 0.001 and reduce 0.1

times every 1000 iterations after step 10000. The batch size 1s 128 for one step. And

Table 3-3and Table 3-4 shows the mean average precision of CNN4 and CNNS.

Table 3-3 Mean average precision (MAP) results of CNN4

Name MAP Name MAP Name MAP
Acoustic 0.8662 | Finger 0.6015 | Microwave 0.8318
guitar snapping oven
Applause 0.9754 | Fart 0.7852 | Oboe 0.852
Bark 0.8798 | Electric piano | 0.6734 | Saxophone 0.7843
Bass drum | 0.8221 | Fireworks 0.8759 | Scissors 0.6086
Burping, 0.9048 | Flute 0.9425 | Shatter 0.8329
eructation
Bus 0.6172 | Glockenspiel 0.6927 | Snare drum 0.8031
Chime 0.9827 | Gong 0.9511 | Squeak 0.9704
Clarinet 0.8343 | Gunshot, 0.527 Tambourine | 0.9397
gunfire
Computer 0.6745 | Drawer open, | 0.8545 | Tearing 0.6381
keyboard close
Cough 0.8762 | Hi-hat 0.7857 | Telephone 0.7494
Cowbell 0.8395 | Keys jangling | 0.8405 | Trumpet 0.8072
Double bass | 0.8661 | Knock 0.6384 | Violin, fiddle | 0.8948
Harmonica | 0.9361 | Laughter 0.9762 | Writing 0.7987
Cello 0.969 Meow 0.9028 | Overall 0.8196
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Table 3-4 Mean average precision (MAP) results of CNN8

Name MAP Name MAP Name MAP

Acoustic 0.8946 | Electric piano | 0.6582 | Microwave 0.8287

guitar oven

Applause 0.9677 | Fart 0.8549 | Oboe 0.8641

Bark 0.882 Finger 0.6399 | Saxophone 0.7849
snapping

Bass drum | 0.8495 | Fireworks 0.9257 | Scissors 0.7243

Burping, 0.8826 | Flute 0.9024 | Shatter 0.8616

eructation

Bus 0.7356 | Glockenspiel 0.7824 | Snare drum 0.8382

Chime 0.9561 | Gong 0.9781 | Squeak 0.9872

Clarinet 0.9069 | Gunshot, 0.6051 | Tambourine | 09518
gunfire

Computer 0.742 Harmonica 0.9157 | Tearing 0.734

keyboard

Cough 0.8437 | Hi-hat 0.7749 | Telephone 0.7849

Cowbell 0.9375 | Keys jangling | 0.8084 | Trumpet 0.8434

Double bass | 0.8934 | Knock 0.6893 | Violin, fiddle | 0.9107

Drawer 0.8624 | Laughter 0.9206 | Writing 0.8894

open, close

Cello 0.9621 | Meow 09164 | Overall 0.8461

As shown in Table 3-3 and Table 3-4, CNN8 achieves a mean average precision of
0.8463 outperforming CNN4 net of 0.8210, respectively. Sounds classes such as “Cello”
and “Meow” etc. have very high precision up to 0.9 event 1. but some classes such as

“Glockenspiel” and “Finger snapping” have only 0.3-0.4 precision.
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3.3 Solution for competition

We will talk about the state of art models and some useful tricks for sound this task in

competition, and discuss the reason why we chose not to use these state of art models.

3.3.1Multi model ensemble

In competition of FSD Kaggle 2018, most of the teams in the top of leaderboard have
applied voted decision strategy [18, 19, 20] by multi classifier with different features,
like the two methods mentioned preciously. Because there are kinds of classes of events
and differ from each other, so one classifier may only consider parts of these differences.
For example, MFCCs has the ability to distinguish low frequency signals while Mel
spectrogram focus on the whole frequency domain in Mel scale. If we have multi
classifier and each take consider of some aspects of those varies features, the

combination of their opinion may give the best decision.
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Fig.3-3 Multi model decision strategy

For example, Figure 3-3 shows a multi model decision strategy which are used in
[19]. As we can see, there are two level models in their architecture, the three level 1
models take different feature sets as the input to predict the probabilities of all
categories, then the predictions of level 1 models with another feature set are feed into
level 2 model together to make the final decision. This multi model decision strategy is
like the situation that one expert take the advices of other multi experts from different

angles, then make the final decision. In this way, each model in level could achieve
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nearly 0.9 average precision and the final precision could achieve 0.94 average
precision. Of course, other competition tricks like classic data augmentation methods,

time stretch, pitch shift and balanced mini dataset also contribute to the final result.

3.3.2 Discussion

In this section, we will discuss the role of these methods in real competition and our
experiments. For real competition, good result is at the first place, so researchers would
like to use multi and complex models to get a good grade, and kinds of tricks are
appeared in competition. These are definitely the forward direction of the research on
this sound event detection task, and we need to catch up these advanced methods.
However, in this experiment, our purpose is to reduce the data amount of audio signals,
these multi model strategy increase the model complexity hugely while increasing the
performance. And the computation load might beyond the ability of embedded devices
if compression methods are not used. Thus, we chose two relative lightweight but well

performance models for our next experiments.
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Chapter 4. Data Reduction Methods

Instead of sampling real audio signals, simulations are implemented for these three
methods we proposed. Because datasets are precious resources for this kind of tasks
and they are not easy to collected. It’s a more proper way to do simulations from
original dataset we already have than collecting real audio datasets using those

sampling methods. These three methods and simulations are discussed in details.
4.1 Down Sample for audio signals
4.1.1 Principle and simulation

The first method is to down sampling for audio signals directly, in hardware side, we
just need to use lower sample rate and lower quantization bit width. Recent years, with
the development of AD convert circuit, the sampling rate could achieve up to 96KHz
sampling rate, for high quality DVD and some application like that. Sampling rate for
main acquisition cards in market is generally divided into three levels of 22.05KHz,
44.1KHz, 48KHz. 22.05KHz can only achieve the sound quality of FM broadcast,
44.1KHz 1is the theoretical limit quality of CD sound, 48KHz is for movie or
professional audio. But in early years, 8KHz sampling rate is used in telephone, that’s
enough for human speech, so if we use 44.1KHz for speech sampling, there 5 times
redundancy to acquis. In embedded applications, where resources are very critical in a
system, 5 times redundancy could cause huge computation resource wasting, which
inspired us to do the following experiments.

The first we tried is to down sample directly. The sampling rate of wav files in these
two datasets are all 44.1KHz. We implemented the experiments with 32KHz, 22.05KHz,
11.25KHz and even 8KHz. Wav files are resampled and transformed to frequency
domain to do feature extraction, the mel spectrum of resampled signal with original
spectrum are shown in Figure 4-1. Then features are feed into neural network to train
the classifier. Figure 4-1 shows the spectrum with 22050 Hz sample rate, we can see
although the general shape is kept, but energy leakage starts to appear, it’s even clearer

with less sample rate.
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Fig. 4-1 Mel spectrum with sample rate 22050 Hz

Sample width of audio signals could be reduced with the same reason. As 16 bits
width are used for most general audio application, 24 bits width are usually used in high
quality application. We would like to see the influence of quantization error for this task,
so sampling width are reduced to 12 bits, 8 bit and even 4 bits with different sampling
rate to confirm the influence. New values after changing of bit width is described by

the following equation:

— new_width yoold_width
Xnew = Xold X 2 - /2 - (4'1)

Also, the signals with new quantization values are feed into neural network with the

same operation.
4.1.2 Analysis of experiment results

For experiments, we apply those above operations in both dataset and the results are
shown in Table 4-1. As we can see, with the reduction of sampling rate, accuracy is not

hurt much, with only 3 to 4 percent decline as 2 to 4 times reduction of sampling rate,
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and even in 8KHz sampling rate, accuracy is still acceptable. In other words, the amount

of signal data is reduced by 2 to 4 times.

Table 4-1 Result for changing sample rate (Urban8K dataset)

Sample rate Accuracy epochs Sample width
44100 Hz 91.65% 10 16 bits
32000 Hz 91.37% 10 16 bits
22050 Hz 89.39% 10 16 bits
11025 Hz 86.73% 10 16 bits
8000 Hz 82.69% 10 16 bits

Table 4-2 shows the oppsite result with Table 4-1. Variation in quantization precision
has much more loss in performance, results of 12 bits sampling width is in a reasonable
range while 8 bits sampling width is unacceptable. But if we count for the data reduction
rate, it’s only 4/3 amount of data are reduced, while 2 times precision loss could cause

bad result, so it’s less effective compared with down sampling.

Table 4-2 Result for changing sample rate (Urban8K dataset)

Sample width Sample rate Accuracy Epochs
16 bits 44100 Hz 91.65% 10
12 bits 44100 Hz 86.54% 16
8 bits 44100 Hz 72.78% 16
4 bits 44100 Hz 45.97% 16
16 bits 32000 Hz 91.37% 10
12 bits 32000 Hz 85.16% 16
8 bits 32000 Hz 72.41% 16
4 bits 32000 Hz 45.20% 16
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With results of these two experiments, we could derive that down sampling is a more
efficient method for reduce data amount of audio signals with little hurt of recognition
performance. So, the following two experiments are mainly based on reducing

sampling rate while keeping high quantization precision.
4.2 Sigma Delta ADC for audio signals

Signal delta ADC is a typical way to acquis high resolution signal with low data rate.
So, we implemented experiments by signals with signal delta ADC.

4.2.1 Principle and simulation

Sigma delta ADCs are suitable for converting analog signals over a wide range of
frequencies. Basically, sigma delta ADCs consist of a modulator which oversampling
signals and convert them to 1-bit data, and a digital decimation filter follows the
modulator which decimate oversampled 1-bit data and output high resolution data
stream.

The iput analog signal is oversampled in converter. And sampling rate to
oversample the analog signal is much faster, usually hundreds of times larger than the
data rate of digital output. The two main components of sigma delta ADC are the sigma
delta modulator and digital filter with decimator. Sigma delta ADC’s general structure
1s shown in Figure 4-2. As we can see, delta sigma modulator samples the analog input
signal with a high sample rate and convert sampled signal into 1-bit data-stream. Then
the digital filter with decimator takes the sampled 1-bit data-stream to converts it into
digital output with high-resolution, low data rate. There is only one sample rate for most
traditional converters, however, in sigma delta ADC, there are two, the first is the input

oversampling rate f¢ and the second is output data rate f},.
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The core part of the sigma delta ADC 1is the modulator, which converts the analog
input signal to digital 1-bit stream and reduce the low frequency noise, because the low
frequency noise is pushed into high frequency due to over sampling. We call this
function noise shaping, noise in low frequency is shaped to high frequency where it is
outside the signal frequency band. This is one of the reasons why sigma delta ADCs are

well suited for the measurements of low-frequency, high resolution signal.

Difference
Aeling Amplifier

\/\ o7 *2

Intergrator fs

Output to
Digital Filter

¥ L.

Comparator
(1-Bit ADC)

Yi=Xi-1+(e;—eji1)

Xy 1;

1-Bit DAC

Fig. 4-3 Sigma delta modulator in time domain
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Now the sigma delta modulator will be discussed in detail. We have two perspective
to analysis the sigma delta modulator: time and frequency domain. Block diagram in
time domain is shown in Figure 4-3, which 1s an example of first-order modulator. The
analog input signal is converted to high data rate 1-bit modulated pulse wave by sigma
delta modulator. From time domain analysis, sigma delta modulator takes input analog
signal to generate 1-bit data stream. The system clock samples with the 1-bit comparator
in modulator together. In this way, the quantization of the sigma delta modulator is
implemented with the same sampling rate as system clock. Similar to all quantizers, the
input voltages are represented by digital values, sigma delta modulator use a 1-bit
digital stream here, so, the input analog voltage is represented by the ratio of the number
of bits one to number of bits zero. And difference with most quantizers is that the sigma
delta modulator has an integrator that shapes the quantization noise to higher frequency
region. Therefore, the output of the modulator has non-flat the noise spectrum.

In time domain analysis, shown in Figure 4-3, the process of convert analog input
tol-bit stream generates quantization noise of convert. So, the modulator output is the
sum of the mput signal and quantization noise, which is the Difference between the

current quantization error and the previous quantization error.
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Fig. 4-4 Sigma delta modulator in frequency domain

Analysis in frequency domain is shown in Figure 4-4, we can see the location of
quantization noise in output spectral. It also shows that how the modulator affects the
noise and produces high resolution results. View on frequency domain, the output in

time-domain is clearly separated as the input signal part and shaped noise part in high
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frequency. It’s clearly to see the noise properties in frequency domain, then we should
understand the frequency operation of modulator as well as how the sigma delta ADC
could achieve the ability of generating such high resolution for signals.

After sigma delta modulator, data stream come to the digital filter and decimator. The
digital filter implements the function of low-pass filter by sampling the 1-bit stream of
modulator. Fig. 4-5 shows the most common digital filter in sigma delta converters,
which i1s a first-order low-pass averaging filter. As we can see from this figure, the
digital filter is a weighted averaging filter. Sinc filters is one kind of the averaging filters
used in almost all the sigma delta ADC. Many sigma delta ADCs use Sinc filters
combined with other filters as part of the two-stage decimation process, especially for
audio signal. There are only the Sinc filter used in sigma delta ADCs for Low-speed
signals like in industrial application.

Input Delay Delay |[—7— --—-----— — Delay [—

A

Fig. 4-5 First-order low-pass averaging filter

Output of digital filter as shown in Figure 4-6, has the same data rate with the
oversampling rate. We can view the output in two perspective, frequency and time

domain. In time domain, digital filter’s output has a very high resolution, as shown in
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(a), for example, 24 bits are used to represent a value of sampled signals. In frequency
domain, the digital filter is just like low-pass filter applying to the signal. In this way,
quantization error could be attenuated, at the same time, the frequency bandwidth is
also reduced, just like any low-pass filter would do. As the quantization noise decreases,

the signal reappears in the time domain.

Signal

fs

Quantization
Noise

Fig. 4-6 Outputs of digital filter

The second part is the decimator. It is easy to understand the behavior of decimator
to the samples of digital filter. In the circuit decimator, the output rate of digital signal
is reduced by just discarding or ignoring parts of the output samples, which is also
known as down sampling.

It seems to be unpleasant to throw away parts of the original complete signal with a
lot of samples and only leaves the general shape of original signal. However, most of
original samples are only the copies of nearby points produced by filters. In fact,
according to the Nyquist theorem, the spectral information of the decimated waveform
with only general shape is almost the same with the previous complete waveform, now
we have a more efficient data rate. Decimating some samples does not result in any loss

of information. The decimation process is shown in Figure 4-7.
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Fig. 4-7 Digital filter’s output from decimation process

Figure 4-7(a) shows the output of digital filter’s in time domain. Figure 4-7(b) shows
the output signal after decimating process. This 1s the complete process of the data

steam moving through the digital filter and decimator in sigma delta ADC.
4.2.2 Analysis of experiment results

According to the principle of sigma delta ADC, we have done the simulation for

audio signal. Figure 4-8 is the raw spectrum of one audio sample in our dataset.
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And the input and output of sigma delta modulator are shown in Figure 4-9. Red line

1s input waveform and blue line is the discrete one bit output.
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Fig. 4-9Input and output of sigma delta modulator

After sigma delta modulator, we could see the effect of noise shaping in Figure 4-10

Spectrum after noise shaping
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Fig. 4-10 Spectrum after nose shaping

Finally, signals are generated after digital filter and decimator. Figure 4-11 shows the
raw waveform with the simulated waveform. As we can see the quantization error of
this simulation is in green line, from -0.050 to 0.075, compared with the max

normalized value 1.
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Fig. 4-11 Raw waveform with the simulated waveform and quantization error

And the spectrum of original signal, filtered noise and simulated signal are shown in
Figure 4-12. As we can see spectrum of simulated signals are similar to the original and

much more noise have been filtered by sigma delta modulator.
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The sampling rate of raw signal is 44.1KHz, and the output data rate after sigma delta
simulation is only 8962Hz, about 4 times reduction. Also, simulated signals are trained
with the RNNs classifier using Urban8K dataset, the accuracy we got 1s up to 0.8717.
We haven’t test the FSD2018 dataset, because simulation of sigma delta ADC can be a
really slow process. Figure 4-12 shows the training process, as we can see the training

loss 1s close to zeros at the last phase of training process.
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Fig. 4-13 Training accuracy and loss curve
4.3 Level Crossing ADC for audio signals

Level crossing ADC is nonuniform sampling way for event trigger signals such as
ECGs, here we simulated these uneven signals in audio area and related experiments

are implemented.
4.3.1 Principle and simulation

For traditional ADCs, an analog signal uniformly sampled and the digital value for
the sample point of analog signal is quantized to the nearest predefined quantization
level. As Figure 4-12 shows, the quantization levels belong to a quantization value set
containing the value q,., gp... which are spaced uniformly on amplitude scales, in
another word, the distance between quantization levels are all equal. With the discrete
quantization strategy, the quantized amplitude levels of sampled signal usually are not
the real values of sampled signal at the sampling instants. And the sampling rate should
be enough to support the fast-varying parts of the signal being sampled with the sample
frequency up to the twice of its highest frequency. However, the sampling rate is
constant in classic ADC, the slow-varying parts and fast-varying parts have the same
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sample rate, some redundancy in slow varying parts of signal, especially in sparse

signals.

Fig. 4-12 Uniform sampling

Level crossing sampling 1s shown in Figure 4-13. The sampling for input signal only
occurs at the signal points where it crosses the predefined discrete quantization levelsq,,,
Qp. -.- The corresponding time instants are denoted by t,, t;... So, the sampled signal
by LC ADC can be represented by pairs of t; and x;, where the signal values
x(t;) = x; 1s one of the quantization levels. If we assume that the time axis is
continuous, there are no quantization error in this signal representation from LC ADC,
because the corresponding amplitude value of sampled time instant is exactly the value
in original signal. Sampling times are not depended on global time clock, but decided
by quantization levels with the waveform of signal. This LC ADC could generate high
amplitude resolution signals, since there are no amplitude quantization errors. However,
continues time axis only exist in mathematics, global clock in ADC circuit can never
generate a continues time clock. Thus, high discrete time resolution is required in LC
ADC. Fortunately, techniques which could generate high time resolution clocks is
benefit from advanced development of VLSI

43



ty o T 41

Fig.4-13Level-crossing sampling

According to Nyquist sampling theorem, to avoid the frequency aliasing while
sampling a band limited signal, the uniform sampling frequency should be twice larger
than the bandwidth of a signal. Thus, if we use uniform sampling with a Nyquist
frequency for all the signal waveform including the slow varying parts, redundant data
would be generated from slow varying parts. On the contrast, LC ADC gives a smaller
sampling rate for the slow varying parts, as a result, unnecessary redundant data are
avoided 1in this way.

According to the theory of level crossing ADC, we design an algorithm simulation
method instead of Matlab Simulink. Because the data set we have is sampled in
common Nyquist sampling way, which is not convenient to restore the no error values
of signal amplitude. We can just only keep the quantized value as close to the original
as possible during our reduction process. Keep the main idea of level crossing ADC in
mind, it is not difficult to design the algorithm simulation without Matlab Simulink. We
just need to give a higher sampling rate for fast-changing parts and lower sampling rate
for slow-changing parts. In here, we can keep the fast-changing part with its original
sampling rate, and do down sample for slow-changing parts. In this way, we kept the
most information while down sampling the audio signals. The simulation signal

waveforms are shown in Figure 4-14.
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Fig. 4-14 Uniform sampled signal and nonuniform sampled signal

As we can see from Figure 4-14, nonuniform sampled signal has no difference with
uniform sampled signal in fast-changing parts, the only difference is remained on slow-
changing parts, which just has impact on low frequency component of the spectrum of
signal. And the simulated nonuniform signal is almost half the length of original signal,
which means we use only the half of the original average sampling rate on this signal,
but most information is kept.

However, another problem is introduced at the same time. The signals we got through
this LC ADC or our simulation method are nonuniform sampled data. Fast Fourier
transform is not suitable anymore because time scale is not uniform, which means time
interval between points are not equal. We can see from Figure 4-15, (a) is the original
Mel spectrum, (b) is the spectrum obtained from direct STFT one nonuniform signal.
As i1t shows, the spectrum is distorted. Obviously, we cannot use this distorted spectrum

as the input of neural network classifier directly.
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Fig. 4-15 Original and distorted Mel spectrum

For nonuniform sampled signals, nonuniform Fourier transform need to be applied
as we would like to exploit the frequency information of nonuniform sampled data.
There have been some researches about this, like Lomb-Scargle algorithm [56, 57, 58],
which detects the significance of weak periodic signals with uneven temporal sampling.
We framed the uneven temporal sampling signals manually based on time window shift,
and do periodic analysis for framed nonuniform points using Lomb-Scargle algorithm,
then we got power spectral of the framed signal. Like the short time Fourier transform,
we stack the framed power spectral, finally, time-frequency power spectrum is obtained.
Figure 4-16 shows the Mel spectrum of nonuniform sampled signal using nonuniform

discrete Fourier transform mentioned before.
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Fig. 4-16 Mel spectrum of nonuniform sampled signal

As we can see, this nonuniform Mel spectrum keeps the most related information of
the original Mel spectrum like relative fundamental frequency and principle formants,
with some frequency shift and basis of average noise. This linear transform problem
could be well solved by neural networks, because neural network could learn a linear
transform as long as it thinks this transform could benefit its minimization of loss

function.
4.3.2 Analysis of experiment results

The nonuniform Mel spectrum is extracted for every audio clips and feed into neural
network as inputs to train a classifier. For this experiment, we chose the CNNs model
with FSD2018 audio dataset. As CNNs are better suited with this nonuniform Mel
spectrum, it 1s much harder to extract MFCCs on nonuniform sampled signal. Thus, we
give the nonuniform Mel spectrum as the input, expecting CNN blocks would filter and
learn the information which it thinks meaningless or useful.

The same network structure of CNN4 1n 3.2.2 is chosen because it 1s much smaller
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than CNN8 with little accuracy loss. For hyperparameters of network, the only
difference 1s the filter size, 5 X 5 filterin 3.2.2 isreplaced by 4 X 4 here, because we
get smaller Mel spectrum size after simulation and nonuniform short time Fourier
transform. And training parameters is almost the same with 3.2.2, Adam optimizer is
chosen, with a learning rate of 0.001 and the learning rate is reduced by multiplying 0.9
after every 1000 iterations training, and batch size is still 128. Table 4-3 shows the
results on FSD2018 with our LC-ADC data reduction method.

Table 4-3 MAP results of CNN4 on FSD2018 with LC-ADC

Name MAP Name MAP Name MAP
Acoustic Electric piano Microwave
_ 0.7951 0.4175 0.8150
guitar oven
Applause 0.9653 | Fart 0.7683 | Oboe 0.9065
Bark Finger Saxophone
0.8162 _ 0.8653 0.7829
snapping
Bass drum | 0.8621 | Fireworks 0.9374 | Scissors 0.4308
Burping, Flute Shatter
_ 0.7932 0.8953 0.8535
eructation
Bus 0.5160 | Glockenspiel 0.4378 | Snare drum 0.8821
Chime 0.9692 | Gong 0.9622 | Squeak 0.9957
Clarinet Gunshot, Tambourine
0.9175 0.4953 0.9752
gunfire
Computer Harmonica Tearing
0.6207 0.8903 0.6543
keyboard
Cough 0.8732 | Hi-hat 0.5573 | Telephone 0.7866
Cowbell 0.8510 | Keysjangling [ 0.8214 | Trumpet 0.8764
Double bass | 0.9153 | Knock 0.6092 | Violin, fiddle | 0.9509
Drawer Laughter Writing
0.8014 0.9388 0.8474
open, close
Cello 0.8391 | Meow 09182 | Overall 0.8017

We can derive that with LC-ADC, classification performance is well kept while

reducing the average sample rate. At the same time, we also found that the level class
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is related to the classification performance because it determines which points are

skipped which are kept, in another words, the average sample rate.
4.4 Performance analysis

We have done three experiments, compare these three methods for sound event
recognition. We have known the reducing of data amount of audio signals, which is
benefited for reducing parameters, power consumptions and latency of classification
model. We would like to see how much the parameters are reduced and latency are
improved by using these methods. Thus, we designed another experiment to figure out

the improvements, of course, except for classification accuracy.
4.4.1 Theoretical analysis

Model complexity, as known as parameters of model could be calculated by
theoretical analysis, because we have the determined input size.

For the first method, down sample, because sample rate determines the bandwidth
(the highest frequency component, f < f; /2, f represents frequency of signal,
fs is the sample frequency ) down sample reduce the max frequency limit. And
frequency scale (normalized frequency resolution) is determined by the number of FFT
points, number of frequency scale is equal to number of FFT points divided by 2 plus

one (zero component), which gives equation (4.2),
Nferq pin = % +1 (4.2)

where Nfepq pin Tepresent the number of linear frequency bins, ngpr represent the
number of FFT points. And FFT points 1s determined by framed window length, number
of FFT points is equal to an integer power of 2 and must greater than the framed window

points, as equation (4.3) described,

Nppr = zceil(log Lyin/log 2) (43)

where ceil function means rounded up, l,,;,, means the points length of window.
The window length equals to sample rate multiply window time, t,;;, = Lyin X fs ,
twin means the time of window. So, window time determines the frequency scales. At
the same time, the number of Mel bins is usually determinate, often 80, 96 or 128 in
speech tasks, so we need to keep the linear frequency bins consistent. If we want to

keep the frequency scale consistent, window time need to increase to keep the window
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length increase. Meanwhile, hop length of frame shift is usually half or quarter of
window length, so hop length and hop time increase with window length, results in
less frames of one audio clip after frame process. Less frames gives huge reduction
for the audio features which would be feed into neural networks, whether it is Mel
spectrogram or MFCCs. If we down sample n times, we get a new sample rate which
1s n times less than the original one, thus window time is n times larger than original,
as well as hop time, eventually we get a nearly n times less frames.

For Mel spectrogram, although the number of Mel frequency bins is not changed,
we have larger time shift in time scale, so the shape of Mel spectrum is reduced nearly
n times in one dimension, which results in less convolutional computation, as well as
shorter latency and less power consumption. Meanwhile, if the size of input 1s reduced
much larger, we could even reduce the filter size of CNNs to extract the local
information carefully. For example, we use 5 X 5 filter for CNN4 1n 3.2.2, and the
size of filter is reduced to 4 X 4 because Mel scale is reduced twice in time
dimension when average sample rate is twice less than original in 4.3.2. The total
parameters reduction of classification model could be calculated, for only the
convolutional parameters, according to the structure of CNN4 described in 3.2.2, there
are 4 convolutional blocks and the numbers of channels are 64, 128, 256, 512
respectively. So, the original number of parameters is 5 X 5 X (64 + 128 x 64 +
256 X 128 + 512 X 256) = 4302400. And the number of parameters after filter
shrinking is 4 X 4 X (64 + 128 X 64 + 256 X 128 + 512 X 256) = 2753536 ,
almost the one third convolutional parameters are reduced, which is 1548864, up to
1.5M parameters, if we use float64 to code one parameter, the saved memory can be
96M, which is a huge number for the memory size of embedded devices. Although the
computation times can be increased slightly due to time filter shrinking, it’s still a
small number compared to the reduction of computation times due to input size
reduction. In fully connection layer, the reduce of input size has a huge effect on
reducing the weights connect flatten layer with fully connection layer. Assume that the
final output of the last convolutional block 1s 10 X 4, which is a conservative estimate,
the original fully connected weights is 10 X 4 X 41 X 512 = 839680, where 41 is
the number of categories, 512 is the number of channels of last feature map. If we
have reduced the input size by twice, thus, the reduction of fully connected weights
can be 5X4 X 41 X512 =419840, which means another 0.4M parameters are
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reduced only in the last fully connection layer, in another word, 25M space are saved
1N memory.

For MFCCs with LSTMs structure, also, down sample results in less frames of
MFCCs. In LSTMs, one frame is a vector feed into LSTM cell for one time step, less
frames means less time steps, so, computation times are reduced nearly n times if we
down sample n times. As we tend to fix the number of Mel bins to keep the model
basically unchanged, the number of LSTM units and layers are settled. Thus, the only
reduction 1s on the last fully connection layer. Similar to CNNs, assume that we have
100 output time steps, now it is reduced to 50 by down sampling, relatively, the
parameters of last fully connection layer is from 128 X 100 X 41 = 524800 to
128 X 50 X 41 = 262400, where 128 is the values we set for the hidden layers of
LSTM cell in our experiments. Still, 0.2M parameters, 12.8M memory space are saved
just for model size.

For sigma delta ADC method, the output data rate is almost 4 times less than
original sample rate in our experiment (8962 VS. 44100), so MFCCs and Mel
spectrum frames are both 4 times less, and the model size reduction is similar to the
analysis above, just modifying the scaling factor of number of frames we can have the
reduction size of model. The benefit of sigma delta ADC is that signal precision is
kept while data rate 1s reduced, due to its noise shaping function when down sample
from original signal. The only shortcoming of sigma delta ADC is that it could cause
extra energy consumption and latency while signal acquisition, according to the
principle of sigma delta ADC in 4.2.1, the process in sigma delta modulator could
cause more energy consumption than traditional ADC due to its up-sample process.
And in our simulation experiment, simulation for one audio clip could consume more
than 30 seconds, which is a big challenge for our experiment. However, compared to
the reduction of data amount and size of model while keeping the accuracy, this ADC
energy consumption is worth to consume.

For LC ADC method, average sample rate for each audio clip is unstable, due to
each audio clip has their own frequency property. What’s more, even we got the
average sample rate, it has no direct relation with final frames due to our framing
method and nonuniform DFT algorithm. In another word, even the same average
sample rate may give a different number of frames because of our nonuniform sample

method. Thus, we need to count for all the signal to get the relationship of statistical
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average sample rate and nonuniform Mel bins frames. Once we have got the statistical
relationship between average sample rate and number of frames, it is easy to get to
model size reduction according to above theoretical analysis. For specific case, like
just one audio clip, we can analyze the average sample rate and number of frames to
discuss the model complexity reduction in this case, it does have some representative
for other case, but it’s not in universal. In the case of 4.3.1, the picked one in Figure
30, the final data length is one third of the original, so we can assume that the average
sample rate 1s also one third of the original sample rate. As for frames, according to
experiment results, the original has 567 frames while the simulated has only 260
frames in Mel spectrum. So, it’s more than twice the reduction, but not up to three
times. Thus, the reduction of model complexity is twice the number of weights in fully
connection layers and convolutional size shrinking factor if it shrinks.

Finally, for reduce the sample width, as sample rate is stay unchanged, the number
of frames remains the same. The only difference 1s the space reduction of saved
memory for signal number, because the parameters precision in our model is
determined in model definition rather than ADC precision. Thus, in this experiment,
the influence of bit length variation of audio signal can only reduce the working
memory for mput data access. And due to the unideal experiment result for reduce
sample width (causes too much accuracy loss), we can derive that this is not a proper
way to reduce data amount in audio detection task.

We have discussed the parameters of model complexity in this section, because it is
possible to calculate in theoretical, we just need to figure out the relationship between
the number of points in one signal and the model parameters. As for other dominant
performance like latency and power consumption, it 1s hard to calculate in theoretical.

Experiments and analysis for latency reduction is talk in next section.
4.4.2 Experiment analysis

As we discussed in previous section, it is hard to calculate latency of model inference
and power consumption during inference in theoretical, we implement an experiment
in this section to figure out the latency reduction, as power consumption is still not easy
to implement in computer instead of real embedded devices with the exist data and
resources.

Experiments for latency is relatively easy to implement because we just need to count
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the average latency for different data reduction strategy with the same original signal
in test data set. That 1s to say, we use the same audio test set to test the model related to
different reduction strategy. For each strategy, we simulated for test set audio clips in
the way of this strategy, then the simulated signals are feed into relatively trained

classifier to get the inference latency. Table 4-4 shows the latency with related reduction

strategies.
Table 4-4 latency vs. data reduction method
Reduction Model Dataset Sample Average Total
method rate Frames latency
No method Bi LSTMs | Urban 8K | 44100 Hz | 81 74ms
Down sample | Bt LSTMs | Urban 8K | 22050 Hz | 40 51ms
AY ADC Bi LSTMs | Urban 8K | 8192 Hz 16 28ms
No method CNN4 FSD2018 | 44100 Hz |81 43ms
Down sample | CNN4 FSD2018 | 22050 Hz |40 32ms
LC ADC CNN4 FSD2018 | 7775 Hz 36 30ms
No method CNNS FSD2018 | 44100 Hz |81 68ms
Down sample | CNN8 FSD2018 | 22050 Hz |40 53ms
LC ADC CNNS FSD2018 | 7775 Hz 36 49ms

In table 4-4, the value of average frames is average frames per second signal for all
audio signal, and average latency is also the average latency per audio file for all audio
signal in test set, because audio signal in test set have much different duration, and the
test audio files are the same in one data set, for statistic convenience, we use average
latency per file as the metrices instead of average latency per file. Another point we
have to state is that for each dataset, we use different test files, the reason i1s obvious,
test set is better to be similar to the training set. So, comparison should be between the
same dataset and the same model, only in this way we can see the effect of our method.
And the number of frames and values of latency is only for reference, we use the
statistic values to represent the actual different values here, because our purpose is to
see the effect of our data reduction method.

From table 4-4, we can derive that average latency is closely related to average

53



frames, all the three method has the ability to reduce the average frames. It is worth to
mention that when we compare the latency, we need to compare during the same model
for different strategy, because the model structure is in dominance for inference latency.
For LSTMs with Urban 8K, the reduction of frames reduced the latency hugely because
frames determined the time step of LSTM, that is obvious to understand, one more
frame means one more extra computation in LSTM cell. Both down sample and sigma
delta ADC are for the same reason, so huge frames reduction could cause huge latency
reduction. For CNNs with FSD2018, down sample and LC ADC can also reduce the
latency in some extent, but the reduction degree is not as much as it in LSTMs. For this
phenomenon, we think that’s because of the structure of CNNs, although the input size
1s smaller using the data reduction method, computation is still in parallel due to the
property of CNNs. Another important issue is that we implement this inference
experiment on server machine with graphic process unit (GPU) acceleration, which is
much suitable for matrix operations. So, the experiment environment is much different
with realistic practical scene, the specific value only has reference value, we can see

how much the latency are reduced with our data reduction method.
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Chapter 5. Conclusions

For the typical IoT application in audio area, sound event detection, we proposed a
new perspective on reducing the energy consumption and data amount for embedded
devices. We had implemented several experiments for this task using our data reduction
method.

At first, we used two model with two different audio features as the input, in two
different datasets. The two models are LSTMs with MFCCs and Mel spectrogram with
CNNs respectively. It turns out to be well for experiments, although there 1s still some
distance from the best performance. However, state of art works in this task have huge
model complexity, which is not suitable for embedded devices. So, the two simple but
well performance models are chosen as our basic models for the next experiments. The
first data reduction method is down sample and reduce the sample width directly, result
of experiment shows that down sample could reduce model complexity and latency
while keep the classification accuracy. For LSTMs, latency is reduced hugely with
some complexity reduction. For CNNs, much more parameters are reduced when we
feed less frames of Mel spectrogram for model and shrink the filter size. But the result
also shows that reduce the sample width seems have huge impact on model performance,
accuracy 1s losing sharply while reducing quantization precision. And for reduction of
model complexity, it seems that there i1s no difference while using less sample width in
this simulation experiment on computer.

Based on the results of our first experiment, we replaced the traditional ADC method
with a new ADC technique called sigma delta ADC, which provides high resolution
and low data rate signal. We simulated this kind of signals from the original dataset, of
course, the data rate of simulated signal must be lower than the original sample rate,
then we used those simulated signals to retrained a classification model. In the condition
of the same data rate, compared to down sample directly, we found that signals from
this sigma delta ADC way could better maintain the model accuracy, that is, more audio
feature information. In terms of model complexity and latency reduction, it is similar
to down sample directly, because the principle is to reduce the input size of model,
which 1s the number of audio feature frames.

We further considered a nonuniform sample method, LC ADC, widely used in ECG
signal acquisition because of its event triggered property. We would like to give more

sample rate for signal segments where carried more information and vice versa to

55



reduce the data amount. Because the simulated signals are uneven in time scale, we
used a nonuniform discrete Fourier transform method called Lomb-Scargle algorithm
to approximate the short time frame energy. And Framing is still based on time window
shift, but the signal points in one frame is not determinate anymore. Experiment result
shows that, compared to down sample directly, signals from this LC ADC way has a
better ability to keep the feature information, as well as the model precision. This
comparation should be implemented with the same number of audio frames instead of
average sample rate, because relations between number of frames and average sample
rate 1s not a strictly linear relation. As for model complexity and latency;, it is still similar
to down sample directly with the same number of frames.

The above are all the conclusions of all experiments in this thesis. We found those
data reduction method we tried could reduce the redundant data amount efficiently,
however, there are still a lot of work to do to confirm the feasibility of this new
perspective. We can implement experiments on real hardware side to test the result,
after all, simulation environment 1s such different from realistic engineering. For LC
ADC, we can do much more experiments to find the statistic relation between level
classes, average sample rate and number of frames. At last, the task of sound event
detection could be more realistic, we assume all the events are monophonic, it is easier
to classify than polyphonic events (several events happening simultaneously) in
experiment. However, most sound events are polyphonic in real word. Thus, to make
this research have practical values, we need to research this polyphonic sound event
detection topic further, where much more acoustic area algorithm involved. In a word,

there are still a lot of work to do to make this research more valuable.
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