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Big data -alustat helpottavat isojen datamäärien talletusta ja hallintaa. Niiden 

haittapuolena on kuitenkin laaja data-analyysiin vaadittava esikäsittelyn tarve, mikäli 

halutaan käyttää tavanomaisia analyysimenetelmiä. Erityisen haastavaksi todetaan 

aikasarjojen muuntaminen alustan tarjoamasta muodosta ohjatun koneoppimisen 

vaatimaan taulumuotoon, koostuen ennustettavasta kohdemuuttujasta sekä muista 

ominaisuusmuuttujista. Tässä tutkielmassa tutkitaan usean muuttujan aikasarjadatan 

esikäsittelyä, sekä käsitellyn datan ennustamista koneoppimismenetelmillä, kuten 

neuroverkoilla ja tukivektorimallinnuksella. Tutkimusmenetelmät perustuvat 

kirjallisuuteen datan esikäsittelystä ja aikasarja-analyysistä, mutta myös uusia 

menetelmiä kehitetään, kuten lokitasoon perustuva kohdemuuttuja sekä muuttujien 

arvojakaumaan perustuva karsiminen. Ennustustulokset jättävät kuitenkin toivomisen 

varaa, mikä kertoo big datan mallinnuksen vaikeudesta. Epäiltyinä syinä ovat liian 

vähäinen malliparametrien ja esikäsittelyvalintojen optimointi, joiden täydentäminen 

vaatisi resursseihin nähden liian kattavaa testausta. 
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Big data platforms alleviate collecting and organizing large datasets of varying content. 

A downside of this is the heavy preprocessing required to analyze their data by 

conventional analysis techniques. Especially time series data is found challenging to 

transform from platform-provided raw format into tables of feature and target values, 

required by supervised machine learning models. This thesis presents an experiment of 

preprocessing a data-platform-extracted collection of multivariate time series and 

forecasting it by machine learning models such as neural networks and support vector 

machines. Reviewed techniques of data preprocessing and time series analysis literature 

are utilized, but also custom solutions such as log level-based target variable, and value-

distribution-based feature elimination are developed. No significant forecasting 

accuracies are achieved, which indicates the difficulty of modelling big data. The 

expected reason for this is the inadequate validation of model parameters and 

preprocessing decisions, which would require excessive testing to improve. 
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1 Introduction 

Many of today’s digital services are built around data. Varying data is collected from not 

just the main processes but from all around the services for later uses, including 

knowledge discovery by data analysis and machine learning (ML). Traditional data 

storage techniques such as relational databases have proven incompatible with the volume 

and dynamics of these large scale, distributed, and simultaneously increasing data 

collections, often referred to as big data. This has led to use of stand-alone data platform 

software such as Hadoop [1] and Elasticsearch [2], that are especially designed to operate 

such collections. One of the reasons enabling their advantage is the relieved restriction 

on data format. This is also known as schema-less approach, where all sorts of data can 

be collected without preorganization of table structures. A common storage format is a 

JSON-based document store, where the documents can contain highly altering contents, 

yet capable of fast and programming-oriented querying without requiring external 

database transformations. 

Consequently, there is a certain disadvantage in analyzability of the less-structures data 

collections. Most data analysis and ML methods operate with table-like data, consisting 

of columns and rows. Therefore, applying ML on big data requires additional 

transformation from raw data into analyzable table-format. In contrast, traditional 

databases are table-oriented by nature and hence much easier to prepare for analysis. 

Another key issue of big data analysis is the size of the collections. Many ML-methods 

are computationally demanding already on small datasets, so applying them on big data 

insists means of transforming the data into smaller scale. To overcome such issues, this 

study presents a review on various data preprocessing methods, along with a practical 

experiment of preparing a dataset of such scope for ML analysis. 

A special factor is that the experimented dataset contains no predefined target variables 

to predict by ML. Instead, selecting or crafting this variable is considered a part of the 

preprocessing. In that regard, this study represents a nowadays common data analysis 

task, where a client provides data and invests in exploratory data analysis, hoping for 
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potential findings unknown in beforehand. In this specific case the provided dataset is a 

time series, and the goal is to preprocess it by selecting as informative as possible feature 

or input variables and the target or output variable to forecast. As the learning task, this 

study focuses on multivariate time series analysis and forecast, where multivariate refers 

to analyzing multiple concurrent time series, and their effects on each other. 

Time series analysis has traditionally referred to statistical techniques by Box and Jenkins 

[3], but an increasing amount of ML alternatives have been published, due to recent 

advance in the field. ML has unique characteristics as opposed to traditional methods. 

One of them is the preliminary parameter learning process i.e. model training for which 

there are two categories or learning setups. In supervised learning setup the dataset is 

labeled, making each instance consist of feature values along with a class label or a 

numerical target value. The former label type is known as classification and the latter as 

regression. Unsupervised learning, on the other hand, operates with unlabeled data, and 

these algorithms are used for structuring data, for instance by clustering. Time series 

forecast is considered supervised, as its task is to predict the target variable i.e. future, 

based on feature variables i.e. history of the series. Another specialty of ML is that it is 

usually completely data driven. For example, rather than explicitly computing the trends 

and cycles in a time series, as part of the method, ML-models can learn them implicitly 

from training data. 

Amongst ML techniques, especially deep learning has proven advantageous in modelling 

large datasets or big data. A specific type of deep learning is recurrent neural networks 

(RNNs), especially designed for learning to predict sequences such as time series. RNN 

techniques like long short-term memory (LSTM) [4] and gated recurrent units (GRUs) 

[5] have shown success with non-real-time sequences like text and speech recognition, 

making them promising candidates also for real-time sequences focused on this study. 

However, a certain difference between real-time and non-real-time sequences is that the 

latter is much easier to scale up. For instance, a text dataset can be increased by inserting 

more sentences, whereas with real-time sequences the only means of increasing is to 

count in a longer history or more concurrent features, if such are collected. It is hence 

uncertain if a time series dataset will reach the level where deep learning can outperform 

other methods. In addition to preprocessing techniques, this study reviews also the most 
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common time series analysis methods, from traditional to deep learning, aiming to 

provide which of these are best suitable for learning real-time multivariate sequences.  
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2 Motivation 

This thesis is done in collaboration with a Finnish IT company, henceforth referred as 

company A. One of A’s services is maintaining support services for clients’ software and 

business-to-business (B2B) integrations. The services operate on clients’ log and metric 

data, providing real time monitoring, alerting of errors, and minimization of downtime 

on production environments. As its data platform, A utilizes Elasticsearch, that is 

distributed JSON-based querying specialized document database. For monitoring, A uses 

Kibana [6] and Grafana [7] that are also provided by Elasticsearch. One of the 

disadvantages of this system is the lack of root cause analysis capabilities, due to which 

the discovering of the causes must be done manually after the occurrence of the errors. 

As the service lacks knowledge of root causes, it is also incapable of predicting an 

upcoming error when a root cause appears. This study aims to provide the missing 

predictability by developing forecasting model for a dataset extracted from A’s platform. 

If successful, the model could be used as early warning system, forecasting the state of 

the operation for time ahead. If the predicted state were erroneous, an early warning could 

be triggered, enabling prohibitive processes to prevent the errors. 

In order forecast on large scale data, a heavy amount of preprocessing is required. It is 

acknowledged that Kibana, for instance, contains a built-in ML library that requires no 

excessive preprocessing. However, this study focuses on which processes are required if 

not using platform provided functionality. This allows the use of state-of-the-art 

techniques that platforms such as Kibana do not necessarily utilize. As mentioned, a key 

step in this project is also determining the target variable which is the variable to forecast. 

Since the goal is to predict the state of A’s client operation, this variable should reflect 

the health of the operation as well as possible. As the product of the preprocessing, three 

feature variable subsets are prepared along with a target variable to predict. Each subset 

is forecasted, and their performance is evaluated by the accuracy of the forecasts. 

As the forecasting technique, also three candidate methods are experimented. Their 

performances are compared, to see which method performs best on given data. Additional 

parameters of forecast are lag distance, i.e. how much history to calculate for a prediction, 

and horizon length, i.e. how long into future to predict. Based on company A’s experience, 
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the optimal lag distance should be within one hour, and horizon from 15 to 30 minutes. 

The lag distance affects especially the computational complexity, as counting in more 

instances naturally requires more computation. A longer distance, however, could 

increase the accuracy of the forecast. The horizon, on the other hand, defines how far 

ahead to predict. It hence determines how much time there would be for prohibitive 

actions after a warning is triggered. A longer horizon is not necessarily a benefit, as the 

farther the horizon, the less accurately a model likely predicts. Thus, two horizon lengths, 

15 and 30 minutes are experimented. This makes the final experimental setup of this study 

a cross-validation of a) 2x datasets, b) 3x preprocessed subsets, c) 3x forecasting 

methods, and d) 2x parameter combinations. Finally, the best performing models are 

evaluated also as warning systems, assessing not just their overall forecast capability, but 

also accuracy on triggering warnings correctly. 

Study objectives summarized: 

 Discover preprocessing techniques for transforming multivariate big data time series 

into analyzable format. 

 Discover means for selecting/crafting a forecast target variable for the dataset 

provided. 

 Discover methods for forecasting time series data of such scale. 

 Apply forecast and analyze the success of the set objectives. 

 

Disregarding the objectives set above, an overall goal of this thesis is to discover 

universally compatible preprocessing techniques that are applicable to not just the case 

data, but any large-scale time series type of data. The experiments are exploratory 

acknowledging the null hypothesis, which is that no efficient preprocessing can be 

applied, and no reliable forecasts can be made on them. 

The chapters are divided into two parts. Part I contains the theory of big data 

preprocessing, and its practical application on a client dataset provided by company A. 

Part II contains time series theory, along with forecast experiments on the client data that 

was prepared in part I.  
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Part I 

Big data preprocessing 
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3 Background 

3.1 Big data platforms 

Many applications used for collecting, storing, and analyzing data can be considered as 

big data platforms. [8] describe the key features of them by size, complexity, and certain 

associated technologies such as not only SQL (NoSQL) databases e.g. Cassandra [9], 

MongoDB [10] and file distribution frameworks e.g. Hadoop, Elasticsearch. A key 

difference compared to traditional data storage is that these techniques usually require no 

strict schema or structure for content they store. This allows any available data source to 

be collected without restriction or prior organization. Big data platforms typically consist 

of a data lake, containing the data in raw format and a database or equivalent application, 

that provides indexing, organization, and better user access to this raw content. Most 

applications are horizontally scalable, i.e. their data can be distributed on multiple server 

nodes to increase storage size. Scaling horizontally allows practically infinite increase of 

volume. In addition, it usually provides content replication, meaning that the data is stored 

physically in multiple locations, which allows high availability and reliability, even if 

single nodes fail. 

 

 

Figure 1 Big data platform example 
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One of the most common NoSQL database types is document database. Instead of 

standing for the storage format, the documents function as wrapper of content, providing 

a uniform format for handling any contents. For example, MongoDB and Elasticsearch 

use JSON as the document format. As compared to traditional data storage, e.g. relational 

databases, JSON is faster to search, more flexible towards varying or dynamic content 

and supports constructs familiar to most programming languages, such as lists [11]. 

Another benefit of JSON is that the documents can naturally contain nested elements i.e. 

parents and children, whereas a relational database would require separate tables and 

foreign keys for handling such recursion. Lastly, querying JSON is fast, as most 

programming languages have ready-made implementations for operating with the format. 

An additional feature of some data platforms is being real time. This means that collection 

of data, from source to storage is continuous. Examples of real time data sources are 

application log files and sensor readings that a collecting service “listens to” and transmits 

into the platform simultaneously. This type of collection allows utilizing the data for real 

time alerting and monitoring purposes. Associating instances with timestamps also turns 

data into time series, enabling time series analysis. Many big data platforms provide a 

complete software, consisting of a storage unit or framework e.g. Hadoop, Elasticsearch, 

a UI client for control and monitoring e.g. Splunk [12], Kibana, and a separate component 

for collecting real time data e.g. Sqoop [13], Logstash [14]. Additional modules are often 

provided as plugins, for example for advanced visualization e.g. Grafana and ML 

purposes e.g. Mahout [15]. 

3.2 Issues with data analysis & ML 

The schema-less approach has a lot of advantages concerning data collection and storage. 

However, as a downside, it may hinder data analysis capabilities. This chapter presents 

such issues, affecting especially ML-modelling on real time and big data platforms. Five 

main issues, namely size, dimensionality, format, missing values, and data outages are 

focused. In practice, the issues are solved by various steps of data preprocessing, which 

is a fundamental part of any data analysis study and challenging for big data. 
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3.2.1 Size 

The foremost issue with large datasets is their size. Although general computational 

power has increased due to distributed and parallel computation techniques like GPU-

processing, a combination of large data with complex models might still be a restriction 

to many studies. In turn, cloud computing providers offer high-performance computing 

e.g. Google Colab, as a service, but this study focuses on capabilities without using such 

services. If unable to utilize high-performance computing, a practical approach to deal 

with size issues is to reduce the volume in preprocessing. 

The processes of reducing data by instances are known as instance reduction and selection 

[16]. Instance reduction (IR) means selecting instances to drop out, whereas instance 

selection (IS) means selecting the instances to keep in data. The problem of IR/IS is the 

loss of information value that it might cause. For example, if a dataset consists of many 

instances of class A but only few instances of B, a bad IR could drop all instances of B, 

hence completely corrupting the information. This problem affects especially unlabeled 

datasets, where stratification, i.e. ensuring correct distribution of labels cannot be applied. 

A basic application of IR for example for survey-datasets, is to remove noisy and 

redundant instances. This process is also known as data cleaning. 

List of common IS/IR methods [16,17]: 

 Random sampling – Drops instances randomly. The only goal is to reduce volume. 

 Stratified sampling – Drops instances randomly amongst classes, maintaining 

original class distribution. 

 Outlier detection – Reducing the data size by dropping statistical outliers. This is 

applicable only on numerical features, and with datasets where outliers exist. 

 RT1, RT2, RT3 – Advanced reduction techniques by [18]. These methods calculate 

the effect of instances for the learning task, dropping out redundant ones. The 

performances on multiple learning tasks were reportedly increased, utilizing them. 
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3.2.2 Dimensionality 

Another issue related to data size is dimensionality, which means the number of features 

for an instance. In addition to increasing computation time, dimensionality also causes 

issues known as curse of dimensionality [19]. A practical example of this is if a dataset 

has few instances but many features, each instance is likely to appear distant of each other, 

if all features are concerned. This makes it difficult to find similarity between any 

instances of data. Because of this, high dimensionality also requires high number of 

instances for similarities to appear. High dimensionality also restricts the model selection 

available for an analysis task. For example, distance-based methods’ such as support 

vector machine’s (SVM) and k-nearest-neighbors (kNN) classification’s computational 

complexity is directly proportional to number of features in data, making them easily too 

inefficient for highly dimensional datasets. High dimensionality can be dealt with 

dimensionality reduction techniques, the most common of which being feature selection 

and feature extraction [16]. 

Feature selection (FS) refers to similar selection or drop-out than IR/IS, but amongst the 

feature space. The foremost part of FS is to remove features which certainly have no 

effect in the analysis. For example, if only persons of specific age are analyzed in a study, 

the feature representing age is then redundant and can be removed, as it would always 

contain the same value. Another example are metadata fields such as object identifiers or 

dates of last update, common in data platform datasets. If counted in, the redundant fields 

may reveal spurious correlations, i.e. coincidental correlations without actual causality. 

FS is also used to remove non-redundant but highly correlated features. For example, if 

a dataset contains individual fields for age and birthdate, the two would be 100% 

positively correlated, making it unnecessary to utilize both fields. Even lower levels of 

correlation could indicate that two features represent the same event, hence only requiring 

one feature for recognizing it. 

[20] divide FS-techniques into filter, wrapper, and embedded methods, based on the 

technique’s relation to the actual model. Filter methods analyze the data independently, 

generating the final feature subset for models. Wrapper methods function together with 

the model, providing candidate subsets for the model, that are then evaluated to discover 
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the best performing one. This approach is also known as FS-cross-validation. Lastly, 

embedded methods refer to learning models, that have a built-in FS process. Below are 

presented lists of common FS methods by category. 

Filter methods [16,17,21]: 

 Manual – Selecting best features based on expert knowledge. 

 Correlation coefficient – Selecting features that correlate most with output value or 

classes. Functions with numerical values. 

 Chi-Squared selector – Chi-Squared test ranks categorical features’ correlation to 

output value. This is like correlation coefficient but for categorical features. 

 Fast Correlation-Based Filter (FCBF) – Advanced, computationally light, 

correlation-based filter method for highly dimensional data by [21]. 

Wrapper methods [20]: 

 Sequential forward selection or backwards elimination – Systematically goes 

through each feature, evaluating its effect on performance. Selects features 

increasingly if they improve performance or eliminates features decreasingly if 

discarding them improves performance. 

 Genetic algorithm – Advanced, natural selection inspired FS method. The method 

starts by creating random subsets and evaluating them. The best subset is then used 

to create a pool of new candidate subsets, and the process is repeated for the new 

candidates. This evolution converges to best possible subset. 

Embedded methods [20,22]: 

 Decision trees & Random forests – Decision tree modelling and its expansion, 

Random Forests are user friendly and intuitive models for example for classification 

tasks. Additionally, they provide a straightforward measure of a feature’s importance 

on decisions, which acts as embedded FS. 

 Least absolute shrinkage and selection operator (Lasso) – A regression analysis 

method that applies feature selection. It can also be used to enhance other regression 

methods such as Ridge regression. 



 

 
12 

The other approach of dimensionality reduction is feature extraction (FE), which means 

creating artificial features based on original ones. This enables the use of high-

dimensionality-incompatible analysis methods despite the original data contains too 

many features. Another benefit of reducing dimensionality is that it can be used to project 

data into two or three dimensions that are visually observable. This could reveal patterns 

such as clusters, already as such. A common subcategory of FE are space transformation 

methods. These create projections of high dimensional data to greatly lower dimensions. 

In contrast to regular FE, space transformations make the projections based on all original 

features, preventing information loss. One could still have the output of a model as 

original feature but use extracted features as input for learning tasks. A downside of FE 

is that it makes the analysis closer to black box, as one cannot so easily determine a single 

original feature’s effect, since it is not used as such. 

List of common FE methods [16]: 

 Matrix factorization – Matrix factorization methods like Single Value 

Decomposition (SVD) are used in recommender systems. However, they can also be 

used as feature selection algorithms. For example [23] represent a matrix 

factorization-based unsupervised feature extraction algorithm. 

 Principal Component Analysis (PCA) – Perhaps the most common space 

transformation method. It projects the data to the desired number of dimensions that 

maximize the variance in the data. 

 Independent Component Analysis (ICA) – A space transformation method like 

PCA but maximizes independence instead of variance. It is typically used in signal 

processing for separating independent sources of data. 

 

3.2.3 Format 

The schema-less approach improves the flexibility and scalability of big data platforms. 

However, there are multiple issues affecting the analyzability of such data. First, most 

data analysis methods operate with columns and rows. Each instance must populate every 
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column with a value, or leave it empty, i.e. populate it with null. JSON for example, 

requires an additional preprocessing step of converting the documents into tables. 

Moreover, a dynamically altering JSON or equivalent dataset, might yield a large portion 

of empty values, requiring more strategies for handling the nulls. Second, as JSON or 

equivalent might contain nested objects, they must be flattened to fit it into a table. This 

means unfolding all nested objects into single level, which could make the representation 

more complex. The unfolding process is illustrated in below, where the braces refer to 

parent-child relations: 

input:   output: 

A    A 

B{C, E}     B.C, B.E 

F{G, H{I}}   F.G, F.H.I 

 

Like format of data, also the type of features affects analysis, especially with big data. 

Since ML algorithms are math-based, textual features must be transformed into numerical 

format before analysis. Feature indexers and encoders are techniques that can be used for 

such transformation [24]. A discrete amount of categorical textual field values, for 

example species names in a dataset of plants, are straightforward to index into numbers 

where each number represents one species. However, more complex textual features such 

as actual text entries are harder to index or encode. Text mining presents techniques 

aiming to categorize texts to index them into numerical scale [16]. 

List of common indexer and encoder methods [16]: 

 String indexing – Transforms a discrete set of textual labels into indexed numbers. 

The order of which can be defined for example by the total number of labels; the most 

frequent class or label being either first or last. 

 One-Hot-Encoding (OHE) – A common strategy, also used for representing output 

classes with neural networks. In a discrete set of labels, each label is given a binary 

feature, yielding value 1 if an instance represents the label and 0 otherwise. 
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The transformation to numerical features is fundamental to any size of dataset that ML is 

applied to. However, especially large scale and highly dimensional data is problematic. 

For instance, if a dataset is already highly dimensional, OHE increases the dimensionality 

even further, which could introduce dimensionality issues. This has been studied [24] and 

[25] who propose alternative techniques as well. [24] demonstrate issues with non-

standardized categorical variables. An example of such is a person’s title-field which 

could contain multiple entries like PhD and Ph.D, despite all referring to the very same 

entity. With basic OHE, these would yield two or more non-lapping features, which could 

corrupt the analysis as the model would interpret them as different entities. They propose 

their own method, especially targeted to “dirty data” i.e. datasets with spelling mistakes 

that make same entities represented by multiple accidental values. [25], on the other hand, 

present a comprehensive comparison of OHE against binary encoding and feature 

hashing, more detail of which is given below. 

List of OHE alternatives [16,24,25]: 

 Term frequency search – This approach is eligible for continuous textual fields. A 

specific term is defined as keyword, and the frequency or amount of it is scored as the 

new feature value. 

 Stemming – This approach is like term frequency search, but instead of searching a 

term within texts, searches roots of terms within terms. An example is root standard 

in term set standards, standardize and standardized. There are many extensions to 

basic stemming, such as [24]’s similarity encoding, which provide more advanced 

indexing or scoring of roots. 

 Binary encoding – Where OHE represents features as one-bit binary, binary 

encoding represents them as multi-bit. For example, where OHE encodes a feature of 

4 classes into 4 binary features (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0) binary encoding 

requires only two; (0,0), (0,1), (1,0), (1,1). This approach yields much less dimensions 

when encoding discrete categorical variables.  
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 Feature hashing – In this approach, feature values of any type are sent through a 

hash function, which denotes an output integer within a set of desired length. The 

acquired integers act as the new encoded features. Interestingly, hash collision, i.e. 

two separate values being hashed to same output does not drastically decrease 

prediction performance as heavily as expected, according to [25]’s study. 

 Clustering – An ML-oriented alternative to apply feature encoding or any 

dimensionality reduction is to perform unsupervised learning such as clustering on 

desired set of features. The formed clusters can then be interpreted as feature labels. 

 

For an even more advanced encoding strategy, [26] represent a neural network approach, 

resembling an autoencoder. Autoencoders are neural networks that learn complex 

functions for altering data representation and are therefore used for example for encoding 

and decoding purposes. [26]’s network functions like an autoencoder but also reducing 

the output dimensionality to a smaller scale. It essentially falls into the category of space 

transformations, but it can be also used to convert non-desired feature types such as 

categorical textual fields into numerical representation, which allows better modelling 

capability. 

Feature types especially affect time series analysis. For example, statistical regression 

methods like ARMA-models (see 5.2) operate only on ordinal numerical values. 

Ordinality means that the feature can be measured as high or low compared to other 

instances. Many categorical features are nominal or not ordinal, meaning that their values 

cannot be compared to each other. An example of such is species name that represent 

category rather than measure. There are exceptions of ordinal categorical features such as 

log level. It is a textual feature commonly associated with log messages, denoting the 

severity of the event with values like debug, warning, or error. Since the categories 

measure the severity, they can be indexed into increasing order, i.e. debug: 1, warning: 2 

and error: 3, making the feature ordinal and applicable to statistical modelling. 
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3.2.4 Missing values 

Another category especially related to the schema-less storage are missing values. 

Efficiently handling missing values is critical, as bad handling strategies could bias the 

analysis [16]. One of the primitive handling techniques is to drop out instances that have 

missing features. However, this is only applicable if the portion of instances with 

missingness is small. If not completely dropping instances, the other approach is to fill 

their empty fields with artificial values. This method is also known as imputation. There 

are various imputation strategies, i.e. criteria for what to fill the empty values with. 

List of imputation strategies [17]: 

 Mean or median – The most common and basic imputation strategy is to fill empty 

values with feature’s or table column’s mean or median value. This is easily 

extendable, for example to instead using a mean or median within a class or category. 

 Hot deck imputation – Find an instance that most resembles the instance with 

missing value. Use this instance’s value to impute the missing one. 

 Regression or classification – An advanced imputation strategy is to build a 

complete separate classification or regression model, that takes as input the other 

feature values and predicts the missing value based on statistics or model parameters 

if ML. 

 

Like format, also missing values cause difficulties especially withs time series datasets 

for multiple reasons. First, one cannot completely drop out only instances with missing 

values because time series must always have fixed time intervals between instances. 

Second, one cannot impute empty values with 0, -1 or other fixed values, because they 

could be in the natural scale of some variable, for instance, temperature in Celsius. Third, 

one cannot impute empty values with averages or most common values, at least in a non-

stationary time series (see 5.1). This is because the series could be on a peak of a trend 

during the missing value’s occasion. Inserting a much smaller average value between two 

peaking values would probably corrupt the time series. 
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More complex imputation strategies for time series have been reviewed by [27,28]. [27] 

studied the impact of missing values in political data analysis. The key issue affecting 

time series imputation in this field is the type of the missingness, e.g. informative or non-

informative missingness. In the former case, a problem is that there is likely a reason why 

a feature value is missing, which should be concerned in the imputation. The process 

should also concern other features, which have values for the moment. For instance, if 

every other feature dive at a specific moment, the imputed value should likely dive as 

well. A similar problem is presented by [28], who studied missing values in multivariate 

scientific time series forecast with RNNs. They found missing values correlated to 

prediction performances also in sensorial data, e.g. health care, biological and 

geoscientific datasets. However, instead of applying imputation, they propose a 

completely new kind of GRU neural network (see 5.3.3), namely GRU-D, that functions 

with the empty values, rather than guessing the real value of them. This approach showed 

promising results; where regular RNN with imputation performed at the same level with 

SVM, GRU-D was able to deliver the increased performance that deep learning generally 

provides. The network seemingly learns to interpret null as a special class to detect 

patterns of. However, this likely requires a substantial portion of missing values, to learn 

their pattern. Relatedly, for example [29]’s RNN-experiment concerned a small amount 

of empty values, so imputation could be considered a minor factor regarding prediction 

performance. 

Missing values are especially problematic in multivariate time series analysis. As 

described, the format and size of big data might cause missing values as such. An 

additional factor is the density or framerate of time series. To analyze multiple time 

series’ effect on each other, they must be synchronized by framerate. This means that 

each individual series must share timestamps. Hence, and additional preprocessing step 

is required for synchronizing the time series, which could be a heavy process especially 

with large datasets. A time series can be synchronized either by sparsening or densening 

it. Sparsening means discarding for example every nth instance from a series. It could lose 

information value, as the discarded instances could include informatically valuable ones. 

Densening, in contrast, means adding artificial instances between original ones. It does 

not lose information value, but could corrupt the data, if the artificial instances are 
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inaccurate. A synchronization process could include applying both, to obtain a uniform 

framerate for every time series in a dataset. 

3.2.5 Data outages 

A special type of missingness are data outages. Affecting especially real time data 

platforms, outages refer to continuous missingness of a data source or feature for a limited 

period. An example outage is if a sensor or collecting service malfunctions, which causes 

missing values or no data until it is fixed. Outages do not only refer errors, as they could 

also be due to regular restart or reboot of a service. Because of this, outages are especially 

difficult to model, as there could be multiple origins for one, either normal or erroneous. 

There are very few publications on how to handle outages in multivariate time series 

analysis. A primitive approach like with regular missing values would be to discard 

periods or complete features with outages occurring. However, this would lose potential 

information value that defines the missingness. Because an outage could cause or be 

caused by an event in another series or features, identifying such correlations could be 

critical for example in root cause analysis of an error. 

If wished to benefit from outages in analysis, the biggest concern is how to represent them 

in the data. As described, most models cannot function with nulls, so this requires a 

process of labeling the outages. The difficulty of labeling depends on feature types. For 

example, one can simply add a new category or label representing outages for a 

categorical feature. However, or an ordinal and numerical feature, it is difficult to allocate 

a value for representing one. Intuitively, one could label outages as zeros, but with 

assumption that it is not in the natural scale of the feature. If so, an alternative strategy 

could lie in discretization. Discretization means transforming a continuous value into 

discrete set of ordinal categories. An example discretization is transforming temperature 

degrees into classes like freeze, around-zero, and heat. This set of classes could then be 

expanded with a new class that represents outage. However, it would still not satisfy the 

ordinality requirement for most features, as an outage cannot be measured as high or low, 

for example by temperature. Especially statistical time series methods (see 5.2) require 

ordinality, also making discretization ineligible. 
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Among the few publications concerning the issue is [30]’s study of missing event 

prediction in sensor data streams. For an outage situation, they utilized Kalman filters, 

that is a recursive data approximation function for predicting the missing sensor readings. 

However, this approach merely predicts the missing values, rather than utilizing the 

informative missingness in the outages. A candidate method that could benefit from 

outage information is the GRU-D neural network proposed by [28], as it particularly 

analyzes patterns of missingness. 
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4 Case study – Preprocessing for time series 

analysis 

4.1 Target & objectives 

The case study is targeted on a specific client of company A, henceforth client B. B’s 

production operation runs on five host machines that contain software components such 

as integration engine and API manager. Their main process are B’s B2B-integrations that 

conduct the internal and outbound message traffic, including orders and other logistical 

messages between various physical and virtual endpoints. The integration engine’s load 

is balanced into two hosts, namely cores 1 and 2. The other three hosts in the cluster 

perform additional supportive operations such as secure relaying. In this chapter, client 

B’s operational data is preprocessed and prepared for time series analysis in part II of the 

study. Both custom-made techniques, and methods reviewed in chapter 3 are 

experimented, to create a computationally compact and informative dataset from the raw 

data. 

 

 

Figure 2 Client B’s cluster 
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As for any data prediction task, the first consideration is which variables to analyze and 

which to predict. Since cores 1 and 2 host the main operation, these two also produce the 

most impactful logs and metrics to analyze. Considering this, the preprocessed dataset 

should contain mostly core features, so the models do not overfit on the supplementary 

behavior. The target or output variable should also represent the cores. Although being 

supplementary of the main operation, the other three nodes could provide additional root 

causes that affect the behavior of the cores, and hence should not be considered as input 

features. The preprocessing objectives are illustrated in fig. 3: 

 

 

Figure 3 The forecasting methods analyze input variables to predict output variables. The boxes 

indicate which host the features or variables are selected from. The output variable should present 

the predicted state of errors in both cores. 

 

As for the target variable, since not being predefined, one must either select a 

representative feature from the original features as such or extract it from the original 

features. Most forecasting methods cannot predict multiple targets, so if selecting 

multiple targets, the forecast would need to be repeated for each individual log level (see 

3.2.3). Hence, the goal is to craft a single target to predict. Since company A’s role in 

client B’s operation is to ensure system health, the target variable should reflect the health 

of the operation. There are two key variables in the data, that are expected to reflect the 

health best; the log level features that the data contains plenty of, and outages that occur 

from time to time in all features. Log levels are straightforward indicators of errors as 
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such, whereas outages could be caused by a critical error in the system making them 

potentially informative targets to forecast (see 3.2.5). 

4.2 Dataset 

The dataset of client B is a collection of data tables provided as csv-files. These tables 

were created in a separate data engineering project [31], acquiring the data from 

Elasticsearch, transforming it from JSON into tables, and reducing the volume by a large 

scale. The final tables contain multivariate time series, from the five host machines in B’s 

production environment. There are from two to three tables per each host, each table 

containing a specific source of data in it. The source types are described below: 

1. Filebeat – Contains application log data. This includes log levels and additional status 

information of logs. The message contents are filtered out due to their excessive 

lengths and complexity to analyze. Filebeat-sources have a dynamic collection 

interval, as they are collected simultaneously when produced by services. The features 

of the source are mostly categorical variables. 

2. Metricbeat – Contains system metrics such as CPU and memory usage of hosts. The 

readings are collected at fixed rates within configured intervals. All metricbeat-

features are categorical. 

3. Jmx-beat – Contains Java management extension (JMX) statistics, i.e. metrics from 

important java processes. These readings are also numerical and collected within 

configured intervals. 

 

The table rows are ordered so that the first row of each table represents the first lag and 

last row the last lag in the time series. The raw data contains from 4 to 63 features per 

each table. The collection intervals above refer to the rate that the data is collected to A’s 

Elasticsearch cluster. The tables are synchronized to uniform framerates, so that the nth 

row of each represent the same moment of time. The time series span a period of 
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originally 8 months: April 18th – November 15th. However, the provided data is divided 

into two subsets. Dataset 1 contains the full period with a 5-minute framerate (60780 

rows), and dataset 2 only the last 2 months but with a 1-minute framerate (87900 rows). 

The advantage of dataset 1 is that it covers the full period, including a wider history. 

However, the original data is generated denser than 5 minutes, so the synchronization 

process has decreased event accuracy. In contrast, dataset 2 is closer to the original 

density but covers a shorter history. In 4.4.2, the length of dataset 2 is further shortened 

to 50500 rows for reasons explained. 

As a remark, both datasets contain a lot of missing values, for two reasons. First, the data 

is highly dimensional, and the collection rates vary between individual features and 

tables. Because of this, some of the features have been densened by inserting empty 

values between the original values to match the uniform framerates. Second, there are a 

lot of outages, that appear as missing values. 

4.3 Missing values & outages 

The foremost problem of this study to solve are missing values. This is because most 

forecasting methods and preprocessing techniques cannot operate with nulls and cannot 

be used before replacing these. A key factor affecting the replacement are outages. There 

are two types of them: normal outages due to service reboots or updates, and outages 

caused by errors. Moreover, outages can take place for a single service, or for the whole 

system. 

A certain property of outages in is that they act differently on logs and metrics. Since logs 

are written based on actions of the process, a missing log could represent a healthy period, 

where in contrast, dense logging could indicate errors. Hence, missing values are 

considered natural for filebeat-tables. Metrics, on the other hand, are collected at fixed 

rates. Therefore, missing metrics can indicate either a sparser collection interval or an 

outage. Because of this, missingness should be treated differently on metricbeat and jmx-

beat tables. Also, as shown by [28], there could be information value in patterns of 

missingness, so the missing values should be kept as such rather than imputing. The next 
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proposed methods aim to classify outages either as a) natural missing value due to sparser 

collection rate, b) normal outage due to service restart, or c) error-caused outage due to 

system malfunction. The natural missing values could then be imputed, and the outages 

labelled either as normal or erroneous outages. 

4.3.1 Outage detection 

To address the described requirements, the first process is trying to separate natural 

missing values from outages. The following proposed method analyzes complete missing 

rows for separating the instances. As filebeat-outages are treated differently, this method 

is applied only on metricbeat and jmx-beat tables. The basic idea of it is to check whether 

some values of a row are missing, or all of them, as all features missing would refer to a 

metric-wide outage. The method is presented as algorithm below: 

 

iterate table by rows: 

if some, but not all features of row are 'null': 

    impute missing values 

else if all features of row are 'null': 

    label row as outage 

 

 

By experimenting, it is noted that with client B’s data, this method still yields a heavy 

portion of outages in metricbeat. Below is an illustration of the resulting outage labels on 

core 1: 
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Figure 4 Dataset 1 (left), dataset 2 (right). Metricbeat outages (blue), jmx-beat outages (orange). 

The x-axis represents the full analysis periods on both datasets 1 and 2. 

 

The problem of heavy missingness is that as the metrics are numerical, they would also 

need to be imputed with a numerical value, rather than a new category representing them 

(see 3.2.4). However, the regularity of the missingness in metricbeat suggests that they 

are caused by the sparser collection, rather than actual outages occurring. Unlike 

metricbeat, jmx-beat’s original collection intervals are denser than the synchronized 

interval, so there are no sparseness-caused missingness. Because of this, the outages 

present in jmx-beat (orange) are likely indicating actual system-wide outages. More 

evidence is given by the fact that, there are also missing values in metricbeat and filebeat, 

during jmx-beat’s outages. Since jmx-beat-tables represent outages so well, the approach 

is changed to labeling only the outages detected by jmx-beat. Hence, the outages detected 

in metricbeat only are handled like regular missing values, which is performed in 4.3.4. 

4.3.2 Missing value imputation 

After the outages have been detected, the imputation strategy for other missing values 

must be selected. The imputation is applied to the missing values that are not considered 

as outages in 4.3.1. A key factor considering the strategy is the nature of data. An expected 

property of server metric data such as client B’s is that the metrics should keep previous 

state if no explicit changes occur. There should also be no dirty data features (see 3.2.3), 

as all features are recorded by sensor rather than human. Lastly, since working with time 

series data, common imputation strategies such as mean, or median cannot be used (see 
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3.2.4). Acknowledging these, it is decided to impute missing values based on the 

preceding active value for each feature. If the missing value follows an outage, the next 

active value should be used instead, because the value is more likely to represent the state 

after the outage, rather than state before it. The process is also represented by following 

algorithm: 

 

1. iterate table by rows (top-down): 

    iterate row by values: 

        if row is not outage and value is 'null': 

            impute with corresponding value from preceding row 

2. repeat step 1. bottom-up 

 

 

Iteration 1. imputes missing values with the last collected value of the feature if one exists 

within an outage-less period. This leaves all missing values that follow an outage empty. 

Iteration 2. repeats the process but from bottom to top, so the missing values after outages 

get imputed with the next collected value of the feature. 

4.3.3 Outage-error correlation 

After detecting outages, a consideration is whether it is possible to segregate them as 

normal e.g. updates and reboots, or error-caused. The distinction between the two could 

benefit the forecast, as one is only interested in predicting the error-caused ones. It would 

enable the models to specialize in detecting feature values that correlate with them. The 

normal outages could be imputed like regular missing values in 4.3.2. As the data contains 

no distinction between normal and error-caused outages, an error-correlation analysis is 

proposed. Since there is no metric collection during outages, one cannot calculate straight 

correlation between them. Instead, a visual analysis is performed, where the log levels 

are plotted against systemwide outages to detect if increasing errors lead to outages. This 

method also reveals correlation in the opposite direction, i.e. whether outages lead to 

increasing errors. Below is illustrated the outages of core 1, against the log levels of 4 

corresponding filebeat-logs recorded in both cores: 
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log a) 

 
 

log b) 

 
 

log c) 
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log d) 

 

Figures 5 Outage-error correlations, dataset 1 (left), dataset 2 (right), outages of core 1 (red), log 

levels of core 1 (blue), core 2 (green). 

 

It is observed that there are simultaneous fatal errors occurring in multiple logs, especially 

prior to index 50000 of dataset 1 and 20000 of dataset 2. This could indicate that the 

following outage is caused by these errors. However, as there is distance between the two, 

the behavior resembles a system restart more than a crash. In the opposite direction, there 

seems only to be some correlation in logs c) and d), where error-levels follow an outage 

straight. Nevertheless, there is still not enough visible causality in either direction so that 

any separation could be done between the types of outages. It is hence decided to neglect 

the separation. Instead, all outages detected by 4.3.1 are considered as same. Therefore, 

the target variable designed in 4.4.3 should focus more on log levels and less on outages, 

as one cannot distinct whether these are normal or error-caused. 

4.3.4 Outage labeling 

The one-class labeling of outages is performed followingly: 

 

iterate table by rows: 

    if row is outage: 

        iterate row by values: 

            if feature of value is categorical: 

                replace value with 'null' 

            else if feature of value is numerical: 

                replace value with 0 
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It is acknowledged that the numerical label 0 is likely to corrupt the data. However, since 

there is no other plausible numerical representation for outages, the goal of the 

preprocessing is changed towards minimizing the usage of metric features, that depend 

on numerical outage representation. The labeling is also applied to filebeat-tables. 

Although being mostly categorical, they contain some numerical features that require 

outage labeling with 0. In 4.4.2, a visual method is proposed for eliminating problematic 

features, some of which are caused by this outage labeling process. 

4.4 Feature selection & extraction 

After treating missing values in the data, the next process is to apply FS and FE. Since 

the original feature-set is already filtered from knowledgably redundant features in the 

data engineering project, each feature left in the datasets is considered potentially 

valuable. However, as described, the analysis variables should focus on core features, as 

they host the main processes of client B’s operation. Therefore, a tighter approach is taken 

on features from the supplementary hosts. 

4.4.1 Supplementary features 

Among the 3 supplementary hosts (see 4.1), the secure relays (SRs) differ from every 

other host in that they lack the collection of jmx-beat. Because of this, one cannot use the 

host-wide outage detection presented in 4.3.1. Since mere metricbeat yields too heavy 

missingness, it is decided to also drop out these tables from the SRs. The remaining SR-

features from filebeat are http-message-statuses and a single log level feature from each 

SR. The log levels are considered containing enough information of these hosts’ health, 

so it is decided to extract these as the only features representing the SR-hosts. 

Features selected from Secure relays 1 & 2: 

 2x corresponding load-balancer log levels from SR1 & SR2 

 



 

 
30 

The third supplementary host is host 5. Like with the SRs, only filebeat-features from are 

selected from host 5 as well, as they are considered representative enough of the health 

of the host. For instance, if a metric such as memory maxes out on it, it is likely to be 

visible as a severe logging or outage in it. However, as host 5 still records jmx-beat, the 

outage detection of 4.3.1 is applied on the host’s jmx-beat, and the discovered outages are 

extracted as a binary feature where 1 represents outage and 0 a normal situation. The 

supplementary features from host 5 are listed below. The number of all supplementary 

features is finally reduced to five, which accomplishes the lesser required amount, as 

compared to core features. 

Features selected from Host 5: 

 2x supplementary process log level features 

 Binary outage-labels 

 

4.4.2 Visual feature elimination 

Now that the few features from supplementary nodes are selected, the next step is 

deciding which features to analyze from the remaining feature set, which contains the 

supplementary features and all logs and metrics from core hosts. A feature elimination 

approach, i.e. filtering out features by condition, is chosen, rather than feature selection, 

i.e. selecting in features by condition. 

An important factor considering ML modelling of any dataset is the static distribution of 

feature values. An example of this is that one must always have the same number of 

categories for a categorical feature. Relatedly, an image recognition model is 

preconfigured to analyze the same number of pixels on each training image, and to train 

with images of altering sizes, these must be resized to fit the model’s input dimensions. 

This can be seen in regular dataset, for example if one-hot-encoding categorical features. 

The model is preconfigured for one input variable per each encoded feature in training 

data. If the number of categories increased in testing data, the model will not have 

positions for the new OHE-categories, caused by the expansion of feature space.  
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This issue affects especially time series modelling, where categories can expand or reduce 

over time due to updates in the system. In case of expansion, models cannot longer 

operate without either completely retraining them or neglecting the new categories. One 

of the occasions that cause such issues are service updates and fixes. These are especially 

in hand in this study, where structural changes occur regularly during the 8 months 

analysis period. To address this, a visual feature space analysis is proposed for detecting 

problematic features and discarding them from the data. 

For categorical features, the data is plotted representing time in the x-axis and the number 

of unique feature categories in the y-axis. Each new category seen along the data is 

represented with a unique integer y-value. Hence, the visualization reveals the 

distribution of feature categories during the analysis period in x-axis. The method 

functions also on numerical features, for which, instead of plotting the unique categories, 

the actual feature values are plotted. This reveals changes in value distributions, similarly 

than with category distributions. Like categories, the distribution of missing values could 

also change during the time series. Therefore, the distributions are plotted as blue dots 

and the changes in outages as vertical grey lines for each lag. Below are represented some 

of the most significant discoveries made by running the method on dataset 1. 

Categorical features 

 

 

Figure 6 Feature a) 
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Feature a) is an example of having a problematic dynamic feature space. The mere 

number of categories is an issue, as for instance, applying OHE would increase the 

dimensionality already by 400. Another issue is the increasement of unique categories. 

The feature is unusable, as one cannot define the point where the increasement stops. In 

other words, the feature seems continuous rather than discrete. The slight slow-down after 

the first third of the period suggests that the most common categories have appeared in 

the data by that time, but the increasement still continues. The actual feature behind the 

figure refers to the connection points of operational messages. It is dynamic by nature, as 

the number of the points increases as more integrations are deployed to the operation. 

 

 

Figure 7 Feature b) 

Another issue is seen with feature b). It witnesses an update on the API-manager during 

the last quarter of the analysis period. The feature is not just highly dimensional, but also 

unevenly distributed during the period, which is expected to be problematic. If the model 

were trained with first three quartile of the period, it would not learn to associate the 

feature values to target, since the training portion would only contain value 0. If the model 

were trained on the whole dataset, the first 3 quartiles would likely mislead the model 

parameters to always expect 0 before the other values would take effect. This makes the 

feature likely unusable at least for dataset 1. 
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Figure 8 Feature c) 

A similar issue than with b) is seen with feature c), this being one of the few numerical 

features in filebeat. Here, a change of distribution concerns missingness, as all values 

after half the period are missing. This is expected to cause similar issues than with 

changes of value distributions with feature b). Feature c) is an example of a feature, the 

collection of which was stopped during the analysis period. 

 

 

Figure 9 Feature d) 

Example of a more stable feature is shown by feature d). It is statically distributed over 

time, making it safe to use in the analysis. A potential problem, however, is that there it 

misses loggings with for example fatal severity. This could mean that one is yet to occur 

rather than the log is not generating them. To avoid conflicts later, the feature could be 

expanded in beforehand with a category for fatal errors, if deployed as part of real time 
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warning model. Although, the model would need training to learn how to associate the 

fatal errors with against the rest of the data. 

Numerical features 

The method is also applied on the remaining numerical features from metricbeat and jmx-

beat of the cores. It is discovered that the same issues also affect them, although with a 

different manner. 

 

 

Figure 10 Feature e) 

Feature e) represents the metric of outgoing network bytes, which has clearly two states 

of behavior: active and idle. The models are likely to have trouble learning the dynamics 

of both states, which makes such features expectedly unusable. This feature also shows 

an adverse effect of outage detection and labeling. It clearly contains outages; however, 

these are being treated as normal missing values, due to reasons described in 4.3.1. As 

outcome, e)’s outages are imputed as long-lasting static horizontal lines of the last or next 

active value. This is problematic as the long-lasting value is different on each outage. 

Hence, the models cannot associate the individual outages as an entity of same behavior, 

making this type of features expectedly unusable. These features would be better 

represented by a binary feature of active or inactive states. 
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Figure 11 Feature f) 

The final noteworthy discovery are features like f). It has seemingly the same value during 

the whole period, if disregarding the sudden changes during labeled outages plotted as 0. 

It is acknowledged that the variance of f) could seem more significant if the visualization 

would not scale down to 0 during outages. This shows another flaw in the outage labeling 

process, when labeling numerical outages as zero. This type of features could be 

transformed to better scale, however, in this study they are discarded, since the number 

of features is already relatedly large. The results of the feature elimination are 

summarized below: 

Feature elimination results: 

 Both log and metric features are filtered. Each feature that has issues like a), b), c), e) 

or f) are discarded from analysis. The process results in 36 log and 29 metric features 

(total 65) for dataset 1. For dataset 2, the numbers are 35 for both logs and metrics 

(total 70). 

 A decision is made to shorten the time series of dataset 2, by matching it with the 

update of API-manager (see fig. 7). There are multiple features of the service that 

would have needed to be discarded in both datasets because of the update, that are 

now only discarded from dataset 1. 
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4.4.3 Target variable 

To apply the final step of feature selection, the target variable must be selected or 

extracted before. This variable should focus on the 10 main log level features produced 

by the integration engine in cores 1 and 2. The proposed solution is an overall error score 

variable calculated from each of the logs. This would reflect the state of the whole 

operation, as errors in a single log would increase the score marginally, whereas errors in 

all logs would increase it drastically. 

As seen in 4.3.3, the individual logs have different minimum and maximum values of 

severity, some having the latter as fatal and others as error. Therefore, each log level is 

first given a numerical value representing the severity, and after that, these numbers are 

standardized by z-score, where each log’s maximum severities are scored highest, and 

minimum lowest, based on the distribution of severity. It is acknowledged that for some 

logs, the higher severities could be yet to occur, but this issue is not focused on this study. 

To prevent corrupting the log level scoring, the outages are disregarded from the output 

variable, rather than given each log level a score like 0 during them. This is done by 

imputing missing values with the last occurred severity for each log, like the imputation 

in 4.3.2. The whole process of error score is presented as algorithm below: 

 

1. iterate log level feature by values (repeat for each log level): 

    if value is 'null': 

        replace value with last preceding or next following value 

    else if value is not 'null': 

        replace: 

            'WARN'  by 1 

            'ERROR' by 2 

            'FATAL' by 3 

             others by 0 

2. z-score standardize values along each feature 

3. concatenate the features into table (1 column/feature). 

4. initialize final error score variable as list 

5. iterate the concatenated table by rows: 

    count sum of of all values in the row 

    append the sum to error score list 
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Figure 12 Initial error score visualization. Dataset 1 (left), dataset 2 (right). 

 

The generated error scores are plotted in fig. 12. With dataset 2, the frequency of more 

severe loggings is very sparse for some logs, which makes their scores very high after 

standardization. With dataset 1, the variable seems to vary in more stable manner. To 

avoid the high variance, it is decided to transform all scores higher than 20 to 20 and 

scores lower than -20 to -20. This smoothens the plot, which makes the predicting better, 

especially if the forecasting method is easily biased by outliers in data. Although reducing 

the error scores of the few very high instances, the transformation keeps the score 

relatively high to trigger a warning, which is essentially the only requirement for the error 

score. The transformed error scores are plotted in fig. 13. A potential threshold for 

triggering warnings is visualized as a red line. 

 

 

Figure 13 Transformed error score visualization. Dataset 1 (left), dataset 2 (right). The black 

column indicates the starting point of dataset 2 within dataset 1’s span. 
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4.4.4 Feature subsets 

After the feature elimination, some FS-procedures are still required before forecast. A 

reason for this is that some forecasting methods are computationally complex to apply on 

highly dimensional data. To experiment as many types of forecasting methods, multiple 

subsets are created, so that a suitable number of features are available for each candidate 

method. The methods that cope with higher dimensionality could also be applied on the 

smaller subsets to see whether more features improve or worsen the forecast. The 

following 3 subsets are decided to be provided. 

Subset 1 – All features, binary encoded 

As the first subset, it is decided to use all variables left, after the elimination process in 

4.4.2. Some of the categorical features have a high number of categories, so applying 

OHE would increase the dimensionality heavily. This increase is lightened by using 

[25]’s binary encoding instead. The resulting numbers of features are 142 for dataset 1 

and 169 for dataset 2. As a comparison, the corresponding numbers with OHE would 

have been 234 and 341. 

Subset 2 – Expert defined (manual) features, one-hot-encoded 

The second subset of features is selected manually based on expert-knowledge of 

company A. These are expectedly the most impactful features in the dataset. Significant 

metrics such as CPU, memory, and network usages are selected, along with most 

important log sources such as each log level feature, and additional features especially 

produced by the integration engine. For dataset 2, also features from the API manager 

are selected, that were discarded from dataset 1. All supplementary features are also 

discarded from this subset since they are expected not to affect the health of the cores. 

OHE is applied on categorical features, which results in a total of 122 features for dataset 

1 and 146 for dataset 2. 

Subset 3 – Filter-reduced features, one-hot-encoded 

As the third subset, a reviewed FS algorithm is experimented. Since embedded methods 

restrict the models too much, and wrapper methods would be too heavy to validate, a 
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simple filter method is experimented, based on feature correlation coefficient (see 3.2.2). 

Since lacking a stable implementation of [21]’s FCBF, Pearson’s correlation coefficient 

is used for selecting k most positively or negatively correlated features to the target 

variable. Since the target is continuous rather than categorical, one cannot use the chi-

squared selector for categorical variables. Instead, a custom correlation check is proposed 

for these, applying OHE and measuring correlation between the encoded features and the 

target variable. Instead of selecting k most correlated OHE-binary-features, each original 

feature is encoded individually, each encoded features’ correlations are calculated, and 

the average of these correlations are saved as the original feature’s correlation score. 

These scores are then compared, and k best scoring features are filtered in. Finally, the 

selected categorical features are applied OHE, and joined with the most correlated 

numerical features, selected with the regular correlation measurement. 

A property of subset 3 is that it is aimed to be smallest, with preferably around 50 features 

total after encoding. Since both other subsets contain over 100 features each, it is likely 

that subset 3 is the only compatible one for computationally complex models other than 

neural networks, for reasons described in chapter 6. The portion of categorical features 

are selected arbitrarily as 10, and the corresponding number for numerical features as 8. 

The number is bigger for categorical features such as log levels, since they are expected 

to be more important. After encoding, their amount increases to 38, for both datasets 1 

and 2. From both categories, this makes a total of 46 features for the whole subset.  

As a side note, there is a potential disadvantage in measuring correlation between features 

and target of the same lag. Since the data is prepared for a forecast, the selection could be 

more efficient, if the correlation were calculated between input features of current time 

and target variable of the predicted time or future. However, this hypothesis is not 

concerned in this study, and left for future experiments. 

 

This marks the end of part I, now that all preprocessing aspects have been considered, 

and experimental preprocessing subsets have been constructed.  
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Part II 

Time series analysis 
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5 Background 

5.1 Definition & categorization 

Time series are two-dimensional datasets, where every instance i.e. point, observation has 

a timestamp along with a feature i.e. field, attribute that is measured against time. Time 

series are commonly used for visualizing the evolution of some feature of interest, such 

as the temperature and stock prices. Time series data can be univariate monitoring a single 

feature, or multivariate monitoring multiple evolving features against time. The main 

distinctive feature of time series compared to other data types is the temporal correlation 

i.e. autocorrelation, which means that subsequent values in the dataset are correlated. 

This also means that changing the order of instances in a series completely loses this 

correlation, making the series a regular collection of single-variable data. There are 

certain noteworthy attributes specific to time series type of data. Below are listed the main 

attributes, as described by [32]: 

 Stationarity indicates that the probability laws within the data do not change in time. 

Examples of stationary time series are computer metrics like CPU or disk usage, that 

are always measured between 0 and 100 % despite temporal variance. 

 The opposite of stationarity is trend i.e. non-stationarity, which defines how the 

probability laws change over time (fig. 14, blue). [32] divide trends into two types; 

deterministic which is expected to be constant, and stochastic which is expected to 

change over time. 

 Cyclicity or seasonality refers to changes in time series that repeat regularly (fig. 14, 

green). An example is ice cream sales, that increase on summer and decrease on 

winter, unrelatedly on the development of annual sales amount. 

 Like with any other data type, individual instances that relatedly differ a lot from 

average, are referred as noise (fig. 14, red). 

 



 

 
42 

 

Figure 14 Basic visualization of time series is achieved by plotting the instances in chronological 

order in a two-dimensional graph such as line chart or scatter plot. Generally, x-axis represents 

time and y-axis value. 

 

Time series analysis covers any sort of visual or statistic perception of time series. 

Conceptually, it can be divided into understanding, control and forecast. Understanding 

refers to recognizing a series’ definitive attributes listed above. Control means 

observations that can be made of a series, after understanding its attributes. An example 

of this is analyzing whether a change occurring in a series indicates normal or erroneous 

behavior. Lastly, forecast means analyzing past instances to predict future ones. Most 

publications of time series analysis focus on forecast, but there are also fields more related 

to time series control, such as anomaly detection. This study, however, focuses on 

forecasting techniques. 

Time series forecast can be categorized into univariate or multivariate by its analysis and 

forecasting types. Univariate analysis is limited to analyzing and predicting a single 

series, whereas multivariate analysis enables calculating multiple series and inter-series 

relations, that is, whether a change in one series affects another. Univariate forecast, on 

the other hand refers to predicting the future of a single series, whereas multivariate 

forecasting predicts futures of multiple series at once. Multivariate forecast can be 

accomplished with any multivariate analysis method by repeating the forecast for each 
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variable of interest. However, it can be inefficient if targeting many series or complex 

methods, which must be considered when selecting best models for a task. 

5.2 Traditional methods & terms 

As described, most publications of traditional time series analysis concern predicting 

future values i.e. forecast. The practice of it has established into a three-phase process of 

a) developing a predictive model, b) fitting the model on a dataset, and c) predicting next 

instances. The term model comes from the fact that the methods aim to replicate i.e. 

model the dynamics of the series as well as possible. Most traditional methods utilize a 

set of common terms or components, based on the works of Box and Jenkins [3]. Some 

of the key terms from the theory are summarized below: 

Lags 

Lags i.e. lagged values or lag distance denote how many prior instances of a time series 

are calculated in a process. Lags are commonly represented with the t-n notation, where 

t stands for time now and n for the number of timesteps before t. For example, if a time 

series had the density or framerate of one instance per day, the day one week ago would 

be notated as t-7. As common in forecasting, lag t is the first predicted instance, whereas 

t-1,t-2,…,t-n are the lags analyzed for predicting t. 

Autocorrelation 

The basic property of any time series is autocorrelation (AC). It refers to a time series 

instance’s correlation to each preceding instance in the series. An example of this is 

today’s weather temperature, which is generally strongly correlated to yesterday’s 

temperature and less correlated to the temperature of for example one month ago. This 

difference can be formalized as AC(t-1) > AC(t-7). A common derivative of AC is 

partial autocorrelation (PAC). PAC refers to each individual lag’s (t-1,t-2,…,t-n) 
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correlation to t. Instead of calculating the straight AC for example between t and t-2, the 

AC of t-1 is subtracted, leaving over just the residual correlation between t and t-2 [32,3]: 

PAC(t-n) = AC(t-n) - (AC(t-1) + AC(t-2) + ... + AC(t-(n-1)) 

 

Differencing 

A key process of traditional time series analysis is differencing. Differencing removes 

trend and seasonality, transforming a non-stationary time series to stationary. The basic 

differencing, aka. lag 1 difference is performed by subtracting the value of the previous 

instance from current instance: 

diff(t) = value(t) - value(t-1) 

 

In lag-2 difference, instead of the preceding, the second to preceding instance is 

subtracted: 

lag_2_diff(t) = value(t) - value(t-2) 

 

A common approach for choosing the optimal lag distance is to match it with the length 

of a cycle in a time series. This leaves the series without the cycle or seasonality; however, 

it might not yet make the series stationary [32]. In such cases, the order of difference can 

be increased. Order denotes how many times the series is differenced. The first difference 

is the output of a differencing applied once, and the second difference is the output of a 

differencing applied to the first difference. Multiple differencing is usually applied when 

a trend is polynomial or exponential [32].  
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If a forecasting model functions with differences rather than original data, the predicted 

values will also be in the differenced scale. These values are straight-forward to convert 

back to original scale. This process is also known as inverting [33]. Below is an example 

inversion from a first order lag-1 difference: 

value(t) = diff(t) + value(t-1) 

 

Where AC is a definitive property of time series, it is also problematic concerning 

forecast. Since lag t is usually heaviest correlated to its first preceding lag t-1, forecasting 

models easily overfit to this lag, meaning that a predicted t is always relatively close to t-

1, despite other lags would suggest the opposite. This can make the forecasting accuracy 

overly optimistic, providing relatively good accuracy, despite the only thing that the 

models do is replicating the last instance in the series [34]. What differencing does, it 

evens the relation of t to more distant lags than t-1, making the models less overfit to this. 

 

 

Figure 15 Illustration of a time series (top) and it differenced (bottom). Random walk refers to a 

series where each instance is generated randomly, either 1 higher, 1 lower, or same as the 

preceding instance. As term differencing implies, the y-axis in the bottom figure represents the 

differences between sequential instances, making the scale only vary around between -1 and 1. 
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Autoregression & moving average 

Two of the most essential forecasting models are autoregression (AR) and moving 

average (MA) by [3] and [35]. In addition to being used for forecasting univariate time 

series themselves, these two are key components of more complex statistical models. 

In AR, a prediction is calculated based on the preceding values in the series. PAC-

function is used first to find the negative or positive correlation of prior values. This 

reveals the impact of each lag against t. The lags are then associated with proper weights 

based on how they affected negatively or positively. For example, if lag t-5 has generally 

highly negative correlation to the value, it should be associated with a corresponding high 

negative weight. [32,36] The AR(p) formula is represented below, where parameter p 

denotes how many lags are weighted and used for calculating the predictions: 

y(t) = µ + w1∙y(t-1) + w2∙y(t-2) + … + wp∙y(t-p) + e(t) 

* y = lagged values; y(t) = prediction, µ = average of series, w1-p = weights for lagged values, e(t) = random 

error term for prediction. 

 

In contrast in MA, a prediction is calculated based on the errors in preceding lags, i.e. 

how much each value differed from the average in the series. MA utilizes AC for 

calculating correlation of the preceding errors. Since PAC usually cuts down quickly due 

to low residuals after the first lag, it misses possible long-distance correlations, whereas 

AC does not. Hence, bare MA is usually better than bare AR in such situations. Like AR, 

MA applies weights to the lagged errors, emphasizing the effect of each lag. The MA(q) 

formula is presented below, where parameter q denotes the number of lags similar to p in 

AR: 

y(t) = µ + e(t) + w1∙e(t-1) + w2∙e(t-2) + … + wq∙e(t-q) 

* e = lagged errors; e(t) = randomized error term for each prediction. 
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ARMA-models 

The most widely used statistical forecasting models are ARMA-models, which compound 

both AR and MA components for prediction. The basic ARMA(p,q) is simply a 

combination of the previous models: 

  y(t) = µ + W1∙y(t-1) + w1∙e(t-1)  + W2∙y(t-2) + w2∙e(t-2) + … + Wp∙y(t-p) 
+ wq∙e(t-q) + e(t) 

* W1-p = weights for AR lags, w1-q = weights for MA errors. 

 

The basic ARMA is applicable for univariate forecasting of stationary time series. 

However, an enhanced version of it is ARIMA (AR-integrated-MA), which adds an 

additional step of differencing in the model, thus capable for non-stationary time series. 

The formula is ARIMA(p,d,q), where d denotes the order of difference applied for the 

original series before forecasting. [32] 

As a parametric model, the performance of ARMA-models is often dependent on 

selecting the correct parameter values for p, d, and q. A common method today is to 

perform the parameter selection automatically. For example [37,38] use the term auto-

ARIMA for library code implementations that optimize the parameters for given data. 

These methods use the Akaike and Bayesian information criterions for selecting best 

candidate parameter set for given dataset. 

Vector autoregression 

Although there are many variations of ARMA and ARIMA, a downside of each of them 

is lacking the capability of utilizing inter-series correlations. Vector autoregression 

(VAR) is the most common ARMA-affiliate, applicable for multivariate statistical 

forecast [39]. In fact, VAR is a straight derivative of basic AR; however, instead of having 

a term for each lagged value, it has vectors representing the corresponding lags for each 

individual series analyzed [39]. The formula of VAR(p) model for two correlated time 

series is represented below. Like with AR, p denotes the number of lags concerned. As 
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shown, the equations of multiple AR models can be transformed into single VAR model 

by converting them into matrix multiplication of weights and lagged values. 

a(t) = µ(a) + w11∙a(t-1) + w12∙a(t-2) + … + w1p∙a(t-p) + ea(t) 

b(t) = µ(b) + w21∙b(t-1) + w22∙b(t-2) + … + w2p∙b(t-p) + eb(t) 

↕ 

[µ(a)] + [w11 w12 … w1p] ∙ [a(t-1) a(t-2) … a(t-p)] 

f(t) = [µ(b)] + [w21 w22 … w2p] ∙ [b(t-1) b(t-2) … b(t-p)] + e(t) 

* a,b = lagged values of two individual time series. The predictions a(t) & b(t) are transformed into single 

vector f(t), as well as error terms ea(t) and eb(t) into single e(t). w11-1p = weights of series a, w21-2p = 

weights of series b. 

 

One of the biggest advantages of VAR is the straightforward forecasting of multiple 

output variables. As described in 5.1, most methods can only predict one variable per 

model, achieving multivariate forecast only by repeating the process for each predicted 

variable. The base VAR is the most common traditional multivariate forecasting method. 

However, it is also extendable into more sophisticated methods such as VARMA or 

VARIMA, by applying MA components and differencing [39]. 

Concludingly, a property of most statistical forecasting methods is that they are mainly 

concerned predicting single steps into future. This length of the prediction period is also 

referred as forecast horizon [39,40]. However, a longer horizon is applicable in by 

iterating, by first predicting a single step in future, and then utilizing this prediction in 

next iteration as lag t-1. If a time series evolves gradually, one can predict a longer 

horizon, but in case of unstable and highly varying time series, it is difficult to predict 

more than one step in the future. Some scenarios enable the correction of falsely predicted 

instances with the real outcomes before making next predictions. [41] refers to this as 

multi-step forecast with re-estimation, as the method is re-estimated between predictions. 

This approach is desirable for any forecast if possible. 
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5.3 Machine learning 

Like traditional methods, most ML methods concern especially forecast. Plenty of papers 

have been published of ML forecasting methods, which mostly represent supervised 

learning, by regression of time series values, or classification of behavioral classes. 

However, there are no well-established benchmark datasets like the MNIST [42] in 

computer vision field, for comparing the experiments globally. This is likely because 

different forecasts vary heavily by number of lags, horizon length and other related 

variables, whereas a similar image recognition model can be applied to basically any 

collection of images of desired resolution. Because of this, many proposed ML methods 

are compared against traditional methods like ARIMA and VAR. This is also because the 

statistical methods have been established as the standard of forecasting, and ML has been 

concerned relatively lately. 

5.3.1 Neural networks 

The first major publications of ML for time series date back in the 90s, when artificial 

neural networks (ANNs) were a public interest. The first experimented network is multi-

layer perceptron (MLP), which is the most basic feed-forward neural network structure. 

The MLP’s components are input layer, hidden layers, and output layer. Input layer 

consists of input nodes, which are basically the feature values of a given input sample or 

instance. Between input and output layers there is an arbitrary number of hidden layers, 

each containing an arbitrary number of hidden nodes. Each node has adjustable weights, 

one per connection from previous layer, plus an additional bias weight. At the end of a 

node is an activation function, used for squashing the output into a desired scale. An input 

vector entering a node is modified by the corresponding weights and activation, before 

feeding forward to the next layer. In the end of the model is the output layer, which is 

either a single node representing the predicted value in regression or multiple nodes 

representing one output class per each in classification. In classification approach, the 

class prediction is denoted by which output node has the highest output value i.e. 

activation. The MLP is trained by the combination of forward propagation and 

backpropagation (BP). Forward propagation refers to feeding an input through the 
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network producing and output, whereas BP adjusts the weights of the layers, based on 

how correct this output is. This adjustment is propagated backwards in layers by chain 

rule, until finally modifying the first hidden layer’s weights. The optimization process of 

a weight is called gradient descent, as the error denoted by the loss function descends 

towards minima. 

Among the first published papers is [43]’s study comparing ARMA and MLP for 

forecasting monthly flour prices in three US states. They proposed a network for which 

the input variables are directly the lagged values of the series. For example, a lag distance 

of 6, would make this network’s input consist of 6 nodes. They used a single hidden layer, 

matching the number of hidden nodes with the number of input nodes. The output is a 

single regression output, evaluated by mean squared error (MSE) for backpropagation. 

They propose a couple of network architectures, including univariate models for 

predicting each state’s price separately and a multivariate network. The latter would use 

lags from every three states as input, and the output would still yield a prediction of just 

a single state’s price. Both ANN-approaches reportedly outperformed ARMA in 

prediction performance, but the best result was achieved by the multivariate network. 

This especially indicates that ARMA-models are inadequate whenever multivariate 

correlations are exploitable. 

Another type of ANN is presented by [44] and [45], applying the method for stock market 

time series forecast, formulated as classification. The ANN model is proposed by [44], 

whereas [45] presents comprehensive comparison of the model and other ML approaches 

for the task. The network takes as input the latest average stock price t-1 alongside 4 

statistical derivations, such as daily rise and fall rate, moving variance of this rate, and 

the ratio of moving variance. They also use a single hidden layer consisting of 7 nodes. 

The output layer consists of three market-behavioral classes, that are stable, unstable and 

crisis. The network reportedly set a benchmark for modelling the Korean stock market 

index from around a 1997’s crisis period. Furthermore, in [45]’s comparison, the network 

was one of the best performing against methods like logistic discrimination, and SVM. 

However, since the network only utilizes the latest lag’s features, it cannot explicitly 

model temporal correlation of multiple past values. In contrast, the network seems to learn 

the pattern of behaviors, i.e. which features denote stable and which features crisis period, 
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but not the temporal evolution in the series. This assumption could be verified by testing 

if the performance persists even after changing the order of the instances in the dataset. 

As a conclusion, it seems that basic ANNs may still be considerable methods of choice 

for time series forecast, even without exploiting temporal correlation. 

5.3.2 Support vector machines 

Another frequently experimented ML-method is SVM [46]. Originally a binary 

classification method; SVM forms a multidimensional border that divides input data into 

two classes. The border is set to maximize the margin that separates the two classes, 

where margin means a constant length from the border to closest instance in each side 

(see fig. 16 - left). This behavior is trained by penalizing on instances that fall within the 

margin. If the two classes are separable, one could fit a border that has a margin which 

only touches one point of each class. However, in most cases the two classes are 

inseparable. Therefore, one must allow instances to persist between the margins. The term 

support vectors refer to the instances falling within the final margin. The number of 

vectors is controlled by C, which is the penalty term. The higher C, the more penalty is 

given for multiple support vectors. However, a high C is more likely to overfit to training 

data and lose on generalization performance. In addition to C, another parameter of SVM 

is the kernel function, that defines how to project original data to the higher dimension. 

 

 

Figure 16 SVM classification (left) & regression (right). Red lines indicate the borders and 

black lines the margins. 
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The SVM-variant related to time series forecast is support vector regression (SVR). It 

differs from regular SVM, as the goal is not to separate classes but to fit support vectors 

to model the training data. Conceptually, where SVM maximizes the margin between two 

classes, SVR applies minimization of margin, so that it still contains most training 

instances (see fig. 16 right). Where in regular SVM the border defines the distribution 

between two classes, in SVR the border is a function of predicted output values, given 

some input variables. SVR has an additional Ɛ-hyperparameter which controls a threshold 

of how much to fit the border on the training data. This threshold is sometimes also 

referred as tube size [40]. The correlation between Ɛ and the threshold is negative, as with 

higher Ɛ, less training data falls within the margin of the border or the output function. In 

contrast, higher Ɛ usually provides better generalization and less overfit on training data 

for the model. 

SVM-forecast has been studied by many others in addition to [45] mentioned above. For 

instance, [40] experimented SVR for forecasting univariate financial data, similar to 

[44,45]’s dataset. As input, they used lags t-5, t-10, t-15, and t-20, along with a 100-day 

average feature. A comparison was made between MLP, regular SVR with predefined 

hyperparameters and SVR with adaptive parameters. Accordingly, the adaption of 

regularization term C and Ɛ is especially impactful for SVR’s performance in forecasting. 

Expectedly, the best model was achieved by the adaptive SVR, followed by the regular 

SVR that still reportedly outperformed MLP. This shows that SVM is an eligible model 

for time series forecast, at least with univariate datasets, and hence, less parameters 

requiring optimization. A similar experiment is presented by [47], forecasting univariate 

supply-chain demand time series with MLP, SVR and RNN. The performances are also 

compared against traditional methods, including AR and MA models. 5 lags are used as 

input variables, forecasting a predicted change in the demand for the next lag. The best 

models in this experiment are SVR and RNN; however, [47] consider their advantage to 

traditional methods insignificant, demonstrating traditional methods’ continuing 

eligibility in univariate time series forecast. 

SVM has also been studied for multivariate forecasts. [48] present a survey of SVM-

strategies for functional magnetic resonance imaging data analysis. The general task with 

the dataset is to classify image samples as perceptual states; however, these datasets also 
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form time series allowing forecast as well. [48]’s dataset differs a lot from the previously 

mentioned, since it is not only multivariate but also highly dimensional. Generally, SVM 

suffers from computational complexity and high-dimensionality issues (see 3.2.2). 

However, [48] report SVM as viable solution for classification, if attention is given to the 

feature selection process. Moreover, for regression forecast, they propose an SVR-

variation originally by [49], known as the relevance vector machine (RVM). It is 

Bayesian learning based, sparser and more compact model, reportedly achieving still a 

similar performance to SVR. Another of its benefits is that it does not require validation 

of hyperparameters C and Ɛ, as opposed to regular SVR. 

5.3.3 Recurrent neural networks 

The category of neural networks especially designed for modelling sequences are RNNs. 

They are trained with so-called backpropagation through time (BPTT) which means 

adjusting the network weights based on not just current, but also on preceding instances 

in a time series. This is implemented in network node level, by keeping a previous 

iteration’s node output values in memory and combining them with current node inputs 

to calculate predictions. A practical difference between regular ANNs and RNNs can be 

observed when preparing their datasets. Where regular network datasets are essentially 

two-dimensional tables, consisting of instances x features, RNN-datasets are transformed 

into three dimensional tables aka. tensors that consist of instances x timeframes x features. 

The timeframes-dimension defines the lag distance of the analysis. For example, if the 

number of timeframes is 6, a single lag’s features will populate 6 instances’ timeframes, 

once as t-1, t-2, etc., and finally t-6 for the last instance that covers this lag. Furthermore, 

where ANN-nodes are given input as single lag of features, RNN-nodes are given all lags 

in the sequence per each forward propagation. The hidden state is updated during the 

iteration of a single feature set sequence, but the last state can also be kept for the next 

feature set’s first iteration. [50] 

RNNs itself have originate in works of [51], but for example [43] considered training 

them too computationally complex during their experiments in 1990. Therefore, the 

RNNs are often considered deep learning i.e. deep neural networks. One of the first 

studies of RNN forecast is [47]’s paper in 2006, which is also discussed for their SVM 
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approach. Like with SVM, they are unable to gain significant advantage to traditional 

methods with their RNN. In addition to computational complexity, a key issue with basic 

RNNs is vanishing and exploding gradients [50]. In practice, vanishing gradients means 

the inability to learn long-term dependencies, i.e. dependencies on distant lags, and 

exploding gradients that some node weights get adjusted overly high, making the whole 

nodes futile. More recently, technical improvements in parallel computation have 

facilitated the computational complexity problems of ANNs in general. Furthermore, 

improved network technologies have been developed for overcoming the gradient issues. 

Network architectures such as LSTM and GRU have shown more significance especially 

in the language processing field [52]. The pivotal difference against basic RNNs is the 

capability of learning long-term dependencies. 

The main difference between LSTM and basic ANN and RNN is that in the place of 

hidden nodes there are so-called memory cells. They are much more complex than regular 

network nodes, containing for example multiple activation functions per cell, as 

compared to single function per regular node. In addition to keeping the outputs of 

previous iteration like regular RNNs, the cells maintain a hidden state or cell state, 

making predictions based on previous output, current input, and the cell state after 

previous iteration. An iteration of a cell can be divided into 3 following steps, starting 

from an input value vector fed to it: 

1. Forget – Determine whether and how much to forget the cell state based on previous 

output and current input. 

2. Update – Determine whether and how much to update the cell state (after forgetting), 

based on previous output and current input. 

3. Predict – Combine the updated cell state with the previous output and current input 

to make a prediction. 

 

Like with regular network nodes, the input of a cell is generally a vector of features of an 

instance. The state variable is essentially a vector of the same size. Hence, the operations 

between current inputs, previous outputs, cell states and cell functions are essentially 

vector operations like adding and multiplication. An LSTM cell has four main functions, 
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also referred as gates [4]. Each gate is associated with adjustable weights, and hence can 

be considered as individual neural networks. The forget-step operates with forget-gate, 

which is a sigmoid activation function. The update-step operates with update (sigmoid) 

and input (nonlinear transformation function e.g. hyperbolic tangent i.e. tanh) gates. 

Finally, the predict-step uses output-gate (sigmoid) and a similar nonlinear transformation 

of the final cell state, for making the prediction. Below is represented a more detailed 

illustration of the process (fig. 17): 

 

 h(t) & h(t-1): cell state after current and previous iteration 

 y(t) & y(t-1): prediction of current and previous iteration 

 x(t): current cell input 

 

Figure 17 LSTM-cell. After producing output, the h(t) and y(t)are passed as h(t-1) and y(t-1) 

for the next iteration. 

 

A single memory cell is often illustrated as a chain of cells, each representing single lag 

of an instance. With RNNs, this type of representation is also known as unfolding. It 

describes the recurrence that occurs when feeding input to a cell, as one instance always 

contains the desired number of lags, and the cell iteration is run once per each lag. In 

addition to having multiple recurrent cell iterations per instance, RNNs like LSTM can 
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consist of multiple individual cells, such as a regular network layer consists of multiple 

nodes. Similarly, the individual cells are independent, each cell learning a different model 

of the data. Furthermore, RNNs like LSTM can be increased in depth, consisting of 

multiple layers of nodes or cells [50]. This is also referred as stacking [53]. 

Another of the common modern RNN-techniques is GRU or GRU-network. It differs 

from LSTM by its memory cell structure, known as the GR-unit. Instead of maintaining 

a separate cell state like LSTM, GRU only operates with previous output and current 

input. A more lightweight component than LSTM-cell; the GR-unit contains only two 

gates, though still achieving long-term relation learning. The GRU-iteration can be 

divided into following steps: 

1. Update – Determine whether and how much to pass the previous output, based on 

current input. 

2. Reset – Determine whether and how much to forget the previous output, based on 

current input. 

3. Predict – Combine the gate outputs for a prediction. 

 

The reset and update gates are essentially like LSTM’s forget and update. However, the 

prediction step of GRU does not contain gates, but is a slightly more complex set of vector 

operations. The output vector of update gate is first transformed by 1– operation, which 

is essentially each vector value subtracted from 1. This vector is then multiplied by 

previous output vector, the result being the first piece of information of output. The other 

piece in the combination starts also from the update-gate’s output vector but is instead 

combined to nonlinear transformation of the reset-gate’s output vector. The two pieces 

are combined as vector sum, which is the final output of an iteration. [50,54] 
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Figure 18 GRU-unit 

 

For experiments, [29] compares both LSTM and GRU networks against ARIMA, 

forecasting univariate traffic flow data. They use 6 lags of 5 minutes periods, i.e. lag 

distance of 30 minutes to predict a regression output for 50 individual sensor values. Both 

of their RNN networks contain a single memory cell or unit, making the networks 

compact. Their LSTM predicts approximately 10% better than ARIMA, and their GRU-

network even marginally better than the LSTM. More significant results are achieved by 

[41] in 2018. They compare LSTM and ARIMA for forecasting univariate financial and 

economic time series. The models are ARIMA(5,1,0) and a single-cell LSTM with 4 lags 

per instance. The LSTM achieves an 85 % reduction of error against ARIMA on average, 

making a great improvement as compared to [29]. 

Despite ML’s capability of handling highly dimensional data such as multivariate time 

series, most publications concern univariate analysis. As an example of multivariate, [55] 

compares LSTM and VAR for forecasting multivariate aviation and climate sensor 

datasets. The forecast is formulated as regression of multiple features. The lag distance 

of VAR is chosen as the longest distance until error rate increases, and of LSTM, by a 

grid search of distance that minimizes error. Surprisingly, their VAR-model outperforms 

LSTM in the first dataset. This shows that traditional techniques are effective even in 
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multivariate modelling tasks. Another observation of the experiment is that stacking 

LSTM-layers does not increase prediction accuracy. 

[55] suppose the result is due to statistical methods superiority in utilizing linear relations. 

On the other hand, statistical methods cannot handle nonlinearities, whereas RNNs do. 

To address these limitations, they also experiment with a hybrid residual network model, 

combining the VAR-model to the LSTM. The hybrid starts with a VAR-component that 

outputs initial predictions that are then passed as input to the LSTM-component. Single-

lag VAR(1)-model is chosen as the VAR-part. The LSTM-part is fed the VAR-output 

and corresponding ground truth -vectors and is trained to fix the patterns of error that 

VAR leaves as residual. This model shows promising results, outperforming both single 

VAR and LSTM models in the same experiment setup. Moreover, the residual RNN 

reportedly requires less memory cells per layer than basic LSTM, which makes it also 

faster to train. 
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6 Case study – Regression forecast by supervised 

ML 

6.1 Learning task & evaluation 

In part I, a client dataset of company A was prepared for forecast, by selecting and 

extracting three feature subsets and a target variable to predict. In this chapter, the 

prepared dataset and the reviewed forecasting techniques are experimented and evaluated. 

As described in chapter 2, the experiments are performed via cross-validation of 

forecasting methods, forecasting parameters i.e. lags and horizon, and the preprocessed 

subsets. This validation is performed twice, once per each dataset 1 and 2. There are 

various other model parameters to optimize, such as the number of layers in neural 

networks, number of neurons in a hidden layers, loss function, and regularization terms. 

However, it is addressed that optimizing every parameter would require excessive testing 

and therefore, is not focused on this study. Instead, the models are initialized with “the 

most standard” parameters, and further hyperparameter-optimization is left for future 

research. Another decision is made to not experiment with statistical forecasting 

techniques i.e. VAR at all. This is because of the issues shown in 3.2, as especially 

categorical variables and missing values would require complete omission. 

The task set in chapter 2 is to predict the target variable from 15 to 30 minutes ahead. 

Since the point of interest is whether a warning should be triggered rather than forecasting 

the whole sequence, the learning task is formulated as a single-output regression of the 

target variable, for both 15 minutes and 30 minutes. For dataset 1, the corresponding lags 

for the minutes are t+2 and t+5, and for dataset 2, t+14 and t+29. Three ML methods are 

chosen as model candidates of the forecast: RNNs, basic ANN, and SVM. Although 

preprocessed, the data subsets are still rather complex; from 46 to 169 features per 

timestamp, with 60780 timestamps for dataset 1 and 50500 for dataset 2 (after the 

reduction in 4.4.2). The hardware for processing has 3,50 GHz of CPU, 12 GB of 

memory, and 8 GB of GPU memory. It is acknowledged that neural networks are perhaps 

the only processable method, especially since they can be trained utilizing GPU-
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processing provided by Tensorflow [56]. Therefore, mainly RNNs are focused, since they 

are expected to perform best. Both LSTM and GRU networks are experimented and 

compared to other methods. 

The regression performance of the candidate models is evaluated by comparing their 

MSE-losses. The last 20% of both dataset periods are dedicated as the testing portions, 

and the evaluation is based on prediction accuracy on these. After discovering the best 

models for all categories, they are evaluated as a warning system. This is done by first 

configuring a threshold for triggering warnings, and then evaluating the correctness of 

warnings triggered by the models (see 6.3). 

6.2 Model training & results 

6.2.1 RNNs 

Since capable of handling high-dimensional data, the RNNs are experimented with each 

of the prepared subsets 1, 2, and 3. A definitive advantage of them is that they can handle 

input as sequences, rather than single instances. As a comparison, a regular NN would 

require an input neuron for each feature of each lag. This would increase the 

dimensionality drastically if multiple lags were analyzed, especially if each lag contained 

multiple features. The RNNs are the only methods capable of sequence learning without 

excessive increase of dimensionality. 

The sequences are prepared followingly. As described in chapter 2, one hour is considered 

enough lagged history for making predictions. For dataset 1, this results in lags from t-1 

to t-12 for each t, making the data shaped 60780 x 12 x subset size. However, to have lags 

t-12 and t+5 for all instances, the number of instances is cut to 60763 from the end, and 

the target variable is cut similarly from the beginning. Dataset 2, on the other hand, is 

more problematic. The full one-hour period would take 60 timestamps per instance, which 

makes the model heavy to train. This number is reduced by analyzing only 30 minutes or 

timestamps per instance, making dataset 2 shaped 50441 x 30 x subset size. 
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The same network structure is used for both LSTM and GRU, allowing a direct 

comparison of their performances. For simplicity, a single recurrent layer only is added. 

The number of memory cells is defined as the 2/3 of features in the subset, rounded to the 

next 10. This is because an excessive number of neurons are likely to cause overfit on 

training data. Sigmoid and tanh are used as the memory cell activations, like in figs. 17 

and 18. The weight-update method, i.e. optimizer is chosen as Adam [57], since being a 

common first choice in today’s practice. The networks are trained with the first 80% of 

the analysis periods. However, another 20% of the periods’ length is removed from the 

training portions’ ends (see fig. 19). These are used as validation set, for simulating 

prediction loss after each epoch of training. The optimal epochs count is then chosen as 

the point where validation loss stops decreasing, which should prevent overfit on training 

data. After validating the epochs, the 20% validation portions are merged into training 

portions, so the final models are trained with first 80% and evaluated with last 20% of the 

datasets. 

 

 

Figure 19 Training, validation, and test split of neural networks 

 

Furthermore, before validating the epochs, a grid-search is performed on each dataset x 

subset x horizon x RNN combination, to optimize the learning rate for each. This is 

because the feature and lag dimensions vary per each combination. The learning rate is 

adjusted so that for every combination, a decreasing curve can be seen from both training 

and testing accuracy, before selecting the epoch count (see fig. 20) Lastly, the training is 

done in batches of 60 instances, which reflects 5 hours in dataset 1 and one hour in dataset 

2. 
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Figure 20 Example of training and validation losses (subset 1, LSTM). The optimal epoch count 

would be between 1 and 3 here. 

 

Results 

Already on optimization of learning rates and epoch counts, it is noticed that the 

validation loss decreases only little before starting to increase again. This suggests that 

there is not that much to learn, or no drastic increasement can be made as compared to a 

random guess. To find the optimal epoch counts, the learning rates are decreased by a 

large margin for some combinations. Another observation is that the learned patterns vary 

heavily for each combination, when repeating the training processes. The models might 

predict similar curves than the target variable on one iteration, but on second, they could 

predict very differently (see fig. 21). The final MSE-scores listed below are, therefore, 

calculated as an average of 3 iterations with the same parameters, but different random 

initializations:  
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Dataset 1 

 
Feature subset Rec. 

units 
Unit 

type 

L-rate 

15min 

Epochs 

15min 

L-rate 

30min 

Epochs 

30min 
MSE 

15min 

MSE 

30min 

1, all 110 LSTM 0.000001 3 0.00001 3 0.0490 0.0341 

  GRU 0.00001 6 0.0001 4 0.0238 0.0174 

2, expert defined 90 LSTM 0.00001 4 0.00001 4 0.0211 0.0214 

  GRU 0.000001 4 0.00001 3 0.0448 0.0224 

3, filter-reduced 30 LSTM 0.00001 2 0.00001 2 0.0310 0.0310 

  GRU 0.00001 4 0.0001 4 0.0486 0.0176 

         

Feature subset Avg. MSE  Unit type Avg. MSE  Horizon Avg. MSE 

1, all 0.0311  LSTM 0.0313  15min 0.0364 

2, expert defined 0.0274  GRU 0.0219  30min 0.0240 

3, filter-reduced 0.0321  

 

Dataset 2 

 
Feature subset Rec. 

units 
Unit 

type 

L-rate 

15min 

Epochs 

15min 

L-rate 

30min 

Epochs 

30min 
MSE 

15min 

MSE 

30min 

1, all 110 LSTM 0.00001 3 0.00001 2 0.0140 0.0153 

  GRU 0.000001 5 0.00001 4 0.0374 0.0252 

2, expert defined 90 LSTM 0.000001 1 0.000001 1 0.0612 0.0611 

  GRU 0.000001 4 0.000001 3 0.0384 0.0407 

3, filter-reduced 30 LSTM 0.0001 3 0.0001 2 0.0149 0.0149 

  GRU 0.0001 2 0.0001 4 0.0557 0.0460 

    

 

     

Feature subset Avg. MSE  Unit type Avg. MSE  Horizon Avg. MSE 

1, all 0.0230  LSTM 0.0302  15min 0.0369 

2, expert defined 0.0504  GRU 0.0406  30min 0.0339 

3, filter-reduced 0.0329  

 

* L-rate refers to learning rate, 15min parameters were used when training models for predicting 15 

minutes ahead and 30min when for 30 minutes ahead. 

 

What stands out on the results is the variance. On dataset 1, especially subset 2 and GRU-

network achieved the lowest losses on the testing portion. However, on dataset 2, their 

corresponding losses were highest. What is interesting, the 30 minutes ahead predictions 

were more accurate on average, against the 15 minutes predictions. These observations 

support the prior assumption that there is not much to learn in the data, and the few better 
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results are due to occasion. An example of the variance is shown in fig 21, representing 

GRU-network predictions of subset 3 on dataset 1. 

 

 

Figure 21 Example of variance in target predictions between 3 iterations. 

 

Another observation is that the MSE of predicted target variable might not reveal the best 

model. In fig. 21, the lowest loss was scored by the model of iteration 3. However, almost 

all its predicted values are very low in contrast to actual values. Depending on the 

threshold for triggering a warning, this model would likely miss all occasions that would 

need to be warned. In other terms, the model produces purely false negatives, making it 

useless. 

To experiment the issue further, a similar visualization is provided on the best performing 

combination, which is the LSTM model of subset 1 on dataset 2, illustrated in fig. 22. 

The testing portion of dataset 2 has one critically high error score at approximately 1/3 

of the span, followed by multiple relatively high scores during the middle. The represent 
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model would fail to all of them. To address the issue, it is decided to select the final model 

based on both loss and visual analysis. The optimal model should have relatively small 

MSE, but still follow the error score curve, at least during the critical parts that would 

require warning. This model selection is performed in 6.3, after experimenting with all 

candidate forecasting methods. 

 

 

Figure 22 Forecast of best MSE-performing model iteration. 

 

6.2.2 Basic ANN 

The second experimented method is the basic ANN, without recurrent layers. It is trained 

with single lag per instance, which ignores the temporal correlation, focusing only on 

feature relations. Since the RNNs are capable of learning both, this experiment should 

reveal whether the prior RNNs were able to utilize the change in time. If the results with 

ANN are relatively similar, it can be assumed that they could not. 

Since not learning sequences, the basic NN is trained faster. Therefore, an additional 

hidden layer is added, as depth could provide efficiency in learning complex functions 
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like the one here. The first hidden layer is kept the same size as in RNNs i.e. 2/3 of 

features. The second layer is defined as 1/3 of this size. The hidden layers are activated 

with rectified linear units (ReLU) [58], which is a common standard choice of today, like 

the Adam optimizer. The network structure and training processes are kept otherwise 

same, also utilizing the validation portion for optimizing the learning rate and epochs 

count. The training is also repeated trice, calculating the average of iterations as the final 

loss score of the model. 

Results 

Dataset 1 

 
Feature subset H1-

nodes 

H2-

nodes 

L-rate 

15min 

Epochs 

15min 

L-rate 

30min 

Epochs 

30min 
MSE 

15min 

MSE 

30min 

1, all 110 110 0.00001 4 0.00001 4 0.0285 0.0286 

2, expert defined 90 90 0.00001 3 0.00001 3 0.0206 0.0208 

3, filter-reduced 30 30 0.00001 3 0.0001 2 0.0563 0.0253 

       0.0351 0.0249 

 

Dataset 2 

 
Feature subset H1-

nodes 

H2-

nodes 

L-rate 

15min 

Epochs 

15min 

L-rate 

30min 

Epochs 

30min 
MSE 

15min 

MSE 

30min 

1, all 110 110 0.0001 2 0.00001 4 0.0229 0.0412 

2, expert defined 90 90 0.00001 3 0.00001 3 0.0221 0.0224 

3, filter-reduced 30 30 0.00001 4 0.0001 2 0.1117 0.0583 

       0.0522 0.0406 

 

 

* Colored cells = (column) average of predicted horizon. 

 

Based on the three-iteration average, the ANNs score higher MSE-losses on average. 

However, as shown in 6.2.1, this might not indicate worse generalization if considered as 

warning system. For ANN, especially subset 2 seems to provide good fit. One of the best 

fits (dataset 1, subset 2, 15min) is illustrated below (fig. 23). This model seems to 

reproduce especially some of the relatively high error scores from the actual data’s curve, 

that would likely be set for triggering warnings. 
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Figure 23 Example predictions from ANN 

 

6.2.3 SVR 

The final experimented method is SVM, more precisely regression by SVR. The training 

of SVM is slightly different from the neural network approaches. Instead of utilizing the 

validation portion for optimizing learning rate and epochs count, the whole 80% is used 

for training. This is because SVM converges to the global optimum, rather than iterating 

batches and epochs in search of best local optimum. The initial approach is to experiment 

with both regular SVR with parameter optimization and the RVM, used by [48]. 

However, the current available implementations of RVM are discovered to require too 

much memory to function even with the smallest subset. Because of this, the RVM is 

dropped out. Another issue is found with computation times of the regular SVR. 

Especially with subset 1 i.e. all features, the training takes relatively too long to complete 

so this subset is discarded from the SVR experiments. 

The regular SVR model is trained using radial basis function (RBF) kernel, for this being 

a standard choice in nonlinear regression, that this task should also represent. Due to time 

consumption, it is decided to optimize the two parameters, namely regularization term C 
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and Ɛ based on couple of test iterations rather than performing a complete grid search. As 

the outcome of these iterations, the C-parameter is set to 20, and Ɛ to 0.0001. 

Results 

   Dataset 1 Dataset 2 

Feature subset MSE 15min MSE 30min MSE 15min MSE 30min 

2, expert defined 0.0366 0.0433 0.0206 0.0187 

3, filter-reduced 0.0167 0.0170 0.0945 0.1059 

 

The SVR provides some better and some worse fits on the data subsets. Like basic NNs, 

there are great differences between the best and worst models. Especially subset 3 of 

dataset 1 provides visually one of the best results of the experiment (see fig. 24). 

 

 

Figure 24 The best visual fit of SVR 
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6.3 Warning performance 

The final evaluation is done on the best performing models, based on MSE scores and 

visual analysis of the forecast curves. Four evaluations are performed, one per each 

dataset and horizon combination. For each of these evaluations, the best model is chosen 

from all 3 forecast methods and their performances compared to each other. The neural 

networks are selected based on the following criteria: 

1. Best model by MSE, 

2. If at least one of its training iterations reproduces a similar curve to the actual target. 

This filters out models that have good MSE but bad generalization, caused by 

predicted error score staying closely around 0.5. 

 

The average of best of three iterations are once again used as the final score per neural 

network, whereas the SVR converges, so only one iteration is needed. The selected 

models are listed below. 

Task  Selected combination  

 RNN Basic NN SVR 

Dataset 1, 15min GRU; subset 1, all 2, expert defined 3, filter-reduced 

Dataset 1, 30min GRU; subset 2, expert defined 2, expert defined 3, filter-reduced 

Dataset 2, 15min GRU; subset 2, expert defined 2, expert defined 2, expert defined 

Dataset 2, 30min GRU; subset 2, expert defined 2, expert defined 2, expert defined 

 

The selection reveals that subset 2 provided clearly the best forecasts based on visual 

analysis. Another noteworthy factor is that based on the selection criteria, no LSTM-

networks were chosen, which implies that GRU is the more advanced RNN-type for this 

learning task. 

The warning evaluation is performed by first transforming the forecasts into binary 

classes. Each timestamp is labeled as either 1, representing positive test or “should warn”, 

or 0 representing negative test or “should not warn”. In order to apply the binary labeling, 

a threshold must be selected. The threshold refers to the error score value that if surpassed 

should denote a warning. After setting the thresholds, instances can be labeled by whether 
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their values surpass the threshold or not. Finally, the predictions’ binary labels are 

compared to the binarized real values to see if the warnings are triggered correctly. The 

thresholds are selected based on company A’s knowledge of how often critical errors 

occur, that being approximately twice a month. Based on this, the values are set as 7.5 for 

dataset 1 and 8 for dataset 2, illustrated in fig. 25. 

 

 

Figure 25 Configured warning thresholds. Dataset 1 (left), dataset 2 (right). 

 

The final warning performance evaluation is measured by calculating the area under curve 

(AUC) scores. Originating in the receiver operating characteristic (ROC), the AUC refers 

to the size of the area below the ROC-curve, which is the plotting of false positivity rate 

(FPR) against true positivity rate (TPR). In this study, false positives denote instances 

where the forecasting methods would trigger false alarms, and true positives instances 

that they would trigger correct alarms. The ROC-curve is illustrated in fig. 26. When FPR 

plotted in x-axis is relatively small compared to TPR plotted in y-axis, the area is larger, 

which denotes good AUC-score. Score 1 denotes perfect warning accuracy, score 0.5 

refers to warning completely by random, and 0 denotes reversed learning where the model 

always predicts the opposite of real value. 
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Figure 26 ROC curve and AUC-score 

 

Results 

Dataset 1 

 
Model FPR, 15min TPR, 15min AUC, 15min FPR, 30min TPR, 30min AUC, 30min 

GRU 0.0001 0.0014 0.5006 0.0127 0.0463 0.5168 

NN 0.0050 0.0163 0.5057 0.0049 0.0143 0.5047 

SVR 0.0008 0.0007 0.4999 0.0007 0.0014 0.5003 

 

Dataset 2 

 
Model FPR, 15min TPR, 15min AUC, 15min FPR, 30min TPR, 30min AUC, 30min 

GRU 0.0066 0 0.4967 0.0076 0.0123 0.5024 

NN 0.0007 0.0123 0.5058 0.0698 0.0864 0.5083 

SVR 0.2091 0.2593 0.5251 0.2292 0.2963 0.5335 

 

Despite the relatively good visual fits of some models, it is observed that the warning 

performances are poor. What’s special, both FPR and TPR are very low for most models. 

This means that the models would trigger warnings very rarely. This is a factor that is not 

seen in the visual evaluation of the model performances, because the dataset is so large. 

An assumption is that the models cannot predict multiple simultaneous high error scores, 
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where the high values can linger for some time, before dropping below the warning 

threshold. 

The model that stands out from the final evaluation is the SVR of dataset 2 (see fig. 27). 

It is the only model seemingly capable of simultaneous high error score predictions, and 

hence also achieves the best AUC-scores. However, these scores are still significantly too 

low for any reliable warning system to be established on it. Therefore, the implementation 

of this system is decided to be canceled, as for now. 

 

 

Figure 27 SVR forecast of dataset 2 (30min). The high FPR can be seen from the heavy 

fluctuation of the forecast-curve. 
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7 Discussion 

The results in 6.3 provide no accurate predicting of the target variable nor triggering of 

warnings, and the experiments are considered unsuccessful. This supports the null 

hypothesis set in chapter 2, being that no effective methods are applicable on dataset of 

such scale. A foremost issue in assessing the experiments is the number of steps involved 

in the whole process. Starting from the separate data engineering project of [31], one has 

had to make compromises and knowledge-based decisions without validating every step, 

for instance, when selecting the 1-minute and 5-minutes framerates for datasets. 

However, not all steps of the process could have been validated at all, as for example 

framerates denser than 1 minute would have reduced instances by too little, considering 

the available resources. Because of the large number of steps and incapability to evaluate 

all of them, one cannot verify which steps in the process are actually successful and which 

of them are not. 

Another issue that affects especially the preprocessing, is that one cannot explicitly 

evaluate the information value in a dataset. There are methods capable of explicit feature 

evaluation such as correlation coefficient to target variable. But, as shown, it is not 

straight applicable on time series data, as one should calculate the correlations between 

past features and future targets, instead of concurrent features and targets. Instead, the 

techniques and decisions are made by selecting candidates, applying the final modelling 

on them, and selecting best performing subsets by cross-validation. Many of the 

selections are also made without any validation or by not evaluating every option, since 

there would be greatly too many variables to assess. In addition to preprocessing 

parameters, there is also a heavy amount of model parameters that would need excessive 

testing to optimize for each dataset. 

A third issue discovered is the complexity of big data for such modelling task. High 

volume, dimensionality, and complexity of the dataset causes computation issues, as for 

example the SVMs take several hours to converge on the training data. Some potential 

methods are completely discarded, such as statistical models since requiring strictly 

numerical data. Another example is the RVM that causes memory issues, at least with the 

available implementation and resources. This supports the assumption that neural 
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networks are superior in big data modelling, since being the only technique capable of 

parallel computation by GPU-processing. 

Besides these issues, there are some limitations set by the target dataset that expectedly 

hindered the analyzability on this specific study. Perhaps the biggest of these are missing 

values. They are hard to replace especially in time series, where they could denote either 

occasional missingness, or informatically valuable outages. It is noted that the imputation 

and outage labeling applied in 4.3 is likely to corrupt the data and hence impair the 

forecasting accuracy. Therefore, the results could be improved by applying a different 

missing value policy, such as completely imputing every missing value by some mean. 

As a final thought, there is a certain limitation in applying regression forecast for warning 

logic. Since triggering warnings is essentially binary classification, one could achieve 

better predictions by formulating the learning task as classification of “should warn” or 

“should not warn”. However, a similar process than with regression is still required for 

determining the positive and negative instances in an unlabeled dataset such as client B’s. 

Overall, the experiments indicate that the scope of such project is too wide to achieve 

practical and efficient results. 

Summary of objectives set in chapter 2: 

 Preprocessing techniques were successfully discovered for transforming multivariate 

big data into analyzable format. In addition to reviewed methods, custom methods 

such as visual feature elimination were proposed. 

 A custom log-level-based target variable was crafted for unlabeled data. However, 

the efficiency of the variable is unclear as the final forecasts were inaccurate. 

 Neural networks were discovered as best method for big data forecast, for their 

parallel computability. However, no advantage was found in their prediction 

performance, partially due to lack of testing different parameters and depths. 
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8 Conclusion 

Part I of this thesis presents a comprehensive review on data preprocessing techniques, 

especially targeted on big data and time series analysis. One of the main issues is found 

out to be missing values and outages, common in real-time time series of certain 

industries. These are shown to hinder the usability of common preprocessing techniques 

such as missing value imputation, that work better with non-time-series data. Instead of 

replacing missingness by imputation, keeping them in data could provide valuable 

information of the nature of the time series, although they are challenging to model as 

variables of analysis. In addition to reviewed preprocessing techniques, some custom 

methods are also proposed, including a custom log-level-based target variable design, and 

a visual feature elimination process. 

In part II, a review is made on multivariate time series analysis and forecast techniques, 

from statistical to ML. The theory is put to practice by experimenting forecast on a case 

dataset, that is first preprocessed in the first part. It is discovered that neural networks are 

practically the only suitable forecasting method for such datasets, due to size and 

dimensionality of big data, and neural networks’ capability of training via parallel 

computation. SVMs are also successfully trained, although consuming inconveniently 

long training times. None of the forecasting methods perform significantly well, which 

could be due to unsuccessful preprocessing, too little method parameter optimization, or 

the mere difficulty of such learning task. This demonstrates a definitive issue of applying 

supervised ML on big data, which is the excessive number of factors and variables that 

must be validated, to ensure the success of the task. In the future, unsupervised ML 

methods, instead, could be experimented since they require less preprocessing. 
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