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Abstract

Spectroscopy at terahertz frequencies can be used in a wide range of ap-
plications including radio-astronomy, pharmaceutical manufacturing control,
and the study of processes in molecular biology. Biomolecular samples should
preferably be studied in their native environment, water, however, water poses
extreme attenuation for THz-frequency waves, deteriorating or even impeding
analysis using these waves. The most common THz spectroscopy method,
time-domain spectroscopy, can measure water samples using free-space mea-
surements, lacks sensitivity when trying to measure on a chip environment.
To exploit the advantages that chip measurements offer, such as integration
and cost, this thesis works on developing on-chip THz spectroscopy of aqueous
samples using a frequency-domain approach, with vector network analysers.
Vector network analysers exhibit a higher dynamic range than time-domain
spectroscopy systems, making them a promising alternative for sensitive THz
measurements. For maximising the sensitivity of the measurements, the losses
must be minimised. One important source of losses at THz frequencies are
conductor and radiation loss. In this thesis, two planar waveguides were de-
signed, coplanar waveguide and planar Goubau line, minimising their losses
at THz frequencies by avoiding the coupling to other parasitic modes, obtain-
ing attenuation constants as low as 0.85 Np/mm for coplanar waveguide and
0.33Np/mm for planar Goubau line. Additionally, planar Goubau line cal-
ibration structures were developed for setting the measurement plane along
this planar waveguide. Finally, coplanar waveguides were integrated with mi-
crofluidic channels to perform spectroscopy measurements of water samples,
showing good performances as THz sensors of high-loss liquids.

This thesis is a first step towards a sensitive and miniaturised system for
measuring the electrical properties of high-loss liquids, which could shed light
on the fundamental biomolecular processes in the picosecond time-scale.

Keywords: Chip, coplanar waveguides (CPW), isopropyl alcohol (IPA), lig-
uids, material properties, microfluidic channels, on-wafer measurements, di-
electric permittivity, planar Goubau line, Through-Reflect-Line (TRL) cali-
bration, scattering parameters, terahertz spectroscopy, vector network ana-
lyzers (VNA), water
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CHAPTER 1

Introduction

Terahertz (THz) waves, spanning between 0.3 THz and 10 THz in the electro-
magnetic spectrum, lie between the microwave and infrared bands. Tradition-
ally, THz technology has been used in astronomy for detecting light-weight
molecules [1], making this discipline an important driver for THz technology
in the early days. As new instrumentation was developed, the application
of THz waves expanded to many other fields, including high-speed communi-
cations [2], pharmaceutical control [3|, security [4] and medicine and biology
[5].

In the field of biology, THz waves have proven to have a unique inter-
action with biomolecules, since the existence of low-frequency motions of
biomolecules at THz frequencies are believed to play a key role in their biolog-
ical function [6]. Measuring these vibrational modes could give valuable infor-
mation about the conformational dynamics of the biomolecules and could be
used for their study and identification [7], [8]. THz spectroscopy has succeeded
in analysing protein structure dynamics [6], bio-affinity between biomolecules
[9] and characterising genetic material [10], showing high sensitivity while
being label-free. Label-free techniques have the advantage of not needing la-
belling preparatory steps and eliminate the influence of the chemical labels in
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the measured samples [11].

Traditionally, the most extended technique in THz spectroscopy was Time-
Domain Spectroscopy (TDS) [12], with a photonic approach to THz wave
generation. It generates short and coherent THz pulses by pumping a semi-
conductor crystal with femtosecond optical pulses and resolves the magnitude
and phase response in the time domain by using a phase translation. This
method has the advantage of being broadband and having relatively high
dynamic range. However, it has the disadvantage of having typically low
signal-to-noise ratios [13], which limits the minimum detectable signal change
and has a bulky set-up which requires careful alignment of the optical com-
ponents. Despite this, TDS is a method which has succeeded in doing broad-
band THz spectroscopy of high-loss aqueous samples (with losses in the order
of 100dB/mm) in transmission-mode [14], reflection-mode [15], and on-chip
set-ups [16], |[17]. Regardless of their achievements and as a consequence of
an insufficient measurement signal-to-noise ratio (SNR), TDS on-chip setups
could either not resolve samples with a water concentration higher than 60%
at frequencies higher than 0.5 THz [17], or required keeping the sample away
from the region with the most field intensity in the planar waveguide used [16],
deteriorating sensitivity to sample changes. For resolving samples and achieve
higher sensitivities to sample changes, a higher SNR needs to be achieved.

TDS is a mature technology which is not likely to make technological break-
throughs which could offer a drastic enhancement of the SNR of the measure-
ments. However, recent advances in heterodyne technology now allow the
use of the microwave-based approach using vector network analysers (VNA)
in THz spectroscopy measurements. Compared to the photonic-based THz-
TDS, VNAs have higher dynamic range [18], traceability to the International
System of Units [19], first-rate spectral resolution (~ 1Hz), can use calibration
methods [20], and has a relatively compact measurement setup. The down-
side of using VNAs is that its frequency span is limited by the rectangular
waveguide bands at THz frequencies, thus having narrower bandwidths than
THz-TDS for a given setup. In addition to recent VNA developments at THz
frequencies, ground-signal-ground (GSG) RF-probes have been developed up
to 1.1 THz |21] for VNAs, enabling a quick and reliable method for measuring
chips at THz frequencies, and developing integrated solutions. Using contact
probes also has the advantage of being more power-efficient than free-space
coupling of the field into the measured chip. These advantages may give VNA-



based THz spectroscopy higher sensitivity over THz-TDS, could increase the
maximum frequency of these type of devices which have already been studied
at microwaves and millimetre-wave frequencies [22]-]24], and could open new
possibilities for detecting subtle biomolecular changes [25].

This thesis has tackled the challenges of the design, fabrication and mea-
surements of chips used for THz spectroscopy of high-loss aqueous samples
while trying to maximise their sensitivity. For this, two on-chip liquid sensors
based on coplanar waveguide (CPW) and planar Goubau line (PGL) have
been designed, fabricated and compared in the 0.75 THz to 1.1 THz frequency
range. The chips were integrated with microfluidic channels to deliver the
liquid samples to the sensing area and controlling their volume. Both CPW
and PGL were designed to minimise their losses by using ultra-thin substrates
which avoids power leakage to other undesirable substrate modes. Calibration
standards were designed and integrated into the device’s chip for both CPW
and PGL, making it possible to have the measurement plane in each planar
waveguide. No PGL calibration standards existed to the best of the author’s
knowledge, so a wide-band PGL Reflect standard was developed which enables
Through-Reflect-Line calibration in this waveguide. These developments are
a first step towards an integrated and high-sensitivity THz spectroscopy solu-
tion for high-loss aqueous samples.

The thesis begins with a broad background of relevant concepts in chapter
Chapter [3] describes the design and fabrication of the devices, and the sample
characterisation method used. Chapter [ presents measurements validating
the developed PGL calibration standards, loss comparison of the designed
CPW and PGL, and measurements of the CPW as a liquid sample sensor.
Finally, chapter [5| presents conclusions of the thesis and suggestions for future
work.






CHAPTER 2

Background

This chapter describes basic concepts for on-chip THz characterization of lig-
uids. It covers models for material properties (Sec. , THz spectroscopy
and methods (Sec. , uncertainty and calibration techniques of scatter-
ing parameters (Sec. , wave propagation model (Sec. , description of
planar transmission lines (Sec. and single-wire waveguides (Sec. [2.6)), sub-
strate modes (Sec. , and finally extraction techniques of material properties

(Sec. [2:8).

2.1 Modeling of material properties

There are several ways to express the frequency dependence of the electri-
cal properties of materials. Two commonly used models are the Debye and
Lorentz models.

The Debye model expresses the frequency dependence of the permittivity
close to a resonance by describing the permittivity values at the higher, €y,
and lower, ¢;, frequencies and the characteristic relaxation time of the material,
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7. It is given by the equation:

1 1
a _ 1 €] 7 €0
(W) = € + T+ jor (2.1)
In the Lorentz model, the frequency dependence of the permittivity close
to a resonance is characterised with the plasma angular frequency, w,, the
undamped resonant angular frequency, wg, and the damping ratio, {. It is
given by the equation:

2
Wp

=1+ (2.2)

Q|

(wg — w?) + jw(

The properties of a dielectric can also be expressed as the complex refractive
index, 7, which is related to the permittivity as:

A=n'—jr=VeE=y/e - j (2.3)

being n' and k the real and imaginary parts of the refractive index. An
advantage of of the complex refractive index over the complex dielectric per-
mittivity is that the real and imaginary parts of the refractive index, n' and
K, correspond to only phase and magnitude changes, respectively, according
to:

n=—-— (24)

where v = a + jf3 is the propagation constant. In contrast, the assumption
that ¢ corresponds to phase changes and ¢ corresponds to magnitude changes
can only be approximated for low-loss cases.

2.1.1 Permittivity of material mixtures

Given two materials with permittivities €1, and €, it is interesting to model the
permittivity of a mixture, €, versus the volume concentration of, for example,
the first material, v;. Two useful formulas are the Bruggeman equation [26]:

€m — €1 €9 1/3 -1 9
€g — €1 a =lTn ( 5)
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and the Bottcher equation [27]:

(em — €2)(2e,m + €1)
3e(eg — €9)

v = (26)

In the case of mixtures of two polar liquids, such as water and alcohols,
Bruggeman’s equation can be modified to fit mixtures of polar liquids, ac-
cording to equation [28]:

[%*1“2}”3=1_[a_(a—1)v1]v1 (2.7)

€2 — €1 €m

where a is a curve fitting parameter which accounts for the change in the
orientation of the solvent molecules in the mixed solution.

2.2 THz-spectroscopy

Spectroscopy is the study of the interaction between electromagnetic waves
and matter versus frequency. There are several methods for doing THz spec-
troscopy measurements, the three main ones are Fourier-transform spectroscopy,
time-domain spectroscopy (THz-TDS) and continuous-wave spectroscopy.

2.2.1 Fourier-transform spectroscopy

Fourier-transform spectroscopy [29] is a technique which uses interferometry
principles to obtain an interference pattern as a function of the position of a
movable mirror. The interference pattern is then Fourier-transformed into the
absorption spectrum of the sample under test. Far-infrared Fourier-transform
spectroscopy has the advantage of being ultra-wide bandwidth from (sub-
THz to mid-IR), and having high SNR above 3 THz, at least 33dB. [30].
Whereas it has the disadvantages of being a non-coherent method in the far-
infrared spectrum [31], having relatively low dynamic range (~40dB) and
lacking calibration techniques.

2.2.2 THz Time-domain spectroscopy

In THz-TDS, materials are analysed by short THz pulses which are sam-
pled coherently in the time domain. THz pulses are generated by pumping
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a photoconductive switch made with a semiconductor crystal with a short
femtosecond optical pulse [32]. This causes an increase in conductivity in the
crystal, producing a picosecond current pulse which excites an antenna, or it
is coupled into a planar waveguide. The pulse interacts with the sample under
test and is sampled in the time domain by using a delay line which introduces
a variable delay between the pump and probe pulses.

It has the advantages of being a coherent method, having a large bandwidth
of analysis, high dynamic range (~80dB at 1 THz), and capable of frequency
traceability [33]. Some disadvantages are that it consists of a bulky setup,
requires careful alignment of optical elements and purging water vapour from
setup, has low SNR (around 30dB), lacks power traceability[31], and lacks
calibration methods.

2.2.3 Continuous-wave terahertz spectroscopy

In this method, a continuous-wave hits a sample and the reflected or/and
transmitted signals are measured. Continuous-wave spectroscopy can be made
with both optical and electronic approaches. The optical approach uses pho-
tomixers, which focuses two lasers into a semiconductor crystal producing a
THz beatnote, which excites an antenna. It has the advantage of covering
a wide bandwidth from 0.3 THz to 3 THz but has low output power, around
10nW. The electronic approach uses a frequency-swept sinusoidal signal which
is multiplied in frequency obtaining a THz signal and uses heterodyne receivers
for the detection. The most important electronic instrument using the het-
erodyne principle is the vector network analyser (VNA). VINAs characterise
radio-frequency electronics devices in both magnitude and phase of both the
transmitted and reflected waves. It has the advantages of being a coherent
method, having a high dynamic range, high SNR [18], traceability to the in-
ternational system of units |19], capable of using calibration techniques to
move the measurement reference plane [20], and having first-class frequency
resolution. Whereas it has the disadvantage of being limited to rectangu-
lar waveguide bands when measuring at THz frequencies, and that current
technology has a maximum frequency of analysis of 1.5 THz [34]. VNAs gen-
erate THz continuous waves by using frequency multipliers to do a frequency
up-conversion of microwave continuous waves, based on the generation of har-
monics in non-linear devices [35]. As opposed to TDS, VNAs measures in the
frequency domain using a heterodyne detector. The main advantage of the
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heterodyne technique is that a signal can be converted to a lower intermediate
frequency (IF), where the amplifying of the signal and the filtering of the noise
can be done with greater performance, obtaining high SNRs. For example,
when measuring THz signals using VNA can use an IF bandwidth of 50 Hz,
minimising noise power.

2.3 Scattering parameters

At high frequencies, devices are usually characterised by measuring reflected
and transmitted waves, normalised to an incident wave, in a linear and time-
invariant regime. The magnitude and phase relations calculated between a
device’s ports are called scattering parameters, or S-parameters, and are de-
fined as follows:

Vi

oF
V;

Si; = (2.8)

thtj =0

where V; is the reflected wave phasor in port ¢, Vj+ is the incident wave phasor
in port j. Note that this definition requires no incident waves in any other
port other than j. Then, for a two-port S-parameters, we have:

Vi) (S S\ (v
_ | = + (2.9)

Va Sa1 Sz J\ V2
For passive elements, the sum of the power of the reflected and transmitted
waves cannot be higher than the incident wave, thus for a two-port device we

>

=1

have:

Syl =1 forj=1,2 (2.10)

If the two-port device is symmetrical between the ports, then:
Sll = S22 (211)

And if the device doesn’t contain any anisotropic materials it will reciprocal,
and thus:

Current technology allows measuring S-parameters up to 1.5 THz with a
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VNA [34], having rectangular hollow waveguides as output ports, which can
measure waveguide blocks, or free-space measurements using horn antennas.
Because of this, VNA measurements at these frequencies are limited to the
rectangular waveguide bands. It is also possible to perform on-wafer measure-
ments up to 1.1 THz by using ground-signal-ground probes [21], which offer a
power-efficient method for coupling the signals to the chip.

2.3.1 Uncertainty in S-parameter measurements

Expressing complex S-parameters in magnitude and phase is intuitive as mag-
nitude represents the signal attenuation and phase represents the time delay.
But calculating uncertainty in magnitude and phase can introduce systematic
errors in the data analysis for signals with low SNR, and hence S-parameters
should be analyzed in terms of real and imaginary components [36]. The
mean of the real and imaginary parts of the S-parameters can be calculated
according to:

™=

Re(S) = = 3 Re(S))

Il
_

i

(2.13)

™=

Tm(S) = = 3 Im(s,)

I
—

i

and the standard deviations of the real and imaginary parts of the S-
parameters can be calculated according to:

ﬁ i (Re(Si) - M)Q

=1

s(Re(S)) =

(2.14)

(S = | == Z(Im(S m(s))

N

2.3.2 S-parameter calibration techniques

An advantage of S-parameter measurements using a VNA is the capability to
use calibration methods to correct systematic errors of the setup and move the
measurement plane to a point of interest [20], effectively neglecting the effects
of the circuit elements behind the measurement plane. Two-port calibration

10
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methods consist of measuring at least three specific known standards to cal-
culate the response of the circuit elements behind the measurement plane,
which are de-embedded afterwards. Different calibration methods exist, each
of them using different standards for resolving the measurement setup error
parameters. Some commonly used methods are:

o Short-Open-Load-Through (SOLT): a traditional calibration which uses
three reflection standards on each port and one transmission standard
connecting the ports. The calibration plane lies in the location where
standards are attached to the rectangular waveguides. It requires accu-
rate modelling of the four calibration standards.

o Through-Reflect-Line (TRL): it has the advantage of having higher ac-
curacy than SOLT calibration, needing only three calibration standards
and not requiring loads or matches—which are hard to accurately fab-
ricate for THz frequencies—thereby being more suitable for THz fre-
quencies. The calibration plane lies in the middle of the Through stan-
dard, and thus in on-wafer measurements, the probe-tip transition is
de-embedded, making it more accurate than calibrations which do not
[37]. It does not require fully known standards [38] for solving the 12-
term procedure [39], [40]. This method requires having a single mode
propagating in the Through standard [37], and an insertion phase of
the Line standards between 20 and 160 degrees, therefore it would need
several Line standards for bandwidths larger than 8:1. However, several
Line standards can also be used in smaller bandwidths to improve the
accuracy of this calibration method [41].

o Line-Reflect-Match (LRM): it is similar to TRL calibration but substi-
tutes the Through for a Match, which can be seen as an infinitely long
transmission Line. Since it doesn’t require several Line standards of dif-
ferent lengths, it is suitable for lower frequencies, as different electrical
lengths might require too large physical length difference in measure-
ment setups, and resistors have lower tolerances.

Since coupling effects from neighbouring devices can exist when measur-
ing on-wafer [42], the accuracy of an on-wafer calibration can be increased
by designing the calibration standards with similar surrounding environment
[43]. This should create a similar coupling behaviour which could then be

11
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de-embedded by the calibration algorithm. Naturally, the measured devices
must have the same neighbouring environment as the calibration standards.

2.4 Wave propagation in guiding structures

A transmission line is a wave-guiding structure consisting of at least two con-
ductors which have a constant section perpendicular to the propagation di-
rection. Having two conductors enables the propagation of transverse elec-
tromagnetic (TEM) modes, with no cut-off frequency. The transmission line
model [44] (see Fig. [2.1)), uses shunt elements to describe the propagation of
a single propagating mode through a differential electrical length.

I Ldz Rdz ol

T — W — I+

1% Cdz =— EéGdz V+6_de
s 0z

Figure 2.1: Equivalent circuit of a transmission line with a differential length.

The transmission line model has a series inductor, L dz, to account for
the magnetic field around the conductors, and a shunt capacitance, C'dz, to
account for the displacement current flowing from the upper to the lower
conductor. The series resistance, Rdz, models the conductor losses whereas
the shunt conductance, G dz, models the dielectric loss. The propagation
constant, 7, and the characteristic impedance, Z,., are then given by:

= \/(R+ij)(G+ij) =a+jf

N e 215
7\ G+ jwC

where v describes how the magnitude and phase changes per unit length,
whereas Z. is the voltage-to-current ratio. Then, the voltage and current
waves traveling in the positive and negative direction of a one-dimensional

12
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Space are:

V(z)=Ve P+ Ve
2.16
I(2) = ZL(V+6_W -V e™) ( )

2.5 Planar transmission lines

Some common planar transmission lines used at THz frequencies include:

 Parallel-plate waveguide (Fig. a): it consists of two infinite long con-
ducting planes sandwiching a dielectric material. Since it has a homo-
geneous dielectric, a pure TEM mode can propagate inside of it without
dispersion.

« Coplanar waveguide (CPW) (Fig.[2.2|b): it consists of three metal strips
with a ground-signal-ground configuration on top of a dielectric sub-
strate. This transmission line has wide-band characteristics, negligible
dispersion, manageable losses at THz frequencies, high sensitivity to
its near-field environment, and provides easy interfacing with ground-
signal-ground probes. Its main propagation mode is the even mode,
taking its name from its even symmetry around the stripline, which is a
quasi-TEM mode.

o Microstrip (Fig. 2.2Jc): it consists of a finite width conducting strip
and a conducting plane sandwiching a dielectric material, where most
of the field lies between the two conductors. When the dielectric sub-
strate is electrically small, the microstrip’s propagating mode can be
considered quasi-TEM with a certain effective permittivity. However,
the inhomogeneous environment of the microstrip makes its a dispersive
transmission line.

13
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S LS T

Figure 2.2: Sketches of the planar transmission lines (a) parallel-plate waveguide,
(b) coplanar waveguide, and (c¢) microstrip, depicting the electric field
of their main propagation mode. Orange color is used to depict con-
ductors, whereas green represents dielectrics.

2.6 Single-wire waveguides

As well as single conductor hollow waveguides can propagate non-TEM modes
above a certain cut-off frequency, a single solid conducting wire can propagate
transverse magnetic (TM) modes as surface waves as long as the conductor has
finite conductivity or it is in contact with a material with a higher dielectric
constant than the surrounding environment. The main single-wire waveguides
are the Sommerfeld line, the Goubau line, and the planar Goubau line.

2.6.1 Sommerfeld line

In 1899 Sommerfeld wrote a paper describing how a single conducting wire
could propagate electromagnetic waves [45]. These TM propagating waves
are symmetrical around the axis of the wire and have an electric field which
spreads radially from the metallic wire ( Fig. [2.3la). Sommerfeld’s wire had
the peculiarity that it couldn’t propagate electromagnetic waves if the metallic
wire was perfectly conducting since the higher the conductivity the larger the
extension of the field; thus if the wire is perfectly conducting, the field of
a wave with finite amplitude would theoretically extend to infinity. Despite
needing to limit the conductivity of the wire for allowing the propagation
of waves, Sommerfeld’s line had low loss propagation; however, it was never
widely used since its extensive field could be easily affected by nearby objects.
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Figure 2.3: Sketches of the single-conductor waveguides (a) Sommerfeld line, (b)
Goubau line, and (c) planar Goubau line, depicting their TM propa-
gating mode. Note that field is more confined in the Goubau line than
in the Sommerfeld line. In the planar Goubau line the field intensity
is slightly more confined below the substrate. Orange color is used to
depict conductors, whereas green represents dielectrics.

2.6.2 Goubau line

To increase the confinement of waves propagating in wires, Harms considered
adding a dielectric layer to the wire [46], and the idea was further studied
in detail by Goubau [47], [48]. The higher confinement of the field in this
dielectric-coated wire (Fig. b), now commonly referred as Goubau line, al-
lows it to propagate waves even when a perfectly conducting wire is used and
makes it less susceptible to suffer radiation loss from bends in the waveguide,
compared to Sommerfeld’s line. To excite the propagating surface wave [49)
on both Sommerfeld’s and Goubau’s waveguide from a two-conductor trans-
mission line, it is necessary to have a metallic conical structure to launch the
propagation mode into the single conductor waveguides [48] (see Fig. 2.4/b)
which ideally imposes the same field distribution of the propagating mode
around the single conducting waveguide. This means that the larger the
extension of the field of the single conducting wire, the larger the conical
launching structure needs to be. By adding the dielectric layer to Sommer-
feld’s waveguide, Goubau increased the field confinement around the single
conductor waveguide, making launching structures smaller.
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Figure 2.4: Mode-launching structures of (a) Goubau line, as depicted in [48], and
(b) planar Goubau line. The TEM mode is progressively converter
into a TM mode, which characterises the surface waves of this type of
waveguides.

2.6.3 Planar Goubau line

Recently, Goubau’s and Sommerfeld’s lines have been used at THz frequencies
showing low propagation loss [50], [51]. The low-loss and ultra-wide bandwidth
performance of single conducting waveguides impulsed the development of a
planar version of the Goubau line [52], consisting of a metallic strip deposited
on top of a dielectric substrate (Fig. c), which also has low loss and wide-
band characteristics. Similarly to Goubau’s and Sommerfeld’s waveguide, the
Planar Goubau Line (PGL) would need a launching structure if excited from
a CPW [53] (see Fig.[2.4}b), which could be seen as the planar version of the
metallic conical launching structure of Goubau’s and Sommerfeld’s waveguide.
The PGL launcher starts as a three-conductor CPW [54], and progressively
separates the lateral ground strips to smoothly transform, to avoid reflections
and increase efficiency, the coplanar waveguide’s propagating even-mode to
the PGL’s propagating mode.

The PGL has been used for sensing [53], [55] for its low loss characteristics,
negligible dispersion, wideband operation, good liquid sample deposition and
large field extension, which allows it to sense larger volumes. However, these
planar waveguides have never been used for sensing around 1 THz using vector
network analysers due to a lack of available technology until recently.
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2.7 Substrate modes

2.7 Substrate modes

When the electric size of the substrate thickness becomes comparable to the
wavelength, the main propagating mode can leak its power to other radiating
and parasitic modes in the substrate, increasing losses and causing undesirable
resonances.

When the propagating mode in a CPW has an effective refractive index, n,,,
higher than the refractive index in the substrate, n, it will produce radiating
losses from the propagating mode in the CPW to the substrate. It will radiate
in the direction where both modes have the same propagation constant in the
direction of propagation of the CPW, forming a radiation semi-cone with angle
6, given by [56):

cosf, = ny[ng (2.17)

and the attenuation constant, «,., from radiation losses from a CPW is given
by:

o, = (w)f) (1-1/n2)? (s+2w)? (2.18)

27 \2(1 + 1/n2) K(k)K'(K)
where «,. is given in Neper per metre, s is the CPW’s central strip width, w is
the CPW’s gap width, k = s/(s+2w), and K and K' are the complete elliptic
integrals of the first and second kind, respectively.

When the substrate’s thickness, d, is in the order of a wavelength, one must
take into account the reflections of the substrate-air interface |57]. A CPW
without back-side ground-plane, it can be seen as a semi-grounded dielectric
slab which will have surface waves similar to the odd TE and even TM modes
of an ungrounded dielectric slab of twice the thickness [58], or a Zenneck wave
[49]. The cut-off frequency of these surface modes are given by [59):

C

\/ng—l
m_ ¢
4d\/ﬁ

The interaction of the propagating wave with these surface waves depends
on the overlap of their field distributions and if the phase velocity of the

propagating mode is similar or higher than that of the surface wave, causing
dispersion and radiation losses. This phenomenon is similar to what happens

For TE,, modes: f. = T—d where m = 1,3, ...

(2.19)

For TM,,, modes: f. = where m = 0,2, ...
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in an optical fibre, where the light will leak from the core if the refractive
index of the cladding is higher than in the core. At the frequency where the
phase velocity of the two waves is equal, the dispersion will be maximum,
whereas the leakage losses are proportional to frequency. To minimise these
undesirable effects, the cut-off frequency of all modes except for the TMy mode
(with no cut-off frequency) can be increased by choosing an electrically thin
substrate. A conservative rule-of-thumb is given in [57], where the substrate
thickness is suggested to be taken as:

d < 0.12X¢/n (2.20)

Other suggested methods for reducing radiation losses in CPWs [60] include
narrowing CPW conductors (s A/30), although conductor losses become too
high at THz frequencies; adding a superstrate on top of the CPW, which
would decrease the phase velocity, decreasing or stopping radiation losses to
the substrate.

If the CPW doesn’t have a large ground-plane, a TE( surface mode can
propagate in the ground-less part of the substrate [61], increasing the possi-
bilities for different types of parasitic mode excitation. For the case of a PGL,
its propagating mode is essentially the same TM, mode as the surface wave
with the lowest cut-off frequency in a CPW with a large ground plane. The
difference lies in that the PGL mode propagates both above and below the
substrate, whereas the undesirable TM, surface wave in the CPW propagates
only below the substrate. The PGL might not have to deal with the TMj,
surface wave, but as the CPW without a large ground-plane, it could excite
TEg in the parts of the substrate without a conductor. Added to this, since
the PGL field concentrates in the edges of the conducting strip, the field dis-
tribution will overlap to that of the TEy; mode, increasing their interaction.
In general, the cut-off frequency of the surface waves that can propagate in a
ground-less dielectric slab are given by [59):

m c

m__c
2d 21

For TE,, modes: f. = where m = 1,2, ...

(2.21)

For TM,,, modes: f, = where m = 1,2, ...
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2.8 Permittivity Extraction from S-parameters

When measuring a sample contained in a device it can be desirable to de-
embed part of the device from the measurements with a two-tier calibration
[20], obtaining measurements focused on the sample being measured.

A simple de-embedding technique can be done by measuring a known sample
together with the sample under test in the same setup. Considering a reference
sample with known refractive index, 7,., the effective refractive index of the
line with sample, 71, can be calculated using:

(s) ) o)
In [Szi /531 ]
jkols

f. = f, - (2.22)

where Sé‘;) and Séq) are the complex transmission coefficient for sample and
reference respectively, kg is the vacuum wavenumber, and [ is the effective
length of the sample. This method is a robust method requiring only a trans-
mission or reflection measurement.

A more complex two-tier calibration method was developed by Bao et al.
[62], which de-embeds transmission lines with samples on top with different
line lengths, using full S-parameter measurements. It is based on the assump-
tion that a dielectric material on top of a planar waveguide only changes the
capacitance, C', and conductance, G, of the transmission line parameters, in
eq. (2.15)), it can relate the reference and sample S-parameter results to a
change in the tested sample. Combining equation (2) in [62] together with
the relation v = jkon, yields the following equation:

T{[T.] - [T,17'} = 2cos (kol,n,) cos (kolene )+

+ (Z_: + Z—j)sin (kol,m,.) sin (kolon,.) (2.23)
where [ is the physical length of the transmission line section containing the
sample, kg is the vacuum wavenumber, and n,. and n, are the effective complex
permittivities of the reference and sample-loaded transmission lines, respec-
tively. [7;.] and [T, ] are the transfer scattering matrices of the reference and
sample-loaded transmission line, respectively, which can be directly obtain
from the measured S-parameters [63]:
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1 =S
— S21 ‘921
[T]1= 8] (S129:1°51152)
521 S21

This method has the advantage that it uses both transmission and reflec-
tion measurements of a reference and a sample measurement to characterise
the sample permittivity. However, due to this it also makes it a less robust

technique.
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CHAPTER 3

Method

This chapter explains how devices and their calibration standards were de-
signed and fabricated in our in-house cleanroom (Section . Later, it de-
scribes the design and fabrication of the microfluidic channel, (Section 7
the measurement setup (Section , and the sample characterisation method

(Section .

3.1 Simulations

In this thesis, electromagnetic simulations have been used for the design of
the CPW and PGL structures, and to verify measurements. Simulations were
done in CST Studio Suite.

3.1.1 Simulation of PGL port

The possibility of exciting the PGL directly, without needing an intermedi-
ate mode transformer, would reduce simulation time and provide a better
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simulation environment for future analysis/synthesis of PGL elements.

The simulated PGL was excited with a square wave port centred around its
conducting strip. Since the wave port has perfect conducting edges, the ex-
cited mode is similar to a square coaxial-line mode. In [48] Goubau explains
how a coaxial with an inner conductor coated in dielectric causes the field
to have a longitudinal electric component. If the outer conductor radius of
the coaxial is increased, there is a point where it no longer changes the field
distribution around the inner conductor. As a consequence, the characteris-
tic impedance’s value of the dielectric-coated coaxial saturates after a certain
outer conductor radius, unlike the uncoated coaxial’s impedance which con-
tinues to increase logarithmically (Fig. a). Since the PGL has a similar
TM mode to the Goubau line, these results suggest that for a sufficiently large
wave port both the S-parameter results and the impedance value should con-
verge. Indeed, simulation results (Fig. b) show that the port impedance
saturated for increasing port size, similarly to Goubau’s results. Similarly, S-
parameter results also converged for increasing port size (Fig. . Thus the
port size was taken as the smallest size which yielded convergent simulated
S-parameter results, with 800 um sides in a square wave-port.
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Fig. 2—Effect of the diameter of the outer conductor of a coaxial line 125 150 200 300 400 500 600 700 800
on the power transmission if the inner conductor is coated with Port Diameter (jm)
a dielectric layer.
(a) (b)

Figure 3.1: Simulated PGL port impedance is coherent with theory. (a)
Figure taken from [48] depicting the impedance of coaxial with dielec-
tric coating in inner conductor. (b) Simulated PGL port impedance
vs. square port size, showing similar behaviour as Goubau’s results.
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Figure 3.2: Simulation results using PGL port converge for sufficiently
large PGL port size. CST simulation results of (a) S;; and (b) Sy
of a 3mm long PGL for different port sizes.

3.2 Design of the planar waveguides

When sensing liquids samples with planar waveguides, the sensitivity increases
if the field is in contact with the sample and if their propagation losses are min-
imised, which increases the SNR of the measurement. In this thesis, we have
considered two types of planar waveguides which have their maximum field
intensity on top of the substrate: CPW and PGL which have been designed
to minimise their losses.

3.2.1 Coplanar waveguide

CPWs were designed to have low losses and to be suitable for probing with
ground-signal-ground 25 pm pitch probes [21]. The main design parameters
of the CPW are its strip-, gap-, and ground plane width, and the substrate’s
material and thickness. The strip, s, and gap, w, widths were designed to
have the centre of the CPW gaps between the centre of the probe tips, for
better probing, following the equation s + w = 25 pm. Additionally, the CPW
was designed to have the same characteristic impedance as the probe, 50 Q,
minimising reflections. Ground planes were chosen to be electrically big to
avoid parasitic effects.
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Regarding the substrate, it was chosen to be as thin as possible and from
a low dielectric material, to avoid substrate modes, as seen in section [2.7]
Plastics usually have very low losses at THz frequencies [64] and have a low
dielectric constant, which makes them ideal for having a low-loss and electri-
cally thin substrate. Some plastics cannot handle high temperatures (100 °C)
required in the fabrication process, so we chose a plastic with good electrical
properties while having a relatively high melting point and having mechanical
strength. Considering this, a 23 pm polyethylene terephthalate film (Mylaré5
A, fabricated by DuPont) was chosen as substrate, with a relative permittivity
of € = 3.15 and tan(d) = 0.017 at 1 THz |64).

Additionally, multi-Line TRL calibration standards were designed for CPW
and fabricated integrated into the devices’ chip. The Trough standard has a
total length of 210 pm, placing the calibration plane at its mid-point, 105 pm
from the start of the CPW. The Line standards were designed with electrical
lengths of A\/4, 3\/4, and 11\ /4 at the centre of the measured band, 910 GHz.

3.2.2 Planar Goubau line

The design of a PGL involves few degrees of freedom, mainly: strip width,
and choosing the substrate permittivity and thickness. Simulation results
indicated that the PGL losses were most sensitive to the substrate material
and thickness since it would increase radiation losses into other modes [60].
Thus, as for the CPW, the substrate was chosen as an ultra-thin 23 pm thick
PET film, which should minimise losses from coupling to other modes.

The PGL can be excited with ground-signal-ground probes using a CPW-to-
PGL mode converter. The probes contact the CPW section in the converter,
exciting the CPW’s quasi-TEM even mode, which is then converted into the
PGL’s TM mode. This mode converter progressively separates the lateral
ground planes of the CPW, until the propagating mode is confined exclusively
on the central strip, thus becoming a PGL (Fig. .
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Contact
probe

Figure 3.3: The CPW-to-PGL mode converter can be used to excite
a PGL with ground-signal-ground probes. Micrograph of the
ground-signal-ground probe contacting the CPW mode converter.

For designing a low-loss CPW-to-PGL mode converter, (1) the impedance
changed geometrically, to minimise reflections, (2) avoided small CPW strip
and gap dimensions, which would increase conductor losses, (3) used the length
which minimised the insertion losses, as a too-short converter would have high
reflections, and a too-long converter would add unnecessary line losses.

3.2.3 Planar Goubau line calibration standards

In this thesis, calibration standards were developed for planar Goubau lines
for the first time, using multi-line TRL calibration. Three Lines standards
were designed with electrical lengths of A\/4, 3\/4 and 11\/4 at the geomet-
rical centre frequency of the band, at 910 GHz. For the Reflect calibration
standard, a highly reflective element needs to be designed. Several designs
of Reflect standards were tested using electromagnetic simulations. The best
performance was achieved by a T-shaped structure terminating the planar
Goubau line (Fig. a) with a span of A/2. The Reflect standard has a
maximum electric field intensity at the ends of the T-sidearms (Fig. [3.4]b),
creating a null of electric field intensity in the intersection, thus the structure
behaves as a short-circuit at the intersection point of the T-shaped structure.
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Figure 3.4: Layout of PGL Reflect standard. (a) Micrograph of one of the
fabricated PGL Reflect standard. (b) Electric-field distribution around
the PGL Reflect standard, showing a minima at the intersection of the
Tee. Dashed lines are used to help visualise the perimeter of the Reflect
standard.

3.3 Device fabrication

The CPWs and PGLs with their corresponding dedicated calibration stan-
dards were fabricated in our in-house cleanroom using electron-beam lithog-
raphy and evaporation of 20nm Ti and 350nm Au on top of the PET sub-
strate. The fabrication was done according to the following steps, represented
in Fig. 35

1. Mount the 23 pm thick PET film on low resistivity 2-inch silicon wafers
using thin film wax.

2. Spin electron-beam lithography resist and auxiliary layers:

a) Spin HMDS (negligible thickness) at 3000 rpm for 30s. Accelera-
tion time: 1s. No baking.

b) Spin MMA 8.5 EL10 (450 nm thick) at 3000 rpm for 30s. Accelera-
tion time: 1s. Bake in oven for 10 min at 110 °C. Spin PMMA A2
(70nm thick) at 3000 rpm for 30s. Acceleration time: 1s. Bake in
oven for 10 min at 110 °C.

c¢) Spin Espacer 300Z (20 nm thick) at 1500 rpm for 60s. Acceleration
time: 1s. Bake on hot plate for 90s at 80 °C.
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8.4 Microfluidic channel

3. e-beam lithography (current 30 nA, dose 320 pC/cmz).

4. Substrate development:
a) Developed in IPA:DI-H50 in 10:1 volume ratio for 40 seconds.
b) Ash O, plasma for 5s at 40 W.

5. Deposited Ti/Au 200/3500 A.
6. Lift-off in 65 °C acetone.

7. Detach the PET film from the silicon wafer

® ® ®

l l e-beam
Wax PMMA A2 v

MMA 8.5 EL10
PET

LR Silicon

® ® 0)

Gold
v

Figure 3.5: Sketch of the fabrication steps. Figure is not to scale

3.4 Microfluidic channel

Microfluidic channels offer a good solution for guiding liquid samples into
the sensing area of a chip, also giving control of the shape of the sample
with micrometre precision, and avoiding its evaporation. The microfluidic
channels used in this thesis were fabricated in polydimethylsiloxane (PDMS),
with a square cross-section channel. The channel’s cross-section was designed
to have 100 pm sides and had a fabricated side of 123pm. The width of
the microfluidic channel was measured with an optical microscope capable of
measuring dimensions with a resolution of 1 pm.
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(b)

Figure 3.6: (a) Photograph of the fabricated chip. (b) Photograph showing the
PET chip with devices which is held on to the PE supporting substrate.
The PDMS with the microfluidic channels is clamped to the supporting
substrate and in remains in contact with the devices.

The PDMS microfluidic channel was fabricated as follows:

1. Mix PDMS with the curing agent (cross-linker) with a 10:1 ratio.
2. Stir the mixture thoroughly in a container, so it becomes homogeneous.

3. De-gas the PDMS
a) Put the container with the PDMS inside a vacuum bell.

b) Generate vacuum. If there is too much PDMS, the foam might
overflow, so release vacuum to avoid that.

c) Repeat process of generating and releasing the vacuum to get rid
of bubbles in the PDMS.

4. Put the PDMS in the mould to give the desired shape. Repeat de-gassing
step.

5. Cure the PDMS in the oven at 60 °C for 12 hours. The mould used for
shaping the PDMS is made of PMMA, which should avoid temperatures
higher than 60 °C.
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3.5 Measurement setup

The PDMS with the microfluidic channel was attached to the DUT by us-
ing a metal clamp which tightened the PDMS to the supporting substrate
(Fig. b). The clamping was done under the microscope to align the mi-
crofluidic channel to the DUT.

3.5 Measurement setup

The devices were characterised measuring 2-port S-parameters. Fig. [B7a
shows a sketch of the measurement setup including:

o Vector Network analyser (VINA): model Keysight N5242A (10 MHz
to 26.5 GHz) setting up an IF bandwidth of 50 Hz for achieving a low
noise floor.

e Frequency extenders: when measuring S-parameters at THz frequen-
cies, signal multipliers are used to convert the VNA’s signal into a higher
frequency signal, covering the band which needs to be measured. The
process of frequency conversion comes at the price of a conversion loss,
which increases with the multiplication factor. The multiplication fac-
tors used in this case are 81 and 72 for RF and LO signals respectively
and achieved frequencies from 0.75 THz to 1.1 THz. The frequency ex-
tenders used were VDI WR1.0SAX, with a typical/minimum dynamic
range of 69dB and 50 dB.

e External RF and LO sources: used instead of the internal VNA
sources to achieve a higher dynamic range (about 5 dB gain) in the mea-
surements thanks to their ultra-low phase noise characteristics. When
using multipliers to achieve higher frequencies, the phase noise deterio-
rates, and thus strict specifications on phase noise have to be imposed
on the sources at this frequency band. The external sources used were
Keysight E8257D (250 KHz to 20 GHz). The RF and LO output power
were set to 7dBm and —4 dBm respectively.

o Ground-Signal-Ground (GSG) Probes: used as the interface be-
tween the frequency extenders and the DUT b), the probes convert
the rectangular waveguide from the extenders to a CPW line which ter-
minates in the GSG tips which are used to couple the field into the
structures to be measured. Cascade’s T-Wave probes |21] were used for
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measuring between 0.75THz and 1.1 THz (WR 1.0 band) and have a
probe pitch of 25 pm.

0.75-1.1 THz

10 MHz - 26.5 GHz 0.75-1.1 THz

Incident Transmitted

’ Probe

Figure 3.7

}—{ DUT }—{ Probe ‘
—

Reflected

(a)

Calibratio
plane

PET
substrate

23 um T |
Polyethylene
supporting
substrate

Cavity in

supporting
substrate

(©)

: (a) Sketch of on-wafer S-parameter measurements setup. (b) Probes

measuring the devices without the microfluidic channel. (c) Sketch
of the CPW when being measured with the microfluidic channel and
samples. Probes contact the CPW at the edge of its sides.

A supporting substrate, immediately below the device substrate, is neces-

sary when

measuring to avoid having the ultra-thin PET film with the de-

vices on top of the metal chuck of the probe-station, which would affect the
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propagation mode of the PGL, likely becoming a microstrip due to the new
conducting plane. However, since the PGL’s field distribution has a larger
extension, its propensity to radiate will be also affected by other surrounding
materials, such as the supporting substrate. Thus, the supporting substrate
will have to have a lower dielectric material than the device’s substrate to
decrease its refractive index, to avoid leakage from the PGL’s propagating
mode, according to . The supporting substrate was chosen as a 6 cm in di-
ameter and 1 cm thick polyethylene (PE) cylinder, with a relative permittivity
of €, = 2.3 and a loss tangent of tan(d) = 0.004. The chip was clamped on to
the supporting substrate to avoid any movement during measurements. The
supporting substrate has a 1 mm deep and 1 mm wide hole which is aligned
with the measured devices to avoid radiation losses (Fig. [3.7¢).

The sample was delivered to the microfluidic channel using a manually
operated syringe with tubings which connected to the PDMS microfluidic
channels.

3.6 Sample characterisation

The sample permittivity was obtained from the measured transmission pa-
rameters, Soq, using the CPW as sensing structure. The diagram in Fig.
offers an overview on the process, which consists of two main steps: (1) ob-
taining the effective refractive index of the CPW loaded with the sample, and
(2) translating this effective refractive index into the sample’s refractive index.

Fmm e e e e e - = -
I ls !
|
: Eq.(2.22) | R .
1
l I[85/ ! I A = f(# I
Me‘(?)s N [ ?1 / 21} 1 ﬁe N ng = f(ne) N
s$ I Jhols | . from eq. (3.1) 1
I Y T I 1 }
| M e mm s == ==
1 == Ea.(3.1) 1 From effective refractive index,
1 1 ~ R PN
ﬁ 5(’”) f I fle, to sample refractive index, fis.
Sample = 2111 _T_' Double Debye |
water | References model of H,0 |

From transmission measurements,
Ts, to effective refractive index, fi,.

Figure 3.8: Diagram showing how the sample’s refractive index was ob-
tained from the transmission measurements.
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The calibrated measurements in our setup have the calibration plane in
the interface between the air and the PDMS (see red discontinuous line in
Fig.13.9). However, for characterising the sample, we move the measurement
plane to the PDMS-liquid interface (discontinuous yellow line in Fig.[3.9). For
this, we used eq. with sample measurements, information of the sample
length and a known reference measurement, with water as a sample.

De-embeded

planez

/u/ /
W7

CPW with
sample

Figure 3.9: The de-embeding techniques allow to move the measurement plane
from the calibration plane to the region where the sample lies.

The reference effective refractive index, 7., for the CPW was obtained using
an analytical expression for multi-layered CPWs together with a double
Debye model of water . Water is a sample which has been studied exten-
sively at THz frequencies and thus has accurate material properties at THz
frequencies.

In a more complex method is proposed for obtaining the propagation
constant of a line with a sample, based on measurements of a reference line,
using full S-parameter measurements. However, this method could not be
implemented for our measurements since the reflection parameters, S;; and
S22, showed to be very sensitive to probing conditions.

After calculating the effective refractive index of the CPW containing the
sample, with eq. (2.22), we calculated the sample’s permittivity. For it, we
used an analytical expression for multi-layered CPWs , which relates the
effective refractive index of the CPW with the sample permittivity according
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to the equation:

K(k)K (k)
K (K"K (k)
K(k)K (K..)
K(k’)K(ksub)

1
fie = & = 1+ 5(As = 1)
(3.1)
1, 2
+§(nsub - 1)
where the operator K is the complete elliptical integral of the first kind, and
k, k', kg, k's, Ksubs k'sub, depend on the geometry of the CPW cross-section,

superstrate and substrate, respectively [65]. This analytical expression agrees
with simulation results of a multi-layered CPW.
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CHAPTER 4

Results

This section shows measurements validating the PGL calibration standards,
a comparison between PGL and CPW losses from 750 GHz to 1100 GHz, and
the use of CPWs and PGLs integrated with microfluidic channels for using
them as a THz spectroscopy sensor.

4.1 PGL calibration standards

Designing the Through and Line standards for a PGL TRL calibration is
trivial, and their frequency response should be predictable. On the other hand,
the designed Reflect standard has a more complex field distribution, so its
design must be validated in both simulations and measurements. Fig[4.1]shows
the good agreement between simulations and measurements of the designed
and fabricated Reflect standard. Simulated Sy, is lower than —95 dB in all the
band, whereas the measured So; lies at the noise-floor level, around —35dB.
The calibration plane is marked with a red discontinuous line in the inset of
the figure and is located 105 um inside the CPW.
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Figure 4.1: Simulations and measurements of the PGL Reflect have good

agreement when using a established TRL CPW calibration. S-
parameter comparison of simulations (dashed line) and measurements
(solid line) of the Reflect standard. Simulated S, is lower than —95 dB
in all the band, and does not appear on the figure. Inset shows a micro-
graph of the PGL Reflect, with the calibration plane of the simulation

and measurements depicted as a dashed line, set 105 pm into the CPW
line.
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Figure 4.2: Simulations and measurements of the PGL Reflect have good
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agreement when using the proposed PGL TRL calibration. S-
parameter comparison of simulations (dashed line) and measurements
(solid line) of the PGL Reflect standard. Inset shows a micrograph
of the PGL Reflect, with the calibration plane of the simulation and

measurements depicted as a dashed line, set after the CPW-to-PGL
mode converter, along the PGL.



4.1 PGL calibration standards

The Reflect was measured after calibrating measurements with the proposed
multi-line TRL calibration standards, which sets the calibration plane after
the CPW-to-PGL mode converter (see discontinue line in the inset of Fig. .
The Reflect measured was different from the one used for the calibration.
The S-parameter measurement results of the PGL Reflect show to have high
and wideband reflection characteristics, with over —1.1dB in all the band
(Fig. 4.2). The transmission measurements on the other hand show to be
very low, as expected. Simulations using a PGL wave-port, showed to agree
with the measurements results, having high reflectivity, and low transmission.
The simulations results showed in Fig. were obtained by exciting a PGL
line terminated in the Reflect standard, and de-embedding the PGL line in
the simulation software.
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Figure 4.3: Measurements of PGLs of different lengths after calibrating
demonstrate good quality of calibration. Measured magnitude
of (a) reflection (S;;) and (b) transmission (Sy;) of the Through and
multiple lines in the calibration standard. The low value of |S;;]| in-
dicates a correct de-embedding of the CPW-PGL mode transformer,
while the values of |Sy;| yield expected behaviour for lines at these
frequencies.

In addition to the PGL Reflect, we also measured the PGL Through and
Line standards, choosing structures which haven’t been used during the cal-
ibration. In Fig. £.3] we show the measured transmission and reflection of
Through and Lines from the calibration standards after applying the PGL
calibration. The low reflection and the smooth transmission indicate that
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the calibration method has correctly de-embedded the CPW-to-PGL mode
converter.

Fig. [£.4] shows the simulated and measured S-parameters for a 1 mm long
PGL using the PGL TRL calibration. The results of the magnitude of the
transmission, | Sy |, show to be flat except for a subtle decrease proportional
to the frequency, for both measurements and simulations. The results for the
phase of the transmission, show to have a steady response with frequency,
indicating negligible dispersion in the PGL. There is a slight difference in the
slope of the phase of the transmission between measurements and simulations,
indicating that the substrate material (PET) might have a lower permittivity
value than the one reported in literature . The measured reflection pa-
rameter, Sq1, shows to be typically below —10dB, with higher values at the
higher-frequency side of the band. Ideally, these values should be as low as
possible, but the reflection coefficient is very susceptible to the probing condi-
tions, making reflection measurements more unreliable than the transmission

measurements.
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Figure 4.4: Simulations and measurements of a 1 mm long PGL using the
proposed PGL TRL calibration. S-parameter comparison of simu-
lations (dashed line) and measurements (solid line) of the PGL Reflect
standard. Simulated S;; results are below —30dB in all the band. In-
set shows a micrograph of the PGL Reflect, with the calibration plane
of the simulation and measurements depicted as a dashed line, set after
the CPW-to-PGL mode converter, along the PGL.

At THz frequencies, even small changes in probing conditions can have a
significant change in the reflection measurements, since the probe-substrate
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interface well lies behind the calibration plane, making small reflections appear
larger.

Overall the developed PGL calibration standards show to be able to set the
calibration plane along the PGL, accurately de-embedding the CPW-to-PGL
mode converter and probe-substrate transition.

4.2 Planar waveguide loss

At THz frequencies, the available power of electronic sources tends to be
lower than at lower frequencies, and conductor and radiation losses tend to
increase with frequency. Thus it is especially important to keep losses at
minimum to have a higher dynamic range for measuring lossier devices and
higher measurement SNR for being able to detect small signal changes.

T T
1.5H—CPW on PE PGL on PE
— CPW on air — PGL on air

« (Np/mm)

0.5F

87 o8 0.9 1 11
Frequency (THz)

Figure 4.5: Attenuation coefficient measurements of a 1 mm long CPW
and PGL. Measurements were done on two setups: placing the device
on top of a PE supporting substrate or suspending it on air.

We compared S-parameter measurements of two planar metallic waveguides,
the CPW and the PGL, fabricated with the same method depositing gold on
an ultra-thin PET film substrate. For each waveguide, CPW or PGL, the
measurements were calibrated using their own calibration standard included
in the chip. Fig. shows the attenuation coefficient measurements for the
CPW and PGL done with and without a polyethene (PE) supporting sub-
strate below the PET substrate. It can be seen that when using the PE sup-
porting substrate, the CPW has lower losses than the PGL. However, when
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the measured waveguides are suspended on air—by placing them on top of a
micromachined hole in the PE supporting substrate—the losses of the PGL
drop drastically, whereas the CPW losses remain unchanged. Without the
supporting substrate, the PGL becomes a more power-efficient planar waveg-
uide compared to the CPW, with an attenuation coefficient of 0.32 Np/mm at
1THz. The main reason why the PGL reduces its radiation losses is that the
PGL’s field distribution is much wider, reaching the supporting substrate and
causing radiation losses since the refractive index in the supporting substrate
is higher than the effective refractive index of the PGL. In contrast to this,
the CPW has a more confined field and the supporting substrate is electrically
distant to make a significant impact on the losses.

4.3 Sensing of aqueous samples

We measured the magnitude and phase of the transmission of a 1 mm CPW
having a microfluidic channel clamped on top which delivered aqueous samples
(see Fig. c). The aqueous samples consisted of propan-2-ol and deionized
water (DI-H,O) mixtures with volume concentrations between 50% and 100%
DI-H5O in steps of 10%. To obtain the sample refractive index from these
transmission measurements, we followed the process shown in Fig.

Fig. [f.6]a-b shows the relative Sy; CPW measurements obtained for the dif-
ferent mixtures of water and propan-2-ol using pure DI-H5O as reference. The
solid lines represent the mean of five measurements collected in consecutive
VNA frequency sweeps, whereas the shadowed area represents the standard
deviation of the five measurements. Both the magnitude and phase measure-
ments show to have sufficient SNR for distinguishing between samples despite
the high losses of the aqueous samples, being magnitude measurements more
sensitive to changes than phase measurements.

The effective refractive index results of the CPW with samples was calcu-
lated from the relative CPW transmission measurements using eq. . The
resulting real and imaginary parts of the effective refractive index are plotted
in Fig. [£:6]c-d.

Once the effective refractive index of the CPW with the sample has been
obtained, the sample’s refractive index was calculated by using eq. .
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Figure 4.6: The sample gradient yields distinguishable magnitude and
phase changes in the transmission. Measured (a) phase and (b)
magnitude of the transmission, normalised with respect to the case of
having pure water as sample. Extracted (c) real and (d) imaginary
part of the effective refractive index of the CPW with sample, calcu-
lated using eq. . Samples consist of IPA/DI-H,O mixtures with
water volume concentration from 50% to 100% in steps of 10%. Mea-
surements were performed five times in consecutive frequency sweeps.
Solid line represents the mean, and the shadow represents the standard
deviation of the measurements.

The sample’s refractive index vs. water sample concentration is plotted in
Fig. for 0.8 THz, together with literature values of IPA /HyO mixtures, and
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the modified model for polar liquids, eq. , using a fitting factor of @ = 1.33
for propanol samples [28]. The figure shows how our measurements show
consistent change of real and imaginary permittivity vs. sample concentration,
having small error bars, and being able to measure samples with high water
content using an on-chip setup.

Sample permittivity at 0.8 THz
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Figure 4.7: Measured permittivities show consistent change versus wa-
ter concentration. Real and imaginary permittivity of IPA/DI-H,O
samples vs. water concentration at 0.8 THz for this work (blue and
red errorbars with 95% confidence interval) and literature values. Lit-
erature values of (+) IPA [67]-|69], (A) water|14], |70]-]|72|, and ()
IPA/H,0O mixtures measured with a similar on-chip method [17] are
plotted. The dashed lines show the modified Bruggeman’s model for
polar liquids for the change in water concentration, based in eq. .

It is worth noting that the PDMS channel showed to swell by pure IPA,
which reduced the microfluidic width to 113 pm. However, samples with an
IPA concentration lower than 50% showed not to have any impact on the
channel width. Similarly, propan-1-ol (with similar Hildebrand solubility pa-
rameter and dipolar moment as IPA) was reported to have a swelling factor
of 9% in PDMS, whereas water produced no swelling [73].

The noise floor of the measurements gives an indication of the system’s
dynamic range. The noise floor was measured for two different calibration
planes: (1) rectangular waveguide calibration (Short-Open-Load-Through),
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4.8 Sensing of aqueous samples

at the interface between the frequency extenders and contact probes, and (2)
CPW calibration, at the calibration plane used for measuring. The noise floor
was measured from S,; when ports 1 and 2 were isolated, after applying each
calibration. Fig. [4.8la shows the values of the noise floor across frequency
for each calibration, together with the SNR of the CPW measurements with
water as a sample. The frequency-averaged dynamic range of the CPW cal-
ibration is —49dB, for the rectangular waveguide calibration is —69 dB, and
the frequency-averaged SNR of the CPW with water is 25 dB. The noise floor
could be further improved by using time-averaging techniques.

Fig. [£:8lb shows the output power across frequency for the frequency ex-

tenders used to measure, having at least —44 dBm and —39 dBm of power for
each extender.
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Figure 4.8: Measurements exhibit a high dynamic range across the band.
(a) Noise floor for the frequency extenders waveguide calibration and
the CPW calibration. The frequency averaged dynamic range is 49 dB
for PGL calibration and 69 dB for the frequency extender calibration.
(b) Output power across the frequency band for the used frequency
extenders, as shown in their specifications.
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CHAPTER D

Concluding remarks and future work

THz spectroscopy of aqueous samples allows analysing fundamental processes
of biomolecules in their native environment. One of the main challenges of
THz spectroscopy of aqueous samples, especially in on-chip configuration, is
the high absorption of water of THz waves. This thesis has focused on devel-
oping a THz spectroscopy on-chip sensor for high-loss aqueous samples using
VNA. The high dynamic range of the VNA allows measuring high-loss aque-
ous samples at THz frequencies, obtaining relatively high measurement SNR
(an average of 25dB when measuring water), key for detecting small signal
changes. The proposed method is a first step towards a high-sensitivity and
miniaturised system for THz spectroscopy system based on RF-technology.
To maximise the measurements’ sensitivity, two different planar waveguides,
CPW and PGL, were designed and fabricated in an ultra-thin (23 um) low-
permittivity substrate, minimising radiation losses. The thin substrate was
supported by a mechanical substrate in order to isolate the planar waveg-
uides from the metal chuck of the probe-station. The supporting substrate
has shown a major impact in the radiation losses of the PGL, whereas for the
CPW, with a more confined field, it didn’t show a significant impact. Ded-
icated calibration standards were included in the chip, for both CPW and
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PGL. In this work, PGL calibration standards were developed and verified for
the first time. The CPW sensing structures were integrated with a microflu-
idic channel to characterise aqueous samples. The low loss of the sensing
structures, combined with the high dynamic range of the VNA, allowed to
characterise high-loss liquid samples like water from 750 GHz to 1100 GHz.
Similar attempts to measure aqueous solutions with chips using time-domain
spectroscopy, either lacked the SNR to analyse water samples over 0.5 THz or
had to keep the sample away from the field in the planar transmission line
used.

The presented method used ground-signal-ground THz probes for measur-
ing the chips, but this approach introduces considerable losses. One way of
maximising the dynamic range of the setup in the future would be the inte-
gration of the chip into a waveguide block directly attached to the frequency
extenders.

Another aspect that could be improved in the future is the microfluidic chan-
nel. The microfluidic channel used in this work was mechanically clamped to
the supporting substrate, introducing leakage problems. Fixing the microflu-
idic channel to the substrate would increase the repeatability of the measure-
ments and accuracy.

Finally, the increase of repeatability in the reflection measurements would
enable applying more complex two-tier calibration techniques to characterise
the samples such as the line-line method described in the background of this
thesis.

In the long term, to combine in the same chip the possibility of performing
THz spectroscopy and sample alignment would have a major impact on the
study of protein THz dynamics in solution. The alignment would enhance the
proteins spectroscopic response, enabling THz spectroscopic signatures to be
resolved in water.
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CHAPTER O

Summary of appended papers

Paper A

Multiline TRL Calibration Standards for S-parameter

Measurement of Planar Goubau Lines from 0.75 THz to
1.1 THz

In this work, we developed a calibration standard for planar Goubau lines
based on Through-Reflect-Line (TRL) standards. The calibration standards
are validated with an established CPW calibration and with the proposed PGL
calibration, showing good agreement with simulations in both cases. The cal-
ibration is used to demonstrate measurements of a 1 mm long PGL between
0.75 THz to 1.1 THz, with losses between 0.13Np/mm to 0.35 Np/mm, neg-
ligible dispersion and wide-band characteristics. The proposed calibration
standard opens up possibilities for studying and measuring the PGL and its
circuit elements in detail.

My contribution: Design, fabrication, measurements, writing the article.
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Paper B

Transmission Loss in Coplanar Waveguide and Planar
Goubau Line between 0.75 THz and 1.1 THz

In this work, we compared the losses of 1mm CPW and PGL, under two
circumstances: with the polyethene supporting substrate below the device,
and with the device being suspended on air. The CPW has a lower attenuation
constant than the PGL if the supporting substrate is present below the devices.
When the supporting substrate is removed from below the measured device,
the attenuation constant of the CPW’s remains unaltered, whereas the PGL’s
drops drastically, becoming more power-efficient than the CPW.

My contribution: Design, fabrication, measurements, writing the article.

Paper C

On-Chip Characterization of High-Loss Liquids between
750 GHz and 1100 GHz

In this work, we did THz transmission spectroscopy of high-loss aqueous sam-
ples using a chip excited with VNA and probes. The chip integrated CPWs
and microfluidic channels, which would guide and control sample volumes.
Aqueous samples are relevant in that they’re the native environment for biolog-
ical samples, and their extreme absorption poses a big challenge to chip mea-
surements. Similar attempts using THz time-domain spectroscopy in chips,
could not resolve water measurements above 0.5 THz or had to avoid having
the sample on the transmission line’s region with strongest field intensity, los-
ing sensitivity. The proposed solution yielded high-SNR measurements and
takes a step towards a miniaturised system for THz spectroscopy of high-loss
liquids.

My contribution: Design of chip, fabrication, measurements, modelling, writ-
ing the article.
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Abstract—We present a multiline Thru-Reflect-Line (TRL) cal-
ibration standard for Planar Goubau Line (PGL) which allows
setting the calibration plane along the PGL and thus removing the
effect of the embedding structure. This opens the possibility of
characterizing PGL-circuits. The presented structures were used
for calibrating S-parameters measurements between 0.75 THz
and 1.1 THz to characterize a 1 mm long and 10 pm wide PGL.
The line shows negligible dispersion with an effective relative per-
mittivity of 2.0 and an attenuation constant lower than
0.35 Np/mm (0.65 dB/A).

Index Terms— Calibration, Multiline TRL, On-wafer THz
measurements, Planar Goubau Lines, S-parameter characteriza-
tion, Terahertz circuits.

I. INTRODUCTION

The Planar Goubau Line (PGL) [1]-[4] is a groundless single
conductor waveguide consisting of a metal strip supported by a
dielectric substrate (see Fig. 1 a). This waveguide is the two-
dimensional counterpart of Goubau’s dielectric coated single
wire waveguide [5]-[6], which in turn is based on the finite-
conductivity wire waveguide studied by Sommerfeld [7] in
1899. In both the Goubau and the Sommerfeld lines, the field
propagates as a surface wave [8]-[9].

As the Sommerfeld and Goubau line, the PGL’s propagating
mode is transverse magnetic and has a quasi-radial electric field
around the conductor. Due to its single-conductor nature, the
field in the PGL has a large extension compared to other multi-
conductor transmission lines used at terahertz (THz) frequen-
cies, such as Coplanar Waveguide (CPW), while it exhibits
negligible dispersion across a wide bandwidth. This makes the
PGL a suitable candidate for sensing applications [2], where in-
teraction with a larger volume is required. Additionally, its
physical geometry favors liquid sample deposition around the
line.

To excite the PGL using ground-signal-ground probes, a
CPW to PGL transition [3] is needed (Fig. 1 b)). Therefore, un-
less the calibration plane is set after the CPW-PGL transition,
the measurements will include the impact of the transition,
which might be undesirable. To the best of the authors’
knowledge, no reported calibration structures exist which allow
to de-embed these transitions.

In this paper, we present multiline Thru-Reflect-Line (TRL)
calibration standards which allow setting the calibration plane
at the PGL, and thus opening the possibility to accurately
characterize PGL based circuits [4]. Using the aforementioned
TRL calibration structures, a 10 pm wide and 1 mm long PGL

Fig. 1

a) Sketch of the cross-section of the PGL where the electric field is
represented by dashed arrows. b) Microscope picture of a PGL showing the
CPW-PGL transition needed to contact with ground-signal-ground probes.

on a 23 pm thin polyethylene terephthalate (PET) film was
characterized from 0.75 THz to 1.1 THz.

II. METHOD
A. PGL Design

To efficiently excite a PGL with ground-signal-ground
probes, one first needs to excite a CPW due to its suitable prob-
ing geometry. This CPW can then change its dimensions to pro-
gressively couple its even mode into a PGL's propagating
mode. This can be done by separating the CPW’s ground planes
while changing the width of the CPW's central conductor
(Fig. 1 b)) [3]. However, this change in the CPW’s gap and con-
ductor width dimensions will produce a change in impedance,
which will cause reflections. In the transition used, the conduc-
tor and gap dimensions were designed to vary its impedance
value using a geometric progression to minimize reflections,
while simultaneously avoiding using small CPW strip and gap
widths, which increase line losses.

To maximize the power delivered to the PGL, the length of
the transition was optimized resulting in a trade-off between re-
flections and line losses. Additionally, if the transition length is
a multiple of one half-wavelength it will produce minimum re-
flections, thus the length was chosen as the multiple of half-
wavelength (at the center of the band) which maximized the
power delivered to the PGL.



Fig. 2
a) thru, b) reflect and ¢) 11A/4 line. Dashed lines indicate the calibration plane.
Figures are shown to scale.

Microscope image of the fabricated calibration standard, showing:

To design the transition, electromagnetic simulations of the
structure were performed using commercial finite integration
technique software.

To decrease substrate modes, which cause dispersion and ra-
diation losses, it is recommended to use thin and low permittiv-
ity substrates, since they increase the substrate mode’s cutoff
frequency [10]. Thus a 23 pm thin PET film (& =3.15 and
tan(8) = 0.017 at 1 THz [11]) was selected as the supporting
substrate.

B. Multiline TRL Calibration Standard Design

The TRL calibration method [12] is a widely used approach
at THz frequencies [13]-[14] since it requires no loads, which
are challenging to fabricate with precision at THz frequencies.
To minimize the effects of random errors, and improve the ac-
curacy and bandwidth of the TRL calibration, multiple lines
with different electrical lengths can be included in the calibra-
tion substrate [15].

In the case of the PGL, the design of the thru and line stand-
ards is straightforward after the CPW-PGL transition has been
designed (see Fig. 2 a) and c)). The thru standard had a probe-
to-probe distance of 870 pm and the calibration lines had an
additional PGL length of 58 um (A/4), 175 um (3A/4) and
641 um (112/4) at 910 GHz (considering an effective dielectric
permittivity of &.s = 2, obtained from simulations).

However, the design of a PGL-reflect is not as straightfor-
ward as it consists of a single conductor. The reflect was de-
signed as a T-shaped structure by adding a A/2 long perpendic-
ular conducting strip (10 pm x 125 pm) at the end of an open
PGL, as shown in Fig. 2 b). It should be noted that, despite re-
sembling a dipole antenna, this structure has a single conductor
and a wideband reflective behavior, thus not acting as an an-
tenna.

The PGL and the calibration substrates were fabricated on the
same substrate using e-beam lithography. A 350-nm thick layer
of gold was evaporated on top of the 23-um thick PET sub-
strate, forming the conductor layer.

Calibration Planes

Probe

Propagation \ Probe

E—

PE |1mm AIF PE

1 mm

Fig. 3 Cross section sketch of the measurement procedure with the 1 mm
long PGL deposited on the thin film of PET and suspended in the PE substrate
holder. The PGL calibration planes are marked as discontinued red lines. Fig-
ure is not to scale.
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Fig. 4 S-parameter simulation (dashed line) and measurement (solid lines)

from 0.75 THz to 1.1 THz of CPW-PGL transition followed by reflect ele-
ment. Simulated S;; was bellow -95 dB in all the band. A CPW multiline TRL
standard was used to calibrate the measurements. Inset shows the layout of the
simulated and measured structure. Dashed line in inset indicates the location
of the calibration plane, 105 um into the 50 Q CPW line of the CPW-PGL
transition.

C. Measurement Set-up

The 2-port S-parameter measurements from 0.75 THz to
1.1 THz were performed using an Agilent N5242A PNA-X
Network Analyzer connected to two VDI WRI1.0SAX fre-
quency extenders. The IF bandwidth of the VNA was set to
50 Hz. To probe the structures, ground-signal-ground Cascade
T-Wave probes were used [16]. To minimize the phase noise to
achieve a higher dynamic range in the measurements, external
RF and LO sources were used (Keysight E8257D).

The fabricated wafer was placed on a polyethylene (PE)
holder (e;=2.3 and tan(d) = 0.004 at 1 THz [11]). This PE
holder separates the structures from the metal chuck of the
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Fig. 5 S-parameter simulation (dashed lines) vs. measurement (solid

lines) of reflect element using the proposed PGL multiline TRL standard. Sim-
ulation results give S;; values higher than -1.1 dB in all the band. Inset shows
the layout of the simulated and measured structure. Dashed line in inset indi-
cates the location of the PGL calibration reference plane.

probe station avoiding field coupling and ensuring the PGL
mode propagation.

To avoid substrate modes in the PE holder and minimize the
losses while keeping the mechanical support, 1 mm deep and
I mm wide holes were micromachined in the PE holder
(Fig. 3). With this configuration, the 1 mm long PGL has air as
dielectric under the PET while maintaining the mechanical sup-
port under the probing area.

Two different calibration standards were included in the wa-
fer for comparing measurements: the proposed PGL multiline
TRL, that sets the calibration plane along the PGL, and a cus-
tomized CPW multiline TRL standard, with a calibration plane
set 105 um into the 50 Q CPW line (with a 23.5 um wide con-
ductor strip and 1.5 pm wide gap) of the CPW-PGL transition.

III. RESULTS

First, to verify the behavior of the reflect of the proposed
PGL TRL calibration substrate, the reflect structure was meas-
ured using the CPW multiline TRL standard. Measurements
were compared with simulation results showing good agree-
ment between the Si; and Sy (Fig. 4). The same S-parameter
reflect simulation and measurements were repeated using the
proposed PGL multiline TRL standard. Therein both simulated
and measured S;; yielded high reflection results in all the band,
having simulated S; results higher than -1.1 dB in all the band
(Fig. 5). Simulation and measurement results of Sy; showed to
have a desirable isolation and good agreement between them.
Overall, the reflect standard is functional and behaves as ex-
pected.

Using the proposed PGL multi-line TRL standards, which al-
lows the de-embedding of the CPW-PGL transition, a 1 mm

PGL calibration reference plane

o
-~

Fig. 6 a) S-parameter simulation (dashed lines) and measurements (solid
lines) between 0.75 THz and 1.1 THz of a 10 pm wide and 1 mm long PGL
using the proposed PGL multiline TRL calibration standard to calibrate the
measurements. Simulated [S11| results lied bellow -30 dB in all the band.
b) Microscope image of the | mm long PGL. Dashed lines indicate PGL cali-
bration reference plane. The probes can be seen making contact at the edge of
the CPWs.
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Fig. 7 Simulated (dashed line) and measured (solid line) insertion loss of
the 180 um long CPW-PGL transition. Inset shows the considered transition
where dashed lines indicate its span.

long and 10 pm wide PGL on a 23 pm thick PET film sus-
pended on air was measured. The S-parameter measurement re-
sults show Sz between -1.1 dB and -3.0 dB (Fig. 6) from
0.75 THz to 1.1 THz, which corresponds to an attenuation con-
stant between 0.13 Np/mm and 0.35 Np/mm. Additionally, the
phase and group velocity of the PGL showed to be approxi-
mately 71% of the speed of light (e.¢r = 2.0), with negligible dis-
persion across the band. Reflection (Si1) measurements exhibit
a higher uncertainty than the transmission (S21) due to its high
dependence on probing conditions.

The proposed PGL multi-line TRL standards allowed to ex-
perimentally estimate the insertion loss of the designed CPW-



PGL transition, which has a length of 180 um (Fig. 7). Insertion
loss resulted in values between 2 dB and 4 dB in the entire
band, which are considered to be low taking into account the
operating frequency.

TV. CONCLUSION

A set of multiline TRL calibration standards has been de-
signed, fabricated and used to characterize a PGL from
0.75 THz to 1.1 THz. Measurement results of the reflect ele-
ment have shown to have a wideband high-reflective behavior,
which allows the multiline TRL standard to de-embed all ele-
ments behind the PGL calibration reference plane. This opens
the possibility of studying in detail this waveguide, circuit ele-
ments included in it and to enhance the PGL’s sensing capabil-
ities.

The measured 10 pm wide and 1 mm long PGL has shown to
have low line losses (between 0.13 Np/mm and 0.35 Np/mm in
the range 0.75 - 1.1 THz), negligible dispersion, and wide-band
characteristics.
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Abstract—In many cases, metallic planar waveguides are
required in the design of integrated circuits. However, at terahertz
frequencies, metallic planar waveguides present high losses, which
make necessary the use more efficient waveguides to avoid power
limitations. In this work, the attenuation constant of two pop

planar waveguides for terahertz frequencies,
Waveguide (CPW) and Planar Goubau Line (PGL), are compared
between 0.75 THz and 1.1 THz. To measure the PGL, its transition
is deembeded using a multiline Thru-Reflect-Line calibration
standard. Measurement results show a lower attenuation constant
across the band for a PGL (0.13 mm™ < a < 0.39 mm™) than for a
CPW (0.68 mm™ < a < 0.99 mm') when an ultra-thin substrate is
used suspended in air, which greatly reduces the substrate mode
coupling from the PGL. These results put the PGL as a less lossy
metallic planar waveguide for terahertz applications.

I. INTRODUCTION

AVEGUIDES are a fundamental part of most high-
frequency electronic circuits. A lack of low-loss
waveguides would pose severe constraints on most

circuit designs. At terahertz (THz) frequencies, high losses in
metallic waveguides together with a low available power
severely reduces the signal to noise ratio, thus making loss
minimization crucial for waveguides at this frequency band [1],
[2]. High losses are accentuated when metallic planar
waveguides are needed for chip integration, due to their higher
losses compared to their non-planar counterparts. This creates
the need to study and optimize the performance of metallic
planar waveguides used at THz frequencies to expand the
possibilities of THz chip design. In this context, we present a
comparison of the attenuation constant of two popular metallic
planar waveguides suitable for THz applications, Coplanar
Waveguide (CPW) (Fig. 1.a) [3] and Planar Goubau Line
(PGL) (Fig. 1.b) [4], [5], in addition to general guidelines on
how can losses be minimized in these waveguides at THz
frequencies.

II. METHOD

In this work, the attenuation of a 1 mm long CPW (Fig. 2.a)
and a | mm long PGL (Fig. 2.b) are compared using on-wafer
S-parameter measurements from 0.75 THz to 1.1 THz. The
CPW, designed to suit the ground-signal-ground probes’
dimensions [6], has a 23.5 pm wide strip, a 1.5 um ground
separation and a characteristic impedance of 50 Q; while the
PGL has a 10 pm wide conducting strip and an approximate
characteristic impedance of 230 Q. The PGL was excited with
the probes using a CPW to PGL transition [7].

To minimize substrate mode excitation [8], [9], and thus
reduce losses, we chose a 23 um thick polyethylene
terephthalate (PET) film (with a relative permittivity of
& =3.15 and a loss tangent of tan(d) = 0.017 at 1 THz [10]) as
the substrate. The PET substrate was placed on top of a
polyethylene (PE) holder (g = 2.3 and tan(8) = 0.004 at 1 THz
[10]) during measurements to avoid coupling of the structures
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Fig. 1. Cross-section sketch of a) coplanar waveguide and b) planar Goubau
line. Dashed lines indicate the electrical field of the main propagation mode in
each waveguide. Both waveguides were measured in two environments: with
PE (& = 2.3) or with air (&» = 1) under the PET substrate.
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—PGLon PE
—PGL on air
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Fig. 2. a) Optical micrograph of the 1 mm long CPW with a 23.5 um wide strip
and ground separation of 1.5 pm. Vertical dashed lines indicate the location of
the calibration planes. b) Optical micrograph of the I mm long and 10 pm wide
PGL. Vertical dashed lines indicate the location of the calibration planes. Behind
each calibration plane lies the CPW to PGL transition. ¢) Measured attenuation
constant of the above structures having PE or air under the PET substrate.

with the metal chuck from the measurement’s set-up. The
conducting strips of both the PGL and the CPW were fabricated
using e-beam lithography and e-gun evaporation of 10 nm Ti
and 350 nm Au.



The S-parameter measurements from 0.75 THz to 1.1 THz
were performed using an Agilent N5242A PNA-X Network
Analyzer attaching two VDI WR1.0SAX frequency extenders.
To contact the planar structures, Cascade T-Wave ground-
signal-ground probes [6] were used. The measurements were
calibrated using multi-line TRL calibration standards [11],
included in the PET substrate. To compare the PGL to the CPW
without the effect of the PGL’s transition, a dedicated
calibration standard was used for each waveguide, CPW and
PGL [12], which allowed setting the calibration plane along
each line (see Fig 2.a and Fig 2.b). The waveguides were
measured in two different environments: with PE under the PET
substrate (&1 =3.15; €2 =2.3), or with air under the PET
substrate (g1 = 3.15; & = 1), by micromachining a hole in the
PE holder.

III. RESULTS

When there is PE under the PET substrate (e =3.15;
€ =2.3), S-parameter measurement results of the 1 mm long
CPW (Fig.2.c) show an attenuation constant, o, between
0.68 mm' and 0.99 mm™' and return loss above 15 dB across
the band. On the other hand, measurements results of a 1 mm
long PGL (Fig. 2 c) show 0.87 mm™ <0 < 1.38 mm™' and return
loss above 15 dB across the band. Under these circumstances,
there is an approximately 0.25 mm™' lower attenuation constant
across the band for the CPW than for the PGL.

When the PE under the PET substrate is removed (g1 = 3.15;
gn = 1), the CPW’s S-parameter measurement results (Fig. 2.c)
show negligible change. However, for the PGL there is an
approximately 0.78 mm™! decrease in the attenuation constant
(0.13 mm™! < 0, < 0.39 mm™), compared to when there is PE
under the PET substrate. In this case the PGL, with 0.39 mm"!
< 0 < 0.13mm" across the band, has an approximately
0.55 mm! lower attenuation constant than the CPW. These
results suggest that the highly confined field in the CPW does
not excite substrate modes in the PE under the PET substrate
and that the attenuation is mainly caused by conductor and
dielectric losses. In contrast, the PGL excites substrate modes
in the presence of the PE holder, due to its lower field
confinement, but has a fewer sum of conductor and dielectric
losses compared to the CPW. Thus, to decrease losses in the
PGL it’s crucial to avoid substrate mode coupling.

For lowering the conductor losses in the CPW, it is necessary
to increase the strip width and the strip-to-ground

separation [13]. This comes at the cost of a higher tendency to
excite substrate modes due to a lower confinement of the field.
In the limit when conductor losses are minimized in the CPW,
the ground planes would be too distant from the CPW’s central
strip to have an impact in the field, thus having a propagating
mode similar to the PGL’s.
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Abstract—Terahertz spectroscopy is a promising tool for
analyzing the picosecond dynamics of biomolecules, which is
influenced by surrounding water molecules. However, water
causes extreme losses to terahertz signals, preventing sensitive

r ts at this freq y range. Here, we present sensitive
on-chip terahertz spectroscopy of highly lossy aqueous solutions
using a vector network analyzer, contact probes, and a coplanar
waveguide with a 0.1 mm wide microfluidic channel. The complex
permittivities of various deionized water/isopropyl alcohol con-
centration are extracted from a known reference measurement
across the frequency range 750-1100 GHz and agrees well with
literature data. The results prove the presented method as a high-
sensitive approach for on-chip terahertz spectroscopy of high-loss
liquids, capable of resolving the permittivity of water.

Index Terms—Coplanar waveguides (CPW), isopropyl alcohol
(IPA), material properties, microfluidic channels, on-wafer mea-
surements, permittivity, scattering parameters, terahertz spec-
troscopy, vector network analyzers (VNA), water

I. INTRODUCTION

Erahertz (THz) spectroscopy is an indispensable tool to
Tanalyze light-weight molecules with applications in as-
tronomy and chemistry. With new technological developments,
the application of THz technology has extended to fields as
diverse as security [1], communications [2], pharmaceutical
control [3], medicine and biology [4]. In biology, THz waves
have shown to be a relevant method for studying picosecond
dynamics of biomolecules [5], [6], predicted to be key for
their biological function [7] in which water plays an important
role [8]. Aqueous samples have been measured with time-
domain spectroscopy (TDS), one of the most common THz
spectroscopy methods, with free-space transmission [9], free-
space reflection [10], and on-chip setups [11], [12]. However,
despite having a relatively high dynamic range, necessary for
measuring high-loss samples, the low time-averaged power
and wide bandwidth typically yield measurements with a low
signal-to-noise ratio (SNR), limiting the smallest detectable
signal change [13]. The low SNR further plummets when
measuring high-loss aqueous samples (around 100 dB/mm [9])
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in higher-loss chip setups, hindering pure water measurements
at frequencies above 0.5 THz [12], or having to avoid liquid
sample in the region with the most intense electric field to
minimize losses [11], [14], but sacrificing sensitivity.

A promising method for obtaining high SNR for on-chip
applications is measuring S-parameters using vector network
analyzers (VNA), a common measuring method at microwave
and millimeter-wave frequencies. This method is based on
an electronic heterodyne technique, and benefits from having
first-class frequency resolution (~ 1Hz), about 20dB higher
dynamic range than TDS systems at 1 THz [15], traceability to
the International System of Units [16], and can use calibration
techniques to move the reference plane to the region of interest
[17]; whereas the downside is that the bandwidth is limited to a
waveguide band. The frequency range of VNA measurements
applied to biology has been typically restricted to microwave
[18] and millimeter-wave frequencies [19], [20]. However,
recent development in heterodyne technology has increased
the maximum frequency of VNA analysis up to 1.5 THz
[21] in rectangular waveguides, and up to 1.1 THz for on-
chip measurements using contact probes [22]. Contact probes
offer an efficient way to guide the generated power directly
into the sensing chip (compared to free-space coupling), thus
increasing the sensibility of the method.

In this letter, we demonstrate the use of a vector network
analyzer and contact probes for THz spectroscopy of high-loss
aqueous samples contained in a chip. We describe the design
of the low-loss sensing waveguide and its fabrication, the
measurement setup, and how the complex refractive index was
extracted from the measured complex transmission coefficient.
This is a first step towards a miniaturized chip sensor for high-
loss liquid samples at THz frequencies.

II. METHOD

For sensing liquid samples on a chip, we used a copla-
nar waveguide (CPW) [23], which provides easy interfac-
ing with ground-signal-ground probes (Fig. 1.a). The CPW
was designed to suit both the measurement probe’s pitch
(25pum) and characteristic impedance (50Q) [22], yielding
a central strip width of 23.5pum and a ground separation of
1.5um. The CPW was designed on a ultra-thin 23 um thick
polyethylene terephthalate (PET) film substrate (¢/ = 3.15
and tan(6) = 0.017 at 1 THz [24]), to avoid power leakage
[25] to undesirable substrate modes [26]. The CPWs and their
dedicated calibration standards were fabricated using e-beam
lithography and evaporation of 20nm Ti and 350 nm Au on
top of the PET substrate.



IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 11 NO. 1, JANUARY 2021 2

Contact
probe

Ground §

Signal supporting

Gl substrate

Mierofluidic
channel
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Fig. 2. Illustration of the cross-section of the microfluidic channel filled with
sample intersecting the CPW.

The PET substrate containing the CPWs is held on top of
a polyethylene supporting substrate to avoid coupling with
the probe station’s metal chuck during the measurements
(Fig. 1.b). The polyethylene supporting substrate had a 1 mm
deep and 1 mm long air cavity under the measured CPW,
suspending it on air (Fig. 2). On top of the PET substrate,
an interchangeable polydimethylsiloxane (PDMS) microfluidic
channel was clamped to the polyethylene supporting substrate.
The microfluidic channel was designed to have a 100 um wide
square cross-section, whereas the cross-section of the PDMS
containing the channel is 1 mm wide by 10mm tall (Fig. 2).
To deliver the sample into the microfluidic channel, input and
output tubings were connected to the microfluidic channel.

We measured the complex transmission coefficient, TS, be-
tween 0.75 THz and 1.1 THz using a VNA Keysight N5242A
connected to two VDI WRI1.0SAX frequency extenders [27],
having a typical/minimum dynamic range of 65/45 dB, re-
spectively, and a continuous wave signal power higher than
—40dBm. To couple the signal to the sensing chip, we used
DMPI T-Wave ground-signal-ground probes [22]. We used
dedicated multi-line TRL [28] calibration structures to set the
calibration plane at the air-PDMS interface (Fig. 2).

The aqueous samples consist of propan-2-ol (IPA) in
deionized-water (DI-H,O) with different concentrations—O,

10, 20, 30, 40, and 50% of IPA in volume. The samples
were pumped into the microfluidic channel from higher to
lower concentration of IPA through the input tube using a
syringe and flushing air between samples. The pressure was
adjusted to atmospheric pressure by removing the syringe
momentarily after introducing each sample. The probes were
kept in contact with the chip throughout all measurements
to minimize probing position uncertainty. Each sample was
measured five times in consecutive VNA sweeps with an
intermediate frequency bandwidth of 50 Hz.

The effective refractive index of the sample-loaded CPW
(A, = n, — jk,) was calculated by comparing the measured
transmission with a reference measurement, f", (average of
five measurements with DI-water as sample), following the
equation:

A, = h, — I lTs/1] [,TS/T’] (N

Jkol

where k is the vacuum wavenumber, /; is the effective sample
length, and 7, is the effective refractive index of the reference.
i, was obtained from analytical expressions for multilayered
substrates on CPWs [29] and using a double Debye model
for water [9] in order to include the frequency-dependent
permittivity.

Finally, the sample’s refractive index 7, was found from
measured CPW’s effective refractive index, 7,, by using the
same analytical expressions for multilayered substrates on
CPWs [29]. According to it, the equation relating the sample
permittivity with the CPW’s effective permittivity is:

Ay =& =147 -1 K(KNK (k) 2
Lo g, KOOKGK,) ©
+§(nsub - W(ksub)

where K is the complete elliptical integral of the first kind,
and k, k', ki, ki_, kyup K. ., are terms depending on the
S S sub
geometry of the CPW cross-section, superstrate (sample) and
substrate, respectively [29]. The analytical expression (eq. 2)
agrees well with more detailed 3D electromagnetic simulations
of the multilayered CPW.

III. RESULTS

We measured the transmission of a 1 mm long CPW
with the PDMS microfluidic channel containing IPA/DI water
solutions from 0.75 THz to 1.1 THz. For DI-water, the typical
insertion loss was in the order of 25 dB. Fig. 3a-b shows the
phase and magnitude, respectively, of the transmission for each
sample normalized to the reference measurement (DI-water).
Solid lines represent the average of five successive measure-
ments, whereas the shadows represent their standard deviation.
Both the normalized magnitude and phase consistently de-
crease for increasing IPA concentration, as expected from liter-
ature values [9], [30]. The artifacts observed around 0.95 THz
and 1THz, which appear as resonances in both magnitude
and phase of the transmission, were also observed without
any microfluidic channel. A possible explanation is parasitic
probe-to-probe coupling effects or calibration artifacts [31].
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Fig. 3. Transmission measurements can resolve magnitude and phase differ-
ences between high-loss aqueous samples. Transmission (a) phase difference,
and (b) power ratio with respect to reference measurement for the IPA/DI-
H,0 samples (from 50% to 100% DI-H,O in steps of 10%). (c) Real and
(d) imaginary part of effective refractive indices of the CPW with samples.
Lines indicate the mean of five measurements, whereas shadows indicate the
standard deviation.

The measurements’ noise increases noticeably after 1.05 THz
due to a drop in the dynamic range at the end of the frequency
extender band. The relative error shows to be smaller for
K, than for n,, implying that in this case, smaller sample
changes can be detected with attenuation measurements than
with phase measurements. For water measurements the SNR
was typically higher than 25dB.

The real and imaginary effective refractive indices are
shown in Fig. 3.c-d, where all high-loss samples have been
successfully resolved. A relatively large effective length [ =
250 um was used since part of the liquid was found to extend
between the PDMS and CPW substrate. Fig. 4 shows the
samples’ extracted real and imaginary permittivities at 0.8 THz
versus sample DI-water concentration, showing error bars with
95% confidence interval. Both the real and imaginary parts of
the permittivities change consistently with the changes of IPA
concentration. The analytically extracted sample permittivities
are also plotted with the permittivity of the IPA/water mix-
tures using literature values, using a modified Bruggeman’s
approximation for binary mixtures of polar liquids [32], with
equation:
€ — € e 113
— [%] =1- [a ~(a- 1)aH20] b, @

—€
IPA Hy0 m

where ¢, and ¢ are literature values of the permittivities
2 . .

of water [9] and IPA [30] respectively, a, o s the volume

concentration of water, €,, the permittivity of the mixture, and

a = 1.33 is the fitting factor for propanol-water samples [32].

IV. CONCLUSION

This letter presents an on-chip dielectric spectroscopy
method capable of measuring high-loss aqueous samples

5r— T T T T T T
‘ I Measured €, I Measured €,
s |Ee® o d L4
o4 1.7 2
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E 91035137
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Fig. 4. Obtained sample permittivities show consistent change with varying
water concentration. Permittivity of IPA/DI-H,0O samples vs. water concen-
tration at 0.8 THz for this work (blue and red errorbars for 95% confidence
interval) and literature values. Literature values of (+) IPA [30], [33], [34],
() water [9], [35]-[37], and (3r) IPA/H,O mixtures measured with a similar
on-chip method [12] are plotted. The dashed lines show Bruggeman’s model
approximation for the change in water concentration, based in eq. (3).

enabled by VNA and ground-signal-ground probes. Similar
attempts of broadband measurements of aqueous solutions
with TDS had problems resolving the complex refractive index
for high water content solutions at frequencies higher than
0.5 THz [12] or lost sensitivity from not placing sample where
the sensor’s field is strongest [11]. The main reasons why the
presented method could measure aqueous samples sensitively
is due to (1) a higher coupling efficiency when exciting the
CPWs using the contact probes compared to other methods
which couple a free-space beam into the substrate via an
antenna; (2) the higher average power of continuous-wave
THz signals produced by the VNA compared to other pulsed
methods, like TDS; (3) a low-loss design of the CPW. The high
dynamic range (typically 50dB at calibration plane) allows
to measure water with a sample length up to approximately
0.6 mm. Some drawbacks of this method are that (1) is limited
to frequencies up to 1.1 THz, due to lack of contact probes at
higher frequencies; (2) being limited to rectangular waveguide
bands for a given setup, and (3) a higher cost. In perspective,
this method is a first step towards a miniaturized system for
sensing high-loss aqueous samples at THz frequencies, which
could provide an integrated, accurate, and controlled platform
to study fundamental biological phenomena in their native
environment.
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