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Sendai virus (SeV) is a single-stranded negative-sense RNA virus belonging 
to the family Paramyxoviridae. It is an important model and vector virus, and 
a murine pathogen. Innate immunity is the first to act on infections. Invading 
viruses are recognized by pattern recognition receptors (PRRs) belonging to 
innate immunity. Retinoic-acid inducible gene-1 (Rig-I) is one key cytosolic 
PRR and recognizes primarily short double-stranded RNA. Activation of the 
Rig-I pathway leads to the activation of the transcription factor interferon 
regulatory factor 3 (IRF3). Activated IRF3 translocates from cytoplasm into 
the nucleus. There it regulates the production of interferons (IFNs) and other 
pro-inflammatory molecules aiming to eliminate the virus. In this study, the 
activation kinetics of the Rig-I pathway were studied in vitro in A549 cells 
infected with SeV Cantell strain. The central interest was the activation 
requirements of the Rig-I: whether innate immunity responses are activated 

when the virus is not replicating. IRF3 movement, IFN-1 and IFN-λ1 and 

SeV N gene mRNA expressions, and host and viral protein expressions in 
the infected cells were studied by immunocytochemical staining, qRT-PCR, 
and immunoblotting. In addition, experiments with cells treated with 
cycloheximide (CHX), which inhibits protein synthesis, were done. 
Interestingly, the results demonstrate that the Rig-I pathway activation 
occurred by one hour after the SeV-infection followed by effective IFN mRNA 
expressions between two and four hours after the SeV-infection, and these 
were independent of the virus replication. Consequently, it is enough that 
SeV enters the cell, without the virus replication, to be recognized and elicit 
antiviral responses. 
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1. Introduction  

   
1.1 What are viruses? 
 

Viruses are tiny packages of genetic information (Koonin et al. 2015). Unlike 

other biological entities, viruses are incapable of replicating themselves 

(Walsh and Mohr 2011). Thus, they are obligate parasites that invade, i.e. 

infect, a cellular host organism and exploit its metabolic machinery to 

replicate and produce the needed components to amass progeny viruses 

(Walsh and Mohr 2011). Viruses are a diverse group of particles: they exist 

in different shapes, sizes, and structures (Koonin et al. 2015). In fact, when 

surveying the whole virus genera, universally found gene(s) of all viruses 

lacks (Koonin et al. 2006). However, there are some hallmark viral genes 

that are shared among certain group of viruses and are lacking in cellular 

organisms (Koonin et al. 2006). Nonetheless, there are some unifying 

structures and functioning mechanisms, particularly within a certain 

taxonomic group (Tordo et al. 1988; Poch et al. 1989). 

 

First, all viruses have some kind of capsid structure, which encapsulates and 

protects the viral genome creating a nucleocapsid (Koonin et al. 2006; Mateu 

2013). Since the capsid protects the viral genome, maintaining the proper 

form and function of the capsid is vital for keeping the virus infective (Mateu 

2013). On the other hand, it must be a labile structure and able to be 

disrupted in order to release the virus genome into the cytosol after the virus 

has entered the host cell (Mateu 2013). 

 

Some viruses have another protecting layer on top of the capsid: an envelope 

(Plemper 2011). Unenveloped viruses comprise of only the nucleocapsid 

structure. Enveloped viruses have a lipid (bi)layer that has proteins 

embedded in it (Plemper 2011). The envelope of a virus has also other 

important roles than purely protective. Proteins in the envelope mediate the 

virus entry into the host cell (Scheid and Choppin 1974; Bousse et al. 1994; 

Bitzer et al. 1997, Plemper 2011). Significant differences, in both function 

(Matlin et al. 1981; Moscufo et al. 1993; Liemann et al. 2002) and sensitivity 

(Shirai et al. 2000; Kramer et al. 2006; Thevenin et al. 2013; Firquet et al. 

2015), appear between the enveloped and non-enveloped viruses. The ones 
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that possess an envelope are generally easier to degrade since the envelope 

comprises of lipid layers, and detergents can therefore easily interfere their 

integrity (Shirai et al. 2000; Thevenin et al. 2013). 

 

All of the life domains, eukarya, archaea, and bacteria, are threaten by 

viruses’ capability to infect (Koonin et al. 2015). Even viruses themselves can 

be infected by a virus (La Scola et al. 2008). Each virus has a certain host 

cell range that it infects, for example bacteriophages only infect specific 

bacterial cells (Koonin et al. 2015). The virus’s interaction with the host cell 

and adsorption ability is dependent on the receptors expressed on the virus 

and the host cell surface (Markwell and Paulson 1980; Deng et al. 1996; Chu 

and Whittaker 2004). Therefore, this possible host cell range is further 

limited, since different cell types express dissimilar receptors on their 

surfaces (Zhu et al. 2011). 

 

In general, viruses can have deoxyribonucleic acid (DNA) or ribonucleic acid 

(RNA) genome, of which both can be either single-stranded (ss) or double-

stranded (ds) (Baltimore 1971; Agol 1974). In each of these combination 

alternatives, the genome can be circular or linear (Baltimore 1971; Agol 

1974). Furthermore, the genome can be segmented or not, meaning that the 

genome is in pieces or as a continuous fragment, respectively (Baltimore 

1971; Agol 1974). RNA genomes are generally further divided into negative- 

or positive-sense RNAs (Baltimore 1971; Agol 1974). The difference 

between these two groups is that positive-sense RNA can directly act as an 

mRNA template for translation, but negative-sense RNA requires an 

additional step before it can be translated into viral proteins (Baltimore 1971; 

Agol 1974). That is, first it needs to be transcribed into positive-sense, i.e. 

antisense, mRNA. 

  

 1.2 Sendai virus 
 

Sendai virus (SeV), also known as hemagglutinating virus of Japan (HVJ) or 

mouse parainfluenza virus type 1, belongs to the family Paramyxoviridae and 

in the genus Respirovirus (Afonso et al. 2016). The family Paramyxoviridae 

includes also significant human pathogens such as respiratory syncytial virus 

(RSV) and human metapneumovirus (HMPV) (Afonso et al. 2016). Sendai 

virus is a single-stranded, negative-sense RNA virus, and has an envelope 

(Faίsca and Desmecht 2007). The viral genome, which is around 15 kb in 
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size, is non-segmented (Faίsca and Desmecht 2007). SeV genome consists 

of six genes that code for six structural proteins. The six virus genes are 

located in tandem and ordered so that N protein is the first from the 3’ end 

followed by P, M, F, HN, and lastly at the 5’ end L (Faίsca and Desmecht 

2007) (Figure 1). 

 

 

The P gene of SeV is polycistronic meaning that it codes for more than one 

protein from the single mRNA via multiple overlapping open reading frames 

(ORFs) (Dethlefsen and Kolakofsky 1983; Curran and Kolakofsky 1988). 

Thus, the P gene can result in different translational products that are non-

structural, i.e. that are lacking in the virion structure, C proteins (C and C’), P 

protein, non-structural Y protein (Curran and Kolakofsky 1988), and V protein 

(Kato et al. 1997). This mRNA editing happens by insertion of a guanidine to 

a specific place in the mRNA thus creating a frameshift and ultimately 

another protein (Vidal et al. 1990). At the 3’ and 5’ ends of the genome lie 

small regions called leader (le) and trailer (tr), respectively (Leppert et al. 

1979; Kolakofsky et al. 2004). The positions of these regions are also 

visualized in the Figure 1. Le and tr are both noncoding regions (Kolakofsky 

et al. 2004). The le region is the promoter for the synthesis of mRNA as well 

as for the intermediate, positive-sense antigenome (Kolakofsky et al. 2004). 

At the 3’ end of the antigenome (at the 5’ end of the genome) is the tr region, 

which directs the synthesis of the genome (Noton and Fearns 2015). The 

antigenome serves as a template for the negative-sense genome, which is 

the final product of the virus genome replication (Kolakofsky et al. 2004). 

 

SeV nucleocapsid (N) protein’s N-terminal domain is in charge of 

encapsulation of the virus genome and of the assembly of the virus 

nucleocapsid (Buchholz et al. 1993). The SeV nucleocapsid is formed, to a 

lesser extent, of two other components as well: the large (L) protein and the 

phosphoprotein (P) (Portner et al. 1988). Like noted, SeV has negative-

sense, single-stranded RNA genome and the RNA is tightly encapsulated by 

N protein forming the nucleocapsid structure (Faίsca and Desmecht 2007). 

To start the replication, the virus first needs to enter the cell and release its 

Figure 1. Negative strand RNA genome of sendai virus. Modified from Cox and Plemper 
(2015). 
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genome into the cytosol (Vabret and Blander 2013). Paramyxovirus genome 

transcription and replication (Figure 2) are complicated processes, and much 

is still unknown (Kolakofsky et al. 2004). The basic principles of these are 

covered further in the chapter.  

 

 

The template for transcription is the nucleocapsid rather than free RNA 

(Myers and Moyer 1997). The negative-sense RNA is transcribed into 

subgenomic mRNAs by the virus RNA-dependent RNA polymerase (RdRP) 

(Kolakofsky et al. 2004). Biologically active RdRP of SeV is a complex of the 

L and P proteins, and this RNA polymerase requires nucleocapsid 

association to function (Horikami et al. 1992; Smallwood et al. 1994). The 

RdRP recognizes from gene start and gene end signals, short sequences in 

both sides of the ORF, where to start and stop the transcription, respectively 

(Kolakofsky et al. 2004). The mRNAs have 5’ methyl caps (Ogino et al. 2005) 

and 3’ polyadenylated structures (Pridgen and Kingsbury 1972; Murphy and 

Lazzarini 1974 a study made with vesicular stomatitis virus (VSV)). When 

the polymerase encounters a gene end signal, it stops the transcription 

(Kolakofsky et al. 2004). Then the above-mentioned mRNA modifications are 

performed, after which the mRNA is released (Iverson and Rose 1981 a 

study made with VSV; Kolakofsky et al. 2004; Noton and Fearns 2015). After 

releasing the formed mature mRNA, the RNA polymerase continues to scan 

along the gene junctions, i.e. intergenic, noncoding regions, and produces a 

new mRNA when it finds a new gene start signal (Noton and Fearns 2015). 

When the amount of soluble N protein (N0) mRNA has risen to a certain level, 

transition from transcription to replication can start (Curran et al. 1995). This 

transition is explained by the fact that the N0, which is associated with N-

Figure 2. SeV (-)ssRNA genome structure and its transcription and replication. Modified from 
Noton et al. (2019). 
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terminal domain of the P protein (and thus soluble and unassembled), is 

required for the assembly and encapsulation of the nascent chain in genome 

replication (Curran et al. 1995). Irie et al. (2014) have proposed that SeV C 

protein dictates the shift from positive (mRNAs and antigenome) to negative 

(genome) transition. This idea is based on C protein mutation experiments 

by Irie et al. (2014), which show C protein being capable of inhibiting leader 

genome promoter (GP) when the amount of C protein reaches a certain 

threshold value as the infection proceeds (Irie et al. 2014). However, C 

protein is incapable of inhibiting trailer antigenome promoter (AGP) (Irie et 

al. 2014). In short, the mRNAs and antigenome are produced and then the 

switch to produce full-length negative-sense genome occurs since 

accumulated C proteins suppress the GP (Irie et al. 2014).  

 

The virus RdRP is also responsible for the replication of the genome. 

Altogether, N, L, and P proteins have been shown to be necessary for the 

SeV genome replication in vivo (Curran et al. 1991). In the replication phase, 

the RdRP elongates the template genome to produce complete length 

positive sense antigenome by ignoring the gene junctions, so that no 

incomplete and modified mRNAs are released (Noton and Fearns 2015). The 

antigenome and genome RNA ends lack the cap structure but are instead 

associated with the N protein (Noton and Fearns 2015). The genome 

synthesis and the encapsulation of the genome by N protein happen 

concomitantly (Gubbay et al. 2001). The encapsulated genomes are then 

assembled into new virions and at the last step of the life cycle, they bud out 

of the host cell ready to infect new hosts (Faίsca and Desmecht 2007).  

 

The matrix (M) protein and C protein of SeV are linked to the budding of new 

virions from the host cell (Irie et al. 2007; Irie et al. 2008). Additionally, the 

Fusion (F) protein has been linked to the budding process of new virions 

(Takimoto et al. 2001). The SeV C protein has numerous other functions than 

just enhancing the budding of newly formed viruses. Horikami et al. (1997) 

showed that SeV C protein can bind the virus L protein, which is the catalytic 

domain of the virus RdRP, and by doing that it can regulate the viral RNA 

synthesis. In addition, SeV C proteins are shown to possess anti-apoptotic 

activity (Koyama et al. 2003) as well as ability to inhibit innate immunity 

responses by interfering the interferon production and signaling (Kato et al. 

2001; Kato et al. 2004; Komatsu et al. 2004). 
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On the surface of the virion, and more specifically on the virus envelope, is 

F protein, which aids the virus particle to fuse with the host cell membrane 

(Scheid and Choppin 1974; Tanabayashi and Compans 1996; Bitzer et al. 

1997). The F protein of paramyxoviruses is in an inactive state when the virus 

is without interaction with a host cell and needs to be cleaved to achieve 

biologically active form capable of assisting the entry into host cell (Scheid 

and Choppin 1974; Bitzer et al. 1997). The cleaved, active form of 

paramyxovirus F protein is structured of two subunits: F1 and F2 (Scheid and 

Choppin 1974). Tashiro et al. (1990) found that proteolytic cleavage of SeV 

F protein occurred to the most part in lung tissue. The cleavage of the 

precursor F0-protein can be mediated also with trypsin treatment in cell 

cultures (Scheid and Choppin 1974). Additionally, Kido et al. (1992) found a 

protease that resembles trypsin (Tryptase Clara) and that is only expressed 

in bronchiolar epithelial Clara cells purified from rat lungs and concluded that 

the protease could be responsible for activating precursor viral fusion 

proteins. Eliciting SeV fusion to the host cell membrane has been shown to 

require also the other envelope glycoprotein, the hemagglutinin-

neuraminidase (HN) protein (Bousse et al. 1994; Tanabayashi and Compans 

1996). HN-protein function also in the attachment of SeV to the host cell by 

interacting with the host’s receptors that contain sialic acid (Markwell and 

Paulson 1980). 

 

Sendai virus infects naturally mice and to minor extent other rodents such as 

rats (Ishida and Homma 1978). Bronchial epithelial cells are the prime 

targets of SeV infection (Ishida and Homma 1978). Experimentally it is yet 

possible to infect cell lines from other origins, including humans. Viruses can 

cause a cytopathic effect to the host cell. For example, SeV infected cells 

can fuse together and form a giant polykaryocyte cell (Okada et al. 1966). In 

addition, other morphological changes in infected cells take place and can 

be observed microscopically. In experimental settings, adherent cells can for 

example become rounder and shrink after infection and eventually detach 

from the growth plate surface and die (Matsumoto and Maeno 1961). 

Symptoms related to SeV include rhinitis, anorexia, destruction of respiratory 

tract epithelium, bronchiolitis, and pneumonia (Ishida and Homma 1978). In 

a majority of cases SeV infection leads to death of the host (Ishida and 

Homma 1978). A vaccine against SeV is lacking. 

 



 7 

1.3 Innate immunity  
 
Immune system works in keeping the host pathogen-free and in case this 

fails, in activating responses that lead to eradication of the pathogen 

(Medzhitov 2007). Immune system has been developed early in evolution, 

and some of its fundamental characteristics are conserved in animal 

kingdom from vertebrates to invertebrates (Medzhitov et al. 1997; Chaudhary 

et al. 1998; Rock et al. 1998; Sanghavi et al. 2004). In vertebrates, immunity 

is subdivided into innate and adaptive immunity (Medzhitov 2007). They work 

in co-operation but have dissimilar features (Medzhitov 2007). Innate 

immunity acts rapidly and non-specifically against new pathogens 

(Medzhitov 2007). It produces no memory like adaptive immunity, which 

relies on formation of memory and specific responses via production of 

antibodies by B-cells and via functions of different T-cell populations 

(Medzhitov 2007). The production of antibodies and activation of T-cells is 

ultimately modulated by the quality and form of the innate immunity 

responses (Fritz et al. 2007; Medzhitov 2007).This is so, because naïve T-

cells are primed based on the cytokine cocktail produced by the innate 

immune antigen presenting cells (APCs), which in turn are evolving based 

on the cytokines innate immune reaction produces (Medzhitov et al. 1997; 

Fritz et al. 2007; Medzhitov 2007). Therefore, proper activation of innate 

immunity also contributes to efficient development of adaptive immunity 

(Medzhitov et al. 1997; Fritz et al. 2007; Medzhitov 2007). 

 

Innate immunity is the initial system to react to infections (Medzhitov 2007). 

Physical barriers like skin and respiratory tract epithelium function as first line 

defenses against pathogens (Medzhitov 2007). They function as a mechanic 

shield but also by producing antimicrobial peptides (Medzhitov 2007). For 

instance, skin keratinocytes and lung epithelium cells have been shown to 

produce an antimicrobial agent, β-defensin-3 (hBD-3), which is shown to kill 

several different pathogens (Harder et al. 2001). Innate immunity is based 

on a large and complex system. Cellular components that belong to that are 

the complement system and specific leukocytes (Medzhitov 2007). These 

leukocytes include natural killer cells, basophils, eosinophils, neutrophils, 

and monocytes as well as macrophages and dendritic cells, which both 

derive from monocytes (Medzhitov 2007). However, in addition to 

leukocytes, many different cell types possess the ability to react and 

modulate immunity: for example, human lung epithelial cells and human 
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keratinocytes can produce some of the type I interferons (IFNs) (LaFleur et 

al. 2001; Jewell et al. 2007). 

 

Invading pathogens are recognized by pathogen associated molecular 

patterns (PAMPs) that are lacking in the uninfected cells and the recognition 

occurs by pattern recognition receptors (PRRs) (Medzhitov 2007). 

Recognition of a PAMP ultimately leads to activation of the host innate 

immunity responses, like IFN production (Medzhitov 2007). There are many 

different protein families of germline-encoded PRRs (Medzhitov 2007). 

These receptors can be found in the surface of the cell or in endosomal 

compartments (Medzhitov 2007). When they are located such, they are 

transmembrane receptors (Medzhitov 2007). In addition, they can be found 

in the cytosol being then intracellular (Medzhitov 2007). Retinoic-acid 

inducible gene 1 (Rig-I) like receptors, Toll-like receptors (TLRs), and protein 

kinase R (PKR) belong to some of the main receptors regulating innate 

immunity responses in virus infections (Mogensen and Paludan 2005; 

Meylan et al. 2006). For example, lipopolysaccharide (LPS) is a PAMP and 

it is recognized by TLR4 (Hoshino et al. 1999) that is a PRR, which then 

activates innate immunity. Other examples are bacterial flagellin (PAMP) 

which is recognized by TLR5 (PRR) (Hayashi et al. 2001), fungal β-Glucan 

(PAMP) which is recognized by Dectin-1 (PRR) (Taylor et al. 2007), or viral 

RNA (PAMP) which is recognized by Rig-I (PRR) (Yoneyama et al. 2004). 

 

Importantly, PRRs lack specificity to pathogens, so they can recognize a 

wide range of pathogens that have some unifying molecular structure or motif 

(Medzhitov 2007). On the other hand, adaptive immunity relies on 

recognizing an infinite number of different antigens by specific B- or T-cell 

receptors (Medzhitov 2007). Additionally, PRRs do not distinguish whether 

the micro-organism is pathogenic or non-pathogenic (Medzhitov 2007). For 

example, TLRs recognize also symbiotic bacteria residing for example in the 

human gut, and this has been shown to be beneficial and essential for the 

intestinal epithelial homeostasis (Rakoff-Nahoum et al. 2004). TLRs are 

perhaps the best known PRRs by to date, and there are ten different human 

TLRs described (Mogensen and Paludan 2005). The receptor mechanisms 

are not fully understood, and the receptors can cooperate with one another 

(Ozinsky et al. 2000). 
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As described in this chapter, host PRRs are an important part of the innate 

immunity and can recognize certain abnormal molecular structures present 

in the cell. PRRs may also recognize host’s own structures and therefore 

cause autoimmune diseases (Medzhitov 2007). This thesis work focuses on 

the Rig-I pathway activated by sendai virus infection. Therefore, in the next 

chapter, the Rig-I PRR pathway is described in more detail. 

 

1.4 The Rig-I signaling pathway in virus infections 
 

When virus has entered the host cell it is recognized through PRR (Akira et 

al. 2006). Rig-I is a cytosolic RNA helicase PRR that belongs to Rig-I-like 

receptor family (RLR) and is a significant part of cellular innate immunity in 

viral infections (Yoneyama et al. 2004; Saito et al. 2007). To the same family 

with Rig-I belongs also melanoma differentiation-associated gene 5 (MDA5) 

(Akira et al. 2006). Contrary to RLRs, TLRs are located either on the surface 

of a cell or inner surface of an endosome, i.e. they are membrane bound 

structures in the cytosol (Mogensen and Paludan 2005). Therefore, foreign 

structures in endosomes and outside the cell or in cytosol can be recognized 

either by TLRs or RLRs, respectively (Mogensen and Paludan 2005). Hence, 

depending on the compartment where the virus replicates, cytosol or 

nucleus, only particular PRRs can mediate the antiviral signal (Beachboard 

and Horner 2016). This is also proven by a study of Liu et al. (2018) where 

they found a counterpart for the cytosolic Rig-I in the nucleus: the nuclear 

Rig-I was capable of recognizing influenza A virus (IAV) that replicates in the 

nucleus but incapable of recognizing SeV that replicates in the cytosol. 

Moreover, if the invading virus is concealing its genomic material inside an 

intracellular membrane, like dengue virus (DENV) and IAV, its recognition is 

delayed and possibly inaccessible to RLRs (Österlund et al. 2012; Uchida et 

al. 2014). The mechanism that the incoming virus uses to entry the host cell, 

for example fusion or endosomal route, further sets limitations on the PRR 

that recognizes it (Akira et al. 2006; Österlund et al. 2012; Wu and Chen 

2014). 

 

An overview of the structures of the Rig-I and MDA5 receptors and some of 

the steps and complexes involved in these signaling pathways are presented 

in figure 3. 
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Rig-I, like MDA5, have caspase recruitment domains (CARDs) in the N-

terminus of the protein, and in C-terminus an RNA helicase domain (DExD/H 

box helicase), which can bind and unwind dsRNA by an ATPase function 

(Yoneyama et al. 2004; Yoneyama et al. 2005; Saito et al. 2007; Takahasi et 

al. 2008). The CARD domains of Rig-I and MDA5 are responsible of 

mediating the signal downstream via the CARD domains of MAVS 

(Yoneyama et al. 2005; Saito et al. 2007; Loo et al. 2008). The nuclear Rig-

I functions independently of MAVS (Liu et al. 2018). Rig- I is found as a 

monomer in uninfected cells (Saito et al. 2007). When the helicase domain 

of Rig-I binds it ligand and the ATPase function is active, the Rig-I undergoes 

multimerization and conformational change achieving active state (Saito et 

al. 2007; Takahasi et al. 2008). This is thought to be tightly regulated by a 

repressor domain (RD) in the C-terminus of the Rig-I (Saito et al. 2007). 

 

Rig-I can recognize short dsRNA structures and RNAs with 5′-triphosphate 

ends, which may be present in virus infected cells either as incoming material 

 

 

Figure 3. An overview of the Rig-I and MDA5 signaling pathways activated by a virus 
infection. P is a symbol for phosphate. Modified from Jin et al. (2017). 
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or as products of the viral RNA processing (Yoneyama et al. 2004; Hornung 

et al. 2006; Baum et al. 2010). On the other hand, MDA5 functions in 

recognizing mainly long dsRNA structures, like those present in 

picornaviruses (Kato et al. 2006; Jiang et al. 2011; Feng et al. 2012). 

Therefore, the activation of MDA5 and Rig-I is clearly distinctive. In 

transfection experiments by Jiang et al. (2011) human monocytic dendritic 

cells (moDCs) were transfected with synthetic RNAs of different length and 

properties (ss and ds and 5’- phosphorylated or 5’- dephosphorylated). In 

this study, they found that 5’ phosphorylation of the short ssRNAs (58, 88 

and 108 nt) was basically necessity for the IFN (IFN-α1, IFN-β, IFN-λ1) 

induction process (Jiang et al. 2011). On the contrary, 5’ phosphorylation of 

the short dsRNAs (58, 88 and 108 nt) had a significant suppressive effect to 

the IFN (IFN-α1, IFN-β, IFN-λ1) induction process (Jiang et al. 2011). On the 

other hand, long ssRNAs (708 and 1808 nt) that were 5’-dephosphorylated 

were able to induce the production of those IFNs (Jiang et al. 2011). Jiang et 

al. (2011) also found that ssRNA was altogether weaker activator of the Rig-

I pathway than short dsRNA. Moreover, they concluded that the Rig-I 

mediated IFN expression was more sensitive to the size variation of dsRNA 

than ssRNA (Jiang et al. 2011). To conclude, they found that short dsRNAs 

were the most efficient in the capacity to activate Rig-I mediated pathway 

(Jiang et al. 2011). Additionally, they found that the origin of the virus 

sequence was unimportant in the activation process of dendritic cells (DCs) 

(Jiang et al. 2011). 

 

Schlee et al. (2009) studied more the requirements of Rig-I ligands. They 

found that synthetic 5’ triphosphate single-stranded RNA was insufficient to 

activate Rig-I and IFN production. A rather short, around 20 bp long, blunt-

end (panhandle) double-strand RNA with a 5’ triphosphate end was the most 

favorable to activate Rig-I (Schlee et al. 2009). Such molecules are seen in 

panhandle structures of single-stranded RNA virus genomes (Schlee et al. 

2009). Schlee et al. (2009) also showed that minor mismatches and bulge 

loops of the panhandle structure, which might occur in negative-sense RNA 

viruses, are tolerated, i.e. the structure is still recognized by Rig-I. This 

supports the idea that Rig-I recognition relies only on double-stranded RNA 

structures. To add more discrepancy, Choi et al. (2009) have found that Rig-

I functions as a cytosolic dsDNA sensor as well. Conclusively, like proven by 

multiple different studies presented above, the activation of the Rig-I pathway 
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is still somewhat unclear and studies with data from authentic infections are 

less common than transfection experiments. 

 

Activated Rig-I recruits MAVS, which mediates the signal downstream 

(Kawai et al. 2005; Seth et al. 2005). Downstream in the signaling cascade 

is a TNF receptor associated factor (TRAF) protein, TRAF3, which interacts 

with MAVS and is proven to be crucial for IFN induction in SeV infection 

(Saha et al. 2006). To TRAF are associated TANK-binding kinase 1 (TBK1) 

and inhibitor of nuclear factor kappa-B kinase ε (IKKε), which are kinases 

responsible of phosphorylation and activation of interferon regulatory factor 

3 (IRF3) (Fitzgerald et al. 2003; Sharma et al. 2003; McWhirter et al. 2004). 

 

IRF3 is a transcription factor and binds to specific DNA regions and regulates 

interferon gene activation (Au et al. 1995; Juang et al. 1998; Sato et al. 1998; 

Yoneyama et al. 1998; Lin et al. 2000; Sato et al. 2000). IRF3 is expressed 

constitutively and widely in different tissues, and it locates in the cytosol (Au 

et al. 1995; Yoneyama et al. 1998). Like noted, IRF3 is activated by 

phosphorylation (Fitzgerald et al. 2003; Sharma et al. 2003; McWhirter et al. 

2004) and it then undergoes dimerization (Sato et al. 1998; Yoneyama et al. 

1998; Lin et al. 1999). Furthermore, the phosphorylated IRF3 dimer complex 

formation enables the complex to recruit its coactivator CBP/p300 complex 

(Sato et al. 1998; Yoneyama et al. 1998; Lin et al. 2000). This allows the 

translocation of the whole complex from cytosol into nucleus (Sato et al. 

1998; Yoneyama et al. 1998; Lin et al. 2000).  

 

In the nucleus IRF3/CBP/p300 complex induces the expression of antiviral 

genes such as type I IFNs like IFN-β (Sato et al.1998; Juang et al. 1998; Lin 

et al. 2000; Österlund et al. 2007) and type III IFNs like IFN-λ1 (Österlund et 

al. 2007). Moreover, IRF3-dependent IFNs can further stimulate interferon 

stimulated genes (ISGs), like interferon-induced protein with 

tetratricopeptide repeats 2 (Ifit2 or ISG54) and interferon-induced protein 

with tetratricopeptide repeats 1 (Ifit1 or ISG56) (Grandvaux et al. 2002; Loo 

et al. 2008), that in turn lead to production of other pro-inflammatory 

cytokines, which function in cell interactions and modulate immune 

responses (Fensterl and Sen 2009). An example of pro-inflammatory 

cytokines, which expressions are elevated and mediated by IRF3 are a 

protein called regulated on activation, normal T cell expressed and secreted 

(RANTES) (Lin et al. 1999; Génin et al. 2000; Fitzgerald et al. 2003) and C-
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X-C motif chemokine 10 (CXCL10) (Brownell et al. 2014), which are 

chemokines that attracts immune cells to the infection site and activates 

them (Sokol and Luster 2015). In addition to the IFN and further chemokine 

production stimulus function, IRF3 has also been shown to form a complex 

with a pro-apoptotic Bax protein, which mediates apoptosis (Chattopadhyay 

et al. 2011). The activation of Rig-I and MDA5 also leads to the activation of 

a transcription factor Nf-kB (p50 and p56 forms the Nf-kB transcription factor 

complex Urban et al. 1991), which is able to mediate type I interferon 

production as well through TRAF6 (Yoneyama et al. 2004; Konno et al. 2009; 

Lee et al. 2015). 

 

There is evidence that Rig-I is crucial for recognizing paramyxoviruses like 

SeV. Kato et al. (2005) showed that in mice lung fibroblasts (MEFs), Rig-I 

mediated activation of interferon production post SeV infection is pointed to 

be indispensable. Loo et al. (2008) came to the same conclusion, since they 

found that in SeV infection in MEFs, IRF3 translocation into nucleus was 

dependent on Rig-I (in Rig-I -/- MEFs the IRF3 translocation was totally 

absent). On the other hand, Kato et al. (2006) showed that while Rig-I is 

essential for SeV induced type I IFN production, in a picornavirus, 

encephalomyocarditis virus (EMCV), infection type I IFN production was not 

abolished in Rig-I deficient MEFs. In this study, they also got similar kind of 

results with human Rig-I in transfection experiments (Kato et al. 2006). 

Therefore, in the case of SeV-infection, the recognition of the virus and the 

mediation of antiviral responses by the Rig-I definitely seem to be of most 

importance. Altogether, these findings support the idea that, especially in the 

case of SeV infection, Rig-I pathway is the key mediator of the activation of 

IFN production via the activation of IRF3. 

 

To conclude, activation of the Rig-I pathway after a virus infection leads to 

activation of IRF3 transcription factor, which in turn activates the production 

of interferons. The innate immunity responses vary between different cell 

types and viruses. Furthermore, IFNs activate interferon stimulated genes 

(ISGs), and this cascade is discussed more next. 

 

1.5 Interferons (IFNs) and activation of interferon stimulated genes 
(ISGs)  
 

Cytokines are proteins that function in cellular signaling processes (Takaoka 

and Yanai 2006). They are key mediators of immune responses and can 
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function as autocrine and / or paracrine meaning that they activate either the 

cell that produced them or the neighboring cells, respectively (Takaoka and 

Yanai 2006). One group of cytokines, interferons (IFNs), are especially 

important in virus infections, since they initiate the activation of antiviral 

responses (Müller et al. 1994; Hwang et al. 1995; Der et al. 1998; Takaoka 

and Yanai 2006). Specifically, Type I IFNs are of great importance in virus 

infections (Müller et al. 1994; Takaoka and Yanai 2006). The group of type I 

IFNs consist of -α, - β, and other minor groups, and alone 13 different 

subtypes of interferon α have been introduced (Takaoka and Yanai 2006; 

Fensterl and Sen 2009). IFN-γ represents type II IFNs (Takaoka and Yanai 

2006) while type III interferons are a bigger group consisting of four IFN-λ 

subtypes (Kotenko et al. 2003; Prokunina-Olsson et al. 2013). 

 

Once bound to their receptor on cell surface, IFNs elicit pleiotropic 

downstream effects on the host cell and its viability, such as inhibition of 

proliferation, regulation of apoptosis, and acting as immunomodulators (Der 

et al. 1998). For instance, Ngyuen et al. (2002) demonstrated in murine 

cytomegalovirus (MCMV) infected mice that NK cells and their cytotoxic 

effect towards infected cells are activated and regulated by IFN- cytokines 

and downstream signaling molecules activated by these cytokines.  As seen 

in figure 4, human IFN α/β receptor is a transmembrane (single loop), dimeric 

receptor, and can bind type I IFNs (Novick et al. 1994). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The structure of human interferon α/β receptor and its simplified signaling pathway 
in response to type I interferons. Modified from Cox and Plemper (2015). 
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One of the subunits of the IFN α/β receptor is directly linked to tyrosine kinase 

JAK1 in one of its cytoplasmic subunits (Novick et al. 1994) (Figure 4). 

Additionally, a tyrosine kinase (Tyk2) has been shown to be associated with 

the receptor in the cytoplasmic part of the other subunit (Abramovich et al. 

1994). IFN-λ mediates signal via type II cytokine receptor complex forming 

of two subunits: IFN-λR and CRF2-4 (Kotenko et al. 2003). IFNs activate 

antiviral state principally via the Jak/STAT pathway, which then activate 

antiviral responses (Darnell et al. 1994). 

 

Signal transducers and activators of transcription (STATs) are a group of 

signaling molecules that are activated by tyrosine phosphorylation by IFNs 

(Darnell et al. 1994). Janus protein tyrosine kinases (Jaks) are responsible 

of the phosphorylation of STATs (Darnell et al. 1994). Therefore, specific 

IFNs can act as ligands for Janus protein tyrosine kinase (Jak) receptors, 

and Jaks further activate STATs (Darnell et al. 1994). Once Jak has bound 

its ligand, it is phosphorylated and then two STAT molecules bind to it 

(Darnell et al. 1994). In the case of some Type I IFNs, these are STAT1 and 

STAT2, which are then phosphorylated and form a dimer (Shuai et al. 1994; 

Meraz et al. 1996; Park et al. 2000) and to this complex, interferon regulatory 

factor 9 (IRF9) is further bind (Veals et al. 1992; Veals et al. 1993). This 

complex of three polypeptides is referred as interferon-stimulated gene factor 

3 (ISGF3) (Schindler et al. 1992; Veals et al. 1992; Müller et al. 1993; Veals 

et al. 1993). The ISGF3 complex can then enter into the nucleus, and 

specifically IRF9 binds to interferon-stimulated response element (ISRE), 

and thus function as a transcription factor (Veals et al. 1992; Veals et al. 

1993; Shuai et al.1994) and regulate bunch of interferon stimulated genes 

(ISGs) (Li et al. 2017). 

 

These ISGs, such as ISG54, ISG56, 2-5A - dependent RNase L genes, 

dsRNA-activated protein kinase (PKR) gene, and MxA genes, are related to 

cell survival, proliferation, inhibition of virus replication, immune cell 

activation (NK cells), and recruitment (Pavlovic et al. 1990; Müller et al. 1994; 

Der et al. 1997; Zhou et al. 1997; Der et al. 1998; Ngyuen et al. 2002; Fensterl 

and Sen 2009). Similar to type I IFNs, the type III IFN signaling pathway 

includes phosphorylation of STAT1 and STAT2 followed by activation of 

ISGF3 complex and expression of ISGs (Kotenko et al. 2003; Prokunina-
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Olsson et al. 2013). Taken this all together, innate immunity and IFN 

signaling is highly complex and much is still unknown. 

 

1.6 Strategies of paramyxoviruses to evade antiviral responses 
 

Viruses have evolved means to inhibit the activation of antiviral responses in 

order to ensure their propagation in the host cell. SeV C and V proteins have 

been found to inhibit pathway leading to the activation of IRF3, thus inhibiting 

the activation of interferon, such as interferon-, production and therefore 

activation of interferon stimulated genes (ISGs) and consequently antiviral 

responses (Poole et al. 2002; Andrejeva et al. 2004; Komatsu et al. 2004; 

Irie et al. 2012). SeV V protein has been shown to bind and inhibit MDA5 but 

on the other hand it is incapable to interact with and inhibit RIG-I receptors 

in mammal and avian cells (Childs et al. 2007). Another immuno-evasion 

strategy of viruses is the ability to prevent apoptosis, which was mentioned 

earlier regarding SeV C proteins (Koyama et al. 2003).  

 

1.7 Aims of this study 
 
The early points of SeV infection and the mechanisms of the Rig-I pathway 

activation are unclear. The aim of this project was to study the first hours of 

SeV infection in cell culture conditions and the effects regarding the 

activation of antiviral responses by the Rig-I signaling pathway. Additionally, 

one central question was whether the virus needs to replicate in order to be 

recognized by the Rig-I or if it is enough that the virus just enters the cell. 

More specifically, this study concentrated on the activation and localization 

kinetics of IRF3 protein as well as initiation of IFN-1, IFN-1, and viral N 

protein encoding mRNA expression following SeV infection in lung epithelial 

cells. The expression of viral proteins as well as host IRF3 protein after the 

infection were also examined. 

 

2. Materials and Methods 
 

 

2.1 Cells and the virus 
 

Human adenocarcinomic lung epithelial cells, A549 cells, were used in the 

experiments, since sendai virus infects primarily bronchial epithelial cells 

(Ishida and Homma 1978). The cells were cultured in T75-flasks using RT-
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warmed (approximately + 25 C) growth medium (Attachment 1). All the used 

mediums were RT-warmed prior use unless otherwise noted. Cells were 

grown in 5 % CO2 conditions at + 37 C. The protocol for detaching adherent 

A549 cells is in attachments (Attachment 2). For fixing, the cells were washed 

with Phosphate-buffered saline (PBS), and 3 % paraformaldehyde (PFA) in 

PBS was then added. The cells were incubated for 15 min and then washed 

twice with PBS and stored in PBS at + 4 C and further analyzed within 

approximately two days. 

 

The sendai virus stock used, strain Cantell, has been prepared (2014 by 

Julkunen group) from viruses grown in chicken eggs and stored in - 80 C. 

The early history of the Cantell strain is vague, but it has been first used 

in Finnish Institute for Health and Welfare (former Central Public Health 

Institute) Laboratory in Helsinki (Cantell et al. 1981; Cantell and Hirvonen 

1981). It is distributed for example by American Type Culture Collection 

(ATCC) that came up with the name Cantell strain (ATCC® VR-907™). The 

strain induces efficiently interferon production (Cantell et al. 1981; Cantell 

and Hirvonen 1981), which makes it suitable for this study. 

 

2.2 Determining the Multiplicity of Infection (MOI) of SeV in A549 cells 
 
The Multiplicity of Infection (MOI) was determined with plaque forming unit 

(PFU) assay and with focus forming unit (FFU) assay. In FFU assay, A549 

cells were seeded onto a 96-well plate (1,5x104 cell / well, total volume 200 

μl / well) in growth medium and let to attach to the plate surface in 5 % CO2 

conditions at + 37 C overnight. The plate was examined with microscope to 

confirm the cell growth (> 80 %), and the cells were infected with different 

dilutions (10-1 – 10-10) of SeV in HAM’s F12 medium (Cytiva) (Attachment 3) 

with 1 % Fetal Bovine Serum (FBS) and 10 μg / ml of gentamycin sulphate 

(Biological Industries). The plate was incubated in 5 % CO2 conditions at + 

37 C overnight. The cells were fixed (chapter 2.1). The immunofluorescent 

staining was done with 1:250 dilution of primary anti-SeV (rabbit anti-SeV 

polyclonal K2350 1991) followed with 1:200 dilution of secondary antibody 

(Alexa Fluor 488, goat anti-rabbit IgG, Invitrogen). The plate was analyzed 

with EVOS FL Auto Imaging System (Invitrogen) microscope, and colored 

foci were enumerated. The formula to calculate the titer (FFU / ml) was 

following: 
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Focus Forming unit / ml (FFU / ml) = 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑟𝑎𝑙 𝑓𝑜𝑐𝑖

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑣𝑖𝑟𝑢𝑠 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑤𝑒𝑙𝑙
 

. 

 

The desired MOI values for the experiments were then calculated with 

following formula: 

 

 

Vvirus-stock = 
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑀𝑂𝐼 𝑣𝑎𝑙𝑢𝑒 𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠

𝐹𝐹𝑈/𝑚𝑙
 

. 

 

In PFU assay, the cells were seeded onto a 96-well plate (1,5x104 cell / well, 

total volume 100 μl / well) in HAM’s F12 medium with 1 % FBS and 10 μg / 

ml of gentamycin sulphate and let to attach to the plate surface in 5 % CO2 

conditions at + 37 C overnight. The cells were infected with different 

dilutions (10-1 – 10-10) of SeV in infection medium (OPTIMEM 1x Reduced 

serum medium, Life Technologies) and incubated in 5 % CO2 conditions at 

+ 37 C for one hour. The medium along with the virus suspension was 

replaced with 1x DMEM medium (Lonza) (Attachment 4) supplemented with 

1 % FBS, 10 μg / ml of gentamycin sulphate, and AVICEL (1,2 %, FMC 

BioPolymer). The incubation was continued in 5 % CO2 conditions at + 37 

C for three days. The AVICEL overlay was aspirated and the cells were fixed 

(chapter 2.1). The fixed cells were washed with PBS twice and stained with 

crystal violet (100 μl / well), a DNA stain, for 20 min and washed twice with 

water. The plate was analyzed with EVOS FL Auto Imaging System 

(Invitrogen) microscope to count the plaques. The formulas to calculate the 

titer (PFU / ml) was following: 

 

Plaque Forming unit / ml (PFU / ml) = 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑞𝑢𝑒𝑠

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑣𝑖𝑟𝑢𝑠 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑤𝑒𝑙𝑙
 

. 

  

The desired MOI values for the experiments were then calculated with the 

following formula: 

 

Vvirus-stock = 
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑀𝑂𝐼 𝑣𝑎𝑙𝑢𝑒 𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠

𝑃𝐹𝑈/𝑚𝑙
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. 

 

2.3 Immunocytochemical staining 
 

Sterilized coverslips made of glass were placed on the bottoms of the wells 

of two 24 well plates. The cells were seeded onto the coverslips on the two 

24 well plates (5x104 cells / well) using growth medium (400 μl / well) and 

incubated in 5 % CO2 conditions at + 37 C overnight. The cells were infected 

with SeV at a MOI of 3700 (plate one) or 60 (plate two) in 200 μl of infection 

medium per well in 5 % CO2 conditions at + 37 C for an hour. The infection 

medium was replaced to HAM’s F12 with 1 % FBS and 10 μg / ml of 

gentamycin sulphate, and the cells were incubated in 5 % CO2 conditions at 

+ 37 C. After different periods of time (15 min, 30 min, 1h, 2h or 4h) the cells 

were fixed (chapter 2.1). 

 

Separate droplets (50 μl) of permeabilization-blocking -solution (PB-solution; 

0,1 % Triton X-100, 1 % Bovine Serum Albumin (BSA), in PBS) were added 

onto a sheet of parafilm (Bemis). The coverslips were gently lifted from the 

24 well plates with a curled sterilized needle, and each coverslip was placed 

onto a PB-solution droplet on the parafilm sheet. The coverslips were always 

placed so that the side of the coverslip to which the cells were attached was 

facing towards the solution droplet. The coverslips were incubated at RT for 

30 min. The coverslips were transferred onto separate droplets (50 μl) of 

1:100 diluted primary antibody anti-IRF3 (rabbit anti-IRF3 polyclonal KCVD8, 

produced in National Public Health Institute Laboratory by Österlund et al. 

2005) or primary antibody anti-SeV (rabbit anti-SeV polyclonal K2330 1991) 

in PB-solution on parafilm sheet. They were incubated at RT for one hour. 

They were washed three times with PB-solution (on separate droplets (50 μl) 

on parafilm sheet). The coverslips were transferred onto separate droplets 

(50 μl) of 1:200 diluted secondary antibody (for anti-IRF3 Alexa Fluor 568, 

goat anti-rabbit IgG, Invitrogen and for anti-SeV Alexa Fluor 488, goat anti-

rabbit IgG, Invitrogen) in PB-solution on parafilm sheet and incubated at RT 

covered from light for 30 min. The coverslips were transferred onto separate 

droplets (50 μl) of 0,01 % Triton-X100 in PBS solution on parafilm sheet and 

incubated at RT for 10 min. The coverslips were washed three times for five 

min with PBS (on separate droplets (50 μl) on parafilm sheet). 
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The stained coverslips were mounted with an antifade-solution (ProLong 

Gold antifade reagent with 4′,6-diamidino-2-phenylindole (DAPI), Life 

technologies) on microscope slides and imaged shortly after with Leica 

fluorescent microscope (Leica DFC7000 T 2.8 MP Color Microscope 

Camera) and Las X software. If not imaged shortly after mounting, the slides 

were stored at + 4 C, and covered from light, and used within approximately 

two days. 

 

2.4 Immunocytochemical staining with cycloheximide (CHX) 
 

The cells on coverslips were prepared like described in chapter 2.3 (two 24-

well plates, 6 x 104 cells / well, total medium volume 450 μl / well). The next 

day, the plates were checked with microscope to confirm the cell growth (> 

70 %). In the cycloheximide (CHX) treated plate, the growth medium was 

replaced with infection medium containing 10 μg / ml of CHX (Sigma-Aldrich) 

and incubated in 5 % CO2 conditions at + 37 C for 30 min. The cells on the 

CHX treated (CHX+) and CHX untreated (CHX-) plates were infected at a 

SeV MOI of 3700 (total volume 100 μl / well) in infection medium containing 

CHX (10 μg / ml) or without CHX, respectively, in 5 % CO2 conditions at + 37 

C for an hour. The infection medium was replaced to HAM’s F12 with 1 % 

FBS and 10 μg / ml of gentamycin sulphate, and the cells were incubated in 

5 % CO2 conditions at + 37 C. The cells were fixed at different periods of 

time (15 min, 30 min, 1h, 2h or 4h) (chapter 2.1). The protocol for coverslips 

staining against anti-IRF3 (rabbit anti-IRF3 polyclonal KCVD8, produced in 

National Public Health Institute Laboratory by Österlund et al. 2005) was the 

same as described in chapter 2.3. The stained coverslips were mounted, 

imaged, and stored like described in chapter 2.3.  

 

2.5 Protein expression by immunoblotting 
 
A549 cells were seeded onto 6-well plates (5x105 cells / well; 2,5 ml medium 

per well) in growth medium and let to attach in 5 % CO2 conditions at + 37 

C overnight. The cell growth was examined (> 80%) and the cells were 

infected with SeV at a MOI 180 in infection medium in 5 % CO2 conditions at 

+ 37 C for an hour. The infection medium was replaced to HAM’s F12 with 

1 % FBS and 10 μg / ml of gentamycin sulphate and the cells were incubated 

in 5 % CO2 conditions at + 37 C. 
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The cells were lysed in different time points after the infection (2h, 4h, 6h, 

8h, 16h and 24h) with 300 μl of ice-cold lysis buffer (100 mM Tris-HCl, pH 

7.5, 150 mM NaCl, 1x Passive Lysis buffer (Promega), 1x PhosphoStop 

(Roche), 25 % ethylene glycol, 1 x c0mplete (C0mplete Tablets, Mini EDTA-

free, EASYpack, Roche); 0,1 % Benzonase nuclease (Sigma)). The lysing 

was performed on ice. The lysates were collected into separate Eppendorf 

tubes and the wells were examined to be empty of cells with microscope. 

The lysates were stored at - 20 C until further analysis within two days.  

 

Total protein concentrations of the collected lysates were measured with 

detergent compatible Bradford assay (PierceTM Detergent Compatible 

Bradford Assay kit, Thermo Scientific) in a 96-well plate. The albumin 

standards were diluted according to the bigger working range (100 - 1500 µg 

/ ml) according to the instructions of the Bradford assay manufacturer. The 

microplate protocol for the measurements was done according to the 

manufacturer’s instructions. Absorbance of the standard replicates and of 

each unknown sample was measured at 595 nm with a plate reader 

(Multimode Plate Reader, Victor Nivo, PerkinElmer). From the gotten 

standard values, average absorbance of each sample was calculated and 

from those, a standard curve was constructed. For each unknown sample, 

an average absorbance was calculated, and protein concentration was 

determined from the standard curve.  

 

Twenty μg of protein per sample was used in sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) run. The samples were 

diluted with 2x SDS loading detergent (4 % SDS, 10 % β-mercaptoethanol, 

30 % glycerol in 0,5 mM of Tris-HCl, pH 8) in 1:2. The samples were boiled 

in Eppendorf tubes at + 98 C for 5 min. The samples were cooled down to 

RT and mixed before loading in the wells of the PAGE-gels (Mini-PROTEAN 

TGXTM gels, Bio-Rad). Pre-stained protein ladder (ChameleonTM Duo Pre-

stained Protein Ladder, LI-COR) (five μl) was used in one well of each gel. 

SDS-PAGE run was performed at 200 V in 1x running buffer diluted in MQ 

(Bio-Rad 10x TGS buffer: 25 mM Tris, 192 mM Glycine; 0,1 % SDS, pH 8,3) 

for 35 min. 

 

The SDS-PAGE gels were soaked in transfer buffer (25 mM Tris-HCl, pH 

8,3; 192 mM glycine, 20 % (v/v) methanol) for two min. Two filter papers (Bio-

Rad, Extra thick blot paper) and a nitrocellulose membrane (Whatman 
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Protran, pure nitrocellulose transfer and immobilization membrane) per gel 

were soaked in transfer buffer for 10 min. They were arranged in a semi-dry 

apparatus (Bio-Rad Trans-blot SD Semi-dry transfer cell) in following order: 

filter paper - membrane - gel - filter paper. Transfer was done at 13 V for 40 

min.  

 

The membranes were blocked with 5 % skimmed milk powder (Valio, 

Finland) in TBST (Tris buffered saline with 0,05 % Tween-20; pH 7,2 - 7,4) 

at RT for an hour. The membranes were washed with TBST for 5 min three 

times. The membranes were incubated with 1:250 of primary antibodies anti-

IRF3 (rabbit anti-IRF3 KCU28 Ag/97/THL) and anti- glyceraldehyde 3-

phosphate dehydrogenase (glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) mouse monoclonal 6C5 sc-32233, Santa Cruz) or anti SeV (rabbit 

anti-SeV polyclonal K2350 1991) that were diluted in 2,5 % blocking buffer 

in TBST in a shaker at RT for one hour. The membranes were washed with 

TBST for 5 min three times. The membranes were incubated with 1:15 000 

dilution of secondary antibody (for anti-IRF3 and anti-SeV: goat anti-rabbit, 

IR dye 800CW, LI-COR and for GAPDH goat anti-mouse, IR dye 680RD, LI-

COR) in 2,5 % blocking buffer on a shaker, covered from light at RT for 30 

min. The membranes were covered from light, washed with TBST for 5 min 

three times, and imaged by Odyssey imaging system (Odyssey Fc, LI-COR) 

at corresponding wavelengths (680 nm and 800 nm) to the used secondary 

antibodies. 

 

2.6 mRNA expression by quantitative reverse transcription PCR (qRT-
PCR) 
 
A549 cells were seeded onto 6-well plates (5x105 cells / well; 2,5 ml medium 

/ well) in growth medium in 5 % CO2 conditions at + 37 C overnight. The 

cells were infected with SeV at a MOI 5 or MOI 50 in infection medium in 5 

% CO2 conditions at + 37 C for an hour. The infection medium was replaced 

to HAM’s F12 with 1 % FBS and 10 μg / ml of gentamycin sulphate and the 

cells were incubated in 5 % CO2 conditions at + 37 C. At different time points 

(30 min, 1h, 2h, 4h, 8h, 16h and 24h) the cells were lysed (300 μl / well) with 

ice cold TRIzol reagent (TRIzol RNA Isolation Reagent, Invitrogen) that 

contains an RNase inhibitor. Each time point sample was collected from 

individual well and the lysing was performed on ice. The lysates were 

collected in Eppendorf tubes and stored at - 20 C until further analysis within 

two days. 
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Total RNA in the samples was extracted by chloroform-isopropanol 

extraction method, since RNA yield, purity, and accuracy of RNA 

quantification by qRT-PCR have been demonstrated to be good with that 

method (Toni et al. 2018). 100 μl of chloroform was added to each sample 

and shook well by hand for 15 seconds after which the samples were let to 

sit at RT for 3 min. The samples were centrifuged at 12 000 x g, 15 min, at + 

4 C. The upper aqueous layers were carefully collected into new RNase free 

Eppendorf tubes that had 100 μl of chloroform in them. The tubes were 

shaken well by hand for 15 seconds and let to sit at RT for 3 min. The 

samples were centrifuged at 12 000 x g, 15 min, at + 4 C and the aqueous 

layers were transferred into new tubes containing 250 μl of isopropanol to 

precipitate the RNA. The tubes were inverted by hand for approximately 15 

times and let to sit at RT for 10 min. The samples were centrifuged at 12 000 

x g, 10 min, at + 4 C. The supernatants were gently poured and discarded, 

and the pellets were washed with 1 ml of 75 % EtOH in MQ and centrifuged 

at 7500 x g, 5 min, at + 4 C. The supernatants were poured out and 

discarded and this washing with 1 ml of 75 % EtOH in MQ was repeated two 

more times. The remaining pellets were pulse spinned at RT and the 

remaining supernatants were carefully removed with pipet and the tubes 

were left open for 5 min. The tubes were heated in a heat block at 65 C for 

5 min.  

 

The RNAs were solubilized to 20 μl of RNase free water (Thermo Fisher 

scientific) and heated at 65 C for 5 min. The samples were mixed briefly and 

spinned and the RNA concentration and quality were determined with 

spectrophotometer measuring the absorbance in 260 nm as well as the 

260/230 and 260/280 ratios of each sample (DeNovix, DS- 11+ 

Spectrophotometer). One μl of each sample was mixed by pipetting and then 

pipetted on the detector. Concentration results are in ng / μl. The RNA 

samples were stored at - 80 C until further analysis within two days.  

 

The purified RNA samples were transcribed into cDNA in reverse 

transcription (RT) reaction (1 μg of RNA sample / reaction) with a reverse 

transcriptase (1x RT Buffer; 500 μM dNTPs; 1 μM random Hexamers; 0,4 U 

/ μl Rnase inhibitor, 200 U / μl RevertAid H minus reverse transcriptase all 

from Thermo Scientific). The RT reaction was carried out in a thermal cycler 

(MJ Research, PTC-200 Peltier Thermal Cycler) and with RevertAid RT 
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program (Hold at 25 °C for 10 min, hold at 42 °C for 60 min and hold at 70 

°C for 10 min). The cDNA samples were stored at - 20 C until further 

analysis within two days. 

 

CDNA samples were run in qPCR reaction. In the reaction, 2,5 μl of cDNA 

sample (50 ng) was added in 17,5 μl of PCR mix (1x TaqMan™ Universal 

PCR Master Mix, 1x TaqMan™ Gene Expression Assay, nuclease-free 

water all from Thermo Fisher scientific) in a PCR tube, mixed briefly and ran 

on PCR machine (Rotor-Gene Q, Qiagen). The primers used to detect 

specifically SeV N protein encoding sequence were designed in-house. The 

specific primers and Taqman™ FAM-labeled probe for SeV N protein 

encoding sequence were: SeV N-sense (5’-CCAACCCCACCGACCACAC-

3’), SeV N-antisense (5’-GAATCCGATAACATCCGAGAGCGAC-3’) and 

SeV N-FAM-probe (6’- fluorescein amidite (FAM)-

TCGAGACAGCCACGGCTTCGGCTAC-BHQ1’). For IFN-β1 (1x mix 

Hs00277188_s1 IFNB1, Thermo Fisher scientific) and for IFN-λ1 (1x mix 

Hs00601677_g1 IFNL1, Thermo Fisher scientific) were used. The setup for 

the amplification reaction was following: Hold at 50 °C (2 min), hold at 95 °C 

(10 min), 40 cycles of two steps that were first (step 1) hold at 95 °C (15 s) 

followed with (step 2) hold at 60 °C (60 s). 

 

The data was processed with the Rotor-Gene Q Software 2.3.1.49. The 

threshold for the fluorescence signal, Cyclin A (Green), was set so that it 

cropped low or unspecific signal curves out. The noise slope correction and 

dynamic tubes normalization were done with the software. The raw data 

(Cycles to Threshold -values, CT-values) were further analyzed with CT-

method. The result is given by 2 –∆∆CT, which represents the fold change in 

the expression of a gene in relation to a calibrator. The standard errors, which 

is obtained by dividing standard deviation by the square root of the total 

number of samples, of the results were calculated with excel. 

 

2.7 mRNA expression of cells treated with CHX by qRT-PCR 
 
A549 cells were seeded onto 6-well plates (5x105 cells / well; 2,5 ml medium 

/ well) in growth medium in 5 % CO2 conditions at + 37 C overnight. The 

medium was replaced with infection medium containing 10 μg / ml of CHX 

(Sigma-Aldrich) and incubated in 5 % CO2 conditions at + 37 C for 30 min. 

The cells were infected with SeV at a MOI 1 in infection medium containing 
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10 μg / ml of CHX (Sigma-Aldrich) in 5 % CO2 conditions at + 37 C for an 

hour. The medium was replaced to HAM’s F12 with 1 % FBS and 10 μg / ml 

of gentamycin sulphate and the cells were incubated in 5 % CO2 conditions 

at + 37 C. The cells were lysed at different time points after the infection as 

described in chapter 2.6. The total RNAs were extracted (chapter 2.6) and 

RT-reaction performed for them (chapter 2.6). CDNA samples were run in 

qPCR reaction with specific primers for SeV N protein encoding sequence, 

IFN-β1, and IFN-λ1 (chapter 2.6). 

 

3. Results 
 

In this study the activation kinetics of the Rig-I pathway after sendai virus 

infection in A549 cells was examined and characterized. In addition, the 

activation requirements of the Rig-I pathway after the infection was studied. 

More specifically, a key interest was whether the Rig-I pathway is activated 

once the virus is in the host cell or once the virus is replicating. These 

research questions were approached by studying the kinetics and the 

movement of the transcription factor IRF3 after the infection. In addition, host 

and viral protein expressions after the infection were studied. Additionally, 

the activation of IFN-β1, IFN-λ1, and viral N protein encoding mRNA 

expressions after the infection were studied. 

 

Three different methods were used for the studies: immunocytochemical 

staining, immunoblotting, and qRT-PCR. The immunocytochemical staining 

experiments were done with cells that were either treated or untreated with 

CHX before and during the SeV infection. With these experiments it was 

possible to study the localization of IRF3 in the presence or absence of 

protein synthesis in SeV-infected cells. Therefore, the activation 

requirements of the Rig-I pathway could be studied. IRF3 and viral protein 

expression kinetics were studied by immunoblotting. To study host (IFN-β1 

and IFN-λ1) and viral (N protein encoding) mRNA expression kinetics, qRT-

PCR was performed with both CHX treated and untreated cells.  

 

 

3.1 Determination of SeV stock titer 
 
Virus stock titers can be estimated with Plaque Formin Unit (PFU) and Focus 

Forming Unit (FFU) assays. With the stock titer value, the desired MOI value 
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of an infection experiment can be assessed. In the PFU assay, the virus titer 

is calculated on the basis of the plaques, i.e. holes, formed on the cell layer 

due to cell death after the infection. With the FFU assay, the virus titer is 

calculated on the basis of the number of dye focus points when the infected 

cells are stained with the virus specific antibody. These two assays were 

used to determine the SeV stock titer. 

 

In the PFU assay the cells were infected with a serial dilution (10-1 – 10-10) of 

SeV and MOCK cells were uninfected. Four replicates of each used dilutions 

were made. The virus suspension was changed into medium that contained 

1 % FBS as well as 1,2 % AVICEL after an hour. The cells were incubated 

for three days. The AVICEL overlay was aspired, the cells were fixed, and 

stained with crystal violet to visualize the formed holes in the cell layer with 

a microscope. The cell layers in each used dilution of SeV, as well as in 

MOCK wells, were excessively detached from the bottom of the wells (data 

not shown). Therefore, this method was incapable to determine the SeV 

stock titer value. 

 

Instead, the calculations were done based on the FFU assay. In the FFU 

assay the cells were infected with a serial dilution (10-1 – 10-10) of SeV and 

MOCK cells were uninfected. Three replicates of each used dilutions were 

made. The cells were incubated overnight, fixed, and stained with polyclonal 

anti-SeV antibody. The formed dye focus points were calculated with a 

microscope. Adequate number of dye spots (foci) for the calculations were in 

wells infected with 109 dilution of SeV. Hence, this dilution was chosen from 

which the FFU / ml was determined. From the four replicate wells of the 109 

dilution, an average number of foci was first calculated. Then the FFU / ml 

value was determined with the formula described in the methods. An 

estimation of 6x109 FFU / ml for the A549 cells was obtained. This shows 

that the SeV stock used in the experiments was viable and potent. Based on 

the FFU / ml value, the MOI value of infection experiments, i.e. how much 

virus stock was necessary to add to the cells (Vvirus-stock) to obtain desired 

MOI, could be determined with the second formula described in the methods. 

 

3.2 Visualizing translocation kinetics of IRF3 into nucleus after SeV 
infection 
 

Activation followed by translocation of IRF3 from cytoplasm into the nucleus 

is a signal that innate immunity pathways are activated, since IRF3 is 
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downstream of important PRRs functioning in virus infections. Location of 

IRF3 in the cell and its potential translocation into the nucleus after SeV-

infection was studied with immunocytochemical staining of the infected cells. 

The cells were infected with a MOI of 3700 and MOCK cells were uninfected. 

The cells were fixed at different time points (15min, 30min, 1h, 2h, or 4h) 

after the infection, stained with polyclonal anti-IRF3, and imaged with 

fluorescent microscope. In uninfected A549-cells the nucleus of the cells 

appeared darker than the surrounding cytoplasm (Figure 5. A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, IRF3 located in the cytoplasm in uninfected cells. The nucleuses 

appeared darker than the surrounding cytoplasm also 15 min and 30 min 

after SeV-infection (Figure 5. B and C). Consequently, IRF3 located in the 

cytoplasm in those as well. However, one hour after the infection, some cells 

had bright red nucleuses (Figure 5. D). This indicates that IRF3 was in 

nucleus already one hour after infection. The number of cells that had bright 

red nucleuses, hence, IRF3 located in the nucleus, increased remarkably as 

the infection progressed, i.e. four hours after the infection virtually every 

nucleus had concentrated amount of IRF3 (Figure 5. D, E and F). To 

conclude the results, the IRF3 translocation into nucleus was observed as 

soon as one hour after the SeV-infection. 

 

 

A B C 

F D E 

Figure 5. SeV infection triggers early translocation of IRF3 into the nucleus. Anti-IRF3 stained 
(in red), SeV (MOI 3700) infected A549 cells. A) MOCK cells. The cells were fixed at B) 15min, 
C) 30min, D) 1h, E) 2h or F) 4h after the infection and imaged with Leica fluorescent microscope 
with 63x zoom. The scale bar (20 μm) of all images is shown in the far right. 
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3.3 Visualizing translocation kinetics of IRF3 into the nucleus after SeV-
infection when protein synthesis is blocked 
 
Like stated previously, the activation of IRF3 results in its translocation from 

cytoplasm into the nucleus and this indicates that innate immunity PRRs 

have been activated. To study whether SeV needs to replicate in order to 

activate the translocation of IRF3 and therefore the activation of innate 

immunity PRR pathway functions, protein synthesis was blocked with CHX 

in this immunocytochemical staining experiment. The cells were treated with 

CHX before and during the infection at a MOI of 3700 (MOCK cells were 

uninfected). The cells were fixed at different time points and stained with 

polyclonal anti-IRF3 and imaged with fluorescent microscope. In the CHX+ 

MOCK cells the nucleuses appeared darker than the surrounding cytoplasm 

(Figure 6. A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This means that IRF3 located in the cytoplasm in MOCK cells. Likewise, the 

nucleuses appeared darker than the cytoplasm 15 min and 30 min after the 

infection in CHX+ cells (Figure 6. B and C). Hence, between that time, IRF3 

was in the cytoplasm. Instead, one hour after the SeV-infection some of the 

nucleuses of the CHX+ cells were bright red (Figure 6. D). Therefore, by one 

hour after the infection, IRF3 was in the nucleus. From one hour onwards, 

majority of the cells had bright red nucleuses, which indicates that IRF3 was 

in the nucleus, and the number of cells having bright red nucleuses increased 

as the infection progressed (Figure 6. E and F). Consequently, the proportion 

C B A 

E D F 

Figure 6. Blocking protein synthesis does not prevent IRF3 translocation into the nucleus. Anti-
IRF3 stained (in red) SeV (MOI 3700) infected and CHX treatedA549 cells. A.) CHX+ MOCK 
cells. The cells were fixed at B.) 15min, C.) 30min, D.) 1h, E.) 2h or F.) 4h after the infection 
and imaged with Leica fluorescent microscope with 63x zoom. The scale bar (20 μm) of all 
images is shown in the far right. 
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of cells having IRF3 in the nucleus increased as the infection progressed 

(Figure 6. E and F). In addition, fewer cells had bright red nucleuses, i.e. 

IRF3 located in the nucleus, two hours after SeV-infection in CHX+ cells when 

compared to corresponding time point of CHX- cells (Figure 5. E and Figure 

6. E). To conclude, IRF3 translocated into the nucleus already one hour after 

the SeV-infection even when protein synthesis was blocked.  

 

3.4 Visualizing the amount of SeV proteins in the cells after SeV-
infection 
 

When viruses have entered the host cell they start to replicate to produce 

progeny viruses. The accumulation kinetics of SeV proteins in cell cultures 

after SeV-infection was studied to see if and when the virus starts to 

accumulate and the location of the virus in the host cell. The cells were 

infected at a MOI of 60 (MOCK cells were uninfected), fixed at different time 

points, stained with polyclonal anti-SeV antibody, and imaged with 

fluorescent microscope. The results are seen in figure 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOCK infected cells only had green background, so they lacked any bright 

green spots that indicate SeV proteins (Figure 7. A). Starting at 15 min after 

the infection, all the way to the last time point (four hours), bright green dye 

spots were visible (Figure 7. B, C, D, E, and F). Therefore, SeV proteins were 

present in those cells. In 15 min to 30 min after the infection, the bright green 

spots, which indicate SeV proteins, were scattered around the cells and 

A C 

E D F 

B 

Figure 7. The amount of SeV around and in A549 cells is increasing as the SeV-infection 
progresses. Anti-SeV stained (in green) SeV (MOI 60) infected A549 cells. A.) MOCK cells. 
The cells were fixed at B.) 15min, C.) 30min, D.) 1h, E.) 2h or F.) 4h after the infection and 
imaged with Leica fluorescent microscope with 63x zoom. An arrow in picture D is pointing a 
possible polycaryocyte. The scale bar (20 μm) of all images is shown in the far right. 
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some were in the cells (figure 7. B, C). Instead, between one and four hours 

after the infection, the bright green spots, so the SeV proteins, were more 

concentrated in the cells and especially in the nucleus or the cytoplasm of 

the cells (figure 7. E, F). However, the most intense staining result occurred 

four hours after the infection (figure 7. F). The morphology of the cells that 

had bright green spots (SeV proteins) mostly located in the nucleus were 

rounder than those that them mostly in the cytoplasm (figure 7. E, F). In 

addition, a possible polycaryocyte was found one hour after the infection 

(Figure 7. D). To conclude, the amount of SeV protein increased as the 

infection progressed and after one hour onwards the proteins were 

concentrated more in the cells rather than scattered around the cells 

meaning that the virus had most probably entered the cell by that time. 

 

3.5 Viral protein expression levels following SeV infection 
 
Once the virus has managed to enter the host cell, it starts the next step in 

its life cycle: the replication. The viral protein expression levels after SeV-

infection were studied with immunoblotting in order to see if and at what rate 

the virus is replicating in the cells. The cells were infected with SeV at a MOI 

of 180 (MOCK cells were uninfected). The cells were lysed, and total proteins 

were collected at different time points after the infection. Total protein 

concentration was measured with detergent compatible Bradford assay. For 

the assay, each standard sample was done with three and unknown protein 

sample with two replicates and the absorbance of them was measured at 

595 nm. Immunoblotting was used to analyze the protein samples. The 

membrane was stained with polyclonal anti-SeV and a known ladder was 

used to determine the size of the found protein. The picture of the complete 

membrane is in attachments (Attachment 5). The anti-GAPDH stain, which 

serves as a loading control, is from the other membrane that was run at the 

same time as this anti-SeV experiment. The stained viral proteins of interest 

on the membrane are seen in the figure 8 and the sizes were compared to a 

known protein ladder. 
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The MOCK sample is clear from any stained proteins, so there was no 

unspecific staining. A protein approximately 60 kDa in size, which 

corresponds to SeV N protein, was found from every sample, excluding the 

MOCK and 2h samples. In addition, a protein approximately 72 kDa in size, 

which corresponds to the SeV HN protein, was observed 16h (slightly) and 

24h after the infection. Additionally, 24h after the infection, there were some 

smaller and dimmer protein bands to be seen. One of them was about 35 

kDa in size, which corresponds to the SeV M protein, and the other one was 

about 44 kDa in size and unrecognizable and possibly a degeneration 

product. Conclusively, the amount of SeV proteins increased as the infection 

progressed. Taken together, since the amount of SeV proteins increased 

notably as the infection progressed, the virus was able to replicate efficiently 

in the host cells and this replication was the most efficacious between 16h 

and 24h after the infection. 

 

3.6 Host protein expression levels following SeV infection 
 

Cells express IRF3 constitutively and when it is in an inactive form, it locates 

in the cytoplasm. The expression levels of IRF3 as well as possible changes 

in the expression after SeV-infection was studied with immunoblotting in 

order to characterize more of the effects SeV-infection has to the host cells. 

The cells were infected with SeV at a MOI of 180 (MOCK cells were 

uninfected). The cells were lysed, and total proteins were collected at 

different time points after the infection. Like previously, the total protein 

concentration was measured with detergent compatible Bradford assay. For 

this assay, each standard sample was done with three and unknown protein 

Figure 8. Expression of SeV proteins in infected A549 cells. The cells were infected with a 
SeV MOI 180 and at different time points (2h, 4h, 6h, 8h, 16h, 24h) they were lysed and total 
proteins were collected. As a control, uninfected MOCK sample was also collected. Twenty 
μg of protein per sample were separated on an SDS-PAGE gel and transferred to a 
nitrocellulose membrane, which was stained with anti-SeV polyclonal antibody. The GAPDH 
bands are from another membrane (Figure 9), which was run parallel to this membrane and 
loaded with the same amount of protein. The corresponding proteins are indicated with arrows 
on the right and the ladder bands of known sizes are presented on the left. 

 

Ladder MOCK   2h        4h         6h         8h       16h       24h 

70 kDa H
N 

50 kDa N 

M 38 kDa 

GAPDH 38 kDa 
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sample with two replicates and the absorbance of them was measured at 

595 nm. The protein samples were analyzed by immunoblotting. The 

membrane was stained with polyclonal anti-IRF3 antibody and with anti-

GAPDH, and a known ladder was used to determine the size of the found 

protein. The picture of the complete membrane is in attachments 

(Attachment 6). IRF3 is about 52 kDa in size, which corresponds to the size 

of a protein found in every sample in the immunoblot (figure 9).  

 

 

 

 

 

 

 

 

 

 

 

GAPDH is about 37 kDa in size, which corresponds to the size of the other 

protein found in every sample in the immunoblot. Since only those two 

proteins were observed, there was no unspecific staining. The GAPDH 

served as a loading control. Based on the GAPDH levels of the samples in 

the immunoblot, the loading of the samples was even. Since a protein 

roughly 50 kDa in size was found in every sample in the immunoblot, it 

indicates that IRF3 was present in every sample. The amount of the 50 kDa 

protein in the immunoblot were the highest at the early times of the infection 

(MOCK, 2h, and 4h). Therefore, the protein expression level of IRF3 was the 

highest at the early times of the infection (MOCK, 2h and 4h). The amount of 

the 50 kDa protein, i.e. IRF3, decreased as the infection progressed and the 

decreasing started between four and six hours after the infection. By 24h 

after the infection, the amount of the 50 kDa protein, i.e. IRF3, had decreased 

drastically. To conclude, IRF3 started to degrade between four and six hours 

after the SeV-infection and by 24h after the infection the amount of IRF3 was 

drastically decreased.  

 

3.7 Cytokine and viral mRNA expression in SeV-infected A549 cells 
 
In a virus infection host cell tries to eliminate the virus by producing cytokines 

that function in eliciting an antiviral state. One group of cytokines is IFNs that 

Figure 9. Expression of IRF3 in infected A549 cells. The cells were infected with SeV Cantell 
strain at a MOI 180 and at different time points (2h, 4h, 6h, 8h, 16h, 24h) cells were lysed and 
total proteins were collected. As a control, uninfected MOCK sample was also collected. From 
the samples, containing 20 μg of protein per sample, relative expression levels of IRF3 protein 
was analyzed by immunoblotting. The membrane was stained with anti-IRF3 monoclonal as 
well as with GAPDH that functioned as a loading control. The corresponding proteins are 
indicated with arrows on the right and the ladder bands of known sizes are presented on the 
left. 
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further can be divided into different types. For example, type I IFNs, like IFN, 

are especially important in virus infections. IFN1, IFN1 and SeV N protein 

encoding mRNA expression level changes after SeV-infection were studied 

with qRT-PCR with specific Taqman™ probes. The cells were first infected 

with SeV at different MOI values (MOCK cells were uninfected) and lysed, 

and total RNA was extracted at different time points after the infection. In 

addition, an experiment where cells were treated with CHX before and during 

the infection at a MOI of 1 (MOCK cells were uninfected) was done. Exactly 

like the CHX untreated cells, the CHX treated cells were lysed, and total RNA 

was extracted at different time points after the infection. 

 

From the RNA samples, cDNAs were made in an RT reaction. The cDNAs 

were then run in duplicates in qRT-PCR with the specific probes for IFN1, 

IFN1, and SeV N protein encoding mRNA. Reference gene GAPDH (1x mix 

Hs02758991_g1 GAPDH, Thermo Fisher scientific), and nuclease-free 

water, and PCR mix controls, i.e. no-template controls, were also included in  

the run. The used TaqMan™ Gene Expression Assay mixture contains 

unlabeled sense(s) and antisense (a) primer and a TaqMan probe. The 

probe has a 6-FAM (emission max 517 nm) dye label and a non-fluorescent 

quencher molecule on the 5’ and 3’ ends, respectively. The obtained qRT-

PCR results were normalized and calibrated with a CT-method, which 

gives the relative amount of the specific target gene normalized to the 

reference gene and relative to a calibrator (Livak and Schmittgen 2001). 

Thus, the results demonstrate a fold change in the gene of interest in relation 

to the calibrator. In addition of the concentration, the quality (the 260/230 nm 

and 260/280 nm ratios) of the extracted total RNA was assessed. Despite 

the fact that some of the samples had small impurities, all the samples were 

included in the qRT-PCR. The RNA extraction of 16h timepoint sample in 

SeV infected A549 cells was unsuccessful and due to low RNA gain, 

comparable qRT-PCR assay was not possible. Similar limitation was 

experienced with the 24h CHX-treated cells, which was most likely due to 

the toxicity of CHX as a long-term treatment. 

 
3.7.1 SeV N protein encoding mRNA expression after SeV-infection 
 

Once SeV is in the host cell, it seeks to start replication and the production 

of progeny viruses. The changes in the SeV N protein encoding mRNA 

expression was studied with qRT-PCR after SeV-infection so that the 
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possible replication of the virus in the host cells could be assessed. The cells 

were infected at a MOI of 5 and 50 (MOCK cells were uninfected) and total 

RNAs were extracted at different time points after the infection. For the RNAs 

a RT reaction was carried and for the obtained cDNAs a qRT-PCR run 

performed with a specific primer for the SeV N protein encoding mRNA. For 

the results, the 30 min SeV N sample was used as a calibrator since it 

represents the virus that has attached to and moved into the cells early. In 

both the MOI 5 and MOI 50 SeV-infections, the viral N protein encoding 

mRNA expression was elevated as the infection progressed (Figure 10). 

 

Figure 10. Expression of SeV N protein encoding mRNA in infected A549 cells. Sendai N 
protein encoding mRNA expression changes, calibrated to the expression of the 30min SeV-
infected sample by ΔΔCT-method, from SeV MOI 5 and MOI 50 infected A549 cells obtained 
by qRT-PCR and run in duplicates. The samples were collected at different time points (30min, 
1h, 2h, 4h, 8h and 24h). Q-PCR analyses were performed with specific primers for the gene 
of interest, SeV N, and GAPDG. The result of each sample was normalized with GAPDH 
expression. Standard error is shown. 

 

However, there was a minor decreasing in the expression 24h after the MOI 

5 SeV-infection when compared to the 8h MOI 5 infection. A slight increase 

was noticed already one hour after the infection. By four hours after the 

infection the expression had increased 10-fold. Among the MOI 5 and 50 

Sendai N protein encoding mRNA expression fold changes after 
SeV MOI 5 and MOI 50 infections in A549 cells 
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SeV-infections, the highest expression, was obtained eight hours (about 100-

fold increase) and 24h (about 100-fold increase) after the infection, 

respectively. Importantly, the activation of the SeV N protein encoding mRNA 

expression followed similar kinetics in both MOI 5 and MOI 50 samples: 

Increasing of the expression was noticed already after one hour of the 

infection, and the expression rose steadily. The results demonstrate that the 

virus was replicating efficiently in the cells since the amount of the viral N 

protein encoding mRNA increased as the infection progressed, and the 

increasing started properly between four and eight hours after the infection. 

In addition, the results show that the MOI had no effect on the replication 

kinetics nor had it a great effect to the mRNA expression level of the gene at 

different times in the infection.  

 

3.7.2 The IFN-1 mRNA expression after SeV-infection 
 

IFNs mediate antiviral effects in viral infections and are important in the 

clearance of the infective virus. Therefore, in order to characterize more the 

innate immunity activation after SeV-infection, the IFN-1 mRNA expression 

after SeV-infection was studied with qRT-PCR. More specifically, in order to 

see if and when a type I IFN is activated after the infection. The cells were 

infected at a MOI of 5 (MOCK cells were uninfected) and total RNAs were 

extracted at different time points after the infection. The RNAs were 

converted into corresponding cDNAs in a RT reaction. The cDNAs were run 

in qRT-PCR with a specific primer for the IFN-1 gene. The results were 

calibrated to the MOCK values. The IFN-1 mRNA expression was 

increased already 30min after the infection, so the expression started rapidly 

after the infection and increased steadily (Figure 11). 
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Figure 11. Expression of IFN-1 gene in infected A549 cells. IFN-1 mRNA expression 
changes, calibrated to the expression of the MOCK sample by ΔΔCT-method, from SeV MOI 
5 infected A549 cells obtained by qRT-PCR and run in duplicates. The samples were collected 
at different time points (30min, 1h, 2h, 4h, 8h and 24h). Q-PCR analyses were performed with 

specific primers for the gene of interest, IFN-1, and GAPDG. The result of each sample was 
normalized with GAPDH expression. Standard error is shown. 
 
 

It peaked at eight hours after the infection and started to decline between 

eight and 24h after the infection. To conclude, the IFN-1 mRNA expression 

was upregulated throughout the infection, and the upregulation occurred 

rapidly and rose quickly from 100-fold two hours after the infection to 100000-

fold eight hours after the infection. The results state that the possible antiviral 

effect, the expression of IFN-1 gene, started properly between one and four 

hours after infecting the cells with SeV and the expression was efficient and 

rose up to 100000-fold. 

 

3.7.3 The IFN-ƛ1 mRNA expression after SeV-infection 
 

Further, the antiviral effects mediated by IFNs are important in the clearance 

of the virus and in the recovery of the host. Therefore, a type III IFN, IFN-ƛ1, 

mRNA expression levels after SeV-infection were studied with qRT-PCR in 

order to study if and when this expression starts after SeV-infection. The cells 

were infected at a MOI of 5 (MOCK cells were uninfected) and total RNAs 

were extracted from the cells and reverse transcribed into cDNAs. The 

cDNAs were run in qRT-PCR with a specific primer for the IFN-ƛ1 gene. The 

expression of IFN-λ1 in MOCK cells was minor and therefore undetected. 

IFN-1 mRNA expression fold changes after SeV MOI 5 infection in 
A549 cells 
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Hence, the results were calibrated to the 30 min IFN-λ1 ones rather than to 

the MOCK values. The IFN-ƛ1 mRNA expression was increasing as the 

infection progressed (figure 12). 

 

Figure 12. Expression of IFN-ƛ1 gene in infected A549 cells. IFN-ƛ1 mRNA expression 
changes, calibrated to the expression of the 30min sample by ΔΔCT-method, from SeV MOI 
5 infected A549 cells obtained by qRT-PCR and run in duplicates. The samples were collected 
at different time points (30min, 1h, 2h, 4h, 8h and 24h). Q-PCR analyses were performed with 
specific primers for the gene of interest, IFN-ƛ1, and GAPDG, which was the reference gene. 
The result of each sample was normalized with GAPDH expression. Standard error is shown. 

 

 

The expression jumped significantly within one to two hours after the 

infection: from about 10-fold to almost 1000-fold. The expression peaked 

eight hours after the infection (over 1000000-fold) and started to decline 

between eight hours to 24h after the infection. To conclude, excluding 30 min 

after the infection, the IFN-ƛ1 mRNA expression was upregulated quickly and 

efficiently as the infection progressed. Therefore, the possible antiviral effect, 

the expression of the IFN-ƛ1 gene after SeV-infection started properly 

between two to four hours after the infection. 

 

3.7.4 SeV N protein encoding mRNA expression after SeV-infection when 
protein synthesis is blocked 
 

The invaded virus uses the host’s replication machinery to replicate itself. 

The expression changes of viral N protein encoding mRNA after SeV-

infection were studied with qRT-PCR with CHX+ cells in order to demonstrate 

if the possible virus replication is efficiently blocked with CHX. The cells were 

IFN-λ1 mRNA expression fold changes after SeV MOI 5 infection in 
A549 cells 
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treated with CHX before and during the infection at a MOI of 1 (MOCK cells 

were uninfected). The total RNAs were extracted at different time points after 

the infection. The RT reaction for the RNAs was done. The obtained cDNAs 

were run in qRT-PCR with a specific primer for the SeV N protein encoding 

sequence. The results were calibrated to the 30 min SeV N sample values, 

since it represents the virus that has attached to and moved into the cells 

early. The SeV N protein encoding mRNA expression nearly peaked 

between two and four hours after the infection (figure 13). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13. Expression of SeV N protein encoding mRNA in infected A549 cells treated with 
CHX. Sendai N protein encoding mRNA expression changes, calibrated to the expression of 
the 30min SeV-infected sample by ΔΔCT-method, from SeV MOI 1 infected A549 cells that 
were treated with CHX, obtained by qRT-PCR and run in duplicates. The samples were 
collected at different time points (30min, 1h, 2h, 4h, 8h and 16h). Q-PCR analyses were 
performed with specific primers for the gene of interest, SeV N, and GAPDG, which was the 
reference gene. The result of each sample was normalized with GAPDH expression. Standard 
error is shown. 

 

 

Nonetheless, about five-fold increase, so the highest viral N protein encoding 

mRNA expression, was eight hours after the infection. Then again, at 16h 

after the infection, the expression was lower compared to after eight hours. 

Importantly, when these results are compared to the CHX- ones, the peak 

expressions had 1,5 times difference between CHX- and CHX+ cells (figure 

10 and 13). Therefore, it is clear that the viral N protein encoding mRNA 

expression was greatly repressed in the CHX+ cells. To conclude, the viral N 

protein encoding mRNA expression was only somewhat upregulated as the 

infection progressed and started to decline between eight and 16h after the 

Sendai N protein encoding mRNA expression fold changes after 
SeV MOI 1 infection in A549 CHX+ cells 
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infection (figure 13). The results demonstrate that when cells were treated 

with CHX, the virus replication was efficiently compromised. 

 

3.7.5 The IFN-1 mRNA expression after SeV-infection when protein synthesis 
is blocked 
 

Further, in a virus infection, the efficient activation of IFN production is crucial 

in the clearance of the virus. Therefore, the IFN-1 mRNA expression levels 

after SeV-infection were studied with qRT-PCR to see if and when the IFN-

1 mRNA expression starts after SeV-infection when the protein synthesis is 

blocked with CHX. The cells were treated with CHX before and during the 

infection at a MOI of 1 (MOCK cells were uninfected). The total RNAs were 

extracted at different time points after the infection and reverse transcribed 

into cDNAs. The cDNAs were run in qRT-PCR with a specific primer for IFN-

1 gene. The results were calibrated to the MOCK values. The IFN-1 mRNA 

expression was a bit miscellaneous: First it was increasing (1h) followed with 

a slight decrease (2h) compared to the expression at one hour, and then 

again increasing (4h and 8h) and finally decreasing (16h) when compared to 

eight hours (figure 14). 

 

Figure 14. Expression of IFN-1 gene in infected A549 cells treated with CHX. IFN-1 mRNA 
expression changes, calibrated to the expression of the MOCK sample by ΔΔCT-method, from 
SeV MOI 1 infected A549 cells that were treated with CHX, obtained by qRT-PCR and run in 
duplicates. The samples were collected at different time points (1h, 2h, 4h, 8h and 16h). Q-

PCR analyses were performed with specific primers for the gene of interest, IFN-1, and 
GAPDG, which was the reference gene. The result of each sample was normalized with 
GAPDH expression. Standard error is shown. 

IFN-1 mRNA expression fold changes after SeV MOI 1 infection in A549 

CHX+ cells 
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The expression increased about 50-fold eight hours after the infection, and 

that was the peak of the expression. On the other hand, the IFN-1 mRNA 

expression was upregulated in every sample after the infection, and the 

expression started quickly and rose as the infection progressed. To 

conclude, even when protein synthesis was blocked the possible antiviral 

effect of the expression of the IFN-1 gene after SeV-infection started early 

in the infection, properly between two to four hours after the infection. 

 
3.7.6 The IFN-ƛ1 mRNA expression levels after SeV-infection when protein 
synthesis is blocked 
 

The importance of the production of IFNs in response to a virus infection and 

in the elimination of the virus is well known. Therefore, to study if and when 

a type III IFN, IFN-ƛ1, expression starts after SeV-infection when protein 

synthesis is blocked, IFN-ƛ1 mRNA expression levels of SeV-infected CHX+ 

cells were analyzed by qRT-PCR. The cells were treated with CHX before 

and during the infection at a MOI of 1 (MOCK cells were uninfected). Like 

previously, the total RNAs were extracted at different time points after the 

infection, and they were reverse transcribed into cDNAs. The cDNAs were 

run in a qRT-PCR with a specific primer for IFN-ƛ1 gene. The results were 

calibrated to the 30 min IFN-λ1 sample values, since MOCK level IFN-ƛ1 

expression was unobtained. As seen from the figure 15, the IFN-ƛ1 mRNA 

expression was increasing as the infection progressed, excluding the result 

after one hour, until it started to decline 16h after the infection when 

compared to the expression eight hours after the infection. 
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Figure 15. Expression of IFN-ƛ1 gene in infected A549 cells treated with CHX. IFN-ƛ1 mRNA 
expression changes, calibrated to the expression of the 30min sample by ΔΔCT-method, from 
SeV MOI 1 infected A549 cells that were treated with CHX, obtained by qRT-PCR and run in 
duplicates. The samples were collected at different time points (1h, 2h, 4h, 8h and 16h). Q-
PCR analyses were performed with specific primers for the gene of interest, IFN-ƛ1, and 
GAPDG, which was the reference gene. The result of each sample was normalized with 
GAPDH expression. Standard error is shown. 
 

 

The peak expression obtained was at eight hours after the infection. In 

conclusion, the IFN-ƛ1 mRNA expression was upregulated fast and greatly 

(about 100000-fold) as the infection progressed and the expression started 

to decline between eight and 16h after the infection. Hence, the possible 

antiviral effect of the expression of the IFN-ƛ1 gene after SeV-infection 

started even when protein synthesis was blocked, and the effect occurred 

between two to four hours after the infection. 

 

4. Discussion 
 
 
The goal of this study was to examine the activation kinetics of the Rig-I 

pathway after sendai virus infection in human adenocarcinomic lung 

epithelial A549 cells. Additionally, the central aim was to study if the entry of 

the virus into the cell would be sufficient to activate the Rig-I pathway or 

whether the virus needs to replicate first before it can elicit the activation. 

This study showed that IRF3 was translocating from cytoplasm into the 

nucleus and thus activated quickly after SeV-infection. This activation of 

IFN-ƛ1 mRNA expression fold changes after SeV MOI 1 infection in A549 
CHX+ cells 
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IRF3 was followed by efficacious induction of IFN-1 and IFN-1 mRNA 

expressions. Furthermore, IRF3 was degraded as the SeV-infection 

progressed. In addition, CHX blocked SeV replication efficiently. 

Nevertheless, in the CHX treated cells the IFN-1 and IFN-1 mRNAs were 

expressed efficiently and IRF3 translocated into the nucleus. Therefore, the 

activation of these innate immunity responses after SeV-infection were 

independent of the virus replication.  

 

This study is addressing the requirements of activation of specific innate 

immunity responses, the translocation of IRF3 and IFN mRNA expressions, 

after SeV-infection with whole virus in vitro infection experiments. The cells 

were infected with SeV Cantell strain at certain MOI values and samples 

(whole cells, total RNA, total protein) were collected at different time points 

after the infection and analyzed. The tools to study the research questions 

were to focus in the expression and localization of IRF3, which is a 

transcription factor at the bottom of the Rig-I signaling pathway cascade 

(Peters et al. 2008; Hare and Mossman 2013), as well as in the expression 

of IFN and viral mRNAs and proteins after SeV-infection. 

 

There are many references that in nonimmune cells, like A549 cells, Rig-I is 

the fundamental PRR in SeV-infection (Kato et al. 2005; Melchjorsen et al. 

2005; Loo et al. 2008). In addition, it has been shown that in SeV-infection, 

the Rig-I is essential for type I and III IFN (IFN- and IFN-1) activation and 

regulation (Kato et al. 2006; Österlund et al. 2007). However, PRRs are 

known to function cell-type specifically and cooperatively (Melchjorsen et al. 

2005; Medzhitov 2007). Importantly, MDA5, but not Rig-I, is known to be 

inhibited by SeV V protein (Childs et al. 2007), which is a factor supporting 

the fact that the activation of IRF3 after SeV-infection is indeed mainly 

upstream of Rig-I rather than MDA5. Since TLRs mainly recognize nucleic 

acids in extracellular space or in endosomes (Mogensen and Paludan 2005), 

it is also from this point of view most likely Rig-I that is sensing SeV residing 

in the cytosol. Consequently, it was presumed in this study that Rig-I is 

activated after SeV-infection, even though this study lacks Rig-I knockout cell 

line experiments to prove it definitely. 

 

The virus stock that was used in the experiments was effective to activate 

antiviral effects in the cells as the FFU / ml value was as high as 6x109. The 

result is really high (Veckman et al. 2006), which may indicate that the SeV 
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stock titer estimation protocol had some imprecisions. Behind this is probably 

the way the virus dilutions were prepared in the SeV stock titer experiment: 

the pipette tips were not changed in between the serial dilution preparation, 

which may have increased the number of virus in the higher dilution aliquots. 

 

In our experience the A549 cells were not compatible for the PFU assay with 

AVICEL. Reasons for this are unclear and unexpected. All cells were 

detached in the PFU assay, both MOCK and the infected cells. AVICEL in 

general is an overlay solution that prevents the virus from spreading in the 

cell culture and thus facilitates the determination of the virus titer by counting 

the formed holes, which are a result of cell death, in the cell layer. Overall, 

more optimization is needed regarding the PFU assay. The benefits of FFU 

assay when compared to PFU assay are that it is more sensitive and not as 

time consuming (Baer and Kehn-Hall 2014), which therefore address its 

suitability in evaluating the MOI values in the infection experiments. 

 

The results from the infection experiments showed that the Rig-I pathway 

was activated rapidly, already an hour after the SeV-infection, which was 

confirmed with the immunofluorescence visualization of translocation of IRF3 

into the nucleus after the infection. The translocation of IRF3 into nucleus 

occurred very rapidly when compared to that for example after Newcastle 

disease virus (NDV), another paramyxovirus, which occurs 12h after the 

infection (Sato et al. 1998). In addition, Sato et al. (1998) found that the virus 

(NDV) needs to replicate to be recognized by the Rig-I and MDA5, which 

probably is the reason for slower IRF3 translocation kinetics. In my 

experiment, the used MOI was really high (3700), which means that there 

were plenty of viruses in the cells. This may have resulted in faster activation 

of the Rig-I pathway. 

 

Possible translocation of IRF3 into nucleus after SeV-infection was studied 

also with cells treated with CHX by immunocytochemical staining. CHX 

inhibits de novo protein synthesis (Wettstein et al. 1964; Schneider-Poetsch 

et al. 2010). Since SeV carries an RNA-dependent RNA polymerase gene in 

its genome, it can synthetize some primary transcription products even in the 

presence of CHX, which inhibits host cell protein synthesis (Robinson 1971; 

Kolakofsky et al. 2004; Schneider-Poetsch et al. 2010). However, complete 

and large-scale replication of viruses is still inhibited with CHX (Robinson 

1971; Murphy and Lazzarini 1974; Weber et al. 2013). The 
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immunocytochemical staining experiments with CHX treated cells showed 

that IRF3 translocated into nucleus and that this localization shift happened 

already one hour after the infection. Thus, these results from CHX+ and CHX- 

cells are alike. This supports the hypothesis that SeV does not have to 

replicate before the recognition by the Rig-I. Likewise, Collins et al. (2004) 

showed that cells treated with CHX had raised levels of activated IRF3 after 

SeV-infection. Interestingly, opposite results have also been obtained. When 

Melchjorsen et al. (2005) infected cells with UV-inactivated SeV (Cantell 

strain, MOI 1), which lacked the ability to replicate, the activation of IRF3 was 

completely abolished. On the other hand, there is a difference between 

inactivation of the virus by UV light or inhibiting the replication of the virus by 

CHX. UV treatment may damage the overall structure of the virus particle 

(Miller and Plagemann 1973; Lovinger et al. 1975) whereas CHX only inhibits 

the virus replication indirectly by disabling the protein synthesis machinery of 

the host (Wettstein et al. 1964; Schneider-Poetsch et al. 2010). However, the 

results are opposing and further investigation on the matter should be 

executed. 

 

The results from the immunoblot assay showed that IRF3 began to degrade 

between four and six hours after the SeV-infection and from there on, this 

degradation continued throughout the followed time course of the infection. 

The amount of IRF3 was nearly diminished by 24h after the infection. 

Therefore, SeV-infection induced the degradation of IRF3. Similar kind of 

result were obtained in a study made by Lin et al. (1998) where SeV-infection 

was shown to lead to degradation of IRF3 16h after the infection. In an 

experiment made by Collins et al. (2004) IRF3 degradation in SeV-infected 

A549 cells occurred even earlier, by 12h post infection. However, in my 

results, the degradation occurred even earlier. This could mean that the 

infection in my experiment was more efficient than in the Lin et al. (1998) and 

in Collins et al. (2004) experiments where used MOI was significantly lower 

or simply due to the lack of earlier time points in those two other experiments. 

From mutation experiments, it is concluded that the phosphorylation of IRF3, 

i.e. its activation, would be the activator signal for its degradation (Lin et al. 

1998). This is so, because phosphorylation is a signal for ubiquitin-

dependent proteasome degradation (Bibeau-Poirier et al. 2006). 

Consequently, the rapid degradation of IRF3 in my results indicates that the 

activation of innate immunity response by SeV-infection was efficient.  
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In the immunoblot experiment, polyclonal antibody against IRF3 was used. 

The size of phosphorylated IRF3 should be dissimilar to the constitutively 

expressed IRF3 (Servant et al. 2001). However, in my experiments no 

change in size of the found IRF3 was observed when MOCK and SeV-

infected cells were compared. Therefore, for better accuracy, an antibody 

against the phosphorylated form of IRF3 would be needed. Importantly, in 

the immunoblot assay the used MOI was 180, which is only a fraction of the 

one in the immunocytochemical staining experiments. Therefore, the finding 

made from the immunocytochemical staining experiment about the rapid 

activation of the Rig-I seems to be valid regardless of the very high MOI used 

in that experiment. 

 

In the other immunoblot assay stained with polyclonal anti-SeV, SeV proteins 

were starting to increase between six and eight hours after the infection and 

peaked within 24h after the infection. In addition, the first sign of SeV proteins 

was detected only four hours after the infection while MOCK and the sample 

collected two hours after the infection lacked detectable SeV protein bands. 

It is peculiar that two hours after the infection SeV proteins were 

undetectable, since the data from the immunocytochemical staining 

experiments of CHX- cells against polyclonal anti-SeV showed that SeV 

proteins started to properly accumulate in the cells after one hour of the 

infection, which indicates that SeV moved into the cells already within one 

hour after the infection.  Moreover, from the experiments, possible 

polycaryocyte and rounding of cells were also seen one hour after the 

infection. These morphological changes are signs of cytotoxic effects of SeV 

infection. This indicates that the cells were indeed infected by that time. 

Unfortunately, double staining experiment against both IRF3 and SeV 

proteins could not be performed since both antibodies in use were raised in 

rabbits. Moreover, in the immunoblot assay, the amount of SeV proteins 

between four and six hours remained unchanged. This strongly suggests that 

between four and six hours after the infection, only the incoming virus was 

detected, and the virus was not yet replicating. These notions further 

substantiate the conclusion made from the anti-IRF3 immunocytochemical 

staining experiments that the Rig-I pathway was activated independent of 

SeV replication. 

 

The expression of SeV N protein encoding mRNA, which precedes the 

replication, in CHX- cells started properly between two to four hours after the 
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infection, based on the qRT-PCR results. This is in line with the other results, 

since protein expression takes longer than mRNA expression, and the 

protein expression levels of SeV were properly accumulating in the 

immunoblot assay between 16h and 24h after the infection. Like noted 

regarding the anti-SeV immunoblot results, the slight increased signal at 

30min to two hours was likely from the incoming virus. In MOI 5 and MOI 50 

CHX- cells, the expression reached 100-fold increase between four and eight 

hours and eight and 24 hours, respectively. Thus, the higher MOI value 

seemed to be slowing the induction of the virus N protein encoding mRNA 

expression a bit in this experiment. This is supporting the point made 

regarding the earlier activation of the Rig-I because of high MOI (3700) in the 

immunological staining experiments: perhaps the virus was not replicating 

as quickly in higher MOI values because it was recognized earlier due to 

greater accumulation of virus particles in the host cell at the beginning of the 

infection. On the other hand, this difference in induction of the viral N protein 

encoding mRNA expression between MOI 5 and MOI 50 CHX- cells was fairly 

minimal. The SeV N gene results from CHX+ cells were the opposite showing 

only slight expressional increase when compared to the CHX- result. This 

proves that CHX blocked the virus replication efficiently. 

 

IFN production is of great importance in the innate immune system as well 

as in the activation and modulation of adaptive immunity and ultimately in the 

clearance of the virus (Medzhitov 2007). It is known that the active 

transcription factor complex of IRF3 and CBP/p300 can induce IFN gene 

expression and that this primary expression happens early in the infection 

(Sato et al. 1998; Yoneyama et al. 1998; Sato et al. 2000; Österlund et al. 

2007). Interestingly, in my qRT-PCR results of CHX+ (10 μg / ml) cells, IFN-

1 and IFN-1 mRNA expressions were increasing as the SeV-infection 

progresses. Therefore, the innate immunity and antiviral state was activated 

once SeV was in the host cell and independently of the virus replication. 

Interestingly, the expression levels of IFN-1 CHX- and IFN-1 mRNAs of 

CHX+ and CHX- cells were similar, while the IFN-1 mRNA expression of 

CHX+ cells differed significantly from all the formerly mentioned ones: the 

IFN-1 mRNA expression of CHX+ cells was significantly lower than the IFN-

1 CHX- and both the IFN-1 CHX+ and CHX- qRT-PCR results. It remains 

unclear why in CHX+ cells the IFN-1 mRNA expression was significantly 

lower than the IFN-1 mRNA expression. IFN- and IFN- are activated via 

different receptors and partially different routes (Abramovich et al. 1994; 
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Novick et al. 1994; Kotenko et al. 2003; Prokunina-Olsson et al. 2013), which 

may explain the difference. Maybe CHX can somehow affect only the 

receptor or route regulating IFN-, and this aspect requires more research. 

In the experiment the MOI was really low (MOI 1) and yet effective to activate 

innate immunity responses when the virus replication was blocked. 

 

On the contrary, in a study by Melchjorsen et al. (2005), the IFN-α and IFN-

 production were abolished when cells were infected at a MOI of 1 with UV-

inactivated SeV. Additionally, in a study made with another paramyxovirus, 

RSV, IFN-α production was compromised when cells were infected with 

inactivated RSV (Hornung et al. 2004). Then again, Weber et al. (2013) got 

results similar to mine in their experiments that were done with CHX+ (50 μg 

/ ml) A549 cells that were infected with VSV and IAV virus genomes 

(containing nucleocapsids). In that experiment, the expression level of IFN-

 in CHX+ cells 24h after the infection was only slightly affected when 

compared to CHX- ones. They concluded that viral nucleocapsid with 5’ 

triphosphate dsRNA panhandle structure act as the ligand for Rig-I (Weber 

et al. 2013). The different conclusions from the introduced studies and my 

study may relate to use of different viruses in the experiments. 

 

It is known that activated IRF3, once it has bind to its co-activators, can bind 

to ISREs (Au et al. 1995). In a study by Österlund et al. (2007) the binding of 

phosphorylated IRF3 in an ISRE element occurred two hours after the SeV-

infection in moDCs. Therefore, in moDCs the transcription factor function of 

IRF3 seems to be activated only two hours after the infection. My results 

showed that the IFN-1 and IFN-1 mRNA expressions were starting to 

properly increase between two to four hours (except the IFN-1 expression 

of CHX- cells that was increasing properly already one hour after the 

infection). This is supporting the finding about the kinetics of phosphorylated 

IRF3 binding in ISRE that Österlund et al. (2007) made. In my results, the 

increase that was observed earlier than two hours after the infection was 

minor. Since it is known that cytokines are expressed at low levels even 

without an infection (Tovey et al. 1987), the signal from the early hours might 

be due to this constitutive low-level expression of IFNs.  

 

The peak of IFN- and IFN-1 in this study was between six and eight hours 

after the infection. At the peak of the expression, the expression fold increase 

of both IFNs in CHX- and CHX+ cells were over 100000. This indicates that 
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SeV was able to induce IFN expression very efficiently, which is shown also 

by previous studies (Cantell et al. 1981; Cantell and Hirvonen 1981). The 

corresponding peak of the same IFNs in the Österlund et al. (2007) study 

occurred somewhat earlier, six hours after the SeV-infection. Since in my 

study qRT-PCR results of six hours’ time points were lacking, the IFN peaks 

could be the same as in the Österlund et al. (2007) study. The MOI values of 

my CHX- and CHX+ results and results from Österlund et al. (2007) study are 

the same or almost the same, so the earlier activation of IFNs in the 

Österlund et al. (2007) study is explained by some other reason. 

 

It is known that SeV V protein can inhibit IFN- production (Poole et al. 2002; 

Andrejeva et al. 2004; Komatsu et al. 2004). In addition, in experiments using 

mutated and wt SeV conducted by Strähle et al. (2003), IFN- production 

after SeV (wt) infection is shown to be relatively weak (Strähle et al. 2003). 

The data I got from qPCR analysis is for some part in line with this finding, 

since IFN-1 expression was lower than IFN-1 expression. Likewise, in the 

study by Österlund et al. (2007) IFN- expression was shown to be greater 

than IFN- expression after MOI 5 SeV Cantell infection. Furthermore, also 

in the study by Jiang et al. (2011), the mRNA expression of IFN- was lower 

than the expression of IFN-1 mRNA. 

 

If SeV, a ss(-)RNA virus, elicited Rig-I activation even without replication, the 

ligand for Rig-I most likely is the incoming virus nucleocapsid or the revealed 

genome. Oh et al. (2016) have proposed that the first transcript product, le 

polypeptide, of NDV, also a negative-sense non-segmented RNA virus, 

could act as an agonist for Rig-I. However, the activating effect of that might 

be so delicate that the result is insignificant and interferon production remain 

low (Oh et al. 2016). This kind of conclusion can be drawn from the results 

seen in my experiments: IFN-1, IFN-1, and SeV N protein encoding mRNA 

expressions remained quite low in the early face of the infection (between 

30min and one hour) and peaked at eight hours after the infection, while IRF3 

was in the nucleus already after one hour. So, the Rig-I pathway was 

activated rapidly and before proper replication of the virus, therefore, leaning 

towards argument that the possible Rig-I agonist could be the le polypeptide. 

However, more detailed research is needed in order to draw proper 

conclusion of the natural ligand of the Rig-I receptor after SeV-infection, 

since NDV and SeV are however different viruses. 
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The reason for varying results to some other studies may be related to many 

variables, for example to the virus stock, cell culture conditions, used 

antibodies or other reagents. In the qRT-PCR experiment, a baseline for IFN-

1 mRNA expression, the MOCK cell IFN-1 mRNA expression, was 

unobtained. Therefore, the IFN-1 and IFN-1 qRT-PCR results were 

calibrated differently. Hence, the accuracy of the comparison of the IFN-1 

and IFN-1 mRNA expression results after the infection is somewhat 

impaired. 

 

To conclude, the results of my study showed that SeV activated antiviral state 

(type I and III IFN mRNA expression), which was likely mediated by activation 

of IRF3 by the Rig-I. This activation occurred effectively within one hour after 

the infection, and even if the virus replication was blocked. The rapidly 

occurring degradation of IRF3 induced by SeV-infection indicates that the 

activation of innate immunity responses were effective and widespread. 

Hence, low levels of IRF3 in the nucleus early after the SeV-infection was 

enough to activate efficient antiviral responses in the host cell. 

 

Since SeV shares similar functioning mechanisms with other 

paramyxoviruses that cause diseases in humans such as human 

parainfluenza virus type I (hPIV-1) (Gorman et al. 1990; Lyn et al. 1991; 

Slobod et al. 2004), the data acquired in this study could be beneficial also 

in understanding functioning mechanisms of other paramyxoviruses. Like 

with SeV, for hPIV-1 there are currently no vaccines available, so the 

research is valuable. Sendai virus’s capacity in gene therapy has been 

studied extensively and it is a prominent candidate in many therapy forms 

(Yonemitsu et al. 2000; Jin et al. 2003; Nakanishi and Otsu 2012, Matveeva 

et al. 2015; Park et al. 2016). Information on SeV infection mechanism is 

valuable also on that aspect. Importance for research on interactions 

between and mechanisms of innate immunity and virus infection are 

underlined in the present time where the new coronavirus pandemic is 

causing huge costs on the world’s economy as well as panic, and most 

importantly, human suffering including mortality (European Centre for 

Disease Prevention and Control, ECDC; Finnish Government; Finnish 

Institute for Health and Welfare, THL; World Health Organization, WHO). 

Moreover, infectious diseases are one of the leading causes of deaths in the 

world (Global Health Observatory, GHO), so studying the mechanisms 

behind immunity and virus infections are of great importance. To conclude, 
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this study is important in understanding the early interaction of the host and 

the virus and therefore beneficial for, for example, endeavors to create 

effective new antiviral therapies. 
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7. Appendices 
 
 
1. The growth medium: 
 
HAM’S F12 with 1 mM L-glutamine (Cytiva) medium supplemented with 10 

% Fetal Bovine Serum (FBS) (Biowest) and 10 μg / ml of gentamycin 

sulphate (Biological Industries). 

 

 
2. Protocol for detaching A549 cells: 
 
Growth medium was poured out, and the flask was washed with RT-warmed 

(approximately 25 C) Phosphate-buffered saline (PBS) (Cytiva). Cells were 

incubated with 1:1 solution of Versene (0,02 %, Lonza) and trypsin (0,25 %, 

Lonza) in 5 % CO2 conditions at + 37 C for approximately 10 min. Two 

volume of growth medium was added, the mixture was mixed briefly, and the 

cell number was enumerated with hemocytometer using Trypan blue staining 

(Bio-Rad) in 1:200 dilution in MQ. 

 

 
3. HAM’s F12 medium: 
 
HAM’S F12 with 1 mM L-Glutamine (Cytiva) medium. 
 
 
4. 1x DMEM medium: 
 
1x Dulbecco’s modified Eagle’s (DMEM) medium with 25 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 4,5 g / l glucose 

(Lonza). 

 

 
5. Complete membrane image of figure 8 that shows the expression of SeV 
proteins in infected A549 cells. The cells were infected with a SeV MOI 180 
and at different time points (2h, 4h, 6h, 8h, 16h, 24h) they were lysed, and 
total proteins were collected. As a control, uninfected MOCK sample was 
also collected. Twenty μg of protein per sample were separated on an SDS-
PAGE gel and transferred to a nitrocellulose membrane, which was stained 
with anti-SeV polyclonal antibody. The corresponding proteins are indicated 
with arrows on the right and the ladder bands of known sizes are presented 
on the left.  
 
 



 

 

 
 
 

 
 

 
 
 

 

 

 
 
 
6. Complete membrane image of figure 9 that shows the expression of 
IRF3 in infected A549 cells. The cells were infected with SeV Cantell strain 
at a MOI 180 and at different time points (2h, 4h, 6h, 8h, 16h, 24h) the cells 
were lysed, and total proteins were collected. As a control, uninfected 
MOCK sample was also collected. From the samples, containing 20 μg of 
protein per sample, relative expression levels of IRF3 protein was analyzed 
by immunoblotting. The membrane was stained with anti-IRF3 monoclonal 
as well as with GAPDH that functioned as a loading control. The 
corresponding proteins are indicated with arrows on the right and the ladder 
bands of known sizes are presented on the left. 
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