
Thesis for The Degree of Licentiate of Philosophy

Be My Guest: Normalizing
and Compiling Programs
using a Host Language

Nachiappan Valliappan

Department of Computer Science & Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/347174071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Be My Guest: Normalizing and Compiling Programs using a Host
Language

Nachiappan Valliappan

Copyright ©2020 Nachiappan Valliappan
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2020.

ii

Abstract

In programming language research, normalization is a process of fun-
damental importance to the theory of computing and reasoning about pro-
grams. In practice, on the other hand, compilation is a process that transforms
programs in a language to machine code, and thus makes the programming
language a usable one. In this thesis, we investigate means of normalizing
and compiling programs in a language using another language as the host.
Leveraging a host to work with programs in a guest language enables reuse
of features of the host that would otherwise be strenuous to develop.

The speci�c tools of interest are Normalization by Evaluation (NbE) and
Embedded Domain-Speci�c Languages (eDSLs), both of which rely on a host
language for their purposes. These tools are applied to solve problems in
three di�erent domains: Chapter 1 uses NbE to show that exponentials (or
closures) can be eliminated from a categorical combinatory calculus; Chap-
ter 2 uses NbE to propose a new proof technique based on normalization
for showing noninterference; Chapter 3 uses eDSL techniques to enable the
programming of resource-constrained IoT devices from Haskell.

Keywords: programming languages, normalization by evaluation, embed-
ded domain-speci�c languages

iii

Acknowledgments

My research at Chalmers has been a constant tug of war between what
I would like to do and what needs to be done. Should I follow the beautiful
path of theoretical pursuit? Or must I solve today’s problems and push the
boundaries of exciting technology? These questions, in addition to my wide
range of interests, have often left me con�icted and occasionally in a state of
despair. I cannot imagine advising me being an easy job, and yet Alejandro
Russo has been patient and supportive at all the times when it mattered the
most. I would like to thank him for his advice and guidance.

I would like to thank my friends and colleagues for helping me survive
this cold, dark and strange place. I do not give you enough credit for pulling
me away from my desk often enough. A list of names is in order here, but I
will reserve this for a time that I write something worthy of your mention.

I should also acknowledge my family for their support in the years that
lead to the beginning of my PhD. If it were not for them, I would not be in a
position of luxury where the only things on my mind are the ones I choose
to spend my time on.

The programming languages community is a wonderful lot of passionate
people who care about tomorrow’s researchers. I’m glad to be a part of it.

v

Contents

Introduction 1

Bibliography 13

1 Exponential Elimination for Categorical Combinators 17

2 Simple Noninterference by Normalization 57

3 Towards Secure IoT Programming in Haskell 91

vii

Introduction

A programming language is a formal language that consists of a term
syntax, that speci�es well-formed programs, and a semantics, that speci�es
how programs can be computed. The syntax of the language dictates the
structure of the programs and provides a programming interface for devel-
oping software. The semantics, on the other hand, speci�es the behavior of
programs, and is used both as a formal tool to reason about programs and to
guide the implementation of the language.

This thesis investigates the formalization and implementation of the syn-
tax and semantics of a guest (or object) language by piggybacking on the
syntax and semantics of a host language. Treating a language of interest as
a guest with a familiar host, allows us to reuse features of the host language
to work with the guest. The narrative of this thesis is bundled together by
the tools it uses: Normalization by Evaluation (NbE) and Embedded Domain-
Speci�c Languages (eDSLs). Both these tools use a host language to go about
their business, and are closely related in the way they operate. These tools
are used here to solve problems in three guest languages from entirely dif-
ferent domains.

Be my Guest

Before we get to the nuts and bolts of this thesis, let us take a brief introduc-
tory tour to understand the said tools and their importance in the develop-
ment of programming languages. My main agenda here, in this section, is to

1

Introduction

promote these tools as useful additions to the working computer scientist’s
toolkit for the purposes of normalization and compilation of programming
languages. Now, if I may, allow me to preach a little.

Normalization by Evaluation In programming languages and mathe-
matics, normalization is the process of transforming a complex expression
to a simpler one by reducing it. Traditional normalization algorithms reduce
a given expression by performing a series of reduction steps. An expression
is rewritten several times before it can no longer be reduced, yielding a nor-
mal form of the expression. Normalization by Evaluation (NbE) [9, 26], on the
other hand, bypasses rewriting entirely and instead normalizes an expression
by evaluating it in a host language. NbE algorithms use a specialized inter-
preter to evaluate an expression in the host, and then convert the resulting
value back to an expression in normal form by reifying them. What is this
sorcery?! you may rightly wonder. Let me give you an example.

Let us suppose that we would like to normalize simple arithmetic expres-
sions containing the addition of natural numbers. Using a constant symbol
Zero and a successor function Succ, we may encode the natural numbers
0 as Zero, 1 as Succ 0, 2 as Succ (Succ 0), and so on. Addition in a given
expression can be reduced using one of the two following reduction steps.

Zero+ x 7→ x

(Succ x) + y 7→ x+ (Succ y)

The reduction relation 7→ speci�es how an expression must be reduced to
another expression. Using this speci�cation, the expression 1 + 2 can be
normalized to 3 by reducing it as follows.

Succ Zero+ Succ (Succ Zero) (1 + 2)

7→ Zero+ Succ (Succ (Succ Zero)) (0 + 3)

7→ Succ (Succ (Succ Zero)) (3)

Observe that we rewrite the expression twice before reaching the normal
form, which cannot be reduced anymore since none of the reduction steps
apply. Complex expressions may need to be rewritten several times before a
normal form is reached. Rewriting is the basis for traditional normalization
procedures, while NbE, on the other hand, does not involved any rewriting.

2

Be My Guest: Normalizing and Compiling Programs using a Host Language

NbE achieves normalization in two steps: 1) evaluating the expressions
in a host language, and 2) reifying the resulting values back to expressions.
Let us implement NbE for our example using Haskell as the host.

• Evaluation: We implement the �rst step using an interpreter function
called eval. This function interprets natural numbers as integers and
the addition of natural numbers by addition of integers.

eval :: Expr -> Int

eval Zero = 0

eval (Succ x) = eval x + 1

eval (x + y) = eval x + eval y

• Rei�cation: The second step is to invert the integer values back to
natural number expressions, and is implemented by a function called
reify. This function need not be de�ned on all integer values, but
only on the values that may be returned by eval.

reify :: Int -> Expr

reify 0 = Zero

reify n = Succ (reify (n - 1))

We implement the normalization procedure by a function norm that applies
reify on the result of eval.

norm :: Expr -> Expr

norm e = reify (eval e)

I insist that the reader convince themselves that an invocation of norm on the
expression Succ Zero+Succ (Succ Zero) does indeed return its normal form
Succ (Succ (Succ 0)). norm uses the ability of Haskell to evaluate the addition
of integers to normalize the addition of natural numbers. This function can
be modi�ed easily to other arithmetic operators, and, with some care, even
to support variables in expressions.

This seemingly simple idea to leverage a host language’s evaluation mech-
anism to normalize expressions extends much beyond arithmetic expres-
sions, and has found a wide range of applications. NbE has been used to
achieve normalization results in various programming calculi [2, 7, 9, 16, 21,
26], decide equality in algebraic structures [4], typecheck dependently-typed

3

Introduction

programming languages [3, 22], and to prove completeness [5, 15] and co-
herence [10] theorems. NbE algorithms have been observed to yield much
faster normalization than their rewriting counterparts [8, 25], and there is
also evidence that indicates that it can be used to speed up compilation in
optimizing compilers [25].

In this thesis, I use NbE as a theoretic tool to prove behavioral proper-
ties about two di�erent programming calculi via normalization—a strategy
which I shall call proof by normalization. NbE is not a requirement for this
strategy, but rather a means. The main reason to use NbE is its practical
convenience: when done in a host language, such as Agda, that functions
both as a programming language and a proof assistant, it can be used to
both reduce guest expressions and reason about its normal forms. NbE does
not de�ne normal forms with respect to a reduction relation, which also al-
lows for a more �exible application-speci�c interpretation of what it means
to be “normal”. I bypass entirely the need to formulate a reduction relation
or prove typical normalization results such as termination, con�uence and
strong normalization.

Embedded Domain-Speci�c Languages An eDSL is an implementation
of a domain-speci�c language (DSL) as a library in a host language. Imple-
menting a DSL as an eDSL o�ers two main advantages:

• The programmer can leverage the features of the host, typically a more
powerful general purpose programming language, to write programs
in the eDSL.

• Developing an eDSL compiler requires much lesser e�ort than build-
ing a dedicated DSL compiler, since the host language’s compiler can be
reused for standard compilation phases such as lexical analysis, pars-
ing and type-checking.

The tradeo�, however, is that programming an eDSL may require some fa-
miliarity of the host language.

Let us consider an example with arithmetic expressions again. The fol-
lowing library functions in Haskell constitute an eDSL to write simple arith-
metic expressions.

val :: Int -> Expr

(+) :: Expr -> Expr -> Expr

4

Be My Guest: Normalizing and Compiling Programs using a Host Language

(*) :: Expr -> Expr -> Expr

Using these functions, we can write the expression 1+2 as val 1 + val 2.
Now suppose that we would like to write an expression xn that represents

the n-th power of an expression x, for some known non-negative integer
n. How should we do this when exponentiation is not a primitive function
provided by the eDSL? If this were a mere DSL, we would write x ∗ x ∗ x for
x3, for example, since multiplication is provided. In an eDSL, however, we
can take this a step further to write a generic power function that generates
this expression automatically for an arbitrary integer n.

power :: Int -> Expr -> Expr

power n x = if (n <= 0) then x else (x * (power (n - 1))

Using this function, we may simply write power 8 x for x8 instead of x ∗x ∗
x ∗ x ∗ x ∗ x ∗ x ∗ x. The former variant is concise, less error-prone and also
makes it easy to modify and reuse code.

Notice that the de�nition of the power function uses Haskell’s features
such as conditionals (if ...), comparison (n <= 0) and function recursion
(power (n - 1)). Even though the eDSL does not implement these features
natively, we are able to use them to write expressions. In this fashion, eD-
SLs make it easy to derive additional functionality by leveraging the host
language.

EDSLs, speci�cally in Haskell, have found a wide range of applications:
hardware description [11], digital signal-processing [6], runtime veri�cation
[18, 29], parallel and distributed programming [13, 20], GPU programming
[14]—and the list goes on. In this thesis, I use the eDSL technique as a means
of providing a richer programming interface to a highly restrictive program-
ming language for programming IoT applications.

Fistful of Nails: Problem Domains

This section gives an overview of the problems addressed in this thesis, and
discusses the application of the said tools to these problems. The goal here
is to discuss the interest in domains of these problems and provide su�cient
background for the upcoming chapters (see Figure 1). Being entirely di�erent
domains, the following subsections may be read in any order.

5

Introduction

Be	My	Guest

Chapter	2
Proof	of	Noninterference

Chapter	1
Exponential	Elimination

Chapter	3
Programming	IoT	Devices

NbE eDSLs

Figure 1: Outline of this thesis

Exponential Elimination for Categorical Combinators

Combinator Calculi. Combinators can be understood as program build-
ing blocks which can be assembled in various ways to construct programs. In
functional programming, a combinator is a primitive higher order function,
which can be applied to and composed with other combinators to build more
complex functions. Unlike programming languages based on the lambda cal-
culus, combinators lack a notion of variables. In practice, this means that pro-
gramming using combinators can be an unbearable task and should probably
be avoided at all costs. But then, why care about combinators at all?

“...roughly λ-calculus is well-suited for programming, and combi-
nators (of Curry, or those introduced here) allow for implementa-
tions getting rid of some di�culties in the scope of variables.”
—P.-L. Curien (1985, Typed Categorical Combinatory Logic)

The output of a function in the lambda calculus is computed using a pro-
cess known as β-reduction. The primary di�culty with β-reduction lies in
its very de�nition: the output of a functionλx.b for some input i is computed
by substituting all occurrences of the argument variable x, in the body of the
function b, with the actual input i. This statement is succinctly captured by

6

Be My Guest: Normalizing and Compiling Programs using a Host Language

the β-rule:

(λx.b)i 7→ b[i/x]

This rule states that a function λx.b when applied to an argument i, can
be reduced to a simpler term b[i/x], which is the result of substituting all
occurrences of x with i in the body of the function b. Although substitu-
tion readily appeals to the intuition of replacement, there are a number of
auxiliary conditions that must be checked before the actual replacement of
x with i. For this reason, substitution has long had a reputation for being
notoriously di�cult to implement and reason about.

Combinators, on the other hand, avoid the need for substitution by disal-
lowing variables entirely. Instead, they adopt a style of reduction that relies
on simply “shifting symbols”. The (categorical) combinator equivalent of the
β-rule is, what I like to call, the exponential elimination rule:

apply ◦ 〈Λb, i〉 7→ b ◦ 〈id, i〉

This rule reads as: the application (apply) of a function (Λb) to an argument
(i) can be reduced to a composition of the body (b) with its input (i) in an
appropriate manner. The operator _◦_ denotes the sequencing, or composi-
tion, of two combinators and 〈_,_〉 denotes the coupling, or pairing, of two
combinators. We shall return to the speci�cs of this rule in a later chapter,
but simply observe here that it does not use the substitution operation on the
right-hand side, and that the body of the function (b) remains unmodi�ed.

The absence of substitution, an external operation, means that we need
not impose additional correctness criteria over the computation rules—which
is great news for formal reasoning! In essence, the very characteristic of
combinators that makes them impractical for programming also makes them
amenable to implementation and reasoning: the lack of variables.

Categorical Combinators. Categorical combinators are combinators de-
signed after arrows, or morphisms, in category theory. They were introduced
by Pierre-Louis Curien as an alternative to the SKI combinator calculus to
implement functional programming languages.

The primary motivation behind categorical combinators appears to be
two-fold: 1) to faithfully simulate reduction in lambda calculus without the
di�culty of variable bindings, and 2) to establish a syntactic equivalence the-
orem between the lambda calculus and the categorical model underlying the

7

Introduction

combinators—namely, the (free) cartesian closed categories. Categorical com-
binators o�ered an appealing alternative to Church’s more popular SKI com-
binator calculi, since their design is based on a semantic model. This means
that the reduction rules of the combinators arise naturally from the model
rather than having to be imposed.

“...categorical combinatory logic is entirely faithful to βreduction
where [Curry’s SKI] combinatory logic needs additional rather com-
plex and unnatural axioms to be...”
—P.-L. Curien (1986, Categorical Combinators)

Categorical combinators were used to formulate theCatergorical Abstract
Machine (CAM) [17], which was used to used to implement early versions of
Caml—the predecessor of the OCaml programming language. Later versions
of Caml, however, did not use CAM due to performance issues and di�culty
with optimizations 1. Despite its failure in use for compiling a programming
language in practice, the ease of formulating an abstract machine for cate-
gorical combinators (noted in [1]) seems to have in�uenced several variants
of CAM, an example of which is the Linear Abstract Machine [23].

In recent times, variants of (what appear to be) categorical combinators
have reappeared in practical applications. They have been used to compile
Haskell code using user-de�ned interpretations [19] and in the development
of a language for executing smart contracts on the blockchain [28].

Exponential elimination. Exponentials are the equivalent of higher-order
functions in categorical combinator calculi. The runtime representation of
an exponential is a closure, a value accompanied by an environment. Adding
support for closures complicates the implementation of the abstract machine,
and makes certain static analyses di�cult [35]. In [19], exponentials narrow
the domain of target interpretations that are supported by the compiler.

The exponential elimination rule from earlier indicates that exponentials
can be eliminated in a speci�c case. This makes us wonder: can exponentials
be eliminated statically by applying this rule repetitively on a program? This
would solve both the above problems. Without a careful analysis, however,
it is di�cult to answer this question, since there may be interactions with
other rules in the calculus that prevent exponential elimination rule from
being applied.

1https://caml.inria.fr/about/history.en.html

8

Be My Guest: Normalizing and Compiling Programs using a Host Language

Chapter 1 shows that exponential elimination can be achieved for cat-
egorical combinators with sums and products, in the presence of a special
distributivity combinator that distributes products over sums. The ability to
erase the equivalent of higher-order functions in functional calculus (known
as defunctionalization) is not news [27], but the distributivity requirement
is a somewhat surprising insight. A technical challenge faced by this result
is the presence of the empty and sum types, both of which are known for
making normalization notoriously di�cult.

Proving Noninterference.

Information-FlowControl. Information-Flow Control (IFC) is a language-
based security enforcement technique that guarantees the con�dentiality of
sensitive data by controlling how information is allowed to �ow in a program.
The guarantee that programs secured by an IFC system do not leak sensitive
data is often proved using a property called noninterference. Noninterfer-
ence ensures that an observer authorized to view the output of a program
(pessimistically called the attacker) cannot infer any sensitive data handled
by the program from its output.

Proof by Normalization. To prove that an IFC system ensures noninter-
ference, we must show that the public output of secured programs remain
una�ected by variations in its secret inputs. If the output remains una�ected
by a given input, then it must be the case that it does not depend on the
input to compute the output—thus ensuring that the attacker could not pos-
sibly learn about the secret inputs. Such programs may refer to the secret
input in its body, but they must not use it to compute the public output.

Chapter 2 proposes a new syntax-directed proof strategy to prove non-
interference for well-typed programming calculi that enforce static IFC. The
key idea of this chapter is to use normalization to eliminate any unneces-
sary input references in a program, leaving behind references that are only
absolutely necessary to compute the result. Noninterference is then proved
by ensuring that no public output depends on a reference to a secret input
in the normal form of a program—a task that is much simpler than most
semantics-based proof techniques. This technique is illustrated for a model
of the terminating fragment of the seclib library [31] in Haskell, which is a
simply-typed lambda calculus extended with IFC primitives.

9

Introduction

Programming IoT devices.

The Challenge. The Internet of Things (IoT) conceives a future where
“things”, physical objects, are interconnected over a network. The realisation
of this future relies on the use of embedded electronic devices that facilitate
communication over the network. Safe and e�ective programming of em-
bedded electronic devices, however, is well known to be a di�cult problem
since these devices do not enjoy the same computational resources (such as
power and memory) as a traditional computer.

Consider the Nordic Semiconductor nrf52840DK, which is a low power
micro-controller, that we use in this thesis to build a sample application. It
has a 64Mhz processor, 256KB RAM, and 1MB �ash memory. Compare this
with the speci�cation of the MacBook Pro that I am writing this thesis on: 2.3
GHz Dual-Core processor, 8GM RAM, and 256 GB �ash memory. Even the
L3 cache of this computer is 4MB—which is sixteen times the amount of �ash
memory on the micro-controller! The advantage however, is that the micro-
controller runs on a coin-sized battery that could keep it alive for days, while
my MacBookPro cannot get through a day of work without being plugged.

So how do software developers cope with such low availability of re-
sources? They use a low-level language such as C to �ne tune their applica-
tions. The problem, however, is writing programs in C makes it hard to iden-
tify bugs and security vulnerabilities in the application. Even a seemingly in-
nocent mistake might lead to severe vulnerabilities which could be exploited
to perform malicious activity. For example, the bu�er over�ow problem is a
classic exploit that illustrates the issue with manual memory management—a
feature that is characteristic of C.

High-level Languages to the Rescue? On the other end of the spec-
trum of languages, we have high-level languages such as Java, Python, and
Haskell. High-level languages free the programmer from a number of low-
level operations that could cause security problems. For example, the Haskell
runtime system uses a garbage collector to automatically manage memory,
which means the programmer need not worry about bu�er over�ow attacks
in most scenarios. Moreover, high-level languages also make it possible to
implement a number of solutions to �ne-grained analysis and control of the
�ow of sensitive information in a program [24, 30, 31, 32]. The price, how-
ever, is that these features require a powerful runtime system, which de-

10

Be My Guest: Normalizing and Compiling Programs using a Host Language

mands much more computational resources than low-level languages. This
means that, in most cases, high-level languages are not even an option for
programming resource constrained devices.

Synchronous Programming, Embedded. Synchronous programming is
a programming paradigm that is used to program reactive systems on em-
bedded devices. Synchronous programming languages are well suited for re-
active IoT applications since they provide a highly restrictive programming
interface that is optimized for execution with a �xed amount of resources. In
this thesis, we investigate ways to enrich the programming interface of a syn-
chronous programming language, without demanding additional resources
for execution.

Chapter 3 discusses the implementation of a synchronous language called
Lustre [12] as an eDSL in Haskell, using novel embedding techniques that
reuse Haskell features such as functions and pattern matching. Embedding
Lustre in Haskell enables us to write programs that are more concise and
less error-prone, while keeping the minimal nature of Lustre intact. The em-
bedding also enables us to enforce security policies using IFC primitives that
are reminiscent of the Haskell library LIO [32]. The eDSL is proposed as a
solution to programming reactive IoT applications using Haskell.

11

Introduction

Collection of Old Stories

Each chapter in this thesis has been developed in collaboration with a few
others, and the contents have been published separately at di�erent venues.
Here is a quick rundown:

• Chapter 1 is based on [36], which was developed in collaboration with
Alejandro Russo and appeared at the 21st Symposium on Principles and
Practice of Declarative Programming (PPDP ’19).

• Chapter 2 is based on [33], which was developed in collaboration with
Carlos Tomé Cortiñas and appeared at the 14th Workshop on Program-
ming Languages and Analysis for Security (PLAS ’19).

• Chapter 3 is based on [34], which was developed in collaboration with
Robert Krook, Alejandro Russo and Koen Claessen, and appeared at
the 13th Haskell Symposium (Haskell ’20).

This thesis work was funded by the Swedish Foundation for Strategic
Research (SSF) under the projects Octopi (Ref. RIT17-0023) and WebSec (Ref.
RIT17-0011), as well as the Swedish research agency Vetenskapsrådet.

12

Bibliography

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions.
Journal of functional programming, 1(4):375–416, 1991.

[2] A. Abel and C. Sattler. Normalization by evaluation for call-by-push-
value and polarized lambda calculus. In Proceedings of the 21st Interna-
tional Symposium on Principles and Practice of Programming Languages
2019, pages 1–12, 2019.

[3] A. Abel and H. Talk. Normalization by evaluation: Dependent types and
impredicativity. Unpublished. http://www.tcs.i�.lmu.de/˜abel/habil.pdf,
2013.

[4] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. Normalization by
evaluation for typed lambda calculus with coproducts. In Proceedings
16th Annual IEEE Symposium on Logic in Computer Science, pages 303–
310. IEEE, 2001.

[5] T. Altenkirch and T. Uustalu. Normalization by evaluation for λ→ 2.
In International Symposium on Functional and Logic Programming, pages
260–275. Springer, 2004.

[6] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Lyckegård,
A. Persson, M. Sheeran, J. Svenningsson, and A. Vajdax. Feldspar: A
domain speci�c language for digital signal processing algorithms. In
Eighth ACM/IEEE International Conference on Formal Methods andModels
for Codesign (MEMOCODE 2010), pages 169–178. IEEE, 2010.

[7] V. Balat, R. Di Cosmo, and M. Fiore. Extensional normalisation and type-
directed partial evaluation for typed lambda calculus with sums. ACM
SIGPLAN Notices, 39(1):64–76, 2004.

[8] U. Berger, M. Eberl, and H. Schwichtenberg. Normalization by evalu-
ation. In Prospects for Hardware Foundations, pages 117–137. Springer,
1998.

13

Bibliography

[9] U. Berger and H. Schwichtenberg. An inverse of the evaluation func-
tional for typed lambda-calculus. 1991.

[10] I. Beylin and P. Dybjer. Extracting a proof of coherence for monoidal
categories from a proof of normalization for monoids. In International
Workshop on Types for Proofs and Programs, pages 47–61. Springer, 1995.

[11] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware design
in haskell. ACM SIGPLAN Notices, 34(1):174–184, 1998.

[12] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative
language for programming synchronous systems. In Conference Record
of the Fourteenth Annual ACM Symposium on Principles of Programming
Languages, 1987.

[13] K. Claessen. A poor man’s concurrency monad. Journal of Functional
Programming, 9(3):313–323, 1999.

[14] K. Claessen, M. Sheeran, and J. Svensson. Obsidian: Gpu programming
in haskell. Designing Correct Circuits, page 101, 2008.

[15] C. Coquand. From semantics to rules: A machine assisted analy-
sis. In International Workshop on Computer Science Logic, pages 91–105.
Springer, 1993.

[16] T. Coquand and P. Dybjer. Intuitionistic model constructions and nor-
malization proofs. Mathematical Structures in Computer Science, 7(1):75–
94, 1997.

[17] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract
machine. Science of computer programming, 8(2):173–202, 1987.

[18] F. Dedden. Compiling an haskell edsl to c: A new c back-end for the
copilot runtime veri�cation framework. Master’s thesis, 2018.

[19] C. Elliott. Compiling to categories. Proceedings of the ACM on Program-
ming Languages, 1(ICFP):1–27, 2017.

[20] J. Epstein, A. P. Black, and S. Peyton-Jones. Towards haskell in the
cloud. In Proceedings of the 4th ACM symposium on Haskell, pages 118–
129, 2011.

14

Bibliography

[21] A. Filinski. Normalization by evaluation for the computational lambda-
calculus. In International Conference on Typed Lambda Calculi and Ap-
plications, pages 151–165. Springer, 2001.

[22] D. Gratzer, J. Sterling, and L. Birkedal. Implementing a modal depen-
dent type theory. Proceedings of the ACM on Programming Languages,
3(ICFP):1–29, 2019.

[23] Y. Lafont. The linear abstract machine. Theor. Comput. Sci., 59:157–180,
1988.

[24] P. Li and S. Zdancewic. Encoding information �ow in Haskell. In Proc.
of the IEEEWorkshop on Computer Security Foundations (CSFW ’06). IEEE
Computer Society, 2006.

[25] S. Lindley. Normalisation by evaluation in the compilation of typed
functional programming languages. 2005.

[26] P. Martin-Löf. An intuitionistic theory of types: Predicative part. In
Studies in Logic and the Foundations of Mathematics, volume 80, pages
73–118. Elsevier, 1975.

[27] S. Najd, S. Lindley, J. Svenningsson, and P. Wadler. Everything old is
new again: quoted domain-speci�c languages. In Proceedings of the 2016
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipula-
tion, pages 25–36, 2016.

[28] R. O’Connor. Simplicity: A new language for blockchains. In Proceed-
ings of the 2017 Workshop on Programming Languages and Analysis for
Security, pages 107–120, 2017.

[29] L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: a hard real-time
runtime monitor. In International Conference on Runtime Veri�cation,
pages 345–359. Springer, 2010.

[30] A. Russo. Functional pearl: Two can keep a secret, if one of them uses
Haskell. In Proc. of the ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2015. ACM, 2015.

[31] A. Russo, K. Claessen, and J. Hughes. A library for light-weight
information-�ow security in haskell. ACM Sigplan Notices, 44(2):13–24,
2008.

15

Bibliography

[32] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic
information �ow control in Haskell. In Proc. of the ACM SIGPLANHaskell
symposium (HASKELL ’11), 2011.

[33] C. Tomé Cortiñas and N. Valliappan. Simple Noninterference by Nor-
malization. In Proceedings of the 14th ACM SIGSAC Workshop on Pro-
gramming Languages and Analysis for Security, pages 61–72, 2019.

[34] N. Valliappan, R. Krook, A. Russo, and K. Claessen. Towards Secure
IoT Programming in Haskell. In Proceedings of the 13th ACM SIGPLAN
International Symposium on Haskell, pages 136–150, 2020.

[35] N. Valliappan, S. Mirliaz, E. L. Vesga, and A. Russo. Towards adding
variety to simplicity. In International Symposium on Leveraging Applica-
tions of Formal Methods, pages 414–431. Springer, 2018.

[36] N. Valliappan and A. Russo. Exponential Elimination for Bicartesian
Closed Categorical Combinators. In Proceedings of the 21st International
Symposium on Principles and Practice of Programming Languages 2019,
pages 1–13, 2019.

16

1
Exponential Elimination for Bicartesian
Closed Categorical Combinators

Nachiappan Valliappan, Alejandro Russo
PPDP ’19, October 7–9, 2019, Porto, Portugal

Abstract. Categorical combinators o�er a simpler alternative to typed
lambda calculi for static analysis and implementation. Since categorical
combinators are accompanied by a rich set of conversion rules which
arise from categorical laws, they also o�er a plethora of opportunities
for program optimization. It is unclear, however, how such rules can be
applied in a systematic manner to eliminate intermediate values such as
exponentials, the categorical equivalent of higher-order functions, from
a program built using combinators. Exponential elimination simpli�es
static analysis and enables a simple closure-free implementation of cat-
egorical combinators—reasons for which it has been sought after.

In this chapter, we prove exponential elimination for bicartesian
closed categorical (BCC) combinators using normalization. We achieve
this by showing that BCC terms can be normalized to normal forms
which obey a weak subformula property. We implement normalization
using Normalization by Evaluation, and also show that the generated
normal forms are correct using logical relations.

1 Introduction
Categorical combinators are combinators designed after arrows, ormorphisms,
in category theory. Although originally introduced to present the connection
between lambda calculus and cartesian closed categories (CCCs) [13], cate-
gorical combinators have attracted plenty of attention in formal analysis and
implementation of various lambda calculi. For example, they are commonly
used to formulate an evaluation model based on abstract machines [12, 17].
Abadi et al. [1] observe that categorical combinators “make it easy to derive
machines for the λ-calculus and to show the correctness of these machines”.
This ease is attributed to the absence of variables in combinators, which avoids
the difficulty with variable names, typing contexts, substitution, etc. Recently,
categorical combinators have also been used in practical applications for pro-
gramming smart contracts on the blockchain [25] and compiling functional
programs [14].
Since categorical combinators are based on categorical models, they are

accompanied by a rich set of conversion rules (between combinator terms)
which emerge from the equivalence between morphisms in the model. These
conversion rules form the basis for various correct program transformations
and optimizations. For example, Elliott [14] uses conversion rules from CCCs
to design various rewrite rules to optimize the compilation of Haskell pro-
grams to CCC combinators. The availability of these rules raises a natural
question for optimizing terms in categorical combinator languages: can in-
termediate values be eliminated by applying the conversion rules whenever
possible?
The ability to eliminate intermediate values in a categorical combinator lan-

guage has plenty of useful consequences, just as in functional programming.
For example, the elimination of exponentials, the equivalent of high-order
functions, from BCC combinators solves problems created by exponentials
in static analysis [28], and has also been sought after for interpreting func-
tional programs in categories without exponentials ([14], Section 10.2). It has
been shown that normalization erases higher-order functions from a program
with first-order input and output types in the simply typed lambda calculus
(STLC) with products and sums [23]—also known as defunctionalization [26].

19

Similarly, can we erase exponentials and other intermediate values by normal-
izing programs in the equally expressive bicartesian closed categorical (BCC)
combinators?
We implement normalization for BCC combinators towards eliminating

intermediate values, and show that it yields exponential elimination. We
first recall the term language and conversion rules for BCC combinators
(Section 2), and provide a brief overview of the normalization procedure
(Section 3). Then, we identify normal forms of BCC terms which obey a
weak subformula property and prove exponential elimination by showing that
these normal forms can be translated to an equivalent first-order combinator
language without exponentials (Section 4 and Section 5).
To assign a normal form to every term in the language, we implement a

normalization procedure using Normalization by Evaluation (NbE) [8, 9] (Sec-
tion 6). We then prove, using Kripke logical relations [21], that normal forms of
terms are consistent with the conversion rules by showing that they are inter-
convertible. (Section 7). Furthermore, we show that exponential elimination
can be used to simplify static analysis—while retaining expressiveness—of a
combinator language called Simplicity (Section 8). Finally, we conclude by
discussing related work (Section 9) and final remarks (Section 10).
Although we only discuss the elimination of exponentials in this chapter,

the elimination of intermediate values of other types can also be achieved
likewise—except for products. The reason for this becomes apparent when we
discuss the weak subformula property (in Section 5.1).
We implement normalization and mechanize the correctness proof in the

dependently-typed language Agda [10, 24]. This chapter is also written in
literate Agda since dependent types provide a uniform framework for dis-
cussing both programs and proofs. We use category theoretic terminology
to organize the implementation based on the categorical account of NbE
by Altenkirch et al. [4]. However, all the definitions, algorithms, and proofs
here are written in vanilla Agda, and the reader may view them as regular
programming artifacts. Hence, we do not require that the reader be familiar
with advanced categorical concepts. We discuss the important parts of the

1. Exponential Elimination for Categorical Combinators

20

implementation here, and encourage the curious reader to see the complete
implementation1 for further details.

2 BCC Combinators
A BCC combinator has an input and an output type, which can be one of
the following: 1 (for unit), 0 (for empty), ∗ (for product), + (for sum),⇒ (for
exponential) and base (for base types). The Agda data type BCC (see Figure 1)
defines the term language for BCC combinators. In the definition, the type
Ty denotes a BCC type, and Set denotes a type definition in Agda (like ∗
in Haskell). Note that the type variables a, b and c are implicitly quantified
and hidden here. The combinators are self-explanatory and behave like their
functional counterparts. Unlike functions, however, these combinators do not
have a notion of variables or typing contexts.

data BCC : Ty→ Ty→ Set where
id : BCC a a
• : BCC b c→ BCC a b→ BCC a c
unit : BCC a 1
init : BCC 0 a
exl : BCC (a ∗ b) a
exr : BCC (a ∗ b) b
pair : BCC a b→ BCC a c→ BCC a (b ∗ c)
inl : BCC a (a + b)
inr : BCC b (a + b)
match : BCC a c→ BCC b c→ BCC (a + b) c
curry : BCC (c ∗ a) b→ BCC c (a⇒ b)
apply : BCC (a⇒ b ∗ a) b

Fig. 1. BCC Combinators

The BCC combinators are accompanied by a number of conversion rules
which emerge from the equational theory of bicartesian closed categories [6].
These rules can be formalized as an equivalence relation _≈_ : BCC a b→
BCC a b→ Set (see Figure 2). In the spirit of categorical laws, the type-specific
conversion rules can be broadly classified as elimination and uniqueness (or
universality) rules. The elimination rules state when the composition of two
1https://github.com/nachivpn/expelim

21

data _≈_ : BCC a b→ BCC a b→ Set where
-- categorical rules

idr : f • id ≈ f
idl : id • f ≈ f
assoc : f • (g • h) ≈ f • (g • h)
-- elimination rules

exl-pair : (exl • pair f g) ≈ f
exr-pair : (exr • pair f g) ≈ g
match-inl : (match f g • inl) ≈ f
match-inr : (match f g • inr) ≈ g
apply-curry : apply • (curry f ⊗ id) ≈ f
-- uniqueness rules

uniq-init : init ≈ f
uniq-unit : unit ≈ f
uniq-pair : exl • h ≈ f→ exr • h ≈ g→ pair f g ≈ h
uniq-curry : apply • h ⊗ id ≈ f→ curry f ≈ h
uniq-match : h • inl ≈ f→ h • inr ≈ g→ match f g ≈ h
-- equivalence and congruence rules

refl : f ≈ f
sym : f ≈ g→ g ≈ f
trans : f ≈ g→ g ≈ h→ f ≈ h
congl : x ≈ y→ f • x ≈ f • y
congr : x ≈ y→ x • f ≈ y • f

Fig. 2. Conversion rules for BCC

terms can be eliminated, and uniqueness rules state the unique structure of a
term for a certain type. For example, the conversion rules for products include
two elimination rules (exl-pair, exr-pair) and a uniqueness rule (uniq-pair):
Note that the operator ⊗ used in the exponential elimination rule (apply-

curry) is defined below. It pairs two BCC terms using pair and applies them
on each component of a product. The components are projected using exl and
exr respectively.

⊗ : BCC a b→ BCC c d→ BCC (a ∗ c) (b ∗ d)
f ⊗ g = pair (f • exl) (g • exr)
The standard βη conversion rules of STLC [3, 7] can be derived from the

conversion rules specified here. This suggests that we can perform β and η

1. Exponential Elimination for Categorical Combinators

22

conversion for BCC terms, and normalize them as in STLC. Let us look at a
few simple examples.
Example 1. For a term f : BCC a (b ∗ c), pair (exl • f) (exr • f) can be

converted to f as follows.

eta∗ : pair (exl • f) (exr • f) ≈ f

eta∗ = uniq-pair refl refl

The constructor refl states that the relation ≈ is reflexive. The conversion
above corresponds to η conversion for products in STLC.
Example 2. Suppose that we define a combinator uncurry as follows.

uncurry : BCC a (b⇒ c)→ BCC (a ∗ b) c
uncurry f = apply • f ⊗ id

Given this definition, a term curry (uncurry f) can be converted to f , by
unfolding the definition of uncurry—as curry (apply • f ⊗ id)—and then
using uniq-curry refl.

eta⇒ : curry (uncurry f) ≈ f

eta⇒ = uniq-curry refl

Note that Agda unfolds the definition of uncurry automatically for us. The
conversion above corresponds to η conversion for functions in STLC.
Example 3. Given a term t : BCC a (b ∗ c) such that t ≈ (pair f д) •

h : BCC a (b ∗ c), t can be converted to the term pair (f • h) (д • h) using
equational reasoning such as the following.

t

≈ (pair f д) • h By definition

≈ pair (exl • pair f д • h) (exr • pair f д • h) By example 1

≈ pair (f • h) (exr • pair f д •h) By exl-pair

≈ pair (f • h) (д • h) By exr-pair

Example 4. Given f : BCC a (b⇒ c) and д : BCC a b, if f can be converted
to curry f ′, then the term (apply • pair f д) : BCC a c can be converted
to f ′ • pair id д (the implementation is left as an exercise for the reader).
Notice that the combinators curry and apply are eliminated in the result of

23

the conversion. This conversion corresponds to β conversion for functions in
STLC, and forms the basis for exponential elimination.

3 Overview of Normalization
Our goal is to implement a normalization algorithm for BCC terms and show
that normalization eliminates exponentials. We will achieve the latter using a
syntactic property of normal forms called the weak subformula property. To
make this property explicit, we define normal forms as a separate data type
Nf as follows.

data Nf : Ty→ Ty→ Set where

Normal forms are not themselves BCC terms, but they can be embedded into
BCC terms using a quotation function q which has the following type.

q : Nf a b→ BCC a b

To prove that normalization eliminates exponentials, we show that normal
forms with first-order types can be quoted into a first-order combinator
language, called DBC, as follows.

qD : firstOrd a→ firstOrd b→ Nf a b→ DBC a b

The data type DBC is defined syntactically identical to BCC without the
exponential combinators curry and apply, and with an additional distributivity
combinator distr (see Section 5).
Normalization based on rewriting techniques performs syntactic trans-

formations of a term to produce a normal form. NbE, on the other hand,
normalizes a term by evaluating it in a suitable semantic model, and extract-
ing a normal form from the resulting value. Evaluation is implemented as an
interpreter function eval, and extraction of normal forms—also called reifica-
tion—is implemented as a function reify (see Section 6). These functions have
the following types.

eval : BCC a b→ (⟦ a ⟧↠ ⟦ b ⟧)
reify : (⟦ a ⟧↠ ⟦ b ⟧)→ Nf a b

The type ⟦ a ⟧ is an interpretation of a BCC type a in the model, and similarly
for b. The type ⟦ a ⟧ ↠ ⟦ b ⟧, on the other hand, is a function between

1. Exponential Elimination for Categorical Combinators

24

interpretations (to be defined later) and denotes the interpretation of a BCC
term of type BCC a b.
Normalization is achieved by evaluating a term and then reifiying it, and is

thus implemented as a function norm defined as follows.

norm : BCC a b→ Nf a b

norm t = reify (eval t)

To ensure that the normal form generated for a term is correct, we must
ensure that it is convertible to the original term. This correctness theorem is
stated by quoting the normal form as follows.

correct-nf : (t : BCC a b)→ t ≈ q (norm t)

We prove this theorem using logical relations between BCC terms and values
in the semantic model (see Section 7).

4 Selections
The evaluation of a term requires an input of the appropriate type. During
normalization, since we do not have the input, we must assign a reference
to the unknown input value and use this reference to represent the value. In
lambda calculus, these references are simply variables. Since BCC combinators
lack the notion of variables, we must identify the subset of BCC terms which
(intuitively) play the counterpart role—which is the goal of this section.
If we think of the typing context as the “input type” of a lambda term, then

variables are essentially indices which project an unknown value from the
input (a substitution). This is because typing contexts enforce a product-like
structure on the input. For example, the variable x in the body of lambda term
Γ, x : a ⊢ x : a projects a value of type a from the context Γ, x : a. The BCC
equivalent of Γ, x : a ⊢ x : a is the term exl : (Γ ∗ a) a. Unlike lambda terms,
however, BCC terms do not enforce a specific type structure on the input,
and may also return the input entirely as id : (Γ ∗a) (Γ ∗a). Hence, as opposed
to projections, we need a notion of selections.
Specific BCC terms can be used to select an unknown value from the input,

and these terms can be defined explicitly by the data type Sel (see Figure 3). A
term of type Sel a b denotes a selection of b from the input a. When the input
is a product, the constructor drop drops the second component, and applies a

25

given selection to the first component. The constructor keep, on the other
hand, keeps the second component unaltered and applies a selection to the
first component. We cannot select further from the input if it is not a product,
and hence the remaining constructors, with the prefix end, state that we must
simply return the input as is—thereafter referred to as end- constructors.

data Sel : Ty→ Ty→ Set where
endu : Sel 1 1
endi : Sel 0 0
endb : Sel base base
ends : Sel (a + b) (a + b)
ende : Sel (a⇒ b) (a⇒ b)
drop : Sel a b→ Sel (a ∗ c) b
keep : Sel a b→ Sel (a ∗ c) (b ∗ c)

Fig. 3. Selections

Note that the four end- constructors enable the definition of a unique
identity selection2, iden : Sel a a. This selection can be defined by induction
on the type a, where the only interesting case of products is defined as below.
The remaining cases can be defined using the appropriate end- constructor.

iden : {a : Ty}→ Sel a a

iden {a1 ∗ a2} = keep iden

-- end- for remaining cases

Figure 4 illustrates the use of selections by examples.

drop iden : Sel ((a + b) ∗ c) (a + b)
keep (drop iden) : Sel (a ∗ b ∗ c) (a ∗ c)

drop (keep (drop iden)) : Sel (a ∗ b ∗ c ∗ d) (a ∗ c)

Fig. 4. Examples of selections

Selections form the basis for the semantic interpretation of BCC terms,
and hence enable the implementation of NbE. To this extent, they have the
following properties.
2We prefer to derive the identity selection as opposed to adding it as a constructor, to avoid
ambiguity which could be created between selections iden and (keep iden), both of the type
Sel (a1 ∗ a2) (a1 ∗ a2). The derived identity avoids this ambiguity by definition.

1. Exponential Elimination for Categorical Combinators

26

Property 4.1 (Category of selections). Selections define a category where
the objects are types and a morphism between two types a and b is a selection
of type Sel a b. The identity morphisms are defined by iden, and morphism
composition can be defined by straight-forward induction on the morphisms
as a function of type _◦_ : Sel b c → Sel a b → Sel a c. The identity and
associativity laws of a category (sel-idl, sel-idr and sel-assoc below) can
be proved using Agda’s built-in syntactic equality ≡ by induction on the
morphisms. These laws have have the following types in Agda.

sel-idl : iden ◦ s ≡ s

sel-idr : s ◦ iden ≡ s

sel-assoc : (s1 ◦ s2) ◦ s3 ≡ s1 ◦ (s2 ◦ s3)

Property 4.2 (Faithful embedding). Selections can be faithfully embedded
into BCC terms since they are simply a subset of BCC terms. This embedding
can be implemented by induction on the selection, as follows.

embSel : Sel a b→ BCC a b

embSel (drop e) = embSel e • exl
embSel (keep e) = pair (embSel e • exl) exr
-- id for remaining cases

5 Normal forms
In this section, we present normal forms for BCC terms, and prove exponential
elimination using them. It is important to note that these normal forms are not
normal forms of the conversion rules specified by the relation ≈, but rather
are a convenient syntactic restriction over BCC terms for proving exponential
elimination. Precisely, they are normal forms of BCC terms which obey a
weak subformula property—defined later in this section. This characterization
is based on normal forms of proofs in logic, as opposed to normal forms of
terms in lambda calculus.
Normal forms are defined mutually with neutral forms (see Figure 5).

Roughly, neutral forms are eliminators applied to selections, and they rep-
resent terms which are blocked during normalization due to unavailability
of the input. The neutral form constructor sel embeds a selection as a base

27

case of neutrals; while fst, snd and app represent the composition of the
eliminators exl, exr and apply (respectively) to neutrals.
The normal form constructors unit, pair and curry represent their BCC

term counterparts; ne-0 and ne-b embed neutrals which return values of
type 0 and base (respectively) into normal forms; left and right represent the
composition of the injections inl and inr respectively; and case represents
the BCC term Case below, which is an eliminator of sums defined using
distributivity of products over sums. Note that the BCC termDistr implements
this distributivity requirement, and can be derived using exponentials—see
Appendix A.2.

-- Distr : BCC (a ∗ (b + c)) ((a ∗ b) + (a ∗ c))

Case : BCC a (b + c)→ BCC (a ∗ b) d→ BCC (a ∗ c) d→ BCC a d

Case x f g = match f g • Distr • pair id x

The quotation functions are implemented as a simple syntax-directed trans-
lation by mapping neutrals and normal forms to their BCC counterparts as
discussed above. For example, the quotation of the neutral form fst x—where x
has the typeNe a (b ∗ c)—is simply exl : (b ∗ c) b composed with the quotation
of x . Similarly, the quotation of left x is inl composed with the quotation of
its argument x . We use the derived term Case to quote the normal form case.
Note that the normal forms resemble βη long forms of STLC with products

and sums [2], but differ with respect to the absence of typing contexts and
variables. In place of variables, we use selections in neutral forms—this is
an important difference since it allows us to implement reflection, a key
component of reification (discussed later in Section 6).
In the rest of this section, we will define the weak subformula property,

show that all normal forms obey it, and prove exponential elimination as a
corollary.

5.1 Weak Subformula Property

To understand the need for a subformula property, let us suppose that we
are given a term t : BCC (1 ∗ 1) 1. Does t use exponentials? Unfortunately,
we cannot say much about the presence of curry and apply in the subterms
without inspecting the body of the term itself. Term t could be something as

1. Exponential Elimination for Categorical Combinators

28

data Nf (a : Ty) : Ty→ Set where
unit : Nf a 1
ne-0 : Ne a 0→ Nf a b
ne-b : Ne a base→ Nf a base
left : Nf a b→ Nf a (b + c)
right : Nf a c→ Nf a (b + c)
pair : Nf a b→ Nf a c→ Nf a (b ∗ c)
curry : Nf (a ∗ b) c→ Nf a (b⇒ c)
case : Ne a (b + c)→ Nf (a ∗ b) d→ Nf (a ∗ c) d→ Nf a d

data Ne (a : Ty) : Ty→ Set where
sel : Sel a b→ Ne a b
fst : Ne a (b ∗ c)→ Ne a b
snd : Ne a (b ∗ c)→ Ne a c
app : Ne a (b⇒ c)→ Nf a b→ Ne a c

q : Nf a b→ BCC a b
q unit = unit
q (ne-b x) = qNe x
q (ne-0 x) = init • qNe x
q (left n) = inl • q n
q (right n) = inr • q n
q (pair m n) = pair (q m) (q n)
q (curry n) = curry (q n)
q (case x m n) = Case (qNe x) (q m) (q n)

qNe : Ne a b→ BCC a b
qNe (sel x) = embSel x
qNe (fst x) = exl • qNe x
qNe (snd x) = exr • qNe x
qNe (app x n) = apply • pair (qNe x) (q n)

Fig. 5. Normal forms and quotation

simple as exl or it could be:

apply • (pair (curry unit • exl) exr) : BCC (1 ∗ 1) 1

29

But with an appropriate subformula property, however, this becomes an easy
task. Let us suppose that t : BCC (1 ∗ 1) 1 has a property that the input and
output types of all its subterms occur in t ’s input (1 ∗ 1) and/or output (1)
type. In this case, what can we say about the presence of curry and/or apply
in t? Well, it would not contain any! The input and output types of all the
subterms would be 1 and/or products of it, and hence it is impossible to find
a curry or an apply in a subterm. Let us define this property precisely and
show that normal forms obey it by construction.
The occurrence of a type in another is defined as follows.

Definition 5.1 (Weak subformula). A type b is a weak subformula of a if
b ◁ a, where ◁ is defined as follows.

data _◁_ : Ty→ Ty→ Set where

self : a ◁ a

subl : a ◁ b→ a ◁ (b ⊗ c)

subr : a ◁ c→ a ◁ (b ⊗ c)

subp : a ◁ c→ b ◁ d→ (a ∗ b) ◁ (c ∗ d)

For a binary type operator ⊗ which ranges over ∗, + or⇒, this definition
states that:

• a is a weak subformula of a (self)
• a is a weak subformula of b ⊗ c if a is a weak subformula of b (subl) or
a is a weak subformula of c (subr)
• a ∗ b is a weak subformula of c ∗ d if a is a weak subformula of c and b
is a weak subformula of d (subp).

The constructors self, subl and subr define precisely the concept of a sub-
formula in proof theory [27]. For BCC terms, however, we also need subp
which weakens the subformula definition by relaxing it up to products. To
understand this requirement, we must first define the following property for
normal forms.

Definition 5.2 (Weak subformula property). A normal form of type Nf a b
obeys the weak subformula property if, for all its subterms of type Nf i o, we
have that i ◁ a ∗ b and o ◁ a ∗ b.

1. Exponential Elimination for Categorical Combinators

30

Do all normal forms obey this property? It is easy to see that the normal
forms constructed using unit, left, right and pair obey the weak subformula
property given their subterms do the same. For instance, the constructor left
returns a normal form of type Nf a (b + c), where the input type (a) and
output type (b) of its subtermNf a b occur in a and (b + c). Hence, if a subterm
t : Nf a b obeys the weak subformula property, then so does left t .
To understand why curry satisfies the weak subformula property, recall its

definition as a normal form constructor of typeBCC (c ∗a)b → BCC c (a⇒b).
The input type c ∗ a of its subterm argument is evidently not a subformula—as
usually defined in proof theory—of the types c or a⇒ b. However, by subp, we
have that the type c ∗ a is a weak subformula of the product of the input and
output types c ∗ (a⇒ b). This is precisely the need for weakening the defini-
tion of a subformula with subp3. Specifically, the proof of (c ∗ a) ◁ c ∗ (a⇒ b)
is given by subp (self) (subl self).
On the other hand, the definition of the constructor case looks a bit sus-

picious since it allows the types b and c which do not occur in final type
Nf a d . To understand why case also satisfies the weak subformula property,
we must establish the following property about neutral forms, which we shall
call neutrality.

Property 5.1. Given a neutral form Ne a b, we have that b is a weak subfor-
mula of a, i.e., neutrality : Ne a b → b ◁ a.

Proof. By induction on neutral forms. For the base case sel, we need a
lemma about neutrality of selections, which can be implemented by an auxil-
iary function neutrality-sel : Sel a b → b ◁ a by induction on the selection.
For the other cases, we simply apply the induction hypothesis on the neutral
subterm. □

Due to neutrality of the neutral form Ne a (b + c) in the definition of case,
we have that (b + c) ◁ a, and hence (b + c) ◁ (a ∗ d). As a result, case also
obeys the weak subformula property. Similarly, ne-0 and ne-b also obey the
weak subformula property as a consequence of neutrality. Thus, we have the
following theorem.
3In logic, however, the requirement for weakening a subformula by products is absent, since
an equivalent definition of curry as Γ,a ⊢ b → Γ ⊢ a ⇒ b uses context extension (,) instead of
products (∗)

31

Theorem 5.1. All normal forms, as defined by the data type Nf, satisfy the
weak subformula property.

Proof. By induction on normal forms, as discussed above. □

Notice that, unlike normal forms, arbitrary BCC terms need not satisfy
the weak subformula property. The term apply • (pair (curry unit • exl)
exr) discussed above is already an example of such a term. More specifically,
its subterm apply has the input type (1⇒ 1) ∗ 1, which does not occur in
(1 ∗ 1) ∗ 1—i.e., (1⇒ 1) ∗ 1 ⋪ (1 ∗ 1) ∗ 1. However, all BCC terms, including
the ones which do not satisfy the weak subformula property, can be converted
to terms which satisfy this property. This conversion is precisely the job
of normalization. For instance, the previous example can be converted to
unit : BCC (1 ∗ 1) 1 using uniq-unit. A normalization algorithm performs
such conversions automatically whenever possible.
Since neutral forms offer the intuition of an “eliminator”, it might be dis-

concerting to see case, an eliminator of sums, oddly defined as a normal form.
But suppose that it was defined in neutrals as follows.

case? : Ne a (b + c) → Nf (a ∗ b) d → Nf (a ∗ c) d → Ne a d

Such a definition breaks neutrality (Property 5.1) since we cannot prove that
d ◁ a, and subsequently breaks the weak subformula property of normal
forms (Theorem 5.1). But what about the following definition where the first
argument to case is normal, instead of neutral?

case? : Nf a (b + c) → Nf (a ∗ b) d → Nf (a ∗ c) d → Nf a d

Such a definition also breaks the weak subformula property—for the exact
same reason which caused our suspicion in the first place: b and c do not
occur in a, d or a ∗ d .

5.2 Syntactic Elimination of Exponentials

Exponential elimination can be proved as a simple corollary of the weak
subformula property of normal forms. If a and b are first-order types, i.e., if
the type constructor⇒ does not occur in types a or b, then we can be certain
that the subterms of Nf a b do not use curry (from Nf) or app (from Ne). This
follows directly from the weak subformula property (Theorem 5.1). To show

1. Exponential Elimination for Categorical Combinators

32

data DBC : Ty→ Ty→ Set where
id : DBC a a
• : DBC b c→ DBC a b→ DBC a c
-- exl, exr, pair, init

-- inl, inr, match, unit

distr : DBC (a ∗ (b + c)) ((a ∗ b) + (a ∗ c))

Fig. 6. DBC combinators

this explicitly, let us quote such normal forms to a first-order combinator
language based on distributive bicartesian categories (DBC) [6].
The DBC term language is defined by the data type DBC, which includes all

the BCC term constructors except Curry and Apply—although most of them
have been left out here for brevity. Additionally, it also has a distributivity
constructor distr which distributes products over sums. The constructor distr
is needed to implement the BCC term Case, which is in turn needed to quote
the normal form case (as earlier). This is because distributivity can no longer
be derived in the absence of exponentials.
To restrict the input and output to first-order types, suppose that we define

a predicate on types, firstOrd : Ty→ Set, which disallows the occurrence
of exponentials in a type. Given this predicate, we can now define quotation
functions qNeD and qD as below. The implementation of the function qNeD
is similar to that of the function qNe (discussed earlier) for most cases, and
similarly for qD. The only interesting cases are that of the exponentials, and
these can be implemented as follows.

qNeD : firstOrd a→ Ne a b→ DBC a b

qNeD p (app n _) = ⊥-elim (expNeutrality p n)

qD : firstOrd a→ firstOrd b→ Nf a b→ DBC a b

qD p q (curry n) = ⊥-elim q

For neutrals, we escape having to quote app because such a case is im-
possible: We have a proof p : firstOrd a which states that input type a does
not contain any exponentials. However, the exponential return type of n, say
b ⇒ c , must occur in a by neutrality of n : Ne a (b ⇒ c)—which contradicts
the proof p. Hence, such a case is not possible. This reasoning is implemented

33

by applying the function ⊥-elim with a proof of impossibility produced using
an auxiliary function expNeutrality : firstOrd a → Ne a b → firstOrd b.
Similarly, we escape the quotation of the normal form curry since Agda au-
tomatically inferred that such a case is impossible. This is because a proof q
which states that the output b is not an exponential, is contradicted by the
definition of curry which states that it must be—hence q must be impossible.
Although we have shown the syntactic elimination of exponentials using

normal forms, we are yet to show that there exists an equivalent normal form
for every term. For this, we must implement normalization and prove its
correctness.

6 Normalization for BCC
To implement evaluation and reification, we must first define an appropriate
interpretation for types and terms. A naive Set-based interpretation (such as
⟦_⟧n below) which maps BCC types to their Agda counterparts fails quickly.

⟦ 1 ⟧n = ⊤
⟦ 0 ⟧n = ⊥
⟦ base ⟧n = ??

⟦ t1 ∗ t2 ⟧n = ⟦ t1 ⟧n × ⟦ t2 ⟧n
⟦ t1 + t2 ⟧n = ⟦ t1 ⟧n ⊎ ⟦ t2 ⟧n
⟦ t1⇒ t2 ⟧n = ⟦ t1 ⟧n→ ⟦ t2 ⟧n

What should be the correct interpretation of the type base? The naive inter-
pretation also makes it impossible to implement reflection for the empty and
sum types, since their inhabitants cannot be faithfully represented in such an
interpretation (see Section 6.3). To address this problem, we must first define
an appropriate semantic model.

6.1 Interpretation in Presheaves

To implement NbE, our choice of semantic model for interpretation of BCC
types must allow us to implement both evaluation and reification. NbE for
STLC can be implemented by interpreting it in presheaves over the category
of weakenings [4] [2]. The semantic equivalence of BCC combinators and
STLC suggests that it should be possible to interpret BCC terms in presheaves

1. Exponential Elimination for Categorical Combinators

34

as well. The difference, however, is that we will interpret BCC in presheaves
over the category of selections (instead of weakenings). Such a presheaf, for
our purposes, is simply the following record definition:

record Pre : Set1 where

field

In : Ty→ Set

lift : {i j : Ty}→ Sel j i→ (In i→ In j)

Intuitively, an occurrence In i can be understood as a Set interpretation
indexed by an input type i . The function lift can be understood as a utility
function which converts a semantic value for the input i to a value for a
“larger” input j, for a given selection of i from j.

For the category theory-aware reader, notice that Prematches the expected
definition of a presheaf as a functor which maps objects (using In) and mor-
phisms (using lift) in the opposite category of the category of selections to
the Set-category. We skip the functor laws of the presheaf in the Pre record
to avoid cluttering the normalization procedure, and instead prove them
separately as needed for the correctness proofs later.
With the definition of a presheaf, we can now implement the desired in-

terpretation of types as ⟦_⟧ : Ty→ Pre. Intuitively, a presheaf model allows
us to interpret a BCC type as an Agda type for a given input type—or equiv-
alently for a given typing context. To implement the function ⟦_⟧, we will
need various presheaf constructions (instances of Pre)—defining these is the
goal of this section. Note that all names ending with ’ denote a presheaf.

1’ : Pre
1’ .In _ = ⊤
1’ .lift _ _ = tt

0’ : Pre
0’ .In _ = ⊥
0’ .lift _ ()

Fig. 7. Unit and Empty presheaves

The unit presheaf maps all input types to the type ⊤ (unit type in Agda)
and empty presheaf maps it to ⊥ (empty type in Agda) (see Figure 7). The
implementation of lift is trivial in both cases since the only inhabitant of ⊤ is
tt, and ⊥ has no inhabitants.

35

The product of two presheaves A and B is defined component-wise as
follows.

∗’ : Pre→ Pre→ Pre

(A ∗’ B) .In i = A .In i × B .In i

(A ∗’ B) .lift s (x , y) = (A .lift s x , B .lift s y)

The function lift is implemented component-wise since s has the type Sel j i ,
x has the type A .In i , y has the type B .In i , and the result must be a value
of type A .In j × B .In j. Similarly, the sum of two presheaves is also defined
component-wise as follows.

+’ : Pre→ Pre→ Pre

(A +’ B) .In i = A .In i ⊎ B .In i

(A +’ B) .lift s (inj1 x) = inj1 (A .lift s x)

(A +’ B) .lift s (inj2 x) = inj2 (B .lift s x)

It is tempting to implement an exponential presheaf _⇒’_ component wise
(like _x’_), but this fails at the implementation of lift: given Sel j i , we can not
lift a function (A .In i → B .In i) to (A .In j → B .In j) directly. To solve this,
we must implement a slightly more general version which allows for lifting
as follows.

⇒’ : Pre→ Pre→ Pre

(A⇒’ B) .In i = {i1 : Ty}→ Sel i1 i→ A .In i1→ B .In i1
(A⇒’ B) .lift s f s’ = f (s ◦ s’)

Recall that the operator ◦ implements composition of selections. The inter-
pretation of the exponential presheaf is defined for a given input type i , as a
function (space) for all selections of the type i1 from i [19]—which gives us
the required lifting by composition of the selections.
BCC terms also define presheaves when indexed by the output type.

BCC’ : Ty→ Pre

BCC’ o .In i = BCC i o

BCC’ o .lift s t = liftBCC s t

1. Exponential Elimination for Categorical Combinators

36

To implement liftBCC, recollect that selections can be embedded into BCC
terms using the embSel function (from Section 4). Hence, lifting BCC terms
can be implemented easily using composition, as follows.

liftBCC : Sel j i→ BCC i a→ BCC j a

liftBCC s t = t • embSel s

Similarly, normal forms and neutral forms also define presheaves when in-
dexed by the output type (see Figure 8). The implementation of lift for normal
forms (litfNf) can be defined by straight-forward induction on the normal
form—and similarly for liftNe.

Nf’ : Ty→ Pre
Nf’ o .In i = Nf i o
Nf’ o .lift s n = liftNf s n

Ne’ : Ty→ Pre
Ne’ o .In i = Ne i o
Ne’ o .lift s n = liftNe s n

Fig. 8. Normal and Neutral form presheaves

For notational convenience, let us define a type alias Sem for values in the
interpretation:

Sem : Ty→ Pre→ Set

Sem x P = P .In x

For example, a value of type Sem a ⟦ b ⟧ denotes a “semantic value” in the
interpretation ⟦ b ⟧ indexed by the input type a. When the input is irrelevant,
we simply skip mentioning it and say “value in the interpretation”.
A BCC term is interpreted as a natural transformation between presheaves,

which is defined as follows.

↠ : Pre→ Pre→ Set

A ↠ B = {i : Ty}→ Sem i A→ Sem i B

Intuitively, this function maps semantic values in A to semantic values in B

(for the same input type i).

6.2 NbE for CCC Fragment

NbE for the fragment of BCCwhich excludes the empty and sum types, namely
the CCC fragment, is rather simple—let us implement this first in this section.

37

The presheaves defined in the previous section allow us to address the issue
from earlier for interpreting the type base. The interpretation for types in the
CCC fragment is defined as follows.

⟦_⟧ : Ty→ Pre

⟦ 1 ⟧ = 1’
⟦ base ⟧ = Nf’ base

⟦ a ∗ b ⟧ = ⟦ a ⟧ ∗’ ⟦ b ⟧
⟦ a⇒ b ⟧ = ⟦ a ⟧⇒’ ⟦ b ⟧

The unit, product and exponential types are simply interpreted as their
presheaf counterparts. The base type, on the other hand, is interpreted as
the presheaf of normal forms indexed by base. This is because the definition
of BCC has no combinators specifically for base types, which means that a
term BCC i base must depend on its input for producing a base value. Hence,
we interpret it as a family of normal forms which return base for any input
i—which is precisely the definition of the Nf’ base presheaf. Note that this
interpretation of base types is fairly standard [18].
Having defined the interpretation of types, we can now define the interpre-

tation of BCC terms, i.e., evaluation, as follows.

eval : BCC a b→ (⟦ a ⟧↠ ⟦ b ⟧)
eval id x = x

eval (f • g) x = eval f (eval g x)

eval unit x = tt

eval exl (x1 , _) = x1
eval exr (_ , x2) = x2
eval (pair t1 t2) x = eval t1 x , eval t2 x

eval apply (f , x) = f iden x

eval {a} (curry t) x = ń s y→ eval t (lift ⟦ a ⟧ s x , y)

The function eval interprets the term id as the the identity function, term
composition • as function composition, exl as the first projection, and so
on for the other simple cases. Let us take a closer look at the exponential
fragment.

1. Exponential Elimination for Categorical Combinators

38

To interpret apply for a given function f (of type Sem i ⟦a1⇒ a2⟧) and
its argument x (of type Sem i ⟦ a1 ⟧), we must return a value for its applica-
tion (of type Sem i ⟦ a2 ⟧). Recollect from the definition of the exponential
presheaf that an exponential is interpreted as a generalized function for a
given selection. In this case, we do not need this generality since the function
and its argument are both semantic values for the same input type i . Hence,
we simply use the identity selection iden : Sel i i , to obtain a suitable function
which accepts the argument y .
The interpretation of a term curry t (of type BCC a (b1⇒ b2)) for a given

x (of type Sem i ⟦ a ⟧) must be a function (of type Sem i1 ⟦ b1⇒ b2 ⟧) for a
given selection s (of type Sel i1 i). We achieve this by recursively evaluating
t (of type BCC (a ∗ b1) b2), with a pair of arguments (of type Sem i1 ⟦ a ⟧
and Sem i1 ⟦ b1 ⟧). For the first component, we could use x , but since it is a
semantic value for the input i instead of i1, we must first lift it to i1 using the
selection s—which explains the occurrence of lift.
To implement the reification function reify : (⟦ a ⟧ ↠ ⟦ b ⟧) → Nf a b,

we need two natural transformations: reflect : Ne’ a ↠ ⟦ a ⟧ and reifyVal :
⟦ b ⟧ ↠ Nf’ b. The former converts a neutral to a semantic value, and the
latter extracts a normal form from the semantic value. Using these functions,
we can implement reification as follows.

reify : (⟦ a ⟧↠ ⟦ b ⟧)→ Nf a b

reify {a} f = let y = reflect {a} (sel iden)

in reifyVal (f y)

The main idea here is the use of reflection to produce a value of type Sem a a.
This value enables us to apply the function f to produce a result of type Sem
a ⟦ b ⟧. The resulting value is then used to apply reifyVal and return a normal
form of type Nf a b.
The natural transformations used in reification are implemented as follows.

reflect : {a : Ty}→ Ne’ a↠ ⟦ a ⟧
reflect {1} x = tt

reflect {base} x = ne-b x

reflect {a1 ∗ a2} x = reflect {a1} (fst x) , reflect {a2} (snd x)

39

reflect {a1⇒ a2} x = ń s y→
reflect {a2} (app (liftNe s x) (reifyVal y))

reifyVal : {b : Ty}→ ⟦ b ⟧↠ Nf’ b

reifyVal {1} x = unit

reifyVal {base} x = x

reifyVal {b1 ∗ b2} x = pair (reifyVal (proj1 x)) (reifyVal (proj2 x))

reifyVal {b1⇒ b2} x =

curry (reifyVal (x (drop iden) (reflect {b1} (snd (sel iden)))))

Reflection is implemented by performing a type-directed translation of
neutral forms to semantic values. For example, in the product case, a pair
is constructed by recursively reflecting the components of the neutral. For
the exponential case, the reflection of a neutral x must return a function
which accepts a selection s , an argument y, and returns a semantic value
for the application of the neutral x with the argument y. In other words,
the body of the function needs to be constructed somehow by applying x (a
neutral function) with argument y (a semantic value). The neutral application
constructor app has two requirements: the function and the argument must
accept the same input, and the argument must be in normal form. To satisfy
the first requirement, we lift the neutral x using the selection s , and for the
latter requirement we reify the argument value y. Finally, we reflect the
neutral application to produce the desired semantic value.
The implementation of the function reifyVal is similar to reflection, but

performs the dual action: producing a normal form from a semantic value. Like
reification, we implement this by type-directed translation of semantic values
to normal forms. Notice that the case of base type is trivial for both functions.
This is because we defined the interpretation of base types as normal forms
(Nf’ base), and a semantic value is already in normal form. Hence, reifyVal
simply returns the semantic value, and reflection applies ne-b on the neutral
to construct a normal form.

6.3 NbE for Sums and Empty Type

Let us suppose that we interpret 0 as ⟦ 0 ⟧ = 0’. Now consider extending the
implementation of reflection for the following case:

1. Exponential Elimination for Categorical Combinators

40

reflect {0} y = ??

How should we handle this case? The types tell us that we need to construct
a semantic value of the type ⊥ (recollect the definition of 0’). Since ⊥ is an
empty type, this is an impossible task! A similar problem arises for sums
when we interpret them as ⟦ a + b ⟧ = ⟦ a ⟧ +’ ⟦ b ⟧. Reflection requires us to
make a choice over a returning a semantic value of ⟦ a1 ⟧ or ⟦ a2 ⟧. Which is
the right choice? Unfortunately, we cannot make a decision with the given
information since it could be either of the cases.
We cannot construct the impossible or decide over the component of a sum

to reflect, hence we will simply build up a tree of decisions that we do not
wish to make. A decision tree is defined inductively by the following data
type:

data Tree (i : Ty) (P : Pre) : Set where

leaf : Sem i P→ Tree i P

dead : Ne i 0→ Tree i P

branch : Ne i (a + b)→ Tree (i ∗ a) P→ Tree (i ∗ b) P→ Tree i P

A leaf in a decision tree can be leaf, in which case it contains a semantic value
in P . Alternatively, a leaf can also be dead, in which case it contains a neutral
which returns 0. A branch of the tree is constructed by branch, and represents
the choice over a neutral form which returns a coproduct.
Intuitively, a tree represents a suspended computation for a value in the

interpretation P . For example, Tree i 0’ represents a suspended computation
for a value in Sem i 0’—which is ⊥. Since values of this type are impossible,
all the leaves of such a tree must be dead. Similarly, a tree Tree i ⟦ a + b ⟧
represents a suspended computation for a value of type Sem i ⟦ a + b ⟧—which
is a sum of Sem i ⟦ a ⟧ and Sem i ⟦ b ⟧.
Trees define a monad Tree’ on presheaves as follows.

Tree’ : Pre→ Pre

(Tree’ A) .In i = Tree i A

(Tree’ a) .lift = liftTree

41

The function liftTree is defined by induction on the tree. The standard monadic
operations return, map and join are defined by the following natural transfor-
mations:

return : P ↠ Tree’ P

join : Tree’ (Tree’ P)↠ Tree’ P

map : (P ↠ Q)→ Tree’ P↠ Tree’ Q

The natural transformation return is defined as leaf, while join and map can
be defined by straight-forward induction on the tree. The monadic struc-
ture of trees are precisely the reason they allow us to represent suspended
computation.
With the tree monad, we can now complete the interpretation of types 0

and + as follows.

⟦ 0 ⟧ = Tree’ 0’
⟦ a + b ⟧ = Tree’ (⟦ a ⟧ +’ ⟦ b ⟧)

By interpreting the empty and sum types in the Tree’ monad, we are able to
handle the problematic cases of reflection by returning a value in the monad,
as follows.

reflect {0} x = dead x

reflect {a + b} x = branch x

(leaf (inj1 (reflect {a} (snd (sel iden)))))

(leaf (inj2 (reflect {b} (snd (sel iden)))))

In addition to general monadic operations, the monad Tree’ also supports
the following special “run” operations:

runTree : Tree’ ⟦ a ⟧↠ ⟦ a ⟧
runTreeNf : Tree’ (Nf’ a)↠ Nf’ a

These natural transformations allow us to run a monadic value to produce
a regular semantic value, and are required to implement eval and reifyVal.
The implementation of these natural transformations is mostly mechanical:
runTreeNf can be defined by induction on the tree, and runTree can be defined
by induction on the type a using an “applicative functor” map Tree c ⟦ a⇒ b

⟧→ Tree c ⟦ a ⟧→ Tree c ⟦ b ⟧ for the exponential case.

1. Exponential Elimination for Categorical Combinators

42

The remaining cases of evaluation are implemented as follows.

eval inl x = return (inj1 x)

eval inr x = return (inj2 x)

eval {0} {b} init x = runTree {b} (map cast x)

eval {a + b} {c} (match f g) x = runTree {c} (map match’ x)

where

match’ : (⟦ a ⟧ +’ ⟦ b ⟧)↠ ⟦ c ⟧
match’ (inj1 y) = eval f y

match’ (inj2 y) = eval g y

For the case of inl, we have a semantic value x in the interpretation ⟦ a ⟧, and
we need a monadic value Tree’ (⟦ a ⟧ +’ ⟦ b ⟧). To achieve this, we simply
return the value in the monad by applying the injection inj1. The case of inr
is very similar.
For the case of init, we have a value x in the interpretation Tree’ 0’, and we

need a value in ⟦ b ⟧. Since x is a tree, we can map over it using a function
cast : 0’ ↠ ⟦ b ⟧ to get a value in Tree’ ⟦ b ⟧. The resulting tree can then be
run using runTree to return the desired result in ⟦ b ⟧. The function cast has a
trivial implementation with an empty body since a value in the interpretation
by 0’ has type ⊥. The implementation of match is also similar, and we use a
natural transformation match’ instead of cast to map over x .
The implementation of reification for the remaining fragment resembles

evaluation:

reifyVal {0} x = runTreeNf (map cast x)

reifyVal {a + b} x = runTreeNf (map matchNf x)

where

matchNf : (⟦ a ⟧ +’ ⟦ b ⟧)↠ Nf’ (a + b)

matchNf (inj1 y) = left (reifyVal y)

matchNf (inj2 y) = right (reifyVal y)

We use the natural transformation runTreeNf instead of runTree andmatchNf
instead of match.

43

7 Correctness of Normal Forms
A normal form is correct if it is convertible to the original term when quoted.
The construction of the proof for this theorem is strikingly similar to the
implementation of normalization. Although the details of the proof are equally
interesting, we will only discuss the required definitions and sketch the proof
of the main theorems to keep this section concise. We encourage the curious
reader to see the implementation of the full proof for further details (see A.1
for link). We will prove the correctness of normalization by showing that
evaluation and reification are correct. To enable the definition of correctness
for these functions, we must first relate terms and semantic values using
logical relations.

7.1 Kripke Logical Relations

We will prove the correctness theorem using Kripke logical relations à la
Coquand [11]. In this section, we define these logical relations.

Definition 7.1 (Logical relation R). A relation R between terms and semantic
values, indexed by a type b, is defined by induction on b:

R : {b : Ty}→ BCC a b→ Sem a ⟦ b ⟧→ Set

R {1} t v = ⊤
R {base} t v = t ≈ q v

R {b1 ∗ b2} t v = R (exl • t) (proj1 v) × R (exr • t) (proj2 v)
R {b1⇒ b2} t v = (s : Sel c _)

→ R t’ x→ R (apply • pair (liftBCC s t) t’) (v s x)

R {0} t v = R0 t v

R {b + c} t v = R+ t v

Intuitively, the relation R establishes a notion of equivalence between
terms and semantic values, but we will say related instead of equivalent to
be pedantic. For example, for the case of products, it states that composing
the combinator exl with a term is related to applying the projection proj1
on a value—and similarly for exr and proj2. In the unit case, it states that
terms and values are trivially related. For base types, it states that terms must
be convertible to the quotation of values, since values are normal forms by

1. Exponential Elimination for Categorical Combinators

44

definition of ⟦_⟧. For the case of exponentials, the definition states that t ,
which returns an exponential, is related to a functional valuev , if for all related
“arguments” t ′ and x , the resulting values of the application are related. As
usual, since v is a function generalized over selections, the relation also states
that it must hold for all appropriate selections.
For the case of empty and sum types, we need a relation between terms

and trees—which is defined by Rt as follows.

Definition 7.2 (Logical relation Rt). A relation Rt between terms and trees,
indexed by another relation Rl between terms and values in the leaves, is
defined by induction on the tree:

Rt : (Rl : BCC a1 b→ Sem a1 B’→ Set)

→ BCC a b→ Tree a B’→ Set

Rt Rl t (leaf a) = Rl t a

Rt Rl t (dead x) = t ≈ init • qNe x
Rt Rl t (branch x v1 v2) = ∃2 ń t1 t2
→ (Rt Rl t1 v1) × (Rt Rl t2 v2) × (t ≈ Case (qNe x) t1 t2)

Intuitively, the relation Rt states that a term is related to a tree if the term
is related to the values in the leaves. The key idea in the definition of Rt for
the leaf case is to parameterize the definition by a relation Rl between terms
and leaf values. Note that the relation R cannot be used here (instead of a
parameterized relation Rl) since its type is more specific than the relation
needed for leaves. For the case of dead leaves with a neutral returning 0, the
definition states that the t must be convertible to elimination of 0 using init.
In the branch case, it states the inductive step: t is related to a decision branch
in the tree, if t is convertible to a decision over the neutral x (implemented by
Case) for some t1 and t2 related to subtrees v1 and v2.
Using the relation Rt, we can now define the remaining relations for the

empty and sum types as follows.

Definition 7.3 (Logical relations R0 and R+). Logical relations R0 and R+ are
defined as special cases of Rt using the below defined relations Rl0 and Rl+
respectively:

45

Rl0 : BCC a 0→ Sem a 0’→ Set

Rl0 _ ()

R0 : BCC a 0→ Tree a 0’→ Set

R0 t v = Rt Rl0 t v

Rl+ : BCC a (b + c)→ Sem a (⟦ b ⟧ +’ ⟦ c ⟧)→ Set

Rl+ t (inj1 x) = ∃ ń t’→ R t’ x × (inl • t’ ≈ t)

Rl+ t (inj2 y) = ∃ ń t’→ R t’ y × (inr • t’ ≈ t)

R+ : BCC a (b + c)→ Tree a (⟦ b ⟧ +’ ⟦ c ⟧)→ Set

R+ t c = Rt Rl+ t c

The relation Rl0 is simply a type cast since a value of type Sem a 0’ does not
exist. On the other hand, the relation Rl+, states that t is related to an injection
inj1 x, if t is convertible to inl • t ′ for some t ′ related to x—and similarly for
inj2 and inr.

7.2 Proof of Correctness

We prove the main correctness theorem (Theorem 7.3) using two intermediate
theorems, namely the fundamental theorem of logical relations (Theorem 7.1)
and the correctness of reification (Theorem 7.2), and various lemmata. In
all the cases, we either perform induction on the return type of a term or
on a tree. The main idea here is that the appropriate induction triggers the
definition of the relations, hence enabling Agda to refine the proof goal for a
specific case.

Lemma 7.1 (Invariance under conversion). If a term t is convertible to t ′ and
t ′ is related to a semantic value v , then t is related to v .

invariance : t ≈ t’→ R t’ v→ R t v

Proof. By induction on the return type of t and t ′. The proof is fairly
straight-forward equational reasoning using the conversion rules (≈). The
empty and sum types can be handled by induction on the tree. □

1. Exponential Elimination for Categorical Combinators

46

Lemma 7.2 (Lifting preserves relations). If a term t : BCC a b is related to a
value v : Sem a ⟦ b ⟧, then lifting the term is related to lifting the value, for
any applicable selection s .

liftPresR : R t v→ R (liftBCC s t) (lift ⟦ b ⟧ s v)

Proof. By induction on the return type of t . As in the previous lemma, the
empty and sum types can be handled by induction on the tree. □

Definition 7.4 (Fundamental theorem). If a term t ′ is related to a semantic
value v , then the composition t • t ′ is related to the evaluation of t with the
input v , for all terms t . That is, the fundamental theorem holds if Fund t

(defined below) holds for all t .

Fund : (t : BCC a b)→ Set

Fund {a} {b} t = {c : Ty} {t’ : BCC c a} {v : Sem c ⟦ a ⟧}
→ R t’ v→ R (t • t’) (eval t v)

Theorem 7.1 (Correctness of evaluation). The fundamental theorem holds,
or equivalently, evaluation is correct.

correctEval : (t : BCC a b)→ Fund t

Proof. By induction on the term t . Most cases are proved by the induction
hypothesis and some equational reasoning . To enable equational reasoning,
we must use the invariance lemma (Lemma 7.1). For the case of curry, the
key step is to make use of the β rule for functions (from Section 2).
For the sum and empty types, recall that evaluation uses the natural transfor-

mation runTree : Tree’ ⟦ a ⟧↠ ⟦ a ⟧. Hence, to prove correctness of evaluation
for these cases, we need a lemma correctRunTree : Rt R t v→ R t v—which
can be proved by induction on the return type of t . The proof of this lemma
also requires us to prove correctness of all the natural transformations used
by runTree, which can be achieved in similar fashion to correctRunTree. Note
that we must use the lifting preservation lemma (Lemma 7.2), wherever lifting
is involved, for example, in the curry case. □

Lemma 7.3 (Correctness of reflect and reifyVal). i) The quotation of a neutral
form n is related to its reflection. ii) If a term t is related to a value v , then t

47

must be convertible to the normal form which results from the quotation of
reification of v .

correctReflect : {n : Ne a b}→ R (qNe n) (reflect n)

correctReifyVal : R t v→ t ≈ q (reifyVal v)

Proof. Implemented mutually by induction on the return type of the neu-
tral / term and using the invariance lemma (Lemma 7.1) to do equational
reasoning. Appropriate eta conversion rules are needed for products, expo-
nentials and sums. □

Theorem 7.2 (Correctness of reification). The fundamental theorem proves
that t is convertible to quotation of the value obtained by evaluating and
reifying t.

correctReify : (Fund t)→ t ≈ q (reify (eval t))

Proof. By induction on the return type of term t . This theorem follows
from Lemma 7.3 and the other lemmata discussed above. □

Theorem 7.3 (Correctness of normal forms). A term is convertible to the
quotation of its normal form.

Proof. Since normalization is defined as the composition of reification and
evaluation, the correctness of normal forms follows from the correctness of
reification and evaluation:

correctNf : (t : BCC a b)→ t ≈ q (norm t)

correctNf t = correctReify (correctEval t)

□

7.3 Exponential Elimination Theorem

Using the syntactic elimination of exponentials illustrated earlier using normal
forms (Section 5.2), and the normalization procedure which converts BCC
terms to normal forms (Section 6), we finally have the following exponential
elimination theorem for BCC terms.

1. Exponential Elimination for Categorical Combinators

48

Theorem 7.4 (Exponential elimination). Given that a and b are first-order
types, every term f : BCC a b can be converted to an equivalent term
f ′ : DBC a b which does not use any exponentials.

Proof. From the normalization function norm implemented in Section 6,
and the correctness of normal forms by Theorem 7.3, we know that there
exists a normal form n : Nf a b resulting from the application norm f such
that f ≈ q n. Since a and b are first-order types, we also have a DBC term
qDn : DBCa b, which does not use exponentials by construction. Additionally,
since the function qD is a restriction map of the function q, qD n must be
equivalent to q n, and hence to f . This can be shown by proving that the
embedding of the DBC term qD n into BCC is convertible to q n, and hence
to f . Thus we have an equivalent DBC term f ′ = qD n. □

8 Simplicity, an application
Simplicity is a typed combinator language for programming smart contracts
in blockchain applications [25]. It was designed as an alternative to Bitcoin
Script, especially to enable static analysis and estimation of execution costs.
The original design of Simplicity only allows unit, product and sum types.
It does not allow exponentials, the empty type or base types. The simple
nature of these types enables calculation of upper bounds on the time and
memory requirements of executing a Simplicity program in an appropriate
execution model. For example, the bit-size of a value is computed using its
type as follows.

size 1 = 0

size (t1 ∗ t2) = size t2 ‘+ size t2
size (t1 + t2) = 1 ‘+ max (size t1) (size t2)

Note that the operator ‘+ is simply addition for natural numbers renamed
to avoid name clash with the constructor +. The additional bit is need in the
sum case to represent the appropriate injection.
Despite Simplicity’s ability to express any finite computation between

the allowed types, its low-level nature makes it cumbersome to actually
write programs since it lacks common programming abstractions such as

49

functions and loops. Even as a compilation target, Simplicity is too low-
level. For example, compiling functional programs to Simplicity burdens the
compiler with the task of defunctionalization since Simplicity does not have
a corresponding notion of functions. To solve this issue, Valliappan et al. [28]
note that Simplicity can be modeled in (distributive) bicartesian categories,
and propose extending Simplicity with exponentials, and hence to bicartesian
closed categories without the empty type.
Although extending Simplicity with exponentials makes it more expressive,

it complicates matters for static analysis. For example, the extension of the
size function is already a matter of concern:

size (t1⇒ t2) = size t2 ^ size t1

Valliappan et al. [28] avoid this problem by extending the bit machine with the
ability to implement closures, but the problem of computing an upper bound
on execution time and memory consumption remains open. Exponential elimi-
nation provides a solution for this: Simplicity programs with exponentials can
be compiled by eliminating exponentials to programs without exponentials,
hence providing a more expressive higher-order target language—while also
retaining the original properties of static analysis.
Since Simplicity resembles BCC and DBC combinators, they can be trans-

lated to BCC, and from DBC in a straight-forward manner [28]:

SimplToBCC : Simpl a b→ BCC a b

DBCToSimpl : DBC a b→ Simpl a b

Exponential elimination bridges the gap between BCC and DBC terms:

elimExp : firstOrd a→ firstOrd b→ BCC a b→ DBC a b

elimExp p q t = qD p q (norm t)

Thus, we can implement an exponential elimination algorithm for Simplicity
programs:

elimExpS : firstOrd a→ firstOrd b→ Simpl a b→ Simpl a b

elimExpS p q t = DBCToSimpl (elimExp p q (SimplToBCC t))

The difference between the input and output programs is of course that the
input may have exponentials, but the output will not. The requirements that

1. Exponential Elimination for Categorical Combinators

50

the input and output of the entire program be first-order types is a harmless
one since such programs must have an observable input and output anyway.
Note that we have overlooked the empty type and the combinator init in

the translation of DBCToSimpl here. However, this can be mitigated easily by
adding an additional predicate nonEmpty : Ty→ Set to discharge this case
—as in Section 5.2, thanks to the weak subformula property!

Although our work shows that it is possible to eliminate exponentials from
Simplicity programs, the implementation provided here might not be the
most practical one. Normal forms are in η-expanded form, which means that
the generated programs may be much larger than necessary, hence leading
to code explosion. Moreover, the translation to BCC and from DBC is also
an unnecessary overhead. It may be possible to tame code explosion by
normalizing without η expansion [18]. The latter problem, on the other hand,
can be solved easily by implementing exponential elimination directly on
Simplicity programs. We leave these improvements as suggestions for future
work.

9 Related Work
Selections resemble weakenings (also called order preserving embeddings) in
lambda calculus [4]. Weakenings are defined for typing contexts such that a
weakening Γ ⊑ ∆ selects a “subcontext” ∆ from the context Γ [20]. Selections,
on the other hand, are simply a subset of BCC terms that select components
of the input. Conceptually, selections are the BCC-equivalent of weakenings
and they have properties (discussed in Section 4) similar to weakenings. Most
importantly, selections unify the notion of weakenings and variables—since
they are used in neutrals (as “variables”) and for lifting (as “weakenings”).
Altenkirch et al. [3] implement NbE to solve the decision problem for STLC

with all simple types except the empty type (ń⇒1∗+). Balat et al. [7] solve
the extensional normalization problem using NbE for the STLC including
the empty type (ń⇒1∗+0). Abel and Sattler [2] provide an account of NbE
for ń⇒1∗+0 using decision trees—the techniques of which they go on to use
for more advanced calculi. They in turn attribute the idea of decision trees
for normalizing sum types to Altenkirch and Uustalu [5]. Our interpretation
model is based on that of Abel and Sattler [2] and the generated normal forms

51

are not unique—caused by commuting case conversions and the overlap
between selections and projections. The primary difference between earlier
efforts and our work is that we implement NbE for a combinator language.
Altenkirch and Uustalu [5] also prove correctness of normal forms using

logical relations, but only for closed lambda terms. Our logical relations have
a much more general applicability since they are indexed by the input (or
equivalently by the typing context). Moreover, we prove correctness for inter-
preting sums using decision trees by the means of logical relations generalized
over arbitrary presheaf interpretations. Since the decision tree monad Tree’
is a strong monad [22], it should be possible to further extend this proof
technique to normalization of calculi with computational effects [15] [2].

10 Final Remarks
We have shown that BCC terms of first-order types can be normalized to
terms in a sub-language without exponentials based on distributive bicarte-
sian categories. To this extent, we have implemented normalization using
normalization by evaluation, and shown that normal forms are convertible
to the original term in the equational theory of BCCs. Moreover, we have
also shown the applicability of our technique to erase exponentials from
a combinator language called Simplicity. Our work enables a closure-free
implementation of BCC combinators and answers previously open questions
about the elimination of exponentials.
As noted earlier, the normal forms of BCC combinators presented here

are not normal forms of the equational theory specified by the conversion
relation ≈. This is because the syntax of normal forms does not enforce nor-
mal forms of equivalent terms to be unique. For example, the normal forms
ne-b (sel (drop endb)) and ne-b (fst (sel (keep endb))) are syntactically differ-
ent, but inter-convertible when quoted. Hence, the normalization procedure
does not derive the conversion relation ≈, and cannot be used to decide it.
Instead, our notion of normal forms is characterized by the weak subformula
property, and aimed at the eliminating intermediate values by restricting the
unruly composition which allows introduction and elimination of arbitrary
values.

1. Exponential Elimination for Categorical Combinators

52

In Retrospect
The distributivity requirement in DBC is perhaps the most important take-
away from this work: it says that the target abstract machine must at least
support distributivity if we do not want to implement closures.
A drawback of this work, however, is that the proof of correctness for the

normalization procedure takes the full liberty of using all the equations in
the calculus. This makes it hard to see exactly what equations are required
to eliminate exponentials or how the size of the normal forms can be tamed.
For example, are the uniqueness rules really required to eliminate exponen-
tials? Answering this requires a more careful analysis of the NbE model and
potentially further refinement.
Perhaps it would have been better to use a directed rewrite relation _−→*_

in place of the symmetric conversion relation _≈_. This would have made it
easier to see exactly how BCC terms are reduced in a more conventional sense.
However, designing a satisfactory rewrite relation for categorical combinators
(even in the absence of sums) has proven to be a difficult task [13, 16] with
no definitive result to date—to the best of our knowledge.

References
[1] Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy. 1991. Explicit substitutions. Journal

of functional programming 1, 4 (1991), 375–416.
[2] Andreas Abel and Christian Sattler. 2019. Normalization by Evaluation for Call-by-Push-

Value and Polarized Lambda-Calculus. arXiv preprint arXiv:1902.06097 (2019).
[3] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Phil Scott. 2001. Normalization

by evaluation for typed lambda calculus with coproducts. In Proceedings 16th Annual
IEEE Symposium on Logic in Computer Science. IEEE, 303–310.

[4] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995. Categorical recon-
struction of a reduction free normalization proof. In International Conference on Category
Theory and Computer Science. Springer, 182–199.

[5] Thorsten Altenkirch and Tarmo Uustalu. 2004. Normalization by evaluation for λ→ 2. In
International Symposium on Functional and Logic Programming. Springer, 260–275.

[6] Steve Awodey. 2010. Category theory. Oxford University Press.
[7] Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. 2004. Extensional normalisation

and type-directed partial evaluation for typed lambda calculus with sums. In POPL, Vol. 4.
49.

53

[8] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. 1998. Normalization by
evaluation. In Prospects for Hardware Foundations. Springer, 117–137.

[9] Ulrich Berger and Helmut Schwichtenberg. 1991. An inverse of the evaluation functional
for typed lambda-calculus. In [1991] Proceedings Sixth Annual IEEE Symposium on Logic
in Computer Science. IEEE, 203–211.

[10] Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A brief overview of Agda–a functional
language with dependent types. In International Conference on Theorem Proving in Higher
Order Logics. Springer, 73–78.

[11] Catarina Coquand. 1993. From semantics to rules: A machine assisted analysis. In
International Workshop on Computer Science Logic. Springer, 91–105.

[12] Guy Cousineau, P-L Curien, and Michel Mauny. 1987. The categorical abstract machine.
Science of computer programming 8, 2 (1987), 173–202.

[13] P-L Curien. 1986. Categorical combinators. Information and Control 69, 1-3 (1986),
188–254.

[14] Conal Elliott. 2017. Compiling to categories. Proceedings of the ACM on Programming
Languages 1, ICFP (2017), 27.

[15] Andrzej Filinski. 2001. Normalization by evaluation for the computational lambda-
calculus. In International Conference on Typed Lambda Calculi and Applications. Springer,
151–165.

[16] Thérese Hardin. 1989. Confluence results for the pure strong categorical logic ccl. λ-calculi
as subsystems of ccl. Theoretical computer science 65, 3 (1989), 291–342.

[17] Yves Lafont. 1988. The linear abstract machine. Theoretical computer science 59, 1-2 (1988),
157–180.

[18] Sam Lindley. 2005. Normalisation by evaluation in the compilation of typed functional
programming languages. (2005).

[19] Saunders MacLane and Ieke Moerdijk. 1992. Sheaves in geometry and logic: a first
introduction to topos theory. (1992).

[20] Conor McBride. 2018. Everybody’s got to be somewhere. Electronic Proceedings in
Theoretical Computer Science 275 (2018), 53–69.

[21] John C Mitchell and Eugenio Moggi. 1991. Kripke-style models for typed lambda calculus.
Annals of Pure and Applied Logic 51, 1-2 (1991), 99–124.

[22] Eugenio Moggi. 1991. Notions of computation and monads. Information and computation
93, 1 (1991), 55–92.

[23] Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip Wadler. 2016. Everything old
is new again: quoted domain-specific languages. In Proceedings of the 2016 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation. ACM, 25–36.

[24] Ulf Norell. 2007. Towards a practical programming language based on dependent type
theory. Vol. 32. Citeseer.

[25] Russell O’Connor. 2017. Simplicity: A new language for blockchains. In Proceedings of
the 2017 Workshop on Programming Languages and Analysis for Security. ACM, 107–120.

1. Exponential Elimination for Categorical Combinators

54

[26] John C Reynolds. 1998. Definitional interpreters for higher-order programming languages.
Higher-order and symbolic computation 11, 4 (1998), 363–397.

[27] Anne Sjerp Troelstra and Helmut Schwichtenberg. 2000. Basic proof theory. Number 43.
Cambridge University Press.

[28] Nachiappan Valliappan, Solène Mirliaz, Elisabet Lobo Vesga, and Alejandro Russo. 2018.
Towards Adding Variety to Simplicity. In International Symposium on Leveraging Applica-
tions of Formal Methods. Springer, 414–431.

A Appendix
A.1 Agda Implementation

The complete Agda implementation of the normalization procedure and mech-
anization of the proofs can be found at the URL https://github.com/nachivpn/
expelim

A.2 Implementation of distributivity in BCC

Distr : BCC (a ∗ (b + c)) ((a ∗ b) + (a ∗ c))
Distr = apply • (pair
(match

(curry (inl • pair exr exl))
(curry (inr • pair exr exl)) • exr)

exl)

55

2
SimpleNoninterference byNormalization

Carlos Tomé Cortiñas, Nachiappan Valliappan
PLAS’19, November 15, 2019, London, United Kingdom

Abstract. Information-�ow control (IFC) languages ensure programs
preserve the con�dentiality of sensitive data. Noninterference, the de-
sired security property of such languages, states that public outputs of
programs must not depend on sensitive inputs. In this chapter, we show
that noninterference can be proved using normalization. Unlike arbi-
trary terms, normal forms of programs are well-principled and obey
useful syntactic properties—hence enabling a simpler proof of nonin-
terference. Since our proof is syntax-directed, it o�ers an appealing
alternative to traditional semantic based techniques to prove noninter-
ference.

In particular, we prove noninterference for a static IFC calculus, based
on Haskell’s seclib library, using normalization. Our proof follows by
straightforward induction on the structure of normal forms. We imple-
ment normalization using normalization by evaluation and prove that
the generated normal forms preserve semantics. Our results have been
veri�ed in the Agda proof assistant.

1 Introduction
Information-flow control (IFC) is a security mechanism which guarantees
confidentiality of sensitive data by controlling how information is allowed to
flow in a program. The guarantee that programs secured by an IFC system do
not leak sensitive data is often proved using a property called noninterference.
Noninterference ensures that an observer authorized to view the output of a
program (pessimistically called the attacker) cannot infer any sensitive data
handled by it. For example, suppose that the type IntH denotes a secret integer
and BoolL denotes a public boolean. Now consider a program f with the
following type:

f : IntH → BoolL

For this program, noninterference ensures that f outputs the same boolean
for any given integer.
To prove noninterference, wemust show that the public output of a program

is not affected by varying the secret input. This has been achieved using many
techniques including term erasure based on dynamic operational semantics
[14, 23, 24, 29], denotational semantics [1, 13], and parametricity [3, 7, 27]. In
this chapter, we show that noninterference can also be proved by normalizing
programs using the static or residualising semantics [15] of the language.
If a program returns the same output for any given input, it must be the

case that it does not depend on the input to compute the output. Thus proving
noninterference for a program which receives a secret input and produces a
public output, amounts to showing that the program behaves like a constant
program. For example, proving noninterference for the program f consists of
showing that it is equivalent to either λ x . true or λ x . false; it is immediately
apparent that these functions do not depend on the secret input x. But how
can we prove this for any arbitrary definition of f ?
The program f may have been defined as the simple function λ x . (not false)

or perhaps the more complex function λ x .((λ y .snd (x , y)) true). Observe,
however, that both these programs can be normalized to the equivalent func-
tion λ x . true. In general, although terms in the language may be arbitrarily
complex, their normal forms (such as λ x . true) are not. They are simpler, thus
well-suited for showing noninterference.

59

The key idea in this chapter is to normalize terms, and prove noninterference
by simple structural induction on their normal forms. To illustrate this, we
prove noninterference for a static IFC calculus, which we shall call λsec, based
on Haskell’s seclib library by Russo et al. We present the typing rules and
static semantics for λsec by extending Moggi’s computational metalanguage
[19] (Section 2). We identify normal forms of λsec, and establish syntactic
properties about a normal form’s dependency on its input (Section 3). Using
these properties, we show that the normal forms of program f are λ x . true
or λ x . false—as expected (Section 4).
To prove noninterference for all terms using normal forms, we implement

normalization for λsec using normalization by evaluation (NbE) [6] and prove
that it preserves the static semantics (Section 5). Using normalization, we
prove noninterference for program f and further generalize this proof to all
terms in λsec (Section 6) —including, for example, a program which operates
on both secret and public values such as BoolL × BoolH → BoolL ×
BoolH. Finally, we conclude by discussing related work and future directions
(Section 7).
Unlike earlier proofs, our proof shows that noninterference is an inherent

property of the normal forms of λsec. Since the proof is primarily type and
syntax-directed, it provides an appealing alternative to typical semantics
based proof techniques. All the main theorems in this chapter have been
mechanized in the proof assistant Agda1.

2 The λsec calculus
In this section we present λsec, a static IFC calculus that we shall use as the
basis for our proof of noninterference. It models the pure and terminating
fragment of the IFC library seclib2 for Haskell, and is an extension of the cal-
culus developed by Russo et al. [23] with sum types. seclib is a lightweight
implementation of static IFC which allows programmers to incorporate un-
trusted third-party code into their applications while ensuring that it does
not leak sensitive data. Below, we recall the public interface (API) of seclib:

data S (ℓ :: Lattice) a
1https://github.com/carlostome/ni-nbe
2https://hackage.haskell.org/package/seclib

2. Simple Noninterference by Normalization

60

return :: a → S ℓ a

(≫=) :: S ℓ a → (a → S ℓ b) → S ℓ b

up :: ℓL ⊑ ℓH ⇒ S ℓL a → S ℓH a

Similar to other IFC libraries in Haskell such as LIO [24] or MAC [30],
seclib’s security guarantees rely on exposing the API to the programmer
while hiding the underlying implementation. Programs written against the
API and the safe parts of the language [25] are guaranteed to be secure-by-
construction; the library enforces security statically through types. As an
example, suppose that we have the two-point security lattice (see [11]) {L,H}
where the only disallowed flow is from secret (H) to public (L), denoted
H @ L. The following program written using the seclib API is well-typed
and—intuitively—secure:

example :: S L Bool → S H Bool

example p = up (p ≫= λ b → return (not b))

The function example negates theBool that it receives as input and upgrades
its security level from public to secret. On the other hand, had the program
tried to downgrade the secret input to public—clearly violating the policy
of the security lattice—the typechecker would have rejected the program as
ill-typed.

The calculus. λsec is a simply typed λ-calculus (STLC) with a base (uninter-
preted) type, unit type, product and sum types, and a security monad type
for every security level in a set of labels (denoted by Label). The set of labels
may be a lattice, but our development only requires it to be a preorder on the
relation ⊑. Throughout the rest of this chapter, we use the labels ℓL and ℓH
and refer to them as public and secret, although they represent levels in an
arbitrary security lattice such that ℓH @ ℓL. Figure 1 defines the syntax of
terms, types and contexts of λsec.

61

Label ℓ , ℓH , ℓL

Context Γ ∆ Σ ::= ∅ | Γ , x : τ

Type τ τ1 τ2 ::= τ1 ⇒ τ2 | ι | ()
| τ1 + τ2 | τ1 × τ2
| S ℓ τ

Term t s u ::= x | λ x . t | t s | ()
| < t , s > | fst t | snd t

| left t | right t
| case t (left x1 → s) (right x2 → u)
| return t | let x = t in u | up t

Fig. 1. The λsec calculus.

In addition to the standard introduction and elimination constructs for
unit, products and sums in STLC, λsec uses the constructs return, let and
up for the security monad S ℓ τ , which mirrors S from seclib. Note that
our presentation favours let, as in Moggi [18], over the Haskell bind (≫=),
although both presentations are equivalent—i.e. t ≫= λ x .u can be encoded
as let x = t in u.
The typing rules for return and let, shown in Figure 2, ensure that compu-

tations over labeled values in the security monad S ℓ τ do not leak sensitive
data. The construct return allows the programmer to tag a value of type τ
with security label ℓ; and bind enforces that sequences of computations over
labeled values stay at the same security level.

Γ ⊢ t : τ
Return

Γ ⊢ t : τ
Γ ⊢ return t : S ℓ τ

Up
Γ ⊢ t : S ℓL τ ℓL ⊑ ℓH

Γ ⊢ up t : S ℓH τ

Let
Γ ⊢ t : S ℓ τ1 Γ , x : τ1 ⊢ s : S ℓ τ2

Γ ⊢ let x = t in s : S ℓ τ2

Fig. 2. Type system of λsec (excerpts).

2. Simple Noninterference by Normalization

62

Further, the calculus models the up combinator in seclib as the construct
up. Its purpose is to relabel computations to higher security levels. The rule
Up, shown in Figure 2, statically enforces that information can only flow from
ℓL to ℓH in agreement with the security policy ℓL ⊑ ℓH. The rest of the typing
rules for λsec are standard [21], and thus omitted here. For a full account we
refer the reader to our Agda formalization.
For completeness, the function example from earlier can be encoded in the

λsec calculus as follows:3

example = λ s .up (let b = s in return (not b))

Static semantics. The static semantics of λsec is defined as a set of equations
relating terms of the same type typed under the same environment. The equa-
tions characterize pairs of λsec terms that are equivalent based on β-reduction,
η-expansion and other monadic operations. We present the equations for
return and let constructs of the monadic type S (à la Moggi [19]) in Figure 3,
and further extend this with equations for the up primitive in Figure 4. The re-
maining equations—including β and η rules for other types, and permutation
rules for commuting case conversions—are fairly standard [2, 15], and can be
found in the Agda formalization. As customary, we use the notation t1 [x/t2]
for capture-avoiding substitution of the term t2 for variable x in term t1.
The up primitive induces equations regarding its interaction with itself and

other constructs in the security monad. In Figure 4, we make the auxiliary
condition of up and the label of return explicit using subscripts for better
clarity. These equations can be understood as follows:

• Rule δ1-S. applying up over let is equivalent to distributing it over the
subterms of let.
• Rule δ2-S. applying up on an term labeled as return t is equivalent to
relabeling t with the final label.
• Rule δtrans-S. applying up twice is equivalent to applying it once using
the transitivity of the relation ⊑.
• Rule δrefl-S. applying up using the reflexive relation ℓ ⊑ ℓ is equivalent
to not applying it.

3In λsec, the type Bool is encoded as () + () with false = left () and true = right ().

63

Γ ⊢ t1 ≈ t2 : τ

β-S
Γ ⊢ t1 : τ Γ , x : τ ⊢ t2 : S ℓ τ

Γ ⊢ let x = (return t1) in t2 ≈ t2 [x/t1] : S ℓ τ

η-S
Γ ⊢ t : S ℓ τ

Γ ⊢ t ≈ let x = t in (return x) : S ℓ τ

γ -S
Γ ⊢ t1 : S ℓ τ1

Γ , x : τ1 ⊢ t2 : S ℓ τ2 Γ , x : τ1 , y : τ2 ⊢ t3 : S ℓ τ3
Γ ⊢ let x = (let y = t1 in t2) in t3 ≈
let y = t1 in (let x = t2 in t3) : S ℓ τ3

Fig. 3. Static semantics of λsec (return and let).

Γ ⊢ t1 ≈ t2 : τ

δ1-S
Γ ⊢ t : S ℓL τ1 Γ , x : τ1 ⊢ u : S ℓL τ2 p : ℓL ⊑ ℓH

Γ ⊢ upp (let x = t in u) ≈ let x = (upp t) in (upp u) : S ℓH τ

δ2-S
Γ ⊢ t : τ p : ℓL ⊑ ℓH

Γ ⊢ upp (returnℓL t) ≈ returnℓH t : S ℓH τ

δtrans-S
Γ ⊢ t : S ℓL τ

p : ℓL ⊑ ℓM q : ℓM ⊑ ℓH r = trans-⊑ p q

Γ ⊢ upq (upp t) ≈ upr t : S ℓH τ

δrefl-S
Γ ⊢ t : S ℓ τ p : ℓ ⊑ ℓ

Γ ⊢ upp t ≈ t : S ℓ τ

Fig. 4. Static semantics of λsec (up).

3 Normal forms of λsec
As discussed in Section 1, our proof of noninterference utilizes syntactic
properties of normal forms, and hence relies on normalizing terms in the

2. Simple Noninterference by Normalization

64

language. Normal forms are a restricted subset of terms in the λsec calculus
which intuitively corresponds to terms that cannot be normalized further.
The syntax of normal forms is defined using two well-typed interdependent
syntactic categories: neutral forms as Γ ⊢ne t : τ (Figure 5) and normal forms
as Γ ⊢nf t : τ (Figure 6). Neutral forms are a special case of normal forms
which depend entirely on the typing context (e.g., a variable).
Since the definition of neutral and normal forms are merely a syntactic

restriction over terms, they can be embedded back into terms of λsec using a
quotation function ⌜ n ⌝. This embedding can be implemented for neutrals
and normal forms by simply mapping them to their term-counterparts.

Γ ⊢ne t : τ

Var
x : τ ∈ Γ
Γ ⊢ne x : τ

App
Γ ⊢ne t : τ1 ⇒ τ2 Γ ⊢nf s : τ1

Γ ⊢ne t s : τ2

Fst
Γ ⊢ne t : τ1 × τ2
Γ ⊢ne fst t : τ1

Snd
Γ ⊢ne t : τ1 × τ2
Γ ⊢ne snd t : τ2

Fig. 5. Neutral forms.

Neutral forms. The neutral forms are terms which are characterized by a
property called neutrality, which is stated as follows:

Property 3.1 (Neutrality). For a given neutral form of type Γ ⊢ne τ , neutrality
states that the type τ must occur as a subformula of a type in the context Γ.

For instance, given a neutral form Γ ⊢ne n : Bool, neutrality states that the
type Bool must occur as a subformula of some type in the typing context Γ.
An example of such a context is Γ = [x : ()⇒ Bool , y : S ℓH ι]. The notion of
a subformula, originally defined for logical propositional formulas in proof
theory [26], can also be defined for types as follows:

Definition 3.1 (Subformula). For some types τ , τ1 and τ2; a subformula of a
type is defined as:

• τ is a subformula of τ

65

Γ ⊢nf t : τ

Unit

Γ ⊢nf () : ()

Lam
Γ , x : τ1 ⊢nf t : τ2

Γ ⊢nf λ x . t : τ1 ⇒ τ2

Base
Γ ⊢ne t : ι

Γ ⊢nf t : ι

Ret
Γ ⊢nf t : τ

Γ ⊢nf return t : S ℓ τ

LetUp
ℓL ⊑ ℓH Γ ⊢ne t : S ℓL τ1 Γ , x : τ1 ⊢nf s : S ℓH τ2

Γ ⊢nf let↑ x = t in s : S ℓH τ2

Left
Γ ⊢nf t : τ1

Γ ⊢nf left t : τ1 + τ2

Right
Γ ⊢nf t : τ2

Γ ⊢nf right t : τ1 + τ2
Case
Γ ⊢ne t : τ1 + τ2 Γ , x1 : τ1 ⊢nf t1 : τ Γ , x2 : τ2 ⊢nf t2 : τ

Γ ⊢nf case t (left x1 → t1) (right x2 → t2) : τ

Fig. 6. Normal forms.

• τ is a subformula of τ1 ⊗ τ2 if τ is a subformula of τ1 or τ is a subformula
of τ2, where ⊗ denotes the binary type operators × , + and⇒.

The typeBool occurs as a subformula in the typing context [()⇒ Bool , S ℓH ι]
since the type Bool is a subformula of the type () ⇒ Bool. Note, however,
that the type ι does not occur as a subformula in this context since ι is not a
subformula of the type S ℓH ι by the above definition.

Normal forms. Intuitively, normal forms of type Γ ⊢nf τ are characterized as
terms of type Γ ⊢ τ that cannot be reduced further using the static semantics.
Precisely, a normal form is a term obtained by systematically applying the
equations defined by the relation ≈ in a specific order to a given term. We
leave the exact order of applying the equations unspecified since we only
require that there exists a normal form for every term—we prove this later in
Section 5. The normal forms in Figure 6 extend the β-short η-long forms in
STLC [2, 5] with return and let↑. Note that, unlike neutrals, arbitrary normal

2. Simple Noninterference by Normalization

66

forms do not obey neutrality since they may also construct values which do
not occur in the context. For example, the normal form left () (which denotes
the value false) of type ∅ ⊢nf Bool constructs a value of the type Bool in the
empty context ∅.
The reader may have noticed that the let↑ construct in normal forms does

not directly resemble a term, and hence it is not immediately obvious how it
should be quoted. Normal forms constructed by let↑ can be quoted by first
applying up to the quotation of the neutral and then using let. The reason let↑
represents both let and up in the normal forms is to retain the non-reducibility
of normal forms. Had we added up separately to normal forms, then this may
trigger further reductions. For example, the term up (return ()) can be reduced
further to the term return (). Disallowing up-terms directly in normal forms
removes the possibility of this reduction in normal forms. Similarly, adding
up to neutral forms is also equally worse since it breaks neutrality.
The syntactic characterization of neutral and normal forms provides us

with useful properties in the proof of noninterference. For example, there
cannot exist a neutral of type ∅ ⊢ne τ for any type τ . By neutrality, if such a
neutral form exists, then τ must be a subformula of the empty context ∅, but
this is impossible! Similarly, the η-long form of normal forms guarantee that
a normal form of a function type must begin with either a λ or case—hence
reducing the number of possible cases in our proof. In the next section, we
utilize these properties to show that the program f (from earlier) behaves as
a constant.

4 Normal Forms and Noninterference
The program f : IntH → BoolL from Section 1 can be generalized in λsec as a
term4 ∅ ⊢ f : S ℓH τ ⇒ S ℓL Bool marking the secret input and public output
through the security monad. Noninterference for this term—which Russo
et al. [23] refer to as a “noninterference-like” property for λsec—states that
given two levels ℓL (public) and ℓH (secret) such that the flow of information
from secret to public is disallowed as ℓH @ ℓL; for any two possibly different
secrets s1 and s2 , applying f to s1 is equivalent to applying it to s2 . In other

4λsec does not have polymorphic types, in this case τ represents an arbitrary but concrete
type, for instance unit ().

67

words, it states that varying the secret input must not interfere with the public
output.
As explained before, for ∅ ⊢ f : S ℓH τ ⇒ S ℓL Bool to satisfy noninterfer-

ence, it must be equivalent to the constant function whose body is return true
or return false independent of the input. For an arbitrary program f it is not
possible to conclude so just from case analysis—as programs may be fairly
complex—however, for normal forms of the same type it is possible. In the
lemma below, we materialize this intuition:

Lemma 4.1 (Normal forms of f are constant). For any normal form ∅ ⊢nf
f : S ℓH τ ⇒ S ℓL Bool, either f ≡ λ x . (return true) or f ≡ λ x . (return false)

Note that the equality relation ≡ denotes syntactic (or propositional) equality,
which means that the normal forms on both sides must be syntactically
identical. The proof follows by direct case analysis on the normal forms of
type ∅ ⊢nf f : S ℓH τ ⇒ S ℓL Bool:

Proof of Lemma 4.1. Upon closer inspection of the normal forms of λsec
(Figure 6), the reader may notice that for the function type ∅ ⊢nf S ℓH τ

⇒ S ℓL Bool there exists only two possibilities: a case or a λ construct. The
former, can be easily dismissed by neutrality because it requires the scrutinee—
a neutral form of sum type τ1 + τ2—to appear in the empty context. In the
latter case, the λ construct extends typing context of the body with the type
of the argument, and thus refines the normal form to have the shape λ x .
where ∅ , x : S ℓH τ ⊢nf : S ℓL Bool.
Considering the normal forms of type ∅ , x : S ℓH τ ⊢nf S ℓL Bool, we

realize that there are only three possible candidates: the case construct again,
the monadic return or let. As before, case is discharged because it requires
the scrutinee of sum type to occur in the context ∅ , x : S ℓH τ . Analogously,
the monadic let with a neutral term of type S ℓL τ , expects this type to occur
in the same context—but it does not, since S ℓL τ is not a subformula of S ℓH τ .
The remaining case, return, can be further refined, where the only possibilities
leave us with λ x . (return true) or λ x . (return false). □

In order to show that noninterference holds for arbitrary programs of
type ∅ ⊢ f : S ℓH τ ⇒ S ℓL Bool using this lemma, we must link the

2. Simple Noninterference by Normalization

68

behaviour of a program with that of its normal form. In the next section we
develop the necessary normalization machinery and later complete the proof
of noninterference in Section 6.

5 From λsec to Normal forms
The goal of this section is to implement a normalization algorithm that bridges
the gap between terms and their normal forms. For this purpose, we employ
Normalization by Evaluation (NbE).
Normalization based on rewriting techniques [21] perform syntactic trans-

formations of a term to produce a normal form. NbE, on the other hand,
normalizes a term by evaluating it in a host language, and then extracting a
normal form from the (semantic) value in the host language. Evaluation of
a term is implemented by an interpreter function eval, and the extraction of
normal forms, called reification, is implemented by an inverse function reify.
Normalization is implemented as a function from terms to normal forms by
composing these functions:

norm : (Γ ⊢ τ) → (Γ ⊢nf τ)
norm t = reify (eval t)
The function eval and reify have the following types in the host language:

eval : (Γ ⊢ τ) → (J Γ K → J τ K)
reify : (J Γ K → J τ K) → (Γ ⊢nf τ)

In these types, the function J K interprets types and contexts in λsec as types
in the host language. That is, the type J τ K denotes the interpretation of the
(λsec) type τ in the host language, and similarly for J Γ K. On the other hand,
the function J Γ K → J τ K—a function between the interpretations in the
host language—denotes the interpretation of the term Γ ⊢ τ .
The advantages of using NbE over a rewrite system are two-fold: first, it

serves as an actual implementation of the normalization algorithm; second,
and most importantly, when implemented in a proof system like Agda, it
makes normalization amenable to formal reasoning. For example, since Agda
ensures that all functions are total, we are assured that a normal form must
exist for every term in λsec. Similarly, we also get a proof that normalization
terminates for free since Agda ensures that all functions are terminating.

69

We implement the functions eval and reify for terms in λsec using Agda as
the host language. Note that, however, the implementation of our algorithm—
and NbE in general—is not specific to Agda. It may also be implemented in
other programming languages such as Haskell [10] or Standard ML [5].
In the remainder of this section, we will denote the typing derivations

Γ ⊢nf τ and Γ ⊢ne τ as Nf τ and Ne τ respectively. We leave the context Γ
implicit to avoid the clutter caused by contexts and their weakenings [4, 16].
Similarly, we will represent variables of type τ ∈ Γ as Var τ , leaving Γ

implicit. Although we use de Bruijn indices in the actual implementation of
variables, we will continue to use named variables here to ease presentation.
We encourage the curious reader to see the formalization in Agda for further
details.

5.1 NbE for simple types

To begin with, we implement evaluation and reification for the types ι, (), ×
and⇒. The implementation for sums is more technical, and hence deferred to
Appendix A.1. Note that the implementation of NbE for simple types is entirely
standard [4, 5]. Their interpretation as Agda types is defined as follows:

J ι K = Nf ι

J () K = ⊤
J τ1 × τ2 K = J τ1 K × J τ2 K
J τ1 ⇒ τ2 K = J τ1 K → J τ2 K

The types (),× and⇒ are simply interpreted as their counterparts in Agda. For
the base type ι, however, we cannot provide a counterpart in Agda since we do
not know anything about this type. Instead, since the type ι is not constructed
or eliminated by any specific construct in λsec, we simply require a normal
form as an evidence for producing a value of type ι—and thus interpret it as
Nf ι.
Typing contexts map variables to types, and hence their interpretation is

an execution environment (or equivalently, a semantic substitution) defined
like-wise:

J ∅ K = ∅
J Γ , x : τ1 K = J Γ K [Var τ1 7→ J τ1 K]

2. Simple Noninterference by Normalization

70

For example, a value γ which inhabits the interpretation J Γ K denotes the
execution environment for evaluating a term typed in the context Γ.
Given these definitions, evaluation is implemented as a straightforward

interpreter function:

eval x γ = lookup x γ

eval () γ = tt

eval (fst t) γ = π1 (eval t γ)
eval (snd t) γ = π2 (eval t γ)
eval (< t1 , t2 >) γ = (eval t1 γ , eval t2 γ)
eval (λ x . t) γ = λ v → eval t (γ [x 7→ v])
eval (t s) γ = (eval t γ) (eval s γ)

Note that γ is an execution environment for the term’s context; lookup, π1
and π2 are Agda functions; and tt is the constructor of the unit type ⊤. For
the case of λ x . t, evaluation is expected to return an equivalent semantic
function. We compute the body of this function by evaluating the body term
t using the substitution γ extended with a mapping which assigns the value v
to the variable x—denoted γ [x 7→ v].
Reification, on the other hand, is implemented using two helper functions

reflect and reifyVal. The function reflect converts neutral forms to semantic
values, while the dual function reifyVal converts semantic values to normal
forms. These functions are implemented as follows:

reifyVal : J τ K → Nf τ

reifyVal { ι } n = n

reifyVal { ()} tt = ()

reifyVal {τ1 × τ2 } p =

< reifyVal {τ1 } (π1 p) , reifyVal {τ2 } (π1 p) >
reifyVal {τ1 ⇒ τ2 } f =
λ x . reifyVal {τ2 } (f (reflect {τ1 } x)) | fresh x

reflect : Ne τ → J τ K
reflect { ι } n = n

reflect { ()} n = tt

reflect {τ1 × τ2 } n =

71

(reflect {τ1 } (fst n) , reflect {τ2 } (snd n))
reflect {τ1 ⇒ τ2 } n =
λ v → reflect {τ2 } (n (reifyVal {τ1 } v))

Note that the argument inside the braces { } denotes an implicit parameter,
which is the type of the corresponding neutral/value argument of reflect/reifyVal
here.
Reflection is implemented by performing a type-directed translation of

neutral forms to semantic values by induction on types. The interpretation
of types, defined earlier, guides our implementation. For example, reflection
of a neutral with a function type must produce a function value since the
type⇒ is interpreted as an Agda function. For this purpose, we are given the
argument value in the semantics and it remains to construct a function body
of the appropriate type. We produce the body of this function by recursively
reflecting a neutral application of the function and (the reification of) the
argument value. The function reifyVal is also implemented in a similar fashion
by induction on types.
To implement reification, recollect that the argument to reify is a function

that results from partially applying the eval function with a term. If the term
has type Γ ⊢ τ , then the argument, say f , must have the type J Γ K → J τ K.
Thus, to apply f , we need an execution environment of the type J Γ K. This
environment can be generated by simply reflecting the variables in the context
as follows:

genEnv : (Γ : Ctx) → J Γ K
genEnv ∅ = ∅
genEnv (Γ , x : τ) = genEnv Γ [x 7→ reflect x]

Finally, we can now implement reify as follows:

reify {Γ } f = let γ = genEnv Γ in reifyVal (f γ)

We generate an environment γ to apply the semantic function f , and then
convert the resulting semantic value to a normal form by applying reifyVal.

2. Simple Noninterference by Normalization

72

5.2 NbE for the security monad

To interpret a type S ℓ τ , we need a semantic counterpart in the host language
which is also a monad. Suppose that we define such a monad as an inductive
data type T parameterized by a label ℓ and some type a (which would be
J τ K in this case). Evidently this monad must allow the implementation of
the semantic counterparts of the terms return, let and up in λsec as follows:

return : a → T ℓ a

bind : T ℓ a → (a → T ℓ b) → T ℓ b

up : (ℓL ⊑ ℓH) → T ℓL a → T ℓH a

To satisfy this specification, we define the data type T in Agda with the
following constructors:
Return

x : a

return x : T ℓ a

BindN
p : ℓL ⊑ ℓH n : Ne S ℓL τ f : Var τ → T ℓH a

bindNe p n f : T ℓH a

The constructor return returns a semantic value in the monad, while bindNe
registers a binding of a neutral to monadic value. These constructors are the
semantic equivalent of return and let↑ in the normal forms, respectively. The
constructor bindNe is more general than the required function bind in order
to allow the definition of up, which is defined by induction as follows:

up p (return v) =
return v

up p (bindNe q n f) =
bindNe (trans q p) n (λ x → up p (f x))

To understand this implementation, suppose that p : ℓM ⊑ ℓH for some labels
ℓM and ℓH. A monadic value of type T ℓM a which is constructed by a return
can be simply re-labeled to T ℓH a since return can be used to construct
a monadic value on any label. For the case of bindNe q n f , we have that
q : ℓL ⊑ ℓM and n : Ne S ℓL τ1, hence ℓL ⊑ ℓH by transitivity, and we may
simply use bindNe to register n and recursively apply up on the continuation
f to produce the desired result of type T ℓH a.
Using the type T in the host language, we may now interpret the monad in

λsec as follows:

73

J S ℓ τ K = T ℓ J τ K
Having mirrored the monadic primitives in λsec using semantic counterparts,
evaluation is rather simple:

eval (return t) γ = return (eval t γ)
eval (up p t) γ = up p (eval t γ)
eval (let x = t in s) γ =

bind (eval t γ) (λ v → eval s (γ [x 7→ v]))
For implementing reflection, we can use bindNe to register a neutral binding

and recursively reflect the given variable:

reflect {S ℓ τ } n =
bindNe refl n (λ x → return (reflect {τ } x))

Since we do not need to increase the sensitivity of the neutral to bind it here,
we simply provide the “reflexive flow” refl : ℓ ⊑ ℓ.
The function reifyVal, on the other hand, is rather straightforward since the

constructors of T are essentially semantic counterparts of the normal forms,
and can hence be translated to it:

reifyVal {S ℓ τ } (return v) =
return (reifyVal {τ } v)

reifyVal {S ℓ τ } (bindNe {p } n f) =
let↑ {p } x = n in reifyVal {τ } (f x)

5.3 Preservation of semantics

To prove that normalization preserves static semantics of λsec, we must show
that the normal form of term is equivalent to the term. Since normal forms
and terms belong to different syntactic categories, we must first quote normal
forms to state this relationship using the term equivalence relation≈. This
property, called consistency of normal forms, is stated as follows:

Theorem 5.1 (Consistency of normal forms). For any term Γ ⊢ t : τ we have
that Γ ⊢ t ≈ ⌜ norm t ⌝ : τ

An attempt to prove consistency by induction on the terms or types fails
quickly since the induction principle alone is not strong enough to prove

2. Simple Noninterference by Normalization

74

this theorem. To solve this issue we must establish a notion of equivalence
between a term and its interpretation using logical relations [22]. Using these
relations, we can prove that evaluation is consistent by showing that it is
related to applying a substitution in the syntax. Following this, we can also
prove the consistency of reification by showing that reifying a value related
to a term, yields a normal form which is equivalent to the term when quoted.
The consistency of evaluation and reification yields the proof of consistency
for normal forms.
This proof follows the style of the consistency proof of NbE for STLC using

Kripke logical relations by Coquand [8]. As is the case for sums, NbE for
the security monad uses an inductively defined data type to implement the
semantic monad. Hence, we are able to leverage the proof techniques used to
prove the consistency of NbE for sums [28] to prove the same for the security
monad. We skip the details of the proof here, but encourage the curious reader
to see the Agda mechanization of this theorem.

6 Noninterference for λsec
After developing the necessary machinery to normalize terms in the calculus,
we are ready to state and prove noninterference for λsec. First, we complete
the proof of noninterference for the program f from Section 4.

6.1 Special Case of Noninterference

Theorem 6.1 (Noninterference for f). Given security levels ℓL and ℓH such
that ℓH @ ℓL and a function ∅ ⊢ f : S ℓH τ ⇒ S ℓL Bool then ∀ s1 s2 : S ℓH τ .
f s1 ≈ f s2

The proof of Theorem 6.1 relies upon two key ingredients: Lemma 4.1
(Section 4), which characterizes the shape of the normal forms of f ; and
consistency of normal forms, Theorem 5.1 (Section 5.3), which links the
semantics of f with that of its normal forms.

Proof of Theorem 6.1. To show that a function ∅ ⊢ f : S ℓH τ⇒ S ℓL Bool
is equivalent when applied to two different secret inputs s1 and s2 , first, we
instantiate Lemma 4.1 with the normal form of f , denoted by norm f . In this
manner, we obtain that the normal forms of f are exactly the constant function

75

that returns true or false wrapped in the return. In the former case, by cor-
rectness of normalization we have that f ≈ ⌜ norm f ⌝ ≈ λ x . return true.
By β-reduction and congruence of term-level function application, we have
that ∀ t. (λ x . return true) t ≈ return true. Therefore, f s1 ≈ f s2 . The case
when norm f ≡ λ x . return false follows a similar argument. □

The noninterference property proven above characterizes what it means
for a concrete class of programs, i.e. those of type ∅ ⊢ f : S ℓH τ ⇒ S ℓL Bool,
to be secure: the attacker cannot even learn one bit of the secret from using
program f . Albeit interesting, this property does not scale to more complex
programs; for instance if the function f was typed in a non empty context the
proof of the above lemma would not hold. The rest of this section is dedicated
to generalize and prove noninterference from the program f to arbitrary
programs written in λsec. As will become clear, normal forms of λsec play a
crucial role towards proving noninterference.

6.2 General Noninterference theorem

In order to discuss general noninterference for λsec, we must first specify
what are the secret (ℓH) inputs of a program and its public (ℓL) output with
respect to an attacker at level ℓL. The attacker can only learn information of
a program by running it with different secret inputs and then observing its
public output. Because the attacker can only observe outputs at their security
level, we restrict the security condition to only consider programs where
outputs are fully observable, i.e., transparent and ground, to the attacker.

Definition 6.1 (Transparent type).

• () is transparent at any level ℓ.
• ι is transparent at any level ℓ.
• τ1 ⇒ τ2 is transparent at ℓ iff τ2 is transparent at ℓ.
• τ1 + τ2 is transparent at ℓ iff τ1 and τ2 are transparent at ℓ.
• τ1 × τ2 is transparent at ℓ iff τ1 and τ2 are transparent at ℓ.
• S ℓ′ τ is transparent at ℓ iff ℓ′ ⊑ ℓ and τ is transparent at ℓ.

Definition 6.2 (Ground type).

• () is ground.
• ι is ground.

2. Simple Noninterference by Normalization

76

• τ1 + τ2 is ground iff τ1 and τ2 are ground.
• τ1 × τ2 is ground iff τ1 and τ2 are ground.
• S ℓ τ is ground iff τ is ground.

A type τ is transparent at security level ℓL if the type does not include the
security monad type over a higher security level ℓH. A ground type, on the
other hand, is a first order type, i.e, a type that does not contain a function type.
These simplifying restrictions over the output type of a program allow us to
state a generic noninterference property over terms and perform induction
on the normal forms.
These restrictions do not hinder the generality of our security condi-

tion: a program producing a partially public output, for instance a product
S ℓL Bool × S ℓH Bool, can be transformed to produce a fully public output
by applying the snd projection. We return to this example later at the end
of the section. Also note that previous work on proving noninterference for
static IFC languages [1, 17] impose similar restrictions.
Departing from the traditional view of programs as closed terms, i.e. terms

without free variables, in the λsec calculus we consider all terms for which
a typing derivation exists. This includes terms that contain free variables—
unknowns—typed by the context, which we identify as the program inputs.
Note that open terms are more general since they can always be closed as a
function by abstracting over the free variables.
Now, we state what it means for a context to be secret at level ℓ. These

definitions, dubbed ℓ-sensitivity, force the types appearing in the context to
be at least as sensitive as ℓ.

Definition 6.3 (Context sensitivity).
A context Γ is ℓ-sensitive if and only if for all types τ ∈ Γ, τ is ℓ-sensitive.

A type τ is ℓ-sensitive, on the other hand, if and only if:

• τ is the function type τ1 ⇒ τ2 and τ2 is ℓ-sensitive.
• τ is the product type τ1 × τ2 and τ1 and τ2 are ℓ-sensitive.
• τ is the monadic type S ℓ′ τ1 and ℓ ⊑ ℓ′.

77

Next, we define substitutions5, which lay at the core of β-reduction rules
in the λsec calculus. Substitutions map free variables in a term to other terms
possibly typed in a different context.

Substitution σ ::= σ∅ | σ [x 7→ t]
Γ ⊢sub σ : ∆

Γ ⊢sub σ : ∆ Γ ⊢ t : τ
Γ ⊢sub σ [x 7→ t] : ∆ , x : τ Γ ⊢sub σ∅ : ∅

Fig. 7. Substitutions for λsec.

A substitution is either empty, σ∅, or is the substitution σ extended with
a new mapping from the variable x : τ to term t. We denote t [σ] the
application of substitution σ to term t. Its definition is standard by induction
on the term structure, thus we omit it here and refer the reader to the Agda
formalization.
Substitutions, in general, provide a mix of terms of secret and public type to

fill the variables in the context Γ of a program. However, for noninterference
we need to fix the public part of the substitution and allow the secret part
to vary. We do so by splitting a substitution σ into the composition of a
public substitution, Γ ⊢sub σℓL : ∆, that fixes the public inputs, and a
secret substitution ∆ ⊢sub σℓH : Σ, that restricts ∆ to be ℓH-sensitive. The
composition of both, denoted Γ ⊢sub (σℓL ; σℓH) : Σ, maps variables in
context Γ to terms typed in Σ: first, σℓL maps variables from Γ to terms in ∆,
subsequently, σℓH maps variables in ∆ to terms typed in Σ. Below, we state
ℓL-equivalence of substitutions:

Definition 6.4 (Low equivalence of substitutions).
Two substitutions σ1 and σ2 are ℓL-equivalent , written σ1 ≈ℓL σ2, if

and only if for all ℓH such that ℓH @ ℓL, there exists a public substitution
σℓL , and two secret substitutions σ 1

ℓH
and σ 2

ℓH
, such that σ1 ≡ σℓL ; σ 1

ℓH
and

σ2 ≡ σℓL ; σ 2
ℓH

5In Section 2 we purposely left capture-avoiding substitutions underspecified, we amend that
here.

2. Simple Noninterference by Normalization

78

Informally, noninterference for λsec states that applying two low equivalent
substitutions to an arbitrary term whose type is ground and transparent yields
two equivalent programs. As previously explained, intuitively a program
satisfies such property if it is equivalent to a constant program: i.e. a program
where the output does not depend on the input—in this case the variables in
the typing context. As in Section 4, instead of defining and proving this on
arbitrary terms, we achieve this using normal forms.

Constant terms and normal forms. We prove the noninterference theorem
by showing that terms of a type at level ℓL, typed in a ℓH-sensitive context,
must be constant. We achieve this in turn by showing that the normal forms
of such terms are constant. Below, we state when a term is constant:

Definition 6.5 (Constant term).
A term Γ ⊢ t : τ is said to be constant if, for any two substitutions σ1 and

σ2, we have that t [σ1] ≈ t [σ2].

Similarly, we must define what it means for a normal form to be constant.
However, we cannot state this for normal forms directly using substitutions
since the result of applying a substitution to a normal form may not be a
normal form. For example, the result of substituting the variable x in the
normal form x : ι ⇒ ι , y : ι ⊢nf x y : ι by the identity function is not a
normal form—and cannot be derived syntactically as a normal form using ⊢nf .
Instead, we lean on the shape of the context to state the property.
If a normal form Γ ⊢nf n : τ is constant, then there must exist a syntactically

identical derivation ∅ ⊢nf n′ : τ such that n ≡ n′. However, since n and n′

are typed in different contexts, Γ and ∅, it is not possible to compare them
for syntactic equality. We solve this problem by renaming the normal form
n′ to add as many variables as mentioned in context Γ. The signature of the
renaming function is the following:

ren : {Γ ⩽ ∆} → (Γ ⊢nf τ) → (∆ ⊢nf τ)

The relation⩽ between contexts Γ and∆ indicates that the variables appearing
in ∆ are at least those present in Γ. This relation, called weakening, is defined
as follows:

• ∅ ⩽ ∅

79

• If Γ ⩽ ∆, then Γ ⩽ ∆ , x : τ
• If Γ ⩽ ∆, then Γ , x : τ ⩽ ∆ , x : τ

The function ren can be defined by simple induction on the derivation of the
normal forms. Note that terms can also be renamed in the same fashion.

Definition 6.6 (Constant normal form). A normal form Γ ⊢nf n : τ is
constant if there exists a normal form ∅ ⊢nf n′ : τ such that ren (n′) ≡ n.

Further, we need a lemma showing that if a term is constant, then so is its
normal form.

Lemma 6.2 (Constant plumbing lemma). If the normal form n of a term
Γ ⊢ t : τ is constant, then so is t.

The proof follows by induction on the normal forms:

Proof of Lemma 6.2. If n is constant, then there must exist a normal form
∅ ⊢nf n′ : τ such that ren (n′) ≡ n. Let the quotation of this normal form ⌜ n′ ⌝
be some term ∅ ⊢ t ′ : τ . Recall from earlier that terms can also be renamed,
hence we have ren (t ′) ≈ ren (⌜ n′ ⌝) by correctness of n′. Since it can be
shown that ren (⌜ n′ ⌝) ≡ ⌜ ren (n′) ⌝, we have that ren (⌜ n′ ⌝) ≡ ⌜ n ⌝,
and by correctness of n, we also have ren (t ′) ≈ t — (1).
A substitution σ maps free variables in a term to terms. The empty substitu-

tion, denoted σ∅, is the unique substitution, such that ∆ ⊢ t ′ [σ∅] : τ
for any ∆. That is, applying the empty substitution simply renames the
term. We can show that t ′ [σ∅] ≡ ren (t ′), and hence, by (1), we have
t ′ [σ∅] ≈ t — (2). Since σ∅ renames a term typed in the empty context, we
can show that for any substitution σ , we have (t ′ [σ∅]) [σ] ≈ t ′ [σ∅].
Because σ∅ is also unique, for any two substitutions σ1 and σ2, we have
(t ′ [σ∅]) [σ1] ≈ (t ′ [σ∅]) [σ2] by transitivity of ≈ . As a result, from
(2), we achieve the desired result, t [σ1] ≈ t [σ2], therefore t must be
constant. □

The key insight of our noninterference proof is reflected in the following
lemma which shows how normal forms of λsec typed in a sensitive context
are either constant or the flow between the security level of the context and
the output type is permitted. Below we include the proof to showcase how it
follows by straightforward induction on the shape of the normal forms.

2. Simple Noninterference by Normalization

80

Lemma 6.3 (Normal forms do not leak). Given a normal form Γ ⊢nf n : τ ,
where the context Γ is ℓi -sensitive, and τ is a ground and transparent type at
level ℓo , then either n is constant or ℓi ⊑ ℓo .

Proof. By induction on the structure of the normal form n. Note that λ
and case normal forms need not be considered since the preconditions ensure
that τ cannot be a function type (dismisses λ), and Γ cannot contain a variable
of a sum type (dismisses case).

• Case 1 (Γ ⊢nf () : ()). The normal form () is constant.
• Case 2 (Γ ⊢nf n : ι). In this case, we are given the neutral n by the [Base]
rule in Figure 6. It can be shown by induction that for all neutrals of
type Γ ⊢ne τ , if Γ is ℓi -sensitive and τ is transparent at ℓo , then ℓi ⊑ ℓo .
Hence, n gives us that ℓi ⊑ ℓo .
• Case 3 (Γ ⊢nf return n : S ℓ τ). By applying the induction hypothesis
on the normal form n, we have that n is either constant or ℓi ⊑ ℓo . In
the latter case, we are done since we already have ℓi ⊑ ℓo . In the former
case, there exists a normal form n′ such that ren (n′) ≡ n. By congruence
of the relation ≡, we get that return (ren (n′)) ≡ return n. Note that the
function ren is defined as ren (return n′) ≡ return (ren n′), and hence
by transitivity of ≡, we have that
ren (return (n′)) ≡ return n. Thus, the normal form return n is also
constant.
• Case 4 (Γ ⊢nf let↑ x = n in m : S ℓ2 τ2). For this case, we have a neutral
Γ ⊢ne n : S ℓ1 τ1 such that ℓ1 ⊑ ℓ2, by the [LetUp] rule in Figure 6.
Similar to case 2, we have that ℓi ⊑ ℓ1 from the neutral n. Hence,
ℓi ⊑ ℓ2 by transitivity of the relation ⊑. Additionally, since S ℓ2 τ

is transparent at ℓo , it must be the case that ℓ2 ⊑ ℓo by definition of
transparency. Therefore, once again by transitivity, we have ℓi ⊑ ℓo .
• Case 5 (Γ ⊢nf left n : τ1 + τ2). Similar to return.
• Case 6 (Γ ⊢nf right n : τ1 + τ2). Similar to return.

□

The last step to noninterference is an ancillary lemma which shows that
terms typed in ℓH-sensitive contexts are constant:

81

Lemma 6.4. Given a term Γ ⊢ t : τ , where the context Γ is ℓH-sensitive, and
τ is a ground type transparent at ℓL. If ℓH @ ℓL, then t is constant.

The proof follows from lemmas Lemma 6.3 and Lemma 6.2.
Finally, we are ready to formally state and prove the noninterference prop-

erty for programs written in λsec, which effectively demonstrates that pro-
grams do not leak sensitive information. The proof follows from the previous
lemmas, which characterize the behaviour of programs by the syntactic prop-
erties of their normal forms.

Theorem 6.5 (Noninterference for λsec). Given security levels ℓL and ℓH such
that ℓH @ ℓL; an attacker at level ℓL; two ℓL-equivalent substitutions σ1 and
σ2 such that σ1 ≈ℓL σ2; and a type τ that is ground and transparent at ℓL;
then for any term Γ ⊢ t : τ we have that t [σ1] ≈ t [σ2].

Proof of Theorem 6.5. Low equivalence of substitutions σ1 ≈ℓL σ2 gives
that σ1 = σℓL ; σ 1

ℓH
and σ2 = σℓL ; σ 2

ℓH
. After applying the public

substitution σℓL to the term Γ ⊢ t : τ , we are left with a term typed in
a ℓH-sensitive context ∆, ∆ ⊢ t [σℓL] : τ . By Lemma 6.4, t [σℓL] is
constant which means that (t [σℓL]) [σ 1

ℓH
] ≈ (t [σℓL]) [σ 2

ℓH
]. By

readjusting substitutions using composition we obtain t ([σℓL ; σ 1
ℓH
]) ≈

t ([σℓL ; σ 2
ℓH
]), which yields t [σ1] ≈ t [σ2]. □

6.3 Follow-up Example

To conclude this section, we briefly show how to instantiate the theorem of
noninterference for λsec for programs of type ∅ ⊢ t : S ℓL Bool × S ℓH Bool⇒
S ℓL Bool × S ℓH Bool, which are the recurring example for explaining nonin-
terference in the literature [7, 23]. Adapted to the notion of noninterference
based on substitutions, the corollary we aim to prove is the following:

Corollary 6.6 (Noninterference for t). Given security levels ℓL and ℓH such
that ℓH @ ℓL and a program x : S ℓL Bool × S ℓH Bool⊢ t : S ℓL Bool ×
S ℓH Bool then ∀ p : S ℓL Bool , s1 s2 : S ℓH Bool. we have that t [x 7→
(p , s1)] ≈ t [x 7→ (p , s2)].

Because the main noninterference theorem requires the output to be fully
observable by the attacker, we transform t to the desired shape by applying

2. Simple Noninterference by Normalization

82

the snd projection. This is justified because the first component of the output
is protected at level ℓH, which the attacker cannot observe. Below we prove
noninterference for x : S ℓL Bool × S ℓH Bool ⊢ snd t : S ℓH Bool:

Proof of Corollary 6.6. To apply Theorem 6.5 we have to show that
both substitutions are low equivalent, [x 7→ (p , s1)] ≈ℓL [x 7→
(p , s2)] The key idea is that the substitution [x 7→ (p , s1)] can be
decomposed into a public substitution σℓL ≡ [x 7→ (p , y)] and two
different secret substitutions where each replaces the variable y by a different
secret, σ 1

ℓH
≡ [y 7→ s1] and σ 2

ℓH
≡ [y 7→ s2]. Now, the proof follows

directly from Theorem 6.5. □

7 Conclusions and future work
In this chapter we have presented a novel proof of noninterference for the λsec
calculus (based on Haskell’s IFC library seclib) using normalization. The
simplicity of the proof relies upon the normal forms of the calculus, which as
opposed to arbitrary terms, are well-principled. To obtain normal forms from
terms, we have implemented normalization using NbE, and shown that normal
forms obey useful syntactic-properties such as neutrality and βη-long form.
Most of the auxiliary lemmas and definitions towards proving noninterference
build on these properties. Because normal forms are well-principled, many
cases of the proofs follow directly by structural induction.
An important difference between our work and previous proofs based on

term erasure is that our proof utilizes the static semantics of the language
instead of the dynamic semantics. Specifically, our proof of noninterference
is not tied to any particular evaluation strategy, such as call-by-name or
call-by-value, assuming the strategy is adequate with respect to the static
semantics.
Perhaps the closest to our line of work is the proof of noninterference by

Miyamoto and Igarashi [17] for a modal lambda calculus using normalization.
The main novelty of our proof is that it works for standard extensions of
the simply typed lambda calculus and does not change the typing rules of
the underlying calculus (as presented and implemented by Russo et al. [23]).
This makes our proof technique applicable even in the presence of other
useful normalization-preserving extensions of STLC. For example, it should

83

be possible to extend our proof for λsec further with exceptions and other
computational effects (à la Moggi [18]) since our security monad is already an
instance of this. Moreover, our proof relies on syntactic properties of normal
forms in an open typing context since normalization is based on the static
semantics of the language.
In this work we have only considered a calculus which models terminating

computations. This opens up a question of whether our proof technique is
applicable to languages which support general recursion, where computations
need not necessarily terminate. The extensibility of this technique to recursion
relies directly upon the choice of static semantics for normalizing recursion.
For example, it may be possible to extend the proof for λsec with a fix-point
combinator by treating it as an uninterpreted constant during normalization.
That is, it may be sufficient to normalize the body of the function by ignoring
the recursive application, because if the body does not leak a secret, then its
recursive call must not either. Since complete normalization is not strictly
needed for our purposes, we believe that our technique can also be extended
to general recursion.
Our NbE implementation for λsec extends NbE for Moggi’s computational

metalanguage [12, 15] with a family of monads parameterized by a pre-ordered
set of labels. This resembles the parameterization of monads by effects spec-
ified by a pre-ordered monoid, also known as graded monads [20, 31], and
thus indicates the extensibility of our NbE algorithm to calculi with graded
monads. It would be interesting to see if our proof technique can be used to
prove noninterference for static enforcement of IFC using graded monads.
Using static semantics means that our work lays a foundation for static

analysis of noninterference-like security properties. This opens up a plethora
of exciting opportunities for future work. For example, one possibility would
be to use type-direction partial evaluation [9] to simplify programs and inspect
the resulting programs to verify if they violate security properties. Another
arena would be the extension of our proof to more expressive IFC calculi
such as DCC or MAC [30]. The main challenge here would be to identify the
appropriate static semantics of the language, as they may not always have
been designed with one in mind.

2. Simple Noninterference by Normalization

84

In Retrospect
The unsettling part of this work is the simplicity of the calculus used to
illustrate this proof technique.

“My only qualm with the paper is that it presents itself as a simpler
alternative to dynamic/denotational techniques, but at the same time
only applies itself to a simpler context: a normalizing language.”
—An anonymous reviewer on this work

It is not shown whether this technique is applicable in the presence of general
recursion. But as mentioned earlier, it seems that full βη normalization is not
a requirement for this technique, and thus it may well be possible. Intuition
makes a strong case, but much remains to be seen in this direction.

References
[1] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G Riecke. 1999. A core calculus

of dependency. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. ACM, 147–160.

[2] Andreas Abel and Christian Sattler. 2019. Normalization by Evaluation for Call-by-Push-
Value and Polarized Lambda-Calculus. arXiv preprint arXiv:1902.06097 (2019).

[3] Maximilian Algehed and Jean-Philippe Bernardy. 2019. Simple Noninterference from
Parametricity. (2019).

[4] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995. Categorical recon-
struction of a reduction free normalization proof. In International Conference on Category
Theory and Computer Science. Springer, 182–199.

[5] Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. 2004. Extensional normalisation
and type-directed partial evaluation for typed lambda calculus with sums. In POPL, Vol. 4.
49.

[6] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. 1998. Normalization by
evaluation. In Prospects for Hardware Foundations. Springer, 117–137.

[7] William J Bowman and Amal Ahmed. 2015. Noninterference for free. ACM SIGPLAN
Notices 50, 9 (2015), 101–113.

[8] Catarina Coquand. 1993. From semantics to rules: A machine assisted analysis. In
International Workshop on Computer Science Logic. Springer, 91–105.

[9] Olivier Danvy. 1998. Type-directed partial evaluation. In DIKU International Summer
School. Springer, 367–411.

[10] Olivier Danvy, Morten Rhiger, and Kristoffer H Rose. 2001. Normalization by evaluation
with typed abstract syntax. Journal of Functional Programming 11, 6 (2001), 673–680.

85

[11] Dorothy E Denning. 1976. A lattice model of secure information flow. Commun. ACM 19,
5 (1976), 236–243.

[12] Andrzej Filinski. 2001. Normalization by evaluation for the computational lambda-
calculus. In International Conference on Typed Lambda Calculi and Applications. Springer,
151–165.

[13] GA Kavvos. 2019. Modalities, cohesion, and information flow. Proceedings of the ACM on
Programming Languages 3, POPL (2019), 20.

[14] Peng Li and Steve Zdancewic. 2010. Arrows for secure information flow. Theoretical
computer science 411, 19 (2010), 1974–1994.

[15] Sam Lindley. 2005. Normalisation by evaluation in the compilation of typed functional
programming languages. (2005).

[16] Conor McBride. 2018. Everybody’s got to be somewhere. Electronic Proceedings in
Theoretical Computer Science 275 (2018), 53–69.

[17] Kenji Miyamoto and Atsushi Igarashi. 2004. A modal foundation for secure information
flow. InWorkshop on Foundations of Computer Security. 187–203.

[18] Eugenio Moggi. 1989. Computational lambda-calculus and monads. In [1989] Proceedings.
Fourth Annual Symposium on Logic in Computer Science. IEEE, 14–23.

[19] Eugenio Moggi. 1991. Notions of computation and monads. Information and computation
93, 1 (1991), 55–92.

[20] Dominic A Orchard and Tomas Petricek. 2014. Embedding effect systems in Haskell.
(2014).

[21] Benjamin C Pierce. 2002. Types and programming languages. MIT press.
[22] Gordon Plotkin. 1973. Lambda-definability and logical relations. Edinburgh University.
[23] Alejandro Russo, Koen Claessen, and John Hughes. 2009. A library for light-weight

information-flow security in Haskell. ACM Sigplan Notices 44, 2 (2009), 13–24.
[24] Deian Stefan, Alejandro Russo, John C Mitchell, and David Mazières. 2011. Flexible

dynamic information flow control in Haskell. In ACM Sigplan Notices, Vol. 46. ACM,
95–106.

[25] David Terei, Simon Marlow, Simon Peyton Jones, and David Mazières. 2012. Safe haskell.
In ACM SIGPLAN Notices, Vol. 47. ACM, 137–148.

[26] Anne Sjerp Troelstra and Helmut Schwichtenberg. 2000. Basic proof theory. Number 43.
Cambridge University Press.

[27] Stephen Tse and Steve Zdancewic. 2004. Translating dependency into parametricity. In
ACM SIGPLAN Notices, Vol. 39. ACM, 115–125.

[28] Nachiappan Valliappan and Alejandro Russo. 2019. Exponential Elimination for Bicarte-
sian Closed Categorical Combinators. (2019).

[29] Marco Vassena and Alejandro Russo. 2016. On formalizing information-flow control
libraries. In Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security. ACM, 15–28.

[30] Marco Vassena, Alejandro Russo, Pablo Buiras, and LucasWaye. 2018. Mac a verified static
information-flow control library. Journal of logical and algebraic methods in programming

2. Simple Noninterference by Normalization

86

95 (2018), 148–180.
[31] Philip Wadler. 1998. The marriage of effects and monads. In ACM SIGPLAN Notices,

Vol. 34. ACM, 63–74.

A Appendix
A.1 NbE for sums

It is tempting to interpret sums component-wise like products and functions
as: J τ1 + τ2 K = J τ1 K ⊎ J τ2 K. However, this interpretation makes
it impossible to implement reflection faithfully: should the reflection of a
variable x : τ1 + τ2 be a semantic value of type J τ1 K (left injection) or
J τ2 K (right injection)? We cannot make this decision since the value which
substitutes x may be either of these cases. The standard solution to this issue
is to interpret sums using decision trees [2]. A decision tree allows us to defer
this decision until more information is available about the injection of the
actual value.
As in the previous case for the monadic type T , a decision tree can be de-

fined as an inductive data type D parameterized by some type interpretation
a with the following constructors:

Leaf
x : a

leaf x : D a

Branch
n : Ne (τ1 + τ2) f : Var τ1 → D a g : Var τ2 → D a

branch n f g : D a

The leaf constructor constructs a leaf of the tree from a semantic value,
while the branch constructor constructs a tree which represents a suspended
decision over the value of a sum type. The branch constructor is the semantic
equivalent of case in normal forms.
Decision trees allow us to model semantic sum values, and hence allow the

interpretation of the sum type as follows:

J τ1 + τ2 K = D (J τ1 K ⊎ J τ2 K)

87

We interpret a sum type (in λsec) as a decision tree which contains a value of
the sum type (in Agda).
As an example, the term false of type Bool, implemented as left (), will be

interpreted as a decision tree leaf (inj1 tt) of type D J Bool K since we know
the exact injection. The Agda constructor inj1 denotes the left injection in
Agda, and inj2 the right injection. For a variable x of type Bool, however, we
cannot interpret it as a leaf since we don’t know the actual injection that may
substitute it. Instead, it is interpreted as a decision tree by branching over the
possible values as branch x (λ → leaf (inj1 tt)) (λ → leaf (inj2 tt))6—
which intuitively represents the following tree:

x : Bool

false true

In light of this interpretation of sums, the implementation of evaluation
for injections is straightforward since we only need to wrap the appropriate
injection inside a leaf:

eval (left t) γ = leaf (inj1 (eval t γ))
eval (right t) γ = leaf (inj2 (eval t γ))

For evaluating case however, we must first implement a decision procedure
since case is used to make a choice over sums.
To make a decision over a tree of type D J τ K, we need a function

mkDec : D J τ K → J τ K. It can be implemented by induction on the
type τ using monadic functions fmap and join on trees, which can in turn be
implemented by straightforward structural induction on the tree. Additionally,
we will also need a function which converts a decision over normal forms
to a normal form: convert : D (Nf τ) → Nf τ . The implementation of this
function is made possible by the fact that branch resembles case in normal
forms, and can hence be translated to it. We skip the implementation of these
functions here, but encourage the reader to see the Agda implementation.
Using these definitions, we can now complete evaluation as follows:

eval (case t (left x1 → t1) (right x2 → t2)) γ =
mkDec (fmap match (eval t γ))

6We ignore the argument (as λ) here since it has the uninteresting type ()

2. Simple Noninterference by Normalization

88

where

match : (J τ1 K ⊎ J τ2 K) → J τ K
match (inj1 v) = eval t1 (γ [x1 7→ v])
match (inj2 v) = eval t2 (γ [x2 7→ v])

We first evaluate the term t of type τ1 + τ2 to obtain a tree of type D (J τ1 K ⊎
J τ2 K). Then, we map the function match which eliminates the sum inside
the decision tree to J τ K, to produce a tree of type D J τ K. Finally, we run
the decision procedure mkDec on the resulting decision tree to produce the
desired value of type J τ K.
Reflection for a neutral of a sum type can now be implemented using branch

as follows:

reflect {τ1 + τ2 } n =
branch n

(leaf (λ x1 → inj1 (reflect {τ1 } x1)))
(leaf (λ x2 → inj2 (reflect {τ2 } x2)))

As discussed earlier, we construct the decision tree for neutral n using branch.
The subtrees represent all possible semantic values of n and are constructed
by reflecting the variables x1 and x2 .
The function reifyVal, on the other hand, is implemented similar to evalua-

tion by eliminating the sum value inside the decision tree into normal forms
as follows:

reifyVal {τ1 + τ2 } tr = convert (fmap matchNf tr)
where

matchNf : (J τ1 K + J τ2 K) → Nf (τ1 + τ2)
matchNf (inj1 x) = left (reifyVal {τ1 } x)
matchNf (inj2 y) = right (reifyVal {τ2 } y)

With this function, we have completed the implementation of NbE for sums.

89

3
Towards Secure IoT Programming in
Haskell

Nachiappan Valliappan, Robert Krook, Alejandro
Russo, Koen Claessen

Haskell ’20, August 27, 2020, Virtual Event, USA

Abstract. IoT applications are often developed in programming lan-
guages with low-level abstractions, where a seemingly innocent mis-
take might lead to severe security vulnerabilities. Current IoT devel-
opment tools make it hard to identify these vulnerabilities as they do
not provide end-to-end guarantees about how data �ows within and
between appliances. In this work we present Haski, an embedded do-
main speci�c language (eDSL) in Haskell for secure programming of
IoT devices. Haski enables developers to write Haskell programs that
generate C code without falling into many of C’s pitfalls. Haski is de-
signed after the synchronous programming language Lustre, and sports
a backwards compatible information-�ow control extension to restrict
how sensitive data is propagated and modi�ed within the application.
We present a novel eDSL design which uses recursive monadic bind-
ings and allows a natural use of functions and pattern matching to write
embedded programs. To showcase Haski, we implement a simple smart
house controller where communication is done via low-energy Blue-
tooth on the Zephyr IoT OS.

1 Introduction
The Internet of Things (IoT) conceives a future where “things” (embedded
electronics) can be interconnected. While a compelling vision, recent events
have demonstrated the high vulnerability of IoT (e.g., [5, 18, 34, 39]). Hence,
it has become important to develop security solutions which address the
concerns of unauthorized access to data and privacy loss.
We believe there are two major aspects which contribute to the current

poor state-of-the-art in IoT security: the chosen programming languages for
development and the lack of end-to-end guarantees. IoT development is often
done in programming languages (like C) with low-level of abstractions, where
a seemingly innocent mistake might lead to severe vulnerabilities like buffer
overflows. Similarly, development tools present no end-to-end guarantees
about how data flows within and between devices—thus making it hard to
confine sensitive information.
Figure 1 shows the running example throughout this chapter: a simplified

smart house controller called Halexa. Halexa consists of a micro-controller
with Wifi access (required to fetch software updates) which is connected to
three Bluetooth devices: a thermometer, a motion sensor, and a window. The
micro-controller software is responsible for opening the window when it is

Fig. 1. A Smarthouse example

93

too hot inside the house. We assume that there is no Air Conditioning in
the house—not an uncommon assumption in, for example, Nordic countries.
While simple, this scenario presents interesting security and safety concerns:
(i) to avoid robbery, windows must only be opened when there is someone
at home, and (ii) the motion sensor data should be kept confined within the
system and not leaked via Internet—leaking it can hint burglars about the
vacancy of the house. Observe that the micro-controller needs to have access
to the sensors’ data in order to deliver its function. Can we use Haskell to
program constrained devices and ensure the mentioned security requirements
by construction?
In this chapter, we present Haski, an embedded domain specific language in

Haskell for secure programming of IoT devices. Haski enables developers to
write Haskell programs that generate C code without falling into many of C’s
pitfalls (e.g., those related to memory safety, undefined behavior, etc.). Haski
follows the footsteps of the synchronous programming language Lustre [12,
20], which is an event-driven programming language with strong guarantees
on resource usage—amust when programming low-power devices often found
in IoT systems. Haski enhances Lustre with confidentiality and integrity
security guarantees, as well as a means of communicating with streams
generated by callback functions.
By adopting a synchronous programming model, Haski is able to provide

resource bounds while removing memory-based security vulnerabilities by
construction. Haski’s design and implementation is unique compared with pre-
vious Haskell eDSLs for Lustre-like languages [7, 21]. Firstly, Haski presents
a novel monadic design which allows programmers to leverage Haskell’s
monadic bindings (i.e., do and mdo) to specify streams as literate as possible.
Secondly, Haski conceives a new DSL technique to compile Haskell functions
on Haski-expressions into callable components of the target language. Finally,
Haski provides user-defined enumeration types, where developers can sim-
ply use Haskell’s case expression to inspect them, while raising a type-error
in case of non-exhaustive patterns—thus making the code more robust. To
address end-to-end guarantees, Haski incorporates information-flow control
(IFC) techniques [33] to restrict how data propagates and gets modified—thus
protecting the confidentiality and integrity of data. With IFC, developers can,
for instance, incorporate third-party Haski code to analyze sensitive data like

3. Towards Secure IoT Programming in Haskell

94

that coming from the motion sensor while still preventing data leaks. To keep
the types in eDSL simple, Haski enforces IFC at code-generation time by only
tracking data propagation among end-points streams indicated by developers,
e.g., the thermometer, motion sensor, window and Internet communication
channel in Figure 1.

Contributions The main research contribution of this chapter is the de-
sign and implementation of Haski. We show how to design a synchronous
language that is type-safe, protects confidentiality and integrity of data, han-
dles I/O, and generates C code. Importantly, our design does not require any
modifications to GHC or the use of compiler plug-ins. Instead, Haski uses
embedding techniques by leveraging advanced type-level features of GHC
such as GADTs [26], data kinds [40], existential types, and pattern synonyms
[27]. Some of the techniques developed for Haski can be generalized and used
for general DSL design in Haskell.

2 Haski by Example
Haski programs are written in Haskell using a special set of combinators. In
this section, we illustrate various examples of Haski programs and showcase
these combinators. For the upcoming examples, we use the data type Action to
represent an action indicating whether our user Octavius has left (or entered)
the house.

data Action = Left | Entered

The purpose of the Action data type (instead of, for example, Bool) is to
illustrate the use of user-defined data types in Haski programs.

Recursive definitions A Haski program is a collection of stream definitions
written in the Haski monad. A simple stream can be defined using the letDef
combinator, which has the following type.

letDef :: Stream a→ Haski (Stream a)

Using Haskell’s do notation, we can use this combinator to bind streams to
variables as follows.

95

left :: Haski (Stream Action)
left = do

x ← letDef (val Left)
return x

This program defines the constant stream that repeats the action Left as
Left, Left, Left, ... using the combinator val :: HT a ⇒ a → Stream a. The
type constraint HT ensures that a type is recognized by the Haski compiler
and can be compiled by it. In this case, we may suppose that Action already
satisfies this constraint, but we will later see how this is made possible.
Streams may also be defined recursively using the fby combinator (read

followed by).

fby :: HT a⇒ a→ Stream a→ Haski (Stream a)
The stream v ‘fby‘ s begins with the value v and is followed by the stream
s. For example, we can define a stream of alternating actions such as Left,
Entered, Left, Entered, ... using the fby combinator as follows.

alt :: Haski (Stream Action)
alt = mdo

x ← Left ‘fby‘ y
y ← Entered ‘fby‘ x
return x

The stream x here defines a stream that begins with Left and is followed by y.
Similarly, y begins with Entered and is followed by x. We use the keyword
mdo1 instead of do for (mutually) recursive definitions.

Pattern matching definitions Streams can also be defined by pattern match-
ing on values of other streams using the match combinator.

match :: (FinEnum a, Streams b) ⇒ Stream a→ (a→ b) → Haski b

The combinator application match e f defines the streams resulting from
applying the observed value of e to f . The definition of f enables pattern
matching on the value of e. The type constraint FinEnum subjects the type
a to be finitely enumerable, and the constraint Streams overloads the type
1Enabled by the RecursiveDo extension

3. Towards Secure IoT Programming in Haskell

96

b to allow the function f to return multiple streams such as lists or tuples
of streams. The constraint FinEnum ensures that match can only be used to
pattern match on streams with finitely many values—a restriction which later
enables code generation.
To illustrate the use of match, let us implement a simple cache mechanism

that accepts requests to read and write actions, and responds with the last-
written action, beginning with Left. Let us represent the request protocol
using the data type Req.

data Req = Read | Write Action

Evidently, Req is finitely enumerable since it has only three possible values:
Read, Write Left, and Write Entered. Hence we may use match on a stream
req :: Stream Req as follows.

...

resp← req ‘match‘ λcase
Read → state

Write x → val x

state← Left ‘fby‘ resp
...

We shall use ellipses (...) in the code to hide the parts that are not relevant
to the point being made. The response stream resp is defined by matching
against the request stream req, where the second argument is a lambda-
expression which pattern matches on its argument. We write λcase instead
of λx → case x of ...2.
The combinatormatch allows us to leverage the benefits of patternmatching

in Haskell (such as variable binding, wild cards, guards, etc.) to generate code
with simpler branching operators in the target language. For example, the
definition of resp which pattern matches on req in the previous example,
generates the following C code.

switch (req) {
case READ → resp = ...

case WLEFT → resp = ...

2Enabled by the LambdaCase extension

97

case WENTERED→ resp = ...

}

The cases are representative of the C values generated for the Haskell values
of type Req.
A pattern match performed usingmatchmust handle all possible cases, and

is enforced by the Haski compiler. If we leave out one of the cases in the above
example, the Haski compiler throws an error such as the following—with
line-numbers!

ghci> compile ...

*** Exception: Cache.hs:(20,18)-(21,22):

Non-exhaustive patterns in case

Nodes The stream req in the previous example has not been defined locally,
and we wish for it to be a variable which can be substituted for by different
contexts. Nodes allow us to define subprograms that abstract over stream
expressions such as req, and thus enable an external caller to supply them. In
Haski, nodes are written as Haskell functions, as shown below.

cache :: Stream Req→ Haski (Stream Action)
cache = node "cache" $ λreq→ mdo

resp← req ‘match‘ λcase
Read → state

Write x → val x

state← Left ‘fby‘ resp
return resp

A node is created using the node combinator by providing a name string
and a function as arguments.

node :: (Arg a, Box b) ⇒ String → (a→ b) → (a→ b)

The name string is used to identify a node uniquely during compilation, and
the function defines the body of the node. The type constraints Arg and Box
together ensure that the function a→ b accepts streams as arguments and
produces a stream result in the Haski monad, i.e., has a type of the shape
Stream a′→ Stream b′→→ Haski (Stream res).

3. Towards Secure IoT Programming in Haskell

98

Notice that the function which defines a node itself need not be inside the
Haski monad as Haski (Stream a′ → Stream b′ → → Stream res). This
allows for a more natural type to be assigned to a node, and for them to be
called and used as regular Haskell functions without any special combinators.
For example, we may map over a list of streams as mapM cache (requests ::
[Stream Req]) to generate a list of responses, each corresponding to a call of
the node cache.
Compiling the node cache generates code which resembles the following

in C.

typedef unsigned short Enum;

struct cache_mem {Enum action; };
Enum cache_step (struct cache_mem ∗ self , Enum req) {
...

return resp;
}
We shall return to the specifics later, but for now we simply observe that the
node cache is compiled to a C function with an additional argument self . This
argument maintains the internal state of the returned stream, which in this
case is the last-written action. Also note that both the types (Req and Action)
have been compiled to values of type Enum, which represents a small positive
integer—a simplifying assumption made for all finitely enumerable types.

Primitive types and operators The Haski compiler supports standard primi-
tive types of fixed size such as Bool, Int, etc.

instance HT Bool where ...
instance HT Int where ...

-- similarly for other primitive types

The luxury of pattern-matching is limited to finitely enumerable types. Now
suppose that we wish to adapt our cache example to a read and write integers
instead of actions. Integers are not considered to be finitely enumerable for
practical reasons, which means that we cannot use a Haskell data type with
an integer in it for pattern matching. Instead, we must separate the request
from the integer payload into two separate streams as follows.

99

data Reqi = Read | Write

cachei :: Stream Reqi → Stream Int → Haski (Stream Int)
cachei = ...

To program streams whose types are not finitely enumerable, we resort to
the primitive operators supported by the compiler. Haski supports a fixed set of
operators that are recognized by the target environment. These operators are
overloaded when possible (e.g., +, ∗, etc.) and provided separately otherwise
(e.g., gtE).

(+) :: Stream Int → Stream Int → Stream Int

(∗) :: Stream Int → Stream Int → Stream Int

gtE :: Stream Int → Stream Int → Stream Bool

...

Sampling operators In addition to primitive operators, Haski also supports
sampling operators called when and merge (from Lustre) for projecting and
combining streams.

when :: FinEnum b⇒ Stream a→ (Stream b, b) → Stream a

merge :: FinEnum a⇒ Stream a→ (a→ Stream b) → Stream b

The operator when allows us to project streams to slower ones: the stream
s1 ‘when‘(s2, x) produces the value of s1 only when the value of s2 is x. Operator
merge, on the other hand, is a restrictive version of match that requires the
streams returned by the function argument to be mutually complementary
(i.e., at most one stream must produce a value at a time). As we will see in the
next section, merge is in fact used to implement match.

Labeling primitives Streams which contain sensitive information can be
labeled with a sensitivity level. Labeled streams are given the type LStream a,
and may be understood as streams wrapped in a secure container whose
access is controlled using specific primitives. A stream can be labeled and
unlabeled using the primitives label and unlabel respectively, and the label of
a stream can be queried using the labelOf primitive.

3. Towards Secure IoT Programming in Haskell

100

label :: Label → Stream a→ Haski (LStream a)
unlabel :: LStream a→ Haski (Stream a)
labelOf :: LStream a→ Haski Label

To understand the use of these primitives, let us implement a new version
of the cache node where the request and response have been labeled. One
reason to do this may be because we wish to keep the actions of a user of our
system confidential. To implement the same behavior as before, we must now
use the labeling primitives explicitly to label and unlabel the streams.

secCache :: LStream Req→ Haski (LStream Action)
secCache = node "secCache" $ λreql → do

resp← unlabel reql >>= cache

ℓ ← labelOf reql
respl ← label ℓ resp

return respl

The code above unlabels the stream reql as unlabel reql . This raises the senstiv-
ity level of the program secCache to the label of reql (also known as tainting),
which forces all subsequently labeled streams (like respl) to be at least as
sensitive as reql . The sensitivity level of the program is then used by an ad-
ministrator to enforce security policies on the program during compilation—as
we shall see in Section 5.

3 Overview of Haski Compiler
Haski at its core is an embedding of Lustre in Haskell with support for IFC.
This means that Haski enables the use of Haskell as a host language to write
Lustre programs. A Lustre program, much like Haski, is a system of stream
bindings accompanied by a collection of nodes invoked by them. Compiling a
Haski program first builds a Lustre program, and then compiles it to C—thus
generating low-level code as in the examples of the previous section.
The compilation function compile, which has the type HT a ⇒ Haski
(Stream a) → IO (), compiles a Haski program and generates C code as a
side-effect. Compilation builds a "main" node for the given program, which
then acts as the point of invocation for the entire program. Note that the
program is restricted to producing an output whose type satisfies the HT

101

Fig. 2. Phases of eDSL compilation. The dashed arrow denotes a sequence of well-
known compilation passes used to compile Lustre nodes [6].

constraint. This means that, although the program may use any Haskell types,
its result must be of a type supported by the target language. This restriction,
in combination with similar type constraints on the combinators, ensures that
the use of Haskell’s features that are not supported by the target environment
(such as higher-order functions) are "evaluated away" during compilation
time.
The compilation of a Haski program is achieved in two phases (see Figure 2):

the Embedding phase constructs a list of Lustre nodes from a Haski program,
and the Lustre phase then compiles the nodes to C functions. The first phase
is implemented using a combination of deep and shallow embedding tech-
niques, and consists of the compilation passes building and node parsing. The
second phase, on the other hand, transforms Lustre nodes to C functions via
an intermediate object-oriented language called Obc. This phase involves a
sequence of compilation passes such as clock inference, normalization and
scheduling, that are well-known in Lustre compilers [6].
The Lustre phase is implemented using a modular clock-directed com-

pilation approach that is well-studied and has even been formally verified
[1, 8]. We implement the passes in this phase by repeatedly traversing the
abstract syntax tree of Lustre nodes and annotating it with the result of each
phase (following Najd and Jones [25]). Our implementation of this phase is a
straightforward adaptation of earlier work, and we do not discuss the details

3. Towards Secure IoT Programming in Haskell

102

data HaskiSt = HaskiSt {defs :: [Def], ... }
type Haski = State HaskiSt

data Def where
Let :: HT a⇒ Var a→ Stream a→ Def
Arg :: HT a⇒ String → Var a→ Stream a→ Def
Res :: HT a⇒ String → Var a→ Stream a→ Def

data Stream a where
Var :: HT a⇒ Var a→ Stream a
Val :: HT a⇒ a→ Stream a
Fby :: HT a⇒ a→ Stream a→ Stream a
When :: (FinEnum a) ⇒ Stream a

→ (Stream b, b) → Stream b
Merge :: (FinEnum a) ⇒ Stream a

→ Vec (Stream b) (Size a) → Stream b
-- plus primitive operators

type Var a = String
class (Bounded a, Enum a) ⇒ FinEnum a where

type Size a :: Nat

Fig. 3. Types used to implement Haski

in this chapter. Instead, we focus on the implementation details of the first
phase, which also forms the basis for the IFC enforcement.

4 Haski as a Lustre Embedding
During the building pass, each line of a Haski program written using one
of the combinators builds a corresponding intermediate definition under the
hood of the Haski monad. These definitions are then parsed to construct a
complete Lustre program in the node parsing pass. The purpose of this section
is to describe the implementation of the building pass, and outline the action
performed by the node parsing pass.

4.1 Building Recursive Definitions

The streams defined in the Haski monad are collected as a list of definitions.
When run with an appropriate initial state, a Haski program produces a list
of definitions which correspond to components of Lustre nodes. Definitions

103

are denoted by the Def data type, and expressions by Stream (see Figure 3).
A definition may be a simple binding that binds a variable with a stream
expression (Let), or an argument (Arg) or result (Res) of a node call.
The program alt from Section 2 builds the following definitions under the

hood of the Haski monad.

Let "x" ((Val Left) ‘Fby‘ vy)
Let "y" ((Val Entered) ‘Fby‘ vx)
where vx = Var "x" and vy = Var "y". We use the same variables names
as in the original program for readability, but this can also be implemented
automatically with some compiler support [24].
Let us now turn to the implementation of combinators in the Haski monad.

The combinator fby is implemented using the letDef combinator as follows.

fby :: HT a⇒ a→ Stream a→ Haski (Stream a)
fby x s = letDef (Fby x s)
The combinator letDef is in turn implemented by adding a Let binding with
a fresh variable name to the list of definitions in the Haski monad.

letDef :: Stream a→ Haski (Stream a)
letDef s = do

x ← freshVar

addDef (Let x s) -- updates state (‘defs‘)
return (Var x)

It returns the variable in place of the original stream expression, thus replacing
any use of the expression in later definitions with this variable. Returning
a variable is the key to enabling recursive definitions without sending the
Haski compiler into an infinite loop.
As fby, the implementation of match also builds definitions containing

expressions under the hood, but is slightly more involved since match is
derived from other expressions. We discuss this next.

4.2 Building Pattern Matching Definitions

The combinator match is overloaded in its function argument by the class
Streams which has the following instances.

3. Towards Secure IoT Programming in Haskell

104

class Streams b where
match :: (FinEnum a) ⇒ Stream a→ (a→ b) → Haski b

instance Streams (Stream b) where ...
instance Streams b⇒ Streams [b] where ...
instance (Streams b, Streams c) ⇒ Streams (b, c) where ...

-- similarly for other “containers”

The overloading allows the matching function a → b to return multiple
streams, such as lists or tuples of streams. In this section, we shall discuss the
implementation of the instance Streams (Stream b). We skip the remaining
instances since their implementation is mostly mechanical component-wise
applications of match.
The combinatormatch provides a convenient interface for defining streams

using themore fine-grained sampling operatorsWhen andMerge. For instance,
the stream resp in the cache example from earlier defined using match on req,
builds the following definition.

Let "resp" (vreq ‘Merge‘ [
vstate ‘When‘ (vreq, Read)
, (Val Left) ‘When‘ (vreq,Write Left)
, (Val Entered) ‘When‘ (vreq,Write Entered)
])
When can be understood as a projection of a stream using another stream:

the expression vstate ‘When‘ (vreq, Read) produces the value of vstate when the
value of vreq is Read, and nothing otherwise. In the Merge expression above,
the vector (written using list notation) contains a stream for each possible
value of vreq. For every observed value of vreq, Merge produces the value of
the corresponding stream in the vector. The use of When ensures that the
branches of Merge are mutually complementary, which, as mentioned earlier
in Section 2, is a restriction that is required of Merge.
Now consider implementing the instance Match (Stream b), where match

has the type FinEnum a⇒ Stream a→ (a→ Stream b) → Haski (Stream b).
The matching function a → Stream b is expected to return an expression
for every possible value of type a. To achieve the semantics of match illus-
trated above, we must implement match using Merge. But notice that Merge

105

requires a vector argument of type Vec (Stream b) (Size a) instead of a func-
tion, where Size a denotes the number of values that inhabit the type a. Using
a vector forces a Merge expression to provide as many stream expressions
as the number of values in the type a by construction, and thus enables the
generated code to also inherit this property. This brings us to the question
of implementing match: how must we construct a vector of streams from a
function which returns them?
The solution to this problem is provided by the FinEnum class, which

requires all its instances to be both bound and enumerable. Being bound and
enumerable means that we could enumerate all the values of an instance
type. Additionally, FinEnum is also finitely bound by the type family Size,
which provides a type-level natural number of kind Nat. This enables us to
enumerate the values as a vector of values, instead of a list of values. Let a
function enumerate which does this be defined by the following class.

class FinEnum a⇒ Enumerable a (n :: Nat) where
enumerate :: Vec a n

Let us defer its implementation for the time being and simply assume that
enumerate :: Vec a (Size a) returns all the values of type a.
Since the domain of the matching function is finitely enumerable, we can

use enumerate to generate all possible arguments to the function. Moreover,
we can also apply the function to the enumerated arguments to extract all
possible results of the function. Thus we have a way to extract all the stream
expressions returned by the function! This behavior is implemented by the
following function—named after “The Trick” in partial evaluation [22].

theTrick :: FinEnum a⇒ (a→ b) → Vec b (Size a)
theTrick f = fmap f as

where as :: Vec a (Size a) = enumerate

Equipped with theTrick, we implement the desired implementation ofmatch
as follows.

instance Streams (Stream b) where
match s f = letDef $
let body = theTrick f

3. Towards Secure IoT Programming in Haskell

106

whens = theTrick (λx → flip When (s, x))
in Merge s (zipWith ($) whens body)

We first construct the vector which contains the streams on each branch of
Merge in body ::Vec (Stream b) (Size a), and then insert theWhen expressions
by zipping it (by application) withwhens ::Vec (Stream b→ Stream b) (Size a).
Recollect from earlier that the matching function is enforced to handle all

the possible cases of its argument. We do not need any additional checks to
enforce this behavior because this is already the case! If the function does
not handle all possible cases, the invocation of the function theTrick by the
compiler crashes with a Non-exhaustive patterns error—which, lucky for
us, is exactly what we need!
It remains to implement enumerate, which is straightforward induction on

the Nat parameter as follows3.

instance Enumerable a 1 where
enumerate = [minBound]

instance (Enum a, Enumerable a n, n′∼n + 1)
⇒ Enumerable a n′ where
enumerate = succ (head ts) : ts

where ts :: Vec a n = enumerate

The first value in the vector is constructed usingminBound and the remaining
elements are constructed by applying succ on the previous value. These
functions are provided by the Bounded and Enum classes, respectively.

4.3 Building Nodes from Functions

As observed earlier, nodes are Haski subprograms that abstract over streams.
Nodes are given a more liberal type which allows them to be regular Haskell
functions that need not be defined inside the Haski monad. But this creates a
challenge: how do we compile a Haskell function which represents a Haski
node to a data representation of a Lustre node? Moreover, we cannot have a
simple Def constructor that corresponds to a node call, since Haski nodes are
not called with a special combinator.

3Requires UndecidableInstances and the OVERLAPPING pragma

107

To solve this problem, we first note that result of a node is always in the
Haski monad. When fully applied, if we “register” each argument of a node
call as a separate definition in the Haski monad, then we could recover the
complete call in a later pass (node parsing) which acts on the collected list of
definitions. The idea is to build definitions for a node when it is called, such
that the definitions retain sufficient information for the node parsing pass to
identify both the node and its call. For instance, we wish to build the following
definitions for the call prevAct ← cache (Val Entered).

Arg "cache" "arg_1" (Val Entered)
Let "resp" (varg_1 ‘Merge‘ [. .])
Let "state" ((Val Left) ‘Fby‘ vresp)

Res "cache" "prevAct" vresp

The body of the cache node (containing Let definitions) is inlined at the call
site by substituting its argument with a fresh variable (varg_1) instead of the
actual argument Val Entered. From this invocation, we may recover both the
body of the cache node and its invocation which defines prevAct—which is
precisely the job of the node parsing pass. Multiple invocations of a node
cause its body to be inlined multiple times, but the parsing pass simply ignores
them if a node with a specific name has already been encountered.
Since functions may be partially applied, the arguments must be registered

as they are received. Moreover, once all the arguments have been provided
the resulting stream must be registered as one resulting from a node call. To
achieve this, we shall wrap the function used to create a node inside another
function which has the same type, but is also equipped with the ability to
register the arguments and the result. This sneaky behavior is implemented
by the node combinator.
The functions argDef and resDef (see Figure 4) provide an interface for

registering arguments and result of a node. The instances Arg (Stream a) and
Res (Stream a) allow a stream to be registered as an argument or a result
respectively. Their implementation is similar to letDef . Additionally, a pair of
arguments can also be registered by applying argDef on both components
of the pair. As we shall see shortly, this instance has to do with registering
multiple arguments.

3. Towards Secure IoT Programming in Haskell

108

class Arg a where
argDef :: String → a→ Haski a

class Res a where
resDef :: String → a→ Haski a

instance Arg (Stream a) where ...
instance (Arg a,Arg b) ⇒ Arg (a, b) where ...
instance Res (Stream a) where ...

Fig. 4. Interface used to register a node call

The combinator node is implemented by “boxing” the given function using
a class Box which is overloaded in the return type of the function. It has two
instances, Box (Haski b) for the base case where the function receives a single
argument, and Box (b→ c) for the inductive case where the function receives
more than one argument.

class Box b where
node :: Arg a⇒ String → (a→ b) → (a→ b)

instance (Res b) ⇒ Box (Haski b) where
node name f = λe→ do

x ′← argDef name e

r ← f x ′

r ′← resDef name r

return r ′

instance (Arg b, Box c) ⇒ Box (b→ c) where
node name f = curry (node name (uncurry f))

In the base case instance Box (Haski b), the function f has the type a →
Haski b. To box this function, we register the argument using argDef and call
the function with the result of the registration. This substitutes the occur-
rences of the argument in the body of the function with the variable returned
by argDef . Finally we register the result of the function using resDef and
return the corresponding definition.
For the inductive case, observe that we need to box a function f ::a→ (b→

c), and the instance declaration provides us instances of Arg b and Box c as

109

the induction hypotheses. Additionally, we are also given an instance Arg a
by the declaration of the function node. The instances Arg a and Arg b yield
an instance for Arg (a, b). Thus, using instances Arg (a, b) and Box c, we can
box the function f by currying it, and then uncurrying back to return the
desired result.

5 Information-Flow Control
Haskell is well-known for providing information-flow control (IFC) through
security libraries. These libraries ensure that code written using their API does
not reveal secrets to unauthorized parties. Many of the existing (monadic)
security libraries (e.g., SecLib [32], LIO [36], MAC [31], and HLIO [10]) are
designed forwriting secure code. In this work, however, we consider a different
scenario where we would like to extend an existing DSL to provide IFC security
while minimizing changes to existing code. Following this goal leads us to
the design of an IFC enforcement where security checks are performed at
code-generation time rather than at runtime (like in LIO) or type-checking
time (like in MAC). In this section, we give a brief overview of IFC and explain
the design choices of our IFC enforcement for Haski.

5.1 Security Lattices

IFC policies enforced by Haski are specified by a security lattice [15], which
defines a partial order between security levels (labels). These labels represent
the sensitivity of program inputs and outputs and the order between them
dictates which flows of information are allowed in a program. Concretely, we
write ℓ1 ⊑ ℓ2 if data at security level ℓ1 can flow to data ℓ2 according to the
security lattice. For example, the classic two-point lattice L = ({L,H }, ⊑)
classifies data as either public (L) or secret (H) and only prohibits sending
secret inputs into public outputs, i.e., H ̸⊑ L.

5.2 Enforcement Design

We design a coarse-grained IFC enforcement [30], where developers only
provide label annotations to security-relevant streams—rather than labeling
every stream in a program. A labeled stream of type LStream is implemented
by associating a stream expression with its label as follows.

3. Towards Secure IoT Programming in Haskell

110

-- Labeled streams
data LStream a

-- Manipulation of labeled streams
labelOf :: LStream a→ Label
label :: Label → Stream a→ Haski (LStream a)
unlabel :: LStream a→ Haski (Stream a)

-- Current label
getLabel :: Haski a→ Haski Label

-- Label creep avoidance
toLabeled :: Haski (Stream a) → Haski (LStream a)

Fig. 5. IFC interface for Haski

data LStream a = LStream {getLabel :: Label, getStr :: Stream a}

The type LStream acts as an opaque container since its implementation is
not exposed to the programmer. For instance, the labeled stream LStream
Halexa (val 42) is a constant stream that is confidential to the smart house
controller Halexa .
Figure 5 shows Haski’s IFC interface, which provides primitives to manip-

ulate labeled streams while avoiding information leakage. Function labelOf
obtains the label associated with a labeled stream. To understand the rest of
the primitives, we need to introduce the concept of a floating label.
Every line in the Haski monad is associated with a special label known

as the floating label (denoted by ℓf), which “floats above” the label of any
observed stream during program execution, and thus represents an upper-
bound on the sensitivity of all the streams in scope. The floating label is
tracked in the state of the Haski monad:

data HaskiSt = HaskiSt {defs :: [Def], ℓf :: Label, ... }

In order to enforce IFC policies, Haski regulates the interaction between
Haski programs and labeled streams. Haski programs cannot write and read
labeled streams directly, but must use the primitives in Figure 5. Let us discuss
the implementation of these primitives next.

111

5.3 Implementing Labeling Primitives

The labeling primitives create and read labeled streams in compliance with
specific security rules to avoid information leakage [4].
The primitive label labels a stream with a given label and does not affect

the floating label of the program. Its implementation ensures that a desired
label ℓ is at least the floating label of the program, i.e., ℓf ⊑ ℓ, thus enforcing
a no write-down policy. Intuitively, label creates a labeled stream as long as
the decision to do so depends on less sensitive data. For example, given ℓf = L,
the invocation label H s (for some s :: Stream Int, for instance) is legal since
ℓf ⊑ H . This means that a program which has read sensitive data cannot
write public information in an attempt to leak it. If this criteria is not met, label
inserts an error using fail in the Haski monad, thus crashing compilation.
The primitive unlabel acts as the dual of label and extracts the stream

underlying a labeled stream. Unlike label, however, unlabel never crashes
compilation and always succeeds. Instead, an invocation of unlabel on a
stream sl with label ℓ raises the floating label of the program to ℓf ⊔ ℓ.
Haski, as any other floating-label based IFC systems, suffers from the label

creep problem. Unlabeling sensitive streams raises the floating label of the pro-
gram, and hence a program which reads many sensitive streams risks raising
its level to a point where it may not be able to produce any observable result.
This problem is remedied using the toLabeled primitive, which addresses it
by (i) creating a separate context where some sensitive computation can take
place and (ii) restoring the original floating label afterwards.
The argument of toLabeled is a sensitive computation of typeHaski (Stream a),

that cannot return its result to the outer context—since that would be a leak.
Instead, toLabeled wraps the result in a labeled stream using the floating label
resulting from the execution of the sensitive computation. Unlike unlabel,
toLabeled produces a labeled stream of type LStream a and its invocation
does not affect the floating label. An invocation of toLabeled never crashes
compilation.

5.4 Running Programs Securely

DC-labels Haski uses DC-labels [35], which is an expressive label format
that can capture the security concerns of principals. DC-labels are pairs of

3. Towards Secure IoT Programming in Haskell

112

<C1, I1>⊑<C2, I2>⇐⇒ (C2 ⇒ C1) ∧ (I1 ⇒ I2)

<C1, I1> ⊔ <C2, I2>⇐⇒ <C1 ∧ C2, I1 ∨ I2>

<C1, I1> ⊓ <C2, I2>⇐⇒ <C1 ∨ C2, I1 ∧ I2> ⊥ ≡<True, False>

⊤ ≡<False, True>

Fig. 6. DC-labels semantics

confidentiality and integrity policies, noted <C, I> where C is the confiden-
tiality policy and I is the integrity one. Both policies are positive propositional
formulas in conjunctive normal form (CNF), where propositional constants
represent principals. We assume that operations on formulas always reduce
their results to CNF. For simplicity, we focus on confidentiality since the
integrity part comes as a dual of it. Given two confidentiality policies C1 and
C2, we interpret <C1, I > ⊑ <C2, I > as: C2 is at least as confidential as C1.
For instance, <Halexa ∨ Octavius, I> ⊑ <Octavius, I>, which means that
data readable by either Halexa or the Octavius is less confidential than data
readable only by the Octavius. In contrast, given two integrity policies I1 and
I2, we interpret <C, I1> ⊑ <C, I2> as: I1 is more trustworthy than I2, i.e., there
are more principals taking responsibility for the data labeled with I1 than
with I2. For instance, <C,Octavius ∧ Halexa> ⊑ <C,Halexa>, which means
that Halexa and the Octavius are jointly responsible for the data, which is
more trustworthy than data only vouched by Octavius. Figure 6 presents the
formalization of operations we will use in the rest of this section together with
the definition of ⊔ and ⊓ in the security lattice. With DC-labels in place, we
can associate the different components of our system to different principals,
thus enabling them to impose different restrictions on the confidentiality and
integrity of data.

Configuring security policies A Haski program that returns a stream (labeled
or not) can be run using the runAs function on behalf of a principal. This
function is intended to be used by an administrator who compiles a Haski
program and assigns the right privilege to it—we assume that the administrator
is part of the trusted computing base. Function runAs is defined as follows:

113

class IsStream f where

runAs :: Haski (f a) → Principal → Haski (Label, Stream a)

The result of the Haski (f a) argument is overloaded in f to allow for both
labeled and unlabeled streams to be returned. The Principal argument is used
to set the initial floating label of the Haski computation and denotes the
source of authority, i.e., the entity, that this program represents. For example,
runAs prog "Halexa" runs a computation on behalf of Halexa with the DC-
label <Halexa,Halexa>. As a result, any stream that is labeled by prog will
contain Halexa in both the confidentiality and integrity components of its
label—which means that the stream is confidential to Halexa, and also that
Halexa has contributed to its content.
The runAs function returns a label that corresponds to the final floating

label of the computation joined with the label of its result, alongwith the result
that it returns. The returned label is intended to be used by the administrator
to enforce application-specific security policies. Observe that the result is an
unlabeled stream. This is due to the fact that runAs is run by the administrator,
i.e., a person that we trust, so there is no need to protect the resulting stream
by labeling it.
We implement the runAs function using the toLabeled primitive. This is

because toLabeled allows us to create a separate context for the program to be
run in, and restore the floating label of the administrator prior to execution.
Restoring the floating label of the administrator allows the administrator to
run programs on behalf of various principals without getting tainted by them.
Here is the Stream instance which implements runAs for computations that
return expressions.

instance IsStream Stream where
runAs prog princ = do
(LStream ℓ res) ← toLabeled $ do

setLabel (newDCLabel princ princ)
prog

return (ℓ, res)

Function setLabel can only be used by the administrator and it is part of
the trusted computed base, i.e., it is present in the IFC interface exposed to

3. Towards Secure IoT Programming in Haskell

114

type Status = Maybe Action
data WindowOp = Skip | Open | Close
halexa :: Stream Int → LStream Status

→ Haski (LStream WindowOp)
halexa = node "halexa" $ λtemp statl → do

isHot ← letDef $ temp ‘gtE‘ 30
toLabeled $ do

stat ← unlabel statl
pastAct ← (stat ‘match‘mkReq) >>= cache
recentAct ← stat ‘match‘ (maybe pastAct val)
dec ← recentAct ‘match‘ λcase

Left → val Close
Entered → ifte isHot (val Open) (val Skip)

return dec
where

mkReq :: Status→ Stream Req
mkReq Nothing = val Read
mkReq (Just x) = val (Write x)

Fig. 7. Implementation of Halexa

developers. The function newDCLabel creates a label from the given principal
by using it for both the confidentiality and integrity components.
The instance for the case of labeled expressions is implemented in turn

using the above instance by simply unlabeling the result.

instance IsStream LStream where
runAs prog princ = runAs (prog >>= unlabel) princ

The intended effect of this implementation is for the resulting label to be
ℓ ⊔ ℓf, where ℓf is the floating label of prog at the end of its execution, and ℓ
is the label of its result.

6 A Sample Application
In this section we illustrate the structure of the Halexa application and its
security policy in Haski. The purpose of our application is to make a decision
on opening a window, based on the current temperature in the house and

115

the status of the user Octavius. Halexa is expected to open the window when
the temperature in the room is over 30◦C provided Octavius is at home. If
Octavius is not home, however, Halexa must close the window regardless of
the temperature. We consider the status of Octavius sensitive information
and thus require Halexa to confine the status and any information derived
from it. That is, the status should not be used to build streams less sensitive
than the DC-label <Octavius,Octavius>.
We model Halexa as a node which accepts two streams as arguments (see

Figure 7): one of type Stream Int for the temperature reading, and another of
type LStream Status for a labeled stream of notifications which notify Halexa
about the actions of Octavius. The notifications specify whether Octavius has
left (Just Left), entered (Just Entered), or that there is no change in status
(Nothing). In response, the node returns a stream of instructions denoted by
Stream WindowOp which instructs whether the window should be opened
(Open), closed (Close), or whether nothing should be done (Skip). In essence,
we implement Halexa using the toLabeled primitive to unlabel the labeled
stream statl , thus ensuring that Halexa does not read its contents.
To understand the logic of the implementation, notice that a status stream

stat need not contain any update in Octavius’s action since it may be Nothing.
Hence it is up to us to compute the whereabouts of Octavius from the most
recently observed action. We compute this in the stream recentAct as follows:
if the current value of stat is Nothing then use the last available action of the
user (given by pastAct), else simply use the action given by stat. The stream
pastAct retains the last action of the user using the cache node from earlier.
Finally, we define a decision stream by matching on the recentAct stream,
which produces the desired result. The combinator ifte is simply a shortened
version of a match expression which pattern matches on True and False.
An administrator who wishes to run Halexa must provide the appropriate

input streams to the node and assign the right policies using the function
runAs. One such implementation is the following.

admin :: Haski (Stream WindowOp)
admin = do

temp← ...
status← ...

3. Towards Secure IoT Programming in Haskell

116

statusl ← label ℓo status

(res, ℓ) ← runAs (halexa temp statusl) (princ "Halexa")
unless (ℓ ⊑ (ℓo ⊔ ℓh)) (fail "Bad Halexa")
return res

where
ℓo = newDCLabel "Oct" "Oct"

ℓh = newDCLabel "Halexa" "Halexa"

The security policy unless... in admin asserts that the resulting label must
at most be a combination (⊔) of the labels of Octavius and Halexa. A simple
case of obtaining the inputs would be to simply use fresh variables to define
streams temp and status, which are then later initiated by the runtime. For
a more realistic system, however, we require a way to obtain streams from
entities outside of a Haski program. We discuss one possibility to address this
requirement via bluetooth in the next section.

7 Reacting to Streams Outside of Haski
A typical IoT application communicates with several other applications and
reacts to triggers which may originate from remote devices. To use Haski
to build more realistic applications, it is important to enable streams to be
provided by external sources. In this section, we consider the case of obtaining
streams from remote devices via Bluetooth, which is a common means of
communication in low power IoT devices. We manage to run Halexa by
creating a small C runtime around the code generated by Haski. In essence,
the runtime obtains the temp and status streams from earlier via the Bluetooth
Low-Energy (BLE) API of Zephyr OS on the nrf52840DK board using the
techniques discussed here with some manual intervention.

7.1 Briefly about Bluetooth Low Energy

The Bluetooth component we target uses the BLE stack on Zephyr OS4, where
the most common way that data flows through a BLE application is through
a Generic Attribute Profile (GATT) server. Specifically, a device that has some
data it wishes to make available to other devices will take the role of a GATT

4https://www.zephyrproject.org/

117

server. It will organise the data it has as characteristics that belong to services.
As an example, a device might expose a biometrics service which in turn
exposes the heart rate characteristic and the temperature characteristic.
A remote device that wishes to access or modify these values will take the

role of a GATT client. A GATT client will initiate a connection to a GATT
server, after which it scans for services and characteristics. Depending on
the server configuration the client can update a remote characteristic, read a
characteristic or subscribe to be notified about changes to a characteristic.

7.2 Preparing Halexa for Foreign Streams

AHaski program works on streams, yet the APIs we want to use in Zephyr OS
use commands and callback functions. These need to be connected somehow.
For example, the Bluetooth API contains a function called bt_gatt_subscribe

that is used to register a callback function whenever a message is received
from a specified device. In Haski, when we subscribe to a device, we do not
provide a callback function, but we receive a Haski stream instead:

btGattSubscribe :: DeviceID→ Haski (Stream a)

So, for example, in order to connect the Halexa example from the previous sec-
tion to the devices tempSensor and motionSensor , we can write the following
code:

temp ← btGattSubscribe tempSensor

status← btGattSubscribe motionSensor

...

The compilation process will then generate an invocation of the C function
bt_gatt_subscribe in the generated code and registers a callback to the step
function—which is generated for every node—of Halexa. This means that the
step function is called every time the devices tempSensor and motionSensor
provide an update. Since the step function receives two arguments and the
devices only produce one of them at a time, the step function is called with a
default argument for the other. For example, the value of the status stream is
Nothing when tempSensor provides an update.

3. Towards Secure IoT Programming in Haskell

118

7.3 The Halexa GATT Client

The BLE code that ties together the Halexa example with the remote temper-
ature and the motion sensor assumes the role of a GATT client. The GATT
client will scan for remote devices by calling the bt_le_scan_start BLE API
function. The following function signatures have been simplified and rewrit-
ten in Haskell notation, andmany less interesting functions have been omitted.
The actual C versions of the API functions can be found in Appendix A.1.

bt_le_scan_start :: ScanParams

→ (RemoteDeviceInfo→ Int) → Int

The second argument is a function that will be invoked when a device has
been found. Once a remote device is found, a connection will be initiated with
bt_conn_le_create.

bt_conn_le_create :: RemoteAddress

→ CreateParams→ ConnectionParams

→ Connection→ Int

When the connection has been established, we will scan it for the services it
exposes. We expect to discover, e.g., the temperature service. To do this, we
need to create some discovery parameters and then invoke bt_gatt_discover .

bt_gatt_discover :: Connection→ DiscoverParams→ Int

A subexpression of DiscoverParams is a function that will be called when a
service have been discovered. This function will subscribe to a found service
by invoking bt_gatt_subscribe. This will make sure that Halexa is notified
about any changes to the remote temperature value.

bt_gatt_subscribe :: Connection→ SubscribeParams→ Int

The SubscribeParams contain a function that will be called every time a noti-
fication is received. The function will be invoked with values describing the
connection that issued the notification as well as the actual payload.
Recollect from earlier that a node in Haski is compiled to step function in C

which is invoked in response to the availability of its arguments. Compiling
Halexa from the previous section generates a corresponding step function
halexa_step. This function has the following signature.

119

Enum halexa_step (struct halexa_mem ∗ self ,
int temp, Enum motion)

In addition to this function, compilingHalexa also generates a struct halexa_mem,
an instance of which is provided as the argument self to function halexa_step.
This argument maintains the internal state of the stream returned by Halexa.

struct halexa_mem { ... };

For every call of a node in a Haski program, an instance of such a struct is
initialized globally before the first invocation, and passed as an argument to
every subsequent invocation of the correponding step function. For Halexa,
initialization is done as follows.

/∗ Global definition ∗/
struct halexa_mem ∗mem;
...

/∗ Evaluated by main ∗/
mem = k_malloc (sizeof (struct halexa_mem));

Using these definitions we build a function that is registered as a callback
to be invoked whenever the BLE application receives, for example, a new
temperature reading (as shown below).

static u8_t notify_temperature (..., const void ∗ data) {
...

int ∗ temperature = (int∗) data ;
...

halexa_step (mem, ∗temperature,NOTHING);
...

}

We invoke the function halexa_step with its internal memory mem, which
stores the internal state of the node. Notice that we pass NOTHING, a rep-
resentation of the corresponding Haskell value, for the status stream here.
This is because the function notify_temperature is invoked in response to the
temperature sensor, which does not provide a status update. A similar callback

3. Towards Secure IoT Programming in Haskell

120

function must be registered for the status stream by invoking halexa_step
with a default temperature reading.
We emphasize that the small C runtime we implemented here is tailored to

BLE and it requires some manual intervention to make the coupling between
the generated code by Haski and Zephyr OS’s API—we leave as future work
to devise an automatic mechanism to do that.

7.4 Going Forward

The attentive reader might have paused to think while reading the previous
section. The previous section describes how we compile a synchronous pro-
gramming language to a target which uses callbacks and events instead of
streams. It is not immediately obvious how to do this automatically. This
discrepancy leads to the need for manual intervention when connecting the
generated code to the outside world via BLE.
There are a few questions that need to be addressed in future work to bridge

this gap. How is a continuous stream created from the sporadic events given
to a callback function by the outside world? How do you compile a Haski
node and dynamically register and unregister it as a callback?
We believe nicely generalising this is possible, and leave this and more

questions as future work.

8 Related Work
Synchronous languages The seminal work of Lustre [12] (sometimes called

"classical Lustre") shows how a declarative synchronous programming style
can benefit from memory and computational time bounds. Lustre’s ideas have
been applied in a wide-range of scenarios ranging from hardware design (e.g.,
[7]) to real-time reactive systems (e.g., [29]).
Haski is based on a variation of classical Lustre from Biernacki et al. [6], the

semantics of which has been formalized and verified by Auger et al. [1] and
Bourke et al. [8]. The main difference between classical Lustre and the variant
used by Haski is the absence of the current operator and the addition of the
merge and reset operators. For a more detailed discussion on the differences,
see Bourke et al. [8]. Haski does not (yet) implement the reset operator.

121

A notable implementation of Lustre that is closely related to ours is Lucid
Synchrone [11]. Lucid Synchrone uses OCaml as the host language and allows
a rich programming interface with many higher-order features of OCaml.
Unlike Haski, it allows pattern matching on complex data types (e.g., streams
of functions) that are not limited to finitely enumerable types. Naturally,
the richer features offered by Lucid Synchrone also place higher demands
from the runtime system, such as the need for a garbage collector. Haski, on
the other hand, targets memory constrained IoT devices and thus strives to
keep the runtime system minimal. The code generated by compiling a Haski
program can be executed with a fixed amount of memory and does not require
garbage collection.

Functional Reactive Programming Functional Reactive Programming (FRP)
[16] is a programming style for programming asynchronous reactive systems.
Unlike Lustre, it has the convenience of incorporating higher-order functions
at the price of possibly introducing memory leaks—as noticed and addressed
in subsequent work (e.g., [3, 14, 38]). Haski does not support higher-order
functions as first class values, but enables developers to utilize them to build
first-order Lustre programs. The staged programming approach ensures that
all higher-order functions are eliminated at compile time, thus removing the
need to address space leaks which may be caused by them.

Code generation for C We are not the first ones to propose an eDSL in
Haskell for generating memory safe C code. Closest to our work is Copilot
[28], an eDSL for stream-based programming for avionics. While Copilot
provides similar guarantees on the generated code w.r.t. constant space and
execution time, Haski presents a different programming experience (e.g., a
monadic interface) as well as IFC security features. Haskino [19] is an eDSL
to write programs to be run in an Arduino board while supporting a light-
weight notion of threads. Like Haski, Haskino deploys the generated C code
into a custom made runtime. Feldspar [2] is a DSL for describing digital
signal processing algorithms in Haskell and generate C code. Ivory [17] is
an advanced DSL for writing memory-safe C code within Haskell. It uses a
simple notion of memory regions and also provides access control security
checks to restrict side-effects in the generated C-code.

3. Towards Secure IoT Programming in Haskell

122

Language-based security for IoT Pyronia [23] provides access control and IFC
for embedded devices written in Python. Pyronia runs under a custom-made
runtime responsible to perform system call interposition, call stack inspection,
and memory protection. Such modification are required to ensure that Python,
where by design data is public, can safely execute and interact with C programs.
In contrast, Haskell provides good abstractions to deliver a pure language-
based IFC solution [31, 32, 36], which enables Haski to not require special
runtimes and run on commodity IoT OSes. SainT [13] delivers an static IFC
analysis for commodity SmartThings apps. SainT builds an intermediate
representation for Groovy (object-oriented) SmartThings programs, where
IFC checks are carried out. SainT targets legacy code while Haski provides
security by construction using a coarse-grained IFC approach. Hence, SainT
needs to extend the semantics of Groovy commands to reason about IFC.
Instead, Haski provides modular security types (LStream) and primitives (e.g.,
label and unlabel) atop of our synchronous language. Velox VM [37] provides
a Scheme virtual machine for constrained devices. Every app run by the VM
has an associated access control policy file, which is used to restrict apps from
accessing sensitive data and resource usage. As future work, Haski could
integrate resource usage control as done by Velox VM.

Haskell security libraries The closest Haskell IFC libraries to our approach
are LIO [31], HLIO [10], and MAC [36]. Our approach to enforce IFC at
compile-time leads us to a new design space, where our API is a simplified
version of the LIO’s one due to executing the analysis at compile-time. More
specifically, LIO takes an extra parameter in toLabeled to avoid leakage via
labels [9], which Haski does not suffer from due to its static (compile-time)
approach. Compared with HLIO and MAC, Haski is static but does not rely on
Haskell’s type-system for security checks but rather on the Haski compiler.
Generally speaking, Haski’s IFC API is a static, simplified, version of LIO’s
API while not going all the way to HLIO or MAC—it is something in between.

9 Final Remarks
We have presented Haski, a Haskell eDSL for writing software in embedded
devices. Haski generates C code withmemory consumption guarantees as well
as information-flow security thanks to the many program analyses realized

123

by the compiler. We showcase that Haski programs can be easily integrated
with a realistic runtime like the BLE in Zephyr OS. We expect this work to be
a foundation to build IoT applications that leverage, not only BLE, but most of
the underlying embeddedOS functionality while providing security properties.
Furthermore, we leave as future work to adapt our eDSL to allow users to be
“in the loop” when relaxing IFC restrictions, e.g., to enable opening windows
when the user is not home or to allow sending occupancy information to
a security monitor firm. The Haski core development5 (excluding the BLE
runtime) currently consists of about 2600 lines of Haskell code.

In Retrospect
A missing element in this proposal is that it’s unclear whether the Lustre
primitives implemented by the eDSL, or the security solution offered by the
paper are sufficient and practical to program real world IoT applications.
Much remains in the scope of future work.

A Appendix
A.1 BLE API in C

In Section 7, the signatures of functions in the BLE API of Zephyr OS were
rendered as Haskell types for the sake of brevity. Below, we show the original
signatures for these methods in C.

int bt_le_scan_start (const struct bt_le_scan_param ∗ param,
bt_le_scan_cb_t device_found)

int bt_conn_le_create (const bt_addr_le_t ∗ peer,
const struct bt_conn_le_create_param ∗ create_param,
const struct bt_le_conn_para ∗ conn_param,
struct bt_conn ∗ conn)

int bt_gatt_discover (struct bt_conn ∗ conn,
struct bt_gatt_discover_params ∗ params)

int bt_gatt_subscribe (struct bt_conn ∗ conn,
struct bt_gatt_subscribe_params ∗ params)

5https://github.com/OctopiChalmers/haski

3. Towards Secure IoT Programming in Haskell

124

References
[1] Cédric Auger, J. L. Colaco, Grégoire Hamon, and Marc Pouzet. 2012. A Formalization and

Proof of a Modular Lustre Compiler.
[2] Emil Axelsson, Koen Claessen, Gergely Dévai, Zoltán Horváth, Karin Keijzer, Bo Ly-

ckegård, Anders Persson, Mary Sheeran, Josef Svenningsson, and András Vajda. 2010.
Feldspar: A domain specific language for digital signal processing algorithms. In 8th
ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEM-
OCODE 2010). 169–178.

[3] Patrick Bahr, Christian Graulund, and Rasmus Ejlers Møgelberg. 2019. Simply RaTT:
a fitch-style modal calculus for reactive programming without space leaks. Proc. ACM
Program. Lang. 3, ICFP (2019).

[4] David E. Bell and L. La Padula. 1976. Secure Computer System: Unified Exposition and
Multics Interpretation. Technical Report MTR-2997, Rev. 1. MITRE Corporation, Bedford,
MA.

[5] Elisa Bertino and Nayeem Islam. 2017. Botnets and Internet of Things Security. IEEE
Computer 50, 2 (2017), 76–79.

[6] Dariusz Biernacki, Jean-Louis Colaço, Gregoire Hamon, and Marc Pouzet. 2008. Clock-
directed modular code generation for synchronous data-flow languages. In Proceedings of
the 2008 ACM SIGPLAN-SIGBED conference on Languages, compilers, and tools for embedded
systems. 121–130.

[7] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998. Lava: Hardware Design
in Haskell. In Proceedings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP ’98).

[8] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and
Lionel Rieg. 2017. A formally verified compiler for Lustre. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 586–601.

[9] Pablo Buiras, Deian Stefan, and Alejandro Russo. 2014. On Dynamic Flow-Sensitive
Floating-Label Systems. In IEEE Computer Security Foundations Symposium, CSF. 65–79.

[10] P. Buiras, D. Vytiniotis, and A. Russo. 2015. HLIO: Mixing Static and Dynamic Typing
for Information-Flow Control in Haskell. In Proc. of the ACM SIGPLAN International
Conference on Functional Programming (ICFP ’15). ACM.

[11] Paul Caspi, Grégoire Hamon, and Marc Pouzet. 2008. Synchronous functional program-
ming: The lucid synchrone experiment. Real-Time Systems: Description and Verification
Techniques: Theory and Tools. Hermes (2008), 28–41.

[12] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. 1987. Lustre: A Declarative
Language for Programming Synchronous Systems. In Conference Record of the Fourteenth
Annual ACM Symposium on Principles of Programming Languages.

[13] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan, Patrick D.
McDaniel, and A. Selcuk Uluagac. 2018. Sensitive Information Tracking in Commodity
IoT. In USENIX Security.

125

[14] Antony Courtney, Henrik Nilsson, and John Peterson. 2003. The Yampa arcade. In Proc.
of the ACM SIGPLAN Workshop on Haskell. 7–18.

[15] D. E. Denning and P. J. Denning. 1977. Certification of Programs for Secure Information
Flow. Commun. ACM 20, 7 (July 1977), 504–513.

[16] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In Proc. of the ACM
SIGPLAN International Conference on Functional Programming. 263–273.

[17] Trevor Elliott, Lee Pike, Simon Winwood, Patrick C. Hickey, James Bielman, Jamey Sharp,
Eric L. Seidel, and John Launchbury. 2015. Guilt free ivory. In Proc. of the ACM SIGPLAN
Symposium on Haskell. 189–200.

[18] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security Analysis of Emerging
Smart Home Applications. In IEEE Symposium on Security and Privacy, SP. 636–654.

[19] Mark Grebe and Andy Gill. 2016. Threading the Arduino with Haskell. In Trends in
Functional Programming - 17th International Conference, TFP. 135–154.

[20] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The synchro-
nous data flow programming language LUSTRE. Proc. IEEE 79, 9 (1991), 1305–1320.

[21] P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv. 2011. Data Representation
Synthesis. In Proc. ACMConference on Programming Language Design and Implementation.

[22] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, Inc., USA.

[23] Marcela S. Melara, David H. Liu, and Michael J. Freedman. 2019. Pyronia: Redesign-
ing Least Privilege and Isolation for the Age of IoT. CoRR abs/1903.01950 (2019).
arXiv:1903.01950 http://arxiv.org/abs/1903.01950

[24] Agustin Mista and Alejandro Russo. 2020. BinderAnn: Automated Reification of Source
Annotations for Monadic EDSLs. In 21st International Symposium on Trends in Functional
Programming, TFP.

[25] Shayan Najd and Simon Peyton Jones. 2017. Trees that Grow. Journal of Universal
Computer Science 23, 1 (2017), 42–62.

[26] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn.
2006. Simple unification-based type inference for GADTs. In Proc. of the ACM SIGPLAN
International Conference on Functional Programming, ICFP.

[27] Matthew Pickering, Gergo Érdi, Simon Peyton Jones, and Richard A. Eisenberg. 2016.
Pattern synonyms. In Proc. of the 9th International Symposium on Haskell, Haskell 2016.

[28] Lee Pike, Nis Wegmann, Sebastian Niller, and Alwyn Goodloe. 2013. Copilot: monitoring
embedded systems. ISSE 9, 4 (2013), 235–255.

[29] Jie Qian, Jing Liu, Xiang Chen, and Junfeng Sun. 2015. Modeling and Verification of Zone
Controller: The SCADE Experience in China’s Railway Systems. In 1st IEEE/ACM Inter-
national Workshop on Complex Faults and Failures in Large Software Systems, COUFLESS
2015. 48–54.

[30] Vineet Rajani and Deepak Garg. 2018. Types for information flow control: Labeling gran-
ularity and semantic models. In 2018 IEEE 31st Computer Security Foundations Symposium
(CSF). IEEE, 233–246.

3. Towards Secure IoT Programming in Haskell

126

[31] A. Russo. 2015. Functional Pearl: Two Can Keep a Secret, if One of Them Uses Haskell.
In Proc. of the ACM SIGPLAN International Conference on Functional Programming (ICFP
2015). ACM.

[32] A. Russo, K. Claessen, and J. Hughes. 2008. A library for light-weight information-flow
security in Haskell. In Proc. ACM SIGPLAN symposium on Haskell (HASKELL ’08). ACM.

[33] A. Sabelfeld and A. C. Myers. 2003. Language-Based Information-Flow Security. IEEE J.
Selected Areas in Communications 21, 1 (Jan. 2003), 5–19.

[34] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2018. Situational Access Control in
the Internet of Things. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS.

[35] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. 2011. Disjunction Category Labels.
In Proc. of the Nordic Conference on Information Security Technology for Applications
(NORDSEC ’11). Springer-Verlag.

[36] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. 2011. Flexible Dynamic Information
Flow Control in Haskell. In Proc. of the ACM SIGPLAN Haskell symposium (HASKELL
’11).

[37] Nicolas Tsiftes and Thiemo Voigt. 2018. Velox VM: A safe execution environment for
resource-constrained IoT applications. J. Netw. Comput. Appl. 118 (2018).

[38] Atze van der Ploeg and Koen Claessen. 2015. Practical principled FRP: forget the past,
change the future, FRPNow!. In Proc. of the ACM SIGPLAN International Conference on
Functional Programming, ICFP. 302–314.

[39] QiWang, Wajih Ul Hassan, Adam Bates, and Carl A. Gunter. 2018. Fear and Logging in the
Internet of Things. In 25th Annual Network and Distributed System Security Symposium,
NDSS.

[40] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytinio-
tis, and José Pedro Magalhães. 2012. Giving Haskell a Promotion. In Proc. of the 8th ACM
SIGPLAN Workshop on Types in Language Design and Implementation (TLDI ’12). ACM.

127

	Introduction
	Bibliography
	Exponential Elimination for Categorical Combinators
	Simple Noninterference by Normalization
	Towards Secure IoT Programming in Haskell

