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Abstract
During the past decade, machine learning techniques have achieved impressive results in
a number of domains. Many of the success stories have made use of deep neural networks,
a class of functions that boasts high complexity. Classical results that mathematically
guarantee that a learning algorithm generalizes, i.e., performs as well on unseen data
as on training data, typically rely on bounding the complexity and expressiveness of
the functions that are used. As a consequence of this, they yield overly pessimistic
results when applied to modern machine learning algorithms, and fail to explain why
they generalize.

This discrepancy between theoretical explanations and practical success has spurred a
flurry of research activity into new generalization guarantees. For such guarantees to be
applicable for relevant cases such as deep neural networks, they must rely on some other
aspect of learning than the complexity of the function class. One avenue that is showing
promise is to use methods from information theory. Since information-theoretic quantities
are concerned with properties of different data distributions and relations between them,
such an approach enables generalization guarantees that rely on the properties of learning
algorithms and data distributions.

In this thesis, we first introduce a framework to derive information-theoretic guaran-
tees for generalization. Specifically, we derive an exponential inequality that can be used
to obtain generalization guarantees not only in the average sense, but also tail bounds for
the PAC-Bayesian and single-draw scenarios. This approach leads to novel generaliza-
tion guarantees and provides a unified method for deriving several known generalization
bounds that were originally discovered through the use of a number of different proof
techniques. Furthermore, we extend this exponential-inequality approach to the recently
introduced random-subset setting, in which the training data is randomly selected from
a larger set of available data samples.

One limitation of the proposed framework is that it can only be used to derive gen-
eralization guarantees with a so-called slow rate with respect to the size of the training
set. In light of this, we derive another exponential inequality for the random-subset
setting which allows for the derivation of generalization guarantees with fast rates with
respect to the size of the training set. We show how to evaluate the generalization
guarantees obtained through this inequality, as well as their slow-rate counterparts, for
overparameterized neural networks trained on MNIST and Fashion-MNIST. Numerical
results illustrate that, for some settings, these bounds predict the true generalization
capability fairly well, essentially matching the best available bounds in the literature.

Keywords: Machine learning, statistical learning, generalization, information theory,
PAC-Bayes, neural networks.
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CHAPTER 1

Background

A fundamental building block of human learning is our ability to accurately general-
ize knowledge from past experiences to new situations. For instance, when we observe
adverse health effects following the consumption of a poisonous mushroom, we do not
necessarily think that this is an isolated incident connected to this individual mushroom:
we grow suspicious of the entire species. If we lacked the ability to identify relevant
factors in one scenario and recognize them in a similar event, every moment of our lives
would appear brand new, wholly separated from our history. For human infants, it suf-
fices to be presented with only a handful examples from a category—sometimes as few as
three—before learning the general concept [1]. Without this ability to generalize, it would
be hard to imagine any possibility of efficient action in an ever-changing environment.

In recent years, machine learning (ML) methods have found enormous success in a
variety of areas, such as translation, medical diagnosis, and chess [2–4]. The basic idea
underpinning modern ML is to create a computer program that can perform some objec-
tive, defined on the basis of a large data set referred to as the training data. The program
is often referred to as an hypothesis, and the process of selecting it is called a learning
algorithm. How well the hypothesis performs its objective, given some data, is measured
by a loss function, where a lower value implies better performance. The true goal of ML
is to choose a learning algorithm such that the loss function of the hypothesis is small
not only for the training data, but for new, unseen data—like humans, the hypothesis
should be able to generalize.

The study of generalization within ML is the main goal of statistical learning theory.
Several classical results in this field have successfully established conditions under which
generalization can be guaranteed. These results typically rely on the hypothesis class,
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from which the hypothesis is chosen, not being too complex [5]. A celebrated complexity
measure is the Vapnik-Chervonenkis (VC) dimension, named after two pioneers within
the field. The fact that complexity is tied to generalization can be intuitively motivated
by Occam’s razor: in the same way that the simplicity of an explanation can be predictive
of its veracity, the simplicity of an ML hypothesis that performs well on the training data
should be indicative of how similar its performance on new data will be. In contrast, a
learning algorithm that utilizes a sufficiently complex hypothesis class can memorize a
training set, without actually learning any generalizable pattern. This is related to the
phenomenon known as overfitting—the hypothesis fits the training data too well. In such
a scenario, achieving good performance on training data does not necessarily imply that
something of value has been extracted from the data.
Intriguingly, when it comes to modern ML, this classical theoretical machinery is of

little explanatory value. Most of the success stories of recent years make use of deep neural
networks (DNNs), which are able to generalize despite boasting enormous complexity.
While the performance achieved in practice speaks for itself, theory has yet to catch
up. A common criticism against DNNs is that they are used as a black box: we simply
feed training data into the learning algorithm and use the results that emerge from
the procedure, without any detailed understanding of how and why it works. This can
hinder the adoption of ML solutions in safety-critical applications, such as health care
or self-driving cars, where more rigorous performance guarantees are desired.
The need for new performance guarantees that are applicable even for DNNs has

spurred a flurry of research activity. The lesson that is learned from the failure of the
classical theory is that relying on model complexity alone is not enough. For this reason,
new bounds are data- or algorithm-dependent. The basic insight underlying this approach
is that, while generalization may fail for a worst-case data distribution or poor learning
algorithm, it may work excellently for natural data distributions and practically relevant
learning algorithms. This data-dependence is necessary for bounds to apply to DNNs.
Consider, as an example, a classification setting, where each datum consists of an example
and an associated label. Then, typical DNNs can accurately classify a training set both
in the setting where the examples are paired with their true labels and the setting where
the labels are determined randomly [6]. In the true-label setting, the DNN performs
well on unseen data, while this is obviously impossible in the random-label setting—
randomized labels mean that there is nothing to learn from the data! Since the only
thing that separates these settings is the data distribution, this is a necessary ingredient
of any bound that hopes to explain this phenomenon.
In this thesis, we take some steps toward explaining generalization for randomized

learning algorithms, and in particular, we present new results for DNNs. In Paper A,
we present a framework that can recover several of the information-theoretic bounds
available in the literature, while also allowing us to derive new bounds. This framework is
based on an exponential inequality, from which generalization bounds follow from simple
manipulations. We combine this framework with the random-subset setting introduced
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by Steinke and Zakynthinou [7], where we can derive even tighter bounds. In Paper B,
we strengthen the previously obtained random-subset bounds even further, improving
their dependence on the size of the training data set. We demonstrate how to evaluate
the bounds both from Paper A and Paper B in the setting of DNNs, and show that for
some simple neural network setups, the obtained results predict the true generalization
fairly accurately, and are in line with the best previously reported results.

1.0.1 Thesis Structure
This thesis is comprised of two parts. Part I contains an introduction to the field, and
serves the purpose of putting the sequel into context. Part II consists of appended papers,
which form the research contribution upon which this thesis is based.

Part I is organized as follows. In Chapter 1, we first give an informal overview of the
field, to set the more specific problems in a wider context, before introducing necessary
notation. Then, in Chapter 3, we present the statistical learning setting and review some
of the classical generalization guarantees.

Next, in Chapter 3, we turn to the more recent information-theoretic generalization
guarantees. After establishing the necessary toolbox that will be used throughout the
chapter, we give an overview of PAC-Bayesian generalization guarantees, back to which
many ideas of the information-theoretic bounds can be traced. Next, we give an overview
of the information-theoretic bounds available in the literature, including the recently
introduced random-subset setting.

In Chapter 4, we conclude the first part of the thesis by detailing the contributions
made in the appended papers and discussing possible future directions to investigate.

1.0.2 Notation
Throughout the first part of this thesis, we use capital letters Z to denote random
variables, and lower-case letters z to denote their realizations. Similarly, random vectors
are denoted by bold capital letters Z and their realizations by lower-case bold letters z.
If PZ is a probability measure, we denote the probability operator under it as PZ [ · ],
and we denote the expectation operator as EPZ [ · ]. The indicator function of an event
E is denoted by 1{E}.
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CHAPTER 2

Statistical Learning

In this chapter, we begin by more formally introducing the learning setup that we consider
throughout the thesis. We then discuss the various flavors of generalization guarantees
that will be discussed, before presenting the classical generalization guarantees that are
based on the VC dimension and the Rademacher complexity. In Chapter 3, these classical
results will be contrasted with more recently obtained information-theoretic guarantees.

2.1 The Learning Setup
We start by discussing the general ingredients that are common to all learning setups
considered in this thesis, before giving some more specific examples. Assume that there
is an unknown data distribution PZ on some instance space Z, and that from this dis-
tribution, we have obtained a data set Z = (Z1, Z2, . . . , Zn), consisting of n samples
drawn i.i.d. from PZ . We will refer to Z as the training set. Based on this training set,
we want to choose a hypothesis W from a hypothesis space W. This is done by using
a learning algorithm, characterized by a conditional distribution PW |Z on W given Z.
To measure how good a particular choice W is, we use a loss function ` :W ×Z → R+.
The averaged loss of a given w ∈ W for a specific training set z = (z1, . . . , zn) is given
by Lz = 1

n

∑n
i=1 `(w, zi), and is referred to as the training loss. The expected loss on a

new sample, the population loss, is given by LPZ (w) = EPZ [`(w,Z)]. The generalization
error is the difference between these, gen(w, z) = LPZ (w)− Lz(w).
A commonly considered learning algorithm is that of empirical risk minimization,

in which the support of PW |Z is limited to arg minw∈W LZ(W ). Since there may be
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imperfections such as noise in the training data, one may not want to perform exact
empirical risk minimization, but rather an approximate variant. For example, one may
add a regularizer, which limits the model selection, or add noise to the output of the
training algorithm.
We now give some specific examples that fit into the general learning setup.
Estimating the mean of a Gaussian distribution: In this setting, the data Z ∈ R are

samples drawn i.i.d. from some Gaussian distribution N (µ, σ). Here, the hypothesis
space is W = R, and the goal is to find a w that approximates µ. A possible choice for
the loss function is `(w, z) = (w− z)2. A reasonable learning algorithm in this setting is
to use the sample mean: for a training set z, set w = 1

n

∑n
i=1 zi. Notice that this is an

example of an empirical risk minimizer. The average generalization error of this learning
algorithm can be exactly computed as

EPWZ
[gen(W,Z)] = EPZPZ

( 1
n

n∑
i=1

Zi − Z

)2
 = 2σ2

n
. (2.1)

Regression: In regression, the data are decomposed as Z = (X,Y ) where X ∈ X is
an example from some space X and Y ∈ Y is a label from a continuous space Y. As
an example, X = R3 can be the coordinate of a point in space, while Y = R+ is the
temperature in Kelvin. The goal is to learn a function W : X → Y that predicts the
temperature at each point in space. For regression, a typical loss function is the squared
loss given by `(w, z) = 1

2 (w(X) − Y )2. A possible learning algorithm for this setting is
to use a linear predictor given by the least-squares solution.
Classification: In classification, the data are again decomposed as Z = (X,Y ), where

X ∈ X is an example from some space X , but now Y ∈ Y is a label from a discrete set Y.
In the well-studied setting of binary classification, |Y| = 2. As an example, X = [0, 1]3P
can be the normalized RGB values of images with P pixels depicting either cats or dogs,
while Y = {0, 1}, where 0 corresponds to cats and 1 to dogs. The goal is to learn a
function w : X → Y that classifies pictures as either cats or dogs. A typical choice for
the loss function is the classification error, given by `(w, z) = 1{w(X) 6= Y }. A learning
algorithm that has found great success for image recognition tasks, such as classifying
cats and dogs, is to train a convolutional neural network (CNN) using some variant of
stochastic gradient descent (SGD) [8].
While the learning setting described in this section is quite general, it does not cover

all possible settings of interest. For instance, the assumption that the training data
Z1, Z2, . . . , Zn are i.i.d. can be lifted [9]. In the setting of transfer learning, the training
data are drawn from one distribution, while the population loss is computed with respect
to a different one [10]. In meta-learning, one has access to several data sets from different,
related tasks, drawn from a distribution over tasks. The goal is to learn hyperparameters,
i.e., parameters that describe the within-task learning algortihms [11]. We will, however,
restrict our attention to problems that can be seen as special cases of the setting described
in this section.
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2.2 Classical Generalization Guarantees
As previously mentioned, the goal of learning is to find a hypothesis W that achieves
a small population loss LPZ (W ). This is complicated by the fact that we only have
access to an estimate of the population loss, the training loss LZn(W ), which is based
on n i.i.d. samples drawn from PZ . In this section, we present some classical results
which guarantee that, under some conditions, the training loss is a good proxy for the
population loss.

2.2.1 Different Flavors of Generalization
Due to the stochastic nature of learning algorithms that we consider, results relating
to generalization do not come in a single form. We now present the different flavors of
generalization guarantees that we discuss throughout this thesis.
PAC learnability: We begin by presenting the probably approximately correct (PAC)

framework for studying learning, since this is the setting of the classical results that we
will discuss. A hypothesis class W is PAC learnable if, for every distribution PZ , there
exists a learning algorithm PW |Z such that, for every ε, δ ∈ (0, 1), there exists an m(ε, δ)
such that if n ≥ m(ε, δ),

LPZ (W ) ≤ inf
w∈W

LPZ (w) + ε (2.2)

with probability at least 1 − δ over PZ . Here, m(ε, δ) is referred to as the sample com-
plexity. We now see the motivation for the name: the hypothesis W that we choose will
probably (with probability at least 1−δ) be approximately (with a margin of ε) correct (in
the sense of obtaining the smallest population loss achievable in the hypothesis class). If
we assume that our learning problem is realizable, there is a hypothesis in the class that
achieves zero population loss, so that infw∈W LPZ (w) = 0. It is important to note that
the PAC formulation of generalization is focused on properties of the hypothesis class W
itself.
Average guarantee: In the average setting, the quantity of interest is the expected

value of the population loss averaged over both the training sample and the randomness
of the algorithm, i.e., EPWZ

[LPZ (W )]. In some settings, this quantity is relatively easy
to analyze, but a drawback is that average guarantees may not give much relevant in-
formation in practice. Typically, one has a single instance of a training set, and wants
to know whether or not one can achieve generalization based on this particular instance.
Having a bound on the average loss does not necessarily to imply any good guarantees
on the tail of the loss distribution with respect to the data.
PAC-Bayesian guarantee: The PAC-Bayesian setting was introduced by McAllester [12]

in an effort to derive PAC-style bounds for Bayesian-flavored estimators. In this setting,
we assume that the algorithm PW |Z is used to select a new W for each time that the
hypothesis is used. Therefore, the quantity of interest is EPW |Z [LPZ (W )]. Since this is
a random variable in Z, we note that any bound on it will have to hold only with some

9



Paper

probability 1 − δ over PZ . An attractive feature of the PAC-Bayesian setting is that it
can incorporate correlation between and uncertainty about hypotheses, since we do not
consider a single, fixed W [13].
Single-draw guarantee: In the single-draw setting, we instead consider a single training

set Z and a single hypothesis W drawn from our algorithm PW |Z , which we will use for
all future predictions. The quantity of interest is therefore simply LPZ (W ), and bounds
on this random variable will hold with some probability 1 − δ over PWZ . This setting
describes many real-world applications of machine learning. For instance, the standard
procedure when using neural networks is to optimize the weights using a stochastic
algorithm, and then use the fixed weights that one obtains for future applications.
Data-dependent or data-independent: When it comes to the two tail bounds, i.e.,

the PAC-Bayesian and single-draw settings, results can be either data-dependent, when
bounds on the population loss depend on the particular instance of the training set Z,
or data-independent, when they do not depend on the specific instance. The benefit of
data-dependent bounds is that they can be used as regularizers: adjusting the algorithm
to make the bound small may lead to improved generalization. Furthermore, data-
independent bounds can often be obtained as weakened versions of data-dependent ones.
Data-independent bounds, however, can be used to compute the sample complexity, i.e.,
the number of samples needed to guarantee a given precision with a given probability. Of
course, the ability to make statements about generalization guarantees without referring
to a specific training set can also be useful.
Test loss or population loss: So far, we have discussed guarantees related to the pop-

ulation loss LPZ (W ). However, in some circumstances it is more convenient to obtain
bounds on a test loss LZ̄(W ), i.e., the loss evaluated on a sample Z̄ that is independent
of W . When empirically evaluating learning algorithms, the true data distribution PZ
is typically unknown, so in practice one usually has to resort to using a test loss as an
estimate. For many settings of interest, any bound on the test loss can be converted into
a bound on the population loss through the use of concentration inequalities.

2.2.2 VC Dimension
The Vapnik-Chervonenkis (VC) dimension, named after two pioneers of statistical learn-
ing, is a geometric property of the hypothesis class W that can be used to characterize
when generalization can be guaranteed. It is typically applied to the setting of binary
classification, where the data Z consist of examples X and labels Y ∈ {0, 1} and W is a
set of functions from X to {0, 1}, as described in the previous section.1 Thus, our discus-
sion in this section is restricted to the binary classification setting. Analogous quantities
have been studied in other settings, such as the fat-shattering dimension for regression
and the Natarajan dimension for multi-class classification [5, Sec. 6.7]. In a sense, the

1Alternatively, W can be a parameter space, the members of which characterize parametric functions
from X to {0, 1}. For simplicity of notation, we will consider W to be the function space.
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VC dimension characterizes how many functions there are in W. If the VC dimension
is infinite, any function from Xn to {0, 1}n can be expressed by a member of W for all
values of n. However, if it is small, the number of expressible functions are limited in
some sense. Below, we give the formal definition of the VC dimension. In so doing, we
will also introduce the closely related growth function and the concept of shattering.

Definition 1. (Shattering, growth function, and VC dimension):
A hypothesis class W is said to shatter a set Xn ∈ Xn if

|{w(X1), . . . , w(Xn) : w ∈ W}| = 2n. (2.3)

Let τW(n) denote the growth function defined as

τW(n) = max
Xn∈Xn

|{w(X1), w(X2), . . . , w(Xn) : w ∈ W}| . (2.4)

The VC dimension d of W equals the largest integer such that τW(d) = 2d. If there is
no such integer, we say that d = ∞. Thus, if d is finite, W shatters some set of size d
but no set of size d+ 1.

The relation between finite VC dimension and generalization can now be intuited. If
we find a function w from a space with VC dimension d that achieves a small loss on a
training set Zn with n� d, we know that we must have identified some structure in the
data: it is not possible that we simply memorized the given samples. In contrast, if the
VC dimension is infinite, we can not be certain that the function we found does anything
more than encode the training samples. This intuition is formalized in the following
theorem [5, Thm. 6.8].

Theorem 1. (Generalization guarantee from VC dimension)
Let W be of finite VC dimension d. Then, for every distribution PZ , there exists a

learning algorithm PW |Z and constant C such that, for every ε, δ ∈ (0, 1), we have that
with probability at least 1− δ over PZ ,

LPZ (W ) ≤ inf
w∈W

LPZ (w) + ε (2.5)

provided that

n ≥ C
d+ log 1

δ

ε2
. (2.6)

Furthermore, W is PAC learnable, with sample complexity bounded above and below as

C ′
d+ log 1

δ

ε2
≤ m(ε, δ) ≤ C

d+ log 1
δ

ε2
(2.7)

for some constants C, C ′.
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In the realizable setting, where there is a hypothesis w∗ ∈ W that achieves zero pop-
ulation loss, i.e. LPZ

(w∗) = 0, bounds on the sample complexity with a more beneficial
dependence on the approximation error ε can be obtained. These bounds can be inverted
to obtain high-probability bounds on the population loss, which have an n-dependence
of Õ(1/n), where the Õ( · ) notation indicates that we are ignoring logarithmic factors.
In comparison, the corresponding population loss bound that can be obtained from The-
orem 1 has a Õ(1/

√
n)-dependence. The rate Õ(1/n) is typically referred to as a fast

rate, while Õ(1/
√
n) is a slow rate. Below, we present the VC dimension-based sample

complexity for the realizable setting, which can be used to obtain fast-rate population
loss bounds.

Theorem 2. (Fast-rate generalization guarantee from VC dimension)
Let W be of finite VC dimension d. Assume that there is a hypothesis w∗ ∈ W such

that LPZ
(w∗) = 0. Then, W is PAC learnable, with sample complexity bounded above

and below as

C ′
d+ log 1

δ

ε
≤ m(ε, δ) ≤ C

d log(1/ε) + log 1
δ

ε
(2.8)

for some constants C, C ′.

For further discussion about fast-rate bounds and the conditions under which they can
be obtained, see [14,15].
Due to the existence of both upper and lower bounds on the sample complexity of W

in terms of d, the VC dimension completely characterizes learnability in the PAC sense.
This is a remarkable feature of the VC-based generalization guarantee, but as previously
discussed, it is not enough to explain the successes of modern machine learning algo-
rithms. This indicates that PAC learnability is not the pertinent concept to study when
it comes to modern machine learning.

2.2.3 Rademacher Complexity
Another classical metric that can be used for guaranteeing generalization is the Rademacher
complexity. Notably, the Rademacher complexity of a hypothesis class W is defined
with respect to a given data set. Given the arguments for the necessity of incorporat-
ing some kind of data-dependence into our generalization guarantees, this seems like a
promising approach to obtain tight generalization bounds. We now give the definition of
Rademacher complexity. Unless otherwise specified, all of the material in this section is
based on [5, Chap. 26].

Definition 2. Rademacher complexity:
Let Zn ∈ Zn be a set of data samples and let `( · , · ) :W×Z → R+ be a loss function.

Let σi for i = 1, . . . , n be independent Rademacher random variables, so that Pσi [σi =
−1] = Pσi [σi = +1] = 1/2. Then, the Rademacher complexity of the function class W

12



with respect to Xn and `( · , · ) is given by

RadZn(W) = 1
n
EPσ1...σn

[
sup
w∈W

n∑
i=1

σi`(w,Zi)
]
. (2.9)

One way to understand the Rademacher complexity is to think of randomly splitting
the data set Zn into a training set and a test set. What the Rademacher complexity
measures, in a worst-case sense over the hypothesis class, is how big the discrepancy
between the loss on the training set and the loss on the test set will be on average,
if we are equally likely to assign each data point to either the training set or the test
set. With this interpretation, it is easy to see how the Rademacher complexity is tied
to generalization: it is almost a generalization measure by definition. In the following
theorem, the connection is made more specific.

Theorem 3. Generalization guarantee from Rademacher complexity:
Assume that, for all z ∈ Z and all w ∈ W, |`(w, z)| ≤ c. With probability at least 1− δ

over PZ , for all w ∈ W,

LPZ (w)− LZ(w) ≤ 2RadZn(W) + c

√
2 log(2/δ)

n
. (2.10)

A similar bound holds when the sample-dependent Rademacher complexity is replaced
by its expectation under PZ .
As discussed in [5, Part IV], the Rademacher complexity can be used to derive general-

ization bounds for relevant hypothesis classes, such as support vector machines (SVMs),
and can also be used to provide tighter bounds for classes with finite VC dimension. It has
also been used to study generalization in neural networks found by gradient descent [16],
albeit without providing nonvacuous guarantees. One issue with the Rademacher com-
plexity is that, while being data-dependent, it is still a worst-case measure over the
hypothesis class. This leads to generalization estimates for modern machine learning
algorithms that are overly pessimistic.
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CHAPTER 3

Information-Theoretic Generalization Guarantees

In this chapter, we overview the information-theoretic generalization guarantees that are
available in the literature. It is in the context of these results that the contributions
made in the appended papers is best understood. We start by motivating the need for
new generalization guarantees, beyond the classical results discussed in Chapter 2, and
discuss why information-theoretic methods constitute a good candidate approach. We
then present the toolbox that is used in a large part of the literature, before describing
the main results that have been obtained. We end by presenting the random-subset
setting, where the training data is randomly selected from a larger set of data samples.
This settings plays an important role in the appended papers.

3.1 Motivation
The celebrated fundamental theorem of statistical learning [5] shows that the VC dimen-
sion completely characterizes PAC learnability. However, the result has a uniform flavor:
the guarantees hold for all hypotheses in the class, and for all possible data distributions.

In [6], two experiments are performed with deep neural networks for image classification
tasks. In the first, the networks are trained on training sets with true labels. In this
setting, the networks achieve zero training loss and a low test loss, meaning that they
generalize. In the second experiment, the labels of the training set are randomized. Now,
there is nothing to be learned from the training set, as the information carried by the
correctly labelled pairs has been erased. Still, the networks are able to achieve zero
training loss, but in this setting, their test loss is no better than random guessing—
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they do not generalize. This experiment illustrates that, to explain generalization in
modern machine learning algorithms, uniform results are not sufficient. Deep neural
networks, which achieve the state-of-the-art results in a myriad of applications, operate
and generalize in a regime that cannot be explained by their VC dimension. Indeed,
networks whose VC dimension is estimated to be in the millions can generalize based on
a few thousand training examples.
This motivates the need for new generalization guarantees. Unlike the classical results,

we do not want to restrict ourselves to properties of the hypothesis class, and we want to
be less uniform in some sense. In particular, we want to incorporate the data distribution
and the learning algorithm into our bounds. The information-theoretic bounds that
we present in this section do exactly this: if the algorithm or data distribution are
altered, the generalization performance that is guaranteed by the bound will also change.
Unlike the classical generalization guarantees, these information-theoretic results can
thus distinguish between the settings with true and random labels that are studied in [6],
providing hope that we can explain the discrepancy in generalization.

3.2 The Toolbox
We now introduce some tools that are used throughout the literature on information-
theoretic generalization guarantees. We begin by defining some quantities of interest.
First, the Radon-Nikodym derivative of a probability measure P with respect to a prob-
ability measure Q is denoted by dP/ dQ. It is well defined if P is absolutely continuous
with respect to Q, denoted P � Q, meaning that if P assigns non-zero probability to
a set, then Q does as well. When these distributions are the joint distribution PWZ

and the product of marginals PWPZ respectively, the logarithm of the Radon-Nikodym
derivative is the information density

ı(W,Z) = log dPWZ

dPWPZ
. (3.1)

The KL divergence, also known as the relative entropy, between P and Q is given
by D(P ||Q) = EP [log dP/ dQ], and when P = PWZ and Q = PWPZ , this becomes
the mutual information I(W ;Z).
The generalization error is the difference in loss value that arises when the data samples

and hypothesis are jointly distributed or independently distributed according to their
marginals. Thus, we want to compare the value of a function under one distribution to
its value under another distribution. A widely used tool for doing precisely this is the
Donsker-Varadhan variational representation of the KL divergence.

Lemma 1. (Donsker-Varadhan variational representation of the KL divergence)
Let PX and QX be probability measures on a space X such that PX is absolutely

continuous with respect to QX , and let f : X → R be a measurable function. Then,

D(PX ||QX) ≥ EPX [f(X)]− logEQX
[
ef(X)

]
. (3.2)
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To derive generalization guarantees, we will also need some restrictions on the loss
functions that we consider. Commonly, it is assumed that `(w,Z) is a sub-Gaussian
random variable under PZ for all w. We now define sub-Gaussianity.

Definition 3. (Sub-Gaussian random variables)
A random variable X is σ-sub-Gaussian if, for all λ ∈ R,

logE[exp(λX − E[X])] ≤ λ2σ2

2 . (3.3)

The left-hand side of (3.3) is referred to as the cumulant generative function (CGF)
of λ. Importantly, any random variable that is almost surely bounded to [a, b] is (b−a)/2-
sub-Gaussian [17, Chap. 2]. Furthermore, if Xi for i = 1, . . . , n are independent σ-sub-
Gaussian random variables, the average 1

n

∑n
i=1Xi is σ/

√
n-sub-Gaussian. The CGF of

some random variables that are not sub-Gaussian can still be similarly bounded by using
the Legendre dual [18]. For simplicity, we will restrict our attention to sub-Gaussian
random variables.

An important result for sub-Gaussian random variables is Hoeffding’s inequality.

Lemma 2. (Hoeffding’s inequality)
Let X be a σ-sub-Gaussian random variable. Then, for all ε > 0,

Pr[|X − E[X]| ≥ ε] ≤ 2 exp
(
− ε2

2σ2

)
. (3.4)

3.3 PAC-Bayesian Bounds
The genesis of information-theoretic approaches to generalization guarantees can be
found within the PAC-Bayesian literature. The PAC-Bayesian approach found its start
when McAllester [12] worked on developing PAC-style bounds to classifiers of a Bayesian
flavor. These bounds rely on the KL divergence between a posterior PW |Z , i.e., the
output distribution from the learning algorithm, and some prior QW , which has to be
independent of Z. Philosophically, this prior reflects some belief about which hypotheses
are seen as reasonable before any data is seen. While the usage of the terms prior and
posterior do not exactly match their original meanings in a Bayesian sense, we will use
them for historical reasons. Since the advent of the PAC-Bayesian approach, research
output in the field has been torrential. Despite the name, the approach applies not only
to Bayesian classifiers, but to a large class of learning algorithms, both deterministic and
randomized. Furthermore, the results are often amenable to numerical evaluation, and
can also provide new insights into algorithm design by way of regularization methods.
The PAC-Bayesian framework also allows for several extensions, where results can be
adapted to new settings or strengthened for certain learning problems [19–22].

Below, we give a somewhat more modern version of the basic PAC-Bayesian bound [13].
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Theorem 4. (Canonical PAC-Bayesian bound)
Assume that `(w,Z) is σ-sub-Gaussian under PZ for all w ∈ W and let QW be some

distribution on W that satisfies PW |Z � QW . Then, with probability at least 1 − δ

under PZ ,

EPW |Z [LPZ (W )] ≤ EPW |Z [LZ(W )] +

√
2σ2

n

(
D(PW |Z ||QW ) + log 1

δ

)
. (3.5)

Proof. We begin by applying the Donsker-Varadhan variational representation (3.2) with
PX = PW |Z , QX = QW and f(X) = λ(LPZ (W )− LZ(S)(W )), to see that for all λ,

EPW |Z [LPZ (W )− LZ(W )] ≤
D(PW |Z ||QW ) + logEQW

[
eλ(LPZ (W )−LZ(W ))]

λ
. (3.6)

We now apply Markov’s inequality to obtain

logEQW
[
eλ(LPZ (W )−LZ(W ))

]
≤ logEQWPZ

[
eλ(LPZ (W )−LZ(W ))

]
+ log 1

δ
. (3.7)

Since `(w,Z) is σ-sub-Gaussian for all w, LZ(w) is an average of n independent σ-sub-
Gaussian variables, and is thus σ/

√
n-sub-Gaussian for all w. By applying the definition

of sub-Gaussianity (3.3) with X = LZ(S)(W ), we see that the logarithm on the right-
hand side of (3.7) is bounded by λ2σ2/2. Inserting this into (3.6) and setting λ =√

2n(log 1/δ +D(PW |Z ||QW ))/σ to minimize the bound, we obtain the desired result.

We note that the dependence on n in (3.12) is1 √D(PW |Z ||QW )/n. We will refer to
this as a slow rate. For classification settings, it is typical to use the accuracy as the
loss function. For the bound in (3.12) to be interesting, the square-root term must be
smaller than one. It is therefore in our interest to rid ourselves of the square root, since
this would yield a tighter bound. This is done in the following result [19], but at the
cost of worse multiplicative constants. We will refer to it as a fast-rate bound. However,
we note that in order for the bound to achieve a fast-rate in the most commonly used
sense [14,15], the KL divergence D(PW |Z ||QW ) must grow at most polylogarithmically
in n.

Theorem 5. (Fast-rate PAC-Bayesian bound)
For all λ ∈ (0, 1), the following holds with probability at least 1− δ under PZ :

EPW |Z [LPZ (W )] ≤ 1
λ

[
EPW |Z [LZ(W )] +

D(PW |Z ||QW ) + log 1
δ

2(1− λ)n

]
. (3.8)

1The dependence of PW |Z on n is implicit, since the learning algorithm has a fixed definition only for
a given sample size, and in principle, it is allowed to have starkly different behaviors for different
sample sizes.
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3.4 Information-Theoretic Bounds
We now turn to more recent studies on generalization guarantees, where the information-
theoretic connections are stated more clearly. Initial work on explicitly tying general-
ization guarantees to the mutual information (MI), a core quantity within information
theory, was performed by Russo and Zou [23]. Although the main focus of their investiga-
tion is on adaptive data analysis, the statements can be adapted to the learning setting,
but only for finite data domains. Xu and Raginsky [24] extended this to uncountable
domains, and highlighted the connection to learning. We present the main result from
Xu and Raginsky [24, Thm. 1] below.

Theorem 6. (Average bound in terms of mutual information)
Assume that `(w,Z) is σ-sub-Gaussian under PZ for all w ∈ W and that PW |Z � PW .

Then,

EPWZ
[LPZ (W )] ≤ EPWZ

[LZ(W )] +
√

2σ2I(W ;Z)
n

. (3.9)

The proof of this result essentially follows along the same lines as the proof of Theo-
rem 4, but with PX = PWZ and Q = PWPZ . Already having the expectation over PZ

makes the Markov step superfluous, but the proof is otherwise identical.
The big advantage of the generalization guarantees based on information measures

like the mutual information when compared to, for instance, the one based on the VC
dimension, is that it takes into account the learning algorithm. As an extreme case,
consider a learning algorithm that picks the hypothesis W independently of the training
data Z. Then, the mutual information I(W ;Z) will be 0, and we are guaranteed to
generalize in expectation even if the hypothesis is selected from a class with infinite
VC dimension. Of course, such a learner is not very interesting. A discussion of more
relevant scenarios where the mutual information can be bounded, such as noisy empirical
risk minimization, can be found in [24].

A drawback of bounds expressed in terms of the mutual information is that they can
often be unbounded. For instance, if W is a deterministic function of Z and both are
separately continuous random variables, the mutual information will be infinite, even if
generalization can be guaranteed through, for instance, the VC dimension bound. This
issue was alleviated by Bu and Veeravalli [18], who used the methods of Xu and Ragin-
sky to derive a generalization guarantee in terms of the sample-wise mutual informatia,
I(W ;Zi) for i = 1, . . . , n. Since W is typically undecided given any individual Zi, even
when it is a deterministic function of the whole training set Z, this leads to a finite bound
in situations where the original mutual information-based bound fails. We present this
result below.

Theorem 7. (Average bound in terms of sample-wise mutual information)
Assume that `(w,Z) is σ-sub-Gaussian under PZ for all w and that PW |Z � PW .
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Then,

EPWZ
[LPZ (W )] ≤ EPWZ

[
LZ(S)(W )

]
+ 1
n

n∑
i=1

√
2σ2I(W ;Zi). (3.10)

This result relies on the decomposition

EPWZ
[LPZ (W )]−EPWZ

[
LZ(S)(W )

]
= 1
n

n∑
i=1

EPWZi [`(W,Zi)]−EPWZi [`(W,Zi)] . (3.11)

Applying the same arguments as were used to prove Theorem 6 to each term in this
composition, we obtain the desired result.
By using Jensen’s inequality, the chain rule of mutual information, and the indepen-

dence of the Zi, we see that the sample-wise mutual information guarantee is always
tighter than the original mutual information result [18, Prop. 1].
As observed by Bassily et al. [25], the PAC-Bayesian bound in (3.12) can be con-

verted into a bound in terms of mutual information, by selecting the prior QW to be the
marginal PW and using Markov’s inequality. The price to pay for this conversion is a
highly undesirable linear dependence on 1/δ.

Theorem 8. (PAC-Bayesian bound in terms of mutual information)
Assume that `(w,Z) is σ-sub-Gaussian under PZ for all w ∈ W and that PW |Z � PW .

Then,

EPW |Z [LPZ (W )] ≤ EPW |Z
[
LZ(S)(W )

]
+

√
2σ2

n

(
2I(W ;Z)

δ
+ log 2

δ

)
. (3.12)

Here, the factor 2 multiplying the 1/δ stems from the fact that we have to use a union
bound to combine both uses of Markov’s inequality. Of course, the same conversion can
be performed in Theorem 5.
In [24, Thm. 3], a single-draw generalization bound in terms of mutual information

is also derived, through the use of the monitor technique. Bassily et al. [25] also derive
such a single-draw bound, but obtain better constants.

Theorem 9. (Single-draw bound in terms of mutual information) Assume that `(w,Z)
is σ-sub-Gaussian under PZ for all w ∈ W and that PW |Z � PW . Then, with probability
at least 1− δ under PWZ ,

LPZ (W ) ≤ LZ(W ) +

√
2σ2

n

(
I(W ;Z) +Hb(δ)

δ

)
. (3.13)

Proof. For a pair of probability distributions PX and QX on a common space X and
a measurable event E ⊂ X , let p = P [E] and q = Q[E] denote the probability of the
event under the respective distributions. Then, the data processing inequality for the
KL divergence implies that

D(P ||Q) ≥ d(p || q) ≥ −Hb(p) + p log 1
q
. (3.14)
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Here, d(p || q) denotes the KL divergence between two Bernoulli distributions with pa-
rameters p and q respectively, while Hb(p) denotes the entropy of a Bernoulli random
variable with parameter p. We now set P = PWZ , Q = PWPZ and take E to be the
high-error event

E = {(w, z) : LPZ (w)− Lz(w) > ε}. (3.15)

The σ-sub-Gaussianity of the loss function implies that [17, Eq. (2.9)]

PZn [E > ε] ≤ exp
(
−nε2/(2σ2)

)
. (3.16)

From this, it follows that

log 1
q
≥ n ε2

2σ2 (3.17)

which, substituted into (3.14), gives us

ε ≤

√
2σ2

n

(
I(W ;Zn) +Hb(p)

p

)
. (3.18)

Since the right-hand side of (3.18) is monotonically decreasing in p, we conclude that the
condition

ε ≥

√
2σ2

n

(
I(W ;Zn) +Hb(δ)

δ

)
(3.19)

implies that p ≤ δ.

As previously mentioned, the tail bounds in terms of mutual information display an
undesirable linear dependence on the inverse confidence parameter 1/δ. Esposito et
al. [26] sought to rectify this by introducing new single-draw bounds in terms of a large
family of alternative information-theoretic quantities. Below, we present their bound
given in terms of the α-mutual information Iα(W ;Z).

Theorem 10. (Single-draw bound in terms of α-mutual information)
Assume that `(w,Z) is σ-sub-Gaussian under PZ for all w ∈ W and that PW |Z � PW .

Then, for all α > 1, with probability at least 1− δ under PWZ ,

LPZ (W ) ≤ LZ(W ) +

√
2σ2

n

[
Iα(W ;Z) + α

α− 1 log 1
δ

]
. (3.20)

Here, Iα( · , · ) is the α-mutual information

Iα(W ;Zn) = α

α− 1 logEPZn
[
E1/α
PW

[(
dPWZn

dPWPZn

)α]]
. (3.21)

The proof of this result relies on repeated uses of Hölder’s inequality, combined with a
use of Hoeffding’s inequality. A similar proof technique can be found in Theorem 7 and
Corollary 9 in Paper A.
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For a fixed α, we see that the bound achieves a much more beneficial log 1/δ dependence
on the inverse confidence parameter. Bounds with this logarithmic dependence on 1/δ
are typically called high-probability bounds. However, in the limit of α→ 1, where the α-
mutual information becomes the normal mutual information, we see that the δ-dependent
term blows up, rendering the bound completely vacuous. We thus see that there is some
kind of trade-off between the value of α and the contribution of the δ-dependent term. In
Paper A, we explore this trade-off further, laying bare a connection between the moment
of the information measure under consideration and the effect that δ has on the tightness
of the bound. Furthermore, the information-theoretic bounds presented in this section
depend on the data distribution PZ , which is unknown in most scenarios. This makes
the bounds impossible to compute in any practical setting. In Paper A, we address this
issue by noting that one can replace the marginal distribution PW , which depends on
the unknown data distribution, with a suitably chosen auxiliary distribution QW .

3.4.1 The Random-Subset Setting
Recently, Steinke and Zakynthinou [7] considered a setting with more structure, which
we will refer to as the random-subset setting. In this setting, we have 2n training sam-
ples Z̃ = (Z̃1, . . . , Z̃2n), referred to as a supersample. From this, the training set is
randomly formed as follows: let S = (S1, . . . , Sn) be a random vector, where each entry
is distributed according to a Bernoulli distribution with parameter 1/2. Then, the ith
element of the training set Z(S) = (Z1(S1), . . . , Zn(Sn)) is given by Zi(Si) = Z̃i+Sin. In
other words, the ith element of the training set can be one of the two elements Z̃i or Z̃i+n
from Z̃, and the selection between these two is determined by Si. The hypothesis W is
then chosen based on Z(S), and is conditionally independent of Z̃ and S given Z(S).

For this setup, under the additional assumption of a bounded loss function, Steinke
and Zakynthinou derived an average bound on the generalization error that is similar
to that of Xu and Raginsky [24, Thm. 1], but given in terms of the conditional mutual
information I(W ;S|Z̃). We present this result below.

Theorem 11. (Slow-rate average bound in terms of conditional MI)
Assume that `(w, z) ∈ [0, 1] for all w ∈ W and z ∈ Z. Then,

EPWZ
[LPZ (W )] ≤ EPWZ

[
LZ(S)(W )

]
+

√
2I(W ;S|Z̃)

n
. (3.22)

The proof of this result again relies on the Donsker-Varadhan variational representation
of KL divergence. An alternative proof can be found in Corollary 5 in Paper A.
Intuitively, the result in Theorem 11 improves upon Theorem 6, for the special case

of a bounded loss function, because the information of each sample is normalized to 1
bit—indeed, the conditional MI can be upper-bounded as I(W ;S|Z̃) ≤ H(S) = n log 2.
By the chain rule of mutual information, combined with the Markov property (Z̃,S)−
Z(S)−W and that Z(S) is a deterministic function of (Z̃,S), we also have I(W ;Z(S)) =
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I(W ; Z̃) + I(W ;S|Z̃). Thus, a direct comparison between Theorem 11 and Theorem 6
reveals that the former is tighter provided that I(W ; Z̃) > 3I(W ;S|Z̃).
As previously mentioned, information-theoretic generalization guarantees can have

slow rates, where the dependence on n is
√

IM/n, where IM is shorthand for some
information measure, or fast rates, where the dependence is IM/n. In [7, Cor. 5(3)],
Steinke and Zakynthinou also derive a bound with such a fast rate, at the expense of
less beneficial multiplicative constants. In particular, the training loss is multiplied by a
factor greater than one.

Theorem 12. (Fast-rate average bound in terms of conditional MI)
Assume that `(w, z) ∈ [0, 1] for all w ∈ W and z ∈ Z. Then,

EPWZ
[LPZ (W )] ≤ 2EPWZ

[
LZ(S)(W )

]
+ 3I(W ;S|Z̃)

n
. (3.23)

To achieve a fast rate, the boundedness of the loss function is used more directly than
in the derivation of the slow-rate bound in Theorem 11. An alternative derivation can
be found in Corollary 1 of Paper B.

Similar to the sample-wise extension of the average MI bound performed by Bu and
Veeravalli [18], Haghifam et al. [27, Thm. 3.4] extended the CMI result to a sample-
wise CMI bound, using the same decomposition as in Theorem 7. They also use the
disintegration ideas introduced in [28] to pull the expectation over PZ̃ outside of the
square root, which tightens the resulting bound.

Theorem 13. (Slow-rate average bound in terms of sample-wise conditional MI)
Assume that `(w, z) ∈ [0, 1] for all w ∈ W and z ∈ Z. Then,

EPWZ
[LPZ (W )] ≤ EPWZ

[
LZ(S)(W )

]
+ 1
n

n∑
i=1

EPZ̃

[√
2D(PWSi|Z̃ ||PW |Z̃PSi)

]
. (3.24)

Again, Jensen’s inequality, the chain rule of mutual information, and the independence
between the Si implies that this bound is stronger than the CMI bound in Theorem 11.
In Proposition 1 in Paper B, we slightly extend this by showing how to also move the

expectation over W outside the square root. We also use a similar decomposition to
obtain a fast-rate version of the sample-wise CMI bound.

3.5 Applications to Neural Networks
As mentioned in the beginning of this section, one motivation for studying new types of
generalization guarantees, beyond the classical ones, is that the performance of modern
machine learning algorithms cannot be explained by bounds that rely on the complexity of
the model class, such as those based on the VC dimension. New bounds need to exploit
properties of the data distribution and learning algorithm, which makes information-
theoretic approaches a good candidate. In this section, we survey some success stories
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where information-theoretic generalization guarantees have been applied to neural net-
works.
In [21], Dziugaite and Roy considered a stochastic neural network, the weights of

which are drawn from a Gaussian distribution for each new prediction that the network
makes. The mean and variance of this distribution were found by optimizing a PAC-
Bayesian bound similar to the one in Theorem 4 using stochastic gradient descent. We
thus note that, in this setup, the generalization bound is directly optimized as part
of the neural network training procedure. The mean of the prior is chosen to be the
random initialization of the neural network, and is independent of any data. This lead
to nonvacuous bounds for overparameterized neural networks trained on a binary version
of the MNIST data set, where the digits 0 to 4 were combined into one class and 5 to 9
into another.
By exploiting the compressibility of neural networks, Zhou et al. [22] derived a PAC-

Bayesian bound that applies to deterministic, pruned networks. To obtain such a net-
work, you first train a large neural network, and then remove parameters that do not
affect performance too much, and end up with a similarly well-performing network, the
size of which is but a fraction of the original network size. An impressive aspect of [22]
is that a nonvacuous generalization guarantee is obtained even for ImageNet, a relatively
challenging setup. However, the bounds obtained are far from tight, even for the simpler
MNIST data set, and do not apply to networks trained through a standard procedure.
Negrea et al. [28] applied their disintegrated, sample-wise mutual information bound

to noisy iterative optimizers, and in particular, provided numerically nonvacuous results
for neural networks trained through stochastic gradient Langevin dynamics. This results
in bounds on the average generalization error.
More recently, in [29], Dziugaite et al. improved upon their previous results by em-

ploying a strategy that allows them to construct the prior in a data-dependent fashion.
Specifically, they evaluate the PAC-Bayesian bound in Theorem 5 using only part of the
training data, while still using the full set of training data for choosing the posterior.
Leaving part of the training data out when evaluating the bound allows for the prior
to be chosen on the basis of the held-out data. These bounds are the tightest avail-
able in the literature for both CNNs and fully connected networks trained on MNIST
and Fashion-MNIST, both for the scenario in which the network is trained using normal
stochastic gradient descent and the scenario where the bound is directly optimized.
Thus, the information-theoretic approach has proven to be a promising direction for

the study of generalization in modern machine learning algorithms. However, there is
still much work to be done. For instance, the tightest available bounds are obtained by
artificially adding Gaussian noise to the outputs of stochastic gradient descent. Better
modelling the noise inherent to neural network training, or obtaining bounds for the
means of these distributions, would be a step towards bounds for a more realistic setting.
Furthermore, the results obtained so far do not provide many guidelines regarding net-
work design. A long term goal of the study of generalization would be to be able to predict
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a priori what design choices lead to a better performing network. As things currently
stand, a lot of resources are spent on performing grid searches over hyperparameters to
find well-generalizing networks, and many design choices are purely heuristic. A well-
developed theory that satisfactorily explains generalization in neural networks should be
able to provide more rigorously motivated choices for these parameters, and enable us to
find well-performing networks without spending huge computational resources.
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CHAPTER 4

Contributions and Outlook

In this chapter, the contributions of the appended papers are summarized. Then, we
overview some possible directions for future investigations emanating from the work
contained in this thesis.

4.1 Contributions
“Generalization Bounds via Information Density and Conditional Informa-
tion Density”

In this paper, we develop a framework for deriving generalization bounds of various
types through the use of an exponential inequality. Not only can this approach be used to
derive novel generalization bounds, but it also provides a unified way to recover several of
the known results in the literature, both average bounds and tail bounds (PAC-Bayesian
and single-draw). Notably, we obtain a new data-dependent single-draw bound in terms
of the information density ı(W,Z) between the training data Z and the hypothesis W ,
which can be weakened to obtain many data-independent bounds. Our results illustrate
a trade-off between the magnitude of the high moments of the information measures
appearing in the bounds and the confidence levels that can be achieved. We then extend
our exponential-inequality approach to the random-subset setting introduced by Steinke
and Zakynthinou [7], and as a result, we extend their bounds on the average generalization
error to the PAC-Bayesian and single-draw settings. This exemplifies how our framework
can be used to implement new ideas in bounds of all flavors at once. For this setting, we
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derive a new data-dependent single-draw bound in terms of the conditional information
density ı(W,S|Z̃) between the hypothesis W and the random vector S determining the
training set selection, given the supersample Z̃. When suitably weakened, this leads to
a new result in terms of the conditional maximal leakage L(S → W |Z), which can be
tighter than the corresponding bound based on the maximal leakage in [26, Cor. 9].
In addition to this, we present an approach to derive generalization bounds based on

a change of measure argument that is used in the binary hypothesis testing literature.
This yields a data-independent single-draw bound in terms of the tail of the information
density ı(W,Z). This bound can be shown to imply essentially equivalent versions of the
data-dependent single-draw bounds that we derived through the exponential-inequality
approach. We also extend this approach to the random-subset setting, deriving a data-
independent single-draw bound in terms of the conditional information density ı(W,S|Z̃).
Finally, we extend the Hölder-based approach used by Esposito et al. [26] to the random-
subset setting, and derive a bound in terms of the conditional α-mutual information, from
which results in terms of the conditional Rényi divergence and the conditional maximal
leakage follow. We note that the dependence on the training set size n in all bounds
presented in this paper is of the form

√
IM/n, where IM denotes some (conditional)

information measure. Due to the presence of the square root, these results are slow-rate
bounds.
“Nonvacuous Loss Bounds with Fast Rates for Neural Networks via Con-

ditional Information Measures”

Building on the work of Steinke and Zakynthinou [7], we obtain fast-rate random-subset
bounds on the population and test loss of a randomized learning algorithm, i.e., bounds
with an IM/n-dependence on n where IM is a conditional information measure. Again,
we obtain these results through the use of an exponential inequality. The cost of this
rate increase as compared to the bounds in Paper A is that the multiplicative constants
that appear in the bounds are larger, and in particular, the training loss is multiplied by
a constant greater than one. This deterioration in multiplicative factors means that, in
order for the new fast-rate bounds to be better than the previously obtained slow-rate
ones, the training loss and information measure have to be sufficiently small. The same
manipulations that were performed in Paper A to obtain bounds in terms of information-
theoretic quantities, such as conditional mutual information and conditional maximal
leakage, can also be performed for these fast-rate bounds.
A particular focus of this paper is how to apply the random-subset bounds in the

context of neural networks. Following the approach taken in [21, 29], we model the
learning algorithm PW |Z̃S as a Gaussian distribution centered around the output weights
of stochastic gradient descent, and use a data-dependent prior that aims to approximate
the true marginal PW |Z̃ . With this, both the PAC-Bayesian and single-draw bounds, with
either slow or fast rates, can be computed. We see that the resulting bounds essentially
coincide with the tightest bounds that were previously obtained for the setups that we
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consider [29], but unlike previous results, our bounds also apply to the single-draw setting.

4.2 Future Work
As mentioned in the previous chapter, one remaining goal in the study of information-
theoretic generalization guarantees is the ability to guide the design of modern machine
learning algorithms. In their current form, the bounds discussed in this thesis do not
at all exploit the structure of, for instance, neural networks, instead just treating the
parameters as a generic vector that could potentially describe anything. Of course, there
is a strength in such generality, but specializing the bounds to more concrete setups is
needed to gain new insights. One straightforward improvement that could be performed
is to incorporate the symmetries that are present in most neural network architectures.
Examples of such symmetries include the homogeneity of the ReLU activation function,
whereby for a > 0, we have ReLU(a·x) = a· ReLU(x). Another example is permuta-
tion symmetry, where different units within layers can be swapped without affecting the
functional form of the neural network. Properly utilizing these symmetries may improve
the quantitative result that can be obtained, and potentially provide new insights. How-
ever, as discussed in [21], the non-isotropic random initialization that is typically used
when training neural networks breaks many of the symmetries that are present, and it
is unclear to what extent gains can be made by exploiting the remainder. Perhaps more
interesting would be to study systematically how design choices, such as the network
architecture, learning rates, and other hyperparameters, affect both generalization per-
formance and the estimates obtained by information-theoretic bounds. If one finds good
agreement between these, this could prove to be a path to connecting design choices with
information-theoretic generalization guarantees.

A more concrete promising avenue for future work is to combine the exponential-
inequality approach that is used in both Paper A and Paper B with the data-holdout
technique used in [29]. This approach can lead to a new exponential inequality that
can be used to derive different types of generalization bounds in the same way as was
done in both Paper A and Paper B. An advantage of such an approach would be that,
within this framework, the posterior can be chosen based on the entirety of Z̃, while the
prior can be chosen only on the basis of Z(R), where R can be any random variable
that selects a subset of Z̃. This opens up many possibilities for adjusting the procedure
by which the bound is evaluated. For instance, [29] exploited the random ordering of
mini-batches in stochastic gradient descent to guarantee that the initial training epochs
of both the prior and posterior were based on the same training samples. They also
used this freedom to study a scenario in which the data-dependent prior was used as a
regularizer term during optimization. Further exploiting the flexibility of this scenario is
a promising direction, and connections to flatness-seeking optimization procedures such
as sharpness-aware minimization [30] may be fruitful to explore further.

29



Paper

30



Bibliography

[1] M. T. Banich, P. Dukes, and D. Caccamise, Generalization of knowledge: Multidisci-
plinary perspectives. New York, N.Y.: Psychology Press, 2010.

[2] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are
few-shot learners,” May 2020. [Online]. Available: https://arxiv.org/abs/2005.14165

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis,
“Mastering chess and shogi by self-play with a general reinforcement learning
algorithm,” Dec. 2017. [Online]. Available: https://arxiv.org/abs/1712.01815

[4] J. De Fauw, J. Ledsam, and B. e. a. Romera-Paredes, “Clinically applicable deep
learning for diagnosis and referral in retinal disease,” Nat. Med., vol. 24, pp. 1342–
1350, Aug. 2018.

[5] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory
to Algorithms. Cambridge, U.K.: Cambridge Univ. Press, 2014.

[6] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep
learning requires rethinking generalization,” in Proc. Int. Conf. Learn. Representa-
tions (ICLR), Toulon, France, Apr. 2017.

[7] T. Steinke and L. Zakynthinou, “Reasoning about generalization via conditional mu-
tual information,” Conf. Learn Theory (COLT), vol. 125, pp. 1–16, July 2020.

[8] Kaggle, “Cats vs dogs,” Retrieved Nov. 2020. [Online]. Available: https:
//www.kaggle.com/c/dogs-vs-cats

31

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1712.01815
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats


Paper

[9] M. Dundar, B. Krishnapuram, J. Bi, and R. Rao, “Learning classifiers when the
training data is not iid.” in IJCAI Inter. Joint Conf. on Artif. Intell., Jan. 2007, pp.
756–761.

[10] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,
“A comprehensive survey on transfer learning,” Jun. 2020. [Online]. Available:
https://arxiv.org/abs/1911.02685

[11] H. Peng, “A comprehensive overview and survey of recent advances in
meta-learning,” Oct. 2020. [Online]. Available: https://arxiv.org/abs/2004.11149

[12] D. McAllester, “Some PAC-Bayesian theorems,” in Proc. Conf. Learn. Theory
(COLT), Madison, WI, July 1998, pp. 230–234.

[13] B. Guedj and L. Pujol, “Still no free lunches: the price to pay for tighter PAC-Bayes
bounds,” arXiv, Oct. 2019. [Online]. Available: http://arxiv.org/abs/1910.04460

[14] T. Van Erven, P. Grünwald, N. Mehta, M. Reid, and R. Williamson, “Fast rates in
statistical and online learning,” J. of Mach. Learn. Res., vol. 16, pp. 1793–1861, Sep.
2015.

[15] P. Grünwald and N. Mehta, “Fast rates for general unbounded loss functions: from
ERM to generalized Bayes,” J. of Mach. Learn. Res., vol. 83, pp. 1–80, Mar. 2020.

[16] S. Arora, S. Du, W. Hu, Z. Li, and R. Wang, “Fine-grained analysis of optimization
and generalization for overparameterized two-layer neural networks,” in Proc. Int.
Conf. Mach. Learn. (ICML), Long Beach, CA, Jun 2019.

[17] M. J. Wainwright, High-Dimensional Statistics: a Non-Asymptotic Viewpoint.
Cambridge, U.K.: Cambridge Univ. Press, 2019.

[18] Y. Bu, S. Zou, and V. V. Veeravalli, “Tightening mutual information based bounds
on generalization error,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France,
July 2019.

[19] D. McAllester, “A PAC-Bayesian tutorial with a dropout bound,” July 2013.
[Online]. Available: http://arxiv.org/abs/1307.2118

[20] B. Guedj, “A primer on PAC-Bayesian learning,” arXiv, Jan. 2019. [Online].
Available: http://arxiv.org/abs/1901.05353

[21] G. Dziugaite and D. Roy, “Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data,” in Proc.
Conf. Uncertainty in Artif. Intell. (UAI), Sydney, Australia, Aug. 2017.

32

https://arxiv.org/abs/1911.02685
https://arxiv.org/abs/2004.11149
http://arxiv.org/abs/1910.04460
http://arxiv.org/abs/1307.2118
http://arxiv.org/abs/1901.05353


[22] W. Zhou, V. Veitch, M. Austern, R. Adams, and P. Orbanz, “Non-vacuous gener-
alization bounds at the ImageNet scale: a PAC-Bayesian compression approach,” in
Proc. Int. Conf. Learn. Representations (ICLR), New Orleans, LA, May 2019.

[23] D. Russo and J. Zou, “Controlling bias in adaptive data analysis using information
theory,” in Proc. Artif. Intell. Statist. (AISTATS), Cadiz, Spain, May 2016.

[24] A. Xu and M. Raginsky, “Information-theoretic analysis of generalization capability
of learning algorithms,” in Proc. Conf. Neural Inf. Process. Syst. (NeurIPS), Long
Beach, CA, Dec. 2017.

[25] R. Bassily, S. Moran, I. Nachum, J. Shafer, and A. Yehudayoff, “Learners that use
little information,” J. of Mach. Learn. Res., vol. 83, pp. 25–55, Apr. 2018.

[26] A. Esposito, M. Gastpar, and I. Issa, “Generalization error bounds via Rènyi
f -divergences and maximal leakage,” arXiv, Dec. 2019. [Online]. Available:
http://arxiv.org/abs/1912.01439

[27] M. Haghifam, J. Negrea, A. Khisti, D. Roy, and G. Dziugaite, “Sharpened
generalization bounds based on conditional mutual information and an application
to noisy, iterative algorithms,” arXiv, Apr. 2020. [Online]. Available: http:
//arxiv.org/abs/2004.12983

[28] J. Negrea, M. Haghifam, G. Dziugaite, A. Khisti, and D. Roy, “Information-theoretic
generalization bounds for SGLD via data-dependent estimates,” in Proc. Conf. Neural
Inf. Process. Syst. (NeurIPS), Vancouver, Canada, Dec. 2019.

[29] G. Dziugaite, K. Hsu, W. Gharbieh, and D. Roy, “On the role of data in PAC-Bayes
bounds,” June 2020. [Online]. Available: https://arxiv.org/abs/2006.10929

[30] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-aware
minimization for efficiently improving generalization,” Oct. 2020. [Online]. Available:
https://arxiv.org/abs/2010.01412

33

http://arxiv.org/abs/1912.01439
http://arxiv.org/abs/2004.12983
http://arxiv.org/abs/2004.12983
https://arxiv.org/abs/2006.10929
https://arxiv.org/abs/2010.01412


Paper

34


	Abstract
	List of Papers
	Acknowledgements
	Overview
	Background
	Thesis Structure
	Notation

	Statistical Learning
	The Learning Setup
	Classical Generalization Guarantees
	Different Flavors of Generalization
	VC Dimension
	Rademacher Complexity


	Information-Theoretic Generalization Guarantees
	Motivation
	The Toolbox
	PAC-Bayesian Bounds
	Information-Theoretic Bounds
	The Random-Subset Setting

	Applications to Neural Networks

	Contributions and Outlook
	Contributions
	Future Work

	Bibliography

	Papers
	Generalization Bounds via Information Density and Conditional Information Density
	Introduction
	Preliminaries
	Generalization Bounds for the Standard Setting
	Average Generalization Error Bounds
	PAC-Bayesian Generalization Error Bounds
	Single-Draw Generalization Error Bounds

	Generalization Bounds for the Random-Subset Setting
	Average Generalization Error Bounds
	PAC-Bayesian Generalization Error Bounds
	Single-Draw Generalization Error Bounds

	Conclusion
	References

	Nonvacuous Loss Bounds with Fast Rates for Neural Networks via Conditional Information Measures
	Introduction
	Contributions
	Preliminaries

	Background
	Fast-Rate Random-Subset Bounds
	Experiments
	Conclusion
	References
	Proofs
	Proof of Proposition 1
	Proof of Theorem 21
	Proof of Corollary 10
	Proof of Corollary 11

	Fast-Rate Bounds for the Interpolating Case
	Experiment Details
	Network architectures
	Training procedures






