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Abstract

We study various families of Artin L-functions attached to geometric parametrizations of number
fields. In each case we find the Sato–Tate measure of the family and determine the symmetry type
of the distribution of the low-lying zeros.

2010 Mathematics Subject Classification: 11R42, 11M41 (primary); 11M50 (secondary)

1. Introduction

The Katz–Sarnak heuristics [43] concern the arithmetic statistics of a family F of
L-functions. In this paper, we verify the heuristics for certain families arising from
number fields. We shall follow the framework of the recent [61]. We recall that
in [61] the authors distinguish two ways of forming a family: harmonic families,
which can be studied with the trace formula; and geometric families arising from
algebraic varieties defined over the rationals. In this paper we are concerned with
the geometric families of zero-dimensional varieties, which give rise to number
fields.

The first family we study comes from the space V of monic polynomials of
degree n. To any f ∈ V we associate its scheme X f of zeros. This defines an
affine subset X ⊂ V × A1. If f ∈ V (Z), then the ring Rf := Z[T ]/ f (T ) of

c© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.
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A. Shankar, A. Södergren and N. Templier 2

regular functions on X f is monogenic, which means that it is generated by a single
element called a monogenizer of Rf . The additive group Ga naturally acts on V
and on A1 via translations (m · f )(T ) := f (T + m) and the n-covering X → V
is Ga-equivariant.

The ramification locus of X → V is given by the equation ∆ = 0, where the
discriminant ∆ is a Ga-invariant polynomial function on V . The covering is étale
away from the ramification locus, thus in particular the ring Rf is reduced if and
only if ∆( f ) 6= 0. The Galois group of the covering is the full permutation group
Sn , which can be proved by identifying V with the GIT quotient An//Sn and
similarly X ' An//Sn−1 with the natural projections X → V and X → A1; see
Section 5.

If f ∈ V (Z)irr is irreducible, then the field of fractions K f of Rf is a
number field of degree n. Let Mf denote the normal closure of K f . The Galois
group Gal(Mf /Q) embeds irreducibly into Sn . By composing with the standard
representation of Sn , we obtain an Artin representation

ρK f : Gal(Mf /Q) ↪→ Sn → GLn−1(C).

We are interested in the L-functions L(s, ρK f ). Note that ζ(s)L(s, ρK f ) is equal
to the Dedekind zeta function ζK f (s). In a precise sense to be explained in
Section 5.2, for a 100% of elements f ∈ V (Z), the polynomial f is irreducible
and the normal closure Mf has Galois group Sn . This can be seen to follow from
an application of Hilbert irreducibility.

We consider the subset V (Z)max of V (Z)irr consisting of irreducible
polynomials f such that Rf is a maximal order in K f . Imposing the condition
of maximality requires the application of a sieve and a tail estimate developed
and proved in [11]. The action of Ga(Z) = Z by translation preserves the
subsets V (Z)irr and V (Z)max of V (Z). Let the family F consist of the Z-orbits
on V (Z)max. For a 100% of f ∈ V (Z)max, the representation ρK f has image Sn ,
hence L(s, ρK f ) is orthogonal self-dual.

The family F parametrizes monogenized number fields of degree n over Q up
to isomorphism. If R = Z[α] is a monogenic ring, then the pair (R, α) is called
a monogenized ring. A pair (K , α) where K is a number field is said to be a
monogenized field if α belongs to OK , the ring of integers of K , and the pair
(OK , α) is a monogenized ring. Two monogenized fields (K , α) and (K ′, α′) are
said to be isomorphic if K is isomorphic to K ′ and this isomorphism carries α to
α′ + m for some integer m ∈ Z. If a monic polynomial f is irreducible, then the
field of fractions of Rf is a degree-n field K f = Q[T ]/ f (T ), and the pair (K f , α)

is a monogenized field, where α is the image of T in Rf . Conversely, if (K , α)
is a monogenized field, then the characteristic polynomial of α is an element f
belonging to V (Z)max, and the field of fractions of Rf is K .
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Sato–Tate equidistribution of certain families of Artin L-functions 3

It is possible for number fields to have more than one monogenizer. However,
a result of Birch and Merriman [13] implies that a number field has only finitely
many monogenizers, up to translation by a rational integer. Therefore, a number
field K arises only finitely many times in the family F.

Since V ' An//Sn it is natural to consider the associated grading. More
precisely, an element (x1, . . . , xn) ∈ An//Sn gives rise to the polynomial f (T ) =∏

i(T − xi), hence considering the xi to be elements of degree 1, it follows that
for f (T ) = T n

+ a1T n−1
+ · · · + an ∈ V , the coefficient ai has degree i because

it is (−1)i times the i th symmetric polynomial evaluated at the roots of f . The
discriminant ∆ is then homogeneous of degree n(n − 1). We order the family
by the height h( f ) := maxi{|ai |

n(n−1)/ i
} on V (R) which is also homogeneous of

degree n(n − 1). We then prove the following theorem (see Sections 2 and 5):

THEOREM 1.1. The family parametrizing monogenized degree-n number fields
ordered by height has Sato–Tate group Sn ⊂ GLn−1(C), rank zero, and
Symplectic symmetry type. It satisfies Sato–Tate equidistribution in the sense
of [61, Conjecutre 1], and the Katz–Sarnak heuristics for one-level density.

If we let Tn be the set of conjugacy classes in Sn , then [61, parts (iii) and (iv) of
Conjecture 1] translates to the following statement. Uniformly as x, y→∞ with
log x/ log y large enough, the elements

{ρK (Frobp) : K ∈ F(x), p < y} ⊂ Tn (1)

become equidistributed for the Sato–Tate measure on Tn which is the pushforward
of the normalized counting measure on Sn . This is to be compared with the
Chebotarev equidistribution theorem that says that for any Sn-number field K ,
the elements {ρK (Frobp) : p < y} are equidistributed in Tn as y →∞. Here the
extra averaging over K ∈ F(x) allows us to produce a quantitative power saving
error term.

In general, for any given family the Sato–Tate equidistribution (1) has
applications to sieving, zero density results, averaging of L-values, and low-
lying zeros. In this paper we confine ourselves to the latter aspect. The assertion
of Theorem 1.1 on the Symplectic symmetry type corresponds to the one-level
density with restricted support of low-lying zeros (see Theorem 2.8). As explained
in [61, Conjecture 2], the proof proceeds from the Sato–Tate equidistribution
of (1) and from considering the following two additional quantities. First, the
root numbers of L(s, ρK ) are always +1 because the root numbers of both ζ(s)
and ζK (s) are +1. This also follows from ρK being an orthogonal representation,
as a special case of a result of Fröhlich and Queyrut [37]. Second, the rank of the
family is zero; see Section 2.5.
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A. Shankar, A. Södergren and N. Templier 4

The proof of Theorem 1.1 proceeds as follows: first, we determine asymptotics
for the number of Z-orbits on V (Z)max having bounded height, and whose
coefficients satisfy any finite set of congruence conditions. It is here that we need
the sieve methods of [11]. Next, note that ρK f (Frobp) is determined by Rf ⊗Fp,
which is the ring over Fp corresponding to the reduction of f modulo p. We then
determine the density of elements in V (Z)max, such that the corresponding value
of ρK f (Frobp) is fixed, via a local count of configurations of n points in Fp.

Next, it is desirable to have families that count each number field at most once.
This is achieved in the cubic case by further considering orbits under the GL2

action. One forms the affine space V ' A4 of binary cubic forms, and construct
a 3-covering X → V as above, except that now X ⊂ V × P1 is quasi-projective.
We consider the action by GL2 on V and on P1 which induces an equivariant
structure of the covering X → V , that is, the action of GL2 on V × P1 preserves
X and the map X → V is compatible with the actions of GL2 on X and V . In fact
V is a prehomogeneous vector space for this action and the discriminant ∆ is a
generator of the algebra of invariant polynomials. We then consider elements f in
GL2(Z)\V (Z)smax as parameters for maximal S3-orders. Since two maximal cubic
forms give rise to the same cubic field K f if and only if they belong to the same
GL2(Z)-orbit, we obtain a family F which parametrizes the S3-fields exactly once.
We shall order the family by discriminant so that F(x) coincides with the set of S3-
fields with absolute discriminant less than x . It is a result of Davenport–Heilbronn
that |F(x)| ∼ x/(3ζ(3)) as x →∞. Bhargava [7, 8] proved the analogous result
for quartic and quintic fields. The following is due to Yang [79] in the cubic and
quartic cases.

THEOREM 1.2. The families parametrizing S3-, S4- and S5-fields ordered by
discriminant are homogeneous orthogonal, and have rank zero and Symplectic
symmetry type. They satisfy Sato–Tate equidistribution, and the Katz–Sarnak
heuristics for one-level density.

The thesis [79] is unpublished. An account first appeared in [61] and Sections 2
and 3 of this paper provide more details. A different treatment is given in [19, 20].
The advantage of our treatment compared to [19, 20, 79] is to make transparent
the relation between the symmetry type and the other statistical invariants of the
families. As before, the equidistribution statement is to be interpreted in the sense
of the quantitative equidistribution of (1), where the normalized counting measure
on Tn arise as the limit as p→∞ of the pushforward of the normalized counting
measure on V (Zp)

max. We recall the concept of a homogeneous orthogonal family
in Section 2. A key aspect of both Theorems 1.1 and 1.2 is the study of maps

V (Zp)
max
⊃ V (Zp)

unr � V (Fp)
∆6=0 � Tn, (2)
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Sato–Tate equidistribution of certain families of Artin L-functions 5

which gives the splitting type of an order unramified at p in terms of the reduction
of the corresponding polynomial modulo p.

The proofs rely in an essential way on Bhargava’s work on counting and
parametrizing quartic and quintic fields. A rank n ring arises as the ring of
functions of a projective set of n points defined over Z, and conversely its
spectrum is a set of n points. As explained in [6, Section 2], every rank n ring
arises from a set of n points in Pn−2. In the case n = 3, where three points in
P1 are parametrized as the zero set of binary cubic forms, the above construction
was sufficient. Binary n-ic forms parametrize sets of n points in P1 which, for
n > 4, do not give rise to all rank n rings; see [76]. To parametrize all rank n
rings for n = 4, 5, Bhargava writes the n points in Pn−2 as the intersection of
quadrics. For n = 4, a generic set of two quadrics in P2 intersect in four points.
Furthermore, every set of four points in P2 arise this way. Thus quartic rings are
naturally parametrized by pairs of ternary quadratic forms [5]. We denote the
underlying space V = 2⊗Sym2(3).

In the case n = 5, five quadrics are required to obtain an intersection of five
points. However a generic set of five quadrics do not intersect at all in P3. Rather
it is known from the work of Buchsbaum and Eisenbud [15] that five quadrics in
P3 intersect in five points if and only if they arise as the 4 × 4 Pfaffians of an
alternating 5× 5 matrix of linear forms in four variables. The underlying space is
V = 4⊗ ∧2 (5) which gives rise to a parametrization of quintic rings [6].

In both cases n = 4, 5 we obtain a quasi-projective scheme X ⊂ V × Pn−2

cut out by quadrics. This is a branched covering X → V of degree n. As in the
case n = 3, the covering has an equivariant G-structure with G = GL2 × SL3

if n = 4 and G = GL4 × SL5 if n = 5. (Here, GL2 × SL3 acts on P2 via the
action of SL3 and GL4 × SL5 acts on P3 via the action of GL4.) As before we let
V (Z)max (respectively V (Z)smax) be the set of forms that give rise to maximal
rings (respectively maximal Sn-rings). As before, we consider elements f in
G(Z)\V (Z)smax as parameters for maximal Sn-rings. These are the families F
studied by Bhargava which parametrize S4- and S5-fields. The sets F(x) will be
ordered by discriminant and the asymptotics |F(x)| ∼ cx as x → ∞ are the
celebrated results of [7, 8]. Compared to the counting in Theorem 1.1 ordered by
height, a major difficulty for these families ordered by discriminant, overcome by
Bhargava, is the presence of noncompact ‘cusps’, which means there are forms in
a fundamental domain for the G(Z)-action on V (Z) that have large coefficients
but small discriminant. The Sato–Tate equidistribution (1) with a power saving
error term is obtained in [4, 7, 8, 64].

For n = 4, 5, restricting to the nonsingular locus gives étale coverings X∆ 6=0
→

V∆6=0. Quotienting G by the subgroup that acts trivially on X , we obtain an
algebraic group H such that H(C) acts transitively on V∆6=0(C) and acts simply
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A. Shankar, A. Södergren and N. Templier 6

transitively on X∆6=0(C). (See [12, Table 1] for an exact description of H .)
The stabilizer in H(C) of any element in V∆6=0(C) is known to be Sn , see
[62, Section 7] for n = 4 and [78, Proposition 2.13] for n = 5. It then follows
that the normal closure of the étale covering X∆ 6=0(C) → V∆6=0(C) has Galois
group Sn . For the first family of monic degree-n polynomials with n > 2, the
subset V∆6=0(C) of polynomials with nonzero discriminant admits again an étale
covering X∆6=0(C) defined by their zero locus in C, and the normal closure of
this covering has again Galois group Sn . For all these families, the Galois group
being the full Sn is closely related to the equidistribution (1), as discussed in [42]
and [61, Section 2.11].

As a side remark it is interesting to note that nonisomorphic Sn-number fields
K f and K f ′ have distinct Dedekind zeta functions (see [56]). Since each Sn-
field occurs exactly once, we are counting the L-functions L(s, ρK f ) also with
multiplicity one.

It is believed that for any Sn-number field K , the central value ζK (
1
2 ) is

nonzero. This belief is reinforced by the Symplectic symmetry type of the families
described above, which thereby exhibit a repulsion of the low-lying zeros at the
central point. For quadratic fields the nonnegativity of ζK (

1
2 ) implies (see [40])

a strong effective lower bound on the class number of K . For S5-number fields
the nonvanishing of ζK for real s ∈ (0, 1) is a useful hypothesis in establishing
modularity in [16].

Unconditionally Soundararajan [67] has proved that a positive proportion of all
quadratic number fields satisfy ζK (

1
2 ) 6= 0, which is also strengthened in [22]

into a positive proportion of nonvanishing of ζK (s) for real s ∈ (0, 1). The
generalization to families of Sn-number fields with n > 3 is still open. Our
Theorems 1.1 and 1.2 above are not yet strong enough to derive a result in this
direction because of the restricted support of the one-level density statistics.

The families are homogeneous orthogonal because the Frobenius–Schur
indicator of Sn ⊂ GLn−1(C) is equal to +1, an observation which was also
made in [47, Item 76] in relation to mass formulas [9]. Another interesting
application to an analogue of the Erdös–Kac theorem appears in [50], and to
average upper bounds for class numbers in [31]. Although not stated in [31], it
can be verified that their sieving argument applies to any number field family
ordered by discriminant that satisfies the Sato–Tate equidistribution in the sense
of [61, Conjecture 1].

As stated above, the root number is +1 for any Sn-number field. In general the
root number of a self-dual Artin representation may be −1, the first example was
given by Armitage [1]. Thus one may wonder what happens for general families
of Artin representations with a different root number. This motivates our study of
families of quaternionic fields. Let K be a quaternionic field, that is a degree eight
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Sato–Tate equidistribution of certain families of Artin L-functions 7

number field whose Galois group Gal(K/Q) is the quaternion group Q of eight
elements. There is a unique irreducible two-dimensional representation of Q and
we can attach an Artin representation

ρK : Gal(K/Q) ' Q → GL2(C)

which is symplectic. We can view ρK as induced from a Hecke character of order 4
in a quadratic extension of Q inside K . Furthermore, it is known to correspond to
an automorphic form on PGL2, precisely to a (dihedral) Maass form of weight 0,
eigenvalue 1

4 and trivial nebentypus; see [14, Section 3] and the references therein.

EXAMPLE 1.3.

(i) Dedekind found that K = Q(
√
(2+
√

2)(3+
√

6)) is a quaternionic
extension of Q containing Q(

√
2,
√

3) (see [26]). The root number of ρK

is +1.

(ii) The field K = Q(
√
(5+
√

5)(41+ 6
√

41)) is a quaternionic extension of Q
containing Q(

√
5,
√

41). The root number of ρK is −1.

To form a family, we fix an arbitrary quaternionic field K . Let q ≡ 0, 1 (mod 4)
be a fundamental discriminant that is coprime with the discriminant of K . Let
χq be the associated quadratic Dirichlet character which we may also view as
an Artin representation onto {±1} ⊂ GL1(C). Consider the Artin representation
that is the character twist ρK ⊗χq . Since Gal(K (

√
q)/Q) ' Q × Z/2Z and the

representation factors through the unique nontrivial surjection Q × Z/2Z→ Q,
which defines a unique quaternionic field Kq , ρK ⊗χq is the same as ρKq . We call
the field Kq a quadratic twist of K and obtain in this way a one-parameter family
of quaternionic fields.

In Section 8 we give an equivalent description of Kq using a theorem of
Witt [73], and relate this to a similar construction by Fröhlich [36]. This
description also shows that the family is geometric in the sense that it arises
as before from an 8-covering of A1. The following is a special case of results
of Rubinstein [59] who treated families of quadratic twists of an arbitrary
automorphic form on GLn .

THEOREM 1.4. Let K be a quaternionic field and consider the above one-
parameter family of quaternionic Artin representations of Kq parametrized by
discriminants q. The family is homogeneous symplectic, and it has SO(even)
symmetry type if ρK has root number +1 and SO(odd) symmetry type if ρK has
root number −1.
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A. Shankar, A. Södergren and N. Templier 8

In contrast to the quadratic twists of an elliptic curve where the root numbers
fluctuate, we note the interesting phenomenon that the root numbers of the
quadratic twists Kq of a quaternionic field are constant. We verify this in Section 8
where we give a brief exposition of the arithmetic of quaternionic fields gathering
several results scattered in the literature.

Suppose that ρK has root number −1. It is believed that ords=1/2 L(s, ρK ) = 1
and similarly for Kq for all q . This belief is reinforced by the SO(odd) symmetry
type of the family which defines the same determinantal point process as the union
of Sp(∞) and a single zero at 1

2 .
In Section 4 we investigate two situations where one constructs a geometric

family starting from another. The first construction is due to Davenport–
Heilbronn. Starting from a binary cubic form f ∈ V (Z) we attach the quadratic
field whose discriminant is ∆( f ). Geometrically this is a branched covering
of V of degree two which is again GL2-equivariant (to be compared with the
branched covering of degree three parametrizing cubic fields). It is famously
used to determine asymptotically the average size of the 3-part of the class
group of quadratic fields. Unsurprisingly, we show in Section 4 the Sato–Tate
equidistribution in T2 for this family. Similarly the second construction comes
from Bhargava’s parametrization of the pairs of quartic rings together with their
resolvent rings. This yields a GL2 × SL3-equivariant covering of degree three
which can be used to determine the average size of the 2-part of the class group
of cubic fields [7]. We prove that the Sato–Tate equidistribution in T3 holds for
this family.

In all of the above families, the rank of the family is zero in the sense
of [61]. The average trace of Frobenius is a Weil number of integer weight which
geometrically comes from the fact that we are counting orbits of points of varieties
over finite fields. Thus it is always the case that the rank is zero for any geometric
family of number fields because the construction involves the H 0 of the zero-
dimensional fibers. This is consistent with the belief that Artin L-functions never
vanish at the central point except when forced by the root number being −1.

It would be interesting to obtain similar results when F(x) is the set of all
Sn-number fields of discriminant at most x . It is possible to view F(x) as a
parametric set by considering the configuration of n points in Pn−2 modulo the
action by GLn−1. For n > 4, this yields an algebraic variety V which can always
be cut out by a certain number of quadrics [72, Theorem 138]. A conjecture
of Bhargava [9] predicts an asymptotic |F(x)| ∼ cn x as x → ∞ and moreover
the mass conjecture [9] would also imply the Sato–Tate equidistribution. For
n 6 5 the variety V can be parametrized by a prehomogeneous group action on a
vector space by the results of Davenport and Heilbronn [24] and Bhargava [5, 6]
as mentioned above and F becomes a geometric family in the sense of [61].
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Sato–Tate equidistribution of certain families of Artin L-functions 9

For n > 6 this is not the case and thus the study of rational points in V (Z) is
an extremely delicate problem. For the same reason it is not possible to include
such parameter spaces in the definition of geometric families in [61]; working in
such complete generality would allow too many pathologies in the asymptotic of
families; see [61, Section 3.1].

As explained above, the families are obtained by a sieving process of the forms
f ∈ V (Z). In this process we can extract the forms f that give rise to number
fields with a constant Sn Galois group. It is interesting to study what happens if we
form families starting from the same space but without sieving. Then the Galois
group of Mf /Q can vary with f . So we call these mixed families. These mixed
families fit in the framework of [61] if we parametrize the contribution of the cusp.
We shall explain that the Sato–Tate equidistribution holds for them. Interestingly
it is shown in [75] that the family of D4-fields ordered by discriminant does not
have a mass formula. The Sato–Tate measure is a linear combination of Sato–Tate
measures attached to the Haar measures on different Galois groups which occur
with positive proportion. Serre also describes the possible Sato–Tate measures in
this way in his recent book [63]. One interesting case is the mixture of S4- and
D4-fields arising from pairs of ternary quadratic forms; see Section 6. Incidentally
the quantitative equidistribution for the family of D4-fields is not yet established.

Let us also mention some other open questions that arise from our perspective
on families and on which we hope to return elsewhere. Besides the one-parameter
families explored in Section 8 it would be interesting to study other families of
quaternionic fields (see [34, 46]). In this paper we do not consider lower order
terms as in, for example, [33]; these can be seen to be related to the counting
measures on V (Z/prZ) of Section 7. Finally, it should be possible to improve the
remainder terms and support for one-level density using for example large sieve
inequalities and Fourier transforms of orbital measures.

2. General setup for zeta functions of degree n number fields

Some familiarity with the Katz–Sarnak heuristics or with [61] is helpful
to understand the general context of the paper, but not necessary. Indeed we
shall introduce the relevant concepts gradually, so that the paper can be read
independently. L-functions and splitting types are discussed in Section 2.1. The
Sato–Tate group, Sato–Tate measure, and Frobenius–Schur indicator are defined
in Section 2.2. The étale cohomology formalism is used in Section 2.2 only to
make clear how the present constructions for families of number fields generalize
to arbitrary families of higher-dimensional varieties. Then, in Section 2.3 we
introduce the statistics of families and Sato–Tate equidistribution. Section 2.4
concerns the 1-level density of low-lying zeros for the relevant families.
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We show in Theorem 2.8 how this density can be deduced from the Sato–
Tate equidistribution together with the rank of the family defined in Section 2.5.
The final Section 2.6 discusses two additional invariants i1 and i2 from [61] which
are important, but less directly relevant in our context. Finally we note that some
concepts from the theory of automorphic forms are mentioned, such as unitary
dual, Satake parameter, and modularity conjectures. This is only for motivation
and convenience, and to have a unified framework that works for many different
types of families. No result about automorphic forms is actually used.

Let K be a degree-n number field with normal closure M . Then ζK (s) is
the Artin L-function corresponding to the trivial representation of the absolute
Galois group Gal(K ) = Gal(K/K ), which is an index n subgroup of Gal(Q) =
Gal(Q/Q), and we have

ζK (s) = L(s, IndGal(Q)
Gal(K )1).

The representation IndGal(Q)
Gal(K )1 of Gal(Q) factors through Gal(M/Q) ↪→ Sn and

decomposes into the direct sum of the trivial representation and the composition
with the standard representation ρ : Sn → GLn−1(C). Therefore, we have

ζK (s) = ζ(s)L(s, ρK ), (3)

where ζ(s) is the Riemann zeta function and L(s, ρK ) is the Artin L-function
corresponding to

ρK : Gal(Q)→ Gal(M/Q) ↪→ Sn → GLn−1(C). (4)

Note that the conductor of L(s, ρK ) is equal to the conductor of ζK (s). We denote
it by CK . It follows from Artin’s conductor-discriminant formula that CK is equal
to the absolute value of the discriminant ∆(K ) of the number field K .

We will study the statistics of the low-lying zeros of L(s, ρK ) by summing
these zeros against a test function always denoted by f . We pick f to be an even
function on R, such that its Fourier transform

f̂ (x) :=
∫
∞

−∞

f (y)e−2π i xy dy (5)

is smooth, and of compact support. If f̂ has support contained in [−α, α], then
f can be extended to an entire function of exponential type α. The first step
toward understanding the statistics of the zeros of L(s, ρK ) is the explicit formula.
For each m > 1, we write λK (m) for the Dirichlet coefficients of L(s, ρK ). Note
that λK is integer valued and that

∑
d|m λK (d) is the number of ideals of K of

norm m. We write the logarithmic derivative of L(s, ρK ) for <(s) > 1 as

−
L ′

L
(s, ρK ) =

∞∑
m=1

θK (m)Λ(m)
ms

, (6)
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Sato–Tate equidistribution of certain families of Artin L-functions 11

where Λ is the von Mangoldt function. We state the explicit formula in the form
of [60, Proposition 2.1]:

We write the nontrivial zeros of L(s, ρK ) as 1
2 + iγ ( j)

K , where the imaginary
parts of γ ( j)

K have absolute value bounded by 1/2. (Under GRH, the γ ( j)
K are real.)

Similarly we denote the poles of L(s, ρK ) by 1
2 + ir ( j)

K .

PROPOSITION 2.1. With notation as above, if K is a degree-n number field and
f is an even function whose Fourier transform is smooth and of compact support,
then ∑

j

f (γ ( j)
K )−

∑
j

f (r ( j)
K ) =

1
2π

∫
∞

−∞

f (t)(log CK + O(1)) dt

−
1
π

∞∑
m=1

θK (m)Λ(m)
√

m
f̂
(

log m
2π

)
. (7)

2.1. Frobenius and splitting types. Let p be a prime that is unramified in K .
Let OK denote the ring of integers of K and write

OK/(p) = Fp f1 ⊕Fp f2 ⊕ · · · ⊕ Fp fk ,

with f1 > f2 > · · · > fk . Then the splitting type of p in K is defined to be
( f1 f2 · · · fk). Thus, the set of possible splitting types for unramified primes can
be naturally identified with the set of partitions of n, or equivalently with Tn , the
set of conjugacy classes of Sn .

Our goal now is to relate the splitting type τ ∈ Tn of p to the coefficients of
the Euler factor at p of the L-function L(s, ρK ). To this end, we need to relate
it to the Frobenius conjugacy class of p in Gal(M/Q). We follow the short and
elegant exposition of Wood [77].

Let p ⊂ M be a fixed prime ideal lying above the unramified prime p, and
let Gp denote the decomposition group. This group is cyclic and is generated by
FrobM/Qp. The conjugacy class of FrobM/Qp is independent of the choice of p
above p and from now on we denote this class by Frobp. Then the splitting type
of p and the action of Frobp correspond to the same partition of n. Equivalently
ρ(τ) and ρ(Frobp) are conjugate. We denote this by writing ρ(τ) ∼ ρ(Frobp).

LEMMA 2.2. Let χ denote the character of the standard representation ρ of Sn .
If p is unramified in K and its splitting type is τ ∈ Tn , then we have θK (pk) =

χ(τ k) for all k > 0. Furthermore, for any rational prime p and k > 0, we have
|θK (pk)| 6 n − 1.
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A. Shankar, A. Södergren and N. Templier 12

Proof. Suppose that the splitting type of p in K is τ ∈ Tn . Since p does not ramify
in K , the Euler factor L p(s, ρK ) at p is equal to

det(I − p−sρK (Frobp))
−1
= det(I − p−sρ(τ))−1

=

n−1∏
i=1

(1− αi p−s)−1

where α1, . . . , αn−1 denote the eigenvalues of ρ(τ). The identity holds for
<(s) > 1, since |αi | = 1 for all i and the eigenvalues of ρ(τ k) are αk

i . In particular
λK (pk) = sr (α1, . . . , αn−1) = tr(symkρ(τ)), where sr is a Schur polynomial.

Computing the logarithmic derivative, we obtain

L ′p
L p
(s, ρK ) =

( n−1∑
i=1

∑
k>1

1
k
αk

i p−ks

)′
= −

∑
k>1

( n−1∑
i=1

αk
i

)
(log p)p−ks

= −log p
∑
k>1

χ(τ k)

pks
.

Comparing this with (6) yields θK (pk) =
∑n−1

i=1 α
k
i = χ(τ k) which is the first

assertion of the lemma.
For any prime p, the Artin formula states that

L p(s, ρK ) = det(1− p−sρK (Frobp)|V ρK (Ip))−1

is the Euler factor of L(s, ρK ) at p, where V = Cn−1 is the underlying space
of ρK and V ρK (Ip) is the subspace of V where the inertia group Ip acts trivially.
The second assertion now follows similarly as in the unramified case since the
eigenvalues of ρK (Frobp) have absolute value 1.

REMARK 2.3. The relation between the two arithmetic functions λK and θK

follows either by computing the logarithmic derivative in (6), or by expressing
elementary symmetric polynomials in terms of Schur polynomials. For example
θK (p) = λK (p) for all primes p. Whereas, θK (p2) = 2λK (p2) − λK (p)2, and
θK (p3) = 3λK (p3) − 3λK (p)λK (p2) + λK (p)3, and similar formulas for higher
powers.

If K is an Sn-number field we can illustrate the above construction further.
The subfield K of M corresponds to a subgroup Sn−1 of Sn , and the different
embeddings K ↪→ M correspond to cosets Sn−1\Sn . The group Gp acts on the
coset space Sn−1\Sn . Let O1, . . . , Ok be the corresponding set of orbits, ordered
by size. Then the splitting type of p in K is τ = (#O1 · · · #Ok). We identify
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Sato–Tate equidistribution of certain families of Artin L-functions 13

Frobp with a conjugacy class in Sn and can simply write Frobp = τ ∈ Tn instead
of ρK (Frobp) = ρ(τ).

2.2. Finite étale coverings and the Sato–Tate group. For each of the families
F considered in this paper we have a branched covering X → V of degree n.
The ramified locus on V is given by the equation ∆ = 0. The restriction of the
covering to V∆6=0 is finite étale and the normal closure has Galois group H ↪→ Sn .
The Sato–Tate group of F is defined to be H .

REMARK 2.4. This is a special case of [42] and [61, Section 2.11] which treat
the monodromy of general geometric families. For number field families, the
formalism of étale cohomology is not directly needed because the action of
Gal(Q) factors through a finite quotient, thus the relevant representations can be
expressed in classical terms.

Indeed, for each f ∈ V (Z) such that ∆( f ) 6= 0, the fiber X f consists of n
points defined over Z. The individual points themselves are elements of Pk(Q),
for some k depending on V , but X f considered as a scheme is defined over Z. For
example, when V is the space of binary cubic forms, the space X is the subset of
V × P1 consisting of elements ( f, θ) such that f (θ) = 0, and the fiber X f can be
identified with the three roots of f in P1(Q).

When V parametrizes Sn-fields for n = 3, 4, and 5, we have k = 1, 2, and
3, respectively. The action of Gal(Q) on H 0

et(X f ×Q Q,Q`) factors through the
standard representation of Gal(Mf /Q). The degree-n field K f is cut out by the
stabilizer of this action. Moreover, the cohomology of fibers induces a lisse sheaf
on V∆6=0 of dimension n−1 whose stalk over each f ∈ V (Q)∆6=0 is isomorphic to
K f /Q. There is a monodromy action by π1(V∆6=0) and the image is H ↪→ Sn ⊂

GLn−1(Q`).

The Sato–Tate measure µST(F) attached to the family is the pushforward of
the Haar measure of H to the space T := (S1)n−1/Sn−1 which we identify with
the set of conjugacy classes of semisimple matrices in the compact unitary group
Un−1 ⊂ GLn−1(C). The measure is independent of the choices of the embeddings
H ↪→ Sn , and Q` ↪→ C. By construction, it is supported inside Tn , for the natural
inclusion Tn ⊂ T. Let

i3(F) :=

∫
T

tr(t2)µST (F)(dt) =
1
|H |

∑
τ∈H

tr(τ 2) ∈ Z.

If H ↪→ GLn−1(C) acts irreducibly, then i3(F) ∈ {−1, 0, 1} is the Frobenius–
Schur indicator. Depending on whether i3(F) = −1, 0, 1, we say [61] that F is
homogeneous symplectic, respectively unitary, orthogonal.
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EXAMPLE 2.5. If the normal closure of the covering X → V has Galois group
H ' Sn , then we say that F is an Sn-family. In this case,

µST(F)({τ }) =
|τ |

|Sn|
(8)

for every τ ∈ Tn , as follows from the definition of µST(F). Hence i3(F) = 1,
because the indicator of Sn ⊂ GLn−1(C) is +1, a result which goes back
to Frobenius and Schur [35]; see [23, Theorem 3.1, p. 151] for a historical
account. Indeed Sn acts irreducibly on Cn−1, and preserves a symmetric bilinear
form, which comes from the standard quadratic form on Cn; equivalently the
representation is real, which can be seen by representing elements of Sn by
permutation matrices. (In fact all irreducible representations of Sn are defined over
Q.) Thus an Sn-family F is homogeneous orthogonal, which is how one verifies
the first claim of Theorem 1.1, and of Theorem 1.2.

For each prime p we can base change to the finite field Fp. If ∆( f ) 6≡ 0
(mod p) then X f ⊗Z Fp is reduced, and the same construction yields an action
of Gal(Fp). Since Rf is maximal at p, the action of Frobenius determines the
splitting type of p in K f . In particular the local L-factor L p(s, ρK f ) is uniquely
determined by the base change data of Rf ⊗Z Fp. This is a fact that we shall
use repeatedly and which is a special case of a theorem of Grothendieck [27].
If moreover the covering is G-equivariant for some algebraic group G, then the
action carries over to the reductions mod p and we obtain a G(Fp)-action on
V (Fp)

∆ 6=0.
It is possible to prove [42, 61] in this generality that

{ρK f (Frobp) : f ∈ V (Fp)
∆6=0
} (9)

is equidistributed as p→∞ with respect to the Sato–Tate measure µST(F).

2.3. Families of degree-n number fields. In this subsection, we assume that
we start with a parametric family F of degree-n number fields as above. Recall that
we abuse notation and refer to both the family of number fields and the family of
associated L-functions by F.

We order the elements of F by a height function h : F→ R>0. When possible
we choose h(K ) to be |∆(K )| which is equal to the conductor CK of the
corresponding L-function L(s, ρK ). This happens in Sections 3 and 4. However,
in some other cases where it is difficult to count elements in F having bounded
discriminant, we choose h to be an approximation of |∆|, such as in Section 5.2.
For x ∈ R>1 we define

F(x) = {K ∈ F : h(K ) < x}.
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Sato–Tate equidistribution of certain families of Artin L-functions 15

Moreover for a prime p, and τ ∈ Tn , define

Fp-∆(x) = {K ∈ F(x) : p - ∆(K )},
Fp,τ (x) = {K ∈ Fp-∆(x) : ρK (Frobp) ∼ ρ(τ)},

Fp|∆(x) = {K ∈ F(x) : p | ∆(K )}.

Note that we have disjoint decompositions

F(x) = Fp-∆(x) t Fp|∆(x) and Fp-∆(x) =
⊔
τ∈Tn

Fp,τ (x).

The main input will be a counting result that estimates the number of elements
in Fp,τ (x) with a power saving error term that satisfies some uniformity over p. In
the context of Theorems 1.1, 1.2, and 1.4, we shall establish that equidistribution
holds for individual primes in the sense that there exist constants δ1 < δ0 < 1 and
0 < A, B < ∞, and for each prime p and τ ∈ Tn constants 0 < cp,τ , cp|∆ < 1
such that for all x > 1:

|Fp,τ (x)| = cp,τ |F(x)| + O(|F(x)|δ0)+ O(|F(x)|δ1 pA);

|Fp|∆(x)| = cp|∆|F(x)| + O(|F(x)|δ0)+ O(|F(x)|δ1 pB).
(10)

REMARK 2.6. The remainder terms in (10) are all dominated by O(|F(x)|δ0

pmax(A,B)) which would be sufficient for our purpose to establish the statistics of
low-lying zeros for some positive support. However, we write the formulas (10)
in this more precise form because this is what the proof naturally produces for
geometric families and this yields an improved support.

The constants cp,τ in fact determine the unramified part of the probability
measure µp(F) from [61, Conjecture 1]. The ramified part of the measure µp(F)
is more complicated and will be discussed in Section 7. It is clear that for every
prime p,

cp|∆ +
∑
τ∈Tn

cp,τ = 1.

Recall from the previous Section 2.2 that the standard representation Sn ↪→

Un−1 ⊂ GLn−1(C) induces a natural inclusion Tn ⊂ T. Concretely, say that τ ∈ Tn

corresponds to the partition ( f1 f2 · · · fk) of the integer n. Then we form the
n-tuple of fi th roots of unity, for 1 6 i 6 k, which is an element of (S1)n , and we
remove the trivial root 1 once, to obtain an element of T = (S1)n−1/Sn−1.

Up to a scalar, µp(F) is the counting measure on the set (9) of splitting types
modulo p. Precisely, the unramified part µp(F)|T is supported on Tn ⊂ T, and for
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A. Shankar, A. Södergren and N. Templier 16

every τ ∈ Tn ,
µp(F)({τ }) = cp,τ .

Thus the unramified part µp(F)|T is a measure of total mass µp(F)(T) = 1− cp|∆.
For the families F obtained by application of a square-free sieve to V (Z), we

have that cp,τ is given by a p-adic density. In all such cases we have the identity

cp,τ

1− cp|∆
=
|V (Fp)

τ
|

|V (Fp)∆6=0|
,

where V (Fp)
τ is the set of all elements in V (Fp) having splitting type τ . Thus in

view of Section 2.2, and the fact that cp|∆→ 0, we have

µp(F)|T ⇀ µST(F).

Equivalently for each τ ∈ Tn , we have that cp,τ converges to µST(F)({τ }) as
p → ∞. Hence, averaging over primes p less than y, we have that (10) implies
Sato–Tate equidistribution of F in the sense of [61]:

lim
y→∞

lim
x→∞

1
|F(x)| · π(y)

∑
p<y

|Fp,τ (x)| = µST(F)({τ }), (11)

and more precisely that the convergence of (11) holds uniformly as soon as
log |F(x)|/ log y is greater than A/(1− δ1).

REMARK 2.7. Above the limits are taken in the order x→∞ then y→∞. If we
were to take the limits in the opposite order, then the equidistribution would follow
from the Chebotarev density theorem, assuming that one knows most number
fields K ∈ F(x) have a fixed group as Galois group for their normal closure.

One quantity that is especially important in the study of F is the average trace
of unramified Frobenius. With the above notation it can be expressed as

tF(p) :=
∑
τ∈Tn

cp,τχ(τ) =

∫
T

tr(t)µp(F)(dt).

2.4. The 1-level density of low-lying zeros of Sn-families. In this subsection
we compute the 1-level density of the low-lying zeros of the Artin L-functions
of the families considered in Sections 3, 4, and 5. We do this calculation in the
‘traditional’ way, and we explain at the same time how the main term can be found
conceptually from the Sato–Tate measure as in [61, 65].
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Sato–Tate equidistribution of certain families of Artin L-functions 17

The above families are Sn-families, and thus the Sato–Tate measure µST(F) is
given by (8). In fact, in Sections 3, 4 and 5 we will establish that each of these
Sn-families satisfy the Sato–Tate equidistribution (10) (with constants δ0, δ1, A,
B) and that |F(x)| � x θ for some θ > 0. Furthermore, in these cases we will also
prove the following regarding the constants cp,τ and cp|∆: for any prime p and
τ ∈ Tn , we have

cp,τ =
|τ |

|Sn|
+ O

(
1
p

)
, (12)

where |τ | denotes the size of the conjugacy class τ in Sn . In particular cp|∆ =

O(1/p) since
∑

τ∈Tn
(|τ |/|Sn|) = 1 and also we recover that tF(p) = O(1/p)

since
∑

τ∈Tn
χ(τ)(|τ |/|Sn|) = 0.

One reason to refer to these families as Sn-families is that a consequence of (12)
is that most K ∈ F(x) are Sn-fields in the sense that Sn is the Galois group of their
normal closure. Indeed this follows in the same way as Hilbert’s irreducibility
theorem by applying a sieve to construct Frobenius elements which are n-cycles
and transpositions.

Let f be a fixed even function whose Fourier transform is smooth and of
compact support, as in the beginning of Section 2. We are interested in evaluating

lim
x→∞

1
|F(x)|

∑
K∈F(x)

∑
j

f
(
γ
( j)
K L
2π

)
,

where L will be picked so that we capture the statistics of the low-lying zeros. The
natural choice for L is log CK , where CK is the conductor of L(s, ρK ), because we
expect the lowest zeros of L(s, ρK ) to be at height around 2π/ log CK . However,
we pick L = L(x) to be

L := 1
|F(x)|

∑
K∈F(x)

log CK , (13)

the average of these natural choices. In view of the counting asymptotic in (10),
we have

L = (1+ o(1)) log x as x →∞ (14)

if h(K ) equals or closely approximates CK , that is, if the family is ordered by a
quantity that closely approximates the absolute discriminant. In all our examples,
this will be true.

THEOREM 2.8. Let F be one of the Sn-families of Sections 3, 4 and 5. If f is a
function whose Fourier transform is smooth and has support in [−α, α] for

α < min
(

2θ(1− δ0),
2θ(1− δ1)

2C + 1

)
,
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where C := max(A, B), then

lim
x→∞

1
|F(x)|

∑
K∈F(x)

∑
j

f
(
γ
( j)
K L
2π

)
= f̂ (0)−

f (0)
2
. (15)

The limit (15) is the Katz–Sarnak heuristics for the one-level density with
restricted support. Note that α < 1 in all these examples. The interpretation of
the minus sign in the second term is that F has Symplectic symmetry type.

REMARK 2.9. In later sections, we shall discuss other families F for which the
Sato–Tate measure µST(F) is different from (8). For example, in Section 8 we
investigate a family of quaternionic extensions where the Sato–Tate group is Q8 ⊂

GL2(C). Also, in Section 6 we investigate families where the Sato–Tate group
is D4 ⊂ GL2(C) as well as the reducible examples C3 ⊂ GL2(C) and D4 ⊂

GL3(C). In those cases the right-hand side of (15) should be replaced by f̂ (0)−
i3(F)( f (0)/2), where i3(F) is the Frobenius–Schur indicator of µST(F).

Proof. Without loss of generality we may assume that f is even because L(s, ρK )

is self-dual and thus γ is a zero if and only if −γ is a zero. We use (7) to write
the above as the limit as x →∞ of

1
|F(x)|

∑
K∈F(x)

(
1

2π

∫
∞

−∞

f
(

tL
2π

)
(log CK + O(1)) dt

−
2
L

∞∑
m=1

θK (m)Λ(m)
√

m
f̂
(

log m
L

)
+

∑
j

f
(

r ( j)
K L
2π

))
. (16)

Here the contribution from the sum over poles of L(s, ρK ) is negligible (that
is, o(1)) because the test function f is assumed to be of rapid decay and the
only possible locations for poles of L(s, ρK ) are at the zeros of ζ(s) (cf. (3)).
Furthermore, since CK →∞ as h(K )→∞, we can evaluate the limit of the first
part of (16) to be

lim
x→∞

1
|F(x)|

∑
K∈F(x)

1
2π

∫
∞

−∞

f
(

tL
2π

)
(log CK + O(1)) dt

= lim
x→∞

1
L|F(x)|

∑
K∈F(x)

log CK

∫
∞

−∞

f (t)(1+ o(1)) dt

=

∫
∞

−∞

f (t) dt = f̂ (0). (17)
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To evaluate the limit of the second part of (16), we note that

2
L|F(x)|

∑
K∈F(x)

∞∑
m=1

θK (m)Λ(m)
√

m
f̂
(

log m
L

)
=

2
L|F(x)|

∑
p,k>1

log p
pk/2

f̂
(

k log p
L

) ∑
K∈F(x)

θK (pk), (18)

where the change in the order of summation is justified because f̂ has compact
support, and hence the sums over m, p and k are finitely supported. We write the
right-hand side of the above equation as the limit as x→∞ of S1+S2+S3+Sram,
where

S1 :=
2

L|F(x)|
∑

p

log p
√

p
f̂
(

log p
L

) ∑
K∈Fp-∆(x)

θK (p);

S2 :=
2

L|F(x)|
∑

p

log p
p

f̂
(

2 log p
L

) ∑
K∈Fp-∆(x)

θK (p2);

S3 :=
2

L|F(x)|
∑
p,k>3

log p
pk/2

f̂
(

k log p
L

) ∑
K∈Fp-∆(x)

θK (pk);

Sram :=
2

L|F(x)|
∑
p,k>1

log p
pk/2

f̂
(

k log p
L

) ∑
K∈Fp|∆(x)

θK (pk).

(19)

To evaluate the sums (19), we begin by writing

S1 =
2

L|F(x)|
∑

p

log p
√

p
f̂
(

log p
L

) ∑
K∈Fp-∆(x)

θK (p)

=
2

L|F(x)|
∑

p

log p
√

p
f̂
(

log p
L

)∑
τ∈Tn

|Fp,τ (x)|χ(τ)

=
2

L|F(x)|
∑

p

log p
√

p
f̂
(

log p
L

)
× (tF(p)|F(x)| + O(|F(x)|δ0)+ O(|F(x)|δ1 pA))

= O
(

1
L

)
+ O

(
eLα/2

|F(x)|1−δ0L

)
+ O

(
eLα(A+(1/2))

|F(x)|1−δ1L

)
, (20)

where the final equality follows by computing the third line of (20) using the
fact that since f̂ is supported on [−α, α], the sum over p can be restricted to
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A. Shankar, A. Södergren and N. Templier 20

the range p 6 eLα; the bounds follow from Lemma 2.2, (10), and the fact that
tF(p) = O(1/p). Similarly, we have

S2 =
2
L
∑

p

log p
p

f̂
(

2 log p
L

)∑
τ∈Tn

χ(τ 2)
|τ |

|Sn|

+ O
(

1
|F(x)|1−δ0

)
+ O

(
e(LαA)/2

|F(x)|1−δ1L

)
+O

(
1
L

)
,

S3 = O
(

1
L

)
,

Sram = O
(

1
L|F(x)|

∑
p,k>1

log p
pk/2

∣∣∣∣ f̂
(

k log p
L

)∣∣∣∣
×

(
|F(x)|

p
+ |F(x)|δ0 + |F(x)|δ1 pB

))

= O
(

1
L

)
+ O

(
e(Lα)/2

|F(x)|1−δ0L

)
+ O

(
eLα(B+(1/2))

|F(x)|1−δ1L

)
.

(21)

Therefore, in the limit x → ∞, the only possible main term contribution to the
right-hand side of (18) is from the sum S2.

The main term of S2 includes the sum

i3(F) =
∑
τ∈Tn

χ(τ 2)
|τ |

|Sn|
= 1 (22)

which is the Frobenius–Schur indicator of the representation ρ : Sn → GLn−1(C).
(One advantage of our notation and setup is that this indicator arises naturally.)
Therefore, the main term contribution from S2 is

lim
x→∞

2
L
∑

p

log p
p

f̂
(

2 log p
L

)
=

∫
∞

0
f̂ (t) dt, (23)

where the equality follows from the prime number theorem and integration by
parts. Since the right-hand side of (23) is f (0)/2 by Fourier inversion, we have

1
|F(x)|

∑
K∈F(x)

∑
j

f
(
γ
( j)
K L
2π

)
= f̂ (0)−

f (0)
2
+ O

(
e(Lα)/2

|F(x)|1−δ0L

)

+ O
(

eLα(C+1/2)

|F(x)|1−δ1L

)
+ o(1), (24)
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where C = max(A, B). This indicates the symplectic symmetry type for the low-
lying zeros of L-functions in these families.

Finally, we assume there exists θ > 0 such that |F(x)| � x θ . This will be true
in all the Sn-families that we consider. Therefore, by (14), we have

e(Lα)/2

|F(x)|1−δ0L +
eLα(C+1/2)

|F(x)|1−δ1L = x (α/2)−θ(1−δ0)+o(1)
+ xα(C+1/2)−θ(1−δ1)+o(1).

We conclude that the error terms in (24) will be bounded by o(1) whenever

α < min
(

2θ(1− δ0),
2θ(1− δ1)

2C + 1

)
.

This concludes the proof.

2.5. Rank of families. Recall that we used the estimate tF(p) = O(1/p),
which follows from (12), in the proof of Theorem 2.8, specifically in the
estimation of S1. The interpretation is that the rank of these number field families
is zero, namely

lim
y→∞

1
y

∑
p<y

−tF(p)p1/2 log p = 0.

This is consistent with the belief that each irreducible Artin L-function is
nonvanishing at the central point unless the epsilon factor is −1 in which case
it is believed to vanish with order one. The rank, defined by the above limit, can
be nonzero for example in families of elliptic curves.

2.6. Other indicators of Sn-families. The other indicators defined in [61],
that is

i1(F) :=

∫
T
|tr(t)|2µST (F)(dt), i2(F) :=

∫
T

tr(t)2µST (F)(dt),

are not directly used in the proof of Theorem 2.8. Suppose that F is a family
of Artin L-functions with Sato–Tate group H ⊂ GLn−1(C). Let χ be the trace
character. Then note that i1 exactly picks out the inner product

〈χ, χ〉 :=
1
|H |

∑
h∈H

χ(h)2,

which is 1 if and only if H acts irreducibly. In that case, i2, which in general is
equal to 〈χ, χ̄〉, is 1 if H is self-dual and 0 otherwise.

For families of zeta functions of degree-n Sn-fields, we have H = Sn , in the
standard representation in GLn−1(C). In this case, the indicators satisfy i1(F) = 1
and i2(F) = 1, expressing the fact that Sn ⊂ GLn−1(C) acts irreducibly and is
self-dual.
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A. Shankar, A. Södergren and N. Templier 22

For Sn-families of Artin representations parametrized geometrically, one can
establish by a sieve that most K ∈ F(x) are Sn-fields. In particular most Artin L-
functions L(s, ρK ) in an Sn-family are irreducible and self-dual orthogonal. The
argument is unconditional taking advantage of the underlying algebraic structure
and the finiteness of the Galois group. This is to be compared with [61] for general
homogeneous families with i1(F) = i2(F) = i3(F) = 1, where it is explained that
this would also follow from the GRH by detecting the simple pole at s = 1 of the
Rankin–Selberg product L(s, ρK × ρ̃K ) which implies irreducibility and similarly
for L(s, sym2ρK ) which implies orthogonality. The GRH is needed in [61] to
truncate the Euler product to a small number of primes so that one can apply the
quantitative Sato–Tate equidistribution for the family.

3. Parametrized families of cubic, quartic, and quintic fields

In this section, we consider parametrized families of cubic, quartic, and
quintic fields. These families are constructed from certain prehomogeneous
representations. A representation V of G is said to be prehomogeneous if V has a
Zariski-dense G-orbit. Irreducible prehomogeneous representations of reductive
groups over C were classified by Sato and Kimura [62]. The rational orbits of
these representations were studied in the work of Wright and Yukie [78], who
also explained their connection to field extensions. For our applications we need
an interpretation of the Z-orbits of these representations. For the representation
Sym3(Z2) of GL2(Z), such an interpretation is due to Levi [51] and Delone and
Faddeev [28], who show that the orbits having nonzero discriminant correspond
bijectively to reduced cubic rings over Z. This correspondence was refined by Gan
et al. [38], and shown also to hold for orbits having discriminant 0. Analogous
parametrizations of quartic and quintic rings over Z are developed by Bhargava
in his landmark works [5, 6], respectively. His work also naturally recovers the
cubic case, and provides a geometric view of it. We now briefly describe the parts
of this theory necessary for us.

For n = 3, 4, and 5, consider the space of degree-n rings over Z along with
the additional data of a resolvent ring. That is, consider the space of pairs (R1,

R2), where R1 is a degree-n ring, and R2 is a resolvent ring of R1. The resolvent
ring of a cubic ring over Z is simply the unique quadratic ring having the same
discriminant. For the definitions of resolvent rings of quartic and quintic rings
over Z, see [5, Section 2.3] and [6, Section 5], respectively. Bhargava proves that
this space is parametrized by Gn(Z)-orbits on Vn(Z), for n = 3, 4, and 5, where
Gn is a reductive group and Vn is a prehomogeneous representation of Gn . The
condition that a Gn(Z)-orbit of v ∈ Vn(Z) corresponds to a maximal ring is given
by congruence conditions on Vn(Z). Bhargava also shows that a maximal ring has
a unique resolvent ring!
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An element in V (Z) is said to be Sn-irreducible if it corresponds to an order in
an Sn-field. Let Vn(Z)smax denote the set of Sn-irreducible elements of Vn(Z) that
correspond to maximal rings. Therefore, the set of Gn(Z)-orbits on Vn(Z)smax can
be considered to be a parametrized family of degree-n fields. The ring of relative
invariants for the action of Gn on Vn is freely generated by one invariant, which we
call the discriminant. The discriminant of v ∈ Vn(Z) is equal to the discriminant of
the ring corresponding to v. Thus, to count the number of degree-n fields having
discriminant bounded by x , it suffices to count the number of Gn(Z)-orbits on
Vn(Z)smax with discriminant bounded by x . This is carried out by Davenport and
Heilbronn [24] in the case n = 3, and by Bhargava [7, 8] in the cases n = 4, 5,
respectively.

The condition that v ∈ Vn(Z) is Sn-irreducible is not a local condition and
is imposed in two steps. First, the cuspidal regions of the fundamental domain
Gn(Z)\Vn(R) containing integral points corresponding to non-Sn-irreducible
rings are cut off. Next, the main ball is shown to contain predominantly
Sn-irreducible points. The latter step follows from an application of Hilbert
irreducibility; a power saving may be obtained using the Selberg sieve. The
condition that v ∈ Vn(Z) corresponds to a maximal ring is a local condition.
A ring R that is a finitely generated Z-module is maximal if and only if it is
maximal at every prime p, that is, R⊗Zp is maximal over Zp. For n = 3, 4, and
5, degree-n ring extensions of Zp are classified by Gn(Zp)-orbits on Vn(Zp). We
denote the set of elements in Vn(Zp) corresponding to maximal Zp-extensions
by Vn(Zp)

max. For n = 3, 4, and 5, it is proven in [24], [5], and [6], respectively,
that Vn(Zp)

max can be described by congruence conditions modulo p2 on
Vn(Zp).

For our purpose of computing the symmetry type of the low-lying zeros of
zeta functions arising from degree-n fields, we need to also count the number
of degree-n fields with prescribed splitting type at a fixed prime p. This is
done as follows: consider the injection Vn(Z) → Vn(Zp). The splitting of p in
the field corresponding to v is determined by the Gn(Zp)-orbit of v in Vn(Zp).
Furthermore, the set of all v ∈ Vn(Zp)

max having a fixed splitting type consists
of finitely many Gn(Zp)-orbits. Given a splitting type τ , we denote the set of
elements in Vn(Zp) corresponding to τ by Vn(Zp)

τ . For unramified splitting types
τ , every element in Vn(Zp)

τ is maximal. Next consider the reduction modulo p
map Vn(Zp)→ Vn(Fp). In fact, the splitting type τ of v ∈ Vn(Zp) is determined
by the image v̄ of v in Vn(Fp). Moreover, the set of all v̄ ∈ Vn(Fp) corresponding
to a fixed splitting type consists of a single Gn(Fp)-orbit. We will use the map
V (Z) → V (Zp) as well as the map V (Z) → V (Fp); the first is necessary to
detect maximality at p, while the second suffices to determine the splitting type
at an unramified prime p.
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From this, it is possible to see why we expect Equation (12) to be true. Let τ
denote a fixed splitting type, Oτ ⊂ Vn(Fp) denote the corresponding G(Fp)-orbit,
and let Fp(τ ) denote the corresponding extension of Fp. We expect that

|Fp,τ (x)| ∼
Vol(Vn(Zp)

τ )

Vol(Vn(Zp)max)
· |F(x)|

∼
Vol(Vn(Zp))

Vol(Vn(Zp)max)
·
|Oτ |

|V (Fp)|
· |F(x)|. (25)

Next we expect the estimate

Vol(Vn(Zp))

Vol(Vn(Zp)max)
= 1+ O

(
1
p2

)
(26)

to hold since a proportion of roughly 1/p2 of elements in V (Zp) are nonmaximal.
Indeed, if a ring R is nonmaximal at p then p2 divides the discriminant of R.

Thus, it is only required to check that |Oτ |/|V (Fp)| = |τ |/|Sn| + O(1/p), for
τ ∈ Tn , where we are abusing notation by considering τ both as a splitting type
and as the corresponding conjugacy class in Sn . Let v̄ ∈ Oτ denote any element,
and let στ ∈ Sn denote any element in the conjugacy class τ . Our representations
(G, V ) satisfy the property StabG(Fp)(v̄)

∼= Aut(Fp(τ )) ∼= StabSn (στ ) (see, for
example, [12, Theorem 6]). By two applications of the orbit-stabilizer formula,
we obtain
|Oτ |

|V (Fp)|
=

|G(Fp)|

|StabG(Fp)(v̄)||V (Fp)|
=

1
|StabSn (στ )|

+ O
(

1
p

)
=
|τ |

|Sn|
+ O

(
1
p

)
,

(27)
as required. To see why we expect cp|∆ = O(1/p), note that p ramifies in the field
corresponding to v ∈ V (Z) if and only if the discriminant of v̄ ∈ V (Fp) is zero.
Furthermore, the number of elements in V (Fp) having discriminant 0 is bounded
by O(|V (Fp)|/p).

For n = 3, 4, and 5, the estimates (25), (26), (27) are known to be true. Indeed,
in the rest of this section, we give detailed references and explain how to obtain
Sato–Tate equidistribution and (12) for the families of cubic, quartic, and quintic
fields, and describe the error terms that we obtain. The purpose of the above
discussion is to give a heuristic explanation for why we expect (12) to hold in
greater generality.

3.1. The family of cubic fields. Let V denote the space of binary cubic forms.
The group G = GL2 acts on V via the twisted action

g · f (x, y) :=
1

det g
f ((x, y) · g).
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A result of Delone and Faddeev [28], refined by Gan et al. [38], states that
isomorphism classes of cubic orders are parametrized by G(Z)-orbits on V (Z).
The congruence conditions defining maximality is a result of Davenport and
Heilbronn [24].

THEOREM 3.1.

(1) There is a natural bijection between the set of G(Z)-equivalence classes of
integral binary cubic forms and the set of isomorphism classes of cubic rings.
A cubic ring corresponding to the G(Z)-orbit of f is an order if and only if
f (x, y) is irreducible over Q.

(2) A cubic order corresponding to f ∈ V (Z) fails to be maximal at p if either
f is a multiple of p or if some G(Z)-translate ax3

+ bx2 y + cxy2
+ dy3 of

f (x, y) satisfies p2
| a and p | b.

The discriminant ∆ of a binary cubic form is G-invariant. Furthermore, the
discriminant of f equals the discriminant of the cubic ring corresponding to f .

EXAMPLE 3.2. If f = x3
+ 7y3 then the cubic ring is R = Z[x]/(x3

+ 7). The
form f is irreducible over Q and R is the maximal order in the field Q( 3

√
7).

(To check maximality, it is only necessary to verify the conditions in [4, Lemma
2.10].) Let p = 3. Then the form f̄ (x, y) is irreducible. Therefore, the splitting
type of p in Q( 3

√
7) is (3).

To count cubic fields, we directly use [68, Theorem 1.3].

THEOREM 3.3. Let F be the parametrized family of cubic S3-fields ordered by
discriminant. For any prime p, conjugacy class τ ∈ T3 and ε > 0, we have

|F(x)| =
1

3ζ(3)
x + O(x5/6),

|Fp,τ (x)| =
cp,τ

3ζ(3)
x + O(x5/6)+ Oε(x7/9+ε p8/9),

|Fp|∆(x)| =
cp|∆

3ζ(3)
x + O(x5/6)+ Oε(x7/9+ε p16/9),

(28)

where cp,τ = (|τ |/6)(p2/(p2
+ p + 1)) and cp|∆ = (p + 1)/(p2

+ p + 1).

This concludes the proof of the Sato–Tate equidistribution for the family F of
cubic fields, namely the equation (10) with δ0 = 5/6 and δ1 = 7/9 + ε, together
with (12). Note that in the two estimates in (10) the exponents A = 8/9 and
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B = 16/9 differ. Also the exponent δ0 = 5/6 is sharp by [10, 68], which
independently establish a secondary main term for the counting function of cubic
fields. We obtain the bound on the support to be α < 4/41 in Theorem 2.8.

3.2. The family of quartic fields. Let V = 2⊗Sym2(3) denote the space
of pairs of ternary quadratic forms. We represent elements in V by a pair of
symmetric 3× 3-matrices A and B. The group G = GL2 × SL3 acts on V via the
action

(g2, g3) · (A, B) := (gt
3 Ag3, gt

3 Bg3) · gt
2.

A result of Bhargava [5] states that isomorphism classes of pairs (Q,C), where
Q is a quartic ring and C is a cubic resolvent ring of Q, are parametrized by
G(Z)-orbits on V (Z). The definition of the cubic resolvent is not important for
this section.

THEOREM 3.4. There is a natural bijection between the set of G(Z)-equivalence
classes on V (Z) and the set of isomorphism classes of pairs (Q,C), where Q is
a quartic ring and C is a cubic resolvent ring of Q.

The congruence conditions defining maximality may be found in [7]. The
action of G on V has a unique polynomial invariant ∆ called the discriminant. If
(A, B) ∈ V (Z) corresponds to the pair (Q,C), then we have∆(A, B) = ∆(Q) =
∆(C).

To count S4-quartic fields having prescribed splitting conditions, we directly
use a result of Ellenberg et al. [31, Theorem 4.1], which improves on the results
of [4], which in turn builds on the work of Bhargava [7] determining asymptotics
for the counting function of S4-quartic fields.

THEOREM 3.5. Let F be the parametrized family of quartic S4-fields ordered by
discriminant. Let ε > 0. Then, for any prime p and conjugacy class τ ∈ T4, we
have

|F(x)| =
5β
24

x + Oε(x23/24+ε),

|Fp,τ (x)| =
5cp,τβ

24
x + Oε(x23/24+ε p1/2+ε),

|Fp|∆(x)| =
5cp|∆β

24
x + Oε(x23/24+ε p1/2+ε),

(29)

where β =
∏

p(1+ p−2
− p−3

− p−4), cp,τ = (|τ |/24)(p3/(p3
+ p2

+ 2p + 1))
for every τ ∈ T4, and cp|∆ = (p + 1)2/(p3

+ p2
+ 2p + 1).
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This verifies Equations (10) and (12) for the parametrized family of S4-fields
with δ0 = δ1 = 23/24+ ε and A = B = 1/2+ ε, and yields the bound α < 1/24
of the support in Theorem 2.8.

3.3. The family of quintic fields. Let V = 4⊗ ∧2 (5) denote the space of
quadruples of 5 × 5-skew symmetric matrices. We represent elements in V as
(A, B,C, D). The group G = GL4 × SL5 acts on V via the action

(g1, g2) · (A, B,C, D) := (gt
2 Ag2, gt

2 Bg2, gt
2Cg2, gt

2 Dg2) · gt
1.

A result of Bhargava [6] states that isomorphism classes of pairs (Q, R), where Q
is a quintic ring and R is a sextic resolvent ring of Q, are parametrized by G(Z)-
orbits on V (Z). Given an element (A, B,C, D) ∈ 4⊗ ∧2 (5), the corresponding
five points in P3 are obtained as the intersection of the five 4 × 4-Pfaffians of
Ax + By + Cz + Dt .

Again, the definition of a sextic resolvent ring is not important for us. See [6]
for a precise description.

THEOREM 3.6. There is a natural bijection between the set of G(Z)-equivalence
classes on V (Z) and the set of isomorphism classes of pairs (Q, R), where Q is
a quintic ring and R is a sextic resolvent ring of Q.

The congruence conditions defining maximality may be found in [8]. The
action of G on V has a unique polynomial invariant ∆ called the discriminant.
If (A, B,C, D) ∈ V (Z) corresponds to the pair (Q, R), then we have ∆(A, B,
C, D) = ∆(Q) = ∆(R).

To count S5-quintic fields having prescribed splitting, we directly use [31,
Theorem 5.1].

THEOREM 3.7. Let F be the parametrized family of quintic S5-fields ordered by
discriminant. Let ε > 0. Then, for any prime p and conjugacy class τ ∈ T5, we
have

|F(x)| =
13β
120

x + O(x199/200+ε),

|Fp,τ (x)| =
13cp,τβ

120
x + O(x199/200+ε)+ O(x79/80+ε p1/2+ε),

|Fp|∆(x)| =
13cp|∆β

120
x + O(x199/200+ε)+ O(x79/80+ε p1/2+ε),

(30)
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where β =
∏

p(1 + p−2
− p−4

− p−5), cp,τ = (|τ |/120)(p4/(p4
+ p3

+ 2p2
+

2p + 1)), and cp|∆ = ((p + 1)(p2
+ p + 1))/(p4

+ p3
+ 2p2

+ 2p + 1).

The additional error of O(X 199/200+ε) (in comparison with the quartic case)
arises from the bound on the number of quintic orders that are not S5-orders
obtained in [64]. Both [31, Theorem 5.1] and [64] use the methods in [8] used
to determine asymptotics for the counting function of quintic fields.

This verifies Equations (10) and (12) for the parametrized family of S5-fields,
this time with δ0 = 199/200 + ε, δ1 = 79/80 + ε and A = B = 1/2 + ε. This
yields the bound α < 1/100 of the support in Theorem 2.8.

4. Other parametric families of quadratic and cubic fields

In this section, we consider families of quadratic and cubic fields obtained by
different parametrizations. The quadratic fields will be constructed as quadratic
resolvents of S3-fields. The cubic fields will be constructed as resolvents of
S4-fields. Thus this section provides examples of constructing one family from
another. We shall verify the Sato–Tate equidistribution for these families and show
that the assumptions of Theorem 2.8 are satisfied which enables us to determine
that the symmetry type of the low-lying zeros is Symplectic.

4.1. A parametric family of quadratic fields. Every quadratic field can be
written uniquely in the form K = Q(

√
d), where d is a fundamental discriminant.

The discriminant of such a field K is equal to d . Let ζK denote the zeta function
of K . It factors as ζK (s) = ζ(s)L(s, χ), where ζ(s) is the Riemann zeta function
and L(s, χ) is the Dirichlet L-function corresponding to the quadratic character χ
defined by the Kronecker symbol χ(n)= (d/n). The conductor of this L-function
is equal to |d|.

We consider the family F of quadratic fields arising as the quadratic resolvents
of nowhere totally ramified cubic fields. A cubic field K3 is said to be nowhere
totally ramified if no prime p factors as p3 in K3. Suppose that K3 is a nowhere
totally ramified cubic S3-extension of Q having discriminant D. Let K6 denote the
Galois closure of K3, and K denote the unique quadratic subfield of K6. The field
K is called the quadratic resolvent field of K3. It follows that K6 is an unramified
cubic extension of K and that the discriminant of K is D. Thus the family F is
parametrized as

F = {Q(
√
∆( f )) : f ∈ GL2(Z)\Sym3(Z2)ntr

},

where f ranges over GL2(Z)-orbits of maximal integral binary cubic forms that
are nowhere totally ramified. We order elements in F by discriminant. For each
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x > 1, the set F(x) consists of the quadratic fields in F having discriminant
less than x in absolute value. Note that the quadratic fields in F occur with
multiplicities. In fact, [24] implies that quadratic fields K appear in F with a
multiplicity of (#Cl(K )[3] − 1)/2, where Cl(K ) denotes the class group of K .
Therefore, it is also possible to think of F as a weighted family of quadratic fields,
where each field K is weighted with (#Cl(K )[3] − 1)/2. However, we prefer to
consider F as a geometric family arising from the space of integral binary cubic
forms.

Recall the branched covering X → V of degree three (described in the
introduction), where V ' A4 is the space of binary cubic forms and X ⊂ V × P1

is the zero locus. We construct Y ⊂ V × P1 defined by the zero locus of the
polynomial x2

− ∆( f )y2. This is a branched covering Y → V of degree two.
Clearly it is GL2-equivariant. Restricting to V∆ 6=0 we obtain an étale covering.
The étale covering Y → V∆6=0 is obtained from the étale covering X → V∆6=0 by
the resolvent construction applied to this relative situation (that is, applied to each
fiber). Our parametric family F is attached to the covering Y → V as in Section 2.
Alternatively, we could have constructed the family F starting from X → V , but
using the one-dimensional Artin representation Gal(K6/Q)→ S3→ GL1(C) (the
sign character).

4.2. Symmetry type corresponding to this family of quadratic fields. For
our purposes it will be necessary to relate the splitting type of p in a nowhere
totally ramified cubic field K3 to the splitting type of p in the quadratic resolvent
of K3. The splitting type of a prime p in K3 determines the splitting type of p in
K6, the Galois closure of K3, and hence determines the splitting type of p in K2,
the quadratic resolvent of K3. These splitting types can be immediately computed
by applying the method of [77], yielding the following lemma.

LEMMA 4.1. Let K3 be a cubic field that is nowhere totally ramified, and let K2

denote its quadratic resolvent field. If p has splitting type (111) or (3) in K3 then
p has splitting type (11) in K2 and if p has splitting type (21) in K3 then p has
splitting type (2) in K2.

The asymptotics of |F(x)| is the result of Davenport and Heilbronn
[24, Theorem 3] on the average 3-part of the class group of quadratic fields
(this result is restated in [10, Theorem 2], and a simpler proof is provided). The
counting result [68, Theorem 1.4], in conjunction with Lemma 4.1, implies the
analogues of Equations (10) and (12) for F, with δ0 = 5/6, δ1 = 18/23 + ε,
A = 20/23, and B = 40/23. Thus F is an S2-family in the sense that for a fixed
prime p, the splitting types (11) and (2) occur equally often in F.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.18
Downloaded from https://www.cambridge.org/core. Chalmers Tekniska Högskola, on 25 Nov 2020 at 09:29:39, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.18
https://www.cambridge.org/core
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As in Section 2, we define the average conductor L which in fact coincides
with the average conductor of the family of cubic fields. Theorem 2.8 then follows
for an even function f whose Fourier transform is smooth and supported in the
interval [−α, α], with α < 10

103 .
Since (#Cl(K )[3] − 1)/2 is equal to the number of index-3 subgroups of

Cl(K ), F(x) can be viewed as a weighted set of L-functions L(s, χd) arising from
all quadratic fields K = Q(

√
d), where each field is counted with multiplicity

(#Cl(d)[3] − 1)/2. Since the Sato–Tate measure of the unweighted family of
quadratic fields also arises from the splitting types (11) and (2) occurring equally
often, we deduce the same Sato–Tate equidistribution when the fields are counted
with multiplicity #Cl(d)[3]. The same holds for the symplectic symmetry type
of low-lying zeros, so we can for example deduce, when summing over positive
fundamental discriminants d , that

lim
x→∞

π 2

4x

∑
0<d<x

#Cl(d)[3]
∑

j

f
(
γ
( j)
d L
2π

)
= f̂ (0)− f (0)/2. (31)

Note that #Cl(d)[3] is 4
3 on average over asymptotically 3x/π 2 positive

fundamental discriminants 0 < d < x .

4.3. A parametric family of cubic fields. We now consider a family of cubic
fields arising as cubic resolvents of certain quartic fields. First we collect some
results on cubic resolvent fields of quartic fields (see [7, Section 3.1] for more
details). Given a quartic S4-field K4, let K24 denote its Galois closure. The field
K6, corresponding to the subgroup V4 ⊂ S4 generated by the double transpositions
in S4, is Galois and its Galois group is S4/V4

∼= S3. Let K3 denote a cubic S3-field
contained in K6 (K3 is unique up to conjugation). Then K3 is called the cubic
resolvent field of K4.

A quartic field K4 is said to be nowhere overramified if no rational prime p has
splitting type (1212), (22), or (14) in K4. If K4 is a nowhere overramified quartic
field and its cubic resolvent field is K3, then the discriminant of K4 is equal to
the discriminant of K3. To give a description of the family of cubic resolvents of
nowhere overramified quartic fields as a geometric family, we have the following
theorem that is a result of Bhargava [5].

THEOREM 4.2. Let (Q,C) be a pair of rings, where Q is the maximal order of
a nowhere overramified quartic field K4 and C is the (unique) cubic resolvent
ring of Q. Let (A, B) be a pair of integral ternary quadratic forms such that
the GL2(Z) × SL3(Z)-orbit of (A, B) corresponds to (Q,C) under the bijection
of [5, Theorem 1]. Then, under the Delone–Faddeev parametrization [28], the
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cubic ring C corresponds to the binary cubic form Res(A, B) := 4 det(Ax − By).
Furthermore, C is the maximal order of the cubic resolvent field of K4.

We now define our family F of cubic fields as follows:

F := {K (Res(A, B)) : (A, B) ∈ (GL2(Z)× SL3(Z))\(Z2
⊗Sym2(Z3))nor

},

where K (Res(A, B)) denotes the cubic field that is the field of fractions of
the cubic ring corresponding to f (x, y), the cubic resolvent form of (A, B),
and (A, B) runs over GL2(Z) × SL3(Z)-orbits of maximal integral pairs of
ternary quadratic forms that are nowhere overramified. Note that Theorem 4.2
implies that the discriminant of K ( f ) is equal to the discriminant of (A, B). We
order elements in F by discriminant and denote the set of elements in F with
discriminant less than x by F(x).

Let V denote the space of pairs of ternary quadratic forms. Given a generic
element (A, B) ∈ V , we obtain four points in P2, namely, the four points of
intersection of the quadrics corresponding to A and B. We also obtain three points
in P1, namely, the three roots of the cubic resolvent form 4 det(Ax−By) of (A, B).
We thus obtain the natural space Z ⊂ V × P2

× P1, and a degree-12 branched
covering Z → V . Taking the intersection of Z with V ×P2, we obtain a branched
covering X → V of degree four, and taking the intersection of Z with V ×P1, we
obtain a branched covering Y → V of degree three. All three branched coverings
are GL2 × SL3-equivariant.

Consider the family of L-functions associated to F, where for each cubic S3-
field K3 ∈ F, we take the Artin L-function L(s, ρK3) corresponding to the standard
representation of S3. This family arises naturally from the branched covering
Y → V . However, we note that we may also form this family of L-functions
from the branched covering X → V . Indeed, for an S4-quartic field K4 with
Galois closure K24, we associate to it the two-dimensional Artin representation
Gal(K24/Q) ∼= S4 → S3 → GL2(C), where S4 → S3 is the map in which
we quotient out by the subgroup generated by double transpositions. The
corresponding family of L-functions is the same as the family associated
to the branched cover Y → V . This is because the field in K24 fixed by
the double transpositions of S4 is the degree-6 Galois closure K6 of the
cubic resolvent K3 of K4. Hence the Artin L-function corresponding to the
representation Gal(K24/Q) ∼= S4 → S3 → GL2(C) is the same as the Artin
L-function corresponding to the standard representation Gal(K6/Q) ∼= S3

→ GL2(C).
As in the case of the family of quadratic resolvents of cubic fields, cubic fields

K ∈ F arise with multiplicities. The following theorem, due to Heilbronn [39],
shows that the multiplicity of K is #Cl(K )[2] − 1:
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Table 1. Densities of splitting types.

Splitting type of p in Q Splitting type of p in C Density in F

(1111) (111)
1
24
+ O

(
1
p

)
(22) (111)

1
8
+ O

(
1
p

)
(211) (21)

1
4
+ O

(
1
p

)
(4) (21)

1
4
+ O

(
1
p

)
(31) (3)

1
3
+ O

(
1
p

)

THEOREM 4.3. Let K be a fixed cubic S3-field. Then index-2 subgroups of Cl(K )
are in bijective correspondence with quartic fields that are nowhere overramified
and have K as a cubic resolvent field.

Therefore, it is possible to interpret F as a family of weighted cubic fields,
where each cubic field K is weighted by #Cl(K )[2] − 1. However, as before, we
prefer to consider F as a geometric family.

4.4. Symmetry type corresponding to this family of cubic fields. We will
need to relate the splitting type of an unramified prime p in a nowhere
overramified quartic field Q to the splitting type of p in the cubic resolvent
field C of Q. This is done in the following proposition:

PROPOSITION 4.4. Let Q be a quartic order, and let C be a cubic resolvent of Q.
Fix a prime p that does not ramify in Q. The splitting type of p in Q determines
the splitting type of p in C. Table 1 lists the different possible pairs of splitting
types.

Proof. Let K4 and K3 denote Q ⊗Z Q and C ⊗Z Q, respectively. Since K4 is a
quartic field and Q is an order in K4, we deduce that K3 is also a field and C is
an order in K3. Since p is unramified in K4, it remains unramified in the Galois
closure of K4, and hence in K3. The splitting types of p in K4 and K3 are the same
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as the splitting types of p in Q and C , respectively. The theorem now follows by
applying the method of [77].

The counting results of Theorem 3.5 imply the analogue of (10) with δ0 = δ1 =

23/24 + ε and A = B = 1/2 + ε. The analogue of (12) follows from Table 1
because 1/24 + 1/8 = 1/6, 1/4 + 1/4 = 1/2, and 1/3 = 1/3. Thus F is an
S3-family in the sense that the Frobenius elements are uniformly distributed in T3.

As in Section 2, if we define L to be the average conductor, then Theorem 2.8
follows for an even function f whose Fourier transform is smooth and supported
in the interval [−α, α], with α < 1

24 . Since #Cl(K )[2] − 1 is equal to the
number of index-2 subgroups of Cl(K ), F(x) can be viewed as a weighted set of
Artin L-functions arising from S3-fields K , where each S3-field is counted with
multiplicity #Cl(K )[2] − 1. Therefore, in conjunction with Section 3, we deduce
equidistribution results for cubic fields counted with multiplicity #Cl(K )[2].

The main ingredient that we use in order to consider these weighted families
(of quadratic fields K weighted by #Cl(K )[3] and of cubic fields L weighted
by #Cl(L)[2]) is that these weighted families can be parametrized in terms of
integral orbits of reductive groups on certain representations. Let us also note
that it is possible to obtain analogous results for the families of quadratic and
cubic fields weighted by #Cl(K ) · Reg(K ). One way to obtain such a result is
to use geometric families that parametrize quadratic and cubic fields, with these
weights. For quadratic fields, we use the space of binary quadratic forms modulo
the SL2-action, and for cubic fields, we use the space Z2

⊗Z3
⊗Z3 modulo the

GL2×SL3×SL3-action (see [6]). Though integral orbits on these representations
parametrize simply the class groups of quadratic (respectively cubic) fields, the
fundamental domains that can be most naturally constructed for these spaces
weigh each quadratic (respectively cubic) field K by #Cl(K ) ·Reg(K ). The latter
construction can be seen in [66] for the case of quadratic fields and [72, Ch. 2] for
cubic fields. Alternatively, we can use the fact that the Dirichlet class number
formula expresses this quantity as a residue at s = 1 of ζK (s) which can be
well approximated by a short Dirichlet polynomial. On the other hand arithmetic
weights such as L( 1

2 , χd) could change the answer.

5. Sn-families

In this section, we consider the parametric family of monogenized degree-n
number fields and prove Theorem 1.1 concerning the Sato–Tate equidistribution.
We will let V ' An denote the space of monic polynomials of degree n. The ring
of functions of V is Z[a1, . . . , an], which we can identify via the fundamental
theorem of algebra with Z[x1, . . . , xn]

Sn . Thus we can identify V with the GIT
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quotient An//Sn , which simply amounts to factor the monic polynomial

f (T ) = T n
+ a1T n−1

+ · · · + an = (T − x1)(T − x2) · · · (T − xn).

Equivalently V is the Hilbert scheme of n points in A1. The ring of functions of
the cartesian product V ×A1 is Z[x1, . . . , xn]

Sn [T ]. The subscheme X ⊂ V ×A1

corresponding to the zero set of f is defined by the principal ideal generated by
(T − x1)(T − x2) · · · (T − xn).

LEMMA 5.1. There is a ring isomorphism between the quotient ring

Z[x1, . . . , xn]
Sn [T ]/〈(T − x1)(T − x2) · · · (T − xn)〉,

and Z[x1, . . . , xn]
Sn−1 , induced by specializing T 7→ xn .

Proof. The map is clearly a ring homomorphism. Since the image contains the
polynomial xn , to prove surjectivity it suffices to show that the image contains the
subring Z[x1, . . . , xn−1]

Sn−1 . Let g(x1, . . . , xn−1) be an Sn−1-invariant polynomial.
Then g(x1, . . . , xn−1) = f (x1, . . . , xn−1, 0) for some Sn-invariant polynomial f .
This can be proved by using the elementary symmetric polynomials; see, for
example, [52, Section 1.1]. Then g is the image of f (x1, . . . , xn − T ) ∈ Z[x1,

. . . , xn]
Sn [T ]. To prove that the map is injective, it is sufficient to prove that if a

polynomial in Z[x1, . . . , xn][T ] is such that each of the specializations T 7→ x1,

T 7→ x2, . . . , T 7→ xn vanishes, then it is divisible by (T−x1)(T−x2) · · · (T−xn).
Since the ring Z[x1, . . . , xn] is an integral domain, this follows from the factor
theorem, which we recall in Lemma 5.2 for convenience.

LEMMA 5.2 (Factor theorem for polynomial rings).

(i) Let R be a commutative ring. If a polynomial f ∈ R[T ] has a root f (α) = 0,
then it is divisible by T − α.

(ii) Let R be an integral domain. If a polynomial f ∈ R[T ] has distinct roots
α1, . . . , αn ∈ R, then it is divisible by (T − α1)(T − α2) · · · (T − αn).

Proof. (i) Since T−α is monic, it follows from the polynomial division algorithm
that f (T ) = (T − α)g(T ) + a for some g ∈ R[T ] and a ∈ R. Since R is
commutative, we can specialize T 7→ α, which yields a = 0.

(ii) We proceed by induction on n. By (i), we can factor f (T ) = (T −αn)g(T )
for some g ∈ R[T ]. For each i 6= n, the difference αi − αn is nonzero, hence
g(αi) = 0 because R is a domain. We may then factor g thanks to the induction
hypothesis.
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From Lemma 5.1, we deduce that the ring of functions of X can be identified
with Z[x1, . . . , xn]

Sn−1 . Equivalently X is the Hilbert scheme of n points in A1,
one of which is marked. Similarly the Galois closure X̃ of X → V is identified
with An , which parametrizes n marked points in A1, and with ring of functions
Z[x1, . . . , xn].

In this section, the family F consists of the degree-n fields corresponding to
Z-orbits on V (Z)max, the set of elements f in V (Z) such that Z[x]/ f (x) is a
maximal order in a degree-n field.

5.1. Monogenized fields arising from monic integer polynomials. Recall
from the introduction the notion of monogenized rings and fields. A polynomial
f (T ) ∈ V (Z) gives rise to the monogenized ring (Z[T ]/ f (T ), T ). Conversely, a
monogenized ring (R, α), where R has rank n over Z, gives rise to a polynomial
f ∈ V (Z), namely, the characteristic polynomial of α. The group Z acts on V (Z)
via the action (m · f )(T ) = f (T + m). Since the characteristic polynomial of
α+m is f (T −m), where f is the characteristic polynomial of α, it follows that
the isomorphism classes of monogenized rank-n rings are in bijection with the
Z-orbits on V (Z).

In this section, we shall consider the family F of degree-n fields K f that arise
as the fraction fields of maximal orders Rf corresponding to Z-orbits of integer
monic degree-n polynomials. These fields are said to be monogenic. This family is
distinct from the family of fields arising from all orders corresponding to integer
monic degree-n polynomials (see [48]). The latter family would capture all Sn-
fields since every number field is generated by a single element over Q and thus
every number field is the field of fractions of some (possibly nonmaximal) order
corresponding to an integer monic degree-n polynomial. Moreover, every degree-
n field arises in the latter family infinitely often.

It is expected that for n > 3, most maximal orders (in fact, most rings) are not
monogenic. Thus, we expect that our family of monogenic fields is thin in the
full set of degree-n fields, though this is not known to be the case for any n > 3.
For example, a cubic ring corresponding to the binary cubic form f under the
Delone–Faddeev correspondence [28] is monogenic if and only if f represents 1
over Z. So in the case n = 3, the thinness of the family of monogenic cubic rings
reduces to the open question of showing that 100% of integral binary cubic forms
do not represent 1.

In the next subsection, we consider the family F of monogenized fields and
define an appropriate height function on it. We then determine asymptotics for
the number of monogenized fields having prescribed splitting conditions at a fixed
prime p, and use these asymptotics to determine the symmetry type of the low-
lying zeros of the corresponding family of L-functions.
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5.2. Counting results. Every Z-orbit on V (Z) has a unique representative
whose T n−1-coefficient is between 0 and n−1. Let V (Z)k denote the set of monic
integer polynomials whose T n−1-coefficient is k. Then the set

⊔n−1
k=0 V (Z)k is a set

of orbit representatives for the action of Z on V (Z).
Let f (T ) = T n

+a1T n−1
+· · ·+an be an element of V (Z). The coefficients ai

are the i th symmetric polynomials evaluated on the roots of f . Hence we consider
ai to be a degree-i function on V . The discriminant∆ is a degree n(n−1) function
on V . We then define the following height on V (R):

h(T n
+ a1T n−1

+ a2T n−2
+ · · · + an) = maxi{|ai |

n(n−1)/ i
}.

For x > 0, we consider the set of elements in V (R)k (respectively V (Z)k) having
height less than x . Then

|{ f ∈ V (Z)k : h( f ) < x}|
= Vol({ f ∈ V (R)k : h( f ) < x})+ O(x ((n+2)/2n)−(2/n(n−1)))

= 2n−1x (n+2)/2n
+ O(x ((n+2)/2n)−(2/n(n−1))).

See also [29] for the related count of rational points on weighted projective spaces.
An application of Hilbert irreducibility proves that 100% of elements f in

V (Z) yield Q-algebras K f = Q[T ]/ f (T ) which are Sn-number fields. Indeed,
an application of the Selberg sieve yields the upper bound

|{ f ∈ V (Z)k : K f not Sn-field, h( f ) < x}| = Oε(x ((n+2)/2n)−(2/5n(n+1))+ε). (32)

This bound is essentially due to Gallagher. See the recent article [30] for more
general results via a different approach based on resolvent rings and the method
of Bombieri–Pila for counting integer points on high degree curves.

Next, we consider the subsets V (Fp)
(τ )
⊂ V (Fp) of polynomials having

splitting type τ ∈ Tn and the subset V (Fp)
∆=0
⊂ V (Fp) of polynomials that

have discriminant 0. As in Section 3, we denote the set of elements in V (Zp)

corresponding to maximal degree-n extensions of Zp by V (Zp)
max. We also let

V (Zp)
p|∆ denote the set of elements in V (Zp) whose discriminants are divisible

by p, and let V (Zp)
p|∆,max denote V (Zp)

max
∩ V (Zp)

p|∆.

LEMMA 5.3. Let p be a prime such that (p, n) = 1. Then we have

cp,τ :=
|V (Fp)

(τ )
|

pn
·

1
Vol(V (Zp)max)

=
|τ |

|Sn|
+ O

(
1
p

)
,

cp|∆ :=
|V (Fp)

∆=0
|

pn
·

Vol(V (Zp)
p|∆,max)

Vol(V (Zp)p|∆)Vol(V (Zp)max)
= O

(
1
p

)
. (33)
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The values of cp,τ (respectively cp|∆) are the p-adic densities of the set of elements
in V (Zp) that have splitting type τ (respectively discriminant divisible by p)
within the set of maximal elements in V (Zp). We have defined them in this way
so that the leading term follows from a computation over Fp.

As mentioned in [61, Section 2.2] the lemma follows from the analogue of the
Chebotarev equidistribution for étale coverings which can be established with the
Lang–Weil bound. Below we give an elementary proof.

Proof. A set S of n points in A1(Fp) is said to be defined over Fp if the set S
is fixed by the Galois group of Fp over Fp. A monic degree-n polynomial with
coefficients in Fp yields a set of n points in A1(Fp) defined over Fp, namely its
roots. Conversely, given a set of n points in A1(Fp) defined over Fp, it determines
a unique monic degree-n polynomial with coefficients in Fp.

The number of sets of n points in A1(Fp) defined over Fp is pn . If ∆( f ) = 0
for f ∈ V (Fp), then the corresponding set of n points contains at least one point
counted with multiplicity greater than 1. The number of such sets is∼ pn−1 which
proves the second part of the lemma.

Now consider an unramified splitting type τ = (n)nn · · · (2)n2(1)n1 , where∑
jn j = n. If f ∈ V (Fp) has splitting type τ , then the corresponding set of n

points consists of n1 distinct points in A1(Fp), n2 distinct pairs of conjugate points
in A1(Fp2)\A1(Fp), and so on. Up to an error term of O(pn1−1), the number of
sets of n1 distinct points in A1(Fp) is pn1/n1!. Similarly, the number of sets of nk

distinct k-tuples of conjugate points in

A1(Fpk )

∖ (⋃
d|k

d 6=k

A1(Fpd )

)

is pknk/(knk · nk !) + O(pknk−1), since the number of k-tuples of conjugate points
in A1(Fpk ) is pk/k. Thus, the number of sets of n points in A1(Fp) defined over
Fp corresponding to the splitting type τ is equal to

pn1

n1!

p2n2

2n2 · n2!
· · ·

pknk

knk · nk !
· · ·

pnnn

nnn · nn!
+O(pn−1) =

pn

|StabSn (τ )|
+O(pn−1), (34)

where the equality follows since the cardinality of the stabilizer of τ in Sn is
exactly equal to the denominator of the main term in the left-hand side of the
above equation.

Next, we note that conditions of maximality for f ∈ V (Zp) are listed in
[2, Corollary 3.2]. In particular, if f ∈ V (Z) is nonmaximal, then either the
reduction of f modulo p has a double root α ∈ Fp such that p2

| f (α̃) for
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any lift α̃ ∈ Zp of α, or f has multiple repeated roots. In either case it follows
that p2

| ∆( f ) for nonmaximal elements f ∈ V (Zp). Indeed, the claim for the
former case follows simply from the identity ∆( f ) = (−1)n(n−1)/2Res( f, f ′),
the resultant of f and its derivative. For the latter case, the claim follows
from the description of the discriminant as the product of differences of
roots.

Hence, we see that the volume of the set of nonmaximal elements is bounded
by O(1/p2). Therefore, we obtain

1
Vol(V (Zp)max)

= 1+ O
(

1
p2

)
,

Vol(V (Zp)
p|∆,max)

Vol(V (Zp)p|∆)Vol(V (Zp)max)
= 1+ O

(
1
p

)
.

(35)

The lemma follows from (34), (35), and the orbit-stabilizer formula which gives
|StabSn (τ )||τ | = |Sn|.

LEMMA 5.4. For any prime p, we have

ρ(p) :=
#V (Z/p2Z)max

#V (Z/p2Z)
= 1−

1
p2
.

Proof. This is [2, Proposition 3.5] combined with [2, Corollary 3.2].

The asymptotics for the number of elements in V (Z) having bounded height
and square-free discriminant is computed in [11]. The key ingredient in that result
is the following ‘tail estimate’ proved in [11, Theorem 1.5]:∑

m>M
µ2(m)=1

|{ f ∈ V (Z) : m2
|∆( f ), h( f ) < x}|

�ε

x ((n+1)/(2n−2))+ε

M
+ x ((n+1)/(2n−2))−(1/5n(n−1))+ε . (36)

Recall that F denotes the family of Z-orbits in V (Z)max. Thus for x > 1, F(x)
is in bijection with the set of monogenized fields in F arising from irreducible
integer monic polynomials having height bounded by x . Let Fp,τ (x) and Fp|∆(x)
correspond to the set of fields K in F(x) such that the splitting type of p in K is τ
and such that p | ∆(K ), respectively. Using arguments identical to those in [11],
we estimate the number of elements in F(x), Fp,τ (x), and Fp|∆(x).
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THEOREM 5.5. Let cp,τ and cp|∆ be as in Lemma 5.3. We have

|F(x)| =
2n−1n
ζ(2)

x (n+2)/2n
+ Oε(x ((n+2)/2n)−(1/5n(n−1))+ε),

|Fp,τ (x)| = cp,τ |F(x)| + Oε(x ((n+2)/2n)−(1/5n(n−1))+ε pn),

|Fp|∆(x)| = cp|∆|F(x)| + Oε(x ((n+2)/2n)−(1/5n(n−1))+ε pn−1).

(37)

Proof. We start by computing the number of elements f ∈ V (Z)k having height
less than x . The coefficients ai of such an f are as follows: a1 = k and |ai | <

x i/(n(n−1)) for 2 6 i 6 n. Thus there are a total of ∼ 2n−1x δ such elements f ,
where δ = (n(n + 1)/2− 1)/(n(n − 1)) = (n + 2)/(2n).

For square-free positive m, let Uk,m(x) denote the set of elements f ∈ V (Z)k
such that Rf is nonmaximal at every prime dividing m and h( f ) < x . Let Um(x)
denote

⊔n−1
k=0 Uk,m(x). Note that if Rf is nonmaximal at a prime p, then p2

| ∆( f ).
Since the discriminant of f (T ) is equal to the discriminant of f (T + a) for
integers a, (36) immediately implies the following estimate:∑

m>M
µ2(m)=1

|Um(x)| = Oε(x ((n+2)/2n)+ε/M)+ Oε(x ((n+2)/2n)−(1/5n(n−1))+ε). (38)

(We exclude the factors of n in the error terms since n is assumed to be fixed.)
The set Uk,m is defined via congruence conditions modulo m2. Let

V (Z/m2Z)nmax
k denote the set of elements whose lifts to V (Z)k are nonmaximal

at every prime dividing m. Then for m 6 x1/n(n−1) and

ρk(m) :=
#V (Z/m2Z)nmax

k

#V (Z/m2Z)k
,

we have

|Uk,m(x)| = ρk(m)2n−1x (n+2)/2n
+ O(x ((n+2)/2n)−(2/n(n−1))).

Above, the error term is uniform in m since m2 is forced to be smaller than the
smallest range of the coefficients of the elements in V , namely the range of a2.

Since the condition of maximality (and hence of nonmaximality) is Z-invariant,
it follows that the density of nonmaximal elements in

⊔n−1
k=0 V (Z/m2Z)k is

equal to the density of nonmaximal elements in V (Z/m2Z). Furthermore,
the size of V (Z/m2Z)k is equal to m2n−2 independent of k. It therefore
follows that the average of ρk(m) is equal to the density of nonmaximal
elements in

⊔n−1
k=0 V (Z/m2Z)k , and can be computed from Lemma 5.4 using
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the multiplicativity over m of this density:

1
n

n−1∑
k=0

ρk(m) =
∏
p|m

1/p2
= 1/m2.

Therefore, from (32) and (38), we have for δ > 0,

|F(x)| =
∑
m>1

µ(m)|Um(x)| + Oε(x ((n+2)/2n)−(2/5n(n+1))+ε)

=

n−1∑
k=0

∑
m>1

µ(m)|Uk,m(x)| + Oε(x ((n+2)/2n)−(2/5n(n+1))+ε)

=

n−1∑
k=0

xδ∑
m=1

µ(m)ρk(m)2n−1x (n+2)/2n
+ O

( xδ∑
m=1

x ((n+2)/2n)−(2/n(n−1))

)
+ Oε(x ((n+2)/2n)−δ+ε

+ x ((n+2)/2n)−(1/5n(n−1))+ε)

=
2n−1n
ζ(2)

x (n+2)/2n
+ Oε(x ((n+2)/2n)−δ

+ x ((n+2)/2n)−(2/n(n−1))+δ

+ x ((n+2)/2n)−δ+ε
+ x ((n+2)/2n)−(1/5n(n−1))+ε).

We pick δ = 1/n(n − 1) and obtain the first estimate of the theorem. The proofs
of the other two estimates are identical. We simply count points in the translates
of pV (Z) corresponding to Lemma 5.3. (Here we have chosen not to optimize
the exponent of p in the error terms; using the methods in [31] would yield
significantly improved error bounds.)

This concludes the proof of the Sato–Tate equidistribution for this family of
monogenized degree-n fields. Therefore, by the results of Section 2 in conjunction
with Lemma 5.3 and Theorem 5.5, we see that the symmetry type of the family
is symplectic and that the bound on the support given by Theorem 2.8 is α <
2/(5n(n − 1)(2n + 1)).

5.3. Fields arising from binary n-ic forms. Let W = Symn(2) denote the
space of all binary n-ic forms. A construction of Nakagawa [54] attaches a degree-
n ring Rf to a nondegenerate integral binary n-ic form f . The following geometric
construction of Rf is due to Wood [76, Theorem 2.4]: to an integral binary n-ic
form f ∈ W (Z), we associate its scheme X f of zeros and the ring Rf of regular
functions on X f . This produces a quasi-projective scheme X ⊂ W × P1 which
is also a branched covering X → W of degree n. We may consider the family
of fields arising from integral binary n-ic forms that correspond to maximal
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orders in Sn-fields. This yields a family of L-functions as before. The Sato–
Tate equidistribution for this family would follow in identical fashion from a
tail estimate, analogous to (36) but for binary n-ic forms f ∈ W (Z) such that
m2
|∆( f ).

6. Mixed families

In this section, we consider geometric families that are mixed, that is, the
fields yielding the L-functions in the families do not all have the same Galois
group. However, each family we consider can be naturally partitioned into disjoint
subfamilies where the Galois group is constant. The Sato–Tate group of the
subfamily is then equal to this Galois group embedded into some linear group
GLn(C). The Sato–Tate measure of the mixed family is the linear combination
of the pushforward measures to the torus of the Sato–Tate groups of all the
subfamilies. We thus verify [61, part (ii) of Conjecture 1].

6.1. Binary cubic forms and S2-, C3- and S3-fields. Let F denote the family
of étale cubic extensions of Q arising as R⊗Q, where R corresponds to GL2(Z)-
orbits on the set of maximal integral binary cubic forms that have nonzero
discriminant and do not factor as the product of three linear forms over Q. (We
omit the cases of Q⊕Q⊕Q which corresponds to binary cubic forms which split
completely over Q.) We have a disjoint decomposition F = FC t FS t FZ , where
the family FC corresponds to C3-fields, the family FS corresponds to S3-fields
(and has been studied in Section 3), and the family FZ corresponds to the direct
sums K ⊕Q of quadratic fields K and Q.

The Sato–Tate group of FS is S3 ⊂ GL2(C) embedded via the standard
representation. For FC the Sato–Tate group is C3 ⊂ S3 ⊂ GL2(C), and for FZ

the Sato–Tate group is S2 ⊂ S3 ⊂ GL2(C). Recall that T = (S1)2/S2 consists of
pairs of unit complex numbers modulo permutation of the two coordinates. We
shall use the notation δ(a, b), where a, b ∈ S1, to denote the Dirac delta measure
supported at the point (a, b) ∈ T. Let ρ denote a nontrivial cube root of unity, and
let ρ̄ denote the complex conjugate of ρ. Then the Sato–Tate measures and the
indicators i1, i2, and i3 for the families FC , FS , and FZ are listed in Table 2.

Note that S2 and C3 do not act irreducibly on C2; as a consequence i1(FZ ) =

i1(FC) = 2. This is apparent since the L-function attached to K ⊕Q ∈ FZ is
ζK (s) = ζ(s)L(s, χ), where χ is a Dirichlet character. Similarly, the L-function
corresponding to a cyclic cubic field in FC is a product of two Dirichlet L-
functions L(s, χ)L(s, χ), where χ is a cubic character. The family of cubic
character L-functions L(s, χ) is itself of unitary symmetry type since it has Sato–
Tate group C3 ⊂ GL1(C). It has been studied for example in [25].
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Table 2. Sato–Tate measures and the corresponding indicators for the families in
Section 6.1.

Family Sato–Tate measure Indicators
i1 i2 i3

FC
1
3δ(1, 1)+ 2

3δ(ρ, ρ) 2 2 0

FZ
1
2δ(1, 1)+ 1

2δ(1,−1) 2 2 2

FS
1
6δ(1, 1)+ 1

2δ(1,−1)+ 1
3δ(ρ, ρ) 1 1 1

It is a consequence of the work of Davenport–Heilbronn that the families FS

and FZ occur with positive proportion cS and cZ inside F, while FC has zero
proportion. Thus the family F satisfies Sato–Tate equidistribution for the measure

µST(F) := cS · µST(FS)+ cZ · µST(FZ ).

The indicators are easily calculated and in fact Table 2 shows that all three are
equal to cS + 2cZ . Similarly, the statistics of the low-lying zeros of F are simply
the superposition of those of the family FS of S3-fields and the family FZ of S2-
fields, weighted with the respective proportions cS and cZ .

6.2. Pairs of ternary quadratic forms and S4- and D4-fields. Recall that
GL2(Z)× SL3(Z)-orbits on the space of pairs of integral ternary quadratic forms
correspond bijectively to isomorphism classes of pairs (Q, R), where Q is a
quartic ring and R is a cubic resolvent ring of Q. We may use this parametrization
to construct a mixed family F of S4 and D4 quartic fields. Given a pair (A, B) of
integral ternary quadratic forms given in Gram-matrix form and corresponding to
a pair of rings (Q, R) as above, the cubic resolvent form is defined to be f (x, y)
= 4 det(Ax − By). Then, under the Delone–Faddeev correspondence [28], the
integral binary cubic form f corresponds to the cubic resolvent ring R of Q
(see [5]). In particular, if Q is an S4-, D4-, or A4-ring, then R is an S3-ring, an order
contained in a direct sum of Q and a quadratic field, or a C3-ring, respectively.

When quartic fields are ordered by discriminant, D4-fields occur with a positive
proportion. This is related to the shape of a fundamental domain for the GL2(Z)×
SL3(Z)-action on V (R), and the presence of ‘cusps’. More precisely, one of the
cusps of this fundamental domain contains only integral elements (A, B) with
det(A) = 0 (see Case II in the proof of [7, Lemma 11]). This implies that if
the corresponding quartic ring is nondegenerate, then it is either a D4-ring or an
order contained within the direct sum of two quadratic fields. A 100% of D4-rings
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are contained in this cusp, and they make up a positive proportion of irreducible
quartic rings.

To construct a geometric family of quartic fields that are either S4 or D4,
we must restrict to pairs of integral ternary quadratic forms that have nonzero
discriminant and are maximal. Furthermore, in order to exclude A4-rings and
reducible rings, we impose the condition that the prime 2 stays inert. That is,
we consider the family of fields F arising as the field of fractions of rings
corresponding to the set of GL2(Z) × SL3(Z)-orbits on maximal nondegenerate
elements of V (Z)whose splitting type at 2 is (4). We then have the decomposition
F = FS t FD, where FS consists of S4-fields and FD consists of D4-fields. This is
one instance where one can perform rigorously the decomposition alluded to in
the remarks concerning [61, assertion (ii) of Conjecture 1].

Quartic D4-orders may also be distinguished from S4-orders using the property
that a cubic resolvent of a D4-order is a suborder of Q⊕ K , where K is a quadratic
field. In contrast, the cubic resolvent of an S4-order is an order in an S3-cubic field.
Exploiting this difference, Wood [74, Section 7.3] parametrizes quartic rings with
reducible resolvent rings as G-orbits, where G is a subgroup of GL2(Z)×GL3(Z),
on the space of pairs (A, B) of integral ternary quadratic forms such that A has
top row zero and a12 6= 0. The quartic rings that arise include all D4-orders but no
S4-orders. Let U be the space of quadruples (A, B, x, y) of two integral ternary
quadratic forms A and B as above and two integers x and y such that det(Ax −
By) = 0. Geometrically the cusp containing D4-fields arises from the natural
equivariant map U → V . Indeed, the common zero locus of A and B in P2 yields
branched 4-covers of V and U whose normal closures have Galois groups S4 and
D4 respectively. The family FD is parametrized by the GL2(Z)×SL3(Z) orbits in
U (Z).

The Sato–Tate group for FS is S4 ⊂ GL3(C) embedded via its standard
representation, and the Sato–Tate group for FD is D4 ⊂ S4 ⊂ GL3(C). We identify
T with (S1)3 modulo permutation of the three coordinates and use the notation
δ(a, b, c) to denote the Dirac delta measure supported at the point (a, b, c). Then
the Sato–Tate measures and the indicators i1, i2, and i3 for the families FS and FD

are listed in Table 3. The computations of the indicators are elementary, and only
require the character of the standard representation of S4. The proof of Sato–Tate
equidistribution follows from Baily’s [3] and Bhargava’s [7] counting results on
D4- and S4-fields, respectively.

Since D4 does not act irreducibly on C3, the family FD is not essentially
cuspidal. In fact C3 decomposes as the direct sum of the standard 2-dimensional
representation of D4 and the character of D4 whose kernel is generated by the two
transpositions of D4, so we can write FD = Fdih⊕Fchar. Geometrically we can
describe Fchar as a branched 2-cover constructed as follows: for (A, B, x, y) ∈ U ,
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Table 3. Sato–Tate measures and the corresponding indicators for the families in
Section 6.2.

Family Sato–Tate measure Indicators
i1 i2 i3

FS
1

24 δ(1, 1, 1)+ 1
4 δ(1, 1,−1)+ 1

3 δ(1, ρ, ρ)+
1
4 δ(−1, i,−i)+ 1

8 δ(1,−1,−1) 1 1 1

FD
1
8 δ(1, 1, 1)+ 1

4 δ(1, 1,−1)+ 1
4 δ(−1, i,−i)+ 3

8 δ(1,−1,−1) 2 2 2

the zero set of the degenerate ternary quadratic form Ax − By is the union of two
lines in P2. These two lines are joining opposite points of the common zero locus
of A and B and the interpretation is that this picture is preserved by the action
of D4.

The Sato–Tate equidistribution for FD and FS follows from the methods
in [7, 21], respectively. We deduce this equidistribution for FD in the following
proposition. Note that the equidistribution for the family FS follows from the
results of Section 3.2.

PROPOSITION 6.1. The family FD is equidistributed with respect to the measure
given in Table 3.

In other words and with the same notation as for (11), the proposition is saying
that for every τ ∈ T4 the value of

lim
y→∞

lim
x→∞

1
|FD(x)| · π(y)

∑
p<y

|F
p,τ
D (x)|

is given by Table 3. Namely, for τ = (1, 1, 1), the limit is equal to 1
8 , for τ = (1,

1,−1), the limit is equal to 1
4 , and so on. In relation to (1), this means that

{ρL(Frobp) : L ∈ FD(x), p < y} ⊂ T4

is equidistributed as x →∞ and y →∞ (taking the limits in this order), for the
measure given in Table 3, which coincides with the pushforward of the counting
measure on D4 ⊂ S4.

Proof. The family of dihedral fields is contained in the union of quadratic
extensions of quadratic fields: we write

FD ⊂
⊔

K

F2(K ) =: F2,2,
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where the (disjoint) union is over quadratic fields K , ordered by the absolute
values of Disc(K ), and where F2(K ) denotes the family of quadratic extensions
of K (recall that a D4-field contains a unique quadratic subfield). By the results
of [21], it follows that there are negligibly many nondihedral fields contained
within F2(K ), for every K , and hence within F2,2 as well. As a consequence, for
the purpose of proving Sato–Tate equidistribution, we may replace the family FD

with the family F2,2 of quadratic extensions of quadratic fields. In what follows,
we will prove Sato–Tate equidistribution for each subfamily F2(K ), and then
deduce the same equidistribution for F2,2.

Let K be a fixed quadratic field, and let p be a prime in Q unramified in K .
If the splitting type of p in K is (11), then in a proportion of 1/4 + O(1/p)
(respectively 3/4+ O(1/p)) of quadratic extensions L/K , the splitting type of p
in L is (1111) (respectively (112)). On the other hand, if the splitting type of p in
K is (2), then in a proportion of 1/2 + O(1/p) (respectively 1/2 + O(1/p)) of
quadratic extensions L/K , the splitting type of p in L is (22) (respectively (4)).
In conjunction with the Chebotarev density theorem, it follows that the family
F2(K ) is equidistributed with respect to the measure as given in the second line
of Table 3.

Fix a real number M . Then the Sato–Tate measure of the family

F2,2,M :=
⊔

|∆(K )|<M

F2(K )

is a finite weighted sum over K of the Sato–Tate measures of F2(K ). Since the
measure is independent of K , the exact values of the weights are irrelevant; and
the Sato–Tate measure of F2,2,M is as given in Table 3.

It is proven in [21] that the family F2,2\F2,2,M has density�ε M−1+ε in F2,2. In
particular

|F
p,τ
D (x)|
|FD(x)|

=
|F

p,τ
2,2,M(x)|
|F2,2,M(x)|

+ Oε(M−1+ε),

uniformly in p and x . Therefore, the Sato–Tate measure of F2,2 differs from the
second row of Table 3 by a summand of Oε(M−1+ε). The result now follows by
letting M tend to infinity.

REMARK 6.2. In [21], the asymptotics of FD (equivalently, of F2,2) is computed
when the fields are ordered by discriminant:

|{L ∈ FD : |∆(L)| < X |} ∼
3
π 2
·

( ∑
[K :Q]=2

0<|Disc(K )|<∞

2−i(K )

Disc(K )2
·

L(1, K/Q)
L(2, K/Q)

)
· X
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where i(K ) denotes the number of complex places of K . It is interesting to note
that the rather complicated constant of asymptoticity plays no role either in the
statement or the proof of Proposition 6.1. This is because the Sato–Tate measures
of every fiber F2(K ) of F2,2 are the same.

Since the dihedral representation D4 ⊂ GL2(C) and the above character
D4 → GL1(C) are orthogonal, we expect both Fdih and Fchar to have Symplectic
symmetry type. The distribution of the low-lying zeros for the family FD will
then be the independent direct sum of two Sp(∞) ensembles. In particular, for
restricted support of the level densities, we expect there to be no correlation
between the zeros of L(s, dihK ) and L(s, charK ) as K ranges over D4-fields. One
step in the direction of establishing this is [21, Corollary 6.1]; however we have
not verified whether the argument given there can be adapted to yield the desired
quantitative equidistribution for FD (with a power saving error estimate for
log x/ log y large enough). We also have not verified Sato–Tate equidistribution
for individual primes in the sense of (10), which would be significantly more
complicated, due to the nature of the leading constant in the asymptotic count of
D4-quartic fields ordered by discriminant.

As in Section 6.1, we find the family F to satisfy Sato–Tate equidistribution for
the measure

µST(F) = cS · µST(FS)+ cD · µST(FD),

where cS and cD denote the proportions of FS and FD inside F. It follows
immediately from Table 3 that the corresponding indicators satisfy i1(F) =
i2(F) = i3(F) = cS + 2cD. Finally, the statistics of the low-lying zeros of F are
simply the superposition of those of the families FS and FD, weighted with the
respective proportions cS and cD.

7. Local equidistribution for Sn-families

Sections 3 and 5 were concerned with the splitting behavior of unramified
primes in families of number fields. In the present section we investigate the
ramified primes. We conclude the section with a reformulation of Bhargava’s
heuristics [9] for counting number fields, via a comparison with Peyre’s
constant [57] for the counting of rational points on Fano varieties.

7.1. Binary n-ic forms. We begin with the family F = Fn-ic of binary n-ic
forms. Each field in this family can be thought of as arising from a set S = X f

of n points in P1(Q) defined over Q. The absolute Galois group of Q acts on this
set, and the fixed subgroup of the Galois group cuts out the number field M = Mf
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corresponding to these n points. Thus, we obtain an injection

Gal(M/Q) ↪→ Aut(S) ∼= Sn.

Fix a prime p. We may consider the reduction S = X f ⊗Z Fp of S modulo p
which yields n points, counted with multiplicity, in P1(Fp). This set S is defined
over Fp, and the absolute Galois group of Fp acts on it. The splitting type of p is
determined by the orbit decomposition of this action. More precisely, if S breaks
up into orbits having size a1, a2, . . . , a` (in decreasing order), then the splitting
type of p in K = K f is σ = σ(S) = (a1a2 · · · a`). In particular, p is unramified
in K if and only if S consists of n distinct points. Motivated by this, we define the
splitting type of such a set S to be σ ∈ ST n , where ST n denotes the set of all
possible splitting types on n points.

Consider the (finite) set of sets of n points, counted with multiplicity, in
P1(Fp) that are defined over Fp. We have seen in the proof of Lemma 5.3 that
it is naturally identified with the set of nonzero forms V (Fp) − {0} modulo
multiplication by GL1(Fp) = F×p . Thus for every prime p we have a map
V (Fp) − {0} → ST n . Pushing forward the counting measure on V (Z/p2Z)p2-∆

via
V (Z/p2Z)p2-∆

→ V (Fp)− {0}� ST n, (39)

we obtain a measure µn-ic,p on ST n .
If F is the family of fields arising from integral binary n-ic forms having square-

free discriminant, then each field K f ∈ F, corresponding to f , arises from the
set X f of the n roots of f in P1(Q). We have natural reduction maps for every
prime p,

F(x)→ ST n

K f 7→ σ(X f ⊗Z Fp).

We expect that the image of F(x) gets equidistributed in V (Z/p2Z)p2-∆ and
therefore also in ST n , as x →∞, with respect to the measure µn-ic,p.

This statement would generalize (12) which is the unramified case. The
unramified splitting types belong to the subset Tn ⊂ ST n defined in Section 2.
The restriction of the measure µn-ic,p to Tn takes the form of the pushforward of
the normalized counting measure via the map

V (Fp)
∆6=0
→ Tn ⊂ ST n,

which one may compare with (39). The natural normalization of the measure is
µn-ic,p(Tn) = 1.

Some of the analogous constructions are also valid for fields arising from n
points in Pk . However, in this case it is necessary to count ramified points along
with the additional data of local tangent directions.
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7.2. Sn-fields of bounded discriminant. We now consider the families F =
Funiv of Sn-fields of bounded discriminants with n = 3, 4, 5 as in Section 3. In
addition to Theorems 3.5 and 3.7, Bhargava also established the equidistribution
at ramified primes.

Let ET n,p denote the (finite) set of degree-n étale extensions of Qp, and let
µuniv,p be the measure where each étale extension K p is weighted proportionally
to Discp(K p)

−1#Aut(K p)
−1, and normalized by µuniv,p(Tn) = 1. The total sum of

these relative proportions is computed in [9, Proposition 2.3] extending a mass
formula for totally ramified extensions due to Serre. It is remarkable that the
answer is independent of the prime p, including the primes p dividing n! which
may wildly ramify.

PROPOSITION 7.1 [9]. For any prime p and integers 0 6 k 6 n − 1 with n > 1,∑
[K p :Qp]=n

Discp(K p)=pk

1
#Aut(K p)

= q(k, n − k),

where the sum in the left-hand side is over étale extensions of Qp of discriminant
pk and q(k, n − k) denotes the number of partitions of k into at most n − k parts.

We have a natural map from F(x) to ET n,p which sends K to K ⊗Qp. For
n = 3, 4, 5, the respective works of Davenport–Heilbronn [24], and Bhargava
[7, 8] show that, for a fixed local étale degree-n extension K p of Qp, the relative
proportion of Sn-fields K that satisfy K ⊗Qp ≡ K p is Discp(K p)

−1#Aut(K p)
−1.

Thus, as we range over fields in F(x) and let x → ∞, the images in ET n,p are
equidistributed with respect to this measure µuniv,p.

The proof involves, among other things, the relation between the measure
µuniv,p and the local counting of orbits. From the prehomogeneous vector spaces
(G, V ) we have a surjective map

V (Z/pνZ)∆6=0 � ET n,p,

where ν ∈ Z>1 is an absolute constant to be chosen large enough. (The existence
of this ν is a concrete manifestation in this context of Grothendieck’s base change
theorem.) The measure µuniv,p is equal to the pushforward of the normalized
counting measure which is established by a local density calculation [5, 6]
exploiting the G(Z/pνZ)-action.

It is interesting to compare the present situation with the one in Section 7.1. We
relate the underlying sets as follows: for each choice of n and p, there is a natural
surjective map

ET n,p � ST n ⊃ Tn,
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where we associate to each degree-n étale extension K p its splitting type. This is a
local counterpart of (4), by choosing an embedding Gal(Qp) ↪→ Gal(Q). The size
of the fibers to ST n can be read from the orbits of inertia as explained in [44, 77].
The pushforward of the measure µuniv,p does not coincide with the measure µn-ic,p,
although in the limit as p→∞ both measures converge to the Haar measure on
Tn . In fact, the restriction to Tn of the pushforward of µuniv,p coincides up to a
scalar with the Haar measure on Tn because the orbit-stabilizer formula shows
that |τ ||StabSn (τ )| = |Sn|.

We note that to understand the equidistribution in ST n , it is in general sufficient
to consider V (Z/pνZ)∆6=0 with ν = 2, while to understand the equidistribution in
Tn it is sufficient to take ν = 1.

For general n, let Funiv(x) denote the set of Sn-number fields having
discriminant bounded by x . Bhargava formulates in [9] conjectures for the
asymptotics of |Funiv(x)| and for the proportion of fields with prescribed splitting
at a prime p. For n > 6 the conjectures remain open. Note also that in these cases
we cannot view Funiv(x) as a geometric family in the sense of [61] because the
underlying parameter space is a set of integral points of a complicated algebraic
variety which is believed to not be rational.

7.3. An analogue of Peyre’s constant. Consider the Sn-family F = Funiv of
n points in Pn−2 for n = 3, 4, 5 as in Section 7.2. The measure µuniv,p on ET n,p

is normalized by µuniv,p(Tn) = 1. It is established in [9] that the proportion of
Sn-number fields that are unramified at p is the inverse of

|µuniv,p| := µuniv,p(ET n,p) =

n−1∑
k=0

q(k, n − k)p−k .

As p→∞, this is 1+ (1/p)+O(1/p2). By Proposition 7.1, the local density [9]
of number fields of bounded discriminants can be written as

dp(Funiv) := |µuniv,p| · ζp(1)−1
=

n∑
k=0

q(k, n − k)− q(k − 1, n − k + 1)
pk

, (40)

where ζp(1) = (1 − 1/p)−1 is the local factor of the Riemann zeta function.
Similarly there is a local density at infinity d∞(Funiv) which is equal to the
proportion of 2-torsion elements in Sn . The theorems of Davenport–Heilbronn and
Bhargava say that the number |Funiv(x)| of Sn-fields having absolute discriminant
at most x is asymptotic to cn x as x →∞, where the constant cn =

1
2 · d∞(Funiv) ·∏

p dp(Funiv).
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This may be compared with Peyre’s constant attached to Fano varieties, as
follows. The product of local densities is equal to the regularized product of local
mass of the measures µuniv,p,∏

p

dp(Funiv) =
∏

p

∗

|µuniv,p| := Ress=1ζ(s) ·
∏

p

|µuniv,p| · ζp(1)−1.

The regularization by ζ is explained by the prehomogeneous vector space (G, V ),
having a ring of invariant functions generated by ∆, thus the GIT quotient
is rational. The measures µuniv,p are normalized globally by the condition
µuniv,p(Tn) = 1, which can be seen as the analogue of the global normalization
of Tamagawa measures. In comparison with Peyre [57], the ‘Picard rank’ is
interpreted to be 1, which is also the order of pole of ζ(s), the ‘Tamagawa number’
is 1, and Peyre’s constant ‘α’ is interpreted to be 1

2 , which reflects the global
constraint that, according to a classical result of Hasse, the discriminant of an
Sn-field is always ≡ 0, 1 (mod 4).

The same reasoning could be applied to the general geometric families F
described in [61], and also to the automorphic families, to produce a conjectural
leading term of the asymptotic count of |F(x)| as x →∞.

8. One-parameter families of quaternionic fields

In this section, we study families of quaternionic number fields, that is, Galois
number fields K such that Gal(K/Q) is isomorphic to the quaternion group Q.
The group Q is a nonabelian group of order 8 with the presentation

〈i, j, k | i2
= j 2

= k2
= i jk〉.

We denote the element i2
= j 2

= k2
= i jk by −1.

The group Q has five irreducible representations. Apart from the trivial
representation, Q has three 1-dimensional irreducible representations, coming
from the maps which send one of i , j , and k to 1 and the other two to −1.
We denote these three nontrivial characters by χ1, χ2, and χ3, respectively.
Finally, apart from these four representations, Q has an irreducible 2-dimensional
representation which we denote by ρ and whose trace character we denote by χ .
The character χ sends ±1 to ±2 and the other elements of Q to 0. We deduce
that the Frobenius–Schur indicator of ρ is −1. In other words, ρ is a quaternionic
representation (also called symplectic representation).

The zeta function ζK (s) factors into the product

ζK (s) = ζ(s)L(s, χ1)L(s, χ2)L(s, χ3)L(s, ρK )
2,
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where
ρK : Gal(Q)→ Gal(K/Q) ' Q → SL2(C) ⊂ GL2(C).

Thus in comparison with Section 2, the Artin L-function of interest, that is,
L(s, ρK ), is constructed in a slightly different way. The isomorphism
Gal(K/Q) ' Q is not unique but ρK is nevertheless uniquely defined up to
conjugation because Q has exactly one irreducible 2-dimensional representation.
We also note that L(s, ρK ) can be realized as the L-function of a Hecke
character of order four of a real quadratic extension of Q, since the irreducible
2-dimensional representation of Q is induced from a character on any of its
cyclic subgroups of order four. Therefore L(s, ρK ) is entire. Furthermore, the
functions L(s, χi), i ∈ {1, 2, 3}, are Dirichlet L-functions corresponding to the
three quadratic subfields of the unique biquadratic subfield M of K , which is also
the subfield of elements of the extension K fixed by the center {±1} ⊂ Q. For a
treatment of all the above facts regarding Artin L-functions, see [18, Ch. 8].

We now examine the question of how a rational prime p splits in K and M . In
this section we will use exponents outside parentheses as a convenient shorthand
for repetitions in splitting types; we will for example, write (1)8 and (12)4 instead
of (11111111) and (12121212), respectively. In the case when p is unramified, the
splitting is determined by the image of Frobp in Gal(K/Q). If Frobp has image
1 in Q, then the splitting type of p is (1)8 in K and (1)4 in M , since the size of
the decomposition group is 1. Similarly, if Frobp has image −1, then the splitting
type of p is (2)4 in K and (1)4 in M . Otherwise, the splitting type of p is (4)2 in
K and (2)2 in M . If p is tamely ramified, then we have the following possibilities
for the pair (D, I ) of the decomposition and inertia groups: (C4,C4), (C4,C2),
and (C2,C2). The corresponding splitting types of p in K are (14)2, (22)2, and
(12)4, respectively.

THEOREM 8.1. Let a, b ∈ Q× be such that none of a, b, ab is a perfect square.
Then the following assertions are equivalent:

(i) There exists a quaternionic extension of Q containing Q(
√

a,
√

b).

(ii) For each prime p the relation (−a,−b)p = (−1,−1)p of Hilbert symbols
holds. (See [55, Section III.5] for the definition and basic properties of the
Hilbert symbol.)

(iii) The quaternion algebra (−a,−b
Q ) is isomorphic to the Hamilton quaternions

(−1,−1
Q ).

(iv) The ternary quadratic form 〈a, b, ab〉 is equivalent to 〈1, 1, 1〉 over Q. (Here
we are denoting the ternary quadratic form αx2

+ βy2
+ γ z2 by 〈α, β, γ 〉.)
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(v) There exist α, β, γ, λ, µ, ν ∈ Q such that

a = α2
+ β2

+ γ 2

b = λ2
+ µ2

+ ν2

0 = αλ+ βµ+ γ ν.

Moreover, if the above assertions are satisfied, and we define

θ := 1+
α
√

a
+

µ
√

b
+
αµ− βλ
√

ab
, (41)

then the quaternionic extensions of Q containing Q(
√

a,
√

b) are exactly those of
the form Q(

√
qθ) with q ∈ Q×.

Proof. The equivalence (ii) ⇔ (iv) follows from the theory of quadratic forms
(from, for example, [17, Ch. 6, Theorem 1.2 and Ch. 4, Theorem 1.1]). The
equivalence (iii) ⇔ (iv) follows from [49, Proposition 2.5 (page 57)] and the
equivalence (ii) ⇔ (iii) follows from class field theory; see [71, Corollaire 1.2
(page 32)].

Assertion (v) is equivalent to MT M =
(

a 0
0 b

)
where M :=

(
α λ
β µ
γ ν

)
, and assertion

(iv) is equivalent to the existence of a 3 × 3 matrix N such that N T N =
(

a 0 0
0 b 0
0 0 ab

)
.

Thus (iv)⇒ (v) is immediate by extracting the first two columns of N . Conversely,
(v)⇒ (iv) follows by completing M with the third column

(βν − γµ, γ λ− αν, αµ− βλ)T

to obtain the equivalence of the quadratic forms.
The equivalence (i) ⇔ (iii) ⇔ (iv) is Witt’s theorem [73]. We outline Witt’s

original proof of the equivalence (i)⇔ (iii) because it does not seem to be well-
known. Witt first considers the nonsplit exact sequence

1→ {±1} → Q → Z/2Z× Z/2Z→ 1,

where {±1} is the center and Z/2Z × Z/2Z is given by the image of {1, i, j, k}.
This yields a class ξ ∈ H 2(Q(

√
a,
√

b),Q×) of order two. Moreover ξ is trivial
after inflating to Q if and only if (i) holds. Identifying Galois cohomology with
the Brauer group, it can be verified that the inflation of ξ to Q corresponds to the
central simple algebra (

−a,−b
Q

)
⊗

(
−1,−1

Q

)
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of dimension 16 over Q. By the properties of the Brauer group this algebra is split
over Q if and only if (−a,−b

Q ) is isomorphic to (−1,−1
Q ), which concludes the proof

of (i)⇔ (iii).
Let θ be given by (41). The final assertion of the theorem is [45, Theorem 4].

We outline the proof in our notation. Using (v), we find that the norm of θ in
Q(
√

a) is equal to (1/b)(ν+((αν − γ λ)/
√

a))2. Hence b is a sum of two squares
in Q(

√
a) and furthermore Q(

√
θ) is a cyclic extension of Q(

√
a). Similarly we

find that Q(
√
θ) is a cyclic extension of Q(

√
b) and a cyclic extension of Q(

√
ab).

Since Q is the only group of order 8 that contains three distinct cyclic subgroups
of order 4 we deduce that Q(

√
θ) has Galois group Q.

Suppose that K is another quaternionic extension of Q containing Q(
√

a,
√

b).
From [36, Section 3], the composition of K with Q(

√
θ) is the field K (

√
θ)which

is biquadratic over Q(
√

a,
√

b) and has degree 16 over Q with Galois group Q ×
Z/2Z. There are three intermediate extensions between Q(

√
a,
√

b) and K (
√
θ):

K , Q(
√
θ), and a third which has Galois group (Z/2Z)3 over Q, and thus is of

the form Q(
√

a,
√

b,
√

c) for some c ∈ Q×. Then we have K (
√
θ) = Q(

√
θ,
√

c)
and one verifies that K = Q(

√
qθ) for some q ∈ Q× which may differ from c in

its factorization above primes dividing ab.

REMARK 8.2. The last two paragraphs of the proof of Theorem 8.1 independently
establish the implication (v)⇒ (i); see [41, 58] for variations of this argument. We
also note that [58] shows how to establish the implication (i)⇒ (ii) in a case by
case verification.

COROLLARY 8.3. A necessary condition for the existence of a quaternionic
extension of Q containing Q(

√
a,
√

b) is that each of a, b, ab is a sum of three
squares.

Proof. This follows immediately from the implication (i)⇒ (iv) of Theorem 8.1.

REMARK 8.4. The converse of Corollary 8.3 does not hold in general. A
counterexample is given by a = 163 and b = 14; see [70, Theorem 4]. However,
it is true that Q(

√
a) is embeddable in a quaternionic extension of Q if and only

if a is a sum of three squares (see, for example, [41, (II.2.1)]).

We now describe the families of quaternionic number fields that we consider in
this section. We shall choose a and b such that 2 is unramified in Q(

√
a,
√

b); that
is, we assume that a, b ≡ 1 (mod 4), are square-free and satisfy the assumptions
of Theorem 8.1. Consider the family F of quaternionic fields Kq = Q(

√
qθ)

containing Q(
√

a,
√

b), where a and b are fixed, θ is provided by Theorem 8.1,
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and q ≡ 0, 1 (mod 4) varies over fundamental discriminants relatively prime
to ab.

LEMMA 8.5. The conductor of the Artin representation corresponding to
Q(
√

qθ) is 2αr(ab)2(q∗)2, with α ∈ {0, 4}, and where r(ab) denotes the square-
free part of ab, and q∗ denotes the odd part of q.

Proof. This is established by Fröhlich [36], and we provide here a somewhat
more direct proof. The splitting pattern in the biquadratic field Q(

√
a,
√

b) of
an odd prime p dividing q is (1)4 or (2)2. The odd prime p is unramified in
Q(
√
θ) and ramified in the quadratic extension Q(√q) which is a subfield of

Q(
√
θ,
√

qθ), hence it is ramified in Q(
√

qθ). Thus the splitting pattern of p in
Q(
√

qθ) is (12)4 or (22)2. In both cases the ramification is tame and the inertia
subgroup is {±1}. Since tr ρ(−1) = χ(−1) = −2 we find that the local Artin
conductor at p is equal to 2.

The prime 2 can either be unramified in which case α = 0, or have the same
splitting pattern as above in which case the prime 2 is wildly ramified and α = 4.

The primes dividing ab, which all have tame ramification, can in addition
have splitting type (14)2 in which case the inertia has order four. Since
χ(i) = χ( j) = χ(k) = 0 the Artin conductor is again equal to 2.

The family F can be interpreted as a geometric family in the following way. We
consider the binary quadratic form x2

− qθy2 over Q(
√

a,
√

b) and construct the
zero locus x2

− qθy2
= 0 inside A1

× P1. Applying restriction and extension of
scalars from Q(

√
a,
√

b) to Q, we obtain a branched covering X → A1 of degree
eight defined over Q. Our family F is constructed from the covering X → A1 in
the same way as the families and coverings are constructed in Section 2.

The action of Gal(Q) on Kq = Q(
√

qθ) splits into the disjoint actions
on
√

q and
√
θ . It follows that the Artin representations ρKq : Gal(Q) →

GL2(C) differ by quadratic twists, that is, by twisting by the 1-dimensional
representations Gal(Q) → {±1} attached to the quadratic Dirichlet characters
χq of discriminant q .

We order elements in F by conductor, so h(K ) = CK . Let F(x) denote the set
of elements in F with conductor less than x . Let L = L(x) be defined by

L := 1
|F(x)|

∑
K∈F(x)

log CK . (42)

We write M = Q(
√

a,
√

b). Before stating the theorem on low-lying zeros, we
collect the information on splitting behavior of unramified primes in K and
M discussed above, along with the corresponding densities in the family F.
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Table 4. Densities of splitting types in F.

Splitting type in K Splitting type in M Average Density in F

(1)8 (1)4
δM (p)

2

(2)4 (1)4
δM (p)

2
(4)2 (2)2 1− δM (p)

If a prime p has splitting type (2)2 in M , then it must have splitting type (4)2

in K . Otherwise, if p has splitting type (1)4 in M , then its splitting type in
K = Q(

√
qθ) is determined by whether or not q is a square in Qp. Hence in this

case, the splitting types (1)8 and (2)4 happen equally often for fields K ∈ F(x)
as x → ∞. We collect the average densities of splitting types in Table 4, where
δM(p) = 1, respectively 0, if p splits in M , respectively does not split in M .

The Sato–Tate group of F is Q ⊂ GL2(C) embedded via the 2-dimensional
representation ρ. As before in Sections 2.3 and 6.2, we identify T with (S1)2

modulo permutation of the coordinates. Then the Sato–Tate measure equals

µST(F) =
1
8δ(1, 1)+ 1

8δ(−1,−1)+ 3
4δ(i,−i),

and the corresponding indicators are i1(F) = 1, i2(F) = 1 and i3(F) = −1. In
particular it follows that the family F is homogeneous symplectic.

THEOREM 8.6. Let F be the one-parameter family of quaternionic fields
described above. If f is an even function whose Fourier transform is smooth and
supported in the interval [−α, α] for α < 4

11 , then

lim
x→∞

1
|F(x)|

∑
K∈F(x)

∑
j

f
(
γ
( j)
K L
2π

)
= f̂ (0)+

f (0)
2
.

Proof. As before, we can without loss of generality assume that f is even.
Recalling (16), (17) and the fact that the L-functions L(s, ρK ) are entire, we write

1
|F(x)|

∑
K∈F(x)

∑
j

f
(
γ
( j)
K L
2π

)
= f̂ (0)+ o(1)− (S1 + S2 + S3 + Sram),

where the Si are defined exactly as in (19).
In what follows, we will find it convenient to denote the splitting type of a prime

p in the field K (respectively M) by σK (p) (respectively σM(p)). To evaluate S1,
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note that the primes p that have splitting type (2)2 in Q(
√

a,
√

b) do not contribute
to the sum over primes because θK (p) = 0 for all such primes. Thus, we may
restrict our sum to primes that split in Q(

√
a,
√

b), yielding

S1 =
2

L|F(x)|
∑

p
σM (p)=(1)4

log p
√

p
f̂
(

log p
L

) ∑
K∈Fp-∆(x)

θK (p)

=
2

L|F(x)|
∑

p
σM (p)=(1)4

log p
√

p
f̂
(

log p
L

)( ∑
K∈Fp-∆(x)
σK (p)=(1)8

2−
∑

K∈Fp-∆(x)
σK (p)=(2)4

2
)
.

Let p be a prime that splits in Q(
√

a,
√

b). We claim that the splitting type of
p in the quaternionic field Kq corresponding to the parameter q depends only on
whether or not q is a quadratic residue modulo p. Indeed, by assumption, we have
Q(
√

a,
√

b)⊗Qp =Q4
p. So the splitting type of p in Kq =Q(

√
qθ) depends only

on whether or not qθ is a square in Qp. The claim now follows since θ is fixed.
Therefore, using the Burgess bound as in [53, Lemma 2.3], we have

#{K ∈ Fp-∆(x) : σK (p) = (1)8} =
p − 1
2p
|Fp-∆(x)| + Oε(x1/4(log x)p3/16+ε),

#{K ∈ Fp-∆(x) : σK (p) = (2)4} =
p − 1
2p
|Fp-∆(x)| + Oε(x1/4(log x)p3/16+ε).

Hence

S1 = Oε

(
log x
x1/4

∑
log p6Lα

1
p5/16−ε

)
= Oε

(
e(11/16+ε)Lα

x1/4

)
.

To estimate S2, we note that θK (p2) is 2 or −2 depending on whether the
splitting type of p in Q(

√
a,
√

b) is (1)4 or (2)2, respectively. That is, θK (p2)

is independent of K and only depends on the splitting type of p in M . Set τM(p)
to be 0 if p ramifies in M , 1 if σM(p) = (1)4, and −1 if σM(p) = (2)2. Then we
have

S2 =
4

L|F(x)|
∑

p

τM(p)
log p

p
f̂
(

2 log p
L

)
|Fp-∆(x)|

=
4

L|F(x)|
∑

p

τM(p)
log p

p
f̂
(

2 log p
L

)
|F(x)|(1+ O(p−1))

=
4
L
∑

p

τM(p)
log p

p
f̂
(

2 log p
L

)
+ o(1).
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Hence, by the Chebotarev density theorem applied to M , or simply because
τM(p) is determined by the quadratic residue symbols (a/p) and (b/p), we obtain

S2 = −
f (0)

2
+ o(1),

from an argument identical to the one yielding (23).
Finally, bounding the quantities S3 and Sram in exactly the same way as in (21),

we find that

S3 = o(1),
Sram = o(1).

We conclude that

1
|F(x)|

∑
K∈F(x)

∑
j

f
(
γ
( j)
K L
2π

)
= f̂ (0)+

f (0)
2
+ Oε

(
e(11/16+ε)Lα

x1/4

)
+ o(1),

from which the desired result readily follows.

Let us remark that the condition α < 4
11 on the support in Theorem 8.6 can

be relaxed. In fact, it follows from a result of Rubinstein [59] on more general
families of quadratic twists that Theorem 8.6 holds with any α < 1

2 . Rubinstein
uses a large sieve type inequality due to Jutila instead of the Burgess bound to
obtain this result. Furthermore, Katz and Sarnak [43, Appendix 1 (unpublished)]
proved, assuming GRH, that the above result holds also in the doubled region
α < 1. For any integer n > 1, [59] further establishes the n-level density for
test functions with support restricted to the region

∑n
i=1 |xi | < 1/m of low-lying

zeros of families consisting of quadratic twists of a fixed automorphic cuspidal
representation of GLm(Q). It would be interesting to see if, similarly as done
in [32] in the case m = 1, one could double the support (conditional on GRH) in
the n-level result for the family F considered in this section.

PROPOSITION 8.7. The root number of the Artin representation attached to
Q(
√

qθ) is independent of q.

Proof. See Fröhlich [36, Assertion XV]. We give here a proof based on the
properties of local epsilon factors in [69]. Let ρ be the Artin representation
attached to Q(

√
θ) and χq be the quadratic Dirichlet character attached to q . We

want to prove that ε(ρ⊗χq) = ε(ρ).
Fix the standard additive character ψ of Q\A. Then the epsilon factor splits

as a product of local epsilon factors εp(ρ⊗χq, ψ). We will verify that for every
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prime p, we have

εp(ρ⊗χq, ψ) = εp(ρ, ψ)εp(χq, ψ)
2.

Since globally ε(χq) = 1 this will finish the proof.
For p = ∞ this can be verified directly. For p - 2abq each epsilon factor is

equal to one. For p | ab, we have p - q by assumption. Thus εp(ρ⊗χq, ψ) =

εp(ρ, ψ)χq(pvp(r(ab)2)) = εp(ρ, ψ), where we have used (Lemma 8.5) that the
conductor of ρ is equal to 2αr(ab)2 which is a perfect square. For p | 2q , we have
p - ab by assumption. Since det ρ is trivial because ρ has image in SL2(C), we
find that εp(ρ⊗χq, ψ) = εp(χq, ψ)

2. This concludes the claim.
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[37] A. Fröhlich and J. Queyrut, ‘On the functional equation of the Artin L-function for characters
of real representations’, Invent. Math. 20 (1973), 125–138.

[38] W. T. Gan, B. Gross and G. Savin, ‘Fourier coefficients of modular forms on G2’, Duke Math.
J. 115(1) (2002), 105–169.

[39] H. Heilbronn, ‘On the 2-classgroup of cubic fields’, in Studies in Pure Mathematics
(Presented to Richard Rado) (Academic Press, London, 1971), 117–119.

[40] H. Iwaniec, ‘Conversations on the exceptional character’, in Analytic Number Theory, Lecture
Notes in Mathematics, 1891 (Springer, Berlin, 2006), 97–132.

[41] C. U. Jensen and N. Yui, ‘Quaternion extensions’, in Algebraic Geometry and Commutative
Algebra, Vol. I (Kinokuniya, Tokyo, 1988), 155–182.

[42] N. M. Katz, ‘Sato–Tate in the higher dimensional case: elaboration of 9.5.4 in Serre’s NX (p)
book’, Enseign. Math. 59(3–4) (2013), 359–377.

[43] N. M. Katz and P. Sarnak, ‘Zeroes of zeta functions and symmetry’, Bull. Amer. Math. Soc.
(N.S.) 36(1) (1999), 1–26.

[44] K. S. Kedlaya, ‘Mass formulas for local Galois representations’, Int. Math. Res. Not. IMRN
(17) (2007), Art. ID rnm021, 26 pp.

[45] I. Kiming, ‘Explicit classification of some 2-extensions of a field of characteristic different
from 2’, Canad. J. Math. 42(5) (1990), 825–855.
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[71] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics,
800 (Springer, Berlin, 1980).

[72] K. H. Wilson, ‘Three perspectives on n points in Pn−2’, PhD Thesis, Princeton University,
2012.

[73] E. Witt, ‘Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe
der Ordung p f ’, J. Reine Angew. Math. 174 (1936), 237–245.

[74] M. M. Wood, ‘Moduli spaces for rings and ideals’, PhD Thesis, Princeton University, June
2009.

[75] M. M. Wood, ‘Mass formulas for local Galois representations to wreath products and cross
products’, Algebra Number Theory 4 (2008), 391–405.

[76] M. M. Wood, ‘Rings and ideals parameterized by binary n-ic forms’, J. Lond. Math. Soc. (2)
83(1) (2011), 208–231.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.18
Downloaded from https://www.cambridge.org/core. Chalmers Tekniska Högskola, on 25 Nov 2020 at 09:29:39, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.18
https://www.cambridge.org/core
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