
UNIVERSITY OF VAASA

SCHOOL OF TECHNOLOGY AND INNOVATIONS

WIRELESS INDUSTRIAL AUTOMATION

Adeyemi Adesokan

PERFORMANCE ANALYSIS OF HADOOP MAPREDUCE AND APACHE

SPARK FOR BIG DATA ANALYSIS

Master’s thesis for the degree of Master of Science in Technology that has been submit-

ted for inspection, Vaasa 18 May, 2020.

Supervisor Professor Mohammed Elmusrati

Instructor Professor Timo Mantere

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Osuva

https://core.ac.uk/display/347178418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

FOREWORD

I would like to appreciate my mother, Mrs Olukemi Adesokan, who has always sup-

ported me. I want to acknowledge my supervisor Professor Muhammed Elmusrati. Al-

so, special thanks to all the teachers that have shared their knowledge with me. I dedi-

cate this research work to my dear late sister, Olaitan Adesokan. I love you so much.

 3

LIST OF CONTENTS

FOREWORD 2

LIST OF CONTENTS 3

LIST OF SYMBOLS AND ABBREVIATIONS 6

ABSTRACT 7

1 INTRODUCTION 9

1.1 Research Issues 11

1.2 Thesis Motivation and Objectives 11

1.3 Thesis Contribution 12

1.4 Thesis Outline 13

2 BIG DATA ANALYTIC 14

2.1 Big Data Analytic Tools 15

2.2 Big Data Cloud 16

2.3 Apache Hadoop Ecosystem 18

2.4 Hadoop Distributed File System 19

2.5 Hadoop MapReduce 20

2.5.1 MapReduce Framework 21

2.5.2 MapReduce Execution Framework 22

2.6 Apache Spark 25

2.6.1 Spark Architecture 25

2.6.2 Solutions by Spark 27

3 THE CLOUD COMPUTING SERVICES 29

 4

3.1.1 Amazon Web Services 30

3.1.2 Amazon Elastic Compute Cloud 31

3.1.3 4The Linux Instances 32

3.2 Overview of Cloudera Manager 32

3.3 The Cloudera Distribution Hadoop 34

3.4 Performance Metric Evaluation 36

3.4.1 The Cluster Throughput 36

3.4.2 The Elapsed Time 36

4 IMPLEMENTATION AND BENCHMARKING 37

4.1 Configuration of Virtual Private Cloud 37

4.2 Setting Up Security Group 39

4.3 Creating Key Pairs 40

4.4 Configuring Linux Instances 41

4.5 Assigning Elastic IP Addresses 44

4.6 Connecting Linux Instances 44

4.7 Cloudera Manager and Cluster Installation 49

4.8 Benchmarking 51

4.8.1 Scenario 1- Scan Query 55

4.8.2 Scenario 2- Aggregation Query 56

4.8.3 Scenario 3- Two Way Join Query 57

4.8.4 Scenario 4-Three Way Join Query 58

5 RESULTS AND ANALYSIS 61

5.1 Results for MapReduce and Spark Jobs 61

5.2 Analysis 64

 5

6 CONCLUSION 66

REFERENCES 68

 6

LIST OF SYMBOLS AND ABBREVIATIONS

APIs
Application Programming Interface

EC2 Amazon Elastic Compute Cloud

AWS Amazon Web Services

CDH Cloudera Distribution for Apache Hadoop

CM Cloudera Manager

HADOOP High-Availability Distributed Object-Oriented Platform

HDFS Hadoop Distributed Files Systems

HPCC High Performance Computing Cluster

IaaS Infrastructure-as-a-Service

IOT Internet of Things

IT Information Technology

PaaS Platform-as-a-Service

RDD Resilient Distributed Datasets

SaaS Software-as-a-Service

SSH Secure Socket Shell

VM

VPC

Virtual Machine

Virtual Private Cloud

 7

UNIVERSITY OF VAASA

Faculty of technology School of Technology

Author: Adesokan Adeyemi

Topic of the Thesis: Performance Analysis of Hadoop MapReduce

 And Apache Spark for Big Data

Supervisor: Professor Muhammed Elmusrati

Instructor: Professor Timo Mantere

Degree: Master of Science in Technology

Major of Subject: Wireless Industrial Automation

Year of Entering the University: 2015

Year of Completing the Thesis: 2020 Pages: 72

ABSTRACT

In the recent era, information has evolved at an exponential rate. In order to obtain new

insights, this information must be carefully interpreted and analyzed. There is, therefore,

a need for a system that can process data efficiently all the time. Distributed cloud com-

puting data processing platforms are important tools for data analytics on a large scale.

In this area, Apache Hadoop (High-Availability Distributed Object-Oriented Platform)

MapReduce has evolved as the standard. The MapReduce job reads, processes its input

data and then returns it to Hadoop Distributed Files Systems (HDFS). Although there is

limitation to its programming interface, this has led to the development of modern data

flow-oriented frameworks known as Apache Spark, which uses Resilient Distributed

Datasets (RDDs) to execute data structures in memory. Since RDDs can be stored in the

memory, algorithms can iterate very efficiently over its data many times.

Cluster computing is a major investment for any organization that chooses to perform

Big Data Analysis. The MapReduce and Spark were indeed two famous open-source

cluster-computing frameworks for big data analysis. Cluster computing hides the task

complexity and low latency with simple user-friendly programming. It improves per-

formance throughput, and backup uptime should the main system fail. Its features in-

clude flexibility, task scheduling, higher availability, and faster processing speed. Big

Data analytics has become more computer-intensive as data management becomes a big

issue for scientific computation. High-Performance Computing is undoubtedly of great

importance for big data processing. The main application of this research work is to-

wards the realization of High-Performance Computing (HPC) for Big Data Analysis.

This thesis work investigates the processing capability and efficiency of Hadoop

MapReduce and Apache Spark using Cloudera Manager (CM). The Cloudera Manager

provides end-to-end cluster management for Cloudera Distribution for Apache Hadoop

(CDH). The implementation was carried out with Amazon Web Services (AWS). Ama-

zon Web Service is used to configure window Virtual Machine (VM). Four Linux In-

stances of free tier eligible t2.micro were launched using Amazon Elastic Compute

Cloud (EC2). The Linux Instances were configured into four cluster nodes using Secure

Socket Shell (SSH).

 8

A Big Data application is generated and injected while both MapReduce and Spark job

are run with different queries such as scan, aggregation, two way and three-way join.

The time taken for each task to be completed are recorded, observed, and thoroughly

analyzed. It was observed that Spark executes job faster than MapReduce.

KEYWORDS: Apache Spark, Big Data, CDH, EC2, HDFS, Hadoop, MapReduce.

 9

1 INTRODUCTION

Big Data is growing rapidly in terms of volume and speed. Large quantities of data are

generated globally, mostly unstructured in different forms. Furthermore, new technolo-

gies have evolved to extract complex data such as machine-generated information, de-

vice data and sensor data. The quality of these large data depends on its analysis. There

is therefore a need for proper analysis of these unstructured data for new insights.

(Verma, et al., 2016).

Big data is widely used to refer to large and complex data collection that exceeds the

processing capabilities of conventional data management systems. Big Data can be de-

scribed as an increased data volume that is difficult to store, process, and analyze using

conventional computing tools. There are three main dimensions of Big Data known as

3Vs (Volume, Velocity, and Variety). Due to vast amounts of data in different formats

and varying quality that needs to be processed quickly, more Vs have been introduced.

The two additional Vs are Veracity and Valence. (Aziz, et al., 2018)

Volume refers to the vast quantities of data produced in our digitalized world every sec-

ond. It is primarily all data types that are produced from different sources and expand

over time continuously. Before three decades ago, only 106 bytes were obtainable from

a floppy disk. Nowadays, storage and processing cover exabytes (1018) or even zetta-

bytes (1021). The data variety refers to ever-increasing forms of data gathered by sen-

sors, smartphones, images, and text. This format of data can be structured, semi-

structured and unstructured. Data structures are critical in managing vast amounts of

data. It is a specialized format for organizing, processing, extracting, and storing data.

The data velocity refers to the speed at which information is produced and transmitted

from one point to the next. The content of information is not constant and changes con-

tinuously due to additional data sets and data streaming from multiple sources. (Aziz, et

al., 2018) Figure 1 shows a brief description of the five characteristics.

 10

 Figure 1 5Vs of Big data and their Characteristics.

Hadoop MapReduce has emerged as a highly effective Big Data analysis tool. Never-

theless, it has been speculated that MapReduce is not quick in response to real-time

analysis, unlike Apache Spark. (Verma, et al., 2016).

MapReduce processes data in parallel with the framework reduction map. This led to

the development of the Hadoop framework for distributed computing across several

nodes. The main setback was the processing of redundant datasets maybe, takes a con-

siderable amount of time. (Hazarika, et al., 2017).

Today, as organizations face the challenges for real-time data analysis, a new open-

source Hadoop data processing tool, Apache Spark has been introduced. Apache Spark

was developed in 2009 and open-sourced in 2010. (Verma, et al., 2016).

 11

It stores data in a fault-tolerant system in Resilient Distributed Datasets (RDD). At the

moment, Spark relies on Hadoop Distributed Files Systems (HDFS) and cloud-based

storage for computing and does not have its own storage. It is considered a sophisticated

and faster analytics tool. (Hazarika, et al., 2017).

1.1 Research Issues

Hadoop framework serves many of Big Data applications such as machine learning and

crawling. There is various research work going on areas such as scheduling; mapping

reduces optimization, data localization, sort optimization, and speculative execution.

Hadoop MapReduce has been speculated to be inefficient for iterative computation.

Apache Spark is considered a top-level large-scale sorting Big Data tools. There are lots

of research work going on in various fields of Apache Spark, such as adding more ma-

chine learning algorithms and an RDD system. Spark is an in-memory processing Big

Data analytic tools. It has been speculated to become inefficient once the data size ex-

ceeds the primary memory capacity.

1.2 Thesis Motivation and Objectives

Big Data success depends on its analysis. Several organizations face numerous chal-

lenges in timely and effective processing and analysis of the wealth of data. Opportuni-

ties are however available with the proper technology platform for timely storage and

analysis of Big Data. The current research shows that the appropriate use of a parallel

and distributed technology platform could be the solution. These platforms include two

cluster-based computing frameworks that are widely used for large-scale data pro-

cessing. Hadoop MapReduce and Apache Spark are the two widely used platforms.

Implementation of MapReduce Hadoop has become massive for storing, scanning,

managing, and processing large volumes of data. MapReduce tackles major challenges

 12

of distributed computations involving high scalability redundancy built-in, and safety

failure. However, MapReduce is not quick in responding to real time data analysis. The

Apache Spark performs sophisticated data analytics at rapid lightning speed. It focuses

more on efficient processing of the distributed data. It supports iterative processing and

storage in a fault-tolerant on large clusters.

The aim of this study is to compare the usability of two popular distributed computing

systems: Apache Hadoop MapReduce and Apache Spark in cloud computing cluster

setup. The focus is on data processing in the cloud cluster computing. The main objec-

tive is to observe and analyze the effectiveness of both the MapReduce and Spark when

subjected to the same big data in a different scenario within the cloud distributed com-

puting. The result gives more insight into how these two cluster-based analytics tools

behave within cloud computing for data analysis.

1.3 Thesis Contribution

B. Akil. et al., (2017) compares three data analytic tools: Apache Hadoop; Apache

Flink; and Apache Spark. The report was based on usability and execution of all the

three computing platforms. They initiated three different tasks with each of these prom-

inent data processing platforms. The participants were then asked to fill a survey data on

the satisfaction levels with three analytic tools. The MapReduce was particularly found

to be very difficult in debugging, while Apache Spark environment covers basic usage

environment effectively. The report concluded that Apache Spark and Flink were pref-

erable over the MapReduce.

A. Verma. et al., (2016) carried out a comparison study between Hadoop MapReduce

and Apache Spark. They observed that there is inefficiency in MapReduce execution

when ingested with a large scale of data. The Apache Spark was found to be very effec-

tive in this regard. The report concluded that Apache Spark’s effectiveness is due to its

in-memory processing capability. This also aided its ability for batch processing,

streaming processing, and machine learning.

 13

M. Khan. et al., (2017) compared the programming models of both MapReduce and

Apache Spark for computational efficiency. They ingested three big data applications

while varying the input of the dataset. In all the cases they experimented, Apache Spark

was found to be more efficient. The report observed that Spark architecture is designed

for parallel datasets processing, such as a machine learning algorithm. Its in-memory

data processing enables data to be cached in the memory. The report concluded that this

primitive optimizes iterative computation and reduces datasets access latency in Apache

Spark.

1.4 Thesis Outline

The first part of this research work will highlight theoretically Big Data Analytic Tools,

Big Data cloud, HDFS, Hadoop Ecosystem, Hadoop MapReduce, and Apache Spark.

Chapter 3 of this research work will highlight the cloud computing services with a focus

on AWS, EC2 and the Cloudera Manager. The performance metric will be discussed

briefly. Chapter 4 focuses on implementation and benchmarking. We will discuss the

results in Chapter 5. Also, the results will be fully analysed. We will conclude this the-

sis work with Chapter 6, and future work discussed.

 14

2 BIG DATA ANALYTIC

Extracting useful information from vast digital data sets involves smart, robust analytics

services, programming tools, and applications. The abundance of data stores, websites,

sources of audio and video, tweets and blogs create an enormous amount of complex

and widespread digital data. Efficient means to create, store and share this information

are now in place, which also stimulates the growth of data. However, the extraction of

useful knowledge from vast digital databases involves intelligent and scalable analytics

systems, programming tools and applications. (Talia, 2013).

To deliver optimum performance, Big Data Analytics uses computed-intensive data col-

lection algorithms that involve powerful high-performance processing. Infrastructure

and services for cloud computing can act as an important tool for meeting the computa-

tional and data storage needs of large data analytics applications. This trend allows

clouds to become an infrastructure for integrating universal and flexible systems in data

analytics. Addressing and extracting value from cloud-based Big Data Calls for ad-

vanced analytics. (Talia, 2013).

There are three models associated with the implementation of Big Data Analytics ser-

vices solutions in the cloud, namely:

• Data Analytics Software as a Service.

• Data Analytics Platform as a Service.

• Data Analytics Infrastructure as a Service.

The Data Analytic Software as a Service model provides end-users with full broad data

analytics solutions that can exploit cloud scalability in both data storage and processing

power to analyze large and complex datasets. The Data Analytics Platform as a Service

model offers suites and environments for data analysis software where data mining and

 15

scalable analytics tools can be built. As a service model , the data analytics infrastruc-

ture can be used to construct collections of virtualized hardware and software tools to

run data analysis systems. (Talia, 2013).

2.1 Big Data Analytic Tools

Big Data Analytics employs several tools, namely Hadoop, High-Performance Compu-

ting Cluster (HPCC), Hurricane, HBase, and Grid Gain. These are used to enhance the

different factors involved in Big Data development and computer system usability. Big

data analytical tools have five main approaches for analyzing data and generating in-

formation. Each of these methodologies plays a key role in the uncovering of hidden

relations. They are as follows:

I. Discovery tools: It is a tool that is essential for the regular, intuitive discovery

and review of data from any combination of structured, unstructured, and semi-

structured sources during the information life cycle. Such tools allow research to

be carried out alongside conventional systems of BI origin. With the support of

BI software, users can draw new data, come to a valid or useful conclusion and

make informed decisions quickly. (R. K. Chawda and G. Thakur, 2016).

II. Business Intelligence (BI) Tools: This is very useful for evaluation, reporting

and performance management, particularly for relational data type data storage.

III. In-Database Analytics: such analytical techniques are applied directly to the

database, which require data processing. It includes a variety of techniques, such

as credit scores, detection of fraud, patterns, and results relations.

 16

IV. Hadoop: It is the most common open-source framework for computing, which

is scalable, efficient, and distributed. It is very useful for pre-processing infor-

mation or finding pieces of information for identity macro patterns. In the main,

all organizations use Hadoop as an ancestor to advance analytical forms. (R. K.

Chawda and G. Thakur, 2016).

V. Decision Management: This consists of computational modelling, self-learning

and rules of the market for taking informed action based on the current context.

This type of analysis allows for different recommendations across different

channels, optimizing each user 's quality for interaction. (R. K. Chawda and G.

Thakur, 2016).

2.2 Big Data Cloud

The study of Big Data is like exploring our planet from an entirely new perspective, the

value that emerges from this study can be related to the exploration of a parallel world

that has remained a mystery for humanity over the years. While Cloud Computing has

been on the rise, data scientists predict that Big Data will be the next "Huge thing" in

the Information Technology (IT) world. The large volume of data usage suggests new

challenges and opportunities for future studies. When Big Data Techniques is being

used to store and analyse cloud data, this cloud infrastructure can be considered Big Da-

ta Cloud. Figure 2 shows a basic description of the Big Data Cloud. (Khorshed, et al.,

2015).

 17

 Figure 2 Description of Big Data Cloud. (Khorshed, et al., 2015).

Cloud is the term used by the Internet as a framework for the use of cloud storage infra-

structure to collect and process data instead of local servers or personal computers.

Cloud computing has essentially evolved as a heterogeneous cloud environment for de-

livering end-user storage services and is now evolving as an Internet of Things (IoT)

platform. Cloud computing has been the phenomenon towards the most efficient and

prominent service-oriented computing platform in the last two decades. This eventually

turned cloud computing into innovative technology refinement, with the most common

architecture being the PaaS system and the SaaS software. (A. K. Manekar and G. Pra-

deepini, 2015).

 18

2.3 Apache Hadoop Ecosystem

In 2004, a paper was published by Google on their in-house computing system called

MapReduce. The following year, Yahoo launched an open-source solution based on

Hadoop architecture. In recent years, other frameworks and resources have been made

available to the public as open-source projects. The Hadoop ecosystem comprises of an

increasing number of open-source tools. Provide opportunities to choose the right tool

for the right tasks for improved performance at lower costs. Nowadays, there are over

100 open-source big data initiatives, and this number keeps growing. A lot of organiza-

tion relies on Hadoop. Figure 3 shows a complete description of a Hadoop Ecosystem.

(The Hadoop Ecosystem: Welcome to the zoo!:).

Figure 3. A complete description of Hadoop Eosystem (The Hadoop Ecosystem:

Welcome to the zoo!:).

 19

Let’s view the set of tools in the Hadoop environment as a layer diagram, with so many

modules and tools available. We arrange them as a layer diagram to consider their capa-

bilities. The schematic of the layer is arranged vertically depending on the interface.

Low-level interface, processing and scheduling are at the bottom. High-level languages

and the interactivity are at the top. In a layer diagram, the unit uses the functions or fea-

tures of the modules in the layer below it. Typically, components on the same level do

not interact or communicate. (The Hadoop Ecosystem: Welcome to the zoo!:).

2.4 Hadoop Distributed File System

This is an essential part of the Hadoop Ecosystem. HDFS is Hadoop's main storage sys-

tem. HDFS is a Java-based file system that offers scalable, fault-tolerant, efficient and

cost-effective data storage for Big Data. It is a distributed file system running on hard-

ware. HDFS has already been configured with a default configuration for several instal-

lations. In most cases, it is needed for the configuration of large clusters. Hadoop com-

municates with HDFS directly through shell-like commands. (Hadoop Ecosystem and

Their Components – A Complete Tutorial by DataFlair Team, 2019).

HDFS has two main components namely.

I. NameNode: This is also known as the Node Master. NameNode does not store

any dataset or data. It stores Metadata, i.e. the number of nodes, their location,

on which Rack the DataNode is located, and other information. It is made up of

files and directories. The following are the tasks executed by NameNode; Man-

ages file system namespace, Regulation of client’s access to files and Execution

of file system execution.

II. DataNode: This is also known as the Slave. HDFS Datanode is liable for stor-

ing real HDFS data. It conducts a read and write operation when requested by

the clients. The Datanode Replica Block consists of 2 directories on the file sys-

tem. The first one is for data and the second is for storing the metadata. HDFS

 20

Metadata provides data checksums. When initialized, each Datanode links to its

corresponding Nameode and creates a handshake. The validation of the

namespace identity and the application version of DataNode takes place through

handshaking. It performs mainly these two tasks: The block replica creation and

deletion obeying NameNode instruction. It also manages the data storage of the

system. (Hadoop Ecosystem and Their Components – A Complete Tutorial by

DataFlair Team, 2019).

2.5 Hadoop MapReduce

Hadoop MapReduce is the main feature of the Hadoop ecosystem providing storage of

the data. MapReduce is a simple application software platform that processes a huge

amount of structured and unstructured data contained in the HDFS. Its programs are de-

signed in parallel, making them very efficient for carrying out large-scale data analysis

with many cluster machines. This parallel processing improves the cluster's reliability

and performance. The features of MapReduce include scalability, simplicity, and toler-

ance to failures. Figure 4 shows the basic working principle of Hadoop MapReduce.

(Hadoop Ecosystem and Their Components – A Complete Tutorial by DataFlair Team,

2019).

 21

 Figure 4. Working Principle of Hadoop MapReduce. (Hadoop Ecosystem and

Their Components – A Complete Tutorial by DataFlair Team, 2019).

2.5.1 MapReduce Framework

Hadoop communicates with structured, unstructured, and semi-structured data. In Ha-

doop, once the schema is static, it works directly on the column instead of the keys and

values, but if the schema is not static, it must work on the keys and values. Keys and

values are not the inherent properties of the data but are chosen by the user who anal-

yses the data. MapReduce work by breaking down the processing into two phases: Map

Phase and Reduce Phase. Each phase has key value sets for inputs and outputs. Figure 5

shows the basic concepts of the key-value pair. (Learn the Concept of Key-Value Pair in

Hadoop MapReduce by DataFlair Team, 2018).

 22

Figure 5. Key-value Pair Concepts in Hadoop MapReduce. (Learn the Concept of Key-

Value Pair in Hadoop MapReduce by DataFlair Team, 2018).

In the MapReduce process , the data must first be converted to key-value pairs before

having to pass the data to the mapper, because the mapper only understands key-value

pairs of data. The value key pair is the object of record which the MapReduce job gets

for execution. RecordReader uses TextInputFormat by default to translate information

into a pair of key-values. InputSplit and RecordReader in Hadoop generate the key-

value pairs. (Learn the Concept of Key-Value Pair in Hadoop MapReduce by DataFlair

Team, 2018).

InputSplit: This is the logical description of the information. The data which the

individual Mapper is to interpret shall be provided by the InputSplit.

RecordReader: This connects to the InputSplit and converts the Split into files in the

form of key-value pairs suited to mapper learning. RecordReader uses TextInputFormat

by default to translate information into a pair of key-values. RecordReader

communicates with InputSplit until the processing of the file is over. (Learn the

Concept of Key-Value Pair in Hadoop MapReduce by DataFlair Team, 2018).

2.5.2 MapReduce Execution Framework

 23

MapReduce works by dividing the computation into two phases; Map Phase and Re-

duce Phase. For inputs and outputs each phase has key-value pairs. Besides that, two

functions need to be specified, namely: a map function and a reduced function. (Hadoop

Mapper–4 Steps Learning to MapReduce Mapper by DataFlair Team, 2018).

i. Map function: This is also known as the Mapper for Hadoop MapRe-

duce. Mapper task occurs in the first processing stage, processing every

RecordReader input record as well as generating an intermediate key-

value pair. Hadoop Mapper saves the local disk for the intermediate data.

Figure 6 illustrates the procedure of a typical Hadoop MapReduce Map-

pers. (Hadoop Mapper–4 Steps Learning to MapReduce Mapper by Da-

taFlair Team, 2018).

Figure 6. MapReduce Mapper (Hadoop Mapper–4 Steps Learning to

MapReduce Mapper by DataFlair Team, 2018).

MapReduce Mapper processes each input record and generates new pairs

(key, value). The pairs (key, value) could be completely different to the

pair of inputs. The output is the complete set of all (key , value) pairs

within the mapper function. Until the output for each mapper function is

written, the output partitioning is done on the basis of the key, then

sorting is done. This partitioning specifies grouping of all values for each

key. For every InputSplit generated for the job by the InputFormat,

MapReduce framework produces one map function. Mapper recognizes

 24

only pairs of data (key, value) so data must be transformed into (key,

value) first, before transferring data to the mapper. (Hadoop Mapper–4

Steps Learning to MapReduce Mapper by DataFlair Team, 2018).

ii. Reduced Function: The Reducer of Hadoop MapReduce, also known as

Hadoop Reducer, takes the output of a Mapper process (intermediate

key-value pair) to produce the output. The Reducer output is the final

output which is stored in HDFS. The Reducer processes a mapper 's out-

put, generates new output set, and stores the output data in HDFS. Figure

7 below shows the working principle of a Hadoop Reducer. (Hadoop

Reducer–3 Steps learning for MapReduce Reducer by DataFlair Team,

2018).

Figure 7. The working Principle of a Hadoop Reducer. (Hadoop

Reducer–3 Steps learning for MapReduce Reducer by DataFlair Team,

2018).

It takes an input; a set of Mapper-generated intermediate key-value pairs,

and runs the Reducer function on each of them. For a diverse array of

processing operations, this data (key, value) can be aggregated, filtered

and combined in several ways. The Reducer processes the intermediate

 25

values generated by the Mapper function for the specific key and pro-

duces the output (zero or more key-value pairs). One-one mapping hap-

pens between the keys and the Reducers. The Reducer is running paral-

lel, as they are independent from each other. The User can specify the

number of reducers. (Hadoop Reducer–3 Steps learning for MapReduce

Reducer by DataFlair Team, 2018).

2.6 Apache Spark

Apache Spark is a general distributed computing system built on Hadoop MapReduce

algorithms. This incorporates the benefits of Hadoop MapReduce, however unlike

MapReduce, the intermediate and output of Spark tasks are stored in memory called

Memory Computing. The memory Computing increases information computing per-

formance. Apache Spark is therefore suited for iterative applications such as data min-

ing and machine learning. (J. Fu, et al., 2016).

Apache Spark is an open source computing engine that is extremely concerned with ac-

celeration and reliability. It was built for fast computation. Spark is designed to operate

in a Hadoop environment and to overcome the constraints of MapReduce. This system

provides Application Programming Interface (APIs) in various programming languages

such as Scala, Java and Python. Apache Spark is designed for real-time data processing

and quick queries that end in a few seconds. (Aziz, et al., 2018)

2.6.1 Spark Architecture

Spark is centred around the RDD idea. RDD is a fault-tolerant array of components

which can run in parallel and enables the user to store data directly on the disk and

memory. It is a distributed computing model designed for large-scale, linearly scalable,

and tolerant to fault. Carries out memory processing using the RDD data type.

 26

During the storage process RDDs are a set of partitioned and permanent objects. Works

are divided into a Master and several Slaves in Spark. The master assigns duties to the

Slaves and gives the master the reports. The types of activities over the RDDs per-

formed on Spark are classified into two categories: Transformations and Actions. The

specification of these tasks is carried out in groups of transformations and executed as

defined. This processing mode facilitates the absence of reloading data from the start of

each transformation. This makes Spark very useful for iterative algorithms that involve

multiple readings on a data set, as well as programs that require quick queries on large

datasets. (Giraldo, et al., 2018).

I. Transformation: Transformations in Spark RDD are functions which accept the

RDD as input and generate one or more RDDs as output. It does not change the

input RDD because RDDs are immutable and therefore cannot be changed.

However, produces one or more new RDDs by implementing the computations

they represent. Transformations are considered lazy RDD operations in Apache

Spark. It generates one or more additional RDDs that run when a process takes

place. Consequently, Transformation creates a new dataset from the existing

one. Other transformations can be carried out which is the optimization ap-

proach used by Apache Spark to improve the performance of the computation.

(Introduction, Features & Operations of RDD, 2019).

II. Action: The Action operation in Spark returns the final result of the RDD com-

putations. It activates execution using a lineage map to load the data into the ini-

tial RDD, execute all the intermediate transformations and send back the final

results to the Driver program. The Lineage graph is the dependency graph of all

RDD in parallel. The Actions operation are RDD operations that generate non-

RDD values. The Action operation is one way to send the outcome from the ex-

ecutors to the driver. (The Hadoop Ecosystem: Welcome to the zoo!). Figure 8

shows a typical Spark Architecture

 27

 Figure 8. Spark Architecture. (X. Lu, et al., 2016).

Apache spark consists of the SparkContext, executors, cluster managers, and HDFS op-

erating system. The primary software for spark is the driver program. Spark programs

run as independent cluster system sets, controlled by the Driver program known as the

SparkContext. Each application has its own processes and executed tasks in different

threads, and the worker nodes need to be in the same network. Once paired, in the clus-

ter that the worker processes, Spark ac-acquires node executors, then performs compu-

tation and stores data for your application. It then sends the application code, defined by

JAR or Python files, passed to the executors through the SparkContext. Lastly, Spark-

Context sends tasks to run by the executors. (Verma, et al., 2016).

2.6.2 Solutions by Spark

The main reasons behind the RDD theory are iterative algorithms and interactive data

mining tools. The Data from the distributed computing platform is stored in the inter-

mediate secure data server, such as we have it in HDFS and Amazon S3. It makes com-

putation slower, as it requires multiple Input/output operations and replications in the

process. The following are the solutions provided by Apache Spark. (Introduction, Fea-

tures & Operations of RDD by DataFlair Team, 2019).

 28

I. In-Memory Computation: The Spark RDDs processes a statute for in-memory

computing. Stores intermediate outcomes in distributed memory instead of sta-

ble storage.

II. Fault Tolerance: The Apache Spark RDDs are fault tolerant as they track data

lineage information to automatically rebuild lost data in the case of a failure. It

rebuilds lost data through failure using lineage. Each RDD knows how it was

generated from other datasets.

III. Immutability: Data is safe to be distributed across systems. It can also be created

or retrieved at any time that makes caching, sharing and replication simple. It is

therefore a way to achieve reliability in computation.

IV. Partitioning: Partitioning is the conceptual model of parallelism in Apache Spark

RDD. A partition is a single logical division of data that is mutable. A partition

can be generated by some transformations on current partitions.

V. Persistence: The user can specify which RDDs to reuse and choose a storage

strategy for it. (Introduction, Features & Operations of RDD by DataFlair Team,

2019).

 29

3 THE CLOUD COMPUTING SERVICES

Cloud is held on Web servers rather than on the device. Moreover, when we use the

cloud for computing, it implies that we take input for processing and send it to a client

regarded as Cloud Computing. Cloud computing is an information technology system

that works with the transfer of data, sharing of information, or services through a server

across the Internet. It is the use of computing resources that are offered as a platform or

an application across a network. It is supported by several of services, such as AWS and

Google Cloud Platform. Cloud computing services can be divided into three categories

namely: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-

as-a-Service (SaaS). Figure 9 shows a typical service model of a Cloud Computing.

(Prajapati, et al., 2018).

 Figure 9. A Typical Cloud Computing Model. (Prajapati, et al., 2018).

I. IaaS: This provides virtualization, storage, and processing capabilities. We have

no control over the cloud infrastructure in this model, but we can utilise and run

software with this model. It is primarily used for data storage and product design

e.g. AWS.

 30

II. PaaS: It gives us a virtual development environment where users can build and

install cloud applications We can not influence the cloud infrastructure, but we

can control their implemented application e.g Microsoft Azure.

III. SaaS: This gives access to cloud-based application providers. The client does

not have control over the cloud infrastructure, but has minimal control over the

system settings. e.g. Drop Box. (Prajapati, et al., 2018).

3.1.1 Amazon Web Services

AWS provides far more capabilities and functionality within these platforms than any

other cloud provider. This cloud platform provides over 165 fully featured applications,

with no other large cloud provider providing more than 40 features. AWS provides ser-

vices for a wide range of applications, including computing, storage, databases, net-

working, analytics, artificial intelligence and machine learning (AI), IoT, security and

application development, deployment, and management. (Cloud computing with AWS).

AWS possesses the following for computation EC2, Elastic MapReduce, and Auto Scal-

ing. It has Simple Storage Service (S3), Elastic Block Storage (EBS) and CloudFront

for storage. Its network includes Virtual Private Cloud (VPC) and Elastic Load Balanc-

ing (ELB). (Zhou, et al., 2010).

Amazon EC2 provides more styles and sizes of computing instances, along with the

most efficient GPU instances for machine learning. It also has more than twice as many

database services, including both relational and non-relational database solutions.

(Cloud computing with AWS).

Of the above services allows web-based computing by providing access to a well-

established infrastructure that resides on thousands of computers. This gives costumers

versatility to run their business on a web-based that is unrestrained by growth and de-

 31

mand. Each of these services are capable of constructing an entire system of computa-

tional services. (Zhou, et al., 2010).

3.1.2 Amazon Elastic Compute Cloud

AWS provides far more capabilities and functionality within these platforms than any

other cloud provider. This cloud platform provides over 165 fully featured applications,

with over 40 features not provided by any other large cloud provider. AWS gives ser-

vices for a wide range of applications including computing, storage, databases, network-

ing, analytics, machine learning and Artificial Intelligence (AI), IoT, security, and ap-

plication development, deployment and management. (Cloud computing with AWS).

AWS possesses the following for computation EC2, Elastic MapReduce and Auto Scal-

ing. It has Simple Storage Service (S3), Elastic Block Storage (EBS) and CloudFront

for storage. Its network includes Virtual Private Cloud (VPC) and Elastic Load Balanc-

ing (ELB). (Zhou, et al., 2010).

Amazon EC2 provides more styles and sizes of computing instances, along with the

most efficient GPU instances for machine learning. It has more than twice as many da-

tabase services, including both relational and non-relational database solutions. (Cloud

computing with AWS).

 Of the above services allows web-based computing by providing access to a well-

established infrastructure that resides on thousands of computers. This gives costumers

versatility to run their business on a web-based that is unrestrained by growth and de-

mand. Each of these services are capable of constructing an entire system of computa-

tional services.

 32

3.1.3 4The Linux Instances

The Linux instance is Amazon's root cause, with Elastic Block Store (EBS) volume.

This means it is an Amazon backed by EBS. There is a choice to select the Availability

Zone that an instance runs in or will automatically let an Amazon EC2 do. To ensure

this, a key pair and a security group are specified when the instance is started. Upon

connection of an Instance, the private key of the key pair must be specified during

startup. Figure 10 illustrates the launching of an Instance. (Getting started with Amazon

EC2 Linux instances).

Figure 10. Lauching an Instance (Getting started with Amazon EC2 Linux instances).

3.2 Overview of Cloudera Manager

 33

This is an end-to - end application for cluster management at CDH. It sets an enterprise

deployment standard by providing concentrated visibility and control across all parts of

the CDH cluster. It empowers operators to improve performance, the quality of service

and minimize administrative costs. The Cloudera Manager makes the complete CDH

stack and other managed services easy to deploy and manage centrally. CM automates

the installation process, reducing downtime for deployment. It offers a cluster-wide, real

time view of running hosts and services. It allows one single, central console for cluster-

wide configuration changes. This incorporates a complete range of reporting and diag-

nostic tools that help in optimization of performance. Figure 11 illustrates the general

concept of a CM. (Cloudera Manager Overview 6.3.x, Cloudera Enterprise, 2020).

Figure 11. CM Overview (Cloudera Manager Overview 6.3.x, Cloudera Enterprise,

2020).

• Deployment: This is Cloudera administrator setup and all the clusters it handles.

• Rack: This is a physical object which consists of a set of physical hosts in CM

operated by the same switch.

 34

• Cluster: A collection of racks containing an HDFS filesystem running MapRe-

duce and other tasks on the data.

• Service Instance: This is an instance of a service running on a cluster in CM. A

service instance plays several roles of instances.

• Role Instance: A Role Instance is usually mapped to a Unix process in the CM.

It is an instance of a role being played on a host.

• Role Group: This is a set the setup properties for a series of function instances.

3.3 The Cloudera Distribution Hadoop

This is an open source licensed under Apache. It is the only Hadoop implementation

that provides integrated, interactive Structured Query Language (SQL) processing. This

is the most extensive and popular Apache Hadoop distribution. It delivers Hadoop 's

Key Components. It provides Web-based user interface for scalable storage and distrib-

uted computation. Figure 12 shows the key features of a CDH. (Cloudera Enterprise

5.14.x, CDH Overview, 2020).

 35

 Figure 12. Features of a CDH. (Cloudera Enterprise 5.14.x, CDH Overview, 2020).

• Flexibility: It stores and manipulates any type of data with a variety of compu-

ting structures, interactive SQL and machine learning.

• Integration: It runs quickly on a full Hadoop platform that integrates with a wide

range of hardware and software solutions.

• Scalability: It facilitates a wide range of applications and extend them to meet

requirements.

• Compatibility: It utilizes the existing IT infrastructure.

 36

3.4 Performance Metric Evaluation

The difference of a big-scale distributed computing environment is the elapsed time in a

block processed of a gigabyte. When there are many machines working parallel to each

other, the amount of time taken to process each block varies considerably. Sometimes

blocks could have a lot of data to process, and this takes longer time than necessary.

This variation in processing time is enormously important if it is correlated with the

block value. The blocks with lots of data may, after all, have higher aggregate values

and take longer to process. In the same way the nodes which process large blocks, these

set of blocks that are more likely to take longer time. Tackling this in a distributed envi-

ronment requires innovation in the design and statistical analysis of the systems. (Ni-

ketanPansare1, et al.).

3.4.1 The Cluster Throughput

This is the amount of job that can be done in each timeframe. It is measured in seconds /

bytes.

3.4.2 The Elapsed Time

This is the difference between start time and end time for a job completion. It is the time

it takes to perform an event. The performance can be differentiated as less time elapsed

indicates an effective performance. When the average timing of job completion is re-

duced, there is an increase of the overall effective throughput. Its measurement is in

seconds.

 37

4 IMPLEMENTATION AND BENCHMARKING

The aim of this implementation is to design a four-node cluster where one node acts

master and the rest as slaves. This design is considered because we want the master to

coordinate the scheduling and management of all the slaves with high performance.

This also ensures fault tolerance and data recovery in case one of the slaves malfunc-

tioned for reliable benchmarking. For a two-node cluster, the data and associated work-

loads can only be shifted from one pair to the other. However, with a four-node cluster,

the workload can be migrated within any of the three nodes. The application of this is

that performance and data storage capacity is distributed across the cluster at a given

composition with more flexibility.

This implementation was carried out using AWS. An instance represents a node; I set

up four Linux instances and connected them using SSH. The four Linux instances were

assigned a static Internet Protocol (IP). The virtual IP was configured using Amazon

Virtual Private Cloud (VPC). The VPC enables the lunching of Linux instances into a

defined virtual network. These four Linux instances from the four cluster nodes. The

instances details were configured using the hostname. The CDH was now deployed on

the clusters.

4.1 Configuration of Virtual Private Cloud

VPC allows the launch of AWS resources into a pre-defined virtual network. VPC scal-

able infrastructure is the networking layer for Amazon EC2. The created single subnet

VPC, as shown in Figure 13.

 38

 Figure 13. Starting VPC Configuration

From the Amazon VPC dashboard, the VPC with a Single Public Subnet has been

launched as shown in Figure 14.

Figure 14. Single Subnet VPC Configuration

 39

The IPv4 CIDR block shows the IPv4 address span and that of IPv4 subnet too. No

preference Availability Zone has been selected because we want it to be selected by

AWS. We enabled DNS hostnames so that launched Linux Instances with our VPC

network get a DNS hostname.

4.2 Setting Up Security Group

A security group with its associated instances acts as a virtual firewall for controlling

the traffic. An inbound rule for incoming traffic, and the outbound rules for the out-

going traffic is specified. The Security Group Configuration is shown in Figure 15.

 Figure 15. Security Group Configuration

Security group was selected from the Amazon VPC console. The group and description

name was given as shown above in Figure 15. The created VPC was selected from the

 40

VPC menu. From the inbound rules tab, we added rules for inbound traffic. The SSH

was selected because the rules were for the lauching of Linux Instance. I configured the

source field for HTTP and HTTPS to be 0.0.0.0/0 because we want to enable all the IP

addresses via SSH.

4.3 Creating Key Pairs

The Amazon EC2 utilizes 2048-bit SSH-2 RSA keys. It stores the public key while the

user is saving the private key. It uses public key cryptography to encrypt and de-crypt

information about the logins. The key pair are known as both private and public keys.

Public key cryptography allows the secure use of a private key, rather than a password,

to access instances. Therefore, the private keys should be in a safe location.

The name of a key pair is requested before launching an instance. Using SSH for in-

stance connection requires a key pair. At boot time, on your Linux instance, the public

key content is placed in an entry within ~/.ssh/permitted keys. Since we used the SSH to

connect to the Linux instances, it is necessary to specify the private key corresponding

to the public key content in others to log in. Key Pairs is selected from the Amazon EC2

navigation panel as shown in Figure 16. We saved the private key name as pem file

format because it will be used with OpenSSH.

 41

Figure 16. The Creation of Key Pair.

4.4 Configuring Linux Instances

We launched the Linux Instances into the VPC created. From the Amazon EC2 console

dashboard, a free tier eligible AMI was selected. A t2.micro type instance was chosen

because it is eligible for free tier as shown in Figure 17.

 42

 Figure 17. Lunching an Instance Type.

The Linux Instances details were configured as shown in Figure 18. The number of

Linux Instances were selected to be four. The VPC created was selected as the network

and Public Subnet chosen. Auto-assign public IP was enabled and reservation capacity

left opened.

Figure 18. Configuration of Linux Instance Details.

A name tag was added to each of the Instances, so that each of them can be easily

identified in the Amazon EC2 console after lauching. The configured security group is

 43

then chosen from Select an existing security group option. The created security group

was then selected as shown in Figure 19.

 Figure 19. Configuration of Security Group

The created key pair was then selected, and the Linux Instances launched. From the

confirmation page, the instances view displays as shown in Figure 20.

 Figure 20. View of Linux Instances after Launching

 44

4.5 Assigning Elastic IP Addresses

Previously launched Linux Instances were configured to form a public subnet. A subnet

that has a gateway to its route over Internet. Public IPv4 address is also needed for the

Linux Instances to be able to communicate with the Internet. By default, a pub-lic IPv4

address is not assigned to a Linux Instance VPC. Our account has been assigned an

Elastic IP address and is then associated with the Linux instances configured as shown

in Figure 21.

Figure 21. Associating Elastic IP addresses to Linux Instances

4.6 Connecting Linux Instances

The connection to the Linux Instances were established using SSH clients. The SSH

command was used from the terminal with specified path and the private key file name,

AMI username, and the Linux IP address or DNS name. The following commands were

used connecting the Linux Instances.

 45

yemzo@yemzo-Lenovo-E31-80:~$ cd aws_adeyemi/

yemzo@yemzo-Lenovo-E31-80:~/aws_adeyemi$ ssh -i samplehadoopclus-

ter.pem ubuntu@ec2-3-16-7-173.us-east-2.compute.amazonaws.com

There comes up an RSA authentication that needed to be accepted as follows.

RSA key fingerprint is

1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f.Are you

sure you want to continue connecting (yes/no)

Once “yes” is entered comes to the information below to show a successful connection

is established to the master.

Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-1051-aws x86_64)

* Documentation: https://help.ubuntu.com

 * Management: https://landscape.canonical.com

 * Support: https://ubuntu.com/advantage

System information as of Wed Dec 25 15:45:35 UTC 2019

 System load: 0.0 Processes: 99

 Usage of /: 38.5% of 7.69GB Users logged in: 1

 Memory usage: 20% IP address for eth0: 10.0.0.196

 46

 Swap usage: 0%

* Overheard at KubeCon: "microk8s.status just blew my mind".

https://microk8s.io/docs/commands#microk8s.status

* Canonical Livepatch is available for installation.

 - Reduce system reboots and improve kernel security. Activate at:

 https://ubuntu.com/livepatch

37 packages can be updated.

0 updates are security updates.

The Private IP addresses were resolved to Master, Slave01, Slave02 and Slave03 as

shown below.

10.0.0.196 ec2-3-16-7-173.us-east-2.compute.amazonaws.com master

10.0.0.194 ec2-3-136-50-199.us-east-2.compute.amazonaws.com slave01

10.0.0.235 ec2-18-220-207-16.us-east-2.compute.amazonaws.com slave02

10.0.0.186 ec2-52-14-3-24.us-east-2.compute.amazonaws.com slave03

The allocated Elastic Public IPv4 addresses to the Master and Slaves are as shown be-

low:

3.16.7.173 master

3.136.50.199 slave01

 47

18.220.207.16 slave02

52.14.3.24 slave03

The essence of the Elastic IP addresses is to prevent automatic assigned of IP addresses

each time the Linux Instances are launched. Since the Master must have undeniable ac-

cess to all the Slaves for the formation of four clusters. The Slaves fingerprint are cop-

ied into the Master as described below for Slave03.

ubuntu@ip-10-0-0-196:~$ nano /home/.ssh/id_rsa.pub

ubuntu@ip-10-0-0-196:~$ cat /home/ubuntu/.ssh/id_rsa.pub

ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQDGl0jmh/Tf7A6ijPygnXSfZmH0Aw5SSW/6VO8Lt1

sWIGbWHtR4qS2icrFxcrV3XZfIkmq7QRl+Tek7dGjsH+UolWJYdVNU8yAnnyIkLYbleLgm

LABKM+CGBR4uWLEt9i8ooh3lAyeRhkz/JMKKbuT3kzJNbAYQC81mGlT1m4KiOSpvIo4iTB

Zshi7P1YTt3U7qEgjbSC3Vp7HubMiac/EUd6q+5N7f4DX0yFdP96eh471BsibCcdRWA2VN

b+D1NxEq71+r8cbIG8Q7R9r9CeQrZNA/FwqtsMGkrwHCWWyDCKKOtFaiypt1KQOfYtn8Ko

U5chrdQN8QU3tB/bqPCymD ubuntu@ip-10-0-0-196

ubuntu@ip-10-0-0-196:~$ ssh slave03

The authenticity of host 'slave03 (52.14.3.24)' can't be established.

ECDSA key fingerprint is

SHA256:uTo42XMlTrLkWgrHOVjjlthSRrd5GHbDaBpTsL89fhU.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'slave03,52.14.3.24' (ECDSA) to the list of

known hosts.

Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-1051-aws x86_64)

 48

* Documentation: https://help.ubuntu.com

 * Management: https://landscape.canonical.com

 * Support: https://ubuntu.com/advantage

 System information as of Wed Dec 25 15:53:51 UTC 2019

 System load: 0.0 Processes: 91

 Usage of /: 20.0% of 7.69GB Users logged in: 1

 Memory usage: 19% IP address for eth0: 10.0.0.186

 Swap usage: 0%

* Overheard at KubeCon: "microk8s.status just blew my mind".

 https://microk8s.io/docs/commands#microk8s.status

* Canonical Livepatch is available for installation.

 - Reduce system reboots and improve kernel security. Activate at:

 https://ubuntu.com/livepatch

39 packages can be updated.

0 updates are security updates.

 49

4.7 Cloudera Manager and Cluster Installation

The cloudera manager is installed with the aid of package tools wget. The installation is

described below.

ubuntu@ip-10-0-0-196:~$wget

https://archive.cloudera.com/cm6/6.3.1/cloudera-manager-installer.bin

--2020-01-03 13:43:57--

https://archive.cloudera.com/cm6/6.3.1/cloudera-manager-installer.bin

Resolving archive.cloudera.com (archive.cloudera.com)...

151.101.248.167

Connecting to archive.cloudera.com (ar-

chive.cloudera.com)|151.101.248.167|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 836826 (817K) [application/octet-stream]

Saving to: ‘cloudera-manager-installer.bin’

cloudera-manager-in 100%[===================>] 817.21K 2.62MB/s in

0.3s

2020-01-03 13:43:58 (2.62 MB/s) - ‘cloudera-manager-installer.bin’

saved [836826/836826]

After the installation, the cloudera manager is opened into the web using the master’s IP

address with port 7180. The default login details are admin for username and password.

All the hosts names are specified, added and the cluster installation begins. The

cloudera manager and JDK packages were updated on all the nodes. The CDH is now

downloaded, updated, distributed, and activated all the packages. The services such as

 50

HDFS, HIVE, YARN, ZooKeeper, and Hue was all selected and added to the cluster as

shown in Figure 22a.

 Figure 22a. The Cluster with Services

Service roles were also added to the host’s i.e, the master and slaves. Figure 22b shows

the cluster setup after installation with added services.

 Figure 22b. The cloudera Web Page After Cluster Installation

 51

4.8 Benchmarking

The purpose of this benchmarking is to subject both MapReduce and Apache Spark to

the same relative amount of task and observe their performances. The tasks have been

categorized into queries from the simplest to the most difficult. There are four different

types of queries to run the benchmark, namely:

i. Scan Query: The MapReduce and Spark jobs will fully scan the table to retrieve

the contents or data as stated in the Scan jobs. It involves the data processing

engines, Hadoop MapReduce and Spark, to scan data in order to find a par-

ticular record satisfying a given criteria.

ii. Aggregate Query: The MapReduce and Spark jobs will retrieve data by analys-

ing set of data entries. The aggregate query groups record together using a

specified attribute, it then provides a summary of this group.

iii. Two-Way Join Query: The MapReduce and Spark jobs will retrieve data from

two tables and join them as a single set of data. The two-way join query in-

volves combining attributes from two relations and then performing aggrega-

tion on the combined data according to a specified grouping.

iv. Three-Way Join Query: The MapReduce and Spark jobs will retrieve data from

three tables and join them as a single set of data. Our three-way join query

combines attributes from three relations (books, revenue, transaction), and

then performs an aggregation on the combined data according to a specified

grouping.

The Big Datasets was generated using a data generator, Amazon Elastic MapReduce

data generation tool that generates data files for three entities books, customers, and

transactions. Desired data sizes of entities to be generated can be specified in the com-

 52

mand line. Big data was generated, and directory created. The generated data was saved

into the created directory. The data is then moved into HDFS as described below. (Am-

azon Elastic MapReduce: Developer Guide)

.

--Generate data and save inside dir dbgen/data/

--books 5gb, customers 5gb, transactions 5gb

java -cp dbgen-1.0-jar-with-dependencies.jar DBGen -p dbgen/ -b 5 -c 5

-t 5

--Copy generated data into HDFS

hadoop fs -mkdir /user/data/

hadoop fs -put dbgen/* /user/data

hadoop fs -ls -h -R /user/data

The Hive database and Tables were created over HDFS data as described and shown in

Figure 23.

we will generate 5gb data for following entities books, customers

and transactions, and save into the directory benchmark/data

create the directories to save data into

mkdir -p benchmark/data

generate data and specify directory created above

java -cp dbgen-1.0-jar-with-dependencies.jar DBGen -p benchmark/data -b 5 -c 5 -t 5

we create a directory in HDFS and copy the generated data into this # directory using the

mkdir and copyFromLocal commands

hadoop fs -mkdir /user/yemi/benchmark/data/

hadoop fs - copyFromLocal benchmark/* /user/yemi/benchmark

 53

Create Hive database and Tables over HDFS data

CREATE SCHEMA benchmark_db;

USE benchmark_db;

CREATE EXTERNAL TABLE books(

 bk_id BIGINT,

 bk_isbn STRING,

 bk_category STRING,

 bk_publish_dt TIMESTAMP,

 bk_publisher STRING,

 bk_price FLOAT)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' LOCATION '/user/yemi/benchmark/data/books/';

create external table customers(

 cus_id BIGINT,

 cus_name STRING,

 cus_dob TIMESTAMP,

 cus_gender STRING,

 cus_state STRING,

 cus_email STRING,

 cus_phone STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' LOCATION '/user/yemi/benchmark/data/customers/';

create external table transactions(

 trans_id BIGINT,

 trans_customer_id BIGINT,

 trans_book_id BIGINT,

 trans_quantity INT,

 trans_transaction_dt TIMESTAMP)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' LOCATION '/user/yemi/benchmark/data/transactions/';

 54

 Figure 23. Hive Table Creation.

The MapReduce Job: It runs Hive queries over the table and measures the time the

MapReduce jobs take.

The Spark Job: The spark job reads the same data from HDFS and runs the query us-

ing Spark APIs, as Spark dataset. It runs each of the classes by submitting them as spark

jobs to Yarn, which is a resource manager and the times taken measured.

 55

4.8.1 Scenario 1- Scan Query

HIVE query for MapReduce jobs is run over the table for total number of books in cate-

gory “TECHNOLOGY ENGINEERING” and the execution time recorded i.e. Find

books belonging to category Technology-Engineering.

MapReduce Job: Scan query

The Spark Scan job reads the same data from the HDFS and run the query with Spark

APIs for total number of books in category “Technology Engineering”, as Spark da-

taset. The execution time is recorded.

Spark Job(Equivalent query in Spark API)

SELECT Count(*)

FROM books

WHERE bk_category IN ('TECHNOLOGY-ENGINEERING');

//case classes for books

case class Book(bk_id:String, bk_isbn:String, bk_category:String, bk_publish_dt:String,

bk_publisher:String, bk_price: String)

//get column

val columnNames = classOf[Book].getDeclaredFields.map(x => x.getName)

//read data as Spark Dataframe

val data = spark.read.option("header", false).option("delimiter","|").csv(hdfsFilePath +

"/books/books")).toDF(columnNames:_*).as[Book]

//filter dataframe

val techBooks = data.filter(_.bk_category == "TECHNOLOGY-ENGINEERING")

println(s"count: ${techBooks.count()}")

 56

4.8.2 Scenario 2- Aggregation Query

The scenario is to get the total number of books in an orderly manner in ascending or-

derand with a limit of 10 per publisher. i.e. Find the first 10 Publishers with the largest

number of books, display them from highest to lowest.

MapReduce Job

This scenario is to get the total number of books in an orderly manner by publisher us-

ing Spark API in ascending order and with a limit of 10 per category i.e. Find the first

10 Publishers with the largest number of books, display them from highest to lowest.

Spark Job (Equivalent query in Spark API)

SELECT bk_publisher, Count(*)cnt

FROM books

GROUP BY bk_publisher

ORDER BY bk_publisher DESC LIMIT 10;

//case classes for books

case class Book(bk_id:String, bk_isbn:String, bk_category:String, bk_publish_dt:String,

bk_publisher:String, bk_price: String)

//get column names

val columnNames = classOf[Book].getDeclaredFields.map(x => x.getName)

//read data as Spark dataframe

val data = spark.read.option("header", false).option("delimiter","|")

.csv(hdfsFilePath + "/books/books").toDF(columnNames:_*).as[Book]

//Aggregate data according to condition

val aggregatedData = data.groupBy("bk_publisher")

 .agg(count("*").alias("cnt"))

 .orderBy(desc("cnt"))

 .limit(10)

aggregatedData.show()

 57

4.8.3 Scenario 3- Two Way Join Query

This scenario is to get the total number of books by revenue generated between 2008

and 2010 from the books and revenue columns in a descending order by category and

10 per each category i.e. For books bought between 2008 and 2010, find the first 10

Publishers with the highest sales. Display them from highest to lowest.

MapReduce Job

This scenario is to get the total number of books by revenue generated between 2008

and 2010 from the books and revenue columns in a descending order by category and

10 per each category using Spark and API query.

Spark Job (Equivalent query in Spark API)

WITH a AS

(

 SELECT b.bk_publisher AS publisher,

 Sum(b.bk_price * t. trans_quantity) AS sum_sales

 FROM transactions t

 JOIN books b

 ON t.trans_book_id = b.bk_id

 AND Year(t.trans_transaction_dt) BETWEEN 2008 AND 2010

 GROUP BY b.bk_publisher)

SELECT a.publisher,

 Round(a.sum_sales, 2) AS total_sales

FROM a

ORDER BY total_sales DESC limit 10;

 58

--Spark Job (Equivalent query in Spark API)

4.8.4 Scenario 4-Three Way Join Query

//case classes for the two entities

case class Book(bk_id:String, bk_isbn:String, bk_category:String, bk_publish_dt:String, bk_publisher:String,

bk_price: String)

case class Transaction(trans_id:String , trans_customer_id :String, trans_book_id :String, trans_quantity :String,

trans_transaction_dt :String)

//get column names

val columnNamesBook = classOf[Book].getDeclaredFields.map(x => x.getName)

val columnNamesTransaction = clas-sOf[Transaction].getDeclaredFields.map(x => x.getName)

//Read data as Spark Dataframes

val book = spark.read.option("header", false).option("delimiter","|")

 .csv(hdfsFilePath + "/books/books").toDF(columnNamesBook:_*).as[Book]

val transaction = spark.read.option("header", false).option("delimiter","|")

 .csv(hdfsFilePath + "/transactions/transactions").toDF(columnNamesTransaction:_*).as[Transaction]

//Join book and transactions dataframes together and filter based on conditions

val data = book

 .withColumnRenamed("bk_publisher","book_publisher")

 .withColumnRenamed("bk_price","book_price")

 .join(transaction

 .withColumnRenamed("trans_id","transaction_id")

)

 .where($"trans_id" === $"book_id")

 .filter(year($"trans_transaction_dt".cast(TimestampType)).between("2008", "2010"))

 .select($"book_publisher", $"book_price".cast(DoubleType), $"trans_quantity".cast(IntegerType))

 .groupBy("book_publisher")

 .agg(round(sum($"book_price" * $"trans_quantity"),2).alias("total_sales"))

 .limit(10)

data.show()

 59

This is to get to get the list of books by price, revenue, and quantity with a limit of 10

per each category. Customer’s state was also included a newly created column for the

output i.e. For books bought by Female customers in NY, CA, LA and WA, find the

first 10 Publishers with the highest sales. Display them from highest to lowest

MapReduce Job

This is to get to get the list of books bought by Female customers in NY, CA, LA and

WA, find the first 10 Publishers with the highest sales. Display them from highest to

lowest. Customer’s state was also included a newly created column for the output using

Spark API.

Spark Job (Equivalent query in Spark API)

WITH a

 AS (SELECT b.bk_publisher AS publisher,

 Sum(b.bk_price * t. trans_quantity) AS sum_sales

 FROM transactions t

 JOIN books b

 ON t.trans_book_id = b.bk_id

 JOIN customers c

 ON t.trans_customer_id = c.cus_id

 AND c.cus_gender IN ('F')

 AND c.cus_state IN ('NY', 'CA', 'LA', 'WA')

 GROUP BY b.bk_publisher)

SELECT a.publisher,

 Round(a.sum_sales, 2) AS total_sales

FROM a

ORDER BY sum_sales

 60

//case classes for the two entities

case class Book(bk_id:String, bk_isbn:String, bk_category:String, bk_publish_dt:String,

bk_publisher:String, bk_price: String)

case class Transaction(trans_id:String , trans_customer_id :String, trans_book_id :String, trans_quantity

:String, trans_transaction_dt :String)

//get column names

val columnNamesBook = classOf[Book].getDeclaredFields.map(x => x.getName)

val columnNamesTransaction = clas-sOf[Transaction].getDeclaredFields.map(x => x.getName)

//Read data as Spark Dataframes

val book = spark.read.option("header", false).option("delimiter","|")

 .csv(hdfsFilePath + "/books/books").toDF(columnNamesBook:_*).as[Book]

val transaction = spark.read.option("header", false).option("delimiter","|")

 .csv(hdfsFilePath + "/transactions/transactions").toDF(columnNamesTransaction:_*).as[Transaction]

//Join book and transactions dataframes together and filter based on conditions

val data = book

 .withColumnRenamed("bk_publisher","book_publisher")

 .withColumnRenamed("bk_price","book_price")

 .join(transaction

 .withColumnRenamed("trans_id","transaction_id")

)

 .where($"trans_id" === $"book_id")

 .filter(year($"trans_transaction_dt".cast(TimestampType)).between("2008", "2010"))

 .select($"book_publisher", $"book_price".cast(DoubleType), $"trans_quantity".cast(IntegerType))

 .groupBy("book_publisher")

 .agg(round(sum($"book_price" * $"trans_quantity"),2).alias("total_sales"))

 .orderBy(desc("total_sales"))

 .limit(10)

data.show()

 61

5 RESULTS AND ANALYSIS

Both the MapReduce and Spark job has been subjected to the same amount of task rela-

tively. The queries jobs have been in the order of low complexity (Scan Query) to the

most complex (Three-Way Join). The scan query is more of scan through and filtering

tasks for both MapReduce and Spark jobs. The aggregation combines scanning, group-

ing, or removing before generating results. The two-way join combines two tables

which double the tasks and increase its complexity. The three-way join is the most

complex of all the tasks obviously, and it tests the efficiency of both MapReduce and

Spark job. The time taken for each of these tasks to be completed been monitored and

recorded and will be analyzed.

5.1 Results for MapReduce and Spark Jobs

The following results were obtained for the time taken for both MapReduce and Spark

jobs to be completed.

i. The MapReduce Scan Task

This task takes 31.40 seconds to be completed as shown in Figure 24.

 Figure 24. The MapReduce Scan Task Result.

 62

ii. The Spark Scan Task

It takes 41 seconds for Spark to accomplish its scan query task as shown in

Figure 25.

 Figure 25. The Spark Scan Task Result

iii. The MapReduce Aggregation Task

It takes about 66s for MapReduce to complete its aggregation query task as

shown below in Figure 26.

 Figure 26. MapReduce Aggregation Task Result

iv. The Spark Aggregation Task

It takes about 35 seconds for Spark to perform its aggregation tasks as shown

below in Figure 27.

 63

 Figure 27. Spark Aggregation Task Result

v. The MapReduce Two-Way Join Task

The MapReduce takes about 175 seconds to complete this task as shown in

Figure 28.

 Figure 28. The MapReduce Two-Way Join Task Result

vi. The Spark Two-Way Join Task

It takes Spark 66 seconds to complete two-way join task as shown in Figure

28.

 Figure 29. Spark Two-Way Join Task Result

 64

vii. The MapReduce Three-Way Join Task

It takes about 221 seconds for MapReduce to complete the most complex of

its task as shown in Figure 30.

 Figure 30. MapReduce Three-Way Join Task Results

viii. The Spark Three-Way Join Task

Sparks takes 78 seconds to complete the most complex of all its tasks as

shown in Figure 31.

 Figure 31. Spark Three-Way Join Task Results

5.2 Analysis

The Table 1 shows the recorded time in seconds it takes both MapReduce and Spark to

complete their tasks. At the simplest task, which is Scan Query Job, the MapReduce

was effective. It takes Spark longer time to complete its task compared to MapReduce.

This is because of MapReduce being effective with batch data processing. This is due to

 65

its linear data processing capabilities with large data. The simplest task being just scan-

ning, and filtering might have given MapReduce the observed advantage.

As the tasks get tougher, it is observed that Spark complete its tasks faster as expected.

It takes MapReduce approximately three times what Spark requires to complete its

tasks. This is probably because of Spark in memory processing capabilities than that of

MapReduce input/output disk latency which makes the later slower.

 Scenarios (Query Jobs

Performed)

MapReduce Job

Time Elapsed

(s)

Spark Job Time

Elapsed (s)

Scenario 1 (Scan Query) 31.40 41

Scenario 2 (Aggregation

Query)

66 35

Scenario 3 (Two Way Join

Query)

175 66

Scenario 4 (Three Way Join

Query)

221 78

Table 1. Time Elapsed for MapReduce and Spark Job

 66

6 CONCLUSION

This thesis work compares the performances of both MapReduce and Apache Spark.

We launched and configured four Linux Instances using AWS. We selected a t2.micro

type instances from the Amazon EC2 console. The four Linux Instances represent four

cluster nodes needed for benchmarking, one master and three slaves. The four Linux

instances were connected to the terminal through SSH. The Linux Instances were grant-

ed access to each other from the master to the slaves. VPC was configured to enable our

Linux Instances being launched into a pre-defined virtual network. A security group

was associated with the launched Linux Instances with inbound and outbound rules

specified.

We created a key pair that allows connection to the Linux Instances through SSH. The

Linux Instances were launched into a public subnet and associated with an Elastic IP

addresses. The Elastic IP ensures that the Linux Instances have permanent IPs whenever

they are launched. The CDH was installed using Cloudera Manager 5.16 version. The

four cluster nodes were installed immediately CDH was launched into the web. These

services HDFS, Hue, Oozie, and YARN were added to the cluster. Service roles were

added to the master and the slaves. Big Data files of 5 Gigabyte each for Books, Cus-

tomers, and Transactions were created. We copied the data files into HDFS and a Hive

table was created.

We started benchmarking the performances of MapReduce and Apache Spark by ob-

serving task execution time. We carried out the benchmark by running four different

types of queries namely: Scan query, Aggregate query, Two-way join query and Three-

way join query. These queries are in order of complexity with the Scan query being the

easiest, while Three-way join is the most difficult. The time taken for each query to run

for both MapReduce jobs and Spark jobs were tabulated. We critically observed the

recorded time taken for each task completion.

 67

In scenario 1, which is the Scan query it took 31.40s for MapReduce job to complete

while Spark took 41s. We observed that MapReduce was efficient at the simplest task.

In scenario 2, which is Aggregation job MapReduce jobs took 66s to complete while

Spark took 35s. We observed that Spark performs better than MapReduce at this job. In

scenario 3, we carried out Two-way join query. We observed that Spark performs even

better at this stage more than the previous job. Sparks job took 66s to complete while

MapReduce took 175s. In scenario 4, we carried out a Three-way join query which is

the most difficult of all the tasks. We observed that MapReduce job took 221s to com-

plete while Spark took only 78s. Spark performs even more better at this stage complet-

ing its job at almost 3 times faster than MapReduce.

We observed that at the simplest task, which was Scan query, MapReduce was effec-

tive. Its execution time was shorter compared to that of Spar. This demonstrates that

MapReduce is efficient with linear data processing of big data. It enables parallel pro-

cessing where more processor executes divided jobs. However, Apache Spark per-

formed better as the tasks get tougher. In fact, at the most difficult job, which is Three-

way join, Spark performs almost three times faster than MapReduce. This demonstrates

the in-memory data processing ability of Spark. It saves the intermediate output in the

memory which practically reduces execution time for all its tasks. It was concluded that

Apache Spark is more effective and faster overall.

The challenges of this research work are that AWS is very expensive for a student ex-

perimenting with this without funding. It was practically difficult to use the free tier eli-

gible Linux Instances due to a lot of limitations such as low memory sizes. For the fu-

ture work, it will be interesting to measure the throughput of each cluster nodes for both

MapReduce and Apache Spark jobs when both subjected to the same big data task.

 68

REFERENCES

A. G. Prajapati, S. J. Sharma and V. S. Badgujar, "All About Cloud: A Systematic Sur-

vey," 2018 International Conference on Smart City and Emerging Technology

(ICSCET), Mumbai, 2018, pp. 1-6, doi: 10.1109/ICSCET.2018.8537277. [online]

Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8537277

A. K. Manekar and G. Pradeepini, "Cloud Based Big Data Analytics a Review," 2015

International Conference on Computational Intelligence and Communication Net-

works (CICN), Jabalpur, 2015, pp. 785-788. [online] Available

at:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7546203.

Amazon Elastic MapReduce: Developer Guide 2014. [online] Available at:

https://s3.amazonaws.com/awsdocs/ElasticMapReduce/latest/emr-dg.pdf

A. Verma, A. H. Mansuri and N. Jain, "Big data management processing with Hadoop

MapReduce and spark technology: A comparison," 2016 Symposium on Colossal

Data Analysis and Networking (CDAN), Indore, 2016, pp. 1-4. [online] Available

at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7570891

A. V. Hazarika, G. J. S. R. Ram and E. Jain, "Performance comparision of Hadoop and

spark engine," 2017 International Conference on I-SMAC (IoT in Social, Mobile,

Analytics and Cloud) (I-SMAC), Palladam, 2017, pp. 671-674. [online] Available

at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8058263

B. Akil, Y. Zhou and U. Röhm, "On the usability of Hadoop MapReduce, Apache Spark

& Apache flink for data science," 2017 IEEE International Conference on Big Data

(Big Data), Boston, MA, 2017, pp. 303-310. [online] Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8257938&tag=1

Cloud computing with AWS. [online] Available at: Available at

https://aws.amazon.com/what-is-aws/?nc1=f_cc

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8257938&tag=1

 69

Cloudera Enterprise 5.14.x CDH Overview. 2020. [online] Available at:

https://docs.cloudera.com/documentation/enterprise/5-14-x/topics/cdh_intro.html

Cloudera Manager Overview Cloudera Enterprise 6.3.x. 2020. [online] Available at:

https://docs.cloudera.com/documentation/enterprise/latest/topics/cm_intro_primer.ht

ml

Getting started with Amazon EC2 Linux instances. [online] Available at:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2ug.pdf#EC2_GetStarte

d

Hadoop Ecosystem and Their Components – A Complete Tutorial by DataFlair Team ·

Updated April 26, 2019. [online] Available at: https://data-

flair.training/blogs/hadoop-ecosystem-components/

Hadoop Mapper–4 Steps Learning to MapReduce Mapper by DataFlair Team Updated

November 21, 2018. [online] Available at: https://data-flair.training/blogs/hadoop-

mapper-in-mapreduce/

Hadoop Reducer–3 Steps learning for MapReduce Reducer by DataFlair Team Updated

November 21, 2018. [online] Available at: https://data-flair.training/blogs/hadoop-

reducer/

J. Fu, J. Sun and K. Wang, "SPARK – A Big Data Processing Platform for Machine

Learning," 2016 International Conference on Industrial Informatics - Computing

Technology, Intelligent Technology, Industrial Information Integration (ICIICII),

Wuhan, 2016, pp. 48-51,. [online] Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7823490

Kalbandi, Ishwarappa & Anuradha, J. (2015). A Brief Introduction on Big Data 5Vs

Characteristics and Hadoop Technology. Procedia Computer Science. [online]

Available at: https://www.researchgate.net/publication/282536587_A_

 70

Brief_Introduction_on_Big_Data_5Vs_Characteristics_and_Hadoop_Technology/ci

tation/download

K. Aziz, D. Zaidouni and M. Bellafkih, "Real-time data analysis using Spark and Ha-

doop," 2018 4th International Conference on Optimization and Applications

(ICOA), Mohammedia, 2018, pp. 1-6. [online] Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8370593

KSpark RDD – Introduction, Features & Operations of RDD by DataFlair Team Updat-

ed May 7, 2019. [online] Available at: https://data-flair.training/blogs/spark-rdd-

tutorial/

Learn the Concept of Key-Value Pair in Hadoop MapReduce by DataFlair Team · Up-

dated · November 16, 2018. [online] Available at: https://data-

flair.training/blogs/key-value-pair-in-hadoop-mapreduce/

M. A. Giraldo, J. F. Duitama and J. D. Arias-Londoño, "MapReduce and Spark-based

architecture for bi-class classification using SVM," 2018 IEEE 1st Colombian Con-

ference on Applications in Computational Intelligence (ColCACI), Medellin, 2018,

pp. 1-6. [online] Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=& ar-

number =8484855

M. A. Hedjazi, I. Kourbane, Y. Genc and B. Ali, "A comparison of Hadoop, Spark and

Storm for the task of large scale image classification," 2018 26th Signal Processing

and Communications Applications Conference (SIU), Izmir, 2018, pp. 1-4. [online]

Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber= 8404688

M. Khan, Salman and N. Iqbal, "Computational Performance Analysis of Cluster-based

Technologies for Big Data Analytics," 2017 IEEE International Conference on In-

ternet of Things (iThings) and IEEE Green Computing and Communications

(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE

 71

Smart Data (SmartData), Exeter, 2017, pp. 280-286 [online] Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8276765

M. T. Khorshed, N. A. Sharma, A. V. Dutt, A. B. M. S. Ali and Y. Xiang, "Real time

cyber attack analysis on Hadoop ecosystem using machine learning algorithms,"

2015 2nd Asia-Pacific World Congress on Computer Science and Engineering

[online] Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

7476223

M. Zhou, R. Zhang, D. Zeng and W. Qian, "Services in the Cloud Computing era: A

survey," 2010 4th International Universal Communication Symposium, Beijing,

2010, pp. 40-46, doi: 10.1109/IUCS.2010.5666772. [online] Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5666772

NiketanPansare1, VinayakBorkar2, ChrisJermaine1, TysonCondie OnlineAggregation-

forLarge MapReduceJobs. [online] Available at: https://asterix.ics.uci.edu/pub/

vldb11-oa.pdf

R. K. Chawda and G. Thakur, "Big data and advanced analytics tools," 2016 Symposi-

um on Colossal Data Analysis and Networking (CDAN), Indore, 2016, pp. 1-8.

[online] Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

7570890.

Shengti Pan (2016) The Performance Comparison of Hadoop and Spark: CULMINAT-

ING PROJECTS IN COMPUTER SCIENCE [online] Available at:

https://pdfs.semanticscholar.org/fab7/ef9a4d46d1af7ac5e26cf0146bf07decea05.pdf.i

eee.org/stamp/stamp.jsp?tp=&arnumber=7570890.

Talia, Domenico. (2013). Clouds for Scalable Big Data Analytics. Computer. 46. 98-

101. 10.1109/MC.2013.162. Extracting useful knowledge from huge digital datasets

requires smart and scalable analytics services, programming tools, and applications.

[online] Available at: https://www.researchgate.net/profile/Domenico

 72

_Talia/publication/260584533_Clouds_for_Scalable_Big_Data_Analytics/links/5cff

84a74585157d15a21995/Clouds-for-Scalable-Big-Data-Analytics.pdf

The Hadoop Ecosystem: Welcome to the zoo!. [online] Available at:

https://www.coursera.org/lecture/big-data-introduction/the-hadoop-ecosystem-

welcome-to-the-zoo-BpHNu

X. Lu, M. W. U. Rahman, N. Islam, D. Shankar and D. K. Panda, "Accelerating Spark

with RDMA for Big Data Processing: Early Experiences," 2014 IEEE 22nd Annual

Symposium on High-Performance Interconnects, Mountain View, CA, 2014 , pp. 9-

16, doi: 10.1109/HOTI.2014.15. [online] Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6925713

