

Big Data Preprocessing for Multivariate Time

Series Forecast

UNIVERSITY OF TURKU

Department of Future Technologies

Master of Philosophy Thesis

Computer Science

June 2020

Mikael Kylänpää

Supervisors:

Tapio Pahikkala

The originality of this thesis has been checked in accordance with the University of Turku quality

assurance system using the Turnitin OriginalityCheck service.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTUPub

https://core.ac.uk/display/347180594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TURUN YLIOPISTO

Tulevaisuuden teknologioiden laitos

MIKAEL KYLÄNPÄÄ: Big datan esikäsittely usean muuttujan aikasarjojen

ennustamiseen

Pro Gradu -tutkielma, 79 s.

Tietojenkäsittelytieteet

Kesäkuu 2020

Turun yliopiston laatujärjestelmän mukaisesti tämän julkaisun alkuperäisyys on

tarkastettu Turnitin OriginalityCheck -järjestelmällä.

Big data -alustat helpottavat isojen datamäärien talletusta ja hallintaa. Niiden

haittapuolena on kuitenkin laaja data-analyysiin vaadittava esikäsittelyn tarve, mikäli

halutaan käyttää tavanomaisia analyysimenetelmiä. Erityisen haastavaksi todetaan

aikasarjojen muuntaminen alustan tarjoamasta muodosta ohjatun koneoppimisen

vaatimaan taulumuotoon, koostuen ennustettavasta kohdemuuttujasta sekä muista

ominaisuusmuuttujista. Tässä tutkielmassa tutkitaan usean muuttujan aikasarjadatan

esikäsittelyä, sekä käsitellyn datan ennustamista koneoppimismenetelmillä, kuten

neuroverkoilla ja tukivektorimallinnuksella. Tutkimusmenetelmät perustuvat

kirjallisuuteen datan esikäsittelystä ja aikasarja-analyysistä, mutta myös uusia

menetelmiä kehitetään, kuten lokitasoon perustuva kohdemuuttuja sekä muuttujien

arvojakaumaan perustuva karsiminen. Ennustustulokset jättävät kuitenkin toivomisen

varaa, mikä kertoo big datan mallinnuksen vaikeudesta. Epäiltyinä syinä ovat liian

vähäinen malliparametrien ja esikäsittelyvalintojen optimointi, joiden täydentäminen

vaatisi resursseihin nähden liian kattavaa testausta.

Avainsanat: big data -alustat, datan esikäsittely, aikasarja-analyysi, ohjattu

koneoppiminen

UNIVERSITY OF TURKU

Department of Future Technologies

MIKAEL KYLÄNPÄÄ: Big Data Preprocessing for Multivariate Time Series

Forecast

Master of Philosophy Thesis, 79 p.

Computer Science

June 2020

The originality of this thesis has been checked in accordance with the University of

Turku quality assurance system using the Turnitin OriginalityCheck service.

Big data platforms alleviate collecting and organizing large datasets of varying content.

A downside of this is the heavy preprocessing required to analyze their data by

conventional analysis techniques. Especially time series data is found challenging to

transform from platform-provided raw format into tables of feature and target values,

required by supervised machine learning models. This thesis presents an experiment of

preprocessing a data-platform-extracted collection of multivariate time series and

forecasting it by machine learning models such as neural networks and support vector

machines. Reviewed techniques of data preprocessing and time series analysis literature

are utilized, but also custom solutions such as log level-based target variable, and value-

distribution-based feature elimination are developed. No significant forecasting

accuracies are achieved, which indicates the difficulty of modelling big data. The

expected reason for this is the inadequate validation of model parameters and

preprocessing decisions, which would require excessive testing to improve.

Keywords: Big data platforms, data preprocessing, time series analysis, supervised

machine learning

Table of Contents

1 Introduction ... 1

2 Motivation ... 4

Part I - Big data preprocessing .. 6

3 Background ... 7

3.1 Big data platforms ... 7

3.2 Issues with data analysis & ML .. 8

3.2.1 Size .. 9

3.2.2 Dimensionality .. 10

3.2.3 Format ... 12

3.2.4 Missing values ... 16

3.2.5 Data outages .. 18

4 Case study – Preprocessing for time series analysis ... 20

4.1 Target & objectives ... 20

4.2 Dataset ... 22

4.3 Missing values & outages ... 23

4.3.1 Outage detection.. 24

4.3.2 Missing value imputation .. 25

4.3.3 Outage-error correlation .. 26

4.3.4 Outage labeling ... 28

4.4 Feature selection & extraction .. 29

4.4.1 Supplementary features ... 29

4.4.2 Visual feature elimination ... 30

4.4.3 Target variable .. 36

4.4.4 Feature subsets .. 38

Part II - Time series analysis ... 40

5 Background ... 41

5.1 Definition & categorization... 41

5.2 Traditional methods & terms .. 43

5.3 Machine learning ... 49

5.3.1 Neural networks .. 49

5.3.2 Support vector machines ... 51

5.3.3 Recurrent neural networks .. 53

6 Case study – Regression forecast by supervised ML .. 59

6.1 Learning task & evaluation ... 59

6.2 Model training & results ... 60

6.2.1 RNNs ... 60

6.2.2 Basic ANN .. 65

6.2.3 SVR ... 67

6.3 Warning performance.. 69

7 Discussion ... 73

8 Conclusion .. 75

References ... 76

Abbreviations and Acronyms

AC Autocorrelation

ANN Artificial neural network

AR Autoregression

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving average

AUC Area under curve

B2B Business-to-business

BP Backpropagation

FE Feature extraction

FPR False positivity rate

FS Feature selection

GRU Gated recurrent unit

IR Instance reduction

IS Instance selection

JMX Java management extension

kNN K-nearest-neighbors

LSTM Long short-term memory

MA Moving average

ML Machine learning

MLP Multi-layer perceptron

MSE Mean squared error

NoSQL Not only SQL

OHE One-hot-encoding

PAC Partial autocorrelation

RNN Recurrent neural network

RVM Relevance vector machine

SRs Secure relays

SVM Support vector machine

SVR Support vector regression

TPR True positivity rate

VAR Vector autoregression

1

1 Introduction

Many of today’s digital services are built around data. Varying data is collected from not

just the main processes but from all around the services for later uses, including

knowledge discovery by data analysis and machine learning (ML). Traditional data

storage techniques such as relational databases have proven incompatible with the volume

and dynamics of these large scale, distributed, and simultaneously increasing data

collections, often referred to as big data. This has led to use of stand-alone data platform

software such as Hadoop [1] and Elasticsearch [2], that are especially designed to operate

such collections. One of the reasons enabling their advantage is the relieved restriction

on data format. This is also known as schema-less approach, where all sorts of data can

be collected without preorganization of table structures. A common storage format is a

JSON-based document store, where the documents can contain highly altering contents,

yet capable of fast and programming-oriented querying without requiring external

database transformations.

Consequently, there is a certain disadvantage in analyzability of the less-structures data

collections. Most data analysis and ML methods operate with table-like data, consisting

of columns and rows. Therefore, applying ML on big data requires additional

transformation from raw data into analyzable table-format. In contrast, traditional

databases are table-oriented by nature and hence much easier to prepare for analysis.

Another key issue of big data analysis is the size of the collections. Many ML-methods

are computationally demanding already on small datasets, so applying them on big data

insists means of transforming the data into smaller scale. To overcome such issues, this

study presents a review on various data preprocessing methods, along with a practical

experiment of preparing a dataset of such scope for ML analysis.

A special factor is that the experimented dataset contains no predefined target variables

to predict by ML. Instead, selecting or crafting this variable is considered a part of the

preprocessing. In that regard, this study represents a nowadays common data analysis

task, where a client provides data and invests in exploratory data analysis, hoping for

2

potential findings unknown in beforehand. In this specific case the provided dataset is a

time series, and the goal is to preprocess it by selecting as informative as possible feature

or input variables and the target or output variable to forecast. As the learning task, this

study focuses on multivariate time series analysis and forecast, where multivariate refers

to analyzing multiple concurrent time series, and their effects on each other.

Time series analysis has traditionally referred to statistical techniques by Box and Jenkins

[3], but an increasing amount of ML alternatives have been published, due to recent

advance in the field. ML has unique characteristics as opposed to traditional methods.

One of them is the preliminary parameter learning process i.e. model training for which

there are two categories or learning setups. In supervised learning setup the dataset is

labeled, making each instance consist of feature values along with a class label or a

numerical target value. The former label type is known as classification and the latter as

regression. Unsupervised learning, on the other hand, operates with unlabeled data, and

these algorithms are used for structuring data, for instance by clustering. Time series

forecast is considered supervised, as its task is to predict the target variable i.e. future,

based on feature variables i.e. history of the series. Another specialty of ML is that it is

usually completely data driven. For example, rather than explicitly computing the trends

and cycles in a time series, as part of the method, ML-models can learn them implicitly

from training data.

Amongst ML techniques, especially deep learning has proven advantageous in modelling

large datasets or big data. A specific type of deep learning is recurrent neural networks

(RNNs), especially designed for learning to predict sequences such as time series. RNN

techniques like long short-term memory (LSTM) [4] and gated recurrent units (GRUs)

[5] have shown success with non-real-time sequences like text and speech recognition,

making them promising candidates also for real-time sequences focused on this study.

However, a certain difference between real-time and non-real-time sequences is that the

latter is much easier to scale up. For instance, a text dataset can be increased by inserting

more sentences, whereas with real-time sequences the only means of increasing is to

count in a longer history or more concurrent features, if such are collected. It is hence

uncertain if a time series dataset will reach the level where deep learning can outperform

other methods. In addition to preprocessing techniques, this study reviews also the most

3

common time series analysis methods, from traditional to deep learning, aiming to

provide which of these are best suitable for learning real-time multivariate sequences.

4

2 Motivation

This thesis is done in collaboration with a Finnish IT company, henceforth referred as

company A. One of A’s services is maintaining support services for clients’ software and

business-to-business (B2B) integrations. The services operate on clients’ log and metric

data, providing real time monitoring, alerting of errors, and minimization of downtime

on production environments. As its data platform, A utilizes Elasticsearch, that is

distributed JSON-based querying specialized document database. For monitoring, A uses

Kibana [6] and Grafana [7] that are also provided by Elasticsearch. One of the

disadvantages of this system is the lack of root cause analysis capabilities, due to which

the discovering of the causes must be done manually after the occurrence of the errors.

As the service lacks knowledge of root causes, it is also incapable of predicting an

upcoming error when a root cause appears. This study aims to provide the missing

predictability by developing forecasting model for a dataset extracted from A’s platform.

If successful, the model could be used as early warning system, forecasting the state of

the operation for time ahead. If the predicted state were erroneous, an early warning could

be triggered, enabling prohibitive processes to prevent the errors.

In order forecast on large scale data, a heavy amount of preprocessing is required. It is

acknowledged that Kibana, for instance, contains a built-in ML library that requires no

excessive preprocessing. However, this study focuses on which processes are required if

not using platform provided functionality. This allows the use of state-of-the-art

techniques that platforms such as Kibana do not necessarily utilize. As mentioned, a key

step in this project is also determining the target variable which is the variable to forecast.

Since the goal is to predict the state of A’s client operation, this variable should reflect

the health of the operation as well as possible. As the product of the preprocessing, three

feature variable subsets are prepared along with a target variable to predict. Each subset

is forecasted, and their performance is evaluated by the accuracy of the forecasts.

As the forecasting technique, also three candidate methods are experimented. Their

performances are compared, to see which method performs best on given data. Additional

parameters of forecast are lag distance, i.e. how much history to calculate for a prediction,

and horizon length, i.e. how long into future to predict. Based on company A’s experience,

5

the optimal lag distance should be within one hour, and horizon from 15 to 30 minutes.

The lag distance affects especially the computational complexity, as counting in more

instances naturally requires more computation. A longer distance, however, could

increase the accuracy of the forecast. The horizon, on the other hand, defines how far

ahead to predict. It hence determines how much time there would be for prohibitive

actions after a warning is triggered. A longer horizon is not necessarily a benefit, as the

farther the horizon, the less accurately a model likely predicts. Thus, two horizon lengths,

15 and 30 minutes are experimented. This makes the final experimental setup of this study

a cross-validation of a) 2x datasets, b) 3x preprocessed subsets, c) 3x forecasting

methods, and d) 2x parameter combinations. Finally, the best performing models are

evaluated also as warning systems, assessing not just their overall forecast capability, but

also accuracy on triggering warnings correctly.

Study objectives summarized:

 Discover preprocessing techniques for transforming multivariate big data time series

into analyzable format.

 Discover means for selecting/crafting a forecast target variable for the dataset

provided.

 Discover methods for forecasting time series data of such scale.

 Apply forecast and analyze the success of the set objectives.

Disregarding the objectives set above, an overall goal of this thesis is to discover

universally compatible preprocessing techniques that are applicable to not just the case

data, but any large-scale time series type of data. The experiments are exploratory

acknowledging the null hypothesis, which is that no efficient preprocessing can be

applied, and no reliable forecasts can be made on them.

The chapters are divided into two parts. Part I contains the theory of big data

preprocessing, and its practical application on a client dataset provided by company A.

Part II contains time series theory, along with forecast experiments on the client data that

was prepared in part I.

6

Part I

Big data preprocessing

7

3 Background

3.1 Big data platforms

Many applications used for collecting, storing, and analyzing data can be considered as

big data platforms. [8] describe the key features of them by size, complexity, and certain

associated technologies such as not only SQL (NoSQL) databases e.g. Cassandra [9],

MongoDB [10] and file distribution frameworks e.g. Hadoop, Elasticsearch. A key

difference compared to traditional data storage is that these techniques usually require no

strict schema or structure for content they store. This allows any available data source to

be collected without restriction or prior organization. Big data platforms typically consist

of a data lake, containing the data in raw format and a database or equivalent application,

that provides indexing, organization, and better user access to this raw content. Most

applications are horizontally scalable, i.e. their data can be distributed on multiple server

nodes to increase storage size. Scaling horizontally allows practically infinite increase of

volume. In addition, it usually provides content replication, meaning that the data is stored

physically in multiple locations, which allows high availability and reliability, even if

single nodes fail.

Figure 1 Big data platform example

8

One of the most common NoSQL database types is document database. Instead of

standing for the storage format, the documents function as wrapper of content, providing

a uniform format for handling any contents. For example, MongoDB and Elasticsearch

use JSON as the document format. As compared to traditional data storage, e.g. relational

databases, JSON is faster to search, more flexible towards varying or dynamic content

and supports constructs familiar to most programming languages, such as lists [11].

Another benefit of JSON is that the documents can naturally contain nested elements i.e.

parents and children, whereas a relational database would require separate tables and

foreign keys for handling such recursion. Lastly, querying JSON is fast, as most

programming languages have ready-made implementations for operating with the format.

An additional feature of some data platforms is being real time. This means that collection

of data, from source to storage is continuous. Examples of real time data sources are

application log files and sensor readings that a collecting service “listens to” and transmits

into the platform simultaneously. This type of collection allows utilizing the data for real

time alerting and monitoring purposes. Associating instances with timestamps also turns

data into time series, enabling time series analysis. Many big data platforms provide a

complete software, consisting of a storage unit or framework e.g. Hadoop, Elasticsearch,

a UI client for control and monitoring e.g. Splunk [12], Kibana, and a separate component

for collecting real time data e.g. Sqoop [13], Logstash [14]. Additional modules are often

provided as plugins, for example for advanced visualization e.g. Grafana and ML

purposes e.g. Mahout [15].

3.2 Issues with data analysis & ML

The schema-less approach has a lot of advantages concerning data collection and storage.

However, as a downside, it may hinder data analysis capabilities. This chapter presents

such issues, affecting especially ML-modelling on real time and big data platforms. Five

main issues, namely size, dimensionality, format, missing values, and data outages are

focused. In practice, the issues are solved by various steps of data preprocessing, which

is a fundamental part of any data analysis study and challenging for big data.

9

3.2.1 Size

The foremost issue with large datasets is their size. Although general computational

power has increased due to distributed and parallel computation techniques like GPU-

processing, a combination of large data with complex models might still be a restriction

to many studies. In turn, cloud computing providers offer high-performance computing

e.g. Google Colab, as a service, but this study focuses on capabilities without using such

services. If unable to utilize high-performance computing, a practical approach to deal

with size issues is to reduce the volume in preprocessing.

The processes of reducing data by instances are known as instance reduction and selection

[16]. Instance reduction (IR) means selecting instances to drop out, whereas instance

selection (IS) means selecting the instances to keep in data. The problem of IR/IS is the

loss of information value that it might cause. For example, if a dataset consists of many

instances of class A but only few instances of B, a bad IR could drop all instances of B,

hence completely corrupting the information. This problem affects especially unlabeled

datasets, where stratification, i.e. ensuring correct distribution of labels cannot be applied.

A basic application of IR for example for survey-datasets, is to remove noisy and

redundant instances. This process is also known as data cleaning.

List of common IS/IR methods [16,17]:

 Random sampling – Drops instances randomly. The only goal is to reduce volume.

 Stratified sampling – Drops instances randomly amongst classes, maintaining

original class distribution.

 Outlier detection – Reducing the data size by dropping statistical outliers. This is

applicable only on numerical features, and with datasets where outliers exist.

 RT1, RT2, RT3 – Advanced reduction techniques by [18]. These methods calculate

the effect of instances for the learning task, dropping out redundant ones. The

performances on multiple learning tasks were reportedly increased, utilizing them.

10

3.2.2 Dimensionality

Another issue related to data size is dimensionality, which means the number of features

for an instance. In addition to increasing computation time, dimensionality also causes

issues known as curse of dimensionality [19]. A practical example of this is if a dataset

has few instances but many features, each instance is likely to appear distant of each other,

if all features are concerned. This makes it difficult to find similarity between any

instances of data. Because of this, high dimensionality also requires high number of

instances for similarities to appear. High dimensionality also restricts the model selection

available for an analysis task. For example, distance-based methods’ such as support

vector machine’s (SVM) and k-nearest-neighbors (kNN) classification’s computational

complexity is directly proportional to number of features in data, making them easily too

inefficient for highly dimensional datasets. High dimensionality can be dealt with

dimensionality reduction techniques, the most common of which being feature selection

and feature extraction [16].

Feature selection (FS) refers to similar selection or drop-out than IR/IS, but amongst the

feature space. The foremost part of FS is to remove features which certainly have no

effect in the analysis. For example, if only persons of specific age are analyzed in a study,

the feature representing age is then redundant and can be removed, as it would always

contain the same value. Another example are metadata fields such as object identifiers or

dates of last update, common in data platform datasets. If counted in, the redundant fields

may reveal spurious correlations, i.e. coincidental correlations without actual causality.

FS is also used to remove non-redundant but highly correlated features. For example, if

a dataset contains individual fields for age and birthdate, the two would be 100%

positively correlated, making it unnecessary to utilize both fields. Even lower levels of

correlation could indicate that two features represent the same event, hence only requiring

one feature for recognizing it.

[20] divide FS-techniques into filter, wrapper, and embedded methods, based on the

technique’s relation to the actual model. Filter methods analyze the data independently,

generating the final feature subset for models. Wrapper methods function together with

the model, providing candidate subsets for the model, that are then evaluated to discover

11

the best performing one. This approach is also known as FS-cross-validation. Lastly,

embedded methods refer to learning models, that have a built-in FS process. Below are

presented lists of common FS methods by category.

Filter methods [16,17,21]:

 Manual – Selecting best features based on expert knowledge.

 Correlation coefficient – Selecting features that correlate most with output value or

classes. Functions with numerical values.

 Chi-Squared selector – Chi-Squared test ranks categorical features’ correlation to

output value. This is like correlation coefficient but for categorical features.

 Fast Correlation-Based Filter (FCBF) – Advanced, computationally light,

correlation-based filter method for highly dimensional data by [21].

Wrapper methods [20]:

 Sequential forward selection or backwards elimination – Systematically goes

through each feature, evaluating its effect on performance. Selects features

increasingly if they improve performance or eliminates features decreasingly if

discarding them improves performance.

 Genetic algorithm – Advanced, natural selection inspired FS method. The method

starts by creating random subsets and evaluating them. The best subset is then used

to create a pool of new candidate subsets, and the process is repeated for the new

candidates. This evolution converges to best possible subset.

Embedded methods [20,22]:

 Decision trees & Random forests – Decision tree modelling and its expansion,

Random Forests are user friendly and intuitive models for example for classification

tasks. Additionally, they provide a straightforward measure of a feature’s importance

on decisions, which acts as embedded FS.

 Least absolute shrinkage and selection operator (Lasso) – A regression analysis

method that applies feature selection. It can also be used to enhance other regression

methods such as Ridge regression.

12

The other approach of dimensionality reduction is feature extraction (FE), which means

creating artificial features based on original ones. This enables the use of high-

dimensionality-incompatible analysis methods despite the original data contains too

many features. Another benefit of reducing dimensionality is that it can be used to project

data into two or three dimensions that are visually observable. This could reveal patterns

such as clusters, already as such. A common subcategory of FE are space transformation

methods. These create projections of high dimensional data to greatly lower dimensions.

In contrast to regular FE, space transformations make the projections based on all original

features, preventing information loss. One could still have the output of a model as

original feature but use extracted features as input for learning tasks. A downside of FE

is that it makes the analysis closer to black box, as one cannot so easily determine a single

original feature’s effect, since it is not used as such.

List of common FE methods [16]:

 Matrix factorization – Matrix factorization methods like Single Value

Decomposition (SVD) are used in recommender systems. However, they can also be

used as feature selection algorithms. For example [23] represent a matrix

factorization-based unsupervised feature extraction algorithm.

 Principal Component Analysis (PCA) – Perhaps the most common space

transformation method. It projects the data to the desired number of dimensions that

maximize the variance in the data.

 Independent Component Analysis (ICA) – A space transformation method like

PCA but maximizes independence instead of variance. It is typically used in signal

processing for separating independent sources of data.

3.2.3 Format

The schema-less approach improves the flexibility and scalability of big data platforms.

However, there are multiple issues affecting the analyzability of such data. First, most

data analysis methods operate with columns and rows. Each instance must populate every

13

column with a value, or leave it empty, i.e. populate it with null. JSON for example,

requires an additional preprocessing step of converting the documents into tables.

Moreover, a dynamically altering JSON or equivalent dataset, might yield a large portion

of empty values, requiring more strategies for handling the nulls. Second, as JSON or

equivalent might contain nested objects, they must be flattened to fit it into a table. This

means unfolding all nested objects into single level, which could make the representation

more complex. The unfolding process is illustrated in below, where the braces refer to

parent-child relations:

input: output:

A A

B{C, E} B.C, B.E

F{G, H{I}} F.G, F.H.I

Like format of data, also the type of features affects analysis, especially with big data.

Since ML algorithms are math-based, textual features must be transformed into numerical

format before analysis. Feature indexers and encoders are techniques that can be used for

such transformation [24]. A discrete amount of categorical textual field values, for

example species names in a dataset of plants, are straightforward to index into numbers

where each number represents one species. However, more complex textual features such

as actual text entries are harder to index or encode. Text mining presents techniques

aiming to categorize texts to index them into numerical scale [16].

List of common indexer and encoder methods [16]:

 String indexing – Transforms a discrete set of textual labels into indexed numbers.

The order of which can be defined for example by the total number of labels; the most

frequent class or label being either first or last.

 One-Hot-Encoding (OHE) – A common strategy, also used for representing output

classes with neural networks. In a discrete set of labels, each label is given a binary

feature, yielding value 1 if an instance represents the label and 0 otherwise.

14

The transformation to numerical features is fundamental to any size of dataset that ML is

applied to. However, especially large scale and highly dimensional data is problematic.

For instance, if a dataset is already highly dimensional, OHE increases the dimensionality

even further, which could introduce dimensionality issues. This has been studied [24] and

[25] who propose alternative techniques as well. [24] demonstrate issues with non-

standardized categorical variables. An example of such is a person’s title-field which

could contain multiple entries like PhD and Ph.D, despite all referring to the very same

entity. With basic OHE, these would yield two or more non-lapping features, which could

corrupt the analysis as the model would interpret them as different entities. They propose

their own method, especially targeted to “dirty data” i.e. datasets with spelling mistakes

that make same entities represented by multiple accidental values. [25], on the other hand,

present a comprehensive comparison of OHE against binary encoding and feature

hashing, more detail of which is given below.

List of OHE alternatives [16,24,25]:

 Term frequency search – This approach is eligible for continuous textual fields. A

specific term is defined as keyword, and the frequency or amount of it is scored as the

new feature value.

 Stemming – This approach is like term frequency search, but instead of searching a

term within texts, searches roots of terms within terms. An example is root standard

in term set standards, standardize and standardized. There are many extensions to

basic stemming, such as [24]’s similarity encoding, which provide more advanced

indexing or scoring of roots.

 Binary encoding – Where OHE represents features as one-bit binary, binary

encoding represents them as multi-bit. For example, where OHE encodes a feature of

4 classes into 4 binary features (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0) binary encoding

requires only two; (0,0), (0,1), (1,0), (1,1). This approach yields much less dimensions

when encoding discrete categorical variables.

15

 Feature hashing – In this approach, feature values of any type are sent through a

hash function, which denotes an output integer within a set of desired length. The

acquired integers act as the new encoded features. Interestingly, hash collision, i.e.

two separate values being hashed to same output does not drastically decrease

prediction performance as heavily as expected, according to [25]’s study.

 Clustering – An ML-oriented alternative to apply feature encoding or any

dimensionality reduction is to perform unsupervised learning such as clustering on

desired set of features. The formed clusters can then be interpreted as feature labels.

For an even more advanced encoding strategy, [26] represent a neural network approach,

resembling an autoencoder. Autoencoders are neural networks that learn complex

functions for altering data representation and are therefore used for example for encoding

and decoding purposes. [26]’s network functions like an autoencoder but also reducing

the output dimensionality to a smaller scale. It essentially falls into the category of space

transformations, but it can be also used to convert non-desired feature types such as

categorical textual fields into numerical representation, which allows better modelling

capability.

Feature types especially affect time series analysis. For example, statistical regression

methods like ARMA-models (see 5.2) operate only on ordinal numerical values.

Ordinality means that the feature can be measured as high or low compared to other

instances. Many categorical features are nominal or not ordinal, meaning that their values

cannot be compared to each other. An example of such is species name that represent

category rather than measure. There are exceptions of ordinal categorical features such as

log level. It is a textual feature commonly associated with log messages, denoting the

severity of the event with values like debug, warning, or error. Since the categories

measure the severity, they can be indexed into increasing order, i.e. debug: 1, warning: 2

and error: 3, making the feature ordinal and applicable to statistical modelling.

16

3.2.4 Missing values

Another category especially related to the schema-less storage are missing values.

Efficiently handling missing values is critical, as bad handling strategies could bias the

analysis [16]. One of the primitive handling techniques is to drop out instances that have

missing features. However, this is only applicable if the portion of instances with

missingness is small. If not completely dropping instances, the other approach is to fill

their empty fields with artificial values. This method is also known as imputation. There

are various imputation strategies, i.e. criteria for what to fill the empty values with.

List of imputation strategies [17]:

 Mean or median – The most common and basic imputation strategy is to fill empty

values with feature’s or table column’s mean or median value. This is easily

extendable, for example to instead using a mean or median within a class or category.

 Hot deck imputation – Find an instance that most resembles the instance with

missing value. Use this instance’s value to impute the missing one.

 Regression or classification – An advanced imputation strategy is to build a

complete separate classification or regression model, that takes as input the other

feature values and predicts the missing value based on statistics or model parameters

if ML.

Like format, also missing values cause difficulties especially withs time series datasets

for multiple reasons. First, one cannot completely drop out only instances with missing

values because time series must always have fixed time intervals between instances.

Second, one cannot impute empty values with 0, -1 or other fixed values, because they

could be in the natural scale of some variable, for instance, temperature in Celsius. Third,

one cannot impute empty values with averages or most common values, at least in a non-

stationary time series (see 5.1). This is because the series could be on a peak of a trend

during the missing value’s occasion. Inserting a much smaller average value between two

peaking values would probably corrupt the time series.

17

More complex imputation strategies for time series have been reviewed by [27,28]. [27]

studied the impact of missing values in political data analysis. The key issue affecting

time series imputation in this field is the type of the missingness, e.g. informative or non-

informative missingness. In the former case, a problem is that there is likely a reason why

a feature value is missing, which should be concerned in the imputation. The process

should also concern other features, which have values for the moment. For instance, if

every other feature dive at a specific moment, the imputed value should likely dive as

well. A similar problem is presented by [28], who studied missing values in multivariate

scientific time series forecast with RNNs. They found missing values correlated to

prediction performances also in sensorial data, e.g. health care, biological and

geoscientific datasets. However, instead of applying imputation, they propose a

completely new kind of GRU neural network (see 5.3.3), namely GRU-D, that functions

with the empty values, rather than guessing the real value of them. This approach showed

promising results; where regular RNN with imputation performed at the same level with

SVM, GRU-D was able to deliver the increased performance that deep learning generally

provides. The network seemingly learns to interpret null as a special class to detect

patterns of. However, this likely requires a substantial portion of missing values, to learn

their pattern. Relatedly, for example [29]’s RNN-experiment concerned a small amount

of empty values, so imputation could be considered a minor factor regarding prediction

performance.

Missing values are especially problematic in multivariate time series analysis. As

described, the format and size of big data might cause missing values as such. An

additional factor is the density or framerate of time series. To analyze multiple time

series’ effect on each other, they must be synchronized by framerate. This means that

each individual series must share timestamps. Hence, and additional preprocessing step

is required for synchronizing the time series, which could be a heavy process especially

with large datasets. A time series can be synchronized either by sparsening or densening

it. Sparsening means discarding for example every nth instance from a series. It could lose

information value, as the discarded instances could include informatically valuable ones.

Densening, in contrast, means adding artificial instances between original ones. It does

not lose information value, but could corrupt the data, if the artificial instances are

18

inaccurate. A synchronization process could include applying both, to obtain a uniform

framerate for every time series in a dataset.

3.2.5 Data outages

A special type of missingness are data outages. Affecting especially real time data

platforms, outages refer to continuous missingness of a data source or feature for a limited

period. An example outage is if a sensor or collecting service malfunctions, which causes

missing values or no data until it is fixed. Outages do not only refer errors, as they could

also be due to regular restart or reboot of a service. Because of this, outages are especially

difficult to model, as there could be multiple origins for one, either normal or erroneous.

There are very few publications on how to handle outages in multivariate time series

analysis. A primitive approach like with regular missing values would be to discard

periods or complete features with outages occurring. However, this would lose potential

information value that defines the missingness. Because an outage could cause or be

caused by an event in another series or features, identifying such correlations could be

critical for example in root cause analysis of an error.

If wished to benefit from outages in analysis, the biggest concern is how to represent them

in the data. As described, most models cannot function with nulls, so this requires a

process of labeling the outages. The difficulty of labeling depends on feature types. For

example, one can simply add a new category or label representing outages for a

categorical feature. However, or an ordinal and numerical feature, it is difficult to allocate

a value for representing one. Intuitively, one could label outages as zeros, but with

assumption that it is not in the natural scale of the feature. If so, an alternative strategy

could lie in discretization. Discretization means transforming a continuous value into

discrete set of ordinal categories. An example discretization is transforming temperature

degrees into classes like freeze, around-zero, and heat. This set of classes could then be

expanded with a new class that represents outage. However, it would still not satisfy the

ordinality requirement for most features, as an outage cannot be measured as high or low,

for example by temperature. Especially statistical time series methods (see 5.2) require

ordinality, also making discretization ineligible.

19

Among the few publications concerning the issue is [30]’s study of missing event

prediction in sensor data streams. For an outage situation, they utilized Kalman filters,

that is a recursive data approximation function for predicting the missing sensor readings.

However, this approach merely predicts the missing values, rather than utilizing the

informative missingness in the outages. A candidate method that could benefit from

outage information is the GRU-D neural network proposed by [28], as it particularly

analyzes patterns of missingness.

20

4 Case study – Preprocessing for time series

analysis

4.1 Target & objectives

The case study is targeted on a specific client of company A, henceforth client B. B’s

production operation runs on five host machines that contain software components such

as integration engine and API manager. Their main process are B’s B2B-integrations that

conduct the internal and outbound message traffic, including orders and other logistical

messages between various physical and virtual endpoints. The integration engine’s load

is balanced into two hosts, namely cores 1 and 2. The other three hosts in the cluster

perform additional supportive operations such as secure relaying. In this chapter, client

B’s operational data is preprocessed and prepared for time series analysis in part II of the

study. Both custom-made techniques, and methods reviewed in chapter 3 are

experimented, to create a computationally compact and informative dataset from the raw

data.

Figure 2 Client B’s cluster

21

As for any data prediction task, the first consideration is which variables to analyze and

which to predict. Since cores 1 and 2 host the main operation, these two also produce the

most impactful logs and metrics to analyze. Considering this, the preprocessed dataset

should contain mostly core features, so the models do not overfit on the supplementary

behavior. The target or output variable should also represent the cores. Although being

supplementary of the main operation, the other three nodes could provide additional root

causes that affect the behavior of the cores, and hence should not be considered as input

features. The preprocessing objectives are illustrated in fig. 3:

Figure 3 The forecasting methods analyze input variables to predict output variables. The boxes

indicate which host the features or variables are selected from. The output variable should present

the predicted state of errors in both cores.

As for the target variable, since not being predefined, one must either select a

representative feature from the original features as such or extract it from the original

features. Most forecasting methods cannot predict multiple targets, so if selecting

multiple targets, the forecast would need to be repeated for each individual log level (see

3.2.3). Hence, the goal is to craft a single target to predict. Since company A’s role in

client B’s operation is to ensure system health, the target variable should reflect the health

of the operation. There are two key variables in the data, that are expected to reflect the

health best; the log level features that the data contains plenty of, and outages that occur

from time to time in all features. Log levels are straightforward indicators of errors as

22

such, whereas outages could be caused by a critical error in the system making them

potentially informative targets to forecast (see 3.2.5).

4.2 Dataset

The dataset of client B is a collection of data tables provided as csv-files. These tables

were created in a separate data engineering project [31], acquiring the data from

Elasticsearch, transforming it from JSON into tables, and reducing the volume by a large

scale. The final tables contain multivariate time series, from the five host machines in B’s

production environment. There are from two to three tables per each host, each table

containing a specific source of data in it. The source types are described below:

1. Filebeat – Contains application log data. This includes log levels and additional status

information of logs. The message contents are filtered out due to their excessive

lengths and complexity to analyze. Filebeat-sources have a dynamic collection

interval, as they are collected simultaneously when produced by services. The features

of the source are mostly categorical variables.

2. Metricbeat – Contains system metrics such as CPU and memory usage of hosts. The

readings are collected at fixed rates within configured intervals. All metricbeat-

features are categorical.

3. Jmx-beat – Contains Java management extension (JMX) statistics, i.e. metrics from

important java processes. These readings are also numerical and collected within

configured intervals.

The table rows are ordered so that the first row of each table represents the first lag and

last row the last lag in the time series. The raw data contains from 4 to 63 features per

each table. The collection intervals above refer to the rate that the data is collected to A’s

Elasticsearch cluster. The tables are synchronized to uniform framerates, so that the nth

row of each represent the same moment of time. The time series span a period of

23

originally 8 months: April 18th – November 15th. However, the provided data is divided

into two subsets. Dataset 1 contains the full period with a 5-minute framerate (60780

rows), and dataset 2 only the last 2 months but with a 1-minute framerate (87900 rows).

The advantage of dataset 1 is that it covers the full period, including a wider history.

However, the original data is generated denser than 5 minutes, so the synchronization

process has decreased event accuracy. In contrast, dataset 2 is closer to the original

density but covers a shorter history. In 4.4.2, the length of dataset 2 is further shortened

to 50500 rows for reasons explained.

As a remark, both datasets contain a lot of missing values, for two reasons. First, the data

is highly dimensional, and the collection rates vary between individual features and

tables. Because of this, some of the features have been densened by inserting empty

values between the original values to match the uniform framerates. Second, there are a

lot of outages, that appear as missing values.

4.3 Missing values & outages

The foremost problem of this study to solve are missing values. This is because most

forecasting methods and preprocessing techniques cannot operate with nulls and cannot

be used before replacing these. A key factor affecting the replacement are outages. There

are two types of them: normal outages due to service reboots or updates, and outages

caused by errors. Moreover, outages can take place for a single service, or for the whole

system.

A certain property of outages in is that they act differently on logs and metrics. Since logs

are written based on actions of the process, a missing log could represent a healthy period,

where in contrast, dense logging could indicate errors. Hence, missing values are

considered natural for filebeat-tables. Metrics, on the other hand, are collected at fixed

rates. Therefore, missing metrics can indicate either a sparser collection interval or an

outage. Because of this, missingness should be treated differently on metricbeat and jmx-

beat tables. Also, as shown by [28], there could be information value in patterns of

missingness, so the missing values should be kept as such rather than imputing. The next

24

proposed methods aim to classify outages either as a) natural missing value due to sparser

collection rate, b) normal outage due to service restart, or c) error-caused outage due to

system malfunction. The natural missing values could then be imputed, and the outages

labelled either as normal or erroneous outages.

4.3.1 Outage detection

To address the described requirements, the first process is trying to separate natural

missing values from outages. The following proposed method analyzes complete missing

rows for separating the instances. As filebeat-outages are treated differently, this method

is applied only on metricbeat and jmx-beat tables. The basic idea of it is to check whether

some values of a row are missing, or all of them, as all features missing would refer to a

metric-wide outage. The method is presented as algorithm below:

iterate table by rows:

if some, but not all features of row are 'null':

 impute missing values

else if all features of row are 'null':

 label row as outage

By experimenting, it is noted that with client B’s data, this method still yields a heavy

portion of outages in metricbeat. Below is an illustration of the resulting outage labels on

core 1:

25

Figure 4 Dataset 1 (left), dataset 2 (right). Metricbeat outages (blue), jmx-beat outages (orange).

The x-axis represents the full analysis periods on both datasets 1 and 2.

The problem of heavy missingness is that as the metrics are numerical, they would also

need to be imputed with a numerical value, rather than a new category representing them

(see 3.2.4). However, the regularity of the missingness in metricbeat suggests that they

are caused by the sparser collection, rather than actual outages occurring. Unlike

metricbeat, jmx-beat’s original collection intervals are denser than the synchronized

interval, so there are no sparseness-caused missingness. Because of this, the outages

present in jmx-beat (orange) are likely indicating actual system-wide outages. More

evidence is given by the fact that, there are also missing values in metricbeat and filebeat,

during jmx-beat’s outages. Since jmx-beat-tables represent outages so well, the approach

is changed to labeling only the outages detected by jmx-beat. Hence, the outages detected

in metricbeat only are handled like regular missing values, which is performed in 4.3.4.

4.3.2 Missing value imputation

After the outages have been detected, the imputation strategy for other missing values

must be selected. The imputation is applied to the missing values that are not considered

as outages in 4.3.1. A key factor considering the strategy is the nature of data. An expected

property of server metric data such as client B’s is that the metrics should keep previous

state if no explicit changes occur. There should also be no dirty data features (see 3.2.3),

as all features are recorded by sensor rather than human. Lastly, since working with time

series data, common imputation strategies such as mean, or median cannot be used (see

26

3.2.4). Acknowledging these, it is decided to impute missing values based on the

preceding active value for each feature. If the missing value follows an outage, the next

active value should be used instead, because the value is more likely to represent the state

after the outage, rather than state before it. The process is also represented by following

algorithm:

1. iterate table by rows (top-down):

 iterate row by values:

 if row is not outage and value is 'null':

 impute with corresponding value from preceding row

2. repeat step 1. bottom-up

Iteration 1. imputes missing values with the last collected value of the feature if one exists

within an outage-less period. This leaves all missing values that follow an outage empty.

Iteration 2. repeats the process but from bottom to top, so the missing values after outages

get imputed with the next collected value of the feature.

4.3.3 Outage-error correlation

After detecting outages, a consideration is whether it is possible to segregate them as

normal e.g. updates and reboots, or error-caused. The distinction between the two could

benefit the forecast, as one is only interested in predicting the error-caused ones. It would

enable the models to specialize in detecting feature values that correlate with them. The

normal outages could be imputed like regular missing values in 4.3.2. As the data contains

no distinction between normal and error-caused outages, an error-correlation analysis is

proposed. Since there is no metric collection during outages, one cannot calculate straight

correlation between them. Instead, a visual analysis is performed, where the log levels

are plotted against systemwide outages to detect if increasing errors lead to outages. This

method also reveals correlation in the opposite direction, i.e. whether outages lead to

increasing errors. Below is illustrated the outages of core 1, against the log levels of 4

corresponding filebeat-logs recorded in both cores:

27

log a)

log b)

log c)

28

log d)

Figures 5 Outage-error correlations, dataset 1 (left), dataset 2 (right), outages of core 1 (red), log

levels of core 1 (blue), core 2 (green).

It is observed that there are simultaneous fatal errors occurring in multiple logs, especially

prior to index 50000 of dataset 1 and 20000 of dataset 2. This could indicate that the

following outage is caused by these errors. However, as there is distance between the two,

the behavior resembles a system restart more than a crash. In the opposite direction, there

seems only to be some correlation in logs c) and d), where error-levels follow an outage

straight. Nevertheless, there is still not enough visible causality in either direction so that

any separation could be done between the types of outages. It is hence decided to neglect

the separation. Instead, all outages detected by 4.3.1 are considered as same. Therefore,

the target variable designed in 4.4.3 should focus more on log levels and less on outages,

as one cannot distinct whether these are normal or error-caused.

4.3.4 Outage labeling

The one-class labeling of outages is performed followingly:

iterate table by rows:

 if row is outage:

 iterate row by values:

 if feature of value is categorical:

 replace value with 'null'

 else if feature of value is numerical:

 replace value with 0

29

It is acknowledged that the numerical label 0 is likely to corrupt the data. However, since

there is no other plausible numerical representation for outages, the goal of the

preprocessing is changed towards minimizing the usage of metric features, that depend

on numerical outage representation. The labeling is also applied to filebeat-tables.

Although being mostly categorical, they contain some numerical features that require

outage labeling with 0. In 4.4.2, a visual method is proposed for eliminating problematic

features, some of which are caused by this outage labeling process.

4.4 Feature selection & extraction

After treating missing values in the data, the next process is to apply FS and FE. Since

the original feature-set is already filtered from knowledgably redundant features in the

data engineering project, each feature left in the datasets is considered potentially

valuable. However, as described, the analysis variables should focus on core features, as

they host the main processes of client B’s operation. Therefore, a tighter approach is taken

on features from the supplementary hosts.

4.4.1 Supplementary features

Among the 3 supplementary hosts (see 4.1), the secure relays (SRs) differ from every

other host in that they lack the collection of jmx-beat. Because of this, one cannot use the

host-wide outage detection presented in 4.3.1. Since mere metricbeat yields too heavy

missingness, it is decided to also drop out these tables from the SRs. The remaining SR-

features from filebeat are http-message-statuses and a single log level feature from each

SR. The log levels are considered containing enough information of these hosts’ health,

so it is decided to extract these as the only features representing the SR-hosts.

Features selected from Secure relays 1 & 2:

 2x corresponding load-balancer log levels from SR1 & SR2

30

The third supplementary host is host 5. Like with the SRs, only filebeat-features from are

selected from host 5 as well, as they are considered representative enough of the health

of the host. For instance, if a metric such as memory maxes out on it, it is likely to be

visible as a severe logging or outage in it. However, as host 5 still records jmx-beat, the

outage detection of 4.3.1 is applied on the host’s jmx-beat, and the discovered outages are

extracted as a binary feature where 1 represents outage and 0 a normal situation. The

supplementary features from host 5 are listed below. The number of all supplementary

features is finally reduced to five, which accomplishes the lesser required amount, as

compared to core features.

Features selected from Host 5:

 2x supplementary process log level features

 Binary outage-labels

4.4.2 Visual feature elimination

Now that the few features from supplementary nodes are selected, the next step is

deciding which features to analyze from the remaining feature set, which contains the

supplementary features and all logs and metrics from core hosts. A feature elimination

approach, i.e. filtering out features by condition, is chosen, rather than feature selection,

i.e. selecting in features by condition.

An important factor considering ML modelling of any dataset is the static distribution of

feature values. An example of this is that one must always have the same number of

categories for a categorical feature. Relatedly, an image recognition model is

preconfigured to analyze the same number of pixels on each training image, and to train

with images of altering sizes, these must be resized to fit the model’s input dimensions.

This can be seen in regular dataset, for example if one-hot-encoding categorical features.

The model is preconfigured for one input variable per each encoded feature in training

data. If the number of categories increased in testing data, the model will not have

positions for the new OHE-categories, caused by the expansion of feature space.

31

This issue affects especially time series modelling, where categories can expand or reduce

over time due to updates in the system. In case of expansion, models cannot longer

operate without either completely retraining them or neglecting the new categories. One

of the occasions that cause such issues are service updates and fixes. These are especially

in hand in this study, where structural changes occur regularly during the 8 months

analysis period. To address this, a visual feature space analysis is proposed for detecting

problematic features and discarding them from the data.

For categorical features, the data is plotted representing time in the x-axis and the number

of unique feature categories in the y-axis. Each new category seen along the data is

represented with a unique integer y-value. Hence, the visualization reveals the

distribution of feature categories during the analysis period in x-axis. The method

functions also on numerical features, for which, instead of plotting the unique categories,

the actual feature values are plotted. This reveals changes in value distributions, similarly

than with category distributions. Like categories, the distribution of missing values could

also change during the time series. Therefore, the distributions are plotted as blue dots

and the changes in outages as vertical grey lines for each lag. Below are represented some

of the most significant discoveries made by running the method on dataset 1.

Categorical features

Figure 6 Feature a)

32

Feature a) is an example of having a problematic dynamic feature space. The mere

number of categories is an issue, as for instance, applying OHE would increase the

dimensionality already by 400. Another issue is the increasement of unique categories.

The feature is unusable, as one cannot define the point where the increasement stops. In

other words, the feature seems continuous rather than discrete. The slight slow-down after

the first third of the period suggests that the most common categories have appeared in

the data by that time, but the increasement still continues. The actual feature behind the

figure refers to the connection points of operational messages. It is dynamic by nature, as

the number of the points increases as more integrations are deployed to the operation.

Figure 7 Feature b)

Another issue is seen with feature b). It witnesses an update on the API-manager during

the last quarter of the analysis period. The feature is not just highly dimensional, but also

unevenly distributed during the period, which is expected to be problematic. If the model

were trained with first three quartile of the period, it would not learn to associate the

feature values to target, since the training portion would only contain value 0. If the model

were trained on the whole dataset, the first 3 quartiles would likely mislead the model

parameters to always expect 0 before the other values would take effect. This makes the

feature likely unusable at least for dataset 1.

33

Figure 8 Feature c)

A similar issue than with b) is seen with feature c), this being one of the few numerical

features in filebeat. Here, a change of distribution concerns missingness, as all values

after half the period are missing. This is expected to cause similar issues than with

changes of value distributions with feature b). Feature c) is an example of a feature, the

collection of which was stopped during the analysis period.

Figure 9 Feature d)

Example of a more stable feature is shown by feature d). It is statically distributed over

time, making it safe to use in the analysis. A potential problem, however, is that there it

misses loggings with for example fatal severity. This could mean that one is yet to occur

rather than the log is not generating them. To avoid conflicts later, the feature could be

expanded in beforehand with a category for fatal errors, if deployed as part of real time

34

warning model. Although, the model would need training to learn how to associate the

fatal errors with against the rest of the data.

Numerical features

The method is also applied on the remaining numerical features from metricbeat and jmx-

beat of the cores. It is discovered that the same issues also affect them, although with a

different manner.

Figure 10 Feature e)

Feature e) represents the metric of outgoing network bytes, which has clearly two states

of behavior: active and idle. The models are likely to have trouble learning the dynamics

of both states, which makes such features expectedly unusable. This feature also shows

an adverse effect of outage detection and labeling. It clearly contains outages; however,

these are being treated as normal missing values, due to reasons described in 4.3.1. As

outcome, e)’s outages are imputed as long-lasting static horizontal lines of the last or next

active value. This is problematic as the long-lasting value is different on each outage.

Hence, the models cannot associate the individual outages as an entity of same behavior,

making this type of features expectedly unusable. These features would be better

represented by a binary feature of active or inactive states.

35

Figure 11 Feature f)

The final noteworthy discovery are features like f). It has seemingly the same value during

the whole period, if disregarding the sudden changes during labeled outages plotted as 0.

It is acknowledged that the variance of f) could seem more significant if the visualization

would not scale down to 0 during outages. This shows another flaw in the outage labeling

process, when labeling numerical outages as zero. This type of features could be

transformed to better scale, however, in this study they are discarded, since the number

of features is already relatedly large. The results of the feature elimination are

summarized below:

Feature elimination results:

 Both log and metric features are filtered. Each feature that has issues like a), b), c), e)

or f) are discarded from analysis. The process results in 36 log and 29 metric features

(total 65) for dataset 1. For dataset 2, the numbers are 35 for both logs and metrics

(total 70).

 A decision is made to shorten the time series of dataset 2, by matching it with the

update of API-manager (see fig. 7). There are multiple features of the service that

would have needed to be discarded in both datasets because of the update, that are

now only discarded from dataset 1.

36

4.4.3 Target variable

To apply the final step of feature selection, the target variable must be selected or

extracted before. This variable should focus on the 10 main log level features produced

by the integration engine in cores 1 and 2. The proposed solution is an overall error score

variable calculated from each of the logs. This would reflect the state of the whole

operation, as errors in a single log would increase the score marginally, whereas errors in

all logs would increase it drastically.

As seen in 4.3.3, the individual logs have different minimum and maximum values of

severity, some having the latter as fatal and others as error. Therefore, each log level is

first given a numerical value representing the severity, and after that, these numbers are

standardized by z-score, where each log’s maximum severities are scored highest, and

minimum lowest, based on the distribution of severity. It is acknowledged that for some

logs, the higher severities could be yet to occur, but this issue is not focused on this study.

To prevent corrupting the log level scoring, the outages are disregarded from the output

variable, rather than given each log level a score like 0 during them. This is done by

imputing missing values with the last occurred severity for each log, like the imputation

in 4.3.2. The whole process of error score is presented as algorithm below:

1. iterate log level feature by values (repeat for each log level):

 if value is 'null':

 replace value with last preceding or next following value

 else if value is not 'null':

 replace:

 'WARN' by 1

 'ERROR' by 2

 'FATAL' by 3

 others by 0

2. z-score standardize values along each feature

3. concatenate the features into table (1 column/feature).

4. initialize final error score variable as list

5. iterate the concatenated table by rows:

 count sum of of all values in the row

 append the sum to error score list

37

Figure 12 Initial error score visualization. Dataset 1 (left), dataset 2 (right).

The generated error scores are plotted in fig. 12. With dataset 2, the frequency of more

severe loggings is very sparse for some logs, which makes their scores very high after

standardization. With dataset 1, the variable seems to vary in more stable manner. To

avoid the high variance, it is decided to transform all scores higher than 20 to 20 and

scores lower than -20 to -20. This smoothens the plot, which makes the predicting better,

especially if the forecasting method is easily biased by outliers in data. Although reducing

the error scores of the few very high instances, the transformation keeps the score

relatively high to trigger a warning, which is essentially the only requirement for the error

score. The transformed error scores are plotted in fig. 13. A potential threshold for

triggering warnings is visualized as a red line.

Figure 13 Transformed error score visualization. Dataset 1 (left), dataset 2 (right). The black

column indicates the starting point of dataset 2 within dataset 1’s span.

38

4.4.4 Feature subsets

After the feature elimination, some FS-procedures are still required before forecast. A

reason for this is that some forecasting methods are computationally complex to apply on

highly dimensional data. To experiment as many types of forecasting methods, multiple

subsets are created, so that a suitable number of features are available for each candidate

method. The methods that cope with higher dimensionality could also be applied on the

smaller subsets to see whether more features improve or worsen the forecast. The

following 3 subsets are decided to be provided.

Subset 1 – All features, binary encoded

As the first subset, it is decided to use all variables left, after the elimination process in

4.4.2. Some of the categorical features have a high number of categories, so applying

OHE would increase the dimensionality heavily. This increase is lightened by using

[25]’s binary encoding instead. The resulting numbers of features are 142 for dataset 1

and 169 for dataset 2. As a comparison, the corresponding numbers with OHE would

have been 234 and 341.

Subset 2 – Expert defined (manual) features, one-hot-encoded

The second subset of features is selected manually based on expert-knowledge of

company A. These are expectedly the most impactful features in the dataset. Significant

metrics such as CPU, memory, and network usages are selected, along with most

important log sources such as each log level feature, and additional features especially

produced by the integration engine. For dataset 2, also features from the API manager

are selected, that were discarded from dataset 1. All supplementary features are also

discarded from this subset since they are expected not to affect the health of the cores.

OHE is applied on categorical features, which results in a total of 122 features for dataset

1 and 146 for dataset 2.

Subset 3 – Filter-reduced features, one-hot-encoded

As the third subset, a reviewed FS algorithm is experimented. Since embedded methods

restrict the models too much, and wrapper methods would be too heavy to validate, a

39

simple filter method is experimented, based on feature correlation coefficient (see 3.2.2).

Since lacking a stable implementation of [21]’s FCBF, Pearson’s correlation coefficient

is used for selecting k most positively or negatively correlated features to the target

variable. Since the target is continuous rather than categorical, one cannot use the chi-

squared selector for categorical variables. Instead, a custom correlation check is proposed

for these, applying OHE and measuring correlation between the encoded features and the

target variable. Instead of selecting k most correlated OHE-binary-features, each original

feature is encoded individually, each encoded features’ correlations are calculated, and

the average of these correlations are saved as the original feature’s correlation score.

These scores are then compared, and k best scoring features are filtered in. Finally, the

selected categorical features are applied OHE, and joined with the most correlated

numerical features, selected with the regular correlation measurement.

A property of subset 3 is that it is aimed to be smallest, with preferably around 50 features

total after encoding. Since both other subsets contain over 100 features each, it is likely

that subset 3 is the only compatible one for computationally complex models other than

neural networks, for reasons described in chapter 6. The portion of categorical features

are selected arbitrarily as 10, and the corresponding number for numerical features as 8.

The number is bigger for categorical features such as log levels, since they are expected

to be more important. After encoding, their amount increases to 38, for both datasets 1

and 2. From both categories, this makes a total of 46 features for the whole subset.

As a side note, there is a potential disadvantage in measuring correlation between features

and target of the same lag. Since the data is prepared for a forecast, the selection could be

more efficient, if the correlation were calculated between input features of current time

and target variable of the predicted time or future. However, this hypothesis is not

concerned in this study, and left for future experiments.

This marks the end of part I, now that all preprocessing aspects have been considered,

and experimental preprocessing subsets have been constructed.

40

Part II

Time series analysis

41

5 Background

5.1 Definition & categorization

Time series are two-dimensional datasets, where every instance i.e. point, observation has

a timestamp along with a feature i.e. field, attribute that is measured against time. Time

series are commonly used for visualizing the evolution of some feature of interest, such

as the temperature and stock prices. Time series data can be univariate monitoring a single

feature, or multivariate monitoring multiple evolving features against time. The main

distinctive feature of time series compared to other data types is the temporal correlation

i.e. autocorrelation, which means that subsequent values in the dataset are correlated.

This also means that changing the order of instances in a series completely loses this

correlation, making the series a regular collection of single-variable data. There are

certain noteworthy attributes specific to time series type of data. Below are listed the main

attributes, as described by [32]:

 Stationarity indicates that the probability laws within the data do not change in time.

Examples of stationary time series are computer metrics like CPU or disk usage, that

are always measured between 0 and 100 % despite temporal variance.

 The opposite of stationarity is trend i.e. non-stationarity, which defines how the

probability laws change over time (fig. 14, blue). [32] divide trends into two types;

deterministic which is expected to be constant, and stochastic which is expected to

change over time.

 Cyclicity or seasonality refers to changes in time series that repeat regularly (fig. 14,

green). An example is ice cream sales, that increase on summer and decrease on

winter, unrelatedly on the development of annual sales amount.

 Like with any other data type, individual instances that relatedly differ a lot from

average, are referred as noise (fig. 14, red).

42

Figure 14 Basic visualization of time series is achieved by plotting the instances in chronological

order in a two-dimensional graph such as line chart or scatter plot. Generally, x-axis represents

time and y-axis value.

Time series analysis covers any sort of visual or statistic perception of time series.

Conceptually, it can be divided into understanding, control and forecast. Understanding

refers to recognizing a series’ definitive attributes listed above. Control means

observations that can be made of a series, after understanding its attributes. An example

of this is analyzing whether a change occurring in a series indicates normal or erroneous

behavior. Lastly, forecast means analyzing past instances to predict future ones. Most

publications of time series analysis focus on forecast, but there are also fields more related

to time series control, such as anomaly detection. This study, however, focuses on

forecasting techniques.

Time series forecast can be categorized into univariate or multivariate by its analysis and

forecasting types. Univariate analysis is limited to analyzing and predicting a single

series, whereas multivariate analysis enables calculating multiple series and inter-series

relations, that is, whether a change in one series affects another. Univariate forecast, on

the other hand refers to predicting the future of a single series, whereas multivariate

forecasting predicts futures of multiple series at once. Multivariate forecast can be

accomplished with any multivariate analysis method by repeating the forecast for each

43

variable of interest. However, it can be inefficient if targeting many series or complex

methods, which must be considered when selecting best models for a task.

5.2 Traditional methods & terms

As described, most publications of traditional time series analysis concern predicting

future values i.e. forecast. The practice of it has established into a three-phase process of

a) developing a predictive model, b) fitting the model on a dataset, and c) predicting next

instances. The term model comes from the fact that the methods aim to replicate i.e.

model the dynamics of the series as well as possible. Most traditional methods utilize a

set of common terms or components, based on the works of Box and Jenkins [3]. Some

of the key terms from the theory are summarized below:

Lags

Lags i.e. lagged values or lag distance denote how many prior instances of a time series

are calculated in a process. Lags are commonly represented with the t-n notation, where

t stands for time now and n for the number of timesteps before t. For example, if a time

series had the density or framerate of one instance per day, the day one week ago would

be notated as t-7. As common in forecasting, lag t is the first predicted instance, whereas

t-1,t-2,…,t-n are the lags analyzed for predicting t.

Autocorrelation

The basic property of any time series is autocorrelation (AC). It refers to a time series

instance’s correlation to each preceding instance in the series. An example of this is

today’s weather temperature, which is generally strongly correlated to yesterday’s

temperature and less correlated to the temperature of for example one month ago. This

difference can be formalized as AC(t-1) > AC(t-7). A common derivative of AC is

partial autocorrelation (PAC). PAC refers to each individual lag’s (t-1,t-2,…,t-n)

44

correlation to t. Instead of calculating the straight AC for example between t and t-2, the

AC of t-1 is subtracted, leaving over just the residual correlation between t and t-2 [32,3]:

PAC(t-n) = AC(t-n) - (AC(t-1) + AC(t-2) + ... + AC(t-(n-1))

Differencing

A key process of traditional time series analysis is differencing. Differencing removes

trend and seasonality, transforming a non-stationary time series to stationary. The basic

differencing, aka. lag 1 difference is performed by subtracting the value of the previous

instance from current instance:

diff(t) = value(t) - value(t-1)

In lag-2 difference, instead of the preceding, the second to preceding instance is

subtracted:

lag_2_diff(t) = value(t) - value(t-2)

A common approach for choosing the optimal lag distance is to match it with the length

of a cycle in a time series. This leaves the series without the cycle or seasonality; however,

it might not yet make the series stationary [32]. In such cases, the order of difference can

be increased. Order denotes how many times the series is differenced. The first difference

is the output of a differencing applied once, and the second difference is the output of a

differencing applied to the first difference. Multiple differencing is usually applied when

a trend is polynomial or exponential [32].

45

If a forecasting model functions with differences rather than original data, the predicted

values will also be in the differenced scale. These values are straight-forward to convert

back to original scale. This process is also known as inverting [33]. Below is an example

inversion from a first order lag-1 difference:

value(t) = diff(t) + value(t-1)

Where AC is a definitive property of time series, it is also problematic concerning

forecast. Since lag t is usually heaviest correlated to its first preceding lag t-1, forecasting

models easily overfit to this lag, meaning that a predicted t is always relatively close to t-

1, despite other lags would suggest the opposite. This can make the forecasting accuracy

overly optimistic, providing relatively good accuracy, despite the only thing that the

models do is replicating the last instance in the series [34]. What differencing does, it

evens the relation of t to more distant lags than t-1, making the models less overfit to this.

Figure 15 Illustration of a time series (top) and it differenced (bottom). Random walk refers to a

series where each instance is generated randomly, either 1 higher, 1 lower, or same as the

preceding instance. As term differencing implies, the y-axis in the bottom figure represents the

differences between sequential instances, making the scale only vary around between -1 and 1.

46

Autoregression & moving average

Two of the most essential forecasting models are autoregression (AR) and moving

average (MA) by [3] and [35]. In addition to being used for forecasting univariate time

series themselves, these two are key components of more complex statistical models.

In AR, a prediction is calculated based on the preceding values in the series. PAC-

function is used first to find the negative or positive correlation of prior values. This

reveals the impact of each lag against t. The lags are then associated with proper weights

based on how they affected negatively or positively. For example, if lag t-5 has generally

highly negative correlation to the value, it should be associated with a corresponding high

negative weight. [32,36] The AR(p) formula is represented below, where parameter p

denotes how many lags are weighted and used for calculating the predictions:

y(t) = µ + w1∙y(t-1) + w2∙y(t-2) + … + wp∙y(t-p) + e(t)

* y = lagged values; y(t) = prediction, µ = average of series, w1-p = weights for lagged values, e(t) = random

error term for prediction.

In contrast in MA, a prediction is calculated based on the errors in preceding lags, i.e.

how much each value differed from the average in the series. MA utilizes AC for

calculating correlation of the preceding errors. Since PAC usually cuts down quickly due

to low residuals after the first lag, it misses possible long-distance correlations, whereas

AC does not. Hence, bare MA is usually better than bare AR in such situations. Like AR,

MA applies weights to the lagged errors, emphasizing the effect of each lag. The MA(q)

formula is presented below, where parameter q denotes the number of lags similar to p in

AR:

y(t) = µ + e(t) + w1∙e(t-1) + w2∙e(t-2) + … + wq∙e(t-q)

* e = lagged errors; e(t) = randomized error term for each prediction.

47

ARMA-models

The most widely used statistical forecasting models are ARMA-models, which compound

both AR and MA components for prediction. The basic ARMA(p,q) is simply a

combination of the previous models:

 y(t) = µ + W1∙y(t-1) + w1∙e(t-1) + W2∙y(t-2) + w2∙e(t-2) + … + Wp∙y(t-p)
+ wq∙e(t-q) + e(t)

* W1-p = weights for AR lags, w1-q = weights for MA errors.

The basic ARMA is applicable for univariate forecasting of stationary time series.

However, an enhanced version of it is ARIMA (AR-integrated-MA), which adds an

additional step of differencing in the model, thus capable for non-stationary time series.

The formula is ARIMA(p,d,q), where d denotes the order of difference applied for the

original series before forecasting. [32]

As a parametric model, the performance of ARMA-models is often dependent on

selecting the correct parameter values for p, d, and q. A common method today is to

perform the parameter selection automatically. For example [37,38] use the term auto-

ARIMA for library code implementations that optimize the parameters for given data.

These methods use the Akaike and Bayesian information criterions for selecting best

candidate parameter set for given dataset.

Vector autoregression

Although there are many variations of ARMA and ARIMA, a downside of each of them

is lacking the capability of utilizing inter-series correlations. Vector autoregression

(VAR) is the most common ARMA-affiliate, applicable for multivariate statistical

forecast [39]. In fact, VAR is a straight derivative of basic AR; however, instead of having

a term for each lagged value, it has vectors representing the corresponding lags for each

individual series analyzed [39]. The formula of VAR(p) model for two correlated time

series is represented below. Like with AR, p denotes the number of lags concerned. As

48

shown, the equations of multiple AR models can be transformed into single VAR model

by converting them into matrix multiplication of weights and lagged values.

a(t) = µ(a) + w11∙a(t-1) + w12∙a(t-2) + … + w1p∙a(t-p) + ea(t)

b(t) = µ(b) + w21∙b(t-1) + w22∙b(t-2) + … + w2p∙b(t-p) + eb(t)

↕

[µ(a)] + [w11 w12 … w1p] ∙ [a(t-1) a(t-2) … a(t-p)]

f(t) = [µ(b)] + [w21 w22 … w2p] ∙ [b(t-1) b(t-2) … b(t-p)] + e(t)

* a,b = lagged values of two individual time series. The predictions a(t) & b(t) are transformed into single

vector f(t), as well as error terms ea(t) and eb(t) into single e(t). w11-1p = weights of series a, w21-2p =

weights of series b.

One of the biggest advantages of VAR is the straightforward forecasting of multiple

output variables. As described in 5.1, most methods can only predict one variable per

model, achieving multivariate forecast only by repeating the process for each predicted

variable. The base VAR is the most common traditional multivariate forecasting method.

However, it is also extendable into more sophisticated methods such as VARMA or

VARIMA, by applying MA components and differencing [39].

Concludingly, a property of most statistical forecasting methods is that they are mainly

concerned predicting single steps into future. This length of the prediction period is also

referred as forecast horizon [39,40]. However, a longer horizon is applicable in by

iterating, by first predicting a single step in future, and then utilizing this prediction in

next iteration as lag t-1. If a time series evolves gradually, one can predict a longer

horizon, but in case of unstable and highly varying time series, it is difficult to predict

more than one step in the future. Some scenarios enable the correction of falsely predicted

instances with the real outcomes before making next predictions. [41] refers to this as

multi-step forecast with re-estimation, as the method is re-estimated between predictions.

This approach is desirable for any forecast if possible.

49

5.3 Machine learning

Like traditional methods, most ML methods concern especially forecast. Plenty of papers

have been published of ML forecasting methods, which mostly represent supervised

learning, by regression of time series values, or classification of behavioral classes.

However, there are no well-established benchmark datasets like the MNIST [42] in

computer vision field, for comparing the experiments globally. This is likely because

different forecasts vary heavily by number of lags, horizon length and other related

variables, whereas a similar image recognition model can be applied to basically any

collection of images of desired resolution. Because of this, many proposed ML methods

are compared against traditional methods like ARIMA and VAR. This is also because the

statistical methods have been established as the standard of forecasting, and ML has been

concerned relatively lately.

5.3.1 Neural networks

The first major publications of ML for time series date back in the 90s, when artificial

neural networks (ANNs) were a public interest. The first experimented network is multi-

layer perceptron (MLP), which is the most basic feed-forward neural network structure.

The MLP’s components are input layer, hidden layers, and output layer. Input layer

consists of input nodes, which are basically the feature values of a given input sample or

instance. Between input and output layers there is an arbitrary number of hidden layers,

each containing an arbitrary number of hidden nodes. Each node has adjustable weights,

one per connection from previous layer, plus an additional bias weight. At the end of a

node is an activation function, used for squashing the output into a desired scale. An input

vector entering a node is modified by the corresponding weights and activation, before

feeding forward to the next layer. In the end of the model is the output layer, which is

either a single node representing the predicted value in regression or multiple nodes

representing one output class per each in classification. In classification approach, the

class prediction is denoted by which output node has the highest output value i.e.

activation. The MLP is trained by the combination of forward propagation and

backpropagation (BP). Forward propagation refers to feeding an input through the

50

network producing and output, whereas BP adjusts the weights of the layers, based on

how correct this output is. This adjustment is propagated backwards in layers by chain

rule, until finally modifying the first hidden layer’s weights. The optimization process of

a weight is called gradient descent, as the error denoted by the loss function descends

towards minima.

Among the first published papers is [43]’s study comparing ARMA and MLP for

forecasting monthly flour prices in three US states. They proposed a network for which

the input variables are directly the lagged values of the series. For example, a lag distance

of 6, would make this network’s input consist of 6 nodes. They used a single hidden layer,

matching the number of hidden nodes with the number of input nodes. The output is a

single regression output, evaluated by mean squared error (MSE) for backpropagation.

They propose a couple of network architectures, including univariate models for

predicting each state’s price separately and a multivariate network. The latter would use

lags from every three states as input, and the output would still yield a prediction of just

a single state’s price. Both ANN-approaches reportedly outperformed ARMA in

prediction performance, but the best result was achieved by the multivariate network.

This especially indicates that ARMA-models are inadequate whenever multivariate

correlations are exploitable.

Another type of ANN is presented by [44] and [45], applying the method for stock market

time series forecast, formulated as classification. The ANN model is proposed by [44],

whereas [45] presents comprehensive comparison of the model and other ML approaches

for the task. The network takes as input the latest average stock price t-1 alongside 4

statistical derivations, such as daily rise and fall rate, moving variance of this rate, and

the ratio of moving variance. They also use a single hidden layer consisting of 7 nodes.

The output layer consists of three market-behavioral classes, that are stable, unstable and

crisis. The network reportedly set a benchmark for modelling the Korean stock market

index from around a 1997’s crisis period. Furthermore, in [45]’s comparison, the network

was one of the best performing against methods like logistic discrimination, and SVM.

However, since the network only utilizes the latest lag’s features, it cannot explicitly

model temporal correlation of multiple past values. In contrast, the network seems to learn

the pattern of behaviors, i.e. which features denote stable and which features crisis period,

51

but not the temporal evolution in the series. This assumption could be verified by testing

if the performance persists even after changing the order of the instances in the dataset.

As a conclusion, it seems that basic ANNs may still be considerable methods of choice

for time series forecast, even without exploiting temporal correlation.

5.3.2 Support vector machines

Another frequently experimented ML-method is SVM [46]. Originally a binary

classification method; SVM forms a multidimensional border that divides input data into

two classes. The border is set to maximize the margin that separates the two classes,

where margin means a constant length from the border to closest instance in each side

(see fig. 16 - left). This behavior is trained by penalizing on instances that fall within the

margin. If the two classes are separable, one could fit a border that has a margin which

only touches one point of each class. However, in most cases the two classes are

inseparable. Therefore, one must allow instances to persist between the margins. The term

support vectors refer to the instances falling within the final margin. The number of

vectors is controlled by C, which is the penalty term. The higher C, the more penalty is

given for multiple support vectors. However, a high C is more likely to overfit to training

data and lose on generalization performance. In addition to C, another parameter of SVM

is the kernel function, that defines how to project original data to the higher dimension.

Figure 16 SVM classification (left) & regression (right). Red lines indicate the borders and

black lines the margins.

52

The SVM-variant related to time series forecast is support vector regression (SVR). It

differs from regular SVM, as the goal is not to separate classes but to fit support vectors

to model the training data. Conceptually, where SVM maximizes the margin between two

classes, SVR applies minimization of margin, so that it still contains most training

instances (see fig. 16 right). Where in regular SVM the border defines the distribution

between two classes, in SVR the border is a function of predicted output values, given

some input variables. SVR has an additional Ɛ-hyperparameter which controls a threshold

of how much to fit the border on the training data. This threshold is sometimes also

referred as tube size [40]. The correlation between Ɛ and the threshold is negative, as with

higher Ɛ, less training data falls within the margin of the border or the output function. In

contrast, higher Ɛ usually provides better generalization and less overfit on training data

for the model.

SVM-forecast has been studied by many others in addition to [45] mentioned above. For

instance, [40] experimented SVR for forecasting univariate financial data, similar to

[44,45]’s dataset. As input, they used lags t-5, t-10, t-15, and t-20, along with a 100-day

average feature. A comparison was made between MLP, regular SVR with predefined

hyperparameters and SVR with adaptive parameters. Accordingly, the adaption of

regularization term C and Ɛ is especially impactful for SVR’s performance in forecasting.

Expectedly, the best model was achieved by the adaptive SVR, followed by the regular

SVR that still reportedly outperformed MLP. This shows that SVM is an eligible model

for time series forecast, at least with univariate datasets, and hence, less parameters

requiring optimization. A similar experiment is presented by [47], forecasting univariate

supply-chain demand time series with MLP, SVR and RNN. The performances are also

compared against traditional methods, including AR and MA models. 5 lags are used as

input variables, forecasting a predicted change in the demand for the next lag. The best

models in this experiment are SVR and RNN; however, [47] consider their advantage to

traditional methods insignificant, demonstrating traditional methods’ continuing

eligibility in univariate time series forecast.

SVM has also been studied for multivariate forecasts. [48] present a survey of SVM-

strategies for functional magnetic resonance imaging data analysis. The general task with

the dataset is to classify image samples as perceptual states; however, these datasets also

53

form time series allowing forecast as well. [48]’s dataset differs a lot from the previously

mentioned, since it is not only multivariate but also highly dimensional. Generally, SVM

suffers from computational complexity and high-dimensionality issues (see 3.2.2).

However, [48] report SVM as viable solution for classification, if attention is given to the

feature selection process. Moreover, for regression forecast, they propose an SVR-

variation originally by [49], known as the relevance vector machine (RVM). It is

Bayesian learning based, sparser and more compact model, reportedly achieving still a

similar performance to SVR. Another of its benefits is that it does not require validation

of hyperparameters C and Ɛ, as opposed to regular SVR.

5.3.3 Recurrent neural networks

The category of neural networks especially designed for modelling sequences are RNNs.

They are trained with so-called backpropagation through time (BPTT) which means

adjusting the network weights based on not just current, but also on preceding instances

in a time series. This is implemented in network node level, by keeping a previous

iteration’s node output values in memory and combining them with current node inputs

to calculate predictions. A practical difference between regular ANNs and RNNs can be

observed when preparing their datasets. Where regular network datasets are essentially

two-dimensional tables, consisting of instances x features, RNN-datasets are transformed

into three dimensional tables aka. tensors that consist of instances x timeframes x features.

The timeframes-dimension defines the lag distance of the analysis. For example, if the

number of timeframes is 6, a single lag’s features will populate 6 instances’ timeframes,

once as t-1, t-2, etc., and finally t-6 for the last instance that covers this lag. Furthermore,

where ANN-nodes are given input as single lag of features, RNN-nodes are given all lags

in the sequence per each forward propagation. The hidden state is updated during the

iteration of a single feature set sequence, but the last state can also be kept for the next

feature set’s first iteration. [50]

RNNs itself have originate in works of [51], but for example [43] considered training

them too computationally complex during their experiments in 1990. Therefore, the

RNNs are often considered deep learning i.e. deep neural networks. One of the first

studies of RNN forecast is [47]’s paper in 2006, which is also discussed for their SVM

54

approach. Like with SVM, they are unable to gain significant advantage to traditional

methods with their RNN. In addition to computational complexity, a key issue with basic

RNNs is vanishing and exploding gradients [50]. In practice, vanishing gradients means

the inability to learn long-term dependencies, i.e. dependencies on distant lags, and

exploding gradients that some node weights get adjusted overly high, making the whole

nodes futile. More recently, technical improvements in parallel computation have

facilitated the computational complexity problems of ANNs in general. Furthermore,

improved network technologies have been developed for overcoming the gradient issues.

Network architectures such as LSTM and GRU have shown more significance especially

in the language processing field [52]. The pivotal difference against basic RNNs is the

capability of learning long-term dependencies.

The main difference between LSTM and basic ANN and RNN is that in the place of

hidden nodes there are so-called memory cells. They are much more complex than regular

network nodes, containing for example multiple activation functions per cell, as

compared to single function per regular node. In addition to keeping the outputs of

previous iteration like regular RNNs, the cells maintain a hidden state or cell state,

making predictions based on previous output, current input, and the cell state after

previous iteration. An iteration of a cell can be divided into 3 following steps, starting

from an input value vector fed to it:

1. Forget – Determine whether and how much to forget the cell state based on previous

output and current input.

2. Update – Determine whether and how much to update the cell state (after forgetting),

based on previous output and current input.

3. Predict – Combine the updated cell state with the previous output and current input

to make a prediction.

Like with regular network nodes, the input of a cell is generally a vector of features of an

instance. The state variable is essentially a vector of the same size. Hence, the operations

between current inputs, previous outputs, cell states and cell functions are essentially

vector operations like adding and multiplication. An LSTM cell has four main functions,

55

also referred as gates [4]. Each gate is associated with adjustable weights, and hence can

be considered as individual neural networks. The forget-step operates with forget-gate,

which is a sigmoid activation function. The update-step operates with update (sigmoid)

and input (nonlinear transformation function e.g. hyperbolic tangent i.e. tanh) gates.

Finally, the predict-step uses output-gate (sigmoid) and a similar nonlinear transformation

of the final cell state, for making the prediction. Below is represented a more detailed

illustration of the process (fig. 17):

 h(t) & h(t-1): cell state after current and previous iteration

 y(t) & y(t-1): prediction of current and previous iteration

 x(t): current cell input

Figure 17 LSTM-cell. After producing output, the h(t) and y(t)are passed as h(t-1) and y(t-1)

for the next iteration.

A single memory cell is often illustrated as a chain of cells, each representing single lag

of an instance. With RNNs, this type of representation is also known as unfolding. It

describes the recurrence that occurs when feeding input to a cell, as one instance always

contains the desired number of lags, and the cell iteration is run once per each lag. In

addition to having multiple recurrent cell iterations per instance, RNNs like LSTM can

56

consist of multiple individual cells, such as a regular network layer consists of multiple

nodes. Similarly, the individual cells are independent, each cell learning a different model

of the data. Furthermore, RNNs like LSTM can be increased in depth, consisting of

multiple layers of nodes or cells [50]. This is also referred as stacking [53].

Another of the common modern RNN-techniques is GRU or GRU-network. It differs

from LSTM by its memory cell structure, known as the GR-unit. Instead of maintaining

a separate cell state like LSTM, GRU only operates with previous output and current

input. A more lightweight component than LSTM-cell; the GR-unit contains only two

gates, though still achieving long-term relation learning. The GRU-iteration can be

divided into following steps:

1. Update – Determine whether and how much to pass the previous output, based on

current input.

2. Reset – Determine whether and how much to forget the previous output, based on

current input.

3. Predict – Combine the gate outputs for a prediction.

The reset and update gates are essentially like LSTM’s forget and update. However, the

prediction step of GRU does not contain gates, but is a slightly more complex set of vector

operations. The output vector of update gate is first transformed by 1– operation, which

is essentially each vector value subtracted from 1. This vector is then multiplied by

previous output vector, the result being the first piece of information of output. The other

piece in the combination starts also from the update-gate’s output vector but is instead

combined to nonlinear transformation of the reset-gate’s output vector. The two pieces

are combined as vector sum, which is the final output of an iteration. [50,54]

57

Figure 18 GRU-unit

For experiments, [29] compares both LSTM and GRU networks against ARIMA,

forecasting univariate traffic flow data. They use 6 lags of 5 minutes periods, i.e. lag

distance of 30 minutes to predict a regression output for 50 individual sensor values. Both

of their RNN networks contain a single memory cell or unit, making the networks

compact. Their LSTM predicts approximately 10% better than ARIMA, and their GRU-

network even marginally better than the LSTM. More significant results are achieved by

[41] in 2018. They compare LSTM and ARIMA for forecasting univariate financial and

economic time series. The models are ARIMA(5,1,0) and a single-cell LSTM with 4 lags

per instance. The LSTM achieves an 85 % reduction of error against ARIMA on average,

making a great improvement as compared to [29].

Despite ML’s capability of handling highly dimensional data such as multivariate time

series, most publications concern univariate analysis. As an example of multivariate, [55]

compares LSTM and VAR for forecasting multivariate aviation and climate sensor

datasets. The forecast is formulated as regression of multiple features. The lag distance

of VAR is chosen as the longest distance until error rate increases, and of LSTM, by a

grid search of distance that minimizes error. Surprisingly, their VAR-model outperforms

LSTM in the first dataset. This shows that traditional techniques are effective even in

58

multivariate modelling tasks. Another observation of the experiment is that stacking

LSTM-layers does not increase prediction accuracy.

[55] suppose the result is due to statistical methods superiority in utilizing linear relations.

On the other hand, statistical methods cannot handle nonlinearities, whereas RNNs do.

To address these limitations, they also experiment with a hybrid residual network model,

combining the VAR-model to the LSTM. The hybrid starts with a VAR-component that

outputs initial predictions that are then passed as input to the LSTM-component. Single-

lag VAR(1)-model is chosen as the VAR-part. The LSTM-part is fed the VAR-output

and corresponding ground truth -vectors and is trained to fix the patterns of error that

VAR leaves as residual. This model shows promising results, outperforming both single

VAR and LSTM models in the same experiment setup. Moreover, the residual RNN

reportedly requires less memory cells per layer than basic LSTM, which makes it also

faster to train.

59

6 Case study – Regression forecast by supervised

ML

6.1 Learning task & evaluation

In part I, a client dataset of company A was prepared for forecast, by selecting and

extracting three feature subsets and a target variable to predict. In this chapter, the

prepared dataset and the reviewed forecasting techniques are experimented and evaluated.

As described in chapter 2, the experiments are performed via cross-validation of

forecasting methods, forecasting parameters i.e. lags and horizon, and the preprocessed

subsets. This validation is performed twice, once per each dataset 1 and 2. There are

various other model parameters to optimize, such as the number of layers in neural

networks, number of neurons in a hidden layers, loss function, and regularization terms.

However, it is addressed that optimizing every parameter would require excessive testing

and therefore, is not focused on this study. Instead, the models are initialized with “the

most standard” parameters, and further hyperparameter-optimization is left for future

research. Another decision is made to not experiment with statistical forecasting

techniques i.e. VAR at all. This is because of the issues shown in 3.2, as especially

categorical variables and missing values would require complete omission.

The task set in chapter 2 is to predict the target variable from 15 to 30 minutes ahead.

Since the point of interest is whether a warning should be triggered rather than forecasting

the whole sequence, the learning task is formulated as a single-output regression of the

target variable, for both 15 minutes and 30 minutes. For dataset 1, the corresponding lags

for the minutes are t+2 and t+5, and for dataset 2, t+14 and t+29. Three ML methods are

chosen as model candidates of the forecast: RNNs, basic ANN, and SVM. Although

preprocessed, the data subsets are still rather complex; from 46 to 169 features per

timestamp, with 60780 timestamps for dataset 1 and 50500 for dataset 2 (after the

reduction in 4.4.2). The hardware for processing has 3,50 GHz of CPU, 12 GB of

memory, and 8 GB of GPU memory. It is acknowledged that neural networks are perhaps

the only processable method, especially since they can be trained utilizing GPU-

60

processing provided by Tensorflow [56]. Therefore, mainly RNNs are focused, since they

are expected to perform best. Both LSTM and GRU networks are experimented and

compared to other methods.

The regression performance of the candidate models is evaluated by comparing their

MSE-losses. The last 20% of both dataset periods are dedicated as the testing portions,

and the evaluation is based on prediction accuracy on these. After discovering the best

models for all categories, they are evaluated as a warning system. This is done by first

configuring a threshold for triggering warnings, and then evaluating the correctness of

warnings triggered by the models (see 6.3).

6.2 Model training & results

6.2.1 RNNs

Since capable of handling high-dimensional data, the RNNs are experimented with each

of the prepared subsets 1, 2, and 3. A definitive advantage of them is that they can handle

input as sequences, rather than single instances. As a comparison, a regular NN would

require an input neuron for each feature of each lag. This would increase the

dimensionality drastically if multiple lags were analyzed, especially if each lag contained

multiple features. The RNNs are the only methods capable of sequence learning without

excessive increase of dimensionality.

The sequences are prepared followingly. As described in chapter 2, one hour is considered

enough lagged history for making predictions. For dataset 1, this results in lags from t-1

to t-12 for each t, making the data shaped 60780 x 12 x subset size. However, to have lags

t-12 and t+5 for all instances, the number of instances is cut to 60763 from the end, and

the target variable is cut similarly from the beginning. Dataset 2, on the other hand, is

more problematic. The full one-hour period would take 60 timestamps per instance, which

makes the model heavy to train. This number is reduced by analyzing only 30 minutes or

timestamps per instance, making dataset 2 shaped 50441 x 30 x subset size.

61

The same network structure is used for both LSTM and GRU, allowing a direct

comparison of their performances. For simplicity, a single recurrent layer only is added.

The number of memory cells is defined as the 2/3 of features in the subset, rounded to the

next 10. This is because an excessive number of neurons are likely to cause overfit on

training data. Sigmoid and tanh are used as the memory cell activations, like in figs. 17

and 18. The weight-update method, i.e. optimizer is chosen as Adam [57], since being a

common first choice in today’s practice. The networks are trained with the first 80% of

the analysis periods. However, another 20% of the periods’ length is removed from the

training portions’ ends (see fig. 19). These are used as validation set, for simulating

prediction loss after each epoch of training. The optimal epochs count is then chosen as

the point where validation loss stops decreasing, which should prevent overfit on training

data. After validating the epochs, the 20% validation portions are merged into training

portions, so the final models are trained with first 80% and evaluated with last 20% of the

datasets.

Figure 19 Training, validation, and test split of neural networks

Furthermore, before validating the epochs, a grid-search is performed on each dataset x

subset x horizon x RNN combination, to optimize the learning rate for each. This is

because the feature and lag dimensions vary per each combination. The learning rate is

adjusted so that for every combination, a decreasing curve can be seen from both training

and testing accuracy, before selecting the epoch count (see fig. 20) Lastly, the training is

done in batches of 60 instances, which reflects 5 hours in dataset 1 and one hour in dataset

2.

62

Figure 20 Example of training and validation losses (subset 1, LSTM). The optimal epoch count

would be between 1 and 3 here.

Results

Already on optimization of learning rates and epoch counts, it is noticed that the

validation loss decreases only little before starting to increase again. This suggests that

there is not that much to learn, or no drastic increasement can be made as compared to a

random guess. To find the optimal epoch counts, the learning rates are decreased by a

large margin for some combinations. Another observation is that the learned patterns vary

heavily for each combination, when repeating the training processes. The models might

predict similar curves than the target variable on one iteration, but on second, they could

predict very differently (see fig. 21). The final MSE-scores listed below are, therefore,

calculated as an average of 3 iterations with the same parameters, but different random

initializations:

63

Dataset 1

Feature subset Rec.

units
Unit

type

L-rate

15min

Epochs

15min

L-rate

30min

Epochs

30min
MSE

15min

MSE

30min

1, all 110 LSTM 0.000001 3 0.00001 3 0.0490 0.0341

 GRU 0.00001 6 0.0001 4 0.0238 0.0174

2, expert defined 90 LSTM 0.00001 4 0.00001 4 0.0211 0.0214

 GRU 0.000001 4 0.00001 3 0.0448 0.0224

3, filter-reduced 30 LSTM 0.00001 2 0.00001 2 0.0310 0.0310

 GRU 0.00001 4 0.0001 4 0.0486 0.0176

Feature subset Avg. MSE Unit type Avg. MSE Horizon Avg. MSE

1, all 0.0311 LSTM 0.0313 15min 0.0364

2, expert defined 0.0274 GRU 0.0219 30min 0.0240

3, filter-reduced 0.0321

Dataset 2

Feature subset Rec.

units
Unit

type

L-rate

15min

Epochs

15min

L-rate

30min

Epochs

30min
MSE

15min

MSE

30min

1, all 110 LSTM 0.00001 3 0.00001 2 0.0140 0.0153

 GRU 0.000001 5 0.00001 4 0.0374 0.0252

2, expert defined 90 LSTM 0.000001 1 0.000001 1 0.0612 0.0611

 GRU 0.000001 4 0.000001 3 0.0384 0.0407

3, filter-reduced 30 LSTM 0.0001 3 0.0001 2 0.0149 0.0149

 GRU 0.0001 2 0.0001 4 0.0557 0.0460

Feature subset Avg. MSE Unit type Avg. MSE Horizon Avg. MSE

1, all 0.0230 LSTM 0.0302 15min 0.0369

2, expert defined 0.0504 GRU 0.0406 30min 0.0339

3, filter-reduced 0.0329

* L-rate refers to learning rate, 15min parameters were used when training models for predicting 15

minutes ahead and 30min when for 30 minutes ahead.

What stands out on the results is the variance. On dataset 1, especially subset 2 and GRU-

network achieved the lowest losses on the testing portion. However, on dataset 2, their

corresponding losses were highest. What is interesting, the 30 minutes ahead predictions

were more accurate on average, against the 15 minutes predictions. These observations

support the prior assumption that there is not much to learn in the data, and the few better

64

results are due to occasion. An example of the variance is shown in fig 21, representing

GRU-network predictions of subset 3 on dataset 1.

Figure 21 Example of variance in target predictions between 3 iterations.

Another observation is that the MSE of predicted target variable might not reveal the best

model. In fig. 21, the lowest loss was scored by the model of iteration 3. However, almost

all its predicted values are very low in contrast to actual values. Depending on the

threshold for triggering a warning, this model would likely miss all occasions that would

need to be warned. In other terms, the model produces purely false negatives, making it

useless.

To experiment the issue further, a similar visualization is provided on the best performing

combination, which is the LSTM model of subset 1 on dataset 2, illustrated in fig. 22.

The testing portion of dataset 2 has one critically high error score at approximately 1/3

of the span, followed by multiple relatively high scores during the middle. The represent

65

model would fail to all of them. To address the issue, it is decided to select the final model

based on both loss and visual analysis. The optimal model should have relatively small

MSE, but still follow the error score curve, at least during the critical parts that would

require warning. This model selection is performed in 6.3, after experimenting with all

candidate forecasting methods.

Figure 22 Forecast of best MSE-performing model iteration.

6.2.2 Basic ANN

The second experimented method is the basic ANN, without recurrent layers. It is trained

with single lag per instance, which ignores the temporal correlation, focusing only on

feature relations. Since the RNNs are capable of learning both, this experiment should

reveal whether the prior RNNs were able to utilize the change in time. If the results with

ANN are relatively similar, it can be assumed that they could not.

Since not learning sequences, the basic NN is trained faster. Therefore, an additional

hidden layer is added, as depth could provide efficiency in learning complex functions

66

like the one here. The first hidden layer is kept the same size as in RNNs i.e. 2/3 of

features. The second layer is defined as 1/3 of this size. The hidden layers are activated

with rectified linear units (ReLU) [58], which is a common standard choice of today, like

the Adam optimizer. The network structure and training processes are kept otherwise

same, also utilizing the validation portion for optimizing the learning rate and epochs

count. The training is also repeated trice, calculating the average of iterations as the final

loss score of the model.

Results

Dataset 1

Feature subset H1-

nodes

H2-

nodes

L-rate

15min

Epochs

15min

L-rate

30min

Epochs

30min
MSE

15min

MSE

30min

1, all 110 110 0.00001 4 0.00001 4 0.0285 0.0286

2, expert defined 90 90 0.00001 3 0.00001 3 0.0206 0.0208

3, filter-reduced 30 30 0.00001 3 0.0001 2 0.0563 0.0253

 0.0351 0.0249

Dataset 2

Feature subset H1-

nodes

H2-

nodes

L-rate

15min

Epochs

15min

L-rate

30min

Epochs

30min
MSE

15min

MSE

30min

1, all 110 110 0.0001 2 0.00001 4 0.0229 0.0412

2, expert defined 90 90 0.00001 3 0.00001 3 0.0221 0.0224

3, filter-reduced 30 30 0.00001 4 0.0001 2 0.1117 0.0583

 0.0522 0.0406

* Colored cells = (column) average of predicted horizon.

Based on the three-iteration average, the ANNs score higher MSE-losses on average.

However, as shown in 6.2.1, this might not indicate worse generalization if considered as

warning system. For ANN, especially subset 2 seems to provide good fit. One of the best

fits (dataset 1, subset 2, 15min) is illustrated below (fig. 23). This model seems to

reproduce especially some of the relatively high error scores from the actual data’s curve,

that would likely be set for triggering warnings.

67

Figure 23 Example predictions from ANN

6.2.3 SVR

The final experimented method is SVM, more precisely regression by SVR. The training

of SVM is slightly different from the neural network approaches. Instead of utilizing the

validation portion for optimizing learning rate and epochs count, the whole 80% is used

for training. This is because SVM converges to the global optimum, rather than iterating

batches and epochs in search of best local optimum. The initial approach is to experiment

with both regular SVR with parameter optimization and the RVM, used by [48].

However, the current available implementations of RVM are discovered to require too

much memory to function even with the smallest subset. Because of this, the RVM is

dropped out. Another issue is found with computation times of the regular SVR.

Especially with subset 1 i.e. all features, the training takes relatively too long to complete

so this subset is discarded from the SVR experiments.

The regular SVR model is trained using radial basis function (RBF) kernel, for this being

a standard choice in nonlinear regression, that this task should also represent. Due to time

consumption, it is decided to optimize the two parameters, namely regularization term C

68

and Ɛ based on couple of test iterations rather than performing a complete grid search. As

the outcome of these iterations, the C-parameter is set to 20, and Ɛ to 0.0001.

Results

 Dataset 1 Dataset 2

Feature subset MSE 15min MSE 30min MSE 15min MSE 30min

2, expert defined 0.0366 0.0433 0.0206 0.0187

3, filter-reduced 0.0167 0.0170 0.0945 0.1059

The SVR provides some better and some worse fits on the data subsets. Like basic NNs,

there are great differences between the best and worst models. Especially subset 3 of

dataset 1 provides visually one of the best results of the experiment (see fig. 24).

Figure 24 The best visual fit of SVR

69

6.3 Warning performance

The final evaluation is done on the best performing models, based on MSE scores and

visual analysis of the forecast curves. Four evaluations are performed, one per each

dataset and horizon combination. For each of these evaluations, the best model is chosen

from all 3 forecast methods and their performances compared to each other. The neural

networks are selected based on the following criteria:

1. Best model by MSE,

2. If at least one of its training iterations reproduces a similar curve to the actual target.

This filters out models that have good MSE but bad generalization, caused by

predicted error score staying closely around 0.5.

The average of best of three iterations are once again used as the final score per neural

network, whereas the SVR converges, so only one iteration is needed. The selected

models are listed below.

Task Selected combination

 RNN Basic NN SVR

Dataset 1, 15min GRU; subset 1, all 2, expert defined 3, filter-reduced

Dataset 1, 30min GRU; subset 2, expert defined 2, expert defined 3, filter-reduced

Dataset 2, 15min GRU; subset 2, expert defined 2, expert defined 2, expert defined

Dataset 2, 30min GRU; subset 2, expert defined 2, expert defined 2, expert defined

The selection reveals that subset 2 provided clearly the best forecasts based on visual

analysis. Another noteworthy factor is that based on the selection criteria, no LSTM-

networks were chosen, which implies that GRU is the more advanced RNN-type for this

learning task.

The warning evaluation is performed by first transforming the forecasts into binary

classes. Each timestamp is labeled as either 1, representing positive test or “should warn”,

or 0 representing negative test or “should not warn”. In order to apply the binary labeling,

a threshold must be selected. The threshold refers to the error score value that if surpassed

should denote a warning. After setting the thresholds, instances can be labeled by whether

70

their values surpass the threshold or not. Finally, the predictions’ binary labels are

compared to the binarized real values to see if the warnings are triggered correctly. The

thresholds are selected based on company A’s knowledge of how often critical errors

occur, that being approximately twice a month. Based on this, the values are set as 7.5 for

dataset 1 and 8 for dataset 2, illustrated in fig. 25.

Figure 25 Configured warning thresholds. Dataset 1 (left), dataset 2 (right).

The final warning performance evaluation is measured by calculating the area under curve

(AUC) scores. Originating in the receiver operating characteristic (ROC), the AUC refers

to the size of the area below the ROC-curve, which is the plotting of false positivity rate

(FPR) against true positivity rate (TPR). In this study, false positives denote instances

where the forecasting methods would trigger false alarms, and true positives instances

that they would trigger correct alarms. The ROC-curve is illustrated in fig. 26. When FPR

plotted in x-axis is relatively small compared to TPR plotted in y-axis, the area is larger,

which denotes good AUC-score. Score 1 denotes perfect warning accuracy, score 0.5

refers to warning completely by random, and 0 denotes reversed learning where the model

always predicts the opposite of real value.

71

Figure 26 ROC curve and AUC-score

Results

Dataset 1

Model FPR, 15min TPR, 15min AUC, 15min FPR, 30min TPR, 30min AUC, 30min

GRU 0.0001 0.0014 0.5006 0.0127 0.0463 0.5168

NN 0.0050 0.0163 0.5057 0.0049 0.0143 0.5047

SVR 0.0008 0.0007 0.4999 0.0007 0.0014 0.5003

Dataset 2

Model FPR, 15min TPR, 15min AUC, 15min FPR, 30min TPR, 30min AUC, 30min

GRU 0.0066 0 0.4967 0.0076 0.0123 0.5024

NN 0.0007 0.0123 0.5058 0.0698 0.0864 0.5083

SVR 0.2091 0.2593 0.5251 0.2292 0.2963 0.5335

Despite the relatively good visual fits of some models, it is observed that the warning

performances are poor. What’s special, both FPR and TPR are very low for most models.

This means that the models would trigger warnings very rarely. This is a factor that is not

seen in the visual evaluation of the model performances, because the dataset is so large.

An assumption is that the models cannot predict multiple simultaneous high error scores,

72

where the high values can linger for some time, before dropping below the warning

threshold.

The model that stands out from the final evaluation is the SVR of dataset 2 (see fig. 27).

It is the only model seemingly capable of simultaneous high error score predictions, and

hence also achieves the best AUC-scores. However, these scores are still significantly too

low for any reliable warning system to be established on it. Therefore, the implementation

of this system is decided to be canceled, as for now.

Figure 27 SVR forecast of dataset 2 (30min). The high FPR can be seen from the heavy

fluctuation of the forecast-curve.

73

7 Discussion

The results in 6.3 provide no accurate predicting of the target variable nor triggering of

warnings, and the experiments are considered unsuccessful. This supports the null

hypothesis set in chapter 2, being that no effective methods are applicable on dataset of

such scale. A foremost issue in assessing the experiments is the number of steps involved

in the whole process. Starting from the separate data engineering project of [31], one has

had to make compromises and knowledge-based decisions without validating every step,

for instance, when selecting the 1-minute and 5-minutes framerates for datasets.

However, not all steps of the process could have been validated at all, as for example

framerates denser than 1 minute would have reduced instances by too little, considering

the available resources. Because of the large number of steps and incapability to evaluate

all of them, one cannot verify which steps in the process are actually successful and which

of them are not.

Another issue that affects especially the preprocessing, is that one cannot explicitly

evaluate the information value in a dataset. There are methods capable of explicit feature

evaluation such as correlation coefficient to target variable. But, as shown, it is not

straight applicable on time series data, as one should calculate the correlations between

past features and future targets, instead of concurrent features and targets. Instead, the

techniques and decisions are made by selecting candidates, applying the final modelling

on them, and selecting best performing subsets by cross-validation. Many of the

selections are also made without any validation or by not evaluating every option, since

there would be greatly too many variables to assess. In addition to preprocessing

parameters, there is also a heavy amount of model parameters that would need excessive

testing to optimize for each dataset.

A third issue discovered is the complexity of big data for such modelling task. High

volume, dimensionality, and complexity of the dataset causes computation issues, as for

example the SVMs take several hours to converge on the training data. Some potential

methods are completely discarded, such as statistical models since requiring strictly

numerical data. Another example is the RVM that causes memory issues, at least with the

available implementation and resources. This supports the assumption that neural

74

networks are superior in big data modelling, since being the only technique capable of

parallel computation by GPU-processing.

Besides these issues, there are some limitations set by the target dataset that expectedly

hindered the analyzability on this specific study. Perhaps the biggest of these are missing

values. They are hard to replace especially in time series, where they could denote either

occasional missingness, or informatically valuable outages. It is noted that the imputation

and outage labeling applied in 4.3 is likely to corrupt the data and hence impair the

forecasting accuracy. Therefore, the results could be improved by applying a different

missing value policy, such as completely imputing every missing value by some mean.

As a final thought, there is a certain limitation in applying regression forecast for warning

logic. Since triggering warnings is essentially binary classification, one could achieve

better predictions by formulating the learning task as classification of “should warn” or

“should not warn”. However, a similar process than with regression is still required for

determining the positive and negative instances in an unlabeled dataset such as client B’s.

Overall, the experiments indicate that the scope of such project is too wide to achieve

practical and efficient results.

Summary of objectives set in chapter 2:

 Preprocessing techniques were successfully discovered for transforming multivariate

big data into analyzable format. In addition to reviewed methods, custom methods

such as visual feature elimination were proposed.

 A custom log-level-based target variable was crafted for unlabeled data. However,

the efficiency of the variable is unclear as the final forecasts were inaccurate.

 Neural networks were discovered as best method for big data forecast, for their

parallel computability. However, no advantage was found in their prediction

performance, partially due to lack of testing different parameters and depths.

75

8 Conclusion

Part I of this thesis presents a comprehensive review on data preprocessing techniques,

especially targeted on big data and time series analysis. One of the main issues is found

out to be missing values and outages, common in real-time time series of certain

industries. These are shown to hinder the usability of common preprocessing techniques

such as missing value imputation, that work better with non-time-series data. Instead of

replacing missingness by imputation, keeping them in data could provide valuable

information of the nature of the time series, although they are challenging to model as

variables of analysis. In addition to reviewed preprocessing techniques, some custom

methods are also proposed, including a custom log-level-based target variable design, and

a visual feature elimination process.

In part II, a review is made on multivariate time series analysis and forecast techniques,

from statistical to ML. The theory is put to practice by experimenting forecast on a case

dataset, that is first preprocessed in the first part. It is discovered that neural networks are

practically the only suitable forecasting method for such datasets, due to size and

dimensionality of big data, and neural networks’ capability of training via parallel

computation. SVMs are also successfully trained, although consuming inconveniently

long training times. None of the forecasting methods perform significantly well, which

could be due to unsuccessful preprocessing, too little method parameter optimization, or

the mere difficulty of such learning task. This demonstrates a definitive issue of applying

supervised ML on big data, which is the excessive number of factors and variables that

must be validated, to ensure the success of the task. In the future, unsupervised ML

methods, instead, could be experimented since they require less preprocessing.

76

References

[1] Apache Software Foundation. Hadoop home page.

<https://hadoop.apache.org>

[2] Elastic NV. Elasticsearch home page. <https://www.elastic.co>

[3] Box, GEP., et al. Time series analysis: forecasting and control. John Wiley &

Sons, 2015.

[4] Hochreiter S., Schmidhuber J. Long short-term memory. Neural computation

9.8: 1735-1780, 1997.

[5] Kyunghyun C., et al. Learning phrase representations using RNN encoder-

decoder for statistical machine translation. arXiv:1406.1078, 2014.

[6] Elastic NV. Kibana home page. <https://www.elastic.co/kibana>

[7] Grafana Labs. Grafana home page. <https://grafana.com>

[8] Ward, JS., Barker, A. Undefined by data: a survey of big data definitions.

arXiv:1309.5821, 2013.

[9] Apache Software Foundation. Cassandra home page.

<https://cassandra.apache.org>

[10] MongoDB Inc. MongoDB home page. <https://www.mongodb.com>

[11] Liu, ZH., Hammerschmidt, B., McMahon, D. JSON data management:

supporting schema-less development in RDBMS. Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, 2014.

[12] Splunk Inc. Splunk home page. <https://www.splunk.com>

[13] Apache Software Foundation. Sqoop home page. <https://sqoop.apache.org>

[14] Elastic NV. Logstash home page. <https://www.elastic.co/logstash>

[15] Apache Software Foundation. Mahout home page. <https://mahout.apache.org>

[16] García, S., et al. Big data preprocessing: methods and prospects. Big Data

Analytics 1.1: 9, 2016.

[17] Kotsiantis, SB., Kanellopoulos, D., and Pintelas, PE. Data preprocessing for

supervised leaning. International Journal of Computer Science 1.2: 111-117,

2006.

[18] Wilson, DR., Martinez, TR. Instance pruning techniques. ICML. Vol. 97. No.

1997, 1997.

77

[19] Bellman, RE. Adaptive control processes: a guided tour. Princeton university

press, 2015.

[20] Saeys, Y., Iñaki I., Larrañaga, P. A review of feature selection techniques in

bioinformatics. Bioinformatics 23.19: 2507-2517, 2007.

[21] Yu, L., Huan L. Feature selection for high-dimensional data: A fast correlation-

based filter solution. Proceedings of the 20th international conference on

machine learning (ICML-03), 2003.

[22] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological) 58.1: 267-288, 1996.

[23] Du, S., et al. Robust unsupervised feature selection via matrix factorization.

Neurocomputing 241: 115-127, 2017.

[24] Cerda, P., Varoquaux G., and Kégl, B. Similarity encoding for learning with

dirty categorical variables. Machine Learning 107.8-10: 1477-1494, 2018.

[25] Seger, C. An investigation of categorical variable encoding techniques in

machine learning: binary versus one-hot and feature hashing. 2018.

[26] Bengio, S. & Y. Taking on the curse of dimensionality in joint distributions

using neural networks. IEEE Transactions on Neural Networks 11.3: 550-557,

2000.

[27] Honaker, J., King, G. What to do about missing values in time-series cross-

section data. American journal of political science 54.2: 561-581, 2010.

[28] Che, Z., et al. Recurrent neural networks for multivariate time series with

missing values. Scientific reports 8.1: 1-12, 2018.

[29] Fu, R., Zuo Z., Li L. Using LSTM and GRU neural network methods for traffic

flow prediction. 31st Youth Academic Annual Conference of Chinese

Association of Automation (YAC). IEEE, 2016.

[30] Vijayakumar, N., Plale, B. Prediction of missing events in sensor data streams

using kalman filters. Proceedings of the 1st Int’l Workshop on Knowledge

Discovery from Sensor Data, in conjunction with ACM 13th Int’l Conference on

Knowledge Discovery and Data Mining, 2007.

[31] Kylänpää, M. Technical report: Transforming big data time series for machine

learning. University of Turku Master’s Project, 2020.

[32] Cryer, JD., Chan, K-S. Time Series Analysis: With Applications in R. Springer,

2008.

[33] Brownlee, J. Multi-step Time Series Forecasting with Long Short-Term

Memory Networks in Python. <https://machinelearningmastery.com/multi-step-

time-series-forecasting-long-short-term-memory-networks-python>

78

[34] Flovik, V. How (not) to use Machine Learning for time series forecasting:

Avoiding the pitfalls. <https://towardsdatascience.com/how-not-to-use-

machine-learning-for-time-series-forecasting-avoiding-the-pitfalls-

19f9d7adf424>

[35] Yule, GU. Why do we sometimes get nonsense-correlations between Time-

Series? --a study in sampling and the nature of time-series. Journal of the royal

statistical society 89.1: 1-63, 1926.

[36] Salvi, J. Significance of ACF and PACF Plots In Time Series Analysis.

<https://towardsdatascience.com/significance-of-acf-and-pacf-plots-in-time-

series-analysis-2fa11a5d10a8>

[37] Singh, A. Build High Performance Time Series Models using Auto ARIMA in

Python and R. <https://www.analyticsvidhya.com/blog/2018/08/auto-arima-

time-series-modeling-python-r>

[38] Portilla, JM. Using Python and Auto ARIMA to Forecast Seasonal Time Series.

<https://medium.com/@josemarcialportilla/using-python-and-auto-arima-to-

forecast-seasonal-time-series-90877adff03c>

[39] Tsay, RS. Multivariate time series analysis: with R and financial applications.

John Wiley & Sons, 2013.

[40] Cao, L-J., Eng Hock, FT. Support vector machine with adaptive parameters in

financial time series forecasting. IEEE Transactions on neural networks 14.6:

1506-1518, 2003.

[41] Siami-Namini, S., Siami Namin, A. Forecasting economics and financial time

series: ARIMA vs. LSTM. arXiv:1803.06386, 2018.

[42] Yann L., Cortes C., Burges CJC. THE MNIST DATABASE of handwritten

digits. <http://yann.lecun.com/exdb/mnist>

[43] Chakraborty, K., et al. Forecasting the behavior of multivariate time series using

neural networks. Neural networks 5.6: 961-970, 1992.

[44] Kim, TY., Changha H., Jongkyu L. Korean economic condition indicator using

a neural network trained on the 1997 crisis. Journal of Data Science 2.4: 371-

381, 2004.

[45] Kim, TY., et al. Usefulness of artificial neural networks for early warning

system of economic crisis. Expert Systems with Applications 26.4: 583-590,

2004.

[46] Cortes, C., Vapnik V. Support-vector networks. Machine learning 20.3: 273-

297, 1995.

79

[47] Carbonneau, R., Laframboise, K., Vahidov, R. Application of machine learning

techniques for supply chain demand forecasting. European Journal of

Operational Research 184.3: 1140-1154, 2008.

[48] Formisano, E., De Martino, F., and Valente, G. Multivariate analysis of fMRI

time series: classification and regression of brain responses using machine

learning. Magnetic resonance imaging 26.7: 921-934, 2008.

[49] Tipping, ME. Sparse Bayesian learning and the relevance vector machine.

Journal of machine learning research 1.6: 211-244, 2001.

[50] Bianchi, FM., et al. Recurrent neural networks for short-term load forecasting:

an overview and comparative analysis. Springer, 2017.

[51] Rumelhart, DE., Hinton, GE., Williams, RJ. Learning representations by back-

propagating errors. Nature 323.6088: 533-536, 1986.

[52] Graves, A., Schmidhuber, J. Offline handwriting recognition with

multidimensional recurrent neural networks. Advances in neural information

processing systems, 2009.

[53] Brownlee, J. Stacked Long Short-Term Memory Networks.

<https://machinelearningmastery.com/stacked-long-short-term-memory-

networks>

[54] Kostadinov, S. Understanding GRU Networks.

<https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be>

[55] Goel, H., Melnyk, I., Banerjee, A. R2N2: residual recurrent neural networks for

multivariate time series forecasting. arXiv:1709.03159, 2017.

[56] Google LLC, Google Brain Team. Tensorflow home page.

<https://www.tensorflow.org>

[57] Kingma, DP., Ba, J. Adam: A method for stochastic optimization.

arXiv:1412.6980, 2014.

[58] Hahnloser, RHR., et al. Digital selection and analogue amplification coexist in a

cortex-inspired silicon circuit. Nature 405.6789: 947-951, 2000.

All websites visited on 02.06.2020.

	1 Introduction
	2 Motivation
	Part I Big data preprocessing
	3 Background
	3.1 Big data platforms
	3.2 Issues with data analysis & ML
	3.2.1 Size
	3.2.2 Dimensionality
	3.2.3 Format
	3.2.4 Missing values
	3.2.5 Data outages

	4 Case study – Preprocessing for time series analysis
	4.1 Target & objectives
	4.2 Dataset
	4.3 Missing values & outages
	4.3.1 Outage detection
	4.3.2 Missing value imputation
	4.3.3 Outage-error correlation
	4.3.4 Outage labeling

	4.4 Feature selection & extraction
	4.4.1 Supplementary features
	4.4.2 Visual feature elimination
	Categorical features
	Numerical features

	4.4.3 Target variable
	4.4.4 Feature subsets

	Part II Time series analysis
	5 Background
	5.1 Definition & categorization
	5.2 Traditional methods & terms
	Lags
	Autocorrelation
	Differencing
	Autoregression & moving average
	ARMA-models
	Vector autoregression

	5.3 Machine learning
	5.3.1 Neural networks
	5.3.2 Support vector machines
	5.3.3 Recurrent neural networks

	6 Case study – Regression forecast by supervised ML
	6.1 Learning task & evaluation
	6.2 Model training & results
	6.2.1 RNNs
	Results

	6.2.2 Basic ANN
	Results

	6.2.3 SVR
	Results

	6.3 Warning performance
	Results

	7 Discussion
	8 Conclusion
	References

