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Abstract 

In China, around 15,000 users of two-wheelers (TWs) die on the road every year. 

Passenger cars are the dominating crash opponent of TWs in road traffic crashes. 

Understanding the characteristics of car crashes with TWs is essential to enhance 

cars’ safety performance and improve the safety of TW riders in China.  

This thesis has three objectives. First, to define test scenarios of Automated 

Emergency Braking systems for cars encountering TWs (TW-AEB) in China (Paper I). 

Second, to assess whether cars with good ratings in consumer safety rating 

programs (e.g., New Car Assessment Program: NCAP) are also likely to perform well 

in the real-world. Finally, to understand the characteristics of the car crashes with 

TWs after the TW-AEB application.  

To achieve the first objective, cluster analysis was applied to the China In-Depth 

Accident Study (CIDAS). The results were six test scenarios (Paper I), which are 

proposed for the Chinese NCAP (C-NCAP) TW-AEB testing.  

To achieve the second and third objectives, counterfactual virtual simulations were 

performed with and without TW-AEB to a) a C-NCAP TW-AEB test scenario set ; b) 

an alternative scenario set based on the results of Paper I; and c) real-world crashes 

in China. Results show much higher crash avoidance rate and lower impact speed 

were found for C-NCAP scenario set than for the other two sets.  

To better reflect car crashes with TW in China, longitudinal same-direction scenarios 

with the car or TW turning and perpendicular scenarios with high TW traveling 

speed are recommended to be included in C-NCAP future releases.  

Future work will focus on assessing the combined benefit of preventive and 

protective safety systems for car-to-TW crashes in China.  

Keywords: C-NCAP; cluster analysis; PTW; two-wheelers; motorcycles; ADAS; AEB; 

benefit assessment; future safety systems; China 
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1. Introduction 
Globally, more than 1.35 million people die from road traffic crashes and as many 

as 50 million people get injured every year (WHO, 2018a). Road traffic injury is now 

the eighth leading cause of death for all age groups and the first leading cause of 

death for children and young adults from 5–29 years old (WHO, 2018a).   

This global public health issue calls for efforts involving international cooperation 

and partnerships across many sectors of society. The United Nations (UN) 

proclaimed that halving the number of global traffic fatalities and injuries by 2020 

(WHO, 2018a) is a target of the Sustainable Development Goals (SDGs: 3.6). Despite 

initiatives to improve road traffic safety, the problem is not resolved; there are still 

many crashes on the road every day (Benlagha and Charfeddine, 2020). Recently, 

additional efforts have been made. For example, the World Health Organization 

(WHO), representing around 140 countries, has worked on improving road traffic 

safety using the Stockholm Declaration (WHO, 2020). The Declaration calls for new 

global targets: road deaths reduced by at least 50% by 2030 and traffic fatalities and 

serious injuries eliminated by 2050 (WHO, 2020). 

China, with the largest population and largest automotive market in the world, 

accounted for about 26% of global traffic fatalities in 2016 (Benlagha and 

Charfeddine, 2020). Of the total traffic fatalities in China in 2013, two-wheelers 

(TWs) riders accounted for almost 30% (WHO, 2015). However, most existing 

studies on TW traffic safety improvement are from developed countries like 

Sweden, Germany and the USA (Chen et al., 2013). The traffic situations in a large, 

rapidly developing and highly populated country, such as China, can be quite 

different (Zhang et al., 2008; 2010). In order to improve TW road traffic safety in 

China, we must implement safety systems based on a thorough understanding of 

the car-to-TW crash characteristics of Chinese real-world data.  

In this thesis I start by describing the traffic situation of TWs worldwide as well as in 

China, followed by an introduction of measures that are being, or can be, taken to 

improve TW safety in China. Chapter 2 covers safety system benefit assessment 

methods and the data used. In the next chapter, the objectives of the thesis and the 

whole Ph.D. project are explained. In Chapter 4, two paper summaries are provided. 

Chapter 5 presents a discussion on how to improve TW traffic safety in China and 

explores this thesis’ contribution to sustainable development. Chapter 6 describes 

the conclusions of the thesis. 
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1.1 TW traffic situation worldwide and in China  

1.1.1 Large number of TWs in China  

In this thesis, TWs include both traditional pedal bicycles and powered two-

wheelers (PTWs: combustion and electric engine powered TWs). The bicycle is 

environmentally friendly and has been popular worldwide for many years (Wang 

and Wei, 1993; Wayne and Pless, 2005; ESCAP, 2013; Davison and Curl, 2014; Oke 

et al., 2015; 2018). Oke et al. (2015) estimated that there were more than 580 

million bicycles globally in 2012. The combustion engine PTWs are common as well: 

in 2006, their number was estimated at 313 million globally, with the majority (77%) 

in Asia, followed by Europe and North America (Rogers, 2008). Recently, the number 

of electric engine PTWs has been increasing worldwide, due to their convenience 

and economic benefits as well as an increased emphasis on reducing carbon 

emissions. Asia has the largest number of electric engine PTWs, followed by Europe 

and North America (TechSci Research, 2019). China is one of the largest markets for 

electric engine PTWs, with an estimated 290 million at the end of 2018; the number 

is predicted to increase to over 350 million by 2023 (Sina Car, 2019). In terms of 

market value, the TW market in China is predicted to surpass US$22,000 million by 

2024 (TechSci Research, 2019). 

Along with the large number of TWs worldwide, a variety of TW design styles can be 

found. Generally, the styles of bicycles and combustion engine PTWs are quite 

uniform across the world. However, a spectrum of designs exists for electric engine 

PTWs, from bicycle-style to scooter-style, with varying performance characteristics 

(Cherry et al., 2009; Rose, 2012; Fishman and Cherry, 2016). In the top row (a-c) of 

Figure 1, bicycle-style electric engine PTWs, with big wheels, are shown. In the 

bottom row (d-f), scooter-style electric engine PTWs with small wheels are shown. 

In China, all electric engine PTWs must be equipped with pedals by law. However, 

pedals are rarely used on the scooter-style electric PTWs. Most electric engine PTWs 

in Europe and North America are bicycle-style, while all types shown in the figure 

can be found on Chinese roads (Fishman and Cherry, 2016). Scooter-style electric 

PTWs, with a higher travel speed than the bicycle-style PTWs, are more popular in 

some Chinese cities (Fishman and Cherry, 2016). One thing to note is that, according 

to the Chinese national regulation: GB17761-2018, electric engine PTWs should 

weigh less than 55 kg and have a maximum speed of 25 km/h (Ministry of Industry 

and Information Technology of the People’s Republic of China); however, the 

scooter-style PTWs can usually reach 45 km/h, due to loose enforcement of the law 

and strong demands for speed (Weinert et al., 2007; Cherry and Cervero 2007). 
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Although electric engine PTWs generally travel faster than bicycles, in most cities in 

China they are allowed to share infrastructure (like bicycle paths) with bicycles, 

which increases the complexity of the traffic situation (Cherry and He, 2010).  

 

Figure 1. Different types of electric engine PTWs: bicycle-style in the top row and 

scooter-style in the bottom row (From Fishman and Cherry, 2016, included with 

permission from the Transport Review journal editorial office). 

Not only do TWs have different design characteristics, their usage is different in 

different areas of the world. In China, TWs are used more for transportation, 

whereas in Europe they are used more for exercise and leisure (Haworth, 2012; 

Chen and Dai, 2018). Overall, these differences result in different traffic situations 

and traffic conflicts for TW riders in China compared to European countries. 

1.1.2 Critical safety issue of TWs in China 

As the number of TWs on the road increases, road traffic crashes involving TWs 

increase as well. Around 30% of the 1.35 million road traffic deaths globally in 2016 

were two- or three-wheeled vehicle users (WHO report, 2018). In China, over 15,000 

TW users died and 56,000 were injured in road traffic in 2018 (National Bureau of 

Statistics of China, 2018). The actual number is likely to be higher, however, since 

crashes are under-reported in China (Duan et al., 2017; Hu et al., 2011; Huang et al., 

2017). 

The increase in the number of (non-TW) motor vehicles is also an important factor 

contributing to the high number of TW-involved crashes, as the majority of the TW 

road fatalities are caused by crashes with other motor vehicles (DESTATIS, 2016; 

Duan et al., 2017; Chang et al., 2019). What makes it worse is that TW riders have a 
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higher risk of being fatally injured than passenger car occupants on the road. A 

comparison of fatalities per billion vehicle-kilometres for combustion engine PTW 

and passenger car occupants in Germany reveals that the former is 20 times higher 

because of the higher fatality risk (2.5 times) and crash risk (7 times) of motorcyclists 

(Wu and Lubbe, 2020).  

Helmets are effective at reducing TW riders’ injuries and fatalities. The use of 

helmets has been recommended and/or legally required in many countries 

(ITF/OECD, 2018). In China, helmet usage has been mandatory for combustion 

engine PTWs since 1988 (The State Council of the People’s Republic of China, 1988). 

In May 2004, the penalty for not wearing a safety helmet was raised from five RMB 

(less than €1) to 20–200 RMB (approximately €3–30). However, the reported helmet 

usage rate remains low, with estimates ranging from 30% to 60%, due to poor 

enforcement of the law (Zhang et al., 2004; Li et al., 2008). At present, electric 

engine PTW riders in China are not required to wear a helmet or have a driving 

license (Weinert, and Cherry, 2007; Wu et al., 2012; Fishman and Cherry, 2016).  

In summary, a variety of factors are responsible for the high risk of injury for TW 

riders in China: the failure to keep to the design speeds, a mix of bicycles, PTWs, and 

pedestrians in the traffic, etc. (Weinert, and Cherry, 2007; Wu et al., 2012; Fishman 

and Cherry, 2016).   

1.2 Potential safety systems for TW riders’ protection  

There are two main types of in-vehicle safety systems available: protective and 

preventive. Protective safety systems were the first type of safety system added to 

passenger cars to mitigate the injuries of car occupants once a crash was 

unavoidable. Common examples include seatbelts and airbags. Other protective 

safety systems were developed later for vulnerable road users (VRUs; including TW 

and three-wheeled vehicle users and pedestrians) outside the car, such as “friendly” 

car-front designs (e.g., energy-absorbing bumpers), pedestrian protection airbags 

(PPA) and active pop-up hoods (Huang and Yang, 2010; Fredriksson et al., 2010; 

Strandroth et al., 2011; Moran et al., 2017). Although these systems were initially 

designed for pedestrian protection, they have recently been modified to protect TW 

riders as well (Fredriksson et al., 2012; Ohlin et at., 2016).  

The second type, preventive safety systems, which acts earlier than protective 

safety systems, has the goal of avoiding crashes (or, at least, mitigating their 

consequences) by warning drivers or automatically intervening (e.g., braking). They 

are effective at saving lives and reducing injuries (Capitani et al., 2009; Coelingh et 

al., 2010; Bärgman et al., 2017; Jeong and Oh, 2017). Preventive safety systems can 
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be car-based—for example, Forward Collision Warning (FCW) and Automated 

Emergency Braking (AEB), or TW-based—for example, Anti-lock Braking System 

(ABS) and motorcycle AEB (MAEB).  

1.2.1 Preventive safety systems 

Impact speed reduction has been identified as critical for VRU protection, since 

impact speed is highly correlated with VRU injury severity for head, chest, and leg 

injuries (Fredriksson et al., 2007; 2010). Rosén and Sander (2009) showed that the 

pedestrian fatality risk at an impact speed of 50 km/h was twice as high as the risk 

at 40 km/h, and five times as high as the risk at 30 km/h. Thus, reducing the impact 

speed is an important priority for preventive safety systems when the crash cannot 

be avoided. The following paragraphs provide an overview of the safety systems 

available for cars and TWs which are intended to reduce the impact speed before 

the crash.  

Car-based preventive safety systems 

FCW 

FCW is an on-board electronic safety device with forward-looking object detection 

capability (Jamson et al., 2008; Guillen and Gohl, 2019). The system typically uses 

radar to continuously monitor traffic obstacles in front of the car (Jamson et al., 

2008; Aust et al., 2013). It was first implemented to help drivers avoid or mitigate 

rear-end collisions. Recently it has been improved so that it also warns drivers of a 

potential collision with a cyclist crossing the road (Guillen and Gohl, 2019).  

Many studies have highlighted the benefits of FCW systems in improving road safety 

and reducing crash-related traffic congestion (Fitch et al. 2008; Jamson et al., 2008; 

Kusano and Gabler, 2012; Cicchino 2017). However, there is one crucial problem 

with the design of FCW systems: the timing of the warning. Earlier triggering of the 

warning will make it less likely a collision will occur. On the other hand, more false 

alarms (false positives) will also be triggered (Seller et al., 1998), increasing the risk 

that the driver will turn off the system during daily driving (Jamson et al., 2008; 

Guillen and Gohl, 2019) or just choose not to buy that brand of vehicle again. Later 

triggering could be interpreted as a design failure, since it produces a less effective 

system: the car driver will have less time to react to the warning (Jamson et al., 

2008).  
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AEB 

Unlike FCW, AEB acts automatically, without any driver action needed. The aim of 

AEB systems is to avoid or mitigate a crash by braking automatically. Mitigation is 

obtained by decreasing the impact speed of a collision, decreasing the risk of injury 

for the persons involved. AEB was first introduced to avoid or mitigate rear-end 

crashes (Coelingh et al., 2006; Lindman et al., 2010). With the development of 

improved sensor detection capabilities and advanced algorithms, coupled with 

improved brake system activation, AEB can prevent or mitigate pedestrian and TW 

injuries as well (Rosén et al., 2010; Rosén, 2013; Ohlin et al., 2017). 

The AEB system’s specifications affect its safety performance substantially. Rosén et 

al. (2010) showed that AEB effectiveness increased when the sensor field of view 

(FoV) and maximum brake deceleration were increased and the brake activation 

delay was reduced. Further, Jeppsson et al. (2018) found that adding Vacuum 

Emergency Braking (VEB), which can increase a car’s deceleration from 9 m/s2 to 16 

m/s2, decreases pedestrian fatalities by an additional 8% to 22%. Thus, we can 

conclude from these studies that AEB systems have the potential to continue to 

improve road safety with the development of more advanced technologies. Further 

research and evaluation of AEB performance when cars encounter VRUs is needed 

to ensure accurate detection and reasonable algorithm decision-making (Cao et al., 

2009). Furthermore, as TWs travel at higher speeds and exhibit more diverse 

manoeuvres than pedestrians (Cao et al., 2019), designing the AEB for cars 

encountering TWs (TW-AEB) is even more challenging than designing pedestrian-

AEB (the car-based AEB system to detect and avoid pedestrians on the road). 

1.3 TW-based preventive safety systems 

In addition to preventive safety systems installed in cars, preventive safety systems 

on TWs have been developed and studied. Two examples of such systems are 

outlined below.   

Anti-lock Braking System (ABS) 

The ABS has already been introduced on motorcycles and has proven to be effective 

at reducing crashes and injuries (Teoh et al., 2010; Rizzi et al., 2009). The system 

monitors wheel speed and reduces brake pressure when wheel lock is detected. 

Riders can apply full brakes without the risk of falling or losing control due to wheel 

lock (Eric, 2011). There are indications that motorcycles with ABS are more likely to 

keep the rider in an upright position when a crash does occur than motorcycles 

without ABS, thus reducing injury from ground impact. To date, ABS is mostly 
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available for combustion engine PTWs (Rizzi et al., 2009; Roll and Hoffmann, 2009; 

Giovannini et al., 2013). For other types of TWs, including bicycles and bicycle-style 

electric engine PTWs, ABS is rarely available.  

 Motorcycle Automated Emergency Braking (MAEB) 

Researchers have investigated the potential for crash-avoidance and injury-

mitigation benefits of AEB systems for motorcycles (MAEB) (Grant et al. 2008; Rizzi 

2011). One of the first prototypes of an MAEB system was developed to detect and 

classify an object in front of the motorcycle (Grant et al. 2008). Based on in-depth 

crash data from three countries (Australia, Italy, and Sweden), Savino et al. (2014) 

found that, on average, a 10% reduction in impact speed could be achieved by 

automatically applying a maximum deceleration of about 2.94 m/s2 if the rider does 

not react before the collision becomes unavoidable. In a study using virtual 

simulations, Savino et al. (2013) found that MAEB was effective in reducing impact 

speed by up to 4 m/s in seven fatal PTW crashes that occurred in Sweden. Real-

world benefits of MAEB need further study, with more data and more realistic 

models of the TW (here, motorcycle) rider and the MAEB.  

Automated vehicles  

With the development of sensors, dynamic maps, artificial intelligence, and other 

technologies, preventive safety systems are becoming increasingly smart and 

“connected”. Hence, they provide strong support for the development of 

automated vehicles (Noy et al., 2018; Li et al., 2019). Automated vehicles have the 

potential to improve traffic safety substantially, while reducing congestion and 

emissions (Gavanas, 2019). In addition, increased productivity and mobility for the 

non-driving population have been predicted (Zhang et al., 2020). Industry is 

responding to these potential advantages by developing highly automated, self-

driving systems. It has been estimated that crashes could be reduced by up to 90% 

with a 100% automated-vehicle penetration rate (Fagnant and Kockelman, 2015). 

Although such a huge reduction may be possible in some countries, it might be 

difficult to achieve in developing countries such as China, due to the complicated 

traffic environment (Pizzuto et al., 2019), with many TWs on the road (Rose, 2012; 

Fishman and Cherry, 2016).  



8 
 

1.3.1 Protective safety systems  

Car-based protective safety systems 

Protective safety systems aim to reduce the injury severities for everyone involved 

in a crash. Car-based protective safety systems for pedestrians have shown clear 

benefits in mitigating pedestrian injuries (Strandroth et al., 2011). Pastor (2013), 

whose results are based on the German National Accident Records, compared the 

injury severity of pedestrians involved in crashes with vehicles: less severe injuries 

were associated with vehicles which scored higher in pedestrian crash tests 

performed by safety assessment programs. Similar findings were observed based on 

Swedish crash data (Strandroth et al., 2014). These systems are believed to reduce 

TW riders’ injuries as well. There are indications that protective safety systems 

aimed at reducing pedestrian injuries can be redesigned in order to optimise 

protection for TW riders as well (Strandroth et al., 2014; Ohlin et al., 2017). For 

example, research on the pedestrian head-form test area (the area on the car where 

pedestrian head impacts are most likely) has led to safety systems (e.g., deployable 

hood and windshield airbags) which also protect TW riders to some extent 

(Fredriksson and Rosén, 2012; Zander and Hamacher, 2017). However, the existing 

test procedures and safety system requirements might not provide adequate 

protection for TW riders. For example, the study by Otte (2015), based on the 

analysis of German In-Depth Accident Study (GIDAS) data, found that the WAD 

(Wrap Around Distance: the distance from the ground to the head impact point on 

the vehicle) in car-frontal crashes was higher for bicyclists than for pedestrians.  

Friendly car-front design 

Friendly car-front designs which have already been implemented, such as energy-

absorbing bumper areas and headlights as well as a lower stiffener at mid-tibia level 

to decrease loading, have been shown to reduce pedestrian injuries in crashes 

(Strandroth et al., 2014). Similar bicyclist injury reductions due to these designs 

were found in real-world crashes, although the reduction was slightly smaller for 

bicyclists (Ohlin, et al., 2017). Further efforts need to be undertaken to protect TW 

riders by improving the structural design of cars’ front ends.  

Active pop-up hood and windshield airbag 

To mitigate pedestrians’ head and chest injuries caused by the car bonnet, A-pillars, 

and lower windshield, a protective safety system consisting of an active pop-up 

hood and a windshield airbag has been proposed (Fredriksson et al., 2001；Shin et 

al., 2008; Fredriksson and Rosén, 2012a; 2012b; Shi et al., 2019). The pop-up hood 
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is designed to reduce pedestrian head injuries by reducing the hood’s structural 

stiffness and providing extra deformation space (Fredriksson et al., 2011; Lim et al., 

2015). The windshield airbag is a U-shaped airbag inflated from the lower part of 

the windshield and A-pillar, as shown in Figure 2.  

Many studies have shown the effectiveness of these safety systems in reducing 

pedestrian injury risk, especially for the primary impact (when the car first hits the 

pedestrian) (Krenn et al., 2003; Bovenkerk et al., 2009; Huang and Yang, 2010; 

Fredriksson and Rosén, 2012a; Ames and Martin, 2015; Lim et al., 2015). To increase 

the system’s injury reduction capabilities for TW riders, airbag coverage of higher 

parts of the windshield area has been recommended (Fredriksson and Rosén, 

2012b). However, there is some evidence that the active pop-up hood and 

windshield airbag might not only fail to reduce injury risk when the pedestrian hits 

the ground (the secondary impact) but might even cause more severe injuries (Shi 

et al., 2019). More research is needed to determine the benefit of these safety 

systems in real-world traffic.  

 

Figure 2. Windshield airbag for pedestrian protection (From Autoliv Inc., with 

permission): a TW-based protective safety system 

Motorcycle airbag 

To enhance motorcyclist’s protection during frontal collisions with opposing 

vehicles or objects, airbags on the motorcycle itself have been developed. They 

could be fitted to the instrument panel or the top of the petrol tank (Haworth and 

Schulze, 1996). Honda was first to develop a prototype of a motorcycle airbag, 
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aiming to reduce the rider’s injuries by absorbing the kinetic energy and reducing 

the rider’s separation velocity in the forward direction, as shown in Figure 3 

(Yamazaki et al. 2001; Kuroe et al. 2005). The airbag was expected to not only save 

riders’ lives but also reduce their injuries, based on physical crash tests (ADAC,2020). 

It has been estimated that this airbag may save seven motorcycle riders per year 

(13% of average annual crashes) in Sweden (Rizzi et al., 2011). However, since no 

real-world benefits have yet been measured due to low market penetration of the 

product, the effectiveness of the airbag in daily traffic is still unclear (Rizzi et al., 

2011).  

 

Figure 3. Prototype motorcycle airbag system installed on GL 1800 motorcycle 

(From Kuroe et al., 2005, with permission from the administration of the 

conference: Enhanced Safety of Vehicles) 

TW rider-based protective safety system 

In addition to in-vehicle based safety systems listed above, there are also TW rider-

based protective safety systems, which I include here for completeness.  

Helmet 

Head injuries, typically skull fractures and brain injuries (Fernandes and Alves, 2013), 

are among the most frequent severe injuries of TW riders (MacLeod et al., 2010; Liu 

et al., 2008; Abbas et al., 2012; WHO, 2018a). It has been estimated that helmets 

could reduce the risk of head injury by 69% and the risk of death by 42% for 

motorcyclists (Liu et al., 2008). According to a study by NHTSA, helmets saved 1,892 

motorcyclists in the USA in 2009, and an additional 823 lives could have been saved 

if the motorcycle riders had used helmets (NHTSA, 2008). However, there have been 

some concerns that helmet usage might increase the risk of injury to other body 



11 
 

parts, such as the neck (Krantz, 1985), as well as decreasing the FoV of TW riders in 

traffic (Liu et al., 2008; Fernandes and Alves, 2013). 

Inflatable jacket 

Another airbag designed for motorcycle rider safety is the inflatable jacket (Capitani 

et al., 2010; Grasi et al., 2017). It can provide protection by inflating when the 

sensor—mounted in the jacket (Capitani et al., 2010) or on the front wheel (Serre et 

al., 2019)—detects the impact. Different shapes are available, depending on the 

airbag chamber volume and the body area the airbag is intended to protect: neck, 

shoulder, lumbar spine, and so on (Capitani et al., 2010; Serre et al., 2019). 

Generally, airbag performance in real-world crashes depends on various 

considerations such as crash dynamics, the airbag inflation pressure, the chamber 

volume, and the shape and presence of the holes on its surface (Capitani et al., 

2010). Optimising these factors poses a challenge to the jacket’s widespread use in 

the real world. 
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2. Safety systems benefit assessment 
A key part of developing effective safety systems is quantitatively assessing their 

safety performance in terms of avoidance or mitigation of crashes in the real world. 

Stakeholders in the automotive industry, such as car manufacturers, automotive 

suppliers, public organisations, governments, and end users, each have specific 

concerns about the performance of safety systems (Page et al., 2015; Dobberstein 

et al., 2017; Sander, 2018). End users (customers) want to know the potential 

benefits of the system available for their vehicles (Dobberstein et al., 2017). Car 

manufactures and automotive suppliers need to understand the current traffic 

safety problems on the one hand, and on the other hand they need to make sure 

that the system they develop can provide the most possible benefit for the end user, 

in terms of crash avoidance and injury mitigation (Dobberstein et al., 2017). Public 

organisations, such as regulation agencies and New Car Assessment Programs 

(NCAPs), are interested in the benefits of safety systems for two reasons. Regulation 

agencies want to know which systems to promote and possibly legislate; consumer 

rating programs want to ensure that the consumers can get accurate, reliable 

information in order to make informed choices about safety when they purchase 

cars (van Ratingen et al., 2016). For these reasons, benefit assessment is an 

important aspect of the development of safety systems. 

2.1. Data for safety benefit assessment 

Real-world data is an essential part of vehicle safety development (Isaksson-Hellman 

and Norin, 2005; Tivesten, 2014). First of all, current safety issues can be addressed 

through analysis of real-world data (Tivesten, 2014). Then, based on crash data 

analysis, the most common accident scenarios and injury mechanisms can be 

prioritised in future vehicle safety development and improvement (Almqvist et al., 

1982; Isaksson-Hellman and Norin, 2005). Further, real-world data can be used to 

estimate the safety system’s performance (see examples in Rosén, 2013 and 

Jeppsson et al., 2018). Safety system performance can be further validated through 

real-world data after the system has been introduced to the market (Tivesten, 

2014). For example, using real-world crash data from Sweden, Rizzi et al. (2009) 

analysed the overall effectiveness of ABS for motorcycles, and Ohlin et al. (2017) 

found that AEB with pedestrian detection was 70% effective at reducing car-to-

pedestrian and -bicyclist crashes.  

To obtain reliable and accurate estimates of safety system performance, high-

quality data are important; incomplete or distorted crash data might not only 

mislead policy-makers and researchers, but also misdirect prevention efforts, such 
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as which systems are developed and how they are tuned (Isaksson-Hellman and 

Norin, 2005; Tevesten,2014; Huang et al., 2018). 

In this thesis, a differentiation between three types of real-world data for use in 

safety benefit assessments has been made: in-depth crash data, Event Data 

Recorder (EDR) data and naturalistic driving study data (NDD). 

2.1.1. In-depth crash databases (crash data) 

Crash data have long been used in car safety development for injury prevention 

analysis in crashes (Korner, 1989; Isaksson-Hellman and Norin, 2005). In order to 

help us understand real-world traffic conflicts and develop suitable safety systems, 

crash data must, on the one hand, provide detailed information about the vehicle, 

road users and environment at the time of the crash; on the other hand, they must 

be representative of all of the crashes that the safety system is designed to address. 

Normally, two levels of crash data can be distinguished: macroscopic and 

microscopic (OECD 1998; Habibović, 2012).   

On the macroscopic level, crash data are collected with general information about 

involved vehicles, road users, and the environment to describe the main problems 

in real-world traffic (Habibović, 2012). They are usually collected by government 

offices, administrations, hospitals, or insurance companies (Benlagha et al., 2020). 

This type of data can provide statistically representative information on a national 

level and can be used to illustrate past trends and indicate future ones (Shinar et al., 

1983; Tivesten, 2014; Huang et al., 2017). Police crash reports are widely used as 

macroscopic-level data, since they can be accessed easily through national 

publishing documents or websites (Huang et al., 2017). Another advantage of police-

reported data is that they typically include many crashes; data for whole countries 

are often available. However, police reports have limited information about crash 

causation mechanisms and are biased towards severe crashes (Shinar et al., 1983; 

Aptel et al., 1999; Hu et al., 2001; Abay, 2015). While severe injuries are more likely 

to be reported than slight injuries, all are susceptible to under-reporting, as 

evidenced by comparing these data to traffic injury data from hospitals (Bull et al., 

1973; Cercarelli et al., 1996; Aptel et al., 1999; Dandona et al., 2008; Hu et al., 2011; 

Jeorg et al., 2017).  

Because of the limitations of police-reported data, hospital data are used to 

complement them: together they provide a good picture of the real-world traffic 

situation (Rosman and Knuiman, 1994). The hospital data provide detailed and 

accurate injury information, while the police-reported data focus on crash 

characteristics. However, there is usually a gap between the two sources of data, 
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due to under-reporting of crashes in police-reported data (Tainter et al., 2020). 

Many researchers have applied a data-linkage procedure—the process of linking 

information from two independent records that are expected to belong to the same 

individual—to bridge the gap, obtaining more accurate information about crashes 

(Abay, 2015; Kamaluddin et al., 2019; Tainter et al., 2020). The benefit of combining 

the data is a better understanding of traffic safety problems, leading to more 

accurate recommendations for suitable safety systems (Cryer et al., 2001; Slesak et 

al., 2015; Kamaluddin et al., 2019). 

Insurance data are another macroscopic type of crash data which can be used to 

estimate crash injuries on the national level. They are typically collected by 

insurance companies in written insurance claim reports, offering comprehensive 

information about the crashes. Insurance data contain more crashes (including 

damage-only crashes) and provide more detailed information than police-reported 

data (Hutchingson, 1987; Daniels et al. 2010). However, one disadvantage is that, 

because they focus on legal liability between crash participants, they do not include 

crash and injury causation coding (Hutchingson, 1987; Tivesten, 2012).  

In order to improve road traffic safety globally, the WHO and the Global Burden of 

Disease (GBD) study group have regularly collected and released road traffic data 

worldwide on the macroscopic level since 2009 (Mathers et al., 2006; World Health 

Organization, 2009; Huang et al., 2017). They both also make estimations of the true 

road traffic situation based on advanced statistical models (Papadimitriou et al., 

2019). However, even with such models, limitations caused by the absence of high-

quality, reliable data cannot be avoided fully (Hu and Keita, 2013; Huang et al., 

2017).    

On the microscopic level, detailed crash information describes the crash 

mechanisms via in-depth crash investigations. Typically, this work is done by a 

specialised investigation team arriving at the scene shortly after the crash (Larsen, 

2004). In-depth crash data, including pre-crash, in-crash and after-crash 

information, are collected through interviews with the involved road users and 

witnesses, as well as by inspection of the environment and involved vehicles (Larsen, 

2004). Unlike police-reported data or insurance data, in-depth crash data can 

provide information on causation, which is crucial in car safety development. One 

well-known example is the data collected in the German In-Depth Accident Study 

(GIDAS) in and around Dresden and Hannover. All road traffic crashes involving at 

least one moving vehicle and one injured person are collected (Johannsen et al., 

2017). The GIDAS investigation teams consists of physicians and engineers available 

24 hours a day. Approximately 2000 in-depth traffic crash investigations are 
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performed each year (Otte et al., 2003; Jaensch et al., 2009; Johannsen et al., 2017). 

More than 2000 details about the crash are coded, including personal injury, vehicle 

deformation patterns, driving and collision speeds, and other information obtained 

by questioning persons involved (Otte et al., 2003; Bruehning et al., 2005). The value 

of in-depth crash investigations has been recognised globally, which is evident from 

the vast amount of studies performed on the resulting data (Evans, 1999; Sunnevång 

et al., 2009; Jakobsson et al., 2010; Chen and Dai, 2018; Cao et al., 2019). Many other 

countries have similar databases: the China In-Depth Accident Study (CIDAS) in 

China (Chen et al., 2014), the Road Accident Sampling System India (RASSI) in India 

(Puthan et al., 2018), and the Crashworthiness Data System of the National 

Automotive Sampling System (NASS-CDS) in the USA (NTHSA, 2020).  

One of the most detailed and complete crash databases in China, CIDAS, has been 

collecting 500-600 crashes annually since 2010 in five cities: Changchun, Beijing, 

Weihai, Ningbo, and Foshan (Chen and Dai, 2018). These cities not only encompass 

different geographical areas—plains, mountains, and coasts—but also different 

types of roadway as well—urban, rural, and highway (Chen and Dai, 2018). The 

criteria of crash selection in CIDAS are: (1) at least one four-wheeled vehicle is 

involved, (2) at least one person has been injured, and (3) on-site information is 

preserved for the investigators (Chen and Dai, 2018). The teams of specialists who 

conduct the investigations collect general crash information and information about 

the environment, vehicle damage, and the road, as well as interviews of the involved 

road users (Chen et al., 2014; Chen and Dai, 2018). The injury information is 

collected based on clinical reports provided by the traffic police. In this way, 

extensive and detailed information of the crash is coded in CIDAS (Chen and Dai, 

2018).  

Another in-depth crash database in China is the Shanghai United Road Traffic Safety 

Scientific Research Centre database (SHUFO; Deng et al., 2013). It started collecting 

crash data in the Jiading District, Shanghai in 2005, covering an area of 463 km2 with 

a population of 1.58 million (Deng et al., 2013). The inclusion criteria for its crash 

data are: a) at least one four-wheeled vehicle is involved in the crash, and b) at least 

one airbag has been deployed or at least one person has a medium-level injury, such 

as a bone fracture (Sui et al., 2017). The crash data are collected retrospectively by 

the investigation team. SHUFO information includes data on vehicle damage, 

personal injury, and the traffic environment. In addition, for each case, a scale 

drawing of the crash scene is available, including the markings observed on the 

scene (skid, debris, braking traces, etc.), the traffic environment (traffic lines, zebra 

crossings, traffic lights), the final positions of the participants after the crash, and 

the estimated impact locations and pre-crash travelling paths of the participants.   
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Generally, microscopic data can provide more detailed records of crashes than 

macroscopic data. However, one issue in using microscopic data is that the number 

of geographical areas represented is typically limited. As a result, the data do not 

represent the whole country, leading to a lack of generalisability. This sampling bias 

impedes accurate estimations and predictions about the population (Hautzinger et 

al., 2004) unless a weighting factor from microscopic data to national data can be 

used. In NASS-CDS (US data), for example, around 5,000 cases were collected from 

24 Primary Sampling Units (PSUs) in the country each year (NASS, 2015). To ensure 

that the data were representative of the whole country’s population, the collected 

data were compared to the official national crash statistics, and a weighting factor 

was assigned to each crash (NASS, 2015; Viano et al., 2018). Unfortunately, so far, 

no such weighting process is available for the Chinese crash data, neither in CIDAS 

nor in SHUFO (Paper I).  

2.1.2. Event Data Recorder (EDR) 

Data from EDRs can also be used in the assessment of safety systems. The EDR is 

typically a component of the vehicle’s airbag control module which can record 

information for a brief period before, during, and after a crash (NHTSA; Kusano and 

Gabler 2011; Rao 2017). The data typically include pre-crash vehicle dynamics and 

driver behaviour (often indirectly, through vehicle motion recording, rather than 

steering wheel and pedal use), restraint system deployment, and post-crash data, 

such as an automatic collision notification (ACN) system (NHTSA; Scanlon et al., 

2016; Rao, 2017).  

EDR has long been regarded as a promising data collection tool, complementing in-

depth crash data to better define safety problems and understand crash causation 

mechanisms (NHTSA; Kusano and Gabler 2011; Rao 2017; Famiglietti et al., 2020). 

Furthermore, the National Highway Traffic Safety Administration (NHTSA) has 

incorporated EDR data into their crash databases (such as NASS/CDS) to support 

crash investigations by facilitating detailed pre-crash information retrieval (Kusano 

and Gabler 2011; 2012).   

Two main limitations of EDR data include variable sampling rates across different 

EDR systems and vehicle manufacturers, and a lack of contextual information (the 

behaviours of other road users and environment information; Rao 2017). 

Fortunately, combining EDR data with data from in-depth crash data can, at least 

partially, make up for these shortcomings (Bärgman, 2016; Rao, 2017).  
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2.1.3. Naturalistic Driving Data (NDD) 

The third type of real-world data that can be used for assessing the performance of 

safety systems is naturalistic driving data (NDD), which provide a way to investigate 

driver behaviour and traffic safety in detail (Neale et al., 2005; LeBlanc et al., 2006; 

Dozza 2012; Carsten et al., 2013; Victor et al., 2014). In a typical naturalistic study 

targeting traffic safety, the participants drive a car instrumented with multiple video 

cameras and sensors that continuously record the drivers driving as part of their 

everyday lives. Typically, information about the driver, the vehicle, and the 

environment are collected to capture the full chain of events leading up to incidents 

of interest, usually safety-critical events such as near-crashes and crashes (Dozza 

and González 2013). That is, the continuous data collection in NDSs (Naturalistic 

Driving Studies) makes it possible for researchers to perform data analysis on both 

everyday driving and safety-critical events (NHTSA 2010). Studying both driving 

exposure and contributing factors to critical situations makes it possible to estimate 

the crash or near-crash risk and the overall safety impact of different driver 

behaviours.  

While NDD provide detailed information on real-world traffic, they have some clear 

limitations. First, the costs of NDS are higher than traditional data studies (NHTSA, 

2010), unless commercially collected NDD is used (Bärgman, 2016). Secondly, the 

fact that there are few crashes and even fewer severe or fatal crashes in NDD makes 

it hard to reach statistically significant conclusions related to crashes. Thirdly, NDSs 

are typically only run in a specific area and drivers are recruited on a voluntary basis, 

potentially biasing results. However, NDD can complement traditional crash data 

(e.g., in-depth crash databases and EDR data) to inform the design of vehicle safety 

systems (Bärgman, 2016). 

2.2. Assessment methods  

There are several approaches available to assess a safety system’s effectiveness. 

Two broad assessment categories are retrospective and prospective (Eichberger, 

2010; Sander 2018; Kovaceva et al., 2020).  

A retrospective assessment evaluates the effectiveness of a safety system based on 

data from the real world, collected after its implementation. For example, the safety 

performance of vehicles with and without the safety system in question can be 

compared (Hautzinger et al., 2007). There are several issues with retrospective 

assessment. First, it can only be used after the system is in production. Secondly, 

retrospective assessment typically requires years to achieve deep enough market 
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penetration to evaluate the system (Kovaceva et al., 2020). Thirdly, vehicles are 

typically equipped with several safety systems, making it hard to evaluate the 

effectiveness of an individual system in the real world (Ö stling et al., 2019; Ljung 

Aust et al., 2011).  

One way to perform a retrospective assessment is to use a case-control study 

design. Safety system benefits, in terms of crash avoidance rate and injury 

mitigation, can be obtained by two simple, independent random samples: case 

(accident-involved) and control (no-accident-involved) vehicles from the same 

general population (Hautzinger et al., 2007). One example of a case-control study is 

based on induced exposure: Ohlin et al., (2017) retrospectively assessed how well 

pedestrian-AEB prevents pedestrian or cyclist crashes. The cases were crashes 

involving pedestrians or cyclists, and the controls were rear-end crashes (involving 

two cars). It was found that the AEB is 70% effective at reducing crashes with 

pedestrians and cyclists. However, due to a limited number of crashes involving 

pedestrian-AEB-equipped cars, the result was not statistically significant (Ohlin et 

al., 2017).  

In contrast to retrospective safety assessments, prospective assessments estimate 

the effectiveness of safety systems before they are available on the market 

(Eichberger, 2010).  Different methods are available for prospective assessments, 

such as real-world crash data analysis, Field Operation Tests (FOTs), controlled 

physical testing, driving simulator studies, and virtual simulations (Sander, 2018; 

Kovaceva et al., 2020). The following section describes these methods in turn.  

2.2.1. Real-world crash data analysis 

Real-world crash data can be used to estimate the preventive safety system’s 

performance in the real world by allowing us to test assumptions about which types 

of crash they address. For example, Lubbe et al., (2018) used high-level filtering to 

investigate the potential of vehicle safety technologies for avoiding and mitigating 

crash severity. That is, they applied filters to the GIDAS database based on the 

assumed performance of safety systems. The results are high-level estimates of the 

way that the system may have performed in recorded crashes. A similar study, 

requiring more in-depth, manual work, was performed by Strandroth et al., (2012). 

They manually applied assumptions about a safety system’s performance to actual 

crash data, categorizing individual crashes as avoidable or non-avoidable. Thus, they 

conducted a manual “counterfactual” (what-if) assessment of in-depth crash data 

to estimate the potential performance of the safety system in the real world. The 

result is also an estimate of which (e.g., how many) crashes the system under 
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assessment may have avoided. Notably, this method was further validated in a later 

study by Strandroth et al. (2015).   

2.2.2. Field Operational Tests (FOTs) 

Typically, FOTs assess preventive safety systems’ performance under real-life 

conditions (Benmimoun et al., 2013; Bärgman, 2016). Drivers are asked to drive an 

instrumented vehicle on a real road, so the data collected provide information about 

driving behaviour—which is important for the assessment of preventive safety 

systems (Helmer et al., 2013).  

There are two types of FOTs, naturalistic and controlled (Bärgman, 2016). In 

naturalistic FOTs, drivers are asked to drive with the systems as part of everyday life 

for a period of weeks to years. In controlled FOTs, the drivers are told where and 

when to drive. For both types, the system(s) under study is/are available to the 

drivers for only part of the driving time. Typically, the safety systems’ performance 

is evaluated by comparing data from the two situations: when the system is 

available and when it is not. It usually takes several months—or even years—to 

collect enough information to perform an assessment analysis (Benmimoun et al., 

2013). As naturalistic FOT studies are undertaken on real roads under normal driving 

conditions, the results have high ecological validity (LeBlanc et al., 2006; Bärgman, 

2016). While controlled FOTs are commonly performed in industry (Dozza, 2013; 

Helmer et al., 2013; Bärgman 2016), naturalistic FOTs are not at all common, since 

they require more time and cost more. 

2.2.3. Controlled physical testing  

Controlled physical testing, estimating system benefits by evaluating how the 

system works according to a set of specific requirements (Kovaceva et al., 2020), is 

less costly than FOTs. One well-known example is the Euro NCAP, which aims to 

reflect overall optimum values in road safety through their rating scores (Hobbs and 

McDonough, 1998; Pastor et al., 2013; van Ratingen et al., 2016). Euro NCAP 

evaluates safety system performance by providing public test protocols and issuing 

safety scores for the tested cars (Euro NCAP, 2020). This approach has been applied 

globally: for example, by C-NCAP in China, JNCAP in Japan, and U.S. NCAP in the USA. 

Protective safety assessment 

To evaluate the pedestrian-protection performance of the frontal design of new car 

models, Euro NCAP took the initiative to include test configurations of the cars’ 

frontal structures in 1997 (van Ratingen et al., 2016). Subsystem tests of a leg form 
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impactor against the bumper and head form impactor (either for adult or child) 

against the hood were included. These tests replicated car-to-pedestrian crashes at 

an impact speed of 40 km/h (Euro NCAP, 2020). Several studies have shown a 

correlation between improvements in car design (due to regulations and 

competition resulting from NCAP testing) and a reduction in pedestrian injuries from 

real-world crashes (Pastor et al., 2013; Strandroth et al., 2014).  

To date, Euro NCAP has not introduced a car-frontal design test for TW (Euro NCAP, 

2020). However, according to the study by Ohlin et al. (2017), cars that performed 

well in the Euro NCAP pedestrian test reduced injuries among bicyclists as well as 

pedestrians in the real world. Euro NCAP is now considering including assessments 

of cyclist head impact and enhanced leg impact to the current pedestrian subsystem 

tests (Euro NCAP 2018b).   

Preventive safety assessment 

Controlled physical testing for preventive safety systems, in the form of track tests 

with performance ratings, have been developed by consumer rating programs. For 

example, Euro NCAP introduced car-to-pedestrian test scenarios in 2016 and 

pedestrian-AEB and cyclist-AEB test scenarios in 2018 (Euro NCAP, 2018). Recently, 

it has been recommended that an assessment of AEB effectiveness for motorcyclist 

safety be included in Euro NCAP 2020. Similarly, C-NCAP started a pedestrian-AEB 

assessment in 2018 (C-NCAP, 2018), and recently (August 2020) presented a TW-

AEB assessment test scenario set which will be implemented in 2021 (C-NCAP, 

2020). This scenario set contains three car-to-TW test configurations: a total of 

fourteen test scenarios, with variations in travelling speed of the car and the TW, 

are included in the assessment. The first test configuration represents a car going 

straight impacting a TW going straight which is travelling perpendicularly from the 

near side (right in China) of the car. The second test configuration is a mirror-image 

of the first: the TW is travelling perpendicularly from the far side (left in China) of 

the car. The third test configuration represents a longitudinal, same-direction crash: 

a car going straight impacts a TW going straight from the rear. All of the scenarios 

are set in daytime without visual obstruction (C-NCAP, 2020).  

The selection of appropriate test scenarios is a key part of preparing an optimal 

consumer rating program to assess a system’s performance in standardised track 

tests (Nilsson et al., 2018). Test scenarios should represent real-world situations as 

accurately as possible and cover a variety of crash scenarios (Wisch et al., 2013; Stoll 

et al., 2016). The ultimate aim is, after all, to steer car manufacturers towards the 
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design choices that save more lives and reduce the number of injuries in real-world 

crashes. 

One approach to choosing appropriate crash scenarios for test-track testing is to 

organise crash data into homogenous groups based on expert knowledge and define 

a limited number of test scenarios for the most frequently occurring groups. Several 

European projects (e.g. AsPeCSS, PROSPECT and CATS) have adopted this approach 

to develop test scenarios for VRU-AEB assessment, thus providing reference 

information for the protocol of Euro NCAP tests. In the AsPeCSS project, for 

example, the seven most frequent car-to-pedestrian crash scenarios were first 

identified by analysing European national data; in-depth crash data from Germany 

and Great Britain were further investigated (Wische et al., 2013). A set of test 

scenarios was then developed, based on the identified crash scenarios and relevant 

parameters from additional in-depth accident data. Car-to-bicyclist test scenarios 

were developed using a similar approach in PROSPECT (Stoll et al., 2016). In the CATS 

project, instead of identifying the most common crash scenarios at the national 

level, researchers identified the three most common car-to-bicyclist crash scenarios 

based on in-depth crash databases (Uittenbogaard et al., 2016a, b). Typical car-to-

bicyclist test scenarios were then developed, incorporating the key aspects of these 

original scenarios. At the end of the project, a test matrix consisting of four car-to-

bicyclist scenarios was proposed, which became the foundation for the bicyclist-AEB 

test protocol in Euro NCAP (Uittenbogaard et al., 2016a, b). 

However, large traffic crash databases are generally heterogeneous (Yau, 2004; 

Depaire et al., 2008; de Ona et al., 2013; Sasidharan et al., 2015; Nitsche et al., 2017; 

Nilsson et al., 2018), as crashes are complicated events, with many types of 

interactions between different road users and the environment (Yau, 2004; de Ona 

et al., 2013; Sasidharan et al., 2015; Nilsson et al., 2018; Nitsche et al., 2017). One 

main problem with heterogeneous data is that hidden relationships between factors 

within the data might be overlooked when analysing factors contributing to the 

crashes (Yau, 2004; Depaire et al., 2008; Sasidharan et al., 2015). That is, factors 

having a large influence on the outcome of some accidents might not be significant 

when the data sample is taken as a whole (Sasidharan et al., 2015). Meanwhile, the 

effects of different injury-contributing factors on the whole data sample might be 

misleading, as they vary under different conditions (de Ona et al., 2013; Sasidharan 

et al., 2015). Another problem when analysing crash-contributing factors on a whole 

data sample is that the effect level of crash-contributing factors is usually different 

for different groups of crashes (de Ona et al., 2013; Sasidharan et al., 2015). For 

example, a factor which increases the injury risk in one group might decrease the 

injury risk in another (Sasidharan et al., 2015).   
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One way to reduce the data heterogeneity in traffic databases is to segment data 

into separate homogeneous groups (Depaire et al., 2008; de Ona et al., 2013; 

Sasidharan et al., 2015; Sander and Lubbe, 2018). Existing ways to segment traffic 

data are based on expert domain experience, methodological considerations, or the 

study aim, and may consist of narrowing down the analysis to a specific vehicle type 

or crash type (Depaire et al., 2008; de Ona et al., 2013; Sasidharan et al., 2015). 

However, expert domain experience is not at all sufficient to guarantee a reduction 

in data heterogeneity (Depaire et al., 2008; de Ona et al., 2013;), because even an 

expert might miss some factors.  

Data-driven cluster analysis is another, complementary, way to reduce data 

heterogeneity: cases are classified into clusters so that the homogeneity within and 

between clusters is maximised (Hair et al., 1998; Depaire et al., 2008; de Ona et al., 

2013). Clustering is a common data mining technique for segmenting traffic data 

(Kim and Yamashita, 2007; Anderson, 2009; Kumar and Toshniwal, 2016) or 

discovering patterns (like typical crash scenarios) in underlying data. In fact, many 

studies have shown the benefits of cluster analysis for identifying relevant 

properties of crash scenarios based on a statistical method (Depaire et al., 2008; de 

Ona et al., 2013; Prato et al., 2012; Theofilatos and Efthymiou 2012; Kaplan and 

Prato, 2013; Sasidharan et al., 2015; Weiss et al., 2016; Nitsche et al., 2017; Sander 

and Lubbe, 2018; Nilsson et al., 2018).  

Recently, cluster analysis has also been used to identify test scenarios efficiently 

(Lenard et al., 2014; Nitsche et al., 2017; Sander and Lubbe, 2018; Nilsson et al., 

2018) for test-track tests (such as in the NCAP). One concern when developing test 

scenarios is whether they accurately represent the study population. Relevant, valid 

test scenarios applied in test-track tests have been shown to reflect the 

performance of the safety system in real-world traffic. Cluster analysis has been 

helpful for obtaining relevant test scenarios in the large, complicated sets of real-

world crashes (Lenard et al., 2014; Nitsche et al., 2014; Nilsson et al., 2018). For 

example, cluster analysis was applied to two large British databases, STATS19 and 

the in-depth On-the-Spot (OTS) (Lenard et al., 2014). The goal was to develop 

relevant test scenarios by describing the typical circumstances of car-to-pedestrian 

accidents (Lenard et al., 2014). Nitsche et al. (2017) identified the critical pre-crash 

scenarios at T and four-way junctions through cluster analysis. The identified test 

scenarios provided a basis for testing the safety of automated driving systems. 

Additionally, Nilsson et al. (2018) used cluster analysis of GIDAS data to develop nine 

test scenarios depicting typical run-off-road crashes in Germany.  
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2.2.4. Driving simulator studies 

When a driving simulator is used for safety system assessment, participants are 

asked to interact with a simulator in a “natural” way (Chrysler et al., 2015; Kovaceva 

et al., 2020). Typically, the performance of the system is then quantified by 

comparing the outcomes of trials with and without the safety system. However, 

there are several limitations to this method: a) many performance metrics are not 

obviously connected to safety (Chrysler et al., 2015), b) it is difficult to generalise 

the performance of the system to real-world traffic (Lee et al., 2002), and c) the 

testing situations are usually highly controlled (Lubbe and Davidsson, 2015).  

2.2.5. Virtual simulation 

In virtual simulations, all components of a real traffic situation, such as road users, 

vehicles (including vehicle dynamics, sensors and the system under assessment), 

and the environment, are modelled in a computer. This method is regarded as an 

efficient way to shorten development time and save test resources when estimating 

the benefit of protective and preventive safety systems (Leglatin et al., 2006; 

Lindman et al., 2010; Rosén 2013; Sander and Lubbe, 2016; Saadé et al., 2019).  

Protective safety assessment 

Virtual simulations with finite element (FE) and multibody systems (MBS) play 

important roles in the design of protective safety systems and car structures 

(Schmitt et al., 2014). Some well-known analysis programs, such as LS-DYNA and 

Madymo, have been developed to model vehicles, dummies, airbags, and restraint 

systems (Leglatin et al., 2006). With these models, the risk of fatal or severe injuries 

for different collision speeds can be derived based on the injury criteria of different 

body parts, such as the Head Injury Criterion (HIC), an outcome of LS-DYNA (Schmitt 

et al., 2014). Safety benefits of protective safety systems can then be estimated, 

shortening development time and cost compared to non-virtual tests.  

Preventive safety assessment 

In general, two simulation approaches are available for preventive safety 

assessments, depending on the data used: counterfactual simulations (“what-if 

simulations”) using time-series data from real traffic crashes and counterfactual 

simulations using artificially created crashes.  

In counterfactual simulations, pre-crash time-series data from real traffic is re-

analysed (Page et al., 2015; Bärgman et al., 2017; Sander, 2017). The potential safety 
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benefit of a preventive safety system can be estimated for each event by running 

simulations with and without the system (Kusano and Gabler, 2012; McLaughlin et 

al., 2008; Page et al., 2015; Scanlon et al., 2016). 

These simulations typically reconstruct the pre-crash kinematics of the road users 

involved in the crashes (e.g., Lindman et al., 2010; Rosén 2013; Sander and Lubbe, 

2016; Saadé et al., 2019; Chajmowicz et al., 2019) or the EDR pre-crash data (e.g., 

Kusano and Gabler 2011; 2012; Zhao et al., 2019). Crash reconstruction is often only 

done on a subset of the crashes available in crash databases. For example, the Pre-

Crash Matrices (PCM) database includes crash reconstructions based on a subset of 

the GIDAS data (Erbsmehl, 2009). It uses vehicle and environmental data from GIDAS 

itself, along with digital sketches of each crash and reconstruction files created by 

the reconstruction software: PC-Crash simulation (Erbsmehl, 2009). That is, it 

provides time-series information about the pre-crash phase of each crash, including 

trajectories and speeds of the crash participants. The position, speed, and 

acceleration for each involved road user are typically available in 10 msec time-steps 

(Jeppsson et al., 2018).  

Virtual assessment of preventive safety systems is typically counterfactual. That is, 

the system under assessment is applied virtually to assess “what-if” that particular 

system would have been present in the “original” crash. However, for 

counterfactual simulations that use artificially created data, , instead of using real-

world crashes, a set of crash events is generated by: a) using crash and near-crash 

data after the removal of the drivers’ evasive manoeuvres, which may be replaced 

by driver response models (Bärgman et al., 2015; 2017); b) creating crashes based 

on distributions of crash-contributing factors from real-world, everyday driving 

scenarios (Woodrooffe et al., 2013; Yanagisawa et al., 2017), or c) creating crashes 

by running massive amounts of traffic simulations to generate crashes (Kitajima et 

al., 2019).  

Kitajima et al. (2019) implemented different levels of automated driving 

technologies in the simulations, and the differences in the number (and severity) of 

crashes with and without the systems were compared. Bärgman et al. (2015) applied 

counterfactual simulations on artificial scenarios generated from rear-end critical 

events (crashes and near-crashes) from the SHRP II naturalistic driving project. A 

model of driver glance behaviour was used to define the probability of crash 

occurrence and injury severity. 

Counterfactual simulations of preventive safety systems usually involve simplified 

models of the real safety system, including sensors, logic, and actuation. When the 

system requires driver action (e.g., the driver reacts to an FCW warning), driver 
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models may be needed. On the other hand, when the system is completely 

automated (e.g., the AEB brakes automatically), they are not needed.  

Most studies using counterfactual simulations have been based on data from 

European countries or the USA. Currently, the benefit of preventive safety systems 

such as AEB and FCW in China is not being investigated much, especially for crashes 

involving VRUs. Hence there is a clear need to understand the performance of these 

systems using Chinese data. 
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3. Aim 

The overall aim of this Ph.D. work is to enhance the protection of TW riders in 
China—first by contributing to the development of preventive safety systems 
such as TW-AEB, and, in the future, completing the Ph.D. by studying the 
benefits of protective safety systems together with the TW-AEB.  

To achieve this aim, the specific objectives covered in this thesis are: 

- Define a set of TW-AEB test scenarios in China to be used as references 
in the C-NCAP consumer safety rating program.  

- Investigate whether cars which demonstrate good performance in the 
C-NCAP testing of TW-AEB, or good performance in the proposed 
alternative reference test scenarios, are likely to perform equally well 
in the real world.  

- Estimate the characteristics of the car-to-TW crashes which would still 
remain if TW-AEB systems were available in cars in China.   

The thesis also provides an overview of the safety systems available for 
improving TW rider safety and the assessment methods available for validating 
these systems’ safety performance.   
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4. Summary of papers 
 

Paper I 

Sui, B., Lubbe, N., & Bärgman, J. (2019). A clustering approach to developing car-to-

two-wheeler test scenarios for the assessment of Automated Emergency Braking in 

China using in-depth Chinese crash data. Accident Analysis and Prevention, 132, 

105242. https://doi.org/10.1016/j.aap.2019.07.018 

Author’s contribution: Main writer, performed most of the analyses, produced the 

figures and tables 

Paper II 

Sui, B., Lubbe, N., & Bärgman, J. (2020). Evaluating automated emergency braking 

performance in simulated car-to-two-wheeler crashes in China: A comparison 

between C-NCAP tests and in-depth crash data (submitted to Accident Analysis and 

Prevention) 

Author’s contribution: Main writer, ran the simulations and performed all the 

analysis, produced the figures and tables  
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Paper I:  A clustering approach to developing car-to-two-wheeler test 

scenarios for the assessment of Automated Emergency Braking in 

China using in-depth Chinese crash data 

Introduction: The number of TWs worldwide has been increasing rapidly in recent 

decades, creating crucial safety problems for TW riders, especially in developing 

countries like China. One safety system with the potential to improve the safety of 

TW riders is TW-AEB.  

Aim: The aim of this study is to contribute to the development of TW-AEB testing in 

C-NCAP by describing typical car-to-TW crash scenarios in China.   

Method: CIDAS data from 2011 to 2016 were used to develop car-to-TW test 

scenarios using cluster analysis. In total, 672 car-to-TW crashes were extracted. 

Accident scenarios were derived based on k-medoid clustering of five main crash 

characteristics. Furthermore, test scenarios were developed from descriptive 

frequency analysis of information on the road speed limit, the first contact points 

between the TW and the car for each test scenario.  

Results: Six car-to-TW crash scenarios typical of China were defined in this paper.  

Discussion: Two of the scenarios were similar to those in Euro NCAP: in one, a TW 

moving straight ahead is hit by a car moving perpendicularly, and in another, the car 

hits a TW travelling in the same direction. However, the other scenarios defined in 

this paper include night-time scenarios and those in which the car or the TW is 

turning, which are not included in Euro NCAP. As a result, preventive safety systems 

(e.g. TW-AEB) designed to be rated highly by Euro NCAP might not do well in a rating 

program based on the scenarios defined, based on Chinese data, in this paper.  

Conclusion: The scenarios obtained via cluster analysis depict the characteristics of 

six typical car-to-TW crashes in China. The scenarios can be used both to create 

safety system crash tests in consumer assessment programs and to assess a 

potential safety system’s ability to improve the traffic safety of TW riders. 
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Paper II: Evaluating automated emergency braking performance in 

simulated car-to-two-wheeler crashes in China: A comparison 

between C-NCAP tests and in-depth crash data 

Introduction: Preventive safety systems such as AEB are effective at improving road 

safety. NCAPs, such as C-NCAP, have been striving to quantify AEB performance via 

test-track tests. One challenge with these tests is to predict whether the system’s 

NCAP test performance represents the system’s real-world performance. 

Aim: The aim of the study is to assess whether the TW-AEB performance as rated in 

C-NCAP is likely to predict its real-world performance in terms of the crash 

avoidance rate and the characteristics of the remaining crashes. 

Method: Counterfactual virtual simulations were applied to three car-to-TW pre-

crash datasets: the C-NCAP scenario set to be introduced in 2021 (containing 14 

cases),  an alternative scenario set based on the results of Paper I (containing 151 

cases), and reconstructed car-to-TW crashes from the SHUFO dataset (containing 

113 crashes). The simulation results, comprising avoidance rate, impact speed after 

AEB application, and crash characteristics of the remaining crashes, were compared 

among these three datasets.   

Results: With the same AEB system parameter settings, substantially more crashes 

were avoided in the C-NCAP scenario set than in the other two. In fact, with a FoV 

of 70°, an activation time of 1.1 s, and a braking deceleration of 8.82 m/s2, all crashes 

in the C-NCAP scenario set were avoided; however, only 46% of the crashes in the 

alternative and 36% in the SHUFO crash set were avoided. The C-NCAP set also 

resulted in lower impact speeds for the remaining crashes than other two sets.  

Discussion: Our results indicate that TW-AEB systems rated highly by C-NCAP might 

not perform correspondingly well on Chinese roads. The alternative scenario set 

(proposed in Paper I) produced results similar to those of the SHUFO crash set, 

indicating that the former accurately reflects real-world crashes in China.  

Conclusion: The C-NCAP scenario set cannot cover all car-to-TW crashes in China; 

instead it should provide a set of representative scenarios. The current C-NCAP 

scenario set, to be implemented 2021, is not quite doing this—although it is a step 

in the right direction. Based on our results, we recommend the inclusion of two 

longitudinal same-direction scenarios (with either the car or TW turning) and 

perpendicular scenarios  with the TW travelling at high speed in future C-NCAP 

releases to better represent real-world car-to-TW crashes in China.  
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5. Discussion 
TW riders’ safety in traffic is a major issue worldwide—especially in China, one of 

the largest markets for TWs. The development of safety systems that are suitable 

for the country/region where they are implemented is very important. This thesis 

addresses the initial steps toward improving TW traffic safety in China. First, it 

describes current car-to-TW crash characteristics by identifying car-to-TW crash 

scenarios typical of China. Second, it evaluates the benefit of the TW-AEB using real-

world data. Third and finally, it characterises the remaining car-to-TW crashes to 

understand what protective safety systems can help save more TW riders’ lives in 

China.  

This chapter first explains why all types of TWs in China were combined into one 

group, instead of analysing each separately. The available crash data and the 

methods used to understand the TW traffic situation in China are then discussed. 

After that, the advantages and limitations of different available safety systems that 

may improve TW traffic safety are reviewed, particularly with respect to their 

application in China. In addition to selecting the safety system (TW-AEB), methods 

for assessing the benefit of the TW-AEB which are important to its design and 

development are explained further. The differences between car crashes with TWs 

in China and other countries are considered, along with their impact on the safety 

system design. Furthermore, the interactions between TWs and automated vehicles 

in the future are briefly discussed. The chapter concludes with a brief examination 

of the implications of my research for sustainable development, together with the 

future direction of this research. 

5.1. Why analyse different two-wheeler types as one 
group?  

In this thesis, different types of TWs, including traditional pedal bicycles, electric 

engine PTWs, and combustion engine PTWs, were grouped together for the 

assessment of TW riders’ safety in China. In contrast, studies performed on data 

from North America and Europe typically separate the different types of TW. For 

example, Dozza and Piccinini (2014) analysed naturalistic cycling data from Sweden 

to examine the behaviour of traditional bicycle and electric engine PTW riders and 

found different exposures toward certain potential risk factors (e.g., intersections). 

Furthermore, in a later study, Dozza et al. (2016) analysed the differences in driving 

behaviour between users of electric engine PTWs and bicycles, based on the critical 

events (crashes and near-crashes) collected in an NDD; they recommended different 
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safety systems for electric engine PTWs and bicycles. Other studies, such as those 

investigating the effectiveness of ABS on motorcycles (Rizzi et al. 2009, 2015, 2016; 

Teoh 2010), have grouped combustion engine PTWs separately. However, the 

primary reason for that no separation was made in Papers I and II was that the 

number of cases available in the bicycle group (in Paper I) was limited. In the total 

sample of TWs (n=672) in Paper I, only 69 (10%) were bicycles. Another reason is 

that no large differences were found in the distributions of the combination matrix 

of the key parameters (the relative moving direction between the car and the TW 

before the crash, the pre-crash driving behaviour of the car driver, and the pre-crash 

driving behaviour of TW rider) used to identify the typical car-to-TW scenarios in 

Paper I. Furthermore, in Paper I the biggest difference between the different types 

of TWs for the AEB assessment was found to be the travelling speed. Therefore, 

instead of specifying a specific speed in Paper I, a range of TW travelling speeds was 

provided for the test scenarios (covering the travelling speeds of the different TW 

types). These scenarios were then used in Paper II. In this way, we can provide a 

practical set of car-to-TW AEB test scenarios for C-NCAP across different TW types. 

A study by Wu et al. (2018) based on real-world crash data in China supports this 

merging approach, since they detected no significant differences in crash scenarios, 

injury severity, or impact location distributions across different types of TWs. 

In summary, due to the low number of initial samples and similar speed distributions 

for each type of TW, we grouped the different types of TWs together in this thesis. 

5.2. How can we understand the traffic situation of TWs in 
China better? 

To improve road safety, a comprehensive understanding of traffic situations is 

important, so that safety systems can be developed with maximum performance in 

the real world. Traffic and road safety are complicated, involving interactions of risk 

factors, different road users and the environment; it is intuitively reasonable that 

traffic situations, and traffic conflicts, vary between countries, or even between 

areas within a country. To understand local traffic situations, representative and 

reliable real-world data are important (Isaksson-Hellman and Norin, 2005; Tivesten, 

2014). Moreover, since crash occurrences are rare events, obtaining unbiased and 

relatively accurate information about crashes is costly—but necessary, in order to 

develop good safety systems (Isaksson-Hellman and Norin, 2005).  

Several sources of real-world data are available for understanding the TW traffic 

situation in China. One is police-reported data, which is usually considered to be 

representative of national crash data. However, due to the underreporting issue in 
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police-reported data (Hu et al., 2011; Huang et al., 2015; Huang et al., 2017), data 

collected by police may not reflect a genuine picture of the real-world traffic.   

Since no real-world crash data that are representative and accurate on a 

macroscopic level can be currently obtained in China, microscopic real-world crash 

data was used in Papers I and II. One of the most detailed and representative crash 

databases in China, CIDAS, was used in Paper I to understand the typical car-to-TW 

crash scenarios in China. One reason for its selection was that it covers different 

types of geographical areas, such as plains, mountains, and coastlines (Chen and Dai, 

2018). CIDAS consequently includes a variety of crashes, on urban and rural roads—

as well as highways. Furthermore, CIDAS contains a wide range of detailed 

information about injuries, vehicle damage, and road and weather conditions, as 

well as to-scale accident sketches which illustrate the vehicle trajectories in both the 

pre-crash and post-crash phases. In Paper I, to understand the pre-crash driving 

behaviour of the car and TW, a case-by-case analysis was performed, using the 

variable UTYP (crash type, see CIDAS codebook, 2016) in CIDAS, driver interviews, 

and accident sketches. There are other crash databases available in China, including 

VRU-TRAVi (VRU TRaffic Accident database with Video; Han et al., 2018). In fact, Pan 

et al. (2020) used it to investigate the most common car-to-PTW crash scenarios in 

China. However, one limitation of this database is that only crash data from crashes 

with site-based video were collected. Since cameras in China are more likely to be 

positioned to monitor intersection traffic, the data in the Pan et al. study is biased 

towards intersection crashes. Another Chinese in-depth crash database is the 

National Automobile Accident In-depth Investigation System (NAIS). Cao et al. 

(2019) extracted car-to-TW crashes in China from NAIS. Like other databases, NAIS 

provides detailed crash characteristic information. However, it is more biased 

towards severe and fatal crashes than CIDAS, as the inclusion criteria are crashes 

with one or more fatality or an involved person injury of MAIS (Maximum 

Abbreviated Injury Scale, AAAM, 1985) level greater than equal to three (Cao et al., 

2019).  

In addition to the in-depth crash data, which can provide detailed crash information 

(as described in Sections 2.1.2 and 2.1.3), EDR and NDD can provide detailed 

information about the pre-crash phase—and maybe even about the post-crash 

phase. However, few cars in China have been equipped with EDR in a way that would 

allow data collection for research purposes. As for NDD, one inherent limitation is 

the rare occurrence of crashes in daily driving. There are no publicly available NDD 

in China that include a substantial amount of crashes.   



38 
 

Given the characteristics of the various databases, CIDAS was considered the most 

suitable for this research on TW crashes in China. Although CIDAS has the advantage 

of being the largest crash database in China and it covers a wide range of 

geographical areas, it, too, has some limitations.  

One limitation is that CIDAS is biased towards severe crashes (albeit less so than 

NAIS), even though its inclusion criteria include crashes at all injury levels. I would 

argue that the reason for this bias is that for some minor crashes, without severe 

damage to the vehicle, the crash scene is not preserved for the investigation team. 

This is perhaps a characteristic unique to China. It is actually recommended by the 

traffic police that vehicles be moved away from the crash scene without waiting for 

a detailed investigation when the accident is minor, to reduce traffic congestion.  

Another limitation of CIDAS is that no pre-crash kinematic database (such as the 

PCM in GIDAS) is available at present, so it is not possible to perform an assessment 

of the benefit of a preventive safety system through virtual simulation based on 

CIDAS. Further, the lack of a pre-crash database means that the travelling and 

impact speeds of the car and the TW are not directly available. As a result, in Paper 

I the road speed limit was used to indicate the car travelling speed and a range of 

TW speeds was noted—allowing our recommendations for C-NCAP test scenarios to 

apply to a variety of TW types.  

In Paper II, to estimate the performance of AEB in the real world, the SHUFO 

database was used, which provides pre-crash reconstruction files from which a pre-

crash database can be created. However, SHUFO is also (even more than CIDAS) 

biased towards severe crashes, because of the inclusion criteria. Another limitation 

of SHUFO is the small number of geographical areas covered, limiting its 

generalisability for China as a whole. Unfortunately, neither CIDAS nor SHUFO 

include any weighting factors to enable generalising to country-level impacts (Ding 

et al., 2016).   

In summary, while CIDAS and SHUFO databases are limited, they provide the most 

detailed data available today for car-to-TW crash scenarios in China; they are able 

to offer a promising base for safety systems development. 

5.3. How do we create representative car-to-TW test 
scenarios for consumer rating programs like C-NCAP? 

In order to derive typical car-to-TW crash scenarios for specific preventive safety 

systems to address, reliable and correct data are not enough. Specific analysis 

techniques are needed to reduce the data’s heterogeneity, a requirement that is 
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often overlooked in traffic data analysis (Depaire et al., 2008; de Ona et al., 2013; 

Sasidharan et al., 2015; Nilsson et al., 2018).  

The most common crash scenarios targeted in assessment programs are first 

derived from a descriptive frequency analysis of defined traffic conflicts based on 

real world crash data (Wische et al., 2013; Stoll et al., 2016; Uittenbogaard et al., 

2016 a, b; Char and Serre, 2020). Test scenarios are then typically developed by 

complementing the derived crash scenarios with detailed pre-crash information, 

such as vehicle travelling speed, road layout and environment information. This 

approach has been used in the European projects AsPeCSS (Wisch et al., 2013), 

PROSPECT (Stoll et al., 2016), and CATS (Uittenbogaard et al., 2016 a, b). See Table 

1 for an overview of the methods and variables used in different studies for the 

development of car-to-TW test scenarios.  

One limitation of  descriptive frequency analysis is that when it is used alone to 

segment the complicated traffic data, important information may be missed—due 

to data heterogeneity and hidden structures or patterns in the data (de Ona et al., 

2013; Nilsson et al., 2018). As a result, incorrect conclusions may be drawn. 

Cluster analysis address this issue to some extent, as it provides an efficient way to 

reduce data heterogeneity as much as possible and uncover hidden patterns in the 

data. In Paper I, cluster analysis was applied to obtain the typical car-to-TW crash 

scenarios in China. Six test scenarios were identified, including turning scenarios, 

scenarios with visual obstruction and night-time scenarios. Notably, a previous 

study of the most common car-to-TW crash scenarios in China applied frequency 

descriptive analysis to the same crash database (CIDAS); scenarios with visual 

obstruction were not identified as typical due to the low crash frequency. Another 

advantage of using cluster analysis is that it is an exploratory, data-driven method. 

Defining test scenarios calls for fewer subjective assumptions to be made about the 

structures of the data than in a description frequency approach. For example, for a 

descriptive frequency analysis, the number of typical crash scenarios needs to be 

selected subjectively by the researchers without quality metrics to refer to in the 

selection. In contrast, for cluster analysis, metrics such as the average silhouette 

width (ASW; Rousseeuw, 1987) and Bayesian information criterion (BIC; Cochran, 

1952), which are further explained in the next paragraph, are applied to identify the 

optimum number of clusters.  
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Table 1.a.  

Methods and variables used in different studies for crash scenario identification.   

Study list  CATS AsPeCSS PROSPECT Paper I 

Data type EU level 

crash data 

EU level 

crash data 

EU level 

crash data 

In-depth crash 

data 

Injury level Killed and 

severely 

injured 

cyclist 

All All All collected by 

CIDAS 

Method Descriptive 

frequency 

analysis 

Descriptive 

frequency 

analysis 

Descriptive 

frequency 

analysis 

Cluster analysis 

Orientation 

between 

car and 

object 

✓ ✓ ✓ ✓ 

Driving 

manoeuvre 

of car 

✓ ✓ ✗ ✓ 

Driving 

manoeuvre 

of TW 

✓ ✓ ✗ ✓ 

Light 

condition 

✗ ✓ ✗ ✓ 

Vision 

obstruction 

✓ ✓ ✓ ✓ 
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Table 1. b  

Methods and variables used in different studies for test scenario development (for 

NCAP tests) based on crash scenarios. 

Study list  CATS AsPeCSS PROSPECT Paper I 

Data type In-depth 

crash data 

In-depth 

crash data 

In-depth 

crash data 

In-depth 

crash data 

Injury level Killed and 

severely 

injured 

cyclist 

Killed and 

severely 

injured 

cyclist 

Killed and 

severely 

injured 

cyclist 

All collected 

by CIDAS 

Method Descriptive 

frequency 

analysis 

Descriptive 

frequency 

analysis 

Descriptive 

frequency 

analysis 

Descriptive 

frequency 

analysis 

Driving 

manoeuvre 

of car 

- - ✓ - 

Driving 

manoeuvre 

of TW 

- - ✓ - 

Weather 

and light 

condition 

✓ ✓ ✓ - 

Vision 

obstruction 

✓ ✓ ✓ - 

Road layout ✓ ✓ ✓ ✗ 

Car & TW 

travelling 

speed 

✓ ✓ ✓ ✓ 

Collision 

point 

✓ ✓ ✓ ✓ 
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While clustering is an established method that may be superior to descriptive 

frequency analysis, several aspects need to be considered in order to obtain optimal 

results. First, an appropriate clustering algorithm must be selected among many 

(such as K-mean, K-modes and Portioning Around Medoid: PAM), depending on the 

type of data to be analysed and the study aim (Nitsch et al., 2017; Sander and Lubbe, 

2018). For example, in Paper I the data were categorical, so K-means, which deals 

only with numerical data, was not applicable. Further, PAM was more stable than 

the K-modes algorithm. Second, the variables used to develop test scenarios for 

cluster analysis need to be chosen carefully (Nilsson et al., 2018), usually after a 

literature review of relevant studies. In Paper I, five variables which were considered 

important for developing the TW-AEB test scenarios were identified beforehand: 

time of crash, existence of vision obstruction, pre-crash driving behaviour of the car, 

pre-crash driving behaviour of the TW and relative moving direction of the car and 

the TW before the crash. The time of crash and the existence of vision obstruction 

were added because the pedestrian-AEB test scenarios in Euro NCAP include night-

time and visual obstruction testing scenarios (Euro NCAP 2018). In turn, Euro NCAP 

included these because higher-severity injuries have been identified in crashes 

occurring in darkness (Rosén, 2013; Chen et al., 2014; MacAlister, and Zuby, 2015; 

Uittenbogaard et al., 2016a). Third, the number of clusters needs to be defined 

subjectively (Kaufman and Rousseeuw, 2005). However, some objective assessment 

measures, such as ASW and BIC, are now available to guide the choice of the optimal 

number of clusters. Generally, the higher the values of ASW and BIC, the better the 

performance of the cluster analysis (Rousseeuw, 1987). In Paper I, ASW was used as 

an indication for the number of clusters. The number of clusters, six, was not 

optimal, as the value of ASW was 0.41, which indicated that a weak structure was 

found from cluster analysis. Higher values of ASW (0.61) could be found with a 

higher number of clusters (n=9). However, more clusters meant that some clusters 

had unreasonably small sample sizes, so a relatively low ASW value was accepted, 

instead of choosing a higher number of clusters with a higher ASW value. 

In summary, cluster analysis, unlike descriptive frequency analysis, provides a way 

of defining typical crash scenarios that considers hidden structures or patterns in 

the data. Test scenarios derived from cluster analysis can support the development 

of effective countermeasures and provide a better understanding of real-world 

traffic situations. 
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5.4. How can we improve the safety of TW riders in traffic 
in China? 

To address the critical safety issues of TWs, a variety of safety systems have been 

developed by car manufactures and automotive suppliers. As stated in Section 1.2, 

these safety systems include both protective safety systems (e.g., active pop-up 

hood and windshield airbags, inflatable jackets and TW airbags), and preventive 

safety systems (e.g., car-based FCW and AEB and TW-based ABS and AEB). 

Previously, many studies focussed on protective safety systems development, 

aiming to mitigate injury severity during the crash (Pastor, 2013; Ames and Martin, 

2015; Shi et al., 2019). In the last few decades, to further improve road safety, car 

manufactures have shifted their efforts to advanced preventive safety systems 

aimed at avoiding the crash during the pre-crash phase, or mitigating injuries by, for 

example, braking (Coelingh et al., 2010; Kovaceva et al., 2020).   

Car-based AEB has been regarded as the advanced preventive safety system with 
the most potential for avoiding crashes and mitigating injuries. This system reduces 
impact speed by applying braking automatically, removing the effect of any possible 
driver reaction limitations and distractions while optimising braking performance. 
Similarly, FCW can also reduce impact speed. However, unlike AEB, FCW relies on 
driver input since it only warns the driver of the imminent critical event. 
Consequently, the effectiveness of FCW depends on the drivers’ reaction to the 
warning—and drivers’ reactions to a signal can vary substantially depending on 
several factors, such as the driving environment and the driver’s status 
(Warshawsky-Livne and Shinar, 2002). Late or wrong driver reactions, such as 
accelerating instead of braking, will actually increase the crash and injury risk for all 
involved. Hence, the application of FCW in the real world has many limitations. 
Another preventive safety system, ABS, has been proved to improve motorcycle 
braking stability and increases braking deceleration (Roll et al., 2009). So far, the 
system is almost exclusively available for motorcycles with high travelling speeds 
(Rizzi et al., 2009; Roll et al., 2009; Giovannini et al., 2013); it is rarely used in bicycles 
and electric engine PTWs. Furthermore, considering the cost of the AEB system, car-
based AEB is more likely to be applicable to China in the near future than TW-based 
AEB.  

Instead of applying only braking, theoretically, steering could help improve the 

AEB’s performance, by providing another avoidance mechanism (Chajmowicz et al., 

2019; Seacrist et al., 2020), especially when the car is travelling at high speed. With 

respect to manual driving, a study by Seacrist et al. (2020) showed that few drivers 

avoid crashes by steering. Furthermore, steering away to avoid a crash might lead 

to another critical situation with other road users (Sander, 2018; Robinson, 2020). 
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Automated emergency acceleration is another option with the potential to avoid a 

crash under specific circumstances (Sander, 2018). However, this possibility was not 

investigated in Paper II, since situations where steering would be efficient are rare 

and, using acceleration as an avoidance manoeuvre is controversial: accelerating a 

vehicle in a critical situation increases the kinetic energy, potentially making the 

situation even riskier.  

Although car-based TW-AEB has shown great potential for improving TW traffic 

safety, one cannot expect it alone to solve all traffic problems: for one thing, 

although braking force is the most influential factor of AEB performance 

(Chajmowicz et al., 2019), only so much force can be exerted before the friction 

coefficient between the car tyre and road is exceeded. This limitation is one reason 

that, in Paper II, the maximum deceleration force was set to 8.82 m/s2 (rather than 

the maximum possible under dry road conditions). One approach to increase the 

deceleration to above 9.8 m/s2 is to use the Vacuum Emergency Brake (VEB), which 

can provide extra braking deceleration (Jeppsson et al., 2018; Jeppsson and Lubbe, 

2020).  

Furthermore, as the results from Paper II show, even though the car was equipped 

with an “ideal” AEB with perfect object detection and efficient braking, some 

crashes and injuries could not be avoided. This result demonstrates the limits of 

preventive safety systems for TW riders; it is necessary to provide them with 

protective safety systems as well. Safety countermeasures for TW riders, such as 

helmets and the active pop-up hood and windshield airbags are examples of systems 

that can help keep TW riders alive (Rizzi et al., 2011; Ohlin et al., 2017). Maximising 

TW traffic safety involves employing all effective systems, not just the single most 

beneficial one. 

In summary, preventive safety systems, for example the TW-AEB, have been proven 

as an effective measure to save more lives by preventing the crash from happening 

and reducing injuries. However, depending on the specific scenarios and the 

complexities of traffic in the real world, preventive safety systems alone cannot 

eliminate road fatalities and severe injuries completely. Protective safety systems 

are still needed to reduce the number of TW death and suffering from traffic 

crashes.  

5.5. How do we assess TW-AEB performance?  

Assessing the performance of safety systems is essential for system development. 

As stated in Section 2, many stakeholders in the car industry can learn how effective 

a system is from the assessment. This information can then be the basis for further 
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performance improvements. The ideal way to assess a safety system’s performance 

is by comparing the crashes and injuries from real-world crashes with and without 

the safety system (i.e., studying events that actually happened), using the difference 

to quantify the system’s performance. However, this retrospective method is not 

possible when the system has low market penetration (perhaps because the system 

has not been available for long, as is the case for TW-AEB) or when the system is not 

even yet available on the market.  

There are several methods for assessing the benefit of preventive safety systems 

prospectively, before enough data is available to do a retrospective assessment. 

Such methods include in-depth case-by-case studies of manual “counterfactual” 

assessments, as in the work by Strandroth et al. (2012), who evaluated the future 

impact of vehicle safety technology in Sweden. Another example is “high-level 

filtering” of in-depth crash databases for factors that the safety system targets. 

Using this method, Lubbe et al. (2018) predicted future road traffic fatalities in 

Germany, assessing a variety of safety systems. Although these methods have their 

place, in this thesis the focus is on two other prospective methods: consumer rating 

(NCAPs) for safety assessment (Paper II; Euro NCAP, 2020; C-NCAP, 2018), and 

virtual safety assessment through counterfactual (what-if) simulations (Paper II; 

Lindman et al., 2010; Rosén 2013; Sander and Lubbe, 2016; Bärgman et al., 2017; 

Jeppsson et al., 2018; Zhao et al., 2019).   

The Euro NCAP and C-NCAP programs assess the performance of new safety 

systems, with the goal of promoting the development of safer cars by the 

automotive industry (C-NCAP, 2018; Euro NCAP, 2020). To assess the performance 

of TW-AEB in particular, C-NCAP has included three test configurations, comprising 

14 tests, which will be implemented in 2021 (C-NCAP, 2020). The tests are carried 

out in a test-track environment mimicking the real world, ensuring high physical 

fidelity in terms of the reproducibility of real-world situations (Boda, 2019). In fact, 

several studies have demonstrated that NCAPs are correlated with real-world traffic 

safety, indicating that they can be used for reliable assessment of safety system 

performance (Lie and Tingvall, 2000; Pastor, 2013; Strandroth et al., 2014). 

However, to the author’s knowledge, no studies have been undertaken yet 

correlating NCAPs with real-world crashes to examine the impact of NCAPs on 

preventive safety systems like AEB. It is obvious that a preventive safety system 

which performs well in NCAP testing might not perform equally well in the real 

world, due to the limited number of tests scenarios available in NCAPs testing. 

Further, although not relevant for AEB assessment, one important factor in real-

world performance of many preventive safety systems is driver behaviour, which is 

not taken into consideration in NCAP testing (Boda, 2019);  or, at least, the variability 
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of driver behaviour is not taken into account. There are, however, specified driver 

responses in some NCAP tests. For example, in Euro NCAP (2020) and C-NCAP 

(2018), a robot replicating a specific driver response is used for repeatability in the 

performance assessment of FCW. However, current NCAP processes do not actually 

evaluate the effect of the interaction between the safety systems and the driver. A 

further limitation of NCAP tests is that they are only available when the systems are 

already in production (or very close to being so). This means that the testing (which 

is expensive, as it includes physical tests) used when developing/ improving the 

functionality of systems that the NCAP targets is rarely used to develop new 

functionality. Consequently, less expensive testing methods are needed to assess 

systems for which NCAP tests are not yet available. 

Virtual simulations can efficiently evaluate preventive safety systems benefit, 

performing a relatively large number of assessments in a short time. A computer 

and the relevant software suffice to run a large number of simulations at low cost; 

no test tracks or real vehicles are needed. Further, it is easy to vary parameter 

values, so sensitivity studies of main system parameters can be performed quickly, 

as was done in Paper II and in a range of other studies (Rosén, 2013; Edwards et al., 

2015; Bärgman et al., 2015, 2017; Jeppsson et al., 2018; Cao et al., 2019; Jeppsson 

and Lubbe; 2020). Therefore, virtual simulations can quickly indicate both the safety 

performance of specific system designs and the potential impact on safety that the 

systems may have when brought to market. Another advantage of virtual 

simulations is that they can be used throughout the whole process of system 

development for a wide range of products other than NCAP tests. That is, unlike 

NCAPs, if all the components in the simulation are sufficiently good (validated), 

virtual simulations can assess the potential safety benefit of systems not yet on the 

market.  

To be sure, virtual simulations for safety benefit assessment are not without their 

limitations. First, the simulations can only be as valid as their mathematical models 

(of the safety system, the driver, the vehicle and/or the environment). In contrast, 

NCAP testing uses—in addition to the actual safety system—real vehicles in a 

physical environment. Hence, model validation is an important part of preparing a 

simulation. Although the current research focusses on AEB, which does not require 

driver action, a simplified driver model was applied in Paper II as part of the AEB 

algorithms. However, detailed models of driver behaviour have been incorporated 

into virtual simulations to assess systems that include driver actions (Bi et al., 2014; 

Markkula, 2014; Bärgman et al., 2017; McDonald et al., 2019), as well as to assess 

driver behaviours, such as those associated with the introduction of new human-

machine interfaces (Lee et al., 2002; Bärgman and Victor, 2019). In fact, all 
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components in virtual simulations must be chosen carefully, due to the impact the 

choice may have. Another limitation of virtual simulations is that they require 

detailed time-series data of the pre-crash kinematics (Jeppsson et al., 2018; Sander, 

2018), which are not often directly available in crash databases. Moreover, when 

the data are available, they are typically created from crash reconstructions and 

usually involve subjective assumptions about the pre-crash kinematic information. 

As for the system implementations, Paper II used simple models of the vehicle and 

the TW and, as previously stated, the driver (thus including the potential for braking 

and steering avoidance manoeuvres). Further, it was assumed that sensors and 

brake activation functioned ideally in the AEB algorithm, and that the TW-AEB 

detected TWs perfectly under all weather and lighting conditions. Also, no 

interactions between the car driver and the TW-AEB or any potential following rear-

end crashes caused by sudden braking of the car were considered. These 

assumptions may have led to an overestimate of the TW-AEB’s performance.  

Many researchers have adopted the virtual approach for AEB performance 

assessment (Lindman et al., 2010; Rosén et al. 2010; Rosén 2013; Sander and Lubbe, 

2016; Bärgman et al., 2017; Jeppsson et al., 2018; Zhao et al., 2019; Char and Serre, 

2020). However, none of them have yet considered using it to compare the safety 

performance of NCAP test-track tests with real-world data; Paper II was designed to 

fill this knowledge gap.  

The approach applied in Paper II provided an efficient way to evaluate the validity 

of NCAP tests in the real world. Usually it takes a long time to know if the safety 

system tested has the same effect in the real world (and, for example, to study the 

correlation between these results and NCAP testing procedures). However, this 

process can be shortened by performing virtual simulations using real-world crash 

data and the NCAP test-track test results to evaluate the system’s performance 

before the actual system is on the market. Hence, virtual simulations can be a first 

(but only a first) step toward validating NCAP test scenarios. Virtual simulations can 

also be used for the future development and refinement of test scenarios.  That is, 

this virtual cross-validation approach offers opportunities for NCAPs to update their 

testing programs. Car manufacturers and suppliers can also benefit from the 

approach’s speed and economy throughout the development process (Page et al., 

2015; Bärgman et al., 2015; 2017; Sander, 2017). Through key parameter sensitivity 

analysis, virtual simulations can tune safety system designs more easily than test-

track tests (Rosén, 2013; Edwards et al., 2015; Bärgman et al., 2015; Bärgman et al., 

2017; Jeppsson et al., 2018; Cao et al., 2019; Zhao et al., 2019). 
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In summary, virtual simulations can inexpensively and effectively assess the 

performance of TW-AEB in real world traffic and they can also be used as the first 

step in the validation of test-track tests (e.g., NCAP).   

5.6. Differences in car-to-TW crash characteristics between 
China and other countries, and the implications for 
safety system development. 

The design and development of safety systems should be based on an analysis of 

real-world crash characteristics from the area where the system aims to be 

deployed. Clearly, crashes in different regions may have different characteristics, 

leading to different system designs (Chen et al., 2014). Car-to-TW crash 

characteristics in China are quite different from those in other countries (Paper I; 

Rodon et al., 2013; Chen et al., 2014; Sui et al., 2017); thus, designing and developing 

safety systems specifically for the Chinese market, using Chinese real-world crash 

characteristics, is important.  

One difference in car-to-TW crash characteristics between China and European 

countries is the TW travelling speeds. As stated in Section 1.1.1, the majority of the 

electric engine TWs in China are scooter-style, which can travel at higher speeds 

than the bicycle-style TWs common in European countries. Hence, in Paper II, the 

maximum TW travelling speed for the proposed test scenarios in C-NCAP was set to 

45 km/h. Furthermore, combustion engine PTWs, a common mode of 

transportation in China, accelerate faster and achieve higher travelling speeds than 

other TWs. The higher the TWs’ travelling speed, the shorter time the AEB system 

has to detect it, identify the imminent crash, take action and brake. Further 

optimisation of AEB systems for higher TW-speed crash scenarios would likely 

improve TW traffic safety in China substantially.  

Another main issue threatening TW traffic safety in China is TWs’ low conspicuity in 

traffic at night. Paper I indicates that night-time crashes are common in China: two 

night-time car-TW test scenarios are, in Paper I, recommended for the C-NCAP 

rating programs. Furthermore, Sui et al. (2017) found that 33% of car-to-TW 

accidents happen at night, based on CIDAS data. Similar findings, but with somewhat 

lower night-time crash rates, were observed in the European project CATS; 10%–

25% of crashes with serious injuries and 25%–35% of fatal crashes occurred in low-

light conditions (at dusk/dawn or at night; Op den Camp et al., 2017). Moreover, a 

study by AAA (2019) based on the evaluations of pedestrian detection systems 

found that AEB was relatively ineffective in low-light environments. These findings 
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indicate that improving sensors’ effectiveness in night-time conditions would 

probably substantially enhance the functionality of currently available AEB systems. 

In addition to night-time crashes, the six scenarios proposed in Paper I include two 

scenarios with the car turning and one scenario with the TW turning, indicating the 

prevalence of turning scenarios in real-world traffic crashes in China. These 

scenarios require AEB systems to have a wider field of view and more complex 

algorithm to accurately identify the TW and predict an impact (Paper II). 

Nonetheless, even with an idealised AEB (360 degrees sensor FoV and no braking 

time delay), when the TW appears or changes direction suddenly, some collisions 

are simply unavoidable. 

In summary, due to the different traffic situations between China and other 

countries, the development of TW-AEBs for China should be focussed on improving 

the sensors’ detection capabilities (e.g., wider FoV and better night-time 

performance) and the decision algorithms (e.g., handling the higher speeds and 

wider FoV). 

5.7. How will TW riders affect automated driving, and how 
will automated vehicles behave? 

Because China is one of the largest potential markets for automated vehicles, the 

government has been investigating their development (Herskind et al., 2019). China 

has set a goal of achieving the mass production of intelligent vehicles with 

conditional self-driving capabilities by 2025 (National Development and Reform 

Commission, 2020). One critical issue with autonomous driving is that vehicles have 

to be able to deal with any sudden dangerous situation independently, a difficult 

challenge on Chinese roads where the traffic situation is quite complex. TWs are 

often involved in crashes on shared roadways where the riders engage in risky 

behaviours, including running red lights, excessive speeding, travelling in the 

opposite lane, illegal lane changing, and aggressive swerving (Wang et al., 2012; Wu 

et al., 2012; Bai et al., 2013; Guo et al., 2015; Guo et al., 2019). These risky 

manoeuvres lead to frequent near-miss events, increasing the challenges of 

automated vehicle development in China. As the TW-AEB is very likely to be an 

integral part of future automated vehicles, it is important to understand the typical 

car crashes with TWs (Paper I) and the potential benefit of TW-AEB in China (Paper 

II). TW-AEB algorithm design and development for Chinese traffic conditions will 

likely have substantial effect on the safety performance of automated vehicles of 

the future. Optimising automated vehicles’ decision algorithms for Chinese traffic 

conditions is likely to require substantial effort due to the complicated real-world 
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traffic situation in China. In addition to the issues/concerns above, developers will 

need to collect and input local traffic data to resolve the problem of unique and 

inconsistent road signage, for example. They will have to optimise motion planning 

through on-road testing, so the algorithms can deal with the risky driving behaviour 

of TW riders (Pizzuto et al., 2019). However, the overall technological solutions for 

autonomous driving in China will not differ much from those in other nations. 

Western cities, from downtown New York to Rome, have similarly dense 

populations and levels of mixed traffic (Pizzuto et al., 2019), although the specific 

conflict scenarios may vary, especially with respect to car-to-TW interactions.  

In summary, given China’s complex traffic environment, automated vehicles must 

adapt to local road conditions and the aggressive driving behaviours of TW riders, 

which could slow the adoption of automated vehicles in China. However, in the long 

run, with the advance of technology and a better understanding of local traffic 

situations, automated vehicles will likely succeed in working well with TW riders and 

other road users in China, even if it turns out to be a substantially more challenging 

task than, for example, in Sweden. 

5.8. Sustainability development  

Road transport is an essential, convenient way to carry people and goods from one 

place to another (UN, 2017). However, the cost of road transport is high, with severe 

health and socioeconomic consequences due to road traffic crashes. Safe, 

affordable, accessible, and sustainable transport systems for all road users are the 

key to the sustainable development of good health and well-being (UN, 2017). To 

improve road traffic safety worldwide, the UN has adopted some fatality reduction 

targets, like halving global deaths and injuries from road traffic crashes by 2020 

(WHO, 2020). My research directly supports sustainable development through the 

vision of saving more lives globally. 

First, my research is focussed on traffic safety improvement in China. While 

sustained political commitment and innovative strategies and technologies have 

been successfully applied in some developed countries, rates of road traffic injuries 

and deaths are still high in developing countries (WHO, 2020). As the country with 

the largest population in the world, China is particularly vulnerable to the impact of 

road traffic injuries (Huang et al., 2016). Hence, concerted efforts to improve road 

traffic safety in China can contribute to achieving sustainable development.   

Second, the sustainable development aspect of my research targets TW riders’ 

safety (in China). Traffic safety has been improving substantially during the past few 

years. However, traffic safety for VRUs has not improved at the same pace as for the 
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occupants of cars. Measures to improve the traffic safety of TW riders can have a 

substantial impact on the sustainable development (saved lives) of road transport 

worldwide. That is, as TW riders are among the most vulnerable of road users 

(Haworth 2012), efforts to prevent TW crashes can produce substantial benefits 

(Yanagisawa et al., 2017). In my research, a benefit assessment of the AEB system 

was undertaken. One cannot expect that all crashes and injuries will be eliminated 

by these systems, as shown in the results of Paper II—at least in the short term. 

More advanced protective safety systems, working together with preventive safety 

systems, are needed to save more lives.   

Overall, road safety improvement requires global action and collaboration across 

several areas, including stronger traffic safety laws and standards to enforce safe 

behaviour on the road. The research in this thesis supports the Chinese 

policymakers and the Chinese government as they propose to establish new 

regulations and create a roadmap to improve traffic safety in China. 

5.9. Future work 

The next step in my research will be to estimate the combined benefits of the 

protective and preventive safety systems in China which could save TW riders’ lives 

and mitigate their injuries.  

First, an average injury risk curve of TW riders based on Chinese crash data will be 

built, as Ding et al. (2018) did based on German crash data. The decrease in the 

number of injuries for the crashes remaining after TW-AEB application can be 

estimated based on this curve. The reduction in car-to-TW crash frequency can then 

be obtained from exposure data and the crash avoidance rate of preventive safety 

systems like TW-AEB and MAEB. Meanwhile, the effectiveness of protective safety 

systems such as active pop-up hoods, pedestrian protection airbags, helmets, PTW 

airbags, and inflatable jackets can be assessed based on existing tests or simulation 

results.  

Second, I am to estimate the injury risk reduction of the integrated safety approach, 

through the application of knowledge about protective systems performance on the 

residual crashes after virtual simulations. For example, using the dose-response 

model, the total number of TW users’ lives saved, and injuries reduced through a 

combination of preventive and protective safety systems can be estimated. Future 

work may also include modifying the protective safety systems to optimise TW rider 

protection, and virtually testing these systems with relevant scenarios.   

  



52 
 

  



53 
 

6. Conclusions  
Improving the safety of TW riders, who account for a large share of road traffic 

participants and fatalities in China, is the focus of this thesis. Cars are the most 

common partners in TW crashes, so developing automated emergency braking 

systems for cars encountering TWs (TW-AEB systems) has been proposed as a way 

to avoid or mitigate TW crashes and injuries. NCAPs, like C-NCAP, have been helping 

the automotive industry promote better safety systems (such as TW-AEB) by 

assessing and rating each safety system’s performance using a set of test track tests. 

Clearly, these tests are supposed to represent real-world crashes as accurately as 

possible. In Paper I, cluster analysis was applied to the complex data in CIDAS, one 

of the most detailed crash datasets in China, to select typical scenarios that reflect 

the real-world traffic situation for TWs in China. Six car-to-TW crash scenarios were 

identified and proposed as reference TW-AEB test scenarios for C-NCAP.  

Using virtual simulations, I compared the TW-AEB’s performance with the scenarios 

from Paper I against its performance with real-world crash data (SHUFO). The 

findings show large similarities in the crash avoidance rate and remaining crash 

characteristics, validating the real-world representativity of the six proposed 

scenarios. 

In August 2020, C-NCAP released its own TW-AEB test scenarios, which will be 

implemented in 2021. The scenarios are similar to those in the Euro NCAP (2020) 

TW-AEB assessment. However, some characteristics in the scenarios proposed in 

Paper I (car or TW turning, night-time, and visual obstructions) were not included in 

either of the NCAPs. Thus, in Paper II, the TW-AEB performance in the C-NCAP (2021) 

scenario set was studied to determine whether the C-NCAP scenarios can reflect 

real-world car-to-TW crashes in China. Counterfactual virtual simulations were run 

as they had been for the other two datasets. The results show much higher crash 

avoidance and lower remaining impact speeds for the C-NCAP scenario set 

compared to the results from the other two datasets, suggesting that the cars which 

have high ratings in C-NCAP (2021) might not perform as well as expected in the real 

world.  

The differences in TW-AEB performance among these three datasets were 

investigated further. When a TW-AEB with a FoV of 70°, an activation time of 1.1 s, 

and a braking deceleration of 8.82 m/s2 was applied to all three scenario sets, all 

the crashes in the C-NCAP (2021) scenario set were avoided. However, more than 

half of the crashes in the SHUFO crash set and the proposed scenario set still 

occurred. Car or TW turning scenarios and perpendicular scenarios with high TW 
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travelling speed accounted for a large share of the remaining crashes; importantly, 

these scenarios are not in the C-NCAP (2021) scenario set—although they are 

among the six proposed in Paper I. To address the scenarios with high TW travelling 

speed and longitudinal same-direction scenarios with car or TW turning, TW-AEBs 

with larger FoV are required. This makes it particularly important for C-NCAP to help 

promote the development of TW-AEB with FoV more than 70°. This can be done by 

including the missing scenarios in future C-NCAP releases. Furthermore, Paper II 

showed that, even though TW-AEBs can avoid many crashes, they do not seem able 

to avoid all crashes in scenarios like car or TW turning or those with high TW 

travelling speed. In the SHUFO and alternative scenario sets, approximately 20% of 

crashes had an impact speed above 40 km/h, after the application of TW-AEB. Even 

with an effective TW-AEB, protective safety systems are still needed to reduce TW 

fatalities and injuries sustained in these scenarios. Potential protective safety 

systems for TW riders were also reviewed in the thesis.  

My work has resulted in concrete results which can be implemented to improve 

road traffic safety in China, as well as having the potential specifically to contribute 

to traffic fatality reduction, as targeted in the UN SDG 3.6. That is, by including the 

car-to-TW test scenarios that are missing in the current C-NCAP (2021) scenario, but 

are present in the scenario set proposed in Paper I, C-NCAP will help the automotive 

industry to develop and be able to sell TW-AEB systems that are likely to avoid 

crashes and mitigate injuries also in those scenarios. This, in turn, is likely to reduce 

the number of deaths and injuries on Chinese roads. In addition, this work has 

further shown that virtual simulations are an efficient way to prospectively assess 

safety system performance, as well as validate NCAP scenario sets. 

In future work, I will assess the benefits of combining protective safety systems with 

TW-AEB, in terms of lives saved and injuries reduced. Overall, I argue that my work 

has the potential to save the lives of many TW riders, if the scenarios missing in the 

current C-NCAP are included in future C-NCAP releases,  or manufacturers find other 

ways of bringing more complete TW-AEB systems (as identified in this thesis) to the 

market.  
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