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Ovarian cancer is the gynecological malignant tumor with low early diagnosis rate 
and high mortality. Ovarian epithelial cancer (OEC) is the most common subtype of 
ovarian cancer. Pathologically, OEC is divided into two subtypes: Type I and Type II. 
These two subtypes of OEC have different biological characteristics and treatment 
response. Therefore, it is important to accurately categorize these two groups of 
patients and provide the reference for clinicians in designing treatment plans.  

In the current magnetic resonance (MR) examination, the diagnoses given by the 
radiologists are largely based on individual judgment and not sufficiently accurate. 
Because of the low accuracy of the results and the risk of suffering Type II OEC, most 
patients will undertake the fine-needle aspiration, which may cause harm to patients’ 

bodies. Therefore, there is need for the method for OEC subtype classification based 
on MR images. 

This thesis proposes the automatic diagnosis system of ovarian cancer based on the 
combination of deep learning and radiomics. The method utilizes four common useful 
sequences for ovarian cancer diagnosis: sagittal fat-suppressed T2WI (Sag-fs-T2WI), 
coronal T2WI (Cor-T2WI), axial T1WI (Axi-T1WI), and apparent diffusion 
coefficient map (ADC) to establish a multi-sequence diagnostic model. The system 
starts with the segmentation of the ovarian tumors, and then obtains the radiomic 
features from lesion parts together with the network features. Selected Features are 
used to build model to predict the malignancy of ovarian cancers, the subtype of OEC 
and the survival condition. 

Bi-atten-ResUnet is proposed in this thesis as the segmentation model. The network is 
established on the basis of U-Net with adopting Residual block and non-local 
attention module. It preserves the classic encoder/decoder architecture in the U-Net 
network. The encoder part is reconstructed by the pretrained ResNet to make use of 
transfer learning knowledge, and bi-non-local attention modules are added to the 
decoder part on each level. The application of these techniques enhances the 
network’s performance in segmentation tasks. The model achieves 0.918, 0.905, 0.831, 

and 0.820 Dice coefficient respectively in segmenting on four MR sequences. 

After the segmentation work, the thesis proposes a diagnostic model with three steps: 
quantitative description feature extraction, feature selection, and establishment of 
prediction models. First, radiomic features and network features are obtained. Then 



 

 
 

iterative sparse representation (ISR) method is adopted as the feature selection to 
reduce the redundancy and correlation. The selected features are used to establish a 
predictive model, and support vector machine (SVM) is used as the classifier. 

The model achieves an AUC of 0.967 in distinguishing between benign and malignant 
ovarian tumors. For discriminating Type I and Type II OEC, the model yields an AUC 
of 0.823. In the survival prediction, patients categorized in high risk group are more 
likely to have poor prognosis with hazard ratio 4.169. 

Keywords: Ovarian cancer; MRI; Radiomics; Segmentation; 

 

 

 

 

 

 

 

 

 

 



 

i 
 

Contents 
1 Introduction ............................................................................................................................ 2 

1.1 Overview of Ovarian Cancer ............................................................................................ 2 

1.2 Medical Imaging Technology ........................................................................................... 4 

1.3 Related Researches ......................................................................................................... 5 

1.4 Objective and Highlight of the Research ......................................................................... 8 

1.5 Datasets ......................................................................................................................... 11 

1.6 Thesis Structure and Organization ................................................................................ 14 

2 Introduction of Convolutional Neural Network ................................................................... 16 

2.1 Introduction ................................................................................................................... 16 

2.2 Convolutional Neural Network ...................................................................................... 16 

2.2.1 Convolutional Layer ................................................................................................ 17 

2.2.2 Pooling Layer .......................................................................................................... 18 

2.2.3 Transposed Convolutional Layer ............................................................................ 19 

2.2.4 Loss Function .......................................................................................................... 20 

3 Segmentation of Ovarian Tumors ........................................................................................ 23 

3.1 Introduction ................................................................................................................... 23 

3.2 Image Preprocessing ..................................................................................................... 23 

3.3 Segmentation Network ................................................................................................. 24 

3.3.1 Network Architecture ............................................................................................. 24 

3.3.2 U-Net ...................................................................................................................... 25 

3.3.3 Residual Module ..................................................................................................... 26 

3.3.4 Non-local Attention Module ................................................................................... 27 

3.4 Post-Processing.............................................................................................................. 28 

3.5 Result ............................................................................................................................. 30 

3.6 Summary ........................................................................................................................ 32 

4 Category Prediction of Ovarian Cancers ............................................................................... 33 

4.1 Introduction ................................................................................................................... 33 

4.2 Evaluation Methods....................................................................................................... 34 

4.3 Feature Extraction ......................................................................................................... 34 

4.3.1 Radiomic Features .................................................................................................. 34 



 

ii 
 

4.3.2 Network Features ................................................................................................... 37 

4.4 Feature Selection ........................................................................................................... 38 

4.5 Classifier......................................................................................................................... 39 

4.6 Result ............................................................................................................................. 40 

4.7 Summary ........................................................................................................................ 44 

5 Conclusion and Future Work ................................................................................................ 46 

5.1 Conclusion ..................................................................................................................... 46 

5.2 Future Work................................................................................................................... 47 

References ............................................................................................................................... 48 

Published Work ....................................................................................................................... 51 

Acknowledgement ................................................................................................................... 52 



1 Introduction 

2 
 

1 Introduction 

1.1 Overview of Ovarian Cancer 

Ovarian cancer is the gynecological malignant tumor with low early diagnosis rate 

and high mortality, accounting for 22,500 deaths annually in China [1]. The cancer 

lacks specific clinical manifestations at the early stage and the course of disease 

progresses rapidly. 70%-80% of patients are diagnosed with advanced cancer with 

extensive metastasis in the basin and abdominal cavity at first doctor visit. The 

clinical treatment effect is not satisfactory. About 70% of ovarian cancer patients 

relapse within two years and the survival rate within two year is only 50% [2]. 

There are many subtypes of ovarian cancer with diverse classification method. Among 

them, ovarian epithelial cancer (OEC) is the most common gynecological malignancy, 

accounting for more than 70% of deaths [3]. Pathologically, OEC is divided into two 

subtypes: Type I and Type II. These two subtypes of OEC have different biological 

characteristics and treatment responses [3]. The overall survival of patients with Type 

I tumors was confirmed much higher compared with those with Type II tumors after 2 

years of follow-up. Also, Type I OEC mostly presents in early stage, grows slowly 

and responds less frequently to platinum-based therapy [4]. On the other hand, Type II 

OEC, most are high-grade serous ovarian cancers (HGSC), is a highly invasive tumor 

with significant early sensitivity to platinum-based chemotherapy, leading to a poor 

prognosis [5]. To accurately classify patients into the right category may guide 

clinicians to design appropriate therapy plan. 

At present, the diagnosis and treatment of ovarian cancer tumors can be generally 

divided into four steps [6]. The first step is the imagological diagnosis, radiologists 

make the preliminary diagnosis of the subtype of ovarian cancers based on the image 

characteristics of the tumor, such as size, texture and location. Magnetic resonance 

(MR) images of ovarian cancer are shown as Figure 1-1. In the second step, clinicians 

determine whether to perform fine-needle aspiration (FNA) on the patient with 

reference to the radiological diagnostic results and patients’ clinical information. In 



1 Introduction 

3 
 

the third step, clinicians perform the FNA operation under the guidance of ultrasound, 

to obtain some tissues at safe position, and tests the obtained samples in pathological 

laboratory. In the fourth step, if the FNA results show the malignancy of the lesions, 

doctors perform the surgery to remove the ovarian tumors.  

 
Figure 1-1 Ovarian Cancer Magnetic Resonance Image  

 

Unfortunately, Type I and Type II do not have well recognized image characteristics. 

For this reason, during the imagological examination, the diagnosis given by the 

radiologist is largely based on individual judgment and not sufficiently accurate and 

informative. 

Because of the low accuracy of the results of the preliminary imagological 

examination and the risk of suffering Type II OEC, most patients will undertake the 

fine-needle aspiration and tumor removal surgery in subsequent steps. However, both 

treatments have negative effects. Fine-needle aspiration may cause damage to the 

patient's body mechanism. Tumor removal surgery is even more risky and may result 

in paraneoplastic disease and nerve damage. Some patients with benign tumors or 
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Type I OEC, receive the over-treatment programs, which wastes medical resources 

and poses risks to patients' health [7]. More accurate classification techniques for 

ovarian tumors can reduce the possibility of under-treatment or over-treatment. At 

present, there is an urgent need for computer-aided method to assist radiologists in the 

diagnosis of ovarian cancer. 

1.2 Medical Imaging Technology 

Medical imaging technology provides the non-invasive acquisition of disease 

information for ovarian cancer. In the diagnosis of ovarian cancer, computed 

tomography (CT), ultrasound (US), and magnetic resonance imaging (MRI) are the 

three most commonly used medical imaging methods [8].  

CT images reflect tissue characteristics via different absorption coefficients of X-rays 

in the human body [9]. CT has the advantages of short scanning time, fast localization 

of lesions and convenient imaging. However, the imaging procedure involves higher 

radiation, which may cause harm to the human body. Also, the resolution of CT 

images is lower than the magnetic resonance images.  

Ultrasound is another imaging method in diagnosis of ovarian cancer. As ultrasonic 

waves propagate through the biological tissues, because of the heterogeneity of 

different kind of tissues, various wave propagation patterns occur, such as reflection, 

diffraction, and interference [10]. As the result, the property of received ultrasound 

signal illustrates the condition of the pelvic organs and can be used for further 

processing like imaging. The ovarian lesions are detected by identifying the 

differences and properties of the tissue in the ultrasound image. The ultrasound 

imaging is non-radiative, inexpensive and real time imaging approach. But the quality 

of picture generated is much worse than that of MR images. Therefore, the application 

of ultrasound imaging in the diagnosis of ovarian cancer is limited to some easy tasks, 

such as the classification of benign and malignant tumors. 

The MR images are obtained by the interaction between the hydrogen nucleus and the 

electromagnetic pulse in the strong magnetic field. MRI provides excellent body 
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topographic structure and high soft tissue resolution with no radiation, which makes it 

suitable for observing pelvic conditions. [11]. By applying various emission strategy, 

such as the modification of the repetition time of the pulse, the echo time and the 

inversion time, different kinds of MRI sequences are acquired. Common magnetic 

resonance sequences include T1-Weighted Imaging (T1WI), T2-Weighted Imaging 

(T2WI), Fluid Attenuated Inversion Recovery (FAIR), T1 Contrast (T1C), Diffusion 

Weighted Imaging (DWI), and Apparent Diffusion Coefficient (ADC) [12]. Each 

magnetic resonance sequence has its own characteristics, specific for certain tissues. 

In general, we can observe clearer anatomical structure of the pelvic and abdominal 

cavity of the patient from the MR image relative to the ultrasound image and the CT 

image. Also, the T2WI sequence of MRI images are designed to capture water area, 

which is especially useful for the radiologists to observe cancer lesions which is full 

of blood. Compared to the other two imaging techniques, MRI has more adjustable 

parameters and higher resolution. In summary, MR images are chosen as the research 

objects in this thesis.  

Although MR images have so many advantages over other two imaging techniques, 

there still exists some difficulties for radiologists to accurately classify OEC. 

Therefore, it is important to discover the new effective algorithms based on MR 

images to help doctors diagnose the cancer. 

 

1.3 Related Researches 

The processing and analytic techniques in medical imaging have undergone 

tremendous development. Deep learning and machine learning algorithms are applied 

in this field to uncover deep characteristics in the image and capture features that are 

not easily noticeable to the naked eye [13]. With the help of these latest image models, 

better diagnosis and more precise prediction can be achieved.  

Deep learning witnesses breakthroughs in natural language processing, computer 

vision, speech analysis, knowledge graph and so on since last decade, and has gained 
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widespread attention in recent years [14]. It is mainly supported by neural networks 

and is considered to be the most dynamic and promising research direction in all 

fields of artificial intelligence [15]. In 2012, with the integration of some new 

modules such as new activation functions and the compatible support for Graphics 

Processing Unit (GPU), deep learning achieved amazing results in ImageNet, a 

million-level image dataset [16].  

Since then, deep learning has been successfully applied to various application due to 

its excellent performance, and medical image processing is one of the application 

scenarios [17]. Qiu et al proposed a multi-scale automatic segmentation of MR 

images based on CNN model, which classifies voxels into brain tissue classes [18]. 

Chlebus et al proposed a deep learning network where convolutional layers were 

adopted instead of a fully connected layers to speed up the segmentation process [19]. 

By using a cascading architecture, it connected the output of the first network with the 

input of subsequent networks to lessen computation. Bardou et al designed the new 

network structure with small kernels to classify each pixel in an MR image. The usage 

of the small kernel size reduces network parameters, which alleviated the risk of 

overfitting in building deeper networks. The authors also performs data enhancement 

and intensity normalization in the pre-processing step to facilitate the training process 

[20]. Rafiei proposed another CNN for brain tumor segmentation, in which he used 

the Dropout regularizer and Maxout activation function were adopted to handle 

overfitting problem [21]. In general, the deep learning program has been applied 

several times on magnetic resonance imaging, and the effectiveness of the algorithm 

has been well recognized.  

However, there has been no deep learning study for MRI of ovarian cancer with deep 

learning. Recent studies for ovarian cancer are mainly based on machine learning or 

medical image processing, the method is often referred as radiomics. 

Term radiomics is the combination of radiology and bioinformatics, and it is a new 

concept developed by these two disciplines [22] . Radiomics includes the quantitative 

extraction of high-throughput features from medical images, and the data mining from 

the image features. By establishing complex models, some targets such as 
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pathological information, molecular marker information, genetic information, and 

disease prognosis can be obtained. The concept of radiomics was initially proposed by 

Lambin in 2012 [23]. He first proposed the hypothesis and research procedure of 

radiomics, and applied image analytics technology to predict the relationship between 

gene expression and tumor characteristics and the relationship between image 

information and disease prognosis. Since then, radiomics began to become a research 

hotspot. Recently, radiomics has been used to analyze a variety of medical images and 

to provide different clinical information like tumor phenotypes and genetic protein 

status. 

At present, the research on computer-aided diagnostic tasks for ovarian carcinoma is 

mainly based on radiomics approach. Kazerooni et al studied in the benign and 

malignant ovarian tumors classification over 55 patients by using descriptive features 

with linear discriminant analysis (LDA) classifiers [24]. Their study showed that the 

time-to-peak (TTP) and wash-in-rate (WIR) features showed a significant sensitivity 

in differentiating between malignancies and benign ovarian tumors. Rizzo et al 

researched on the relationship between radiomics features on CT images and 

prognostic factors in a sample of 101 patients with ovarian cancers. Their results 

showed that CT radiomic features were effective in predicting the risk of relapse in 

ovarian cancer cohorts during 24-month post-treatment [25]. Qiu et al compared two 

groups of CT ovarian images (pre-treatment and post-treatment). Their results showed 

that three key features: tumor volume, density, and density variance were useful in 

predicting 6-month progress-free survival (PFS). Their model achieved an accuracy of 

0.831 in predicting PFS when applying the combination of these three features [26].  

Although the previous studies made contribution in assisting radiologists in 

diagnosing ovarian tumors, there still exist some shortcomings in these researches. 

First of all, as far as we know, there has been no related work on OEC classification 

based on medical images. According to the previous introduction, the classification of 

Type 1 and Type II has significant clinical value and provides important reference for 

the design of treatment plans afterwards. Second, although deep learning has been 

applied to medical images of some diseases, currently there is no deep learning 
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application for ovarian cancer according to our knowledge. Deep learning has certain 

advantages over radiomics method. Deep learning has strong capacity to extract 

features from images, and it is especially useful for end-to-end model building. The 

previous research on ovarian cancer has not applied deep learning, which limits the 

performance of the models. Third, the previous model requires radiologists to 

manually segment the lesion area for the diagnosis of ovarian carcinomas. This 

operation consumes doctors' time, which hinders the promotion of the model in 

practical applications, and reduces the attractiveness of computer-aided diagnosis. 

Therefore, a fully automated diagnostic model for ovarian cancer is needed to 

optimize the workflow of the entire diagnosis and treatment, and to benefit both 

doctors and patients. 

1.4 Objective and Highlight of the Research 

The goal of this research is to combine the deep learning and radiomics to implement 

the automatic computer-aided diagnosis system of ovarian cancer based on MR cancer 

images to predict the category of OEC and fulfill other ovarian cancer diagnostic 

tasks. The model provides a diagnosis reference for the clinician, improving the 

efficiency and accuracy of the medical examinations.  
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Figure 1-2: Flowchart of CAD of Ovarian Cancer 

 

The overall framework of ovarian cancer diagnostic system in this thesis is shown in 

Figure 1-2. During the training process, only training data is included. Test set is used 

to obtain the performance of the final model. Also, the data augmentation operation in 

image preprocessing is omitted during the model evaluation. 

The train model starts with the acquisition of the MR images of ovarian tumor, and 
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then the images are performed the preprocessing operation with data augmentation. 

The lesions are segmented through Bi-atten-ResUnet model, which is a revised U-net 

model proposed in this thesis. The details of the segmentation model will be 

introduced in the following chapters. After image segmentation work, we can identify 

the region of interest (ROI) of ovarian tumors. Then lesions analysis will be 

performed based on the segmentation results, which includes two parts. First, 

according to the radiomic features extraction system proposed in this thesis, radiomic 

features are obtained, including intensity, shape features, texture features, wavelet 

features. Second, the network features are acquired from the segmentation network to 

assist the lesion analysis. These two kinds of features are sent to perform the feature 

selection. Finally, the diagnostic tasks of ovarian cancers are fulfilled with the 

selected effective features. The diagnostic tasks include the classification between 

benign and malignant cancers, the classification between Type I and Type II OEC, the 

prediction of KI-67 and the survival analysis. 

According to the research work, the main innovative points of this thesis can be 

summarized as follows: 

1. This thesis proposes a segmentation algorithm for ovarian cancer lesions called 

Bi-atten-ResUnet based on MR images. The network is established on the basis 

of U-Net with adopting latest techniques such as Residual block and non-local 

attention module to deal with the problem of the complex background of ovarian 

cancer images. The work of the segmentation task is not only the prerequisite for 

the further analysis of ovarian cancer lesions. Meanwhile, the segmentation 

model has its own clinical value. By identifying the location of the lesion, it can 

help surgeons to complete the cancer removal operations more effectively and 

accurately. Therefore, the proposed segmentation model has certain significance 

for optimizing the diagnostic process of ovarian cancer. 

2. In view of the problem that the current examination of ovarian cancer MRI is 

largely affected by subjective factors of radiologists; a quantitative description 

system of ovarian cancer images is proposed to quantify the information related 

to ovarian cancer. We acquire not only the radiomic features from the lesion area, 



1 Introduction 

11 
 

but also the network features of the segmentation network, which enhances the 

performance of our model. 

3. The model proposed in this thesis applies multi-sequence MR images to analyze 

ovarian cancer. Previous ovarian cancer radiomics methods reported were mainly 

based on ultrasound images and CT images. The MR images used in this thesis 

have higher resolution and are more suitable for the diagnosis of ovarian cancer. 

Also, the results of multi-sequence and single-sequence prediction models are 

compared, and the validity of multi-sequence method is proved.  

4. According to our studied samples, the proposed diagnosis system of ovarian 

cancers achieves good performance in benign and malignant ovarian tumor 

classification, Type I OEC and Type II OEC classification tasks. The accuracy of 

the model prediction exceeds the diagnostic results of the radiologist, which 

illustrates that our model can provide the effective reference for radiologists when 

they interpret the MR images diagnosis. 

1.5 Datasets 

The data collection work in this research was approved by the review board of 

Gynecological and Obstetric Hospital, School of Medicine, Fudan University. First, 

altogether 438 patients with suspected with ovarian tumors were retrieved from the 

hospital Picture Archiving and Communication System (PACS, GE). Then, we set the 

inclusion criteria for select the appropriate candidates for the study: 1) no previous 

pelvic surgery; 2) no previous gynecological disease history. Finally, the total studied 

samples we acquired were 280 patients (Table 1-1 and Figure 1-3). The class labels 

are based on the pathology reports. Pathological examination is the golden standard in 

the ovarian cancer diagnosis.  
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Figure 1-3: Flow chart of patient selection for different classification tasks 

 

 

The whole data is divided into two parts: a training set and an independent testing set. 

In terms of age, CA-125, Ki67 expression and category information, there is no 

statistically significant difference between training cohort and independent testing 

cohort (Table 1-2). 

 

 

 

 

 

Table 1-1. The summary of the pathological types of the selected samples. 
Pathological type Numbers Age(yrs.)* 

Type I ovarian cancer  100 43.3 ± 13.9 
Type II ovarian cancer 81 54.5 ± 9.9 

Others malignancies 27 43.6 ± 15.3 
Benign etiologies 72 43.6 ± 19.5 

Total 280 46.2 ± 11.8 
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Table 1-2. Clinical and pathological data summaries in training and testing 
cohort. 

  Training cohorts 
(N = 195) 

Testing cohorts 
(N = 85) 

P 
value 

Age(yrs.)  47.08±15.81 44.66±16.26 0.884 
     <30 35 (17.9%) 30 (35.3%)  
     30-50 66 (33.8%) 18 (21.1%)  
     >50 94 (48.3%) 37 (43.6%)  

Ki-67 
expression 

(%) 

 
28.28±23.20 22.72±21.91 0.073 

     <50 139 (71.3%) 70 (82.4%)  
     50-75 46 (23.6%) 8 (9.4%)  
     >75 10 (5.1%) 7 (8.2%)  

CA-125 level 
(IU/L) 

 483.69±821.00 513.04±1105.27 0.555 

     <35 28 (14.4%) 25 (29.4%)  
     35-200 72 (36.9%) 32 (37.6%)  
     200-500 35 (17.9%) 15 (17.6%)  
     >500 60 (30.8%) 13 (15.4%)  

Category    0.113 
 Type 1 60 (30.8%) 37 (47.1%)  
 LGSC 9 (4.7%) 6 (7.1%)  
 EC 1 (0.5%) 4 (4.7%)  
 Clear Cell type 17 (8.7%) 9 (11.8%)  
 Borderline type 33 (16.9%) 18 (23.5%)  
 Type 2    
 HGSC 63 (32.3%) 17 (21.2%)  
 Benign 52 (26.7%) 23 (23.5%)  
 Malignant 20 (10.3%) 8 (8.2%)  

FIGO*    0.111 
     IA 44 (35.7%) 26 (44.8%)  
     IIA 14 (11.4%) 2 (3.4%)  
     III 55 (44.7%) 27 (46.5%)  
     IV 10 (8.1%) 3 (5.2%)   

 

MR images included in the thesis were acquired via a 1.5-T MR system. Multi-MRI 

sequences used for the assessment in this thesis include the axial T1-weighted 

imaging (Axi-T1WI), sagittal fat-suppressed T2-weighted imaging (Sag-fs-T2WI), 

and coronal TSE T2WI (Cor-T2WI). These four sequences of images are considered 

most useful when radiologists diagnose ovarian tumors. Based on the prior knowledge, 
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we assume that they are also the suitable samples for image processing. Manual 

annotations of ovarian lesions were performed by one experienced radiologist (H.Z. 

with more than 10 years of experiences) on the MATLAB platform. 

1.6 Thesis Structure and Organization 

The content of this article is organized into six chapters. 

Chapter one mainly introduces the importance of ovarian cancer diagnosis based on 

MRI, the significance of ovarian cancer lesion segmentation and the ovarian cancer 

subtype prediction. The chapter also briefly describes the advantages of radiomics and 

deep learning in medical image segmentation and classification tasks. Finally, the 

research objective and structure of the thesis are included. 

Chapter two introduces the background knowledge and related research work of deep 

learning, including convolution layer, pooling layer, loss function and so on. These 

cutting-edge technologies provide the necessary support for the research in this thesis. 

Chapter three proposes a segmentation algorithm for the segmentation of ovarian 

cancer lesions in MR images. According to the characteristics of the lesion image, the 

base network structure of U-Net is selected. Some latest deep learning techniques, 

such as non-local attention and Residual blocks are adopted to improve the 

segmentation performance of the model. The effectiveness of the improved algorithm 

is evaluated by some comparison experiments. The output of the image segmentation 

part will be used to guide the diagnostic model in the next chapter. 

Chapter four explores the model for predicting ovarian tumors subtypes and other 

tasks related to ovarian tumors. The combination between radiomic features, 

including intensity features, texture features, shape features, and deep learning 

network features are fulfilled. Combined with the segmentation algorithm introduced 

in Chapter three, a fully automatic ovarian cancer diagnostic model without 

annotation prerequisite is proposed to provide a reference for radiologists when they 

make diagnosis. 

Chapter five is the conclusion part. The contribution of this thesis is summarized, the 
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shortcomings of the model are analyzed and the plan for model further optimization is 

forecasted. 
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2 Introduction of Convolutional Neural 
Network 

2.1 Introduction 

Chapter two mainly introduces some core knowledge of deep learning, which is the 

basis of the model proposed in this thesis. The convolutional neural network (CNN) 

structure is the foundation of the network architecture used in this thesis. Some 

content of deep learning will be introduced in the next paragraphs. 

2.2 Convolutional Neural Network  

CNN originated from the feedforward artificial neural network (ANN). Because of the 

characteristics of shared weight architecture and translation invariance, CNN is 

regarded as shift-invariant or spatially invariant artificial neural network. Therefore, it 

is the most popular network in solving the computer vision tasks. CNN is mainly 

inspired by biological processes, and the connection between neurons is similar to that 

in animal visual cortical tissue. Each visual neuron is responsible for responding to a 

small area in the visual field. The visual system integrates the signals received by 

massive neurons to obtain the overall content of the field of view. Compared with 

other image processing algorithms, CNN is considered to have low dependence on 

preprocessing. In many cases, even the original image can be directly used as a model 

input, which is very convenient to use. When CNN model is used, there is no need to 

manually design special features, and the model can independently learn the 

characteristics from a large amount of sample data. CNN applies convolution and 

pooling operations, which is highly computationally efficient and allows the CNN 

model to run on some devices with low computing power. Currently, CNN is widely 

used in medical images and natural images, and is considered to be one of the most 

mature ANNs. In this thesis, CNN is mainly used for lesion segmentation. In the 
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following paragraph, its core modules and algorithms will be introduced. 

 

2.2.1 Convolutional Layer 

 
Figure 2-1: Convolutional calculation method 

 
The convolutional layer is the core part of CNN. It consists of a set of learnable filters 

or kernels that can perform most feature extraction work. Each convolutional kernel is 

four-dimensional spatially, namely length, width, input depth, and output depth. The 

sizes of length and width are usually small odd numbers, such as 3*3 or 5*5, to limit 

the computation burden within convolutional layers. During forward propagation 

period, each filter slides over the input vectors, making the convolutional calculation. 

The calculation actually is the dot product between the kernel and the corresponding 

positions of the input feature map. When the filter slides over the all the candidate 

positions of the input vector, one two-dimensional output feature map is generated 

which is the response of the filter at each spatial position. There are a set of filters in 

each convolutional layer, and each filter will produce one individual two-dimensional 

activation map. Finally, all the maps are stacked along the depth dimension and the 

output is generated. The convolution operation follows equation (2-1). 

 0 0

B( , )= K( , )*A( , )
m n

i j m n i m j n
= =

− −
  (2-1) 

Where K  symbolizes the convolution kernel, and A  is the input feature map and  

B  is the output feature map.  

The main reason for introducing convolutional layer is to reduce the number of model 
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parameters and pay more attention to the local relationship. The characteristics of the 

convolutional layer just meet these two requirements.  

(1) Weight Sharing:  

CNN is often used to deal with the image data, the very high dimensional data. In this 

condition, it is impractical to connect neurons to all neurons in the previous layers, 

which leads to unacceptable heavy computation and huge model parameters. During 

convolutional layers forward, each time the same convolution kernel is used to 

translate the entire feature image to some specific information, which largely reduces 

the number of parameters and the computational operations. 

(2) Local perception:  

It is generally considered that the pixels of the image have spatial correlation, the 

closer the distance is, the closer relationship is. Convolutional kernel, with much 

smaller size compared to the whole feature map, focusing on every local area across 

the map, extracting the characteristics in the certain region. 

Each convolutional kernel represents the knowledge which the model learns from the 

sample data. For example, kernels in the first layer may learn to analyze the edges in 

certain directions or spots of a certain color and kernels in higher layers learn the 

entire object outlines or shape patterns. 

2.2.2 Pooling Layer 

After the features are extracted through the convolutional layer, it is desirable to use 

these features for further processing. However, if all the obtained features are used for 

analysis, it will lead heavy calculation and over-fitting problems. Therefore, it is 

necessary to use the pooling operation to acquire the most representative features, 

thereby simplifying the calculation and improving the robustness of the model. The 

features after the pooling layer discard the insignificant details and retain only useful 

knowledge that are important to the results. Also, the exact position of the feature in 

the whole image is blurred, and the relative position between the features is preserved, 

so that the influence of the distortion of the object shapes can be well overcome. 
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The pooling process applies a down-sampling function without any parameters. A 

window slides with a specific step size from the upper left corner to the lower right 

corner of the feature map and calculates and output map of the corresponding area. 

The most common size of the window is 2, which reduces the map by 75%, as is 

illustrated in Figure 2-2. The most common way to pool is maxpooling.  

 

 
Figure 2-2: Maxpooling calculation method 

 

2.2.3 Transposed Convolutional Layer 

Transposed convolution, also known as deconvolution, generally used for the 

upsampling operation to restore the low-resolution images to the size before pooling. 

As shown in Figure 2-3, the operation of deconvolution is similar to convolution, and 

actually the calculation can be based on the convolution operation. A kernel with 

certain size is used to filter the input image, and the output result will be larger than 

the input image. The stride size determines the ratio between output size and input 

size. 
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Figure 2-2: Transposed convolution calculation method 

 

The stride in each transposed convolution layer is set two in this thesis, which 

amplifies the width and height of the input feature map two times. The reason is that 

the pooling operation performed in the shrinking path reduce the width and height of 

feature map by 2, so that the final output of the model will be the exact same size of 

the original input images. 

2.2.4 Loss Function 

The loss function is the key to the effectiveness of the deep learning model, which 

plays an important role in the training process of the model. The loss function 

measures the distance between the prediction of the model and the true labels, so as to 

evaluate the fitting ability of the network. The larger the loss value means the worse 

the network's ability to fit, or the larger the bias of the model. The loss function is the 

entry for the back propagation.  

In CNN classification model, the cross entropy (CE) loss function is one of the most 
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commonly used loss functions of the researcher. It is defined as follows: 

 
E( , ) logj j

j
t y t y= −

 (2-2) 

Where t  and y  respectively represent the real category label of the training sample 

and the predicted value of the CNN model, and y j  represents the each output result 

of the Softmax function, as is shown in formula (2-3) 
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j

ez
e

= =
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 (2-3) 

In image semantic segmentation task, the pixel-level cross entropy is the most 

common used loss function. In this case, the unit of classification is each pixel rather 

than an object. There are two categories of the labels: image foreground and 

background. Usually, the loss function compares the target vector encoded by the 

one-hot code with the prediction vector to obtain the average accuracy of all 

predictions. Since the pixel-level cross entropy calculates the influence of each pixel 

equally, the loss value will be dominated by the class with largest numbers of pixels in 

the training process when the sample category is imbalanced. And it is not suitable for 

the segmentation tasks when the border of object changes softly. 

Another popular loss function for image segmentation tasks is based on the Dice 

coefficient, which essentially measures the overlap degree of two object. The value of 

Dice coefficient ranges from 0 to 1 and Dice coefficient of 1 represents completely 

overlapping of the predictions and true labels. Formula of Dice coefficient is as 

follows: 

 
Dice

A B
A B


=
+  (2-4) 

Where A B  represents the total number of common elements in the A  and B  

sets. To calculate numerator A B , we multiply the prediction mask and the label 

mask, and sum up the matrix result of the multiplication to achieve A B . The 

numerator of the dice loss function focuses on the common activations between the 
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prediction and the target mask, and the denominator is related to the amount of 

activations in each mask. This characteristic can be used to normalizes the loss based 

on the size of the target mask, so it is easier for the model to learn from classes that 

are less distributed in the image. 

Therefore, the adoption of the Dice loss function can be used as the complement to 

the pixel-level cross entropy to alleviate the problem caused by imbalanced 

distribution of sample categories. 
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3 Segmentation of Ovarian Tumors 

3.1 Introduction 

Image segmentation of ovarian cancer lesions is a crucial step in the automatic 

diagnosis system for ovarian cancer. The purpose is to separate the tumor lesion area 

from the normal organs in the MR image. After that, the lesions can be analyzed 

based on the segmented tumor area to figure out some specific characteristics and to 

achieve diagnostic tasks such as tumor subtype prediction and survival analysis, 

which provides a reference for assisting doctors to make more accurate diagnosis [17], 

[27]. If the lesion is not accurately segmented, further analysis of the lesion image is 

not accurate, and the final prediction result will greatly deviate from the real situation. 

The segmentation work itself also has important clinical value. Accurate positioning 

of the tumor area can be used to provide a reference for clinicians for operative 

preparation. At present, there have been studies on the segmentation of different 

lesions on different MR images, but the automatic segmentation of ovarian tumor has 

not been covered before. This section will present an ovarian lesions segmentation 

algorithm based on combination of image processing, deep learning and 

post-processing method. 

3.2 Image Preprocessing 

Image preprocessing in this thesis is mainly the data augmentation operation. The 

target of the data augmentation is to solve the over-fitting problem. Over-fitting is a 

common problem in computer vision tasks, and the essential reason is that there are 

too many model parameters with too little data. The simple and intuitive approach to 

mitigate overfitting is to augment the number of training data. However, in practical 

situations, the cost of obtaining true samples is high, and it is often difficult to directly 

augment the training sets. The condition is especially obvious in medical imaging 
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problems because the source of data is heavily limited by the number of patients 

attending the hospital, and each MR examination costs a lot. The usage of patient 

medical data is also subject to a lot of regulation. Fortunately, data augmentation of 

image samples is relatively easy compare to other kinds of data format. For the 

original image in the training set, we can generate a new sample by simply translating 

or rotating it. Although the new image may generate some irrelevant sample features, 

the corresponding structural features of the original image are consistent. In this thesis, 

each image sample will randomly generate 4 images based on the random 

combinations of augmentation approaches. Image augmentation method include 

flipping, rotating, translating, brightness changes, contrast changes, etc. 

3.3 Segmentation Network  

3.3.1 Network Architecture 

The architecture of segmentation network Bi-atten-ResUnet proposed in this thesis is 

as shown in Figure 3-1. The name of the model shows that it is established on the 

basis of U-Net with Residual block and non-local attention module. It preserves the 

classic encoder/decoder architecture in the U-Net network, as well as the skip 

connections. The encoder part is reconstructed by the pretrained ResNet to make use 

of transfer learning knowledge, and bi-non-local attention modules are added to the 

decoder part on each level. The application of these techniques enhances the 

network’s performance in segmentation tasks. Next, three core techniques: U-Net, 

Residual block and non-local attention mechanism will be introduced.  
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Figure 3-1 Segmentation Neural Network Architecture 

 

3.3.2 U-Net 

U-Net [28] was proposed in 2015 and has been widely used in many fields of industry, 

such as medical image segmentation and component image segmentation. Like many 

segmentation networks, U-Net uses an encoder/decoder structure. The skip 

connection is used to connect the low-level features with the high-level features to 

form the combination of texture information and semantic information. This 

architecture helps the decoder to better restore the detailed features of the picture. It 

also makes the encoder and decoder no longer two separate processes to improve 

prediction accuracy. The decoder part of the classic U-Net is different from the FCN 

[29]. When dealing with complex background image data, U-Net shows better 

segmentation result than the FCN. Ovarian cancer MR images usually contains lots of 

texture details, so U-Net is chosen as the backbone network in this thesis. 

The encoder/decoder structure is actually not a fixed form, but an architectural idea. 

We can adjust the number of encoders or decoders blocks as needed, or even 

completely change its original forms. In this thesis, the entire encoder is reconstructed 
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by the ResNet which is pre-trained on imagenet datasets, and the attention module is 

added in the decoder part. 

3.3.3 Residual Module 

ResNet improves the performance of the network significantly by simply adding a 

part of the shortcut connection, compared with the conventional stacked CNN [30]. 

The existence of shortcut makes the ResNet block provide a highway to pass "identity 

mapping" information. With such unique design, ResNet module is considered to be 

one of the most effective solutions to combat the vanishing gradient problem. [31], 

[32]. The structure of the ResNet block is as shown in Figure 3-2.  

 

 
Figure 3-2 Residual Module 

 

The reason for the vanishing gradient is that in deep CNN network, the gradient 

propagation from the bottom layer to the top layer needs continuous multiplication, 

and it may result in the small gradient, which makes the deep network model not easy 

to train [33]. An extreme solution to avoid the vanishing gradient is to let the added 
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layer not learn new features at all, only to replicate the characteristics of the shallow 

network. These layers are identity mapping, which is the essential idea of ResNet. In 

this condition, the residual is 0 and the performance of the deep network should be at 

least as good as that of the shallow network. This situation prevents the performance 

of the network from degrading. In actual cases, the residual is not 0, which makes the 

network layer can at least learn some new information based on the input. ResNet 

mitigates the training degradation of deep networks through residual learning, so that 

deeper networks can be trained. The formula for the residual unit can be expressed as 

shown in equation (3-1): 

 ( ) ( )H X F X X= +  (3-1) 

3.3.4 Non-local Attention Module 

 

 

Figure 3-3 Non-local Attention Module 

 

The idea of non-local attention module originates from the way we observe things. 
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When people observe objects, we don’t pay attention to the whole part of the object. 

Instead, we are generally concerned with only a certain part. In other words, the 

attention distribution of each position is different. The concept of attention 

mechanism was first proposed in 2014 [34]. Up to now, attention-based models have 

been widely used in a variety of deep learning tasks. Wang et al. proposed a non-local 

attention module [35], as shown in Figure 3-3. The source of the idea is that the 

convolution unit in CNN only pays attention to the area of the neighborhood kernel 

size at a time. Even if the late receptive field is getting larger, it is still a local area 

operation, thus ignoring the other regions of the feature maps, such as distant pixels’ 

contribution to the current region. Non-local attention module solves the problem by 

utilizing all the pixels in the feature map to calculate the attention coefficient of each 

pixel. 

The purpose of applying the attention module in this thesis is to let the network focus 

on the tumor area. In addition, we also compared the performance difference between 

the single attention module and bi-attention module. 

3.4 Post-Processing 

On the basis of the neural network model, further post-processing operations are made 

to enhance our segmentation results. The post-processing operations are mainly 

divided into two steps. The first step is called connected domain area filter (CDAF). 

As a result of network segmentation, some small misdetected targets are sometimes 

generated.  
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Figure 3-4 Connected Domain Area Filter 

 

As shown in Figure 3-4, these small connected domains usually have much smaller 

number of pixels compare to the true tumor areas, so they can be removed by CDAF. 

The minimum area threshold is set in CDAF, the connected domains whose areas are 

less than the threshold will be eliminated from the target predictions. Actually, in the 

experiment, this threshold is set to 40. 

The second step is called location judgment (LJ). When observing the segmentation 

results, we find that the neural networks sometimes misdetect bladders as ovarian 

tumors. The reason can be that the bladder is rich in water, so it shows a high signal in 

the MR images. This pattern is similar to the ovarian cancer tumor, since the tumor 

contains a lot of blood, also resulting in high activations in the images. Therefore, the 

model is easy to misjudge the bladder as a tumor, which will undoubtedly have the 

bad influence on the diagnosis accuracy. At the same time, the CDAF does not work 

in this case due to the large area of the bladder. Therefore, we propose another 

post-processing method based on physiological knowledge. Since the position of the 

bladder is always lower than the uterus and ovaries in the pelvic cavity, LJ can be 

used to remove the bladder with lower location and retain the correct ovarian tumor. 

The process of this operation is shown in Figure 3-5. 
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Figure 3-5 Location Judgment 

 

3.5 Result 

In this section, the performance of final proposed method Bi-atten-ResUnet and the 

partial improved form is compared. The structural differences between the different 

models and the corresponding performances are shown in Table 3-1. There are also 

experiments to compare the results with and without postprocessing. The split of 

training and testing data is as shown in Table 1-2. The metrics used for evaluation in 

this thesis is the Dice coefficient. The theory and calculation of the Dice coefficient 

has been introduced in the loss function section in Chapter 2. The larger the value of 

the Dice coefficient, the closer the prediction result of the model is to the real value, 

and the better performance of the model. 

 
Table 3-1. Results of Different Segmentation Models 

Method 
 

Modal 
Pretrained 

ResNet 

Non-Loc
al 

Attention 

Bi-Non-
Local 

Attention 
Post- 

Process Dice  

U-Net Sag-fs-
T2WI    √ 0.817 

ResUnet Sag-fs-
T2WI √   √ 0.889 

Atten-ResUnet Sag-fs-
T2WI √ √  √ 0.906 

Bi-Atten-ResU Sag-fs- √  √  0.885 
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net no 
Post-procesing 

T2WI 

Bi-Atten-ResU
net 

Sag-fs-
T2WI √  √ √ 0.918 

U-Net Cor-T2
WI    √ 0.834 

ResUnet Cor-T2
WI √   √ 0.890 

Atten-ResUnet Cor-T2
WI √ √  √ 0.901 

Bi-Atten-ResU
net no 

Post-procesing 

Cor-T2
WI √  √  0.863 

Bi-Atten-ResU
net 

Cor-T2
WI √  √ √ 0.905 

U-Net Axi-T1
WI    √ 0.785 

ResUnet Axi-T1
WI √   √ 0.825 

Atten-ResUnet Axi-T1
WI √ √  √ 0.837 

Bi-Atten-ResU
net no 

Post-procesing 

Axi-T1
WI √  √  0.810 

Bi-Atten-ResU
net 

Axi-T1
WI √  √ √ 0.829 

U-Net ADC    √ 0.772 
ResUnet ADC √   √ 0.804 

Atten-ResUnet ADC √ √  √ 0.815 
Bi-Atten-ResU

net no 
Post-procesing 

ADC √  √  0.820 

Bi-Atten-ResU
net ADC √  √ √ 0.820 

 

According to Table 3-1. The final model Bi-atten-ResUnet with post-processing 

achieves the best performance. Each deep learning techniques have contributed to 

some improvements of the model. Among them, the pre-trained Residual block gets 

maximum increase, which may prove why ResNet is so popular in all kinds of image 

tasks currently. Post-processing also brings certain enhancement. 
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3.6 Summary 

In this chapter, we apply the combination of data augmentation, Bi-atten-ResUnet, 

and post-processing to achieve the image segmentation task of ovarian tumors. The 

data augmentation method based on rotation, translation, etc. expands the capacity of 

the training dataset and reduces the risk of model overfitting. Then, to solve the 

problem of limited number of samples and the complicated background, 

Bi-atten-ResUnet is proposed, and it is one of the innovative points of this thesis. 

Based on the U-net network, Bi-atten-ResUnet uses transfer knowledge obtained from 

the pre-trained ResNet to make the segmentation model easier to train. The usage of 

bi-non-local attention modules lets the network focus on the effective information of 

the input image, which improves the segmentation results. The adoption of the 

post-processing operation reduces the influence of small connected domain noise and 

solves the problem of misdetection of the bladder. Results show that the proposed 

model can achieve automatic segmentation of ovarian cancer on MR images. 
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4 Category Prediction of Ovarian 
Cancers 

4.1 Introduction 

After the segmentation of ovarian tumors in MR images is achieved, the next work is 

to study the benign and malignant classification, Type I and Type II subtype 

classification and other secondary tasks, such as survival prediction and KI-67 

prediction. This chapter proposes a multi-sequence MRI ovarian cancer diagnosis 

system, which is divided into three steps: quantitative description feature extraction, 

feature selection, and establishment of prediction models. In terms of feature 

extraction, the existing feature systems are most dependent on some qualitative 

features, which leads to too many subjective factors of different radiologists during 

the diagnosis process. This chapter presents a quantitative description system for 

ovarian cancer tumors, including radiomic features and network features. Among 

them, the network features are derived from the segmentation network, which is also 

one of the innovations in this thesis. The information of the segmentation network is 

not only used to acquire the lesion area, but also assists the classification tasks, 

thereby improving the utilization efficiency of the feature. 

Feature selection operation is necessary because of the large number of features 

acquired, and the intricate relationships between features, such as redundancy, 

correlation, and the existence of the dimension disaster problem. In this chapter, the 

MR image features of ovarian cancer are selected via iterative sparse representation 

(ISR) method to reduce the feature vector dimension. The selected effective features 

are used to establish a predictive model to complete diagnostic tasks for ovarian 

cancer. 
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4.2 Evaluation Methods 

Due to the different targets, a variety of metrics are needed to fully evaluate the 

models from multiple aspects. The benign and malignant tumor diagnosis and Type I 

and Type II OEC categorization are binary classification problems. The Ki-67 

prediction is converted to the binary classification tasks by setting the threshold 50. In 

this thesis, we apply area under the receiver operating characteristic curve (AUC), 

accuracy, sensitivity (SENS) and specificity (SPEC) to evaluate these tasks. Their 

definitions are as follows. 

 TP TNACC
TP TN FP FN

+
=

+ + +
  (4-1) 

 TPSENS
TP FN

=
+

  (4-2) 

 TNSPEC
TN FP

=
+

  (4-3) 

TP  denotes true positive, TN  denotes true negative, FP  symbolizes false positive, 

and FN symbolizes false negative.  

As for AUC calculation, the area enclosed by the true positive rate (TPR) and false 

positive rate (FPR) axes is called AUC. This method is not affected by sample 

imbalance problem and therefore it is a stable metric. 

In survival analysis tasks, patients are categorized into two groups: low risk and high 

risk. Hazard ratio and Kaplan-Mier (KM) are applied to evaluate the model 

performance. The larger the value of hazard ratio, the greater the difference in 

prognosis between the two groups, and the better the classification performance of the 

model. By observing the KM plots, we can intuitively understand the survival 

conditions of two groups of patients. 

4.3 Feature Extraction 

4.3.1 Radiomic Features 

Radiomic features are extracted from lesions of the ovarian image according to 
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segmentation result provided in the Chapter Three. The obtained features mainly fall 

into 4 groups: intensity, shape, texture and wavelets.  

(1) The intensity group consists of 22 features, describing the overall statistical 

intensity information in the segmented lesion area.  

(2) The shape group contains 15 features, obtaining the structure of the boundary of 

the lesion ROI [36].  

(3) The texture group comprises 39 features, describing the gray-level regional spatial 

distribution. Comparing to the intensity features targeted to the overall information, 

texture features focused more on locality, and they not only acquire the frequency but 

also the location of pixel [37].   

(4) In the wavelet group, intensity group and texture group features are transformed 

into eight frequency sub-bands via wavelet to acquire some hidden characteristics 

[38]. Altogether, 488 wavelet features are extracted by this operation. The details of 

high-throughput features are summarized in Table 4-1.   

For axial T1WI, sagittal fs-T2WI and coronal T2WI MRI images, all four groups of 

features are obtained. Meanwhile, only intensity features extraction is applied in ADC 

map, since lesions in ADC map are blurred and distorted, only the intensity 

information is useful for analysis. Totally, we extracted 1714 features for each lesion 

from 4 sequences of MR images. 
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Table 4-1 Summary of 564 radiomics features 
Feature category  Feature numbers 
Intensity Group  22 
1) energy 2) entropy 3)kurtosis 4) max 
5) mean deviation 6) mean 7) media 8) min 

9) range 10) root mean square 11) skewness  
12) standard 
deviation 

13) h-uniformity 14) h-variance 15) h-mean 16) h-variance 
17) h-skewness 18) h-kurtosis 19) 10th percentile 20) 25th percentile 
21) 75th percentile 22) 90th percentile  

Shape Group  15 
1) compactness 2) compacted square 3) max length 4) disproportion 

5) sphericity 6) superficial area 
7) surface to volume 
ratio 

8) volume 

9) region to bounding 10) major length 11) minor length 12) eccentricity 
13) orientation 14) solidity 15) Fourier descriptors  

Texture Group  9 
GLCM(gray-level co-occurrence matrix) 
1) energy 2) contrast 3) entropy 4) homogeneity 
5) correlation 6) sum average 7) variance 8) dissimilarity 
GLRLM(gray-level run-length matrix) 
1) run-length variance 2) long run emphasis 3) run percentage 4) length-uniformity 
5) gray-level 
nonuniformity 

6) low gray-level run 
emphasis 

7) high gray-level run 
emphasis 

8) short run low 
gray-level emphasis 

9) short run high 
gray-level emphasis 

10) long run low gray 
level emphasis 

11) long run high 
gray-level emphasis 

12) gray-level 
variance 

13) short run emphasis    

GLSZM(gray-level size zone matrix) 

1) small zone emphasis 
2) large zone 
emphasis 

3) gray-level 
nonuniformity 

4) zone-size 
nonuniformity 

5) zone percentage 
6) low gray-level 
zone emphasis 

7) high gray-level zone 
emphasis 

8) small zone low 
gray-level emphasis 

9) small zone high 
gray-level emphasis 

10) large zone low 
gray-level emphasis 

11) large zone high 
gray-level emphasis 

12) gray-level 
variance 

13) zone-size variance    

NGTDM(neighborhood gray-tone difference matrix) 
1) coarseness 2) contrast 3) busyness 4) complexity 
5) strength    

Wavelet Group  48 
LLL HLL LHL HHL LLH HLH LHH HHH decomposition for intensity and texture features 

Total feature 
number 

 564 
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4.3.2 Network Features 

The network feature is actually the parameter of the middle layer of the deep neural 

network. These high dimensional features are usually difficult to process directly. 

However, after the dimensionality reduction, these features can be treated as normally 

obtained features, and processed by machine learning algorithms, such as classifiers. 

As shown in Figure 4-1, the network features are captured from the exactly middle 

layer of Bi-atten-ResUnet. The dimension reduction method is global average pooling 

(GAP) in this thesis [39].  

 

 

Figure 4-1 Network Features 

 

In deep learning tasks, GAP is mainly used to reduce the number of neurons in the last 

several layers of the network to solve the overfitting problem caused by too many 
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parameters in the fully connected layer. GAP calculates the average value of each 

2-dimensional feature map, and applies the value to represent the information of the 

entire map. In this way, the original high-dimensional * *h w d  feature map is 

compressed to 1*1*d . Specifically, in this experiment, the dimension of feature map 

before GAP is 224*224*16 , and output of GAP is 16, which drastically reduces the 

number of descriptors to facilitate further processing. These 16 network features will 

be combined with the radiomic features to establish the diagnostic model. 

4.4 Feature Selection 

Some features are highly correlated with others and high dimensional features 

increase the computational complexity in the classification task. Also, due to the 

complexity of the feature space, there exists spatial overlapping of features, making it 

difficult to distinguish different types of samples in space [40], [41]. Therefore, the 

feature selection operation for original features is required. In order to obtain the most 

effective features subset, we apply the ISR feature selection method for all extracting 

features [42]. The sparse representation (SR) method intends to obtain a group of 

features relevant to the target rather than taking the performance of each feature into 

account alone [43]. Moreover, ISR enhances efficiency and robustness of feature 

selection by randomly picking a part of samples to do the filtering operation ahead 

during each iteration. The sparse representation coefficient (SRC) which denotes the 

importance of the corresponding feature is calculated. Particularly, features with zero 

coefficient will be abandoned for building models. The calculation process of ISR is 

as follows. 

The formula for calculating the coefficient can be described as follows:  

 2

2 1
ˆ arg min l F



   = − +  (4-4)                                                                                                                            

Where ̂  denotes the coefficient of each feature;  ml R  represents the true label; 

m is the size of samples. m nF R   indicates the feature group; n is the number of 

features.   denotes the regularization parameter. If the feature set has been 
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normalized, the absolute value of the coefficient calculated symbolizes the importance 

of the corresponding feature. Features with low-ranked coefficient is considered 

redundant features and are tended to be removed. 

According to the traditional method, SRC is obtained by one iterative operation. It 

doesn’t reflect the importance of characteristic, when the number of samples are far 

less than the number of features. The ISR method selects a part of features to conduct 

the sparse representation for each iteration.  

 

2( ) ( ) ( )
12

ˆ arg mink k kl F


   = − +
 (4-5) 

Where ( )kl , ( )kF and ( )ˆ k indicate the selected label, feature set and the sparse 

coefficient.  Then we calculate the average result of the coefficient for k iterations. 

 ( ) ( )1
ˆk k

k
 =   (4-6)                                                                                                                                                   

When the distance between adjacent results is smaller than the predefined threshold 

( ) ( 1)

2

k k  −−  , the iteration stops and we get the final ( )k to select features. 

 

4.5 Classifier 

The selected features described in previous paragraph are the final feature set. These 

features are used to build models for classification tasks, including benign and 

malignant classification, Type I and Type II subtype classification, KI-67 prediction 

and survival prediction. The machine learning classifier chosen in this article is 

support vector machine (SVM). 

SVM has been widely used in machine learning. SVM enjoys high discrimination and 

stability in searching for optimal hyperplane in high dimensional space [44]. SVM is a 

binary classification model, and its basic model is a linear classifier to search for the 

maximal interval in the feature space to separate the two categories. By applying a 

kernel function,  SVM can be converted to a nonlinear classifier [45]. The target 

function of SVM can be written as follows: 
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Where   is the weights vector, b  is the bias vector,   is the loosen factor and C  

is the penalty coefficient. ix  is the thi  sample and iy  symbolizes the 

corresponding true label. 

SVM is generally used to balanced data sets. However, for machine learning tasks, if 

the number of samples in one category in the training set is much larger than the 

number of another category, the situation is called imbalanced sample distribution and 

that will cause certain problems. In extreme cases, even if all samples are identified as 

majority labels, the overall accuracy will not be particularly low. Therefore, for 

imbalanced samples, special solutions are needed. In this thesis, Cost-Support Vector 

Classification (C-SVC) algorithm is used to adaptively adjust the penalty factor which 

is according to the proportion of different categories [46]. The target function of 

C-SVC can be written as follows: 

 2
1 1

1min
2 i iy i y i

C C  + = − =−+ +   (4-8) 

Where C+  and C−  represent respectively the penalty parameters corresponding to 

the majority and minority samples. With the adoption of C-SVM, the final diagnostic 

model becomes more efficient and more generalizable. The experiment is divided into 

two parts. The leave-one-out cross-validation (LOOCV) is first applied to verify and 

adjust the model. Then, the independent testing set is used to further evaluate the 

diagnostic performance of the final model. 

4.6 Result 

In this thesis, we apply the model to several ovarian diagnostic tasks: benign and 

malignant classification, Type I and Type II OEC classification, Ki-67 classification 

with threshold 50 as well as the survival prediction. The results of the experiment are 
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as follows. 

Table 4-2 illustrates the final classification results by the LOOCV and the independent 

testing groups for three classification tasks. The model achieves an accuracy of 0.906 

and an AUC of 0.967 of in distinguishing between benign and malignant ovarian 

tumors. In Type I and Type II OEC differentiation task, the proposed model achieves 

an accuracy of 82% and an AUC of 83%. When 50 is used as the cut-off threshold of 

Ki-67 expression, an accuracy of 75% and an AUC of 74% are achieved in the 

independent testing cohort. The ROC curves for three classification tasks in the 

independent testing set are demonstrated in Figure 4-2. 

 

 

Table 4-2. The diagnostic performance of all selected MRI radiomics features for 
various classification tasks. 
  Classification AUC ACC SENS SPEC 

LOO cross-validation Benign and 
Malignancy 0.975 0.903 0.944 0.789 

 Type I and Type II 0.859 0.927 0.905 0.950 
  KI-67 (threshold 50) 0.806 0.788 0.883 0.553 

Independent testing Benign and 
Malignancy 0.967 0.906 0.903 0.913 

 Type I and Type II 0.823 0.833 0.765 0. 865 
  KI-67 (threshold 50) 0.738 0.754 0.840 0.500 
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Figure 4-2 Receiver operating characteristic (ROC) curves of the classification tasks  

 

Table 4-3 shows the proposed model in this thesis performs better than the 

radiologists do in distinguishing malignant tumors from benign tumors. Our model 

achieves an accuracy of 90.6%, which is higher than the result of experienced 

radiologists with 83.5%. The most common faults occurred clinically is to 

mis-classify borderline ovarian tumors (BOTs) into the benign group, which may 

cause medical risks. In the condition of the exclusion of BOTs, the proposed 

diagnostic model still shows the better performance than radiologists. The result 

illustrates the model’s potential value clinically. 

 
Table 4-3. Diagnostic performance comparison between radiologist and computer in 
determining malignant ovarian lesions 

 TP TN FP FN SEN SPE ACC 
Reader's diagnostic performance 

(include BOT) 
51 20 3 11 0.823 0.869 0.835 

Computer with all selected 
sequence 

56 21 2 6 0.903 0.913 0.906 
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Reader's diagnostic performance 
(not include BOT) 

42 20 3 2 0.955 0.869 0.925 

Computer with all selected 
sequence 

42 21 2 2 0.955 0.913 0.940 

. 
 

To observe the individual performance of each MRI sequence, we take the same 

approach on each single sequence. When we only use the radiomic features extracted 

from a single sequence to build the model, the result is obviously inferior to that of 

multi-sequence models. The results show the superiority of the multi-sequence 

approach over the single-sequence approach. Moreover, the model with the 

combination of radiomic features and deep features achieves the best performance. 

The results are shown in Table 4-4.  

 

Table 4-4. Diagnostic performance of MRI radiomics in each modality.  

Task Metric 
Axi- 

T1WI 
Cor-  

T2WI 
Sag-fs- 

T2WI ADC  
Multi- 

sequence 

Multi- 
sequence  

+ deep 
features 

Benign and 
Malignant 

AUC  0.914 0.902 0.860 0.765 0.945 0.967 
ACC 0.848 0.816 0.801 0.766 0.871 0.905 

Type I and 
Type II 

AUC  0.754 0.757 0.819 0.730 0.815 0.823 
ACC 0.712 0.712 0.775 0.702 0.802 0.833 

KI-67 
(threshold 50) 

AUC  0.717 0.709 0.633 0.610 0.721 0.738 
ACC 0.703 0.653 0.616 0.557 0.733 0.754 

 

The survival predictions given by our model are shown in Figure 4-3 KM plots. The 

model divides patients into good and poor prognosis groups. Patients categorized into 

high risk groups are more likely to suffer from disease progression (HR = 4.362, p = 

0.0013). 
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Figure 4-3 Survival Analysis Result 

 

The results show that the proposed diagnostic model achieves an excellent 

performance in classifying benign and malignant ovarian tumors and in differentiating 

Type I and Type II OEC in the independent testing set. In addition, the ovarian MRI 

features demonstrated an excellent ability to categorize patients into high-risk and 

low-risk groups. 

4.7 Summary 

In this chapter, a diagnostic model based on the tumor ROI is proposed to accomplish 

the tasks related to ovarian cancers. The model can be divided into three steps. First, 

four categories of radiomic characteristics: intensity, shape, texture and wavelet 

features are extracted from the lesion area. Also, we apply the GAP method to the 

parameters of the middle layers of the segmentation network, and obtain network 

features. Then, all these features are selected by ISR method and the chosen features 

are used for classification by SVM. The model achieves good results in the 

classification of benign and malignant ovarian cancer, the classification of Type I and 

Type II OEC, ki-67 prediction, and the survival prediction. Our results show that the 



4 Category Prediction of Ovarian Cancers 

45 
 

multi-sequence MR model is superior to the single-sequence model. Moreover, the 

addition of network features can improve the classification performance. We also use 

the ROC diagram and KM plots to demonstrate the prediction results of the model 

intuitively. 
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5 Conclusion and Future Work 

5.1 Conclusion 

This thesis proposes an automatic diagnosis system of ovarian cancer based on the 

combination of deep learning and radiomics. The lesion segmentation model for 

ovarian lesions is based on deep learning segmentation and the prediction of the 

category of ovarian tumors is based on radiomic approach. 

Bi-atten-ResUnet is proposed in this thesis as the segmentation model. The network is 

established on the basis of U-Net with adopting Residual block and non-local 

attention module. The residual block helps to solve the vanishing gradient problem, 

while the attention module focuses the model's attention on the tumor area. The usage 

of these techniques with the assistance of the data augmentation and post-processing 

operations lets the model achieve 0.918 Dice coefficient in segmenting the ovarian 

tumors. 

After the segmentation work, the thesis proposes the ovarian diagnostic model based 

on the ROI segmentation result. This model consists of three steps: feature extraction, 

feature selection, and establishment of prediction models. First, radiomic features, 

network features are obtained. Then ISR method is used to eliminate the unrelated and 

redundant features. Selected effective features are used to establish a predictive model 

to complete several diagnostic tasks for ovarian cancer. The model achieves an 

accuracy of 0.906 and an AUC of 0.967 in distinguishing between benign and 

malignant ovarian tumors, an accuracy of 0.833 and an AUC of 0.823 in 

distinguishing between Type I and Type II OEC, an accuracy of 75%, an AUC of 74% 

in KI-67 classification and a hazard ratio of 4.362 between high-risk and low-risk 

groups. 
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5.2 Future Work 

The ovarian cancer diagnostic model proposed in this thesis still has room for 

improvement in the future. The model can be improved from the following 

perspectives. 

(1) From the perspective of data sources, due to the limited capability of MR scanners, 

we have not acquired some MR sequences with latest technology, such as CE-MRI, 

which is effective in tumor diagnosis [47] For the same reason, all MR images were 

acquired in a 1.5-T MRI scanner, while 3.0-T MRI machines producing higher 

resolution images are widely used in other clinical centers. In the future, the model 

based on the higher-definition sample data may produce better performance. 

(2) The non-local attention module in the segmentation model is used to improve the 

accuracy of lesion segmentation. However, it also brings the heavy computation and 

the increased processing time for each slice. In the future, when the model is actually 

deployed on the business hospital platforms, these problems may hinder its further 

widespread application. Therefore, to find a smaller and more effective attention 

mechanism will be an important direction for the algorithm improvement. This 

requires to reconstruct the network architecture and design a new network module. 
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