
Thesis for The Degree of Licentiate of Engineering

Distributed and Communication-Efficient Continuous
Data Processing in Vehicular Cyber-Physical Systems

Bastian Havers-Zulka

Division of Networks and Systems
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2020

Distributed and Communication-Efficient Continuous Data Process-
ing in Vehicular Cyber-Physical Systems

Bastian Havers-Zulka

Copyright ©2020 Bastian Havers-Zulka
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering
Division of Networks and Systems
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
If printed: Printed by Chalmers Reproservice,
Gothenburg, Sweden 2020.

ii

iv

Distributed and Communication-Efficient Continuous Data
Processing in Vehicular Cyber-Physical Systems
Bastian Havers-Zulka

Department of Computer Science & Engineering
Division of Networks and Systems
Chalmers University of Technology and Gothenburg University

Abstract

Processing the data produced by modern connected vehicles is of increasing
interest for vehicle manufacturers to gain knowledge and develop novel functions
and applications for the future of mobility. Connected vehicles form Vehic-
ular Cyber-Physical Systems (VCPSs) that continuously sense increasingly
large data volumes from high-bandwidth sensors such as LiDARs (an array of
laser-based distance sensors that create a 3D map of the surroundings). The
straightforward attempt of gathering all raw data from a VCPS to a central
location for analysis often fails due to limits imposed by the infrastructure on
the communication and storage capacities. In this Licentiate thesis, I present
the results from my research that investigates techniques aiming at reducing
the data volumes that need to be transmitted from vehicles through online com-
pression and adaptive selection of participating vehicles. As explained in this
work, the key to reducing the communication volume is in pushing parts of the
necessary processing onto the vehicles’ on-board computers, thereby favorably
leveraging the available distributed processing infrastructure in a VCPS. The
findings highlight that existing analysis workflows can be sped up significantly
while reducing their data volume footprint and incurring only modest accuracy
decreases. At the same time, the adaptive selection of vehicles for analyses
proves to provide a sufficiently large subset of vehicles that have compliant
data for further analyses, while balancing the time needed for selection and
the induced computational load.

Keywords

Vehicular Cyber-Physical Systems, Edge Computing, Data Streaming, Com-
pression, Query Spreading

Acknowledgments

I would like to sincerely thank my supervisors, colleagues and friends in both
academia and industry for having accompanied me thus far. I want to thank
especially Vincenzo Gulisano, for taking me on as PhD student, for supervising,
aiding and guiding me, and for equally fruitful and vivid discussions and talks;
Marina Papatriantafilou, for the continued sharing of experience, ideas and
advice that has helped me reach this halfway point; and Ashok Chaitanya
Koppisetty, for always supporting me, giving me a perspective and enabling my
research to have an impact. I am especially indebted to my close collaborators
and co-authors Romaric and Dimitris, and to all the great people at both
Chalmers and Volvo Cars that I have the pleasure of working together and
being friends with, that have made the first half of my PhD so enjoyable
through inspiring collaboration and relaxing coffee breaks (back when physical
presence was still a thing). Thank you also to everybody that made possible
and participated in the projects OODIDA and AutoSPADA, that provided the
frame for conducting my research.

Work would be less pleasant without life, and thus I want to also thank
all my friends and family that indirectly or directly contributed to this thesis
through their fellowship (or proof-reading). You’re the salt of the earth! Lastly,
and most importantly, I would like to thank my wonderful wife Linn, who is
the reason that I now publish under a different name, and who has supported
me through countless years of life and study.

Thanks, y’all!

Bastian Havers-Zulka
Gothenburg, October 15, 2020

viii

This work and the enclosed publications have been supported by the Swedish Government

Agency for Innovation Systems VINNOVA, proj. “Onboard/Offboard Distributed Data

Analytics (OODIDA)” (grant DNR 2016-04260) and “Automotive Stream Processing and

Distributed Analytics (AutoSPADA)” (grant DNR 2019-05884) in the funding program FFI:

Strategic Vehicle Research and Innovation; the Swedish Foundation for Strategic Research,

proj. “Future factories in the cloud (FiC)” (grant GMT14-0032); and the Swedish Research

Council (Vetenskapsr̊adet), proj. “HARE: Self-deploying and Adaptive Data Streaming

Analytics in Fog Architectures” (grant 2016-03800).

List of Publications

Appended publications

This thesis is based on the following publications:

[A] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, M. Papatriantafilou
and A. Koppisetty. “DRIVEN: A Framework For Efficient Data Retrieval
And Clustering In Vehicular Networks”,
Future Generation Computer Systems, vol. 107, pp. 1-17, 2020.

[B] R. Duvignau, B. Havers, V. Gulisano and M. Papatriantafilou. “Query-
ing Large Vehicular Networks: How To Balance On-Board Workload And
Queries Response Time?”,
Proceedings of the 2019 IEEE Intelligent Transportation Systems Confer-
ence (ITSC 2019), pp. 2604-2611, 2019.

ix

x

Other publications

The following publications were published during my PhD studies, or are
currently in submission/under revision. However, they are not appended to this
thesis, due to contents overlapping that of appended publications or contents
not related to the thesis.

[a] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, A. Koppisetty
and M. Papatriantafilou. “DRIVEN: A Framework For Efficient Data
Retrieval And Clustering In Vehicular Networks”,
Proceedings of the 2019 IEEE International Conference on Data Engi-
neering (ICDE 2019), pp. 1850-1861, 2019.

[b] V. Gulisano, D. Palyvos-Giannas, B. Havers, M. Papatriantafilou.
“The role of event-time order in data streaming analysis”,
Proceedings of the 14th ACM International Conference on Distributed
and Event-based Systems (DEBS 2020), pp. 214-217, 2020.

Contents

Abstract v

Acknowledgement vii

List of Publications ix

1 Overview 1
1.1 Mining Gold from Fleets of Vehicles 1
1.2 Vehicular Cyber-Physical Systems 3

1.2.1 Defining Characteristics 3
1.2.2 Key Challenges for Data Processing 4

1.3 Research Questions . 5
1.4 Preliminaries . 7

1.4.1 Fleet Data Heterogeneity 7
1.4.2 Data Streaming . 8
1.4.3 Time-Series Data Compression 10

1.5 Thesis Contributions . 11
1.5.1 Efficient, Continuous Data Retrieval and Clustering . . 11
1.5.2 Adaptive, Online Query Spreading Algorithms 12

1.6 Conclusion and Outlook . 12

2 DRIVEN: A Framework For Efficient Data Retrieval And
Clustering In Vehicular Networks 15
2.1 Introduction . 16

2.1.1 Challenges . 16
2.1.2 Contributions . 16

2.2 Preliminaries . 17
2.2.1 Data streaming . 17
2.2.2 Piecewise Linear Approximation 18
2.2.3 Distance-based clustering 19
2.2.4 Logical latency . 20

2.3 System model and problem statement 20
2.4 Overview of the DRIVEN framework 22

2.4.1 Sample use case: study vehicles’ surroundings 22

xi

xii CONTENTS

2.4.2 Data retrieval and PLA approximation 23
2.4.3 Data clustering with Lisco 26

2.5 Evaluation . 28
2.5.1 Data . 28
2.5.2 Software and hardware setup 29
2.5.3 Evaluation metrics . 29
2.5.4 Use cases . 31
2.5.5 Compression evaluation 40
2.5.6 Logical latency . 40
2.5.7 Summary of evaluation results 43

2.6 Related work . 44
2.7 Conclusion and future work . 45

3 Querying Large Vehicular Networks: How To Balance On-
Board Workload And Queries Response Time? 47
3.1 Introduction . 48
3.2 System Model and Problem Definition 49

3.2.1 System Model . 49
3.2.2 Problem Definition . 50
3.2.3 Performance Metrics . 51

3.3 Query Spreading Algorithms 51
3.3.1 Simple Model Description 52
3.3.2 General Model . 53

3.4 Evaluation . 55
3.4.1 Experimental Setup . 55
3.4.2 Selected Queries . 57
3.4.3 Experiments . 58

3.5 Related Work . 61
3.6 Conclusions . 62

Bibliography 63

List of Figures

1.1 VCPS: A group of vehicles whose on-board devices form the
edge of the network. Each such device is wirelessly connected to
a data center. The vehicles are constantly gathering data with
their on-board devices while they are being driven. At the data
center, the analyst can deploy analyses over said data. 4

1.2 The distribution of the volume of collected data over one day for
two different vehicular fleets (figure altered and taken from [1]). 7

1.3 A sample distributed data streaming application deployed be-
tween N vehicles and a data center. An instance of the first part
of the query, Qcar, is deployed at each vehicle, here detailed for
vehicle v1. The second part of the query, Qcenter, is deployed at
the data center, to which each vehicle transmits intermediate
results. 9

1.4 A piecewise-linear approximation of the dotted grey time-series
via the solid red segments. The cut-out shows the approximation
errors between the original and linearly approximated data. . . 11

2.1 Example of a Piecewise Linear Approximation using maximum
error ∆ = 0.5. 18

2.2 System model overview for DRIVEN. 20

2.3 Overview of the modules deployed in the resulting streaming
continuous query for the LiDAR use case. 23

2.4 Best-fit lines of a set of points: solid for the first 10 points,
dashed for including the 11th point (marked in green). 23

2.5 PLA compression / decompression flowchart with y1’s channel
detailed. 24

2.6 Example of how the search space for a point p (for the LiDAR
use case) can be limited to points potentially reported by lasers
(and with certain angles) within a mask centered in p (a) and
the corresponding 2D matrix maintained by Lisco (b). 27

2.7 Q1: Sketch of data structure produced by qpre. 31

xiii

xiv LIST OF FIGURES

2.8 Q1: (a) - (c) Compression and clustering statistics for various
∆ρ; (d) gathering time ratio for various ∆ρ and different network
speeds. 32

2.9 Q2: Sketch of data structure produced by qpre. 33

2.10 Q2: (a), (b) Compression statistics; (c): Adjusted rand index. . 34

2.11 Q2: Gathering time ratios for various (a) maximal errors for
different network speeds and (b) raw data sizes (rolling average
over 13 values, different colors are used for distinct values of
∆x,∆y) for a medium speed network. 34

2.12 Q3: Sketch of data structure produced by qpre. 35

2.13 Q3: (a), (b) Compression statistics; (c) Adjusted rand index. . 36

2.14 Q3: Gathering time ratios for various (a) maximal errors for
different network speeds and (b) raw data sizes (rolling average
over 13 values, different colors are used for distinct values of
∆x,∆y) for a medium speed network. 36

2.15 Q4: Sketch of data structure produced by qpre. 37

2.16 Q4: Example of one grid (instead of showing the number of
vehicles per drive mode and cell, only colors indicate the cell
occupation). 37

2.17 Q4: Gathering time ratios for (a) a very fast network speed and
(b) for various raw data sizes (rolling average over 13 values,
different colors are used for different maximum-error sets) for a
very fast network. 38

2.18 Q4: (a) Average error on the x- and y-coordinate for several
values of the maximum compression errors ∆x,∆y for GPS data;
(b) average error on the ERAD and engine RPM for several values
of the maximum compression errors ∆ωe ,∆ωc ; (c) compression
statistics for different maximum-error sets (see Table 2.2); (d)
adjusted rand index. 39

2.19 Compression ratios using ZIP for varying segment lengths nzip.
”×” marks the compression achieved with PLA for equivalent
average n for smallest maximum errors (almost lossless). 40

2.20 Distribution of logical latencies in number of tuples for (a)
the LiDAR (Ford Campus) and (b) the Beijing GPS (GeoLife)
dataset as a function of the respective maximum errors. The
logical latency for the angle/time coordinate is displayed over
the y-axis (red), as their corresponding maximum errors are
constant over each of the two datasets. 42

2.21 Average logical latency (over all channels) and compression for
different maximum segment lengths n (n = 256 is the maximum
segment length chosen in this evaluation). 43

3.1 Distribution of records in both datasets during 1 day. 56

3.2 Distribution of data volumes (left vertical axis) and average
query answer rates (right vertical axis) for Volvo (solid) and
Beijing (dashed line) dataset. 58

LIST OF FIGURES xv

3.3 Maximum query response time and analysis cost needed to
resolve Q1 −Q10 over the Beijing dataset for Balanced-Algo
for different α, β. Circle size scales with maximum time (red)
and total workload (blue), respectively. 59

3.4 Query response time (in ms) for all valid queries executed over
the (a) Beijing and (b) Volvo dataset for (i) Baseline1, (ii)
Baseline2, (iii) Balanced-Algo, (iv) Fair-Algo. 60

3.5 The average relative time (left) and total work (right) between
the four algorithms for the Beijing dataset (left boxplots in each
column) and Volvo dataset (right boxplots). 61

xvi LIST OF FIGURES

Chapter 1:

Overview

1.1 Mining Gold from Fleets of Vehicles

The amounts of data generated by sensors and logged by computers in our
daily lives are exploding, with a projected doubling of the overall produced
data amounts occurring every three years [2]. The term Big Data was coined to
describe the resulting enormous, evolving datasets that require novel processing
and storing paradigms, but enable the discovery of novel insights about areas
ranging from stock market fluctuations to predicting when a car’s brake pads
will wear down. Due to its vast potential, Big Data is likened to a novel
economic asset, “the new oil”, or even raw gold [3]. One area in which the
transformation towards Big Data will have a large impact on many people’s
lives is that of personal mobility. In short: how do modern vehicles play into
the equation of Big Data and its associated novel value?

From Engine Temperature Gauges to LiDARs...

For most of their history, cars have employed only
a handful of sensors, and these were discrete and
independent (examples include mechanical vehicle
speed or engine temperature gauges). Their purpose
was to present information to the driver, who could
then act based on this input - accelerate, brake, or
check the engine. The late 1970s saw eventually the
introduction of connected sensors and finally the first microcontroller-based
control unit in the car: an engine control module to optimize combustion,
taking autonomous decisions based on input from connected temperature and
exhaust flow sensors [4]. Over time, the number of sensors in all areas of the
vehicle has grown steeply, from around 20 in the early 2000s to more than 100
in commercial vehicles today [5]. When looking at the amount of data created
in such a modern vehicle, the sheer number of these sensors alone pushes it
into the range of several gigabytes per hour [6] - which is a data amount that

1

2 CHAPTER 1. OVERVIEW

in the 1970s could barely fit storage systems the size of a vehicle. Today, the
impending introduction of semi- and fully autonomous vehicles requires the
addition of high-bandwidth sensors such as Radar, multiple stereo cameras
and LiDARs (an array of laser-based distance sensors that create a 3D map
of the surroundings) to the already complex sensor set carried by a vehicle.
These new sensors generate orders of magnitude more data per time than
tire-pressure sensors and simple GPS beacons [7], setting the pace for further
growth of automotive data amounts. Already, cars have become producers of
Big Automotive Data [8, 9] - What can all this data be used for?

...and from Paper Questionnaires to Autonomous Vehicles

Traditional techniques of gathering insights about
the vehicles, and the interaction of vehicle and driver,
relied on experimental laboratory scenarios (e.g.
hardware-in-the-loop [10]), customer clinics, specially-
equipped test fleets and similar means; all suffering
from various drawbacks such as cost, far-from-live
setting and slow response. In contrast, by utilizing
data collected automatically and continuously from
large parts of the available fleet, the data pool is

increased drastically in both size and depth, providing more data from more
vehicles and from all real-world driving and usage scenarios. Potential insights
are on the level of large-scale behavior, for example in online congestion moni-
toring, in enabling new cooperative behavior such as platooning and hazard
warning systems, in gathering and collectively learning from environment data
for the development of Autonomous Driving, in diagnostic applications such as
Predictive Maintenance, and also in driver interaction analysis to cater to new
driver requirements and preferences (see also [11,12]). With an estimated total
value of 1.5 Trillion USD by 2030, car data and corresponding applications are
set to mature into a major field of operations for vehicle manufacturers and fleet
owners [13]. At the same time, car data is expected to also become essential
for observing and managing traffic in increasingly urbanized communities, and
for realizing the shared use of potentially autonomous vehicles on a large scale.

Sharing the Load of Data Processing over the Fleet

While the amount of data generated by vehicles has steadily grown, vehicles
have also become more connected to each other and to the internet [6]. Today,
almost every new vehicle sold is a connected car [14], offering the capability of
wirelessly exchanging data with other cars or data centers.

The internal processing of data and the aspect of communication are
facilitated by increasingly capable on-board computers. The first simple control
units have given way to more complex computers, controlling aspects such as
smart lane-keeping assistants or emergency braking systems by processing the
continuous input stream originating from the sensors - and a leap in processing
capability is required for the transition to semi- and fully-autonomous drive,
where large amounts of video and other many-dimensional data require analysis.

Equipped with sensors, wireless connectivity and processing capabilities,
connected cars form the edge of a Vehicular Cyber-Physical System (VCPS), and

1.2. VEHICULAR CYBER-PHYSICAL SYSTEMS 3

at said edge, vast amounts of data are produced in a continuous fashion. The
edge is connected to the hubs of this network, central servers that are operated
by the vehicle manufacturers. This setup can enable advanced features based
on the utilization of the data produced in it. However, gaining insight from said
data also entails manifold difficulties, spanning processing bottlenecks, costs,
and especially the coping with large data volumes that need to be transmitted.

To investigate how the processing of data in this distributed setting can be
facilitated, I introduce in this work some fundamental notions about VCPSs and
present two research questions that surround the title of this thesis: Distributed
and Communication-Efficient Continuous Data Processing in Vehicular Cyber-
Physical Systems. After the Overview chapter, Chapter 2 and Chapter 3 present
the main findings of this thesis in the form of two publications.

1.2 Vehicular Cyber-Physical Systems

This section gives a short introduction to VCPSs and outlines their defining
characteristics in more detail, before highlighting the key challenges for data
processing inside a VCPS.

1.2.1 Defining Characteristics

A VCPS is a specific type of Cyber-Physical System (CPS). With a plurality
of definitions for a CPS (see the appendix of [15] for an extensive collection),
one defining aspect is the existence of an interface between the physical world
and computer systems that react based on data they receive via said interface.
This interface is provided by sensors that measure physical parameters and
translate them into machine-readable data, such as a LiDAR sensor that
transforms its physical environment into a point cloud of coordinates and
distance measurements. Furthermore, these sensors must be connected to the
computer system for transmitting their sensed data. Examples for CPSs that
fit these definitions are the network of sensors and processing units inside a
single vehicle, or a factory with connected sensors that monitor production to
continuously adapt the manufacturing process [16]. A VCPS is a specific type
of CPS, in which the existence of some computational capacity close to the
sensors is assumed - an on-board computer that can process the sensor data
and/or store it on the on-board computer’s disk. In this work, I furthermore
assume that a central server exists that is wirelessly connected to the units
of sensors and on-board computers via a two-way channel. The sensors are
located at the outskirts of the system, physically separated from the central
server, and constitute the edge. An example sketch of this VCPS is shown in
Figure 1.1. In such a VCPS, many applications exist in which insights from
data gathered at the edge are required at the central server. As an example
application, the analyst in Figure 1.1 at the data center (where the central
servers are found) could request to transmit LiDAR point cloud data from
the edge to the data center for further processing (e.g. for creating 3D city
maps) [17], or the analyst could task the vehicles to report whether they have
passed a point of interest in the last day [1].

4 CHAPTER 1. OVERVIEW

Figure 1.1: VCPS: A group of vehicles whose on-board devices form the edge of the
network. Each such device is wirelessly connected to a data center. The vehicles are
constantly gathering data with their on-board devices while they are being driven.
At the data center, the analyst can deploy analyses over said data.

1.2.2 Key Challenges for Data Processing

With a first overview of VCPSs given, let us in the following go into more detail
on two of its defining characteristics, connectivity and processing capabilities,
to highlight the resulting challenges for data processing inside a VCPS.

Connectivity As mentioned, the vehicles and the central server need to be
wirelessly connected because of their physical separation, and because they
are mobile. For the VCPS assumed in this work, a Vehicle-to-X (V2X) [6]
connection is used for all matters of communication from vehicles to the central
server. This connection relies on third- (3G) or fourth-generation (4G) wireless
technology available today1. Practically, this type of wireless connection implies
that the bandwidth of communication is limited compared to the amount of
data that can be sensed (when regarding the data output of modern vehicles, as
discussed in Section 1.1), but also that carrier-operated networks are used (in
contrast to WiFi-based Vehicle-to-Vehicle (V2V) or V2X communication [18]
that creates local networks). Two-way connectivity ensures that data can
be sent and received. Overall, the assumed technology required for this type
of communication in a VCPS is readily deployed in many vehicles that are
commercially available today [14].

Processing capabilities To process the data from more than 100 sensors
and perform operations such as emergency braking or lane-keeping, modern
vehicles possess special-purpose on-board computers whose capabilities can
vary depending on their specific use case. However, novel semi- and fully
autonomous vehicles (with especially the latter still being in the experimental
and concept phase) require the real-time processing of large amounts of camera,
Radar and LiDAR data and are usually equipped with a central (and possibly
redundantly implemented) computing unit comparable to or exceeding modern
consumer hardware (an example is the DRIVE platform by chip manufacturer

1Although the fifth generation (5G) is set to replace the aging communication standards
of 3G and 4G, 5G is not widely available as of now.

1.3. RESEARCH QUESTIONS 5

NVIDIA [19]). With power draws in the range of 200 to 2000 W [20], these
computing units compete with other components of the vehicle for the total
available electric power, an effect that may be exacerbated in battery-electric
vehicles. Consequentially, additional and spontaneous analyses deployed onto
the on-board computer must have a manageably small impact.

Combining the aspects of connectivity and processing capabilities with the fact
that a VCPS produces Big Data (as described in Section 1.1), the question
arises: Where should the data be processed?

Data is sensed at the edge, where the available processing power is somewhat
limited, while the processing power at the central server is much less constrained
and could be orders of magnitude larger than that of a single edge device.
Processing the data from one or several vehicles at the central server can thus
appear as the right solution to free up resources at the edge that may be needed
for base functions. However, as raised in [21], considering the limitations
imposed by the wireless network, transmitting raw data from the vehicles to
the central server quickly becomes infeasible for analyses that require large
amounts of data from a large number of vehicles. In addition to insufficiencies
of the network, which cannot sustain transmitting the required data amounts
for analysis of VCPS data (as also highlighted in [22]), the costs for moving
this much data over carrier-operated networks would be prohibitive. Moreover,
with automotive fleets in the range of 100,000s of vehicles, processing and
storing the raw data from all vehicles can still exceed the central processing
and data management infrastructure [8].

On the other end of the spectrum of distributing the analysis in a VCPS,
all computation is done on the vehicle’s computing units, and the central server
only serves to initiate the data processing. Thereby, costs and bottlenecks
imposed by data transmission can be almost completely avoided. However,
the demanded analysis may exceed the available local computing budget of an
on-board device (as noted in e.g. [23,24]), or the analysis may need to span the
data from several vehicles and thus be impossible when done in a completely
siloed fashion.

This continuum of shifting computation between the central server and
edge nodes is called Edge Computing, with its two extremes outlined above. As
recognized in [25], efficient approaches to Edge Computing in a VCPS need to
adapt the analysis pipeline in order to utilize the available computational power
in the complete network (central server and edge nodes), while minimizing the
transferred data amounts. To achieve this, the single stages that make up the
analysis pipeline have to be carefully chosen and smartly distributed between
the central server and the edge nodes - posing the main challenge for data
processing in VCPSs.

With this challenge in mind, I formulate in the following two research
questions that explore said challenge more thoroughly.

1.3 Research Questions

As explained in the previous Section 1.2.2, the central problems in data analysis
in VCPSs gravitate around where to process the data and how to communicate

6 CHAPTER 1. OVERVIEW

effectively and efficiently. In that context, this thesis raises two main questions
that guide the work in the appended papers.

Research Question 1:

“How are analysis speed, precision and costs impacted by distributing the
processing stages in a continuous vehicle-to-central server analysis pipeline?”

This first question has several dimensions. First, the aspect of continuous
data processing: Various approaches for adapting the continuous data processing
paradigm of Data Streaming to the unique challenges of CPSs can be found in
the literature [26,27], as well as works on advanced data streaming analytics in a
CPS [28]. The topic is more novel to VCPSs: How can one play to the strengths
of this system in employing a continuous analysis pipeline, aiming at reducing
the latency of the analysis and the communicated data volume? A continuous
streaming approach is an ideal candidate for not transmitting all required data
at once from the vehicle to the central server (e.g., whenever a certain amount
of data has been collected, or when a timer expires), but for rather sending
fresh data in a continuous stream. The benefits of a continuous analysis
enabled by Data Streaming appear evident (namely, constantly obtaining
results from fresh data with a low result-latency), but the previously-discussed
infeasibility of transmitting raw data from high-bandwidth sensors in the face
of limited-bandwidth networks remains and challenges naive implementations
of a streaming analysis pipeline.

The other dimension of the question is that of where to deploy the stages
of the analysis, as discussed in Section 1.2.2. Which type of processing is best
done in which part of the analysis pipeline? While the answer to this question
is partly dictated by the analysis at hand, employing additional auxiliary
processing stages can help to leverage the benefits of a streaming approach.

Research Question 2:

“How to balance communication, workload and completion time when querying
a VCPS for a representative sample?”

The second question touches deeper on the fact that in many real-life
scenarios (see Section 1.4.1), it is not known which of the vehicles in a VCPS
has the data that is required for analysis. Being able to answer this question
can reduce the required communication volumes drastically, by preventing
vehicles from transmitting data that would be unfit for the analysis at hand
- and by preventing the transmission of too much data. If a specific type
of data is needed from a certain number N of vehicles2, then receiving said
data from no more than N vehicles is a large reduction in communication
compared to receiving it from much greater parts of the fleet. In the latter
case, most of the data possibly has to be discarded from the analysis because it
is unfit, and storing and processing it increases the load on the central server.
A smart algorithm is required to find such a minimum number of vehicles with
data fulfilling certain predicates as quickly as possible - whereby the vehicles

2The number of vehicles whose data is required for a certain analysis may be dictated by
statistical significance, or by external constraints such as cost.

1.4. PRELIMINARIES 7

check their data for compliance themselves. In that way, parts of the work are
pushed towards the vehicles, a process that must happen in a balanced fashion,
with load spread evenly over the fleet. Lastly, the completion time, that is
the time until N vehicles with compliant data have been identified, must be
minimized to not stall any subsequent analysis. Varieties of this problem have
been approached by assuming V2V communication in several works [29–31];
however, for the specific VCPS presented in this thesis Section 1.2.1, where no
direct communication among vehicles exists, the issue merits an investigation.

1.4 Preliminaries

In the following sections, I give an overview of some additional topics and tech-
niques that are important for understanding the approaches towards Research
Questions 1 and 2 that are outlined in Section 1.5 and ease the understanding
of the appended publications (Chapter 2 and Chapter 3).

1.4.1 Fleet Data Heterogeneity

In a VCPS, the data that is being sensed at the edge is subject to environmental
factors (e.g. the physical location, time of day, or weather) and the behavior
of the persons currently controlling the vehicles. As an example, somebody
owning a car and commuting with it to work will use it in a different way
than somebody that uses a car only for weekend trips. Consequently, while
the types of signals that are recorded can be identical over a whole fleet, or
known parts of a fleet, the events inside those signals and the amount of data
collected (which is depending on the length of time a vehicle is in use) can vary
widely. This is a further variation of the challenge introduced in Section 1.2.2 -
the data is (1) located at the edge of the VCPS, and (2) it may be distributed
unevenly. Figure 1.2 shows an example of this heterogeneity between two fleets,

Figure 1.2: The distribution of the volume of collected data over one day for two
different vehicular fleets (figure altered and taken from [1]).

with the x-axis denoting the time of day and the y-axis the share of data
collected on average at that time by a vehicle in one of two fleets. Apparently,
the vehicles in fleet B collect more data during rush hour in the morning and
in the afternoon, while those in fleet A collect more data later in the day and
follow a much less pronounced rush hour pattern. From the graph, vehicles
from fleet B could be unfit for studying the driving behavior at night, as they
are less active during that time.
Generally, there can be insufficient a priori knowledge at the central server about

8 CHAPTER 1. OVERVIEW

the exact data that has been collected by a certain vehicle. The previously-
discussed difficulty of gathering raw data from vehicles as well as existing privacy
laws such as the European GDPR (General Data Protection Regulation) make
it furthermore difficult to obtain insights into the nature of the raw collected
data on-demand at the central server. As the above example shows, a näıve
assumption of equal distribution of data over the fleet can be misleading, and the
consequence may be the transmission of data that is unfit for a certain analysis.
That way, fleet data heterogeneity can exacerbate the issue of critically high
data volumes in a VCPS. On the other hand, by gaining selective knowledge
at the central server about where data important to an analysis resides, data
volumes that need to be transmitted between edge and center may be reduced.

1.4.2 Data Streaming

As described in Section 1.1, Big Data generated in VCPSs is chiefly characterized
by two aspects: first, its volume, and second, its continuous nature. As vehicles
are used, a constant stream of data is sensed by the numerous on-board sensors,
because the processes that are recorded by the sensors are ever-evolving, be it
the driving of the car, the behavior of the driver or the vehicle’s environment.
As the data is continuously evolving, analysis tools are required that can deal
with unboundedness.

Classic database design (e.g. SQL, NoSQL) is guided by the first-the-data-
then-the-query paradigm, which can be unfit for rapidly evolving datasets: First,
data is stored before the analysis, which introduces inherent latency and can
cause the analysis results to become stale relative to the continuous data stream.
Second, it can be computationally expensive to reprocess large chunks of data
in a batch fashion whenever updated results are required. An alternative
is found in the Data Streaming paradigm [32] that reverses the previously
named order into first-the-query-then-the-data: Instead of storing data first
and deploying queries later to generate insights, the query is defined first.
Subsequent new data is continuously queried while it is entering the processing
pipeline, and incremental aggregations ensure that updated results can be
obtained without having to reprocess past data. With Data Streaming, there
is the option of only storing compliant data, or of performing aggregations and
transformations before data is either stored or forwarded to another system. In
fact, by removing the necessity of storing incoming data at all, Data Streaming
was inherently designed for dealing with unbounded datasets [32].

Streams, Operators and Queries

In Data Streaming, a Query is a set of transformations applied to the data
entering the data processing system. As an example, such a system (referred
to as a Stream Processing Engine (SPE)) could be processing in real-time the
positional reports of a fleet of vehicles, and a query could answer the question of
“which vehicle drove the fastest in the last 15 minutes?”. A more abstract query
could be the necessary transformations and aggregations on an incoming video
feed to forward pre-processed images to a computer vision system. Because of
the unboundedness of evolving real datasets (as those produced in a VCPS),
such queries typically cover chunks of the input data. These span finite time
periods and are called time windows [33].

1.4. PRELIMINARIES 9

Incoming data to an SPE is designated by its origin, called its source. A
source may, for example, be a single physical sensor that continuously reports
sensor readings, such as a GPS receiver or a wheel speed sensor, or a group of
sensors such as a rotating LiDAR (e.g. a Velodyne HDL-64E which consists of
64 individual laser distance sensors [34]).

Said incoming data consists of tuples, which in their succession make up a
stream. Tuples are typically timestamped with the timepoint of entering the
SPE or, more commonly, the timestamp at which the underlying data was
sensed, and carry one or more fields of data. Operators define the operations
performed over single tuples or windows of several tuples from one or several
streams, and each operator produces one or several output streams itself. In
this way, the semantics of a query can be expressed as a directed acyclic graph
(DAG) of operators and streams, where the data streams end in a set of sinks
that define the endpoints of the query. A sink could write the incoming tuples
to disk, or forward them to another application [33].

Data Streaming in VCPSs

Having evolved for distributed, parallel and elastic online analysis (see e.g. [35]),
the Data Streaming paradigm is favorably employed in VCPSs [36].

Figure 1.3: A sample distributed data streaming application deployed between N
vehicles and a data center. An instance of the first part of the query, Qcar, is deployed
at each vehicle, here detailed for vehicle v1. The second part of the query, Qcenter, is
deployed at the data center, to which each vehicle transmits intermediate results.

An example of a data streaming application deployed in a VCPS is shown
in Figure 1.3. The application is distributed between the vehicles v1, . . . , vN ,
and a data center, from which the application was issued by the analyst. Qcar,
the first part of the query, is deployed in parallel at each vehicle, here detailed
for vehicle v1: The wheel speed sensor is the source, sending sensor readings
in the form 〈v1, timestamp, speed〉 to operator 1. There, the average of the

10 CHAPTER 1. OVERVIEW

sensor readings from the last 30 seconds is calculated using a time window, and
then wirelessly transmitted to the data center, where the second part of the
query is deployed, Qcenter. All average wheel speed readings from all vehicles
are collected here. Every five minutes, the ID of the fastest car is produced by
operator 2 and printed to file by the sink.

As seen in the above example, one can observe the following overlaps
between processing requirements within a VCPS and capabilities of the Data
Streaming paradigm:

Unboundedness In VCPSs, the data created at the edge is of continuous
nature, making the Data Streaming paradigm a valid choice for processing the
data streams.

Footprint Removing the requirement to store data before processing eases
the demands on the available storage, which becomes poignant in the face of
resource-constrained embedded systems. Furthermore, incremental aggregation
avoids the re-processing of past data.

Distributed & Parallel Analysis A VCPS is inherently a distributed
system, with data-producing and data-processing nodes. The required flows of
data inside this system can be physically or logically mapped to the structure
of a query’s DAG, thus matching the architecture of the VCPS and the analysis
flow. As shown in the example in Figure 1.3, data sources can reside on the
vehicles, data sinks on the central server, and operators that process the data
are distributed between both.

1.4.3 Time-Series Data Compression

Time-series data is a series of numerical timestamped data describing a N + 1-
dimensional curve, where the +1 dimension is time. As such, it can be
decomposed into N 2-dimensional curves. One example is the point cloud of
a LiDAR (see [17]): A common LiDAR is a rotating column of 64 distance-
measuring lasers, whose distance measurements over one full rotation of the
column make up the point cloud. Thus, a LiDAR can also be seen as 64
individual time-series of the form (timestamp, distance). To store a time-series
such as that of an individual LiDAR laser in a smaller representation than the
raw data, time-series data compression can be used. While some techniques
exist to achieve compression in a lossless fashion, e.g. Delta Compression [37] for
integer values or data-agnostic dictionary compression as used in the DEFLATE

algorithm of ZIP, many approaches aim towards approximating time-series
data, e.g. [38,39], incurring a loss in precision of the compressed representation.

One such approach is to calculate a piecewise-linear function that best
approximates the original data (see Figure 1.4). The set of all linear seg-
ments of the approximation results in a (typically) smaller encoding than the
uncompressed data, although the viability of the method is subject to the
underlying data (some techniques are adaptive and can avoid producing a
larger representation [40]). As an example, a piecewise-linear approximation of
a LiDAR point cloud may result in a slightly distorted point cloud due to the
approximation error. That may mean that the physical objects that appear in

1.5. THESIS CONTRIBUTIONS 11

Figure 1.4: A piecewise-linear ap-
proximation of the dotted grey time-
series via the solid red segments. The
cut-out shows the approximation er-
rors between the original and linearly
approximated data.

the cloud appear as shifted from their true position, while the required storage
space for this point cloud is drastically reduced by placing points in the cloud
along straight lines where possible [17].
Although different in their approach and their goal (e.g. fast search [41]), many
of the techniques in the literature have in common that they allow varying
the approximation error or maximum deviation between the original data and
the piecewise-linear representation. A larger error typically results in longer
segments and thus a reduced size of the encoding. Thus, approximation tech-
niques can typically achieve smaller representations than lossless compression
algorithms such as DEFLATE (as demonstrated in Chapter 2).
By trading off space and accuracy in the form of approximation errors, time-
series data compression via piecewise-linear approximation can be used as a
building block in analysis workflows, allowing larger compression (and thus
larger error) for less sensitive analyses and smaller compression in more critical
situations. In the LiDAR examples, slightly distorting point clouds may be
permissible for creating a 3D map of the environment, whereas the precision
requirements for collision detection using a point cloud are much stricter.

1.5 Thesis Contributions

Having introduced a few key preliminary topics and techniques, I highlight in
the following the main contributions of this thesis.

1.5.1 Efficient, Continuous Data Retrieval and
Clustering

In Chapter 2, Research Question 1 as posed in Section 1.3 is approached: “How
are analysis speed, precision and costs impacted by distributing the processing
stages in a continuous vehicle-to-central server analysis pipeline?” We chose
to approach this question by investigating an analysis pipeline that involves
the gathering of raw data at the vehicle, wireless transmission to a central
server and subsequent clustering of the data. We enable the execution of
said pipeline in a streaming fashion, from continuous data transmission at the
vehicle to continuous data clustering at the central server. To achieve continuous
clustering, we adapt the clustering algorithm in [42] to more general use cases.
This scenario now becomes the baseline. In the DRIVEN framework introduced
in Chapter 2, we add to said pipeline an additional data compression stage at
the vehicle, thereby pushing more than just the recording and transmission of
data onto the edge. Like the remainder of the analysis pipeline, the compression

12 CHAPTER 1. OVERVIEW

stage in DRIVEN works in a streaming fashion by continuously ingesting data
and outputting it in a compressed representation. The level of compression is
tunable and can thus be adapted to the use case at hand. We evaluate DRIVEN
in several dimensions: (1) for several use cases, varying from a fleet of vehicles
transmitting their GPS positions to single vehicles transmitting LiDAR data;
(2) for different simulated network speeds ranging from 2G to 5G; and lastly
(3) we evaluate the compression stage itself by comparing its effectiveness to
ZIP compression. By benchmarking DRIVEN in terms of the volumes of data
transmitted between vehicle and central server, analysis duration, and accuracy
of the clustering result against a baseline without the compression stage, we
give a quantifiable answer to Research Question 1.

1.5.2 Adaptive, Online Query Spreading Algorithms

In Chapter 3, an approach to Research Question 2 is presented: “How to
balance communication, workload and completion time when querying a VCPS
for a representative sample?”. We investigate the spreading of compliance
queries from a central server over a fleet of vehicles, in which each vehicle uses
its on-board computing unit to check the compliance of locally stored data
with the query - as transmitting data to the central server and checking its
compliance later is costly or even infeasible, as explained in Section 1.2.2. A
binary answer to the compliance query is returned by each vehicle that was
contacted, indicating whether or not compliant data is present on said vehicle.
The aim of the query is to obtain at least N positive answers, either to be
used (1) as a statistic for the distribution of a certain type of data over the
fleet, or (2) as a pre-selection step for involving only cars that have compliant
data into further analysis steps. We first evaluate two baseline algorithms that
either ask vehicles one-by-one, thereby stretching the time until N vehicles are
found while avoiding pushing the workload on too many vehicles (and thus
increasing the total workload required for solving the query). On the other
end of the spectrum, the second baseline algorithm asks round-based first a
random selection of N cars, and in subsequent rounds always the number of
missing positive answers. This way, the query is resolved quickly, but the
overall workload is high, as many vehicles become involved. We investigate
the deployment of not only one such query, but of many that are deployed in
parallel and resolved by the vehicles sequentially. Our contribution consists of
two adaptive algorithms, one that trades off between the total workload induced
on the fleet and the resolution time of the query, and one that additionally
respects fairness by spreading the workload evenly over the fleet. We evaluate
these two algorithms by comparing them to the baselines by simulating a vast
fleet of vehicles moving through two cities using large real-world datasets.

1.6 Conclusion and Outlook

This Licentiate thesis explores several avenues for supporting Distributed and
Communication-Efficient Continuous Data Processing in Vehicular Cyber-
Physical Systems. In Chapter 2, the DRIVEN framework demonstrates how
an additional, tunable compression stage can deliver analysis speedups and

1.6. CONCLUSION AND OUTLOOK 13

data transfer savings in a data processing pipeline while keeping analysis ac-
curacy losses bounded, enabling the optimization of the processing pipeline
for specific use cases and data types. Chapter 3 shows how to efficiently find
those vehicles in a vehicular fleet that carry data that is compliant to a specific
query, thereby allowing follow-up analyses that involve just the right vehicles -
avoiding the unnecessary transmission of raw data, and reducing the overall
workload induced on the fleet. Having vehicles check compliance of their own
data smartly leverages the available computational power in the fleet while
balancing mechanisms avoid putting too much load on individual vehicles.

In ongoing and future work, we explore further ways of improving the
continuous data processing in VCPSs. One promising avenue is presented by
techniques for tagging relevant data already inside a data streaming analysis
pipeline deployed at the edge, such that the further storage or processing of
important pieces of information can be emphasized. In an overarching analysis
framework, spanning a complete VCPS, such a technique could be employed
in collaborative learning schemes in which vehicles can improve their local
analysis prowess by learning, directly or indirectly, from important data of other
vehicles. Likewise, an extension of the research on query-spreading mechanisms
in VCPSs is currently in the works, to adapt the proposed spreading algorithms
to more dynamic fleet behaviors, such as a fluctuating number of vehicles during
the query. Lastly, the promising results for the use of a compression stage in a
distributed, continuous processing pipeline hint at further possibilities for the
use of data reduction schemes in a VCPS that could, for example, be adaptive
with respect to the nature of the data: if an interesting pattern inside a data
stream is observed, a more faithful compression grade is chosen, whereas less
interesting sections of data can be compressed to a higher degree.

14 CHAPTER 1. OVERVIEW

Chapter 2:

DRIVEN: A Framework For Efficient

Data Retrieval And Clustering In

Vehicular Networks

B. Havers, R. Duvignau, H. Najdataei, V. Gulisano,
M. Papatriantafilou and A. Koppisetty

Future Generation Computer Systems, vol. 107, pp. 1-17, 2020 [17].

PAPER A

16 CHAPTER 2. DRIVEN

This is a formatted and adapted version of the paper published in Future
Generation Computer Systems, vol. 107, pp. 1-17, 2020. Any performed
changes serve only to retain the consistency of this thesis and to adapt to the
layout.

15

Abstract

The growing interest in data analysis applications for Cyber-Physical Systems
stems from the large amounts of data such large distributed systems sense
in a continuous fashion. A key research question in this context is how to
jointly address the efficiency and effectiveness challenges of such data analysis
applications.

DRIVEN proposes a way to jointly address these challenges for a data
gathering and distance-based clustering tool in the context of vehicular networks.
To cope with the limited communication bandwidth (compared to the sensed
data volume) of vehicular networks and data transmission’s monetary costs,
DRIVEN avoids gathering raw data from vehicles, but rather relies on a
streaming-based and error-bounded approximation, through Piecewise Linear
Approximation (PLA), to compress the volumes of gathered data. Moreover, a
streaming-based approach is also used to cluster the collected data (once the
latter is reconstructed from its PLA-approximated form). DRIVEN’s clustering
algorithm leverages the inherent ordering of the spatial and temporal data
being collected to perform clustering in an online fashion, while data is being
retrieved. As we show, based on our prototype implementation using Apache
Flink and thorough evaluation with real-world data such as GPS, LiDAR and
other vehicular signals, the accuracy loss for the clustering performed on the
gathered approximated data can be small (below 10 %), even when the raw data
is compressed to 5-35 % of its original size, and the transferring of historical
data itself can be completed in up to one-tenth of the duration observed when
gathering raw data.

16 CHAPTER 2. DRIVEN

2.1 Introduction

Large distributed Cyber-Physical Systems (CPSs) such as vehicular networks [43]
(among others) are behind many of the current research threads in computer
science. One of the aspects many of such research threads share has its roots
in the large amounts of data sensed continuously in large distributed CPSs. As
discussed in the literature, the benefits and possibilities CPSs’ data enables
(e.g. online congestion monitoring, platooning and autonomous driving in the
case of vehicular networks) are bound to many challenges, spanning efficient
analysis [44], efficient communication [45, 46], security [47] and privacy [48].
A key aspect in this context is the need for solutions that can jointly address
several such challenges [49], since solutions that focus on and/or excel in only
one aspect but fall short in others might be impractical in real-world setups.

2.1.1 Challenges

When focusing on aspects such as data communication and analysis, a well
known challenge is given by the imbalance between the amounts of data sensed
and produced by the sensors deployed in such CPSs (a modern vehicle, on the
road today, senses more than 20 GB/h of data [6]) and the infrastructures’
capacity of gathering them within small time periods to data centers [1]. Even
when data is not to be transmitted continuously, but only for a limited time
period and for some selection of sensors, the required bandwidth may far exceed
the available one (e.g. a single LiDAR sensor of an autonomous car produces
around 7 MB/s, cf. Section 2.4.1). In this case, solutions focusing on efficient
data analysis need to account for communication aspects too, in order for
the latter not to result in a major bottleneck. The inherent limitations of
traditional batch and store-then-process (DB) analysis techniques, which on
their own cannot sustain the data rates of relevant applications, need thus to
be overcome by taking into account the end-to-end transformation process of
raw data into valuable insights. Specifically, considering which data – as well as
how much data – is moved through a certain analysis pipeline. Because of this,
a complementary challenge gravitates around how to take advantage of the
high cumulative computational power of CPSs’ edge sensors and devices, since
the porting of a given sequential analysis tool (e.g. clustering) to an efficient
parallel and distributed implementation and its deployment are not trivial.

2.1.2 Contributions

We present the DRIVEN framework, which copes with the aforementioned
challenges for a common problem in vehicular networks’ applications, namely
that of gathering and clustering of vehicular data. In a nutshell, the DRIVEN
framework jointly addresses the challenges of data gathering, online analysis
and leveraging of edge devices’ computational power by:

[a] leveraging a lossy compression technique, based on Piecewise Linear
Approximation (PLA), that significantly reduces the amounts of data to
be gathered from vehicles,

2.2. PRELIMINARIES 17

[b] leveraging state-of-the-art online clustering techniques such as Lisco [42],
which overcome the limitations of batch-based ones, and

[c] relying on the data streaming paradigm to transparently achieve dis-
tributed and parallel deployments.

As we further elaborate in the remainder, a data analyst interested in
gathering and clustering data sensed by a set of vehicles over a given period of
time can do so by specifying parameters about (i) the type of data to be gathered,
(ii) the maximum error that can be introduced while compressing the data to be
retrieved (because of the PLA-based compression) and (iii) the specifications for
the clustering of data. The DRIVEN framework then compiles this information
into a streaming application that is deployed both at the vehicles providing
the data as well as at the analyst’s data center. To support modularity, the
framework also allows the analyst to define additional components for the
resulting application that can be used to process the data before the latter is
clustered.

An extensive literature exists about clustering, its porting to the streaming
protocol and the leveraging of approximation techniques to improve (along
with certain criteria) the clustering process, as we discuss in Section 2.6. In
this context, our contribution does not aim at surveying all existing solutions
nor at comparing them. Rather, the contribution focuses on providing evidence
of how a streaming application that can (i) jointly leverage the computational
power of both edge and central components of a CPS and (ii) allow for partial
data loss when gathering information can provide a healthy tradeoff between
data reduction and pipeline speed on the one hand and accuracy loss on the
other, despite requiring more data processing components (e.g. to compress and
decompress the data gathered from the vehicles) than a centralized counterpart
(which needs all the raw data to be gathered). As we show in our empirical
evaluation, based on a prototype implementation using Apache Flink and
recently proposed streaming-based PLA and clustering methods, and four real-
world use cases, DRIVEN is able to reduce the duration of data transmission
by up to 90 % while incurring a bounded loss on the clustering quality.
The rest of the paper is organized as follows. We introduce preliminary concepts
in Section 2.2 and the considered system model and problem statement in
Section 2.3. We then present the DRIVEN framework in Section 2.4 and our
evaluation in Section 2.5. Finally, we discuss related work in Section 2.6 and
conclude the paper in Section 2.7.

2.2 Preliminaries

We begin this section by discussing preliminary concepts about data streaming,
PLA, distance-based clustering and logical latency.

2.2.1 Data streaming

The data stream processing paradigm (aka data streaming) [32] emerged as
an alternative to the traditional store-then-process one. Thanks to its fast
evolution over the last decades, modern Stream Processing Engines (SPEs)

18 CHAPTER 2. DRIVEN

allow for distributed, parallel and elastic online analysis [35]. At the same time,
efficient designs and methods are in focus in the literature for computationally-
expensive streaming analysis [50]. As discussed in [32], the data streaming
paradigm has been defined to take into account the challenges proper of
large systems gathering data through millions of sensors (as discussed in
Section 2.1). Thus, many applications rely on it in many CPSs, including
vehicular networks [27,36,51].

In data streaming, each sensor produces a stream of data, a sequence of
tuples that share the same schema composed by attributes 〈y0, y1, . . . , yk〉,
where y0 is a physical or logical timestamp and the other k attributes depend
on the sensor producing the stream. We assume that each stream delivers
tuples in order based on y0 as in [52, 53] (or leverages sorting techniques such
as [54, 55]). Streaming applications, also referred to as continuous queries
(or simply queries, in the remainder) are defined as Directed Acyclic Graphs
(DAGs) of streams and operators. Each operator defines a function that
manipulates its input tuples and potentially produces new output tuples, while
streams specify how tuples flow among operators. Modern SPEs such as Apache
Flink [35], which we use to implement the DRIVEN framework, provide many
operators that can be composed into queries (and also allow for users to define
ad-hoc operators). It should be noted that streaming operators are expected
to enforce one-pass analysis [32] and can temporarily maintain a window of
the most recent tuples when an aggregation function (such as clustering) is
to be performed on them [50]. As mentioned in Section 2.1, space and time
complexity reduction through approximation and/or partial data loss have been
discussed in many flavors in the context of streaming applications. Proposed
solutions include load shedding, sketches, histograms and wavelets [56–59]. In
DRIVEN, we rely on PLA, further discussed in the following section.

2.2.2 Piecewise Linear Approximation

Computing a PLA of a time series is a classical problem that aims at representing
a series of timestamped points by a sequence of line segments while keeping the
error of the approximation within some acceptable error bound. We consider
here the online version of the problem, with a prescribed maximum error ∆,
i.e., (i) the time series is processed one point at a time, the output line segments

Input Stream

0

1

2

3

4

Time

Output
Stream

〈4, a
1
, b1
〉

〈4, a
2
, b2
〉

〈1, y
3
〉
〈1, y

4
〉

a1
= 0.5

1, b1
= 0.8

3

•
•

•
•

a2 = −0.09, b2 = 1.41

• • • •

�

y3 = 3

�

y4 = 0

a5 = 0, b5 = 2

• • • • •

Figure 2.1: Example of a Piecewise Linear Approximation using maximum error
∆ = 0.5.

2.2. PRELIMINARIES 19

are produced along the way, and (ii) the projected points along the compression
line segments always fall within ∆ from the original points. Figure 2.1 gives an
example of a PLA: original data points (crosses on the figure) from the input
stream are compressed and forwarded on the output stream as line segments
(solid lines) or singletons (squares), so that a reconstructed stream (bullets and
squares) can be generated from the PLA of the original stream (we refer the
reader to Section 2.4 for more details about why both segments and singletons
are defined and the conditions upon which they are forwarded).

In the extensive literature dealing with such an approximation (among
others [60–62]), it is clearly stated that the approximation’s main intent is to
reduce the size of the input time series for both efficiency of storage and (later)
processing. This entails a practical trade-off between a bounded precision
loss and space saving for the time series representation. Recent works on
PLA [40, 63–65] increasingly place the focus on the streaming aspect of the
compression process, and advocate low time/memory consumption as well
as small latency while achieving a high compression, in order for PLA to be
feasibly implemented on top of, or close to, a sensor’s stream.

In this work, we use a best-fit line approximation together with a streaming
output mechanism, both introduced in [40] and briefly described in Section 2.4.2,
balancing trade-offs associated with PLA in a streaming context.

2.2.3 Distance-based clustering

Clustering is a core problem in data mining; it requires to group data into
sets, known as clusters, so that intra-cluster similarity is maximized. There are
various clustering methods that use different similarity metrics. Among them,
distance-based clustering methods are able to discover clusters with arbitrary
shapes and form the clusters without a-priori knowledge about their number [66].
For ease of reference we paraphrase the definition of distance-based clustering
from [67]:

Definition 1. [Distance-based clustering] Given n data points, we seek to
identify an unknown number of disjoint clusters using a distance metric, so
that any two points pi and pj are clustered together if they are neighbors, i.e.,
if their distance is within a certain threshold. To announce the set of points
as a cluster (rather than noise), its cardinality should be at least a predefined
number of points minPts.

In a recent work [42], distance-based clustering (for the Euclidean distance
case) is studied in the data streaming paradigm to introduce a new approach,
named Lisco. This approach enables the exploitation of the inner ordering of
the data to maximize the analysis pipeline in order to facilitate the extraction
of clusters and contribute to real-time processing. In this paper, we use and
adapt Lisco as the clustering approach to shape clusters based on distance
similarities without knowing the number of clusters in advance. We discuss
more details of Lisco and its adaptations in Section 2.4.3.

20 CHAPTER 2. DRIVEN

2.2.4 Logical latency

In data streaming literature [50], the term latency usually refers to the (physical)
time difference between the production of an output tuple and the processing
of the last input tuple contributing to (or triggering the creation of) the former.

This latency definition is usually employed to evaluate the processing perfor-
mance of a given streaming-based solution. When sequences of multiple input
tuples are aggregated together following the processing of a later tuple without
an a-priori known size for the length of such sequences (as in a PLA segment,
given that the length of each segment depends on the points it approximates),
users can also be interested in the logical latency introduced by the aggregation
mechanism. We refer to the notion of logical latency as the number of tuples
processed between a given tuple and the first tuple that triggers the aggregation
of the sequence to which the former belongs. More concretely, with a sequence of
n tuples being aggregated together 〈y0

` , y
1
` , . . . , y

k
` 〉, . . ., 〈y0

`+n, y
1
`+n, . . . , y

k
`+n〉

and 〈y0
j , y

1
j , . . . , y

k
j 〉 the tuple that triggers their aggregation (with j ≥ `+ n),

the logical latency for any tuple 〈y0
i , y

1
i , . . . , y

k
i 〉 is j − i for i ∈ [`, `+ n].

2.3 System model and problem statement

We consider systems consisting of a set of many vehicles and one analysis
center, in which data analysts are interested in gathering data from such a
set of vehicles and, subsequently, clustering that data at the analysis center.
Each vehicle Vi is equipped with an embedded device which provides limited
computational capacity; Vi also mounts a set of sensors, each producing a
stream of tuples composed by attributes

〈
y0, . . . , yk

〉
, i.e., the physical or

logical time of each reading and the measurements at that time, respectively.
Based on what is found in modern vehicular networks, we assume that each

Vehicle i

...

Sensor j Time
<y0,y1,...,yk>

Temporary storage for the
vehicle’s sensor data

Analysis center

Mainframe
server

Embedded
device

2-way communication to
forward (from the analysis
center) requests for data
and gather the latter

Data analyst, interested
in gathering data from
the vehicles in order to
cluster it

Figure 2.2: System model overview for DRIVEN.

2.3. SYSTEM MODEL AND PROBLEM STATEMENT 21

type of sensor produces readings with a given periodicity and that each vehicle
is equipped with a storage unit that is used to maintain the sensors’ readings
(for the sensors deployed in the vehicle) during a given fixed period of time
(e.g. during the last month). Notice that lossy data compression techniques
such as PLA are not applied to the data before storing it since the allowed
error bound is not known before the analyst triggers a data gathering request.

For ease of exposition, we assume in the remainder that (historical) data is
stored locally at each vehicle and retrieved only when requested. We nonetheless
investigate in Section 2.5.6 the logical latency incurred in a scenario in which live
readings are streamed to an analysis center immediately after their compression.

We also assume that 2-way communication exists between the analysis center
and each vehicle to deploy queries and to forward the sensed data, respectively.
To isolate the effects of DRIVEN on data gathering and analysis from non-
deterministic factors such as varying speeds and reliability of the underlying
communication layer, we assume this 2-way communication to provide constant
upload and download speeds and no packet loss (cf. Section 2.5.3).

Based on the given system model illustrated in Figure 2.2, the goal of the
DRIVEN framework is to leverage the data streaming paradigm (i.e., to define
queries that gather and cluster data as DAGs of operators that can run in a
distributed and parallel fashion both at the vehicles and the analysis center)
while (i) only requiring analysts to provide information about the analysis’
semantics (i.e., which data to gather and the distance criteria to cluster it)
without composing and deploying the overall streaming query themselves and
(ii) allowing for approximations in order to improve the performance (i.e.,
reduce the time) of retrieving the data sensed by the vehicles.

A query in the DRIVEN framework is expressed as

Q(V,T,S,∆, [qpre,]{clustering parameters}),

where:

• V is a set of vehicles’ ids,

• T is the period of time covered by the data to be gathered (included in
the period covered by the vehicles’ storage unit or referring to data being
sensed live by the vehicle),

• S specifies the set of sensors producing the data (thus allowing the
DRIVEN framework to identify the operators needed to gather the
stream(s) of data they produce),

• ∆ specifies the maximum error that can be introduced during the com-
pression step while retrieving the data by the DRIVEN framework, and
is further composed of k + 1 fields, namely ∆1,∆2, . . . ,∆k for a sensor
with k attributes, plus ∆0 for the (logical) time attribute,

• qpre is an optional streaming query that defines pre-clustering analysis,
and

• {clustering parameters} is the set of parameters used by DRIVEN’s
clustering component (further described in Figure 2.4.3).

22 CHAPTER 2. DRIVEN

We refer the reader to Section 2.5 and Table 2.1 for concrete examples of
queries Q and possible values of the above parameters. Notice that, being a
streaming query, each DRIVEN application can be extended with additional
operators to further process the found clusters (we do not discuss this since it
is complementary to our work).

In order to quantify the improvement (in terms of efficiency) and the cost
(in terms of precision) of the DRIVEN framework, we compare with a baseline
that gathers and processes all the raw rather than the approximated data.

2.4 Overview of the DRIVEN framework

In this section, we present an overview of DRIVEN. To facilitate the presen-
tation, we first introduce a use case that serves as a running example in our
discussion (we later evaluate it, together with others, in Section 2.5).

As discussed in Section 2.3, each query run by DRIVEN is a streaming
continuous query deployed at both the vehicles and the analysis center, with
dedicated operators for efficient data retrieval and clustering.

2.4.1 Sample use case: study vehicles’ surroundings

In our running use case example, the analyst is interested in performing the
clustering of LiDAR data of a bounded time interval as a preprocessing step
for offboard object detection. This may help, e.g. in better understanding and
improving the performance of a resource-constrained onboard object detection
algorithm in a certain driving situation, and may be automatically triggered
by an event such as a pedestrian crossing the road in front of the vehicle. We
assume vehicles equipped with a set of LiDAR (light detection and ranging)
sensors such as the ones of a Velodyne HDL-64E [34], which mounts 64 non-
crossing lasers on a rotating vertical column and which, at each rotation step,
shoots these lasers and produces a stream of distance readings based on the time
the reflected light rays take to reach back to the sensors. Each sensor can shoot
the laser 4000 times per rotation for up to 5 rotations per second, resulting
thus in millions of readings per second for the whole set of sensors [42] (around
7 MB/s). For each stream 〈α, ρ〉 produced by one of the LiDAR sensors, the
logical timestamp α allows identifying at which rotation step the distance ρ
has been measured (i.e., with which angle in the horizontal plane). Notice that
each reading from a sensor can be converted into a 3D point in space based on
α, ρ and the elevation angle of the sensor itself.

The analyst is thus interested in the data produced over a certain period of
time (e.g. covering a full rotation) by the 64 sensors mounted in each LiDAR de-
ployed in the vehicles moving in the given urban area and relies for the clustering
on a function that checks whether the Euclidean distance between any two points
is within a certain threshold. Based on the query description in Section 2.3,
the analyst could then run a query Q(V,T,S,∆, qpre, {Clustering parameters})
for each vehicle of interest, where:

• V and T specify from which vehicle the data should be gathered and
which portion of such data should be gathered, respectively,

• S refers to the sets of LiDAR sensors,

2.4. OVERVIEW OF THE DRIVEN FRAMEWORK 23

• ∆ = (∆α,∆ρ) defines the maximum approximation error that is allowed
when compressing the LiDAR data, bounding the rotation angle error
and the distance measurement error, respectively,

• qpre defines an operator merging the data from the different sensors (as
further discussed in Section 2.5), and

• {clustering parameters} is the set of parameters later described in Fig-
ure 2.4.3.

Lidar lasers’
data

compress

merge

cluster

decompress

At the vehicle

At the analysis center

qpre

Figure 2.3: Overview of the modules deployed in the resulting streaming continuous
query for the LiDAR use case.

Figure 2.3 presents an overview of the modules deployed in the resulting
streaming continuous query (each of which will be composed by one or more
streaming operators, as also described in the following section).

2.4.2 Data retrieval and PLA approximation

As discussed in Section 2.1, DRIVEN relies on streaming PLA to forward
a compressed and lossy representation of data. To build the PLA, we use
a construction method named Linear, introduced in [40], which combines
several approaches of previous works on PLA such as using a best-fit line
approximation [60,62,65] for minimizing errors and maintaining convex hulls [61,
63] for efficiently checking the violation of the error bound by the approximation.
We also use here continuous processing through the output protocol proposed

Figure 2.4: Best-fit lines of a set of points: solid for the first 10 points, dashed for
including the 11th point (marked in green).

24 CHAPTER 2. DRIVEN

in [40] in conjunction with Linear, in order to balance the different trade-
offs associated with PLA in streaming environments (i.e., compression ratio,
reconstruction latency, and individual errors).

The Linear method successively updates a best-fit line through the latest
not yet approximated points, until the maximum error produced by the segment
approximation exceeds the tolerated error bound ∆. Updating such an estimate
takes O(1) operations per point, but checking if the line does not violate the
error condition can take up to O(n) if n points are currently being approximated
(worst-case). However, rather than a naive sequential check that always results
in the worst-case cost, by keeping track of two particular convex hulls U and
L along the way (at an extra amortized O(1) operations per tuple), we can
check the error condition in O(|U |+ |L|) by only traversing both hulls, whose
sizes are rarely higher than a few units in practice (as also observed in our
extensive experimental evaluation). Figure 2.4 illustrates the process where
input points are plotted as crosses and tolerated errors around the points are
drawn as vertical line segments; the best-fit line for the first 10 points is a plain
line that stays within the bounded error. By adding the 11th point (marked
green), the best-fit line violates the error bound on the sixth input point (or
equivalently, at the sixth input point, the approximation line is below the lower
convex hull L depicted on the figure).

PLA Comp.
〈y0

i , y
1
i , . . . , y

k
i 〉

sensor stream

〈i, y1
i 〉

PLA Comp.

...

PLA Comp.

〈i, y0
i 〉

〈i, yki 〉

PLA Decomp.

PLA Decomp.

...

PLA Decomp.

〈n, a, b〉 n ≥ 2

or 〈1, y1
i 〉

t PLA

yk PLA

Wireless
transmission

y1
i
′

yki
′

y0
i
′

〈y0
i
′
, y1

i
′
, . . . , yki

′〉
reconstructed stream

Figure 2.5: PLA compression / decompression flowchart with y1’s channel detailed.

For the input sensor stream, composed of tuples of the form 〈y0, y1, . . . , yk〉,
the different components of the PLA compression, as illustrated1 in Figure 2.5,
are:

[a] Split: The sensor stream is split in k+1 streams, one for each application-
related attribute plus one additional for the timestamps. More precisely,
the i-th input tuple 〈y0

i , y
1
i , · · · , yki 〉 will generate 〈i, y`i 〉 on channel `’s

stream for each 0 ≤ ` ≤ k.

[b] PLA Compression: Each stream is compressed in parallel by comput-
ing its PLA (as depicted in Figure 2.1, Section 2.2.2) using its associated
error, i.e., channel ` uses ∆`. Each compressor generates a PLA rep-
resentation as a stream of triplets 〈n, a, b〉 or singletons 〈1, y〉; 〈n, a, b〉
is generated for compressing n input values into a line segment whose
linear coefficients are (a, b), whereas 〈1, y〉 is generated to reproduce a

1For simplicity, we do not draw in the figure the operators in charge of components 1 and
5.

2.4. OVERVIEW OF THE DRIVEN FRAMEWORK 25

Algorithm 1 PLA output logic

.
Receive 〈i, yi〉, while maintaining convex hulls Ui−1, Li−1 & best-fit
line li−1 covering n ≥ 2 points

li ← newBestFitLine(li−1, 〈i, yi〉)
Ui, Li ← updateConvexHulls(Ui−1, Li−1, 〈i, yi〉)
n← n+ 1
if lineBreaksHulls(li, Ui, Li) then

if n = 3 then . output singleton
output 〈1, yi−2〉

else . output segment
output 〈n− 1, slopeOf(li−1), interceptOf(li−1)〉

end if
else

if n = nmax then . max length reached
output 〈nmax, slopeOf(li), interceptOf(li)〉

else . wait for 〈i+ 1, yi+1〉
continue

end if
end if

single input2 of value y. In more detail, this is presented in Algorithm 1:
the PLA compressor always attempts to first build the longest possi-
ble approximation segment < nmax (of length 256 in our evaluation, cf.
Section 2.5), but when one such segment has only length n = 2, thus
covering only two tuples 〈k − 2, yk−2〉 and 〈k − 1, yk−1〉, 〈k − 2, yk−2〉 is
then output as a singleton 〈1, yk−2〉. The PLA compressor continues the
construction of a new approximation line segment beginning with the
tuple 〈k− 1, yk−1〉 and the current tuple 〈k, yk〉 (this explains the output
delay associated with the singletons of Figure 2.1). This scheme helps to
mitigate an inflation phenomenon observed when compression is low (it
improves the compression when a single outlier tuple lies between two
segment-compressible sequences of tuples).

[c] Diffusion: The k + 1 streams are wirelessly transmitted to the analysis
center.

[d] PLA Decompression: All streams are
decompressed in parallel. The decompression algorithm is straightforward:
after having already reconstructed i values on channel y`, we either
generate n outputs
y′i+1, . . . , y

′
i+n such that y′j = a · j + b for

i+ 1 ≤ j ≤ i+n if the next received record is 〈n, a, b〉 on y`’s transmitted
PLA stream, or alternatively, we produce y′i+1 = y if 〈1, y〉 was received.

[e] Final Reconstruction: The final step is to merge the k+1 decompressed
streams to rebuild records with identical structure as the initial input

2Note that we add 1 in singleton tuples because both singletons and triplets are forwarded
using the same channel, and thus require a prefix that distinguishes them when deserializing
incoming data.

26 CHAPTER 2. DRIVEN

stream. In particular, to reconstruct the i-th tuple
〈y0′

i , y
1′

i , . . . , y
k′

i 〉 on the output stream, we need to wait for the k + 1
decompressors to have produced at least i reconstructed values on their
respective channel.

The compression scheme suggested here compresses all k attributes of a
stream as well as the timestamp in the same manner (i.e., by using the tuple
counter i for each tuple 〈i, y`i 〉 on a sensor attribute y`). This differs from the
scheme suggested in [68], where a counter was used only for the timestamp
stream 〈i, y0

i 〉 while the remaining attributes of the stream were compressed
using the original timestamps, and decompressed using the reconstructed
timestamps. As explained in [68], this scheme could not guarantee a bounded
reconstruction error at all times as errors from timestamp reconstruction could
propagate to the reconstruction of other channels. The new scheme proposed
here results in similar compression and performance figures on our evaluated
data, as discussed later in Section 2.5, and guarantees a bounded reconstruction
error.

2.4.3 Data clustering with Lisco

As described in Section 2.2, distance-based clustering approaches form clusters
using a given distance metric. Since computing the distances of one tuple from
all the other tuples in a certain dataset in order to find the ones within a
threshold distance would incur an O(n2) complexity when running all-to-all
comparisons, it is necessary to prune the search space. For this purpose, several
clustering approaches have an intermediate step after data acquisition and
before the main clustering algorithm. This additional step builds an extra
supporting data structure (e.g. a kd-tree [69]) in order to organize the collected
data before performing the clustering. In this way, a batch-based processing is
introduced which results in an average O(n log n) cost [70] but requires multiple
passes over the data (possibly affecting the performance).

Lisco is a recently proposed method that overcomes the batch process-
ing disadvantages through a single-pass continuous distance-based clustering
(Euclidean in the original paper [42]) that exploits inherent orderings of data
(when such orderings are present). The intuition behind Lisco is to store the
data in a simpler data structure that preserves such inherent ordering and
therefore eliminates the need for an extra supporting sorting data structure. In
the original paper, it is discussed (and empirically observed) that storing and
organizing data tuples using Lisco have O(1) complexity and can be performed
during the data acquisition step which results in an average O(n) cost.

While we rely on the LiDAR-based use case to overview DRIVEN and its
clustering component, our implementation of Lisco within DRIVEN opens up
for the clustering of other data too, as we discuss in the following.

Clustering LiDAR data (intuition)

Figure 2.6 a) shows Lisco’s intuition for clustering LiDAR data. As shown,
for a certain point p hit by a laser, the search for neighbors within a certain
(Euclidean) distance can be limited to a certain set of lasers and angles (based
on p’s distance and angles). The neighbor mask, containing possible points hit

2.4. OVERVIEW OF THE DRIVEN FRAMEWORK 27

At the vehicle

Point hit by a laser

Adjacent points hit by same
laser with different angles

Adjacent points hit
by different lasers

with equal angle

Object in the surroundings

Range of angles (for same
laser) where hit points
could be p neighbors

Range of lasers (for same angle) where
hit points could be p neighbors

Mask containing all angles
and lasers for which hit
points could be p neighbors

LiDAR

At the analysis center

p

qpre
<α,θ,ρ>

p’

p

Function getMaskSize limits the
search space to possible neighbors of p

Function areNeighbors
checks if p and p’ belong to
the same cluster

Data structure
maintained by Lisco

Laser shot (for a given elevation angle)

a)

b)

Figure 2.6: Example of how the search space for a point p (for the LiDAR use
case) can be limited to points potentially reported by lasers (and with certain angles)
within a mask centered in p (a) and the corresponding 2D matrix maintained by
Lisco (b).

by such lasers (and for the given angles), specifies the portion of data outside
of which neighbors can not be found for p. This limits the search space for
p’s neighbors to the points measured for the given range of angles and lasers.
Notice that such points must be checked since not all angles and lasers falling
within the given ranges necessarily hit a point that is a neighbor of p, as shown
in the figure. Internally, Lisco can then maintain incoming points in a 2D array.

Lisco generalization in DRIVEN

The Lisco implementation in DRIVEN maintains data in an n-dimensional
array and clusters incoming tuples while they are stored in it. One of the n
dimensions is given by the y0 attribute while the other optional n−1 dimensions
can be specified as attributes of the tuple’s schema. In this way, the analyst
can leverage any implicit sorting carried by one or more attributes of the
tuples produced by qpre (aside from the timestamp itself) to speed-up Lisco’s
clustering. To do this, the first clustering parameter defined by the analyst is
an optional list of attributes to define the additional n−1 dimensions of Lisco’s
internal multi-dimensional array. It should be noticed that, for each attribute
yk specified as a dimension by the analyst, the latter must also specify the
range of values observable for it, for DRIVEN to setup Lisco’s internal data
structure.

The second and third clustering parameters are the functions int[n]

getMaskSize(Tuple τ) and boolean areNeighb(Tuple τ1,Tuple τ2). The

28 CHAPTER 2. DRIVEN

former function specifies how far (in the sense of indexes) Lisco should explore
any of the n dimensions of the array around tuple τ , to search for potential
candidates for clustering. Lisco employs the return values of this function to
create the neighbor mask and bound the search space around τ . Internally,
Lisco runs the aggregation over any of the n dimensions as soon as the latter
is filled for a given value (e.g. when all the tuples sharing the same y0 values
are received). The latter function is used to check if two tuples falling into the
same neighbor mask should be clustered together or not.

Finally, the analyst must also specify the minimum number of points minPts
to differentiate clusters from noise (Definition 1).

Continuing the example in Figure 2.6 b), the schema of the tuples produced
by qpre could in this case carry attributes 〈α, θ, ρ〉, where α is the logical
timestamp that refers to a certain angle of the LiDAR sensor, θ is the elevation
angle (based on the laser producing the reading) and ρ is the measured distance.
To store the tuples, Lisco could be instructed to keep data in a 2D matrix
where consecutive readings from the same laser are assigned to columns and
the different lasers are assigned to different rows (as done in the original
paper [42]). In this way, the ordering of two dimensions of the tuples would
be kept. Using the 2D matrix to store the data, int[n] getMaskSize(Tuple

τ) can be implemented to return the neighbor mask of a tuple τ in terms of a
limited number of rows and columns around τ . Finally, the areNeighb(Tuple

τ1,Tuple τ2) can be implemented to check whether the Euclidean distance
between the readings of tuples τ1 and τ2 is within the threshold defined by the
analyst.

2.5 Evaluation

We evaluate in here the tradeoffs in compression, approximation error, retrieval
time and clustering quality for DRIVEN. We first present the datasets used,
the software and hardware setup and then discuss four different use cases in
which historic data is gathered and clustered. Finally, we gauge PLA’s compres-
sion performance by comparing it to a lossless, general-purpose compression
technique (ZIP) and discuss the concept of inherent logical latency of PLA
compression to investigate the impact of DRIVEN on queries gathering live
rather than historic data.

2.5.1 Data

We use three datasets in our evaluation.

[a] The Ford Campus dataset [34], providing data generated by a Velo-
dyneHDL64E roof-mounted LiDAR (see Section 2.4.1 for an overview of
LiDAR) from one vehicle. Each file in the dataset corresponds to one full
rotation of the LiDAR, which consists of 64 individual lasers mounted
in a column. According to our system model (Section 2.3), each of the
64 lasers is an individual sensor, with the sensor ID being the sensor’s
fixed elevation angle. In our implementation, each laser stores its data in
a dedicated file.

2.5. EVALUATION 29

[b] The GeoLife dataset, containing GPS data collected in the GeoLife
project by 182 users over ca. three years [71–73]. We use a subset of the
dataset with vehicular GPS traces in the Beijing area.

[c] The Volvo dataset, provided by Volvo Cars. This dataset consists of
CAN data3 and GPS traces from 20 hybrid cars and was collected in
Sweden in the years 2014 and 2015.

2.5.2 Software and hardware setup

We implemented Lisco in Python 3.6 and the PLA components (see Sec-
tion 2.4.2) in Apache Flink 1.5.0. The segment length n of the PLA compressor
is bounded by 256 to limit its bandwidth consumption to 1 byte, while the
parameter minPts is set to 10 in all experiments (this parameter is adopted
from [42]).

We use as a stand-in for the vehicle node an ODROID-XU3 single-board
computer to approximate the low-power processor of a vehicle, equipped with a
Samsung Exynos 5422 Cortex-A15 2.0 GHz quad-core and Cortex-A7 quad-core
CPU and 2 GB of LPDDR3 RAM at 933 MHz. For the analysis center, we use
a server with an Intel(R)
Core(TM) i7-4790 3.60 GHz quad-core CPU and 8 GB of RAM. The ODROID
and the server are connected via Ethernet. We reduce the connection bandwidth
using the tool trickle [74] to simulate four different upload speeds for the
ODROID: slow (8 KB/s, in the range of 2G), medium (500 KB/s, in the range
of 3G), fast (1000 KB/s, in the range of 4G) and very fast (10000 KB/s, in
the range of 5G).

2.5.3 Evaluation metrics

DRIVEN is evaluated for four use cases among four dimensions:

• Average error : The average error
Ȳ = 1

N

∑N
i=1 |yi − y′i| between original values yi and reconstructed ones

y′i.

• Compression ratio: The size of the compressed data divided by the raw
data size.

• Adjusted rand index : The clustering obtained from the approximated
data compared to the clustering obtained from the original data via the
adjusted rand index.4

• Gathering time ratio: The time needed to gather the approximated data
(including compression / decompression overheads) divided by that taken
to gather the raw data.

3CAN (Controller Area Network) is a vehicular communication bus standard over which
sensor data, fault messages, etc. can be transmitted.

4The rand index of two partitions (or sets of clusters) A,B is a symmetric measure that
counts how many pairs of elements in partition B are clustered exactly as in partition A.
The adjusted rand index extension takes into account accidental random clusterings (see [75]
for more details).

30 CHAPTER 2. DRIVEN

Table 2.1: Queries Q(V,T, S,∆, qpre, {clustering parameters}) for evaluation. See
Section 2.3 for explanation of query arguments.

Q
1
:
L
iD

A
R

V
T

S
∆

q
p
r
e

c
lu

st
e
ri

n
g

p
a
ra

m
e
te

rs

1
1
0

L
iD

A
R

∆
α

=
0
.0

0
0
5

ra
d
,

m
e
rg

e
6
4

la
se

rs
g
e
t
M
a
s
k
S
i
z
e
(
T
u
p
l
e
τ
)
:

v
e
h
ic

le
ro

t.
∆
ρ
∈

[0
.1
,
0
.2
,
0
.5
,
1
,
5
,
1
0
]
m

a
d
d

la
se

r
id

r
e
t
u
r
n

g
e
t
M
a
s
k
S
i
z
e
I
n
R
o
t
(
τ
)

6
4

a
r
e
N
e
i
g
h
b
(
T
u
p
l
e
τ
1
,

T
u
p
l
e
τ
2
)
:

la
se

rs
r
e
t
u
r
n

e
u
c
l
i
d
D
i
s
t
(
τ
1
,
τ
2
)
≤
0
.
5
m

Q
2
:
1
-V

e
h
ic
le

1
-D

a
y

V
T

S
∆

q
p
r
e

c
lu

st
e
ri

n
g

p
a
ra

m
e
te

rs

1
1

d
a
y

G
P

S
∆
t

=
1

s,
w
i
n
d
o
w
A
g
g
r
(
5
s
)

g
e
t
M
a
s
k
S
i
z
e
(
T
u
p
l
e
τ
)
:

v
e
h
ic

le
∆
x
,
∆
y
∈

[1
,
2
,
5
,
1
0
,
2
0
,
5
0
]
m

e
m

it
la

te
st

tu
p
le

r
e
t
u
r
n

1
2

a
r
e
N
e
i
g
h
b
(
T
u
p
l
e
τ
1
,

T
u
p
l
e
τ
2
)
:

r
e
t
u
r
n

e
u
c
l
i
d
D
i
s
t
(
τ
1
,
τ
2
)
≤
5
0
m

Q
3
:
1
-V

e
h
ic
le

1
4
-D

a
y

V
T

S
∆

q
p
r
e

c
lu

st
e
ri

n
g

p
a
ra

m
e
te

rs

1
1
4

G
P

S
∆
t

=
1

s,
w
i
n
d
o
w
A
g
g
r
(
1
0
s
)

g
e
t
M
a
s
k
S
i
z
e
(
T
u
p
l
e
τ
)
:

v
e
h
ic

le
d
a
y
s

∆
x
,
∆
y
∈

[1
,
2
,
5
,
1
0
,
2
0
,
5
0
]
m

a
d
d

d
a
y

id
r
e
t
u
r
n

1
5
,

1
4

e
m

it
la

te
st

tu
p
le

a
r
e
N
e
i
g
h
b
(
T
u
p
l
e
τ
1
,

T
u
p
l
e
τ
2
)
:

r
e
t
u
r
n

e
u
c
l
i
d
D
i
s
t
(
τ
1
,
τ
2
)
≤
1
0
0
m

Q
4
:
C
a
r
u
s
a
g
e

g
r
id

s

V
T

S
∆

q
p
r
e

c
lu

st
e
ri

n
g

p
a
ra

m
e
te

rs

2
0

7
G

P
S

∆
t
G

=
1

s,
∆
t
e

=
∆
t
c

=
0
.0

0
5

s
a
d
d

d
a
y

id
g
e
t
M
a
s
k
S
i
z
e
(
T
u
p
l
e
τ
)
:

v
e
h
ic

le
s

d
a
y
s

e
le

c
tr

ic
R

P
M

∆
x
,
∆
y
∈

[1
,
2
,
5
,
1
0
,
2
0
,
5
0
]
m

fi
n
d

d
ri

v
e

m
o
d
e

r
e
t
u
r
n

7
,

2
,

2

c
o
m

b
.

R
P

M
∆
ω
e
,
∆
ω
c
∈

[1
,
5
,
1
0
,
2
0
,
5
0
,
1
0
0
]

H
z

a
d
d

to
g
ri

d
a
r
e
N
e
i
g
h
b
(
T
u
p
l
e
τ
1
,

T
u
p
l
e
τ
2
)
:

r
e
t
u
r
n

c
o
u
n
t
e
r
D
i
s
t
(
τ
1
,
τ
2
)
≤
1
)

For all use cases, we use the term baseline to refer to a setup in which raw
data (i.e, with no compression) is gathered and clustered.
In addition to the four evaluation dimensions explained above, we also evaluate
the Logical Latency for the Ford Campus and GeoLife datasets (we refer the
reader to Section 2.2.4 for a definition of logical latency).
Since simulating the communication behavior of a large vehicular network is
beyond the scope of this work (and based also on the observation that real
behavior would depend on factors we cannot predict, such as the position of a
certain vehicle), experiments studying the gathering time are set up to favor
the baseline over DRIVEN and thus avoid bias. More concretely, gathering

2.5. EVALUATION 31

time is measured for the collection of each sensor’s data without concurrent or
parallel transfers from multiple vehicles, thus avoiding overheads (e.g. packet
losses) proportional to the size of the transmitted information (i.e., higher for
the baseline, given that raw data is larger in size than the compressed one, as
we show in the following).

In the following, results are presented through violin plots. Violin plots
show the distribution of the underlying data along their vertical axis, with the
mean marked by a horizontal bar. All the presented plots contain data from at
least 55 experiment runs.

2.5.4 Use cases

Q1 LiDAR

This is the use case presented in detail in Section 2.4.1. In accordance with our
system model, the data for each of the 64 lasers is stored on-vehicle as a stream
of 〈α, ρ〉 with the azimuth angle α (logical timestamp) and the distance reading
ρ. The query for this use case is detailed in Table 2.1. Based on the query,
all the sensor reading streams from the last ten rotations from each of the 64
LiDAR lasers from one vehicle are successively compressed on-vehicle with
some maximum errors ∆α,∆ρ on the logical timestamps α and the distance
readings ρ. Each compressed stream of laser readings is then successively
sent to the analysis center, where the streams are decompressed. Query qpre

assigns each tuple its laser id and the horizontal angle θ, providing to Lisco the
data structured as the 2D matrix (Figure 2.7) to Lisco. The tuples are added
column-wise (see colored column) by qpre with decreasing laser id θi (the id
of the i-th laser) from top to bottom and increasing rotation angle αij (the
j-th rotation step of the i-th laser) from left to right. This merging of data
from different sensors is performed deterministically [50] based on the logical
timestamp α carried by the tuples.

As clustering parameters, Lisco is instructed to check the Euclidean distance
between pairs of tuples; to accomplish that, it searches for candidates in a
maximum α, θ - area around tuple τ defined by getMaskSizeInRot(τ), which
calculates the angles α, θ of the horizontal and vertical laser beams who could hit
points that are within distance ε = 0.5 m from the sensor reading corresponding
to τ , as they bound the ε-neighborhood of the latter, while also ensuring that
only points within the same rotation are part of the mask.

Through the way that data is maintained in the 2D matrix, this defines a
rectangular area (i.e., mask) in the matrix around τ (cp. Figure 2.4.3).

The compression statistics for this use case can be seen in Figure 2.8 (a)
and (b) expressed via violin plots. The angle α is in all cases compressed with

Figure 2.7: Q1: Sketch of data structure produced by qpre.

32 CHAPTER 2. DRIVEN

0.0

0.5

1.0

1.5

2.0 (a) Average error on ρ

0.00

0.05

0.10

0.15

0.20
(b) Compression

0.1 0.2 0.5 1 5 10

∆ρ [m]

0.5

0.6

0.7

0.8

0.9

(c) Adjusted rand index

0.1 0.2 0.5 1 5 10

∆ρ [m]

0.0

0.5

1.0

(d) Gathering time ratios

slow medium fast

Figure 2.8: Q1: (a) - (c) Compression and clustering statistics for various ∆ρ; (d)
gathering time ratio for various ∆ρ and different network speeds.

a maximum error ∆α of 1.5 × 10−3 rad, yielding an average error on α of
3.4×10−5±1.0×10−5 rad (average ± standard deviation). ρ is compressed for
values [0.1, 0.2, 0.5, 1, 5, 10] m. In (a), it appears for larger values of ∆ρ that
the average error is about one order of magnitude smaller than the maximum
error (this is true for small ∆ρ too, although harder to appreciate in the graph).
The compression as a ratio of compressed vs. raw file size in (b) shows that
LiDAR data can already for a maximum error ∆ρ = 0.1 m be compressed
below (median) 10 % of the raw size, which we attribute to the regularity of
the logical timestamps α as well as to the existence of stretches of ρ = 0 in
the raw data (these occur when the laser is not reflected, cp. Section 2.4.1).
For increasing maximum error, the compression ratio decreases only slightly,
which indicates that almost maximum compression is reached early. The long
tails towards lower compression hint at single files with data that is harder to
compress than the average. For ∆ρ = 1 m, the data transmitted in this use
case (10 rotations of the LiDAR, which are completed in 2 s) is around 750 KB.
Transmitting this live is possible with network speeds of 3G or larger. The
comparison of the resulting clusters from query Q1 with the baseline is shown
in Figure 2.8 (c) (as only points within the same rotation may be clustered,
we compare the resulting clusters between the same rotations, not between
the sets of ten rotations). One observes that for increasing ∆ρ the similarity
between the clusters of approximated and baseline data decreases. However,
for ∆ρ = 0.1 m, the median compression ratio is already below 0.10, while
the median adjusted rand index is larger than 0.95, indicating that a large
compression can be achieved without a large loss of precision in the clustering.

Figure 2.8 (d) shows the end-to-end gathering time ratio for the three
network speeds. While there is no significant decrease for increasing maximum
error (according to the compression ratio that also decreases only slightly for
larger ∆ρ), for all network speeds data gathering times are reduced to between
60 % for fast networks down to less than 15 % for slow networks.

2.5. EVALUATION 33

Q2 1-Vehicle 1-Day

In this use case, the analyst requests the GPS data of a single day from one
vehicle in order to cluster all points within a predefined distance and timespan.
This could e.g. serve to identify areas of slow traffic or areas where the vehicle
stopped. Based on our system model, the data is stored on-vehicle as a stream
of tuples 〈t, x, y〉 with the timestamp as the actual measurement time and the
x, y attributes being the coordinates in meters.

The query Q2 for this use case is described in detail in Table 2.1. The
GPS position data stream from one day and one specific vehicle is compressed
on-vehicle with some error ∆t on the timestamps and errors ∆x = ∆y on the
vehicle’s GPS coordinates and sent to the analysis center. There, the stream of
decompressed tuples is aggregated by qpre in tumbling windows of 5 seconds,
and for each window, only the latest tuple is returned as soon as the window
completes. The data provided to Lisco structured as a 2D matrix is sketched
in Figure 2.9 (the colored field contains the last added tuple). If a window is
empty because no data exists for the corresponding time period, the field in
the data structure will also remain empty.

As clustering parameters, Lisco is instructed via
getMaskSize(τ) to check the last 6 indexes of the 1D array, reducing the search
space for neighbors and ensuring the clustering only of points that are also close
in time. The clustering decision is taken by the function areNeighb(τ1,τ2)
on the basis of the Euclidean distance between the x, y-coordinates of the two
tuples.

The compression statistics are given in Figure 2.10 (a), (b). We choose in
this case a fixed error ∆t = 1 s for the compression of the timestamps, resulting
in an average error of (0.095 ± 0.090) s. ∆x and ∆y are chosen to be equal
and ∈ [1, 2, 5, 10, 20, 50] m. Figure 2.10 (a) shows the average error on both
coordinates as a function of the maximum errors, with the average errors being
roughly one-third of the allowed maximum error. Figure 2.10 (b) shows the
total compression achieved for each maximum error: assuming a measurement
uncertainty for GPS data on the order of few meters, maximum compression
errors of less than ten meters may be assumed to be small. Still, these result
in compression ratios that can be lower than 0.2. This may be explained with
straight roads, resulting in long, linear segments in the GPS data, as well
as regularity of the timestamps. The violin plots’ long upward tails hint at
individual files with lower compressibility. The results for the comparison of
the resulting clusters from approximated and raw data are shown in Figure 2.10
(c): for small maximum errors ∆x,∆y, the adjusted rand index is close to 1,
but it decreases for larger maximum errors.

The gathering time ratios are shown in Figure 2.11 (a). The median is
around 1.3 for faster networks and does not decrease for increasing compression.
This shows that DRIVEN in this use case is only beneficial for a slow network.

Figure 2.9: Q2: Sketch of data structure produced by qpre.

34 CHAPTER 2. DRIVEN

0

5

10

15
(a) Average error on x, y

x-coord

y-coord

0.0

0.2

0.4

0.6 (b) Compression

1 2 5 10 20 50

∆x,∆y [m]

0.0

0.5

1.0

(c) Adjusted rand index

Figure 2.10: Q2: (a), (b) Compression statistics; (c): Adjusted rand index.

1 2 5 10 20 50

∆x,∆y [m]

0.0

0.5

1.0

1.5

(a)
slow medium fast

0.05 0.10 0.15 0.20

raw data size [MB]

1.0

1.2

1.4

(b)
1m

2m

5m

10m

20m

50m

Figure 2.11: Q2: Gathering time ratios for various (a) maximal errors for different
network speeds and (b) raw data sizes (rolling average over 13 values, different colors
are used for distinct values of ∆x,∆y) for a medium speed network.

More insight is gained from Figure 2.11 (b), showing the gathering time ratios
as a function of the baseline data size for a medium speed network. For small
data sizes, the additional time overhead of the compression and decompression
procedure increases the gathering duration over directly transmitting the raw
sample. For larger sample sizes, the gathering time ratio approaches 1 for
all maximum errors ∆x,∆y. This gives an approximation for the minimum

2.5. EVALUATION 35

size of data to be collected given the network bandwidth and the compres-
sion/decompression overheads, as we further show in the remainder (we stress
nonetheless that our evaluation setup favors raw data gathering, as explained
in Section 2.5.3).

Q3 1-Vehicle 14-Day

In this use case, the analyst requests the GPS data from one specific vehicle
from the last 14 days, to possibly identify routes that one vehicle follows
regularly. The query Q3, described in the query overview in Table 2.1, differs
from Q2 in the period covered by the data and in the task of qpre: upon
consecutively receiving the GPS streams for each day and windowing (with
10 second windows) as in the previous use case, each tuple is also assigned
an identifier for the day. As soon as the stream for one day is processed, it is
added column-wise to a data structure as shown in Figure 2.12 (the first entry
of each tuple is the day identifier id, t is the number of seconds from midnight
on day id).

Lisco can thus process the GPS stream of each day as soon as it is received.
In contrast to the previous use case, Lisco is now instructed to search the last
15 cells in the direction t, and all cells in the direction “days” (14 ensures that
all days are encompassed), for tuples within a Euclidean distance of 150 m.

The compression statistics may be found in Figure 2.13 (a), (b) and are
similar to those seen in Figure 2.10 (a), (b), as the same data type with only
increased sample size is used. Here the constant maximum error ∆t = 1 s
results in an average error of (0.093± 0.081) s. The evaluation of clustering
qualities is shown in Figure 2.13 (c), also with similar results to the previous use
case. The addition of the attribute “days” for Lisco seemingly has only a small
influence, suggesting that in the majority of samples there is no significant
number of inter-day clusters.

Figure 2.14 (a) shows the measured gathering time ratios. The median
gathering time ratios are below 0.35 for all values of the maximum errors for a
slow network, and for faster networks around 0.75, although also samples with
ratios greater than 1 are present. As shown in Figure 2.14 (b) (for medium
network speeds), this is due to samples with raw data size smaller than 200
KB (at medium network speeds). For samples larger than 200 KB, gathering
time ratios for all values of ∆x,∆y are smaller than 1.

days

Figure 2.12: Q3: Sketch of data structure produced by qpre.

36 CHAPTER 2. DRIVEN

0

5

10

15 (a) Average error on x, y

x-coord

y-coord

0.0

0.5

1.0 (b) Compression

1 2 5 10 20 50

∆x,∆y [m]

0.25

0.50

0.75

1.00

(c) Adjusted rand index

Figure 2.13: Q3: (a), (b) Compression statistics; (c) Adjusted rand index.

1 2 5 10 20 50

∆x,∆y [m]

0.0

0.5

1.0

(a)

slow medium fast

0.0 0.2 0.4 0.6 0.8

raw data size [MB]

0.5

1.0

(b) 1m

2m

5m

10m

20m

50m

Figure 2.14: Q3: Gathering time ratios for various (a) maximal errors for different
network speeds and (b) raw data sizes (rolling average over 13 values, different colors
are used for distinct values of ∆x,∆y) for a medium speed network.

Q4 Car usage grids

In this use case, the analyst wants to investigate if a fleet of hybrid cars uses
the same drive mode (electric/traditional) on the same routes at similar times
of the day. To perform this query, the analyst requests GPS data as well as the
combustion engine and electric rear axle engine (ERAD) RPMs (rotation per
minute) time series, requiring three different time series from three different

2.5. EVALUATION 37

5373
6
6
5 6 6

3 2
3

1 1 2
1
2 1 1

73

6364

3 3 2 3
3
3
3 3 3

3 3
3

...

day 1

day 4

day 3

day 2
electric

combustion

(p1, p2)

(p3, p4)

g
ri

d
 o

f
d

a
y
 1

Figure 2.15: Q4: Sketch of data structure produced by qpre.

electric
combustion

Figure 2.16: Q4: Example of one grid (instead of showing the number of vehicles
per drive mode and cell, only colors indicate the cell occupation).

sensors, for one week from 20 hybrid cars. The three time series in tuple
notation are 〈tG, x, y〉 for GPS (physical timestamp [s], x-coordinate [m] and
y-coordinate [m]), 〈te, ωe〉 for the ERAD RPM (physical timestamp [s], RPM
[Hz]) and 〈tc, ωc〉 for the combustion engine RPM (physical timestamp [s],
RPM [Hz]). Using this data, a map is created for each day, and clusters of
identical drive mode (electric/combustion engine use) between different days
and different locations on the map are created to identify routes for which a
certain drive mode is preferred.

Over a rectangular geographic grid of 150 × 150 cells, the GPS trace of
a car Vi during each day of the requested week is discretized. For each cell,
characterized by the time period T during which Vi was present within the cell’s
boundaries, the combustion and electric engine RPMs during T are regarded
and a decision is taken whether the car was in combustion or electric mode
during T . Each cell contains a counter for each mode, and if Vi is found to
be in a certain mode while in that cell then the corresponding mode counter
is increased. For each day, each Vi can only contribute to each cell’s counter
once. This is repeated for all Vi, i ∈ {1, . . . , 20}, such that a map is created for
each day of the week containing the cells visited (including drive mode) by all
vehicles.

This pre-processing task is performed by qpre, and a sketch of the data
structured as a 3D matrix that is passed to Lisco is visualized in Figure 2.15: The
coordinates (p1,p2) and (p3,p4) are located at the corners of the geographical
grid (which in this sketch is a 9× 9 grid). The first dimension of the 3D matrix

38 CHAPTER 2. DRIVEN

[∆x = ∆y,∆ωe ,∆ωc]
1 [1 m, 1 Hz, 1 Hz]
2 [2 m, 5 Hz, 5 Hz]
3 [5 m, 10 Hz, 10 Hz]
4 [10 m, 20 Hz, 20 Hz]
5 [20 m, 50 Hz, 50 Hz]
6 [50 m, 100 Hz, 100 Hz]

Table 2.2: Q4: Maximum-error sets used. As three different time series are requested,
three different error parameters are given (for GPS, ∆x = ∆y).

is time (day of the week), the other two are geographic x, y-coordinates. A
concrete example grid for one day is shown in Figure 2.16 (for visibility, the
counters for each cell are represented with only a color marker).

The query Q4 is formally described in the query overview in Table 2.1.
Two grid cells, represented by tuples τ1, τ2, become clustered in accordance
with counterDist(τ1, τ2) if the difference in both cells’ electric or both cells’
combustion mode counter is smaller than or equal to 1.

The time channels tG, te, tc (for GPS, electric engine RPM and combustion
engine RPM) are compressed with ∆tG = 1 s; ∆te = ∆tc = 0.005 Hz, resulting
in average errors of (0.49±0.06) s, (142±72)µs and (921±161)µs, respectively.
The remaining channels are compressed for six sets of maximum errors shown
in Table 2.2.

We assume for the evaluation that there is no change in network and analysis
center performance for gathering the data from 20 vehicles at once, and thus
simulate the query on one vehicle only (i.e., utilizing one ODROID as in the
other use cases).

The compression and clustering statistics for this use case are shown in
Figure 2.18: (a) is the average error on the x, y-coordinate of the GPS time

1 2 3 4 5 6

maximum-error set #

0.4

0.6

0.8
(a)

10 20 30 40 50

raw data size [MB]

0.5

0.6

0.7

(b) 1

2

3

4

5

6

Figure 2.17: Q4: Gathering time ratios for (a) a very fast network speed and (b)
for various raw data sizes (rolling average over 13 values, different colors are used for
different maximum-error sets) for a very fast network.

2.5. EVALUATION 39

5 10 20 50

∆x,∆y [m]

0

5

10

15
(a) Average error on x, y: GPS

x-coord

y-coord

1 5 10 20 50 100

∆ωe ,∆ωc [Hz]

0

5

10

15

(b) Average error on ERAD/engine RPM

ERAD RPM

engine RPM

1 2 3 4 5 6

maximum-error set #

0.00

0.05

0.10

0.15

0.20 (c) Compression

1 2 3 4 5 6

maximum-error set #

0.7

0.8

0.9

1.0

(d) Adjusted rand index

Figure 2.18: Q4: (a) Average error on the x- and y-coordinate for several values
of the maximum compression errors ∆x,∆y for GPS data; (b) average error on
the ERAD and engine RPM for several values of the maximum compression errors
∆ωe ,∆ωc ; (c) compression statistics for different maximum-error sets (see Table 2.2);
(d) adjusted rand index.

series for different values of ∆x = ∆y. The average errors for the first two error
sets are not displayed, due to the low geospatial precision of the GPS time
series the average error on the GPS coordinates is on the order of 10−5 m for
∆x = ∆y ∈ {1 m, 2 m}. (b) is the average error on both the ERAD and the
combustion engine RPM, which are roughly one order of magnitude smaller
than the allowed maximum errors ∆ωe ,∆ωc . (c) shows that already for the
maximum-error set #1 a median compression of 12 % can be achieved, down
to 2 % for #6. This is explained by long stretches of inactivity of either the
ERAD or the combustion engine, resulting in long stretches of constant zero
readings in their respective time series. These stretches can be compressed well
with PLA. The adjusted rand indices in (d) remain in the median above 0.9
until maximum-error set #6, indicating that the analysis accuracy in this use
case is quite robust towards compression.

Gathering time ratios for a very fast network are shown in Figure 2.17 (a)
for the six different maximum-error sets. For the smallest individual maximum
errors at maximum-error set #1, the gathering time ratio is below 0.65, and for
increasing individual maximum errors the gathering time ratio decreases slightly
more to 0.55, but is almost constant. This may be due to the almost-constant
compression for higher maximum-error sets, see Figure 2.18 (c). Figure 2.17
(b) shows the gathering time ratios for the same very fast network speed for
various raw data sizes. For all maximum-error sets, the gathering time ratio
tends to decrease for increasing raw data size. The noisy behavior of the curves,

40 CHAPTER 2. DRIVEN

which is almost identical for each maximum-error set, may hint at individual
files that are harder or easier to compress than other files of similar raw data
size.

2.5.5 Compression evaluation

To gauge the performance of our PLA compression technique, we compare
it with the DEFLATE compression algorithm used for ZIP compression. We
choose ZIP because of its general-purpose nature, widespread use and lossless
compression. Here, we show a comparison for the data used in Q1 (LiDAR) and
Q2 (GPS). In our experiments, we zip for each separate channel nzip consecutive
points (thus nzip · size(float) bytes) and take the average over all channels per
file. The results are plotted in Figure 2.19, with ”×” marking the compression
achieved with PLA plotted in nzip’s column corresponding to the average
segment length obtained through DRIVEN (be reminded that the segment
length with our PLA method varies and depends on the underlying data; only
the maximum segment length is specified and set to 256 points). We set here the
maximum tolerated errors to minimal-loss values, i.e. ∆ρ = 0.01 m for LiDAR,
and ∆x = ∆y = 1 m for GPS, cf. Figures 2.8 (a), 2.10 (a). For comparable
segment lengths, the ZIP representation is 2-10 times larger, indicating the
advantages of lossy, piecewise linear compression for this type of data and
scenario. Even when zipping all the available data (nzip =∞), the gap remains
stark, which further hints at the validity of our PLA implementation. Moreover,
allowing for larger segment lengths would limit the usefulness in a live data
gathering scenario, as shown in the following subsection.

10 50 120 256 512 ∞
nzip

0.00

0.25

0.50

0.75

1.00

co
m

p
re

ss
io

n

PLA

PLA

ZIP compressibility

LiDAR

GPS

Figure 2.19: Compression ratios using ZIP for varying segment lengths nzip. ”×”
marks the compression achieved with PLA for equivalent average n for smallest
maximum errors (almost lossless).

2.5.6 Logical latency

Lastly, we evaluate DRIVEN by studying the logical latency observed when
compressing data from the Ford Campus and GeoLife datasets. By doing this,
we can thus estimate the live gathering time incurred when performing PLA
compression on live data (which can be approximated by the average segment
length multiplied with the sampling period of data being clustered, since this
is orders of magnitude larger than emission time, as well as transmission and
reconstruction delays).

2.5. EVALUATION 41

Notice that we do not present results for the Volvo dataset in this case,
since the different order of magnitude of sampling period between GPS and
ERAD/engine data (seconds versus milliseconds) results in GPS data (already
discussed for the GeoLife dataset) being the one dominating the live gathering
time delay for compression of live sensed data. More concretely, given the GPS’
data sampling period of 5 s and the ERAD/engine RPMs sampling period of
40 ms, the shortest possible segment of GPS’ data (approximating 3 points)
results in an average live gathering time of 10 seconds while the longest possible
segment of ERAD/engine RPMs data (approximating 256 points) results in an
average live gathering time of approximately 5 seconds.

Based on our description of logical latency (Section 2.2.4), the logical
latency incurred by DRIVEN can be modeled as follows. For the stream of
values y, the logical latency is obtained as the difference j − i where 〈j, yj〉
is the last tuple read before the compressor sends information that triggers
the i-th tuple’s reconstruction on the decompressor side; two situations are
then possible: either processing 〈j, yj〉 triggers the emission of a line segment
〈n, a, b〉 and in this case 〈i, y′i〉, with j − n − 1 ≤ i ≤ j − 1, is reconstructed
among n− 1 other tuples using the segment’s information, or 〈j, yj〉 triggers
the emission of a singleton 〈1, y′i〉 where then i = j − 2 (since 3 tuples are read
before emitting a singleton, the logical latency is always 2 in this case). Logical
latencies are bounded by the maximum segment length (this occurs for the
first tuple on a maximum-length segment), and the average logical latency
corresponds (when omitting singletons) to half the average segment length.
When no compression is performed, logical latencies are 0. For an input tuple
〈y0
i , . . . , y

k
i 〉 (which is split into 〈i, y0

i 〉, . . . , 〈i, yki 〉), the combined logical latency
is the maximum logical latency of the individual tuples 〈i, y0

i 〉, . . . , 〈i, yki 〉, as
the original tuple can only be reconstructed as soon as all its attributes have
been individually reconstructed. The compression scheme used in DRIVEN,
i.e., the PLA construction method Linear coupled with a streaming-based
protocol, has been shown in [40] to produce logical latencies one to two orders
of magnitude smaller than other state-of-the-art PLA construction algorithms.

In addition to calculating the average logical latencies of the Ford Campus
and GeoLife datasets, we further study to which extent the logical latencies
can be reduced by reducing one parameter of our PLA compression scheme:
the maximum segment length (set to 256 tuples in our evaluation).

Figure 2.20 shows the individual and combined average logical latencies
as violin plots for different compressions measured over the (a) LiDAR (Ford
Campus) and (b) Beijing GPS (GeoLife) datasets. The red violin plot on the
left of both (a) and (b) displays the distribution of average logical latencies
for the (logical) timestamps. As the (logical) timestamps are only compressed
with a constant maximum error (∆α = 0.0015 rad for LiDAR, ∆t = 1 s for
GPS), only one violin plot is shown per dataset for the (logical) time channel.

The span of the violin plots for different compressions is small for both (a)
and (b), meaning that the logical latency depends more on the type of data
than on the specific file of a certain datatype. Second, the combined logical
latencies for both datasets are dominated by the latency of the timestamp
channel. As this channel is quite linear, and thus easily compressible, we expect
the longest segments for the timestamp channel and thus a large logical latency.

42 CHAPTER 2. DRIVEN

0.1 0.2 0.5 1 5 10

∆ρ [m]

0

50

100

(a)
angle distance combined

1 2 5 10 20 50

∆x,∆y [m]

0

25

50

75

100

(b) time

latitude

longitude

combined

Figure 2.20: Distribution of logical latencies in number of tuples for (a) the LiDAR
(Ford Campus) and (b) the Beijing GPS (GeoLife) dataset as a function of the
respective maximum errors. The logical latency for the angle/time coordinate is
displayed over the y-axis (red), as their corresponding maximum errors are constant
over each of the two datasets.

Concretely, this means that other channels have to wait for the time channel
to be decompressed before an original tuple can be reconstructed.

For the GeoLife GPS dataset, used in Q2 −Q3, the average difference be-
tween two timestamps in the original data is 5 s. Thus, neglecting transmission
time, it takes on the order of 100× 5 s = 500 s to reconstruct an original input
tuple for GPS data with the aforementioned sampling rate.

For the Ford Campus LiDAR dataset, used in Q1, there are 20000 readings
of the logical timestamp channel α per second (see Section 2.4.1). Combined
with a logical latency on the order of 100 tuples, this results in an average
reconstruction time of at least 0.005 s.

In the use cases investigated in this evaluation, those latencies carry little
significance, as historic data is gathered. In these cases, where the data is
replayed at much higher than live speeds, the transmission duration is dominant
for the data gathering time. When live data is requested, however, the logical
latency can lead to significant delays, but this is inevitable for PLA compression.
The logical latency is strictly linked to the segment lengths of the PLA and
can be reduced either via a smaller maximum segment length or via a smaller
maximum error threshold, resulting in a PLA with shorter segments. For the
combined logical latency, these changes will have greater effects if applied on
the time channel, which due to its compressibility is dominant overall in our
evaluation.

2.5. EVALUATION 43

50

100
(a) LiDAR

16 64 256 1024 4096 16384

n (logarithmic scale)

20

40

60
lo

g
ic

a
l

la
te

n
cy

(b) GPS

0.10

0.15

0.12

0.14

0.16

0.18

co
m

p
re

ss
io

n

Figure 2.21: Average logical latency (over all channels) and compression for different
maximum segment lengths n (n = 256 is the maximum segment length chosen in this
evaluation).

Figure 2.21 shows the logical latency and the compression for the LiDAR
and GPS dataset (each averaged over all contained channels) for different
values of the maximum segment length using constant error bounds (LiDAR:
∆ρ = 1 m, ∆α = 0.0015 rad; GPS: ∆x = ∆y = 10 m, ∆t = 1 s). This figure
motivates the choice of n = 256 for the maximum segment length, as for this
value the compression is maximal. For higher n, the compression does not
increase further, as the maximal length of segments is an inherent characteristic
of the data used (for a given maximum compressor error). The compression
even becomes slightly worse as more data must be allocated for transmitting
the segment length (i.e., two bytes are needed for n > 256). The logical
latency increases with increasing segment length, and becomes stationary as
the maximum inherent segment length is reached.
If lower logical latency is desired for a query, this figure shows that in turn
lower compression will be achieved. However, depending on the region within
the plots, large gains in logical latency can be achieved with comparatively
smaller losses in compression, especially noticeable in the n = 64 . . . 256 region.

2.5.7 Summary of evaluation results

The evaluation shows that, compared to the baseline, DRIVEN can maintain
an adjusted rand index greater than or equal to 0.9 for the clustering of
approximated data while compressing the raw data to less than 5 %, 20 % and
2.5 % for LiDAR, GPS and a combination of GPS and other vehicular signals,
respectively - outperforming lossless ZIP compression by factors of 2− 10 for
LiDAR and GPS. Also, DRIVEN affords speed ups exceeding ×10 in data
gathering times for large-enough amounts of data (at least 200 KB per sensor
in our setup). Still, the logical latency inherent to PLA must be considered
when working with live data. This logical latency can also be significantly
decreased using an appropriate maximum segment length.

44 CHAPTER 2. DRIVEN

2.6 Related work

Clustering, as a core problem in data mining, has been extensively studied in
the last decades (see e.g. the survey [76] and the references therein). The two
main trends in clustering algorithms differ on what should be considered as
a cluster, either privileging well-balanced ball-like clusters (as in the widely-
studied k-means approach) or rather focusing on local density leading to
arbitrarily shaped clusters (e.g. DBSCAN [69]-style). Other features that can
distinguish existing clustering algorithms include their sensitivity to outliers
(not interesting data that should be ignored in some applications), their ability
to work with any distance function or the required level of parametrization.

Research on data streaming has also investigated how traditional batch-
based clustering can be ported to the continuous domain. Clustering for large
fast-coming streaming data has been widely studied in the last decade [77],
focusing on producing approximations of the batch-clustering algorithm. Facing
high-rate data streams, attention has indeed been paid to maintaining statistical
summaries of the streamed data in order to generate on-demand clustering.
Focus on recent data is captured by clustering only a recent window (using
either landmarks, sliding windows, or assigning decreasing weights to older data)
of points [77]. In [78], the authors design a fully streaming clustering algorithm
(as the streaming version of a recently proposed clustering algorithm [79]),
computing the exact same clustering of its batch-based counterpart. Similar to
the clustering algorithm described here, the clustering is density-based (hence
for arbitrarily shaped clusters), works with any distance function but uses a
different notion of dissimilarity between objects. However, contrary to our work,
the ordering of data is not exploited resulting in O(n) time for the processing
of a single point (while clustering n points).

Various solutions in the literature use approximation techniques together
with streaming-based clustering methods to improve the performance, in one
or more dimensions, of different clustering problems. Replacing time series by
shorter representations [80] such as Discrete Wavelet / Fourier Transforms or
Symbolic Aggregate Approximation to facilitate the processing and enhance
the performance of several data mining algorithms (including clustering) has
been a long trend in time series data mining [81]. Differently from our work,
PLA or similar techniques (such as piecewise aggregate or piecewise constant
approximation) are used to replace a time series by a lighter version to be later
processed, as for clustering of time series in [82]. In our work, the objects being
clustered are not the time series but the input points themselves and PLA is
used to gather data efficiently (i.e., the data stream eventually clustered has
the same length as the original one). To the best of our knowledge, this joint
leveraging of streaming and PLA was not discussed before.

Concerning the generation of the PLA of a time series, there is an extensive
literature covering it (e.g. [60, 61, 63, 64]) while focusing on different aspects
of the approximation (errors, number of segments, processing time, etc.).
Among recent works targeting sensor streams, we note the Embedded SWAB
algorithm [62] (a modification of the well-known SWAB [60] segmentation)
dedicated to the compression of wireless sensor raw data before transmission.
The experimental study measuring power consumption shows that using PLA
pays off in embedded devices by balancing out the computation overhead

2.7. CONCLUSION AND FUTURE WORK 45

with reduced communication, thus reducing energy consumption. The authors
note that the abstraction size is crucial in wireless sensor networks, thus
motivating the study of trade-offs between small errors and high compression,
which is one of the focal points of this work, in the context of the considered
applications relevant in industrial settings. We also measure the time spent
in the decompression process in our work and advocate that information
retrieval from the measured data is also faster with PLA than with raw
data transmission. In another recent work [65], the authors devise a PLA
algorithm with a small memory footprint and average instruction count for
resource-constrained wireless sensor nodes. They use a best-line approximation
(similarly to us) but with no intercept (so more segments are produced), and
the approximation error is bounded by segment instead of by point.

In an earlier work [68], a preliminary demonstration of DRIVEN can
be found. In contrast to that work, we here propose a new algorithmic
implementation of our multi-channels PLA compression that enables exact
error guarantees through completely independent processing of time and other
channels of a sensor and additionally resulting in better compression ratios.
Moreover, we provide a more extensive evaluation that extends previous results
to larger data volumes and higher network speeds. Furthermore, the present
work investigates the effects and limitations of applying DRIVEN in live data
gathering scenarios and introduces an additional experiment advocating for
the benefits of using PLA versus standard lossless ZIP compression.

2.7 Conclusion and future work

We have presented here the DRIVEN framework for data retrieval and cluster-
ing in vehicular networks. The framework, implemented in a state-of-the-art
SPE, provides simultaneously an efficient way for gathering data and perform-
ing clustering on said data based on an analyst’s queries. Information retrieval
is achieved using PLA for compressing the input stream in a streaming fash-
ion. Once uncompressed, the approximated stream is fed to a distance-based
streaming clustering algorithm. Both the approximation and the clustering are
parameterizable for allowing different applications to be run by the framework.
Through thorough experimentation using real-world GPS and LiDAR data as
well as other vehicular signals, we show the versatility of the framework in being
able to answer different types of queries of historical data involving various
clustering requests for vehicular networks, and also show that compression in
data retrieval speeds up the transmission of gathered data while being able to
preserve a very similar clustering quality compared to raw data transmission.
Data can be reduced to 5 − 35 % of its raw size, reducing drastically the
duration of the gathering phase for large volumes of data, with only a small
accuracy loss on the clustering.
We furthermore have evaluated the application of DRIVEN in a live-data
scenario and studied the additional (and inherent) latency from the PLA
compression, which can nevertheless be reduced for a predictable loss in com-
pression, and gauged the compression capabilities of our PLA implementation
using ZIP compression.

46 CHAPTER 2. DRIVEN

The idea behind DRIVEN is to leverage the cumulative power of edge
devices to improve data analysis applications that are traditionally deployed
entirely at data centers and that require all input raw data to be first gathered
centrally. The solution we propose in this paper can be enhanced along different
dimensions in future work. First, other techniques (e.g. Symbolic Aggregate
Approximation - SAX) can be leveraged at the vehicles to reduce the amount
of data to be forwarded, and it is thus interesting to study how such techniques
would perform along with the performance metrics we take into account in
this paper. Second, given that many other machine learning techniques are
commonly used in cyber-physical systems’ data analysis, their integration (and
possible porting to the streaming paradigm) within DRIVEN is also of interest.
Finally, it is also important to notice that the computational power of each
edge device (be it a vehicle or something else) can be used in conjunction with
the data center’s one in several ways. While we study a solution that leverages
the edge device’s computational power to approximate and compress raw data,
we also believe that distribution of machine learning tasks (e.g. learning over
different subsets) is a way to leverage such computational power that is worth
exploring and can enable efficient and effective solutions.

Chapter 3:

Querying Large Vehicular Networks:

How To Balance On-Board Workload

And Queries Response Time?

R. Duvignau, B. Havers, V. Gulisano, M. Papatriantafilou

Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference
(ITSC 2019), pp. 2604-2611, 2019 [1].

PAPER B

This is a formatted and adapted version of the paper published in Proceedings of
the 2019 IEEE Intelligent Transportation Systems Conference (ITSC 2019), pp.
2604-2611, 2019. Any performed changes serve only to retain the consistency
of this thesis and to adapt to the layout.

47

Abstract

Data analysis plays a key role in designing today’s Intelligent Transportation
Systems (ITS) and is expected to become even more important in the future.
Connected vehicles, one of the main instantiations of ITS, produce large volumes
of data that are difficult to gather by centralized analysis tools. The even larger
volumes of data expected from autonomous driving will further exacerbate the
bottleneck problem of data retrieval. When analysts issue queries that seek
data from vehicles satisfying certain criteria (e.g. those driving above a certain
speed or in a certain area), the problem can partially be overcome by pushing
to vehicles themselves the job of checking and reporting the compliance of their
local data (e.g. recorded GPS positions or CAN data), hence avoiding a costly
data retrieval phase. The problem we tackle in this work consists in spreading
a set of such queries over a vehicular fleet while balancing the time needed to
resolve the queries and the computational overhead induced on the vehicular
network. We present in this work efficient and configurable query-spreading
algorithms tailored for vehicular networks. Our tunable algorithms, which we
evaluate on two large sets of real-world vehicular data, outperform baseline
solutions and are able to balance the trade-off between the overall on-board
workload and the response time needed to receive all answers for a set of
queries.

48 CHAPTER 3. QUERYING

3.1 Introduction

One of the key triggers for further deployment of Intelligent Transportation
Systems (ITS) relies on their communication capacity and on an efficient use
of their available bandwidth. For instance, in the automotive industry and
in academic research, Vehicular Ad Hoc Networks (VANETs) [83] have been
established in the recent decade as a key-enabling technology for providing a
wide range of applications such as vehicle road safety, enhanced traffic, enter-
tainment, infotainment, and improved comfort for drivers and passengers. A
central component of many applications in vehicular networks is data gathering
(see [11,12] for applications and services in VANETs), i.e., the process of col-
lecting sensed data from a fleet of vehicles to a central point (e.g. a company’s
data center). Since evolving vehicles can produce several gigabytes of data
per hour [6], analysis of data sensed from a large fleet becomes practically
infeasible if raw data is transferred to the analysis center. Hence there is a
strong need to leverage processing power on-board the vehicles [44,68,84,85],
or use some form of compression mechanisms (e.g. [40]) in order to decrease the
volume of data on the communication network (hence reducing monetary cost
associated with the analysis) and utilize possibilities for continuous, stream
processing [36].

Two types of communication are most often discussed in association with
VANETs: namely Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I).
V2V relies on some form of short-range communication whereas V2I can be
further subdivided into either communicating with roadside units [86] or to
some base stations via mobile broadband. Short-range communication is a
promising technology that has been greatly exploited to efficiently solve a
wide range of information gathering in vehicular networks, but even though
the technology is mature enough it is not yet readily available [87]. Cellular
connectivity, on the other hand, is becoming standard on modern cars (now
using 4G/LTE mobile infrastructure and soon 5G [88]) and all vehicles are
projected to be equipped with it by 2020, while 5G connectivity is expected
to be widely used in vehicles in the next couple of years. 5G will allow huge
amounts of data to be transferred but at predictably higher monetary costs [87].

In this context, pushing the analysis on-board participating vehicles, thus
leveraging their distributed computational power, can reduce communication
overheads by avoiding central data gathering, which is of utmost importance
for big data analysis to be feasible within large fleets of vehicles. This work
challenges a recurring assumption in the literature about VANETs, differenti-
ating them from other sensor networks [89,90]: it is assumed that vehicles have
“no strict limitation for processing power and storage capabilitities” contrary to
other typical sensor networks made of small computing units. As more compu-
tationally heavy on-board tasks will be performed on intelligent vehicles and
considerable amounts of data must be stored or transferred, we cannot assume
any longer that those vehicles have unlimited computing power and storage
space; moreover, the need for smart vehicles to run priority security services
and applications [83] other than the analysis task, is an additional reason why
we cannot assume unbounded computational power. Hence, solutions tailored
to reducing computing resources will soon be of key importance.

3.2. SYSTEM MODEL AND PROBLEM DEFINITION 49

Contribution: In this exploratory work, we present algorithms relying
on broadband communication to spread a set of queries, a particular instance
of pre-processing for big data analysis, on a fleet of vehicles. The aim in this
context is to minimize the time and computational overhead needed to check
whether the queries can be fulfilled. In our work, queries consist of performing
some task locally on a subset of the fleet satisfying some criteria (e.g. having
available data on the requested time interval, or restricted geographical position,
speed, driving mode, etc.) and collecting to a centralized point a certain amount
of answers from vehicles matching the query’s many criteria. For example, to
perform some traffic flow analysis, one can retrieve 100 vehicles’ average speed
among those in the fleet driving above 50 km/h within a city center during
rush hour. We present here algorithms that distribute a batch of such queries
to vehicles in a fashion that balances the response time to resolve all queries
and the total workload induced on the vehicular network. We perform an
extensive evaluation on two large real-world sets of vehicular data that allows
us to simulate both the time needed to resolve different realistic ad-hoc queries
and the processing time needed on-board all participating vehicles. Our main
contribution is a set of tuned algorithms that produce significantly improved
trade-offs compared to baseline solutions.

The paper is organized as follows. Section 3.2 introduces the system model
we are using and provides definitions for queries and the vehicular network.
In Section 3.3, different algorithms are provided for spreading a set of queries
over a fleet of vehicles. Section 3.4 is dedicated to a thorough evaluation of
the proposed algorithms on real vehicular datasets. Related work is discussed
in Section 3.5, while Section 3.6 presents our conclusions and future research
directions.

3.2 System Model and Problem Definition

3.2.1 System Model

In this study we consider the following model: a fleet V of k vehicles, referred
to also as nodes, is equipped with multiple sensors S = {GPS, steer,break, . . . }
where each sensor si ∈ S records a timestamped (multi-valued) stream of data
si(v) = (t0, x0), (t1, x1), . . . for each vehicle v ∈ V . Furthermore, all vehicles
are connected to a central entity C, thought of as a datacenter, via a two-way
communication channel. From data analysts, C receives queries q1, . . . , qr, each
focusing on some subset of the possible sensors for some time span of recorded
data.

In more details, queries carry a specific condition that needs to be fulfilled
by vehicles to participate in the analysis and every query specifies some number
of answers (response to the query from distinct vehicles) that need to be
collected to complete the analysis task. Hence, not every vehicle may answer
every query because of lack of data or the data is found not suitable to answer
that particular query; the required number of answers is meant to gather a
sufficient amount of data from the vehicles to be meaningful for the analysis
task at hand. In this context, we need a big enough data sample (e.g. for
statistical significance or to decrease possible privacy leaks) but also small
enough (because of the time to collect all the data [68], and network/CPU

50 CHAPTER 3. QUERYING

time). Once the query’s condition has been checked locally on a vehicle, a
yes/no answer is transmitted to C.

A query q in our model is represented by a pair (P, n) where P is a general
condition ranging over the local sensed data and n is the minimum number of
positive1 answers to collect in order to complete q; we will use the notation
q.P for the condition and q.n for the minimum number of answers required to
complete query q. The condition P encodes which sensors are affected by the
query and an overall condition for all concerned portions of streams to satisfy
to be able to participate in answering the query. In the following: Sq ⊆ S
is a subset of sensors on which the query q is focusing (by default Sq = S);
(tstart, tend) are time bounds spanning q’s time interval of interest such that
only the portion of stream {(t, x) ∈ si | tstart ≤ t ≤ tend} for sensors si ∈ Sq is
examined (if non-specified, the full recorded data is considered); (τ, δ) defines a
minimum sensor sampling frequency requiring at least τ units of time of data
with a maximum δ units of time between consecutive records (imposing at least
τ/δ records within the imposed timespan).

Example Query

To estimate traffic flow in a city center during the morning rush hour, one
can ask to select n = 100 vehicles in a k = 10, 000 vehicles fleet, with P =
“driven within area A with an average speed more than 50km/h between 8 and
9 o’clock with GPS measurements spaced by at most 5s from each other”. In
this query, Sq = {GPS}, (tstart, tend) = (8:00, 9:00), (τ, δ) = (1h, 5s), and A
delimits a bounding box approximating the city center.

3.2.2 Problem Definition

The collection of a large enough number of answers provides an estimation of
the fraction of vehicles that satisfy q.P in the fleet. Such a query mechanism
can be used as is in many scenarios, e.g to estimate the proportion of electric
cars driving close to a potential location for a new electrical charging station.
Once C is aware of a positive answer, it can subsequently ask that vehicle to
perform a query-dependent task. For instance, the expected outcome might be
the result of an aggregate function computed locally over the portion of data
that has been checked (e.g compute the average speed) or the data itself. In
this work, we do not consider the query post-treatment but rather concentrate
on the dissemination part, i.e., securing a set of vehicles that will participate in
the query analysis. In practice, we can also carry out simple aggregation tasks
(min/max, mean, etc.) during q.P ’s processing on the vehicle. This will entail
minor changes in the time needed to process q.P and the aggregated value can
be transmitted along the vehicle’s yes/no-answer to C.

We suppose C has no access to the vehicles’ data other than through com-
munication with them, so that the amount of work needed to test q.P cannot
be estimated before processing the query locally on the appropriate vehicle.
Furthermore, C knows exactly how to contact all vehicles in the fleet. In the
likely event that data is missing for the requested time period, it is equivalent to
considering that the involved node does not satisfy q.P and cannot answer the

1“positive” or yes-answer implies that P holds locally.

3.3. QUERY SPREADING ALGORITHMS 51

query. In a similar fashion, vehicles unwilling to participate in a query’s task (for
privacy or other reasons) are modelled by negative answers. For simplicity, the
set of participants is considered constant here, hence we do not consider that new
vehicles may join the network or that vehicles may leave within the time interval
spent resolving a particular query (in our case study, the query processing time is
low enough to entail a negligible churn of the vehicles during the execution of the
algorithms). Finally, we ignore here the transmission time of the answer as we as-
sume it to be constant and very small (one bit for a yes/no answer and otherO(1)
additional information as the vehicle id, the time it took for the processing, etc.).

3.2.3 Performance Metrics

We associate with each query two performance measures: (i) Query (re-
sponse) Time: the elapsed time between receiving a query at C and having
collected the appropriate number of positive answers at C; (ii) Analysis Cost
(or total workload): the overall computing load on the vehicles defined as
the sum of individual processing times of all nodes involved in processing the
query.

Notice that satisfying the 2 measures at the same time is not trivial as they
go in opposite directions. More concretely, query time is minimized by simply
asking all vehicles in the fleet and ignoring answers after n positive answers
are retrieved (requiring maximum resources) while the workload is balanced by
asking 1 car at the time in a round-robin fashion (requiring maximum time).
Furthermore, the amount of uncertainty in the model is challenging: each query
requires different amounts of time per node that cannot be predicted2. For
instance, on the one hand, a query of the form “has the vehicle driven within
x meters from a parking lot between 12:00 and 18:00?” induces that positive
answers may be sent as soon as a matching GPS record is found whereas
negative answers need to scan first all records within the time interval. On the
other hand, a large number of negative answers for q may be received at C
much quicker than any positive answers due to missing on-board data.

3.3 Query Spreading Algorithms

The challenges described in the preceding section lead us to design different
strategies to disseminate a set of queries over the fleet. We present here
algorithms that select a subset of nodes among the kq nodes satisfying P for a
single query q = (P, n) assuming kq ≥ n. For a set of queries q1, . . . , qr, each
query can be resolved by executing the procedures of this section at C, either
in parallel or sequentially.

Without further assumptions on the distribution of nodes satisfying P , it is
natural to randomly select nodes to question in a uniform way within the pool
of nodes that have not been interrogated yet. However, other factors (as the
number of queries currently running on the vehicle, local computation time so

2One may consider here the time interval on which the query is focused as a good indicator
of the amount of work needed to answer, but this would undoubtedly ignore that some
properties can quickly be resolved (in case of missing data for instance) whereas some other
properties might need more than linear time (e.g. when sorting is needed).

52 CHAPTER 3. QUERYING

far, etc.) can be used to bias the selection process. We present in this section
four algorithms focusing on different measures:

• Baseline1 optimizes the time needed to answer q,

• Baseline2 optimizes communication by interrogating new vehicles only
when needed (hence no more than n positive answers are received),

• Balanced-Algo balances the two baseline algorithms in order to collect
quickly n answers without inducing a too high load on the vehicular
nodes, and

• Fair-Algo extends Balanced-Algo by prioritizing the least-used ve-
hicles in the selection.

The baseline options introduced in this work are meant to benchmark the
balanced algorithms against edge-cases (i.e., optimizing only one aspect) of the
spectrum of possible trade-offs.

3.3.1 Simple Model Description

For the ease of presentation, we first briefly describe the first three algorithms
assuming a synchronous model of query-checking so as to provide the intuition
which is behind each presented algorithm. Let us assume in this section that no
time is spent sending query messages from C and that nodes need a constant
amount of time to check the property P , so that after a “round” of time has
elapsed, C has received answers (yes/no) from all nodes that were interrogated
during that round. In this simplified situation, only two aspects have to be
considered in order to measure the performance of query-spreading procedures:
(1) the number of rounds needed at C to receive n answers; (2) the number of
nodes m that have checked their capability to answer q (which is equivalent
to the total workload on the vehicles as each interrogated vehicle has spent 1
round checking the query).

Baseline1 (Optimal Time)

In order to optimize the processing time, all nodes have to be contacted upon
q’s arrival; this process then solves the query in a single round. Indeed, with
any other algorithm that leaves at least one node v un-contacted, if kq = n and
if P holds on v, then only kq − 1 answers are received after one round and a
second round of communication is required to get all answers. Following this
simple procedure to obtain all needed answers leads nonetheless to a potentially
huge effort on the nodes. In particular, the number of interrogated nodes is
always k independently of kq and n. Hence all nodes always participate in
order to resolve q even though the number of required answers n might be
relatively small.

Baseline2 (Optimal Load)

In the opposite direction of potential solutions to our problem, there is an
algorithm focusing on the computational overhead induced on the nodes. To

3.3. QUERY SPREADING ALGORITHMS 53

ensure that only the minimum number of nodes are being asked to process
q, we should only question at most as many new nodes as the number of
missing answers. Any algorithm satisfying such an assertion is associated with
a minimal analysis cost as interrogating more nodes might lead to the reception
of more than n answers, hence involving a higher than necessary analysis cost.
The best algorithm in this category selects randomly as many nodes as possible
by interrogating m ≤ n “new nodes” at each round when there are m missing
answers. When n positive nodes are found, the procedure stops. The worst
processing time is k−n+ 1 rounds where (n− 1) positive answers are collected
in the first round and the last answer is obtained after questioning every other
vehicle in the subsequent rounds. However, the average is much lower (in the
order of logk/(k−kq)(n) rounds) and the average number of interrogated nodes
in O(n log(n)).

Balanced-Algo

Baseline1 needs only one round but all nodes end up being questioned to
process q, whereas Baseline2 communicates with a minimum number of nodes
but requires a longer time to collect all answers. We present here an efficient
scheme to achieve a reduced computing load on the network within a few
processing rounds. The main idea behind Balanced-Algo is to evaluate the
proportion of vehicles that are able to answer positively to a query by measuring
it through the execution of the algorithm. A first sample probability of p = a/n
is obtained by randomly questioning n vehicles and getting a positive answers;
subsequently, ` = α · (n− a)/p vehicles are randomly interrogated so that if p
was a good estimation, very few vehicles will remain to interrogate during next
round (when α = 1) and we repeat this process until all n answers have been
collected. The parameter α allows us to depart from the estimated expected
number (n− a)/p of vehicles to interrogate to get the remaining answers, by
sampling more or fewer vehicles. This parameter allows us to either shorten
(when α > 1) the average number of rounds needed to resolve q while potentially
increasing the analysis cost, or on the contrary (when α < 1) to slow down q’s
processing by being more prudent and avoiding questioning more vehicles than
necessary (and by this way getting closer to receiving exactly n answers at the
end). In the case that no positive answers have yet been received, we evaluate
the probability of positive answers to p = 1/(m+ 1) where m is the number of
nodes interrogated so far.

3.3.2 General Model

We now generalize the algorithms of the previous section to our general query-
answering model, i.e., when query processing time is vehicle- and context-
dependent. In our typical vehicular setting, we cannot in general assume bounds
on the time a vehicle needs to process a query and on the communication
network.

Baseline1

optimizes the time needed to answer a single query q by interrogating all
vehicles upon receiving it. In our general model, the query time then needed

54 CHAPTER 3. QUERYING

for q is the best possible and corresponds to the n-th fastest positive answer
received at C. In contrast to that, the analysis cost is the highest possible, as
all k vehicles have processed q.

Baseline2

optimizes the number of interrogated vehicles (hence minimizing needed com-
munication to spread queries) by questioning a new vehicle only if strictly
needed. This is achieved by interrogating n vehicles and asking new vehicles to
check P only upon receiving a negative answer. Since in our general model it
is not guaranteed that vehicles will have similar answer times (and it is even
expected the opposite), this algorithm does not necessary imply a minimum
load on the network (i.e., it might be that questioning more vehicles that need
a short processing time to answer will require less resources overall).

Balanced-Algo

Algorithm 2 Balanced-Algo

Input: parameters α, β > 0 and query q with n = q.n
Output: n answers to query q
p← 1 . estimation of probability to answer yes
S ← ∅ . set of interrogated vehicles
A← ∅ . set of answers collected
R← ∅ . set of collected positive answers
while |R| < n do

`← dα · (n− |R| − (|S| − |A|) · p) · p−1e
i ← 0
while i < ` and |S| < k do

v ← random(S) . random vehicle excluding S
send(q, v) . send query q to vehicle v
S ← S ∪ {v}
i← i+ 1

end while
if |S| = k then

output R . set of possible vehicles exhausted
end if
repeat

r ← receive() . Block till receiving next answer
A← A ∪ {r}
if positive(r) then

R← R ∪ {r}
end if

until |A||S| ≥ β
p← max{ |R||A| ,

1
|A|+1

}
end while
output R

Algorithm 2 is similar in essence to its round-based version described in
Section 3.3.1 but needs to be tuned to take into account that all nodes do not
reply at the same time (after 1 round in the aforementioned version). To do

3.4. EVALUATION 55

so, we wait to receive a certain proportion β of answers over all interrogated
vehicles before proceeding to the next batch of selection (and re-evaluating the
probability to answer positively). When β = 1, the algorithm waits for the
reception of all answers before continuing; setting a lower value for β allows
us to take a decision without having to wait for the slowest vehicles. Another
change is about taking into account vehicles that have not yet answered when
a new iteration has started. Based on previous answers, we evaluate that a
fraction of (|S| − |A|) · p will answer positively, where |S| − |A| counts the
number of queried vehicles that have not answered yet, so we remove those
expected answers when calculating the number of remaining answers to collect.

Fair-Algo

We suggest a variation of the previous algorithm, differing on how we select
vehicles once we know the number ` of vehicles to interrogate in the next batch.
Instead of randomly selecting new nodes to interrogate, vehicles having low
local workload are picked first in the selection phase. The main difference with
Algorithm 2 is the function random(S) that selects a vehicle among the not yet
interrogated ones. Instead of selecting randomly, vehicles are selected in the
order of their lowest local workload measured as (1) number of simultaneous
queries running on the vehicle and (2) reported local processing time since the
start. Vehicles are for that purpose stored in an updatable priority queue where
vehicle v’s priority is updated upon sending a new query to v and receiving v’s
answer (containing v’s local processing time).

3.4 Evaluation

To attest to the performance of the proposed algorithms, we evaluate them on
two large real-world sets of vehicular data. In this section, we first describe
the datasets and how the data has been pre-processed, then present a set of
common queries that will serve to benchmark the different algorithms, and
finally show the experiments’ results.

3.4.1 Experimental Setup

Beijing Dataset

The first dataset consists of trajectories collected within the scope of the
(Microsoft Research Asia) Geolife (version 1.3) project by 182 users over
approximately four years [72]. The trajectories were collected from diverse
users using different mobile devices and feature predominantly vehicular usage
(by car, taxi, or bus). The original dataset consists of 18,670 GPS traces
containing between 50 and 92,645 records of the form timestamp (s), latitude
(deg), longitude (deg). After pre-processing the data, we used 9,772 files each
for one daily usage of one user.

Volvo Dataset

The second dataset is made of CAN data and GPS traces from 20 hybrid cars
collected in Sweden in the years 2014 and 2015 by Volvo Cars Corporation [68].

56 CHAPTER 3. QUERYING

00:00 4:00 8:00 12:00 16:00 20:00 24:00

time of day

0

1

2

%
o
f

d
a
ta

Beijing

Volvo

Figure 3.1: Distribution of records in both datasets during 1 day.

After pre-processing, we use 3246 traces corresponding each to a daily usage
of one vehicle. Among the large quantity of CAN data, we have concentrated
on two signals, the combustion engine rotation and electric engine rotation.
These can be combined, leading to three possible driving modes: electric (elec.),
combustion (comb.), hybrid (hybr.).

Simulation Setup

In our experiments, we will simulate a fleet consisting of 9772 (for Beijing)
and 3246 (for Volvo) vehicles; each simulated vehicle will have one day of data
stored on it. The distribution of data over a day for both datasets is depicted
in Figure 3.1. To evaluate our algorithms, we define 15 queries to be run locally
on the vehicles (presented in the following section). The queries are programs
written in Python that are transferred to the vehicle via mobile broadband
communication, then executed on-board the vehicle over their already stored
data (1 day each). We note size(q) the amount of code and data3 that needs
to be transferred from C to each vehicle in order for the latter to be able to
process q on-board. The elapsed time T (in milliseconds) needed between the
coordinator sending a query message to a vehicle v and the reception of the
corresponding answer is approximated as T = Tl + size(q)/R+ Tp(v, q) where
Tl is a fixed round-trip latency for wireless communication, R is a constant
standing for the wireless link data rate, and finally Tp(v, q) is the time needed
by the vehicle to decide if it can answer q or not; recall here, the transfer of
the response message (yes/no answer and the small pieces of information about
the vehicle) is neglected (cf. Section 3.2.2). In our set of experiments, we have
set Tl = 50ms and Td = 10Mb/s which are within current 4G/LTE latency
and download rates (similar results are obtained using 5G parameters). To
have a fair estimation Tp(v, q), we have computed all queries on a vehicular
processing unit representative [68]: an ODROID-XU3 single-board computer
to approximate the low-power processor of a vehicle, equipped with a Samsung
Exynos 5422 (Cortex-A15 2.1GHz Quad-Core and 1.4GHz Quad-Core CPUs)
and 2 GB of LPDDR3 RAM at 933 MHz. We then use the computed time
measured on the vehicular stand-in to simulate Tp(v, q) for every possible vehicle
v and query q. Based on the measured transfer time (through an Ethernet link
with software-capped bandwidth to Td = 10Mb/s), size(q)/Td expressed in ms
is very well approximated by the size of data to transfer expressed in Kb.

3e.g. GPS positions of stationary elements as parking lots or fuel stations.

3.4. EVALUATION 57

The coordinator receives a certain number of queries in a random uniform
order, and starts the batch of interrogations in the same order as the queries
arrival’s one. The queries are then answered in parallel by the vehicles and
the coordinator reacts to each message arrival by either just updating its
internal statistics for the corresponding query or by sending a new batch of
interrogations to a new set of vehicles. If a vehicle v receives a new query
task q′ while already processing a previously received query q, then q′ is added
to v’s local task queue; once v has terminated its processing with q, v’s task
queue is then processed in FIFO order. This approach simplifies the vehicles’
internal computing architecture and is well suited in situations for which the
remaining computing resources on-board the vehicles (if any) can be used to
process security-sensitive applications.

3.4.2 Selected Queries

We introduce here a set of 15 queries, representative of possible vehicular
analysis tasks. Table 3.1 presents (cf. Section 3.2 for notations) the query q
key (Q1 to Q15), the time interval tstart − tend given in hours, size(q) given in
Kb, the description of the condition q.P , and the average answer rate (rounded
to closest percentage) for Beijing (B%) and Volvo (V%) datasets. We use three
possible values for (τ, δ): ∆0 = (60, 5), ∆1 = (45, 10) and ∆2 = (80, 10), all
values being in seconds.

Of the queries, 10 are run over both datasets whereas 5 additional queries
focus on signals only contained within the Volvo dataset. The queries were
chosen to represent different requirements (on time interval, queried sensors,

Key Time Size (Kb) Condition for Beijing Volvo B% V%
Q1 8-12 0.3 at least 1 record 55 47
Q2 0-24 7.5 19.9 one parking within 50m 25m 43
Q3 17-18 1.3 ∆0 ∆1 28
Q4 0-24 0.5 Passed by City ∆2 19
Q5 17-18 1.1 Max speed ≥ 80km/h 68km/h 14
Q6 0-24 1.6 Speed ≥42km/h for 15min 22min 6
Q7 0-24 1.4 Driven in Downtown, ∆0 ∆2 5
Q8 17-18 0.8 Passed by City 3 2
Q9 12-13 0.7 Stayed in City 1

Q10 0-24 3.8 7.7 Stopped at some Gas stations* 1

Q11 0-24 4.8 comb. (alone) used 50% of the time 15
Q12 0-24 5 Driven on elec. only outside City 13
Q13 0-24 4.4 Have used hybr. mode for 10min 10
Q14 0-24 6.6 elec. speed reached over 100km/h 7
Q15 0-24 4 3 diff. charging stations on elec. 4
* In Beijing dataset, we require ∆0 records within 50m of a fuel sta-

tion, and in the Volvo dataset we require that the vehicle stopped
(speed=0km/h) for 10min within 20m of a fuel station.

Table 3.1: Selected query conditions and their parameters.

58 CHAPTER 3. QUERYING

geographic constraints, sampling constraints, etc), have distinct positive answer
rates ranging from about 50% to about 1%, and finally give meaningful insights
into the fleet’s behavior. The parameters of the first 10 queries have been
slightly tuned between the two datasets (in Table 3.1 the Volvo column indicates
differing parameter in the query’s condition) so that each query in both datasets
has a similar fraction of positive answers. Two geographical zones are defined
for both datasets: City is the area of a large city chosen within the dataset and
Downtown is a sub-area within City thought of as its heart. In our experiments,
all queries require n = 50 answers to get resolved.

3.4.3 Experiments

Query Answer Rates

The average answer rates over all queries as well as the distribution of the data
volume is presented in Figure 3.2 for the Volvo (solid) and Beijing dataset
(dashed lines); 100% on the x-axis corresponds to the vehicle with the largest
data volume among all vehicles in the respective dataset. For Beijing, the
average query answer rate (blue, dashed) appears to be positively linked to
the data volume; thus, vehicles with larger amount of data will have a higher
chance to answer queries. For Volvo (blue, solid), the average query answer
rate is almost flat, which indicates that vehicles with a large amount of data are
roughly as likely to answer a query as vehicles with only little data. Concerning
the distribution of data volume among the fleet, Beijing dataset shows an
exponential distribution whereas Volvo presents a logistic distribution with a
long tail.

0 10 20 30 40 50 60

% of maximum amount of data

0.0

0.1

0.2

0.3

0.4

sh
a
re

o
f

v
eh

ic
le

s

Volvo

Beijing

0.0

0.2

0.4

0.6

a
v
er

a
g
e

a
n

sw
er

ra
te

Figure 3.2: Distribution of data volumes (left vertical axis) and average query
answer rates (right vertical axis) for Volvo (solid) and Beijing (dashed line) dataset.

Parameter Exploration α, β

To choose well-fitted parameters for our evaluation, we explore the parameter
space for Balanced-Algo in the Beijing dataset. We run 1000 times the
query set in our query simulator with different values for the parameter α
(proportion of vehicles to ask, higher value translates to interrogating more

3.4. EVALUATION 59

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

α

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

β

combinedmax query time analysis cost

Figure 3.3: Maximum query response time and analysis cost needed to resolve
Q1 −Q10 over the Beijing dataset for Balanced-Algo for different α, β. Circle size
scales with maximum time (red) and total workload (blue), respectively.

vehicles) and β (fraction of vehicles to wait before sending next batch, higher
fraction translates to longer waiting time between two query batches). For each
run, we measure the time needed to answer all queries (i.e., the maximum query
resolution time among the query set) and the analysis cost (total workload on
the system measured as the sum of the processing time for each participating
vehicle) and present them on a 2D plot in Figure 3.3 (note absolute values are
given in Figure 3.4).

This exploration shows that for most values of β up to 0.9, the maximum
time is similar (independently of α) but increases significantly for β = 1 due to
waiting for the slowest vehicles to answer before asking a new set of vehicles (here
α decreases the maximum query time when set to higher values). The total work-
load is, as expected, minimized when the algorithm asks few vehicles and waits
for all answers before the next batch (α = 0.25 and β = 1), whereas it increases
if either β decreases (waiting fewer vehicles might lead to overestimate the pro-
portion of negative answers) or α increases (questioning more vehicles will lead
to receiving more than the required amount of answers and some vehicles might
have thus processed unnecessarily the query). We set in the following α = 0.25,
β = 0.9 for Balanced-Algo and Fair-Algo, resulting in optimal trade-offs.

Comparison of the Different Algorithms

To give a general idea of the response time for the different queries, we present in
Figure 3.4 the query response time measured over 1000 experiments consisting
in resolving all 10/15 queries arriving in a random order; for the Volvo dataset,
Q9 and Q10 have been removed as all vehicles end up being asked (there are
fewer than 50 positive answers in this case). The interesting facts to note are:
Baseline1’s response time is short and varies the least among queries, Base-
line2 has the largest response times, clearly depending on the queries’ answer
rate (lower rate is associated with larger response times), Balanced-Algo and
Fair-Algo present similar query times that do not vary significantly with the
queries’ answer rate. We also note that computationally heavier queries (Q2,

60 CHAPTER 3. QUERYING

1 2 3 4 5 6 7 8 9 10

102

103

(i)

1 2 3 4 5 6 7 8 9 10

104

106

(ii)

1 2 3 4 5 6 7 8 9 10

103

104

(iii)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

103

104

(iv)

(a) Beijing dataset

1 2 3 4 5 6 7 8 9 10 11 12 13

102

103

(i)

1 2 3 4 5 6 7 8 9 10 11 12 13

103

104

(ii)

1 2 3 4 5 6 7 8 9 10 11 12 13

103

(iii)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q11Q12Q13Q14Q15

102

103

(iv)

(b) Volvo dataset

Figure 3.4: Query response time (in ms) for all valid queries executed over the (a)
Beijing and (b) Volvo dataset for (i) Baseline1, (ii) Baseline2, (iii) Balanced-
Algo, (iv) Fair-Algo.

Q10, and Q11 −Q15) get resolved much slower than lightweight queries. As a
summary, Figure 3.5 presents the average time (left side) and total work (right
side) over all queries for the four algorithms relative to the average response time
of Baseline1 (over all queries) and the average workload of Baseline2, respec-
tively. The average time to answer queries is up to 2 orders of magnitude higher
in Baseline2 (in the Beijing dataset) compared to Baseline1, whereas the
proposed algorithms are about 1-4 times slower than Baseline1; Fair-Algo
performs really well in the Volvo dataset being close to the optimal solution.
The average analysis cost is in the order of 3-5 times larger in Baseline1
compared to Baseline2. Balanced-Algo performs well on both datasets,
having an average cost very close to the baseline. Finally, Fair-Algo’s analysis
cost is dependent on the distribution of data in the fleet: with skewed data (as
in the Beijing dataset), it completely outperforms Balanced-Algo, whereas
in a uniformly spread dataset (e.g. Volvo one) Fair-Algo presents a relatively
poor choice (with performance varying between the two baseline algorithms).

3.5. RELATED WORK 61

B
as

el
.1

B
as

el
.2

B
al

.-A
lg

.

Fa
ir

-A
lg

.

100

101

102

ti
m

e
re

la
ti

v
e

to
B

a
se

l
in

e
1

B
as

el
.1

B
as

el
.2

B
al

.-A
lg

.

Fa
ir

-A
lg

.
0

1

2

3

4

5

a
n

a
ly

si
s

co
st

re
la

ti
v
e

to
B

a
se

l
in

e
2

Figure 3.5: The average relative time (left) and total work (right) between the four
algorithms for the Beijing dataset (left boxplots in each column) and Volvo dataset
(right boxplots).

Summary of the Results

The presented solutions (well-tuned Balanced-Algo and Fair-Algo) provide
large improvements in the trade-off of query response time versus on-board
workload compared to baseline solutions. Furthermore, a query’s response time
in the proposed algorithms is not negatively impacted by a low positive answer
rate among the fleet. The new solutions perform also better on different data
distributions among the fleet: Balanced-Algo is more suited to a uniform
distribution of positive answers (Volvo dataset) whereas Fair-Algo for a
skewed distribution of positive answers (Beijing dataset).

3.5 Related Work

The traditional approach to query a set of vehicles has been through SQL-
inspired languages [91–93] to process continuous queries on live vehicular sensors’
data. Two main differences with the current work are that in previous works
(i) “queries” were usually initiated by vehicles themselves (see e.g. [94–97]) and
(ii) the full fleet was queried upon receiving new queries (as in [98]), contrary
to our work where a known and fixed set of general queries is deployed from
the coordinator to the fleet.

Query-answering mechanisms for vehicular networks in the literature also
predominantly concentrate on using the architecture of the network (for instance
using pre-existing P2P approaches, as in [29–31] or 2-tier architectures [99,100])
to resolve the query. In this work, we do not presume any connections between
vehicles; that positions our work in readily deployable technologies on modern
vehicles.

In vehicle data analysis, privacy aspects are important when dealing with
e.g. location-based services (see e.g. [101–103]). We suggest that our work,
by allowing to check whether a certain number (chosen by the analyst) of

62 CHAPTER 3. QUERYING

vehicles meets a given condition, can complement applications where privacy
is supported by aggregating data from many sources.

3.6 Conclusions

We presented algorithms able to spread a batch of queries over a set of vehicles,
in a balanced fashion in terms of the time needed to resolve the queries and
the on-board workload on the vehicles. We further presented a simulation
environment, that we used to evaluate our algorithms, using real traces of
accumulated data and realistic query processing times for vehicles. One future
direction is to consider computationally heavier queries that necessitate longer
processing times on the vehicles; this will require taking into consideration
the churn rate of the vehicle set (since some vehicles might be turned off
during the query resolution time). It will also be interesting to investigate
the benefits of embedding V2V-related methodology, such as [104]. Finally,
this work lays a first stone on the path to produce a complete on-board query
simulation (producing simulated query answers and simulated query response
times) that could be integrated with traffic simulations to be able to produce a
fully simulated environment for vehicular data analysis benchmarking.

Bibliography

[1] R. Duvignau, B. Havers, V. Gulisano, and M. Papatriantafilou, “Query-
ing Large Vehicular Networks: How to Balance On-Board Workload
and Queries Response Time?” in Proceedings of the IEEE Intelligent
Transportation Systems Conference. IEEE, 2019, pp. 2604–2611.

[2] D. Reinsel, J. Gantz, and Rydning. (2018, November) The
Digitization of the World - From Edge to Core. Accessed 2020-09-
01. [Online]. Available: https://www.seagate.com/files/www-content/
our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

[3] World Economic Forum. (2012, January) Big Data, Big Impact:
New Possibilities for International Development. Accessed 2020-09-01.
[Online]. Available: http://www3.weforum.org/docs/WEF TC MFS
BigDataBigImpact Briefing 2012.pdf

[4] W. J. Fleming, “Overview of automotive sensors,” IEEE Sensors Journal,
vol. 1, no. 4, pp. 296–308, 2001.

[5] W. J. Fleming, “New Automotive Sensors—A Review,” IEEE Sensors
Journal, vol. 8, no. 11, pp. 1900–1921, 2008.

[6] R. Coppola and M. Morisio, “Connected Car: Technologies, Issues, Future
Trends,” ACM Computing Surveys, vol. 49, no. 3, pp. 1–36, 2016.

[7] W. Xu, H. Zhou, N. Cheng, F. Lyu, W. Shi, J. Chen, and X. Shen,
“Internet of vehicles in big data era,” IEEE/CAA Journal of Automatica
Sinica, vol. 5, no. 1, pp. 19–35, 2018.

[8] M. Johanson, S. Belenki, J. Jalminger, M. Fant, and M. Gjertz, “Big
Automotive Data: Leveraging large volumes of data for knowledge-
driven product development,” in Proceedings of the IEEE International
Conference on Big Data, 2014, pp. 736–741.

[9] P. Bedi and V. Jindal, “Use of Big Data technology in Vehicular Ad-hoc
Networks,” in Proceedings of the International Conference on Advances
in Computing, Communications and Informatics. IEEE, 2014, pp. 1677–
1683.

63

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
http://www3.weforum.org/docs/WEF_TC_MFS_BigDataBigImpact_Briefing_2012.pdf
http://www3.weforum.org/docs/WEF_TC_MFS_BigDataBigImpact_Briefing_2012.pdf

64 BIBLIOGRAPHY

[10] O. Gietelink, J. Ploeg, B. De Schutter, and M. Verhaegen, “Development
of advanced driver assistance systems with vehicle hardware-in-the-loop
simulations,” Vehicle System Dynamics, vol. 44, no. 7, pp. 569–590, 2006.

[11] E. Schoch, F. Kargl, M. Weber, and T. Leinmuller, “Communication
patterns in VANETs,” IEEE Communications Magazine, vol. 46, no. 11,
pp. 119–125, 2008.

[12] M. Gerla and L. Kleinrock, “Vehicular networks and the future of the
mobile internet,” Computer Networks, vol. 55, no. 2, pp. 457–469, 2011.

[13] McKinsey. (2016, March) Car data: paving the way to
value-creating mobility. Accessed 2020-08-29. [Online]. Avail-
able: https://www.mckinsey.com/∼/media/McKinsey/Industries/
Automotive%20and%20Assembly/Our%20Insights/Creating%20value%
20from%20car%20data/Creating%20value%20from%20car%20data.pdf

[14] PWC. (2017, Sep) The 2017 Strategy& Digi-
tal Auto Report. Accessed 2020-08-29. [Online]. Avail-
able: https://www.strategyand.pwc.com/gx/en/insights/2017/
fast-and-furious/2017-strategyand-digital-auto-report.pdf

[15] C. Greer, M. Burns, D. Wollman, and E. Griffor. (2019, March)
NIST Special Publication: Cyber-Physical Systems and Internet of
Things. Accessed 2020-09-01. [Online]. Available: https://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.1900-202.pdf

[16] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical sys-
tems: The next computing revolution,” in Proceedings of the Design
Automation Conference, 2010, pp. 731–736.

[17] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, M. Papatriantafilou,
and A. C. Koppisetty, “”DRIVEN: A framework for efficient data retrieval
and clustering in vehicular networks”,” Future Generation Computer
Systems, vol. 107, pp. 1 – 17, 2020.

[18] IEEE. (2010) IEEE 802.11p-2010 - IEEE Standard for Information
technology - Wireless access in vehicular environments. Accessed
2020-10-02. [Online]. Available: https://standards.ieee.org/standard/
802 11p-2010.html

[19] NVIDIA. (2020) NVIDIA DRIVE AGX Developer Kit. Accessed 2020-
09-02. [Online]. Available: https://developer.nvidia.com/drive/drive-agx

[20] J. H. Gawron, G. A. Keoleian, R. D. De Kleine, T. J. Wallington,
and H. C. Kim, “Life cycle assessment of connected and automated
vehicles: sensing and computing subsystem and vehicle level effects,”
Environmental Science & Technology, vol. 52, no. 5, pp. 3249–3256,
2018.

[21] N. Cheng, F. Lyu, J. Chen, W. Xu, H. Zhou, S. Zhang, and X. Shen,
“Big Data Driven Vehicular Networks,” IEEE Network, vol. 32, no. 6, pp.
160–167, 2018.

https://www.mckinsey.com/~/media/McKinsey/Industries/Automotive%20and%20Assembly/Our%20Insights/Creating%20value%20from%20car%20data/Creating%20value%20from%20car%20data.pdf
https://www.mckinsey.com/~/media/McKinsey/Industries/Automotive%20and%20Assembly/Our%20Insights/Creating%20value%20from%20car%20data/Creating%20value%20from%20car%20data.pdf
https://www.mckinsey.com/~/media/McKinsey/Industries/Automotive%20and%20Assembly/Our%20Insights/Creating%20value%20from%20car%20data/Creating%20value%20from%20car%20data.pdf
https://www.strategyand.pwc.com/gx/en/insights/2017/fast-and-furious/2017-strategyand-digital-auto-report.pdf
https://www.strategyand.pwc.com/gx/en/insights/2017/fast-and-furious/2017-strategyand-digital-auto-report.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1900-202.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1900-202.pdf
https://standards.ieee.org/standard/802_11p-2010.html
https://standards.ieee.org/standard/802_11p-2010.html
https://developer.nvidia.com/drive/drive-agx

BIBLIOGRAPHY 65

[22] L. Carafoli, F. Mandreoli, R. Martoglia, and W. Penzo, “Evaluation
of Data Reduction Techniques for Vehicle to Infrastructure Communi-
cation Saving Purposes,” in Proceedings of the International Database
Engineering & Applications Symposium. ACM, 2012, p. 61–70.

[23] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge com-
puting and networking: A survey,” Mobile Networks and Applications,
pp. 1–24, 2020.

[24] K. Zhang, Y. Mao, S. Leng, A. Vinel, and Y. Zhang, “Delay constrained of-
floading for Mobile Edge Computing in cloud-enabled vehicular networks,”
in Proceedings of the International Workshop on Resilient Networks
Design and Modeling. IEEE, 2016, pp. 288–294.

[25] Max Peterson et. al. (2020) BADA –On-board Off-board Distributed
Data Analytics. Accessed 2020-10-03. [Online]. Available: https://www.
vinnova.se/globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/
effektiva-och-uppkopplade-transporter-rapporter/2016-04260eng.pdf

[26] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-aware operator placement for stream-processing
systems,” in Proceedings of the IEEE International Conference on Data
Engineering. IEEE, 2006, pp. 49–49.

[27] B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong, D. Lillethun, and
U. Ramachandran, “MCEP: A mobility-aware complex event processing
system,” ACM Transactions on Internet Technology, vol. 14, no. 1, pp.
1–24, 2014.

[28] X. Fei, N. Shah, N. Verba, K.-M. Chao, V. Sanchez-Anguix,
J. Lewandowski, A. James, and Z. Usman, “CPS data streams analytics
based on machine learning for Cloud and Fog Computing: A survey,”
Future Generation Computer Systems, vol. 90, pp. 435–450, 2019.

[29] C.-L. Liu, C.-Y. Wang, and H.-Y. Wei, “Cross-layer mobile chord P2P
protocol design for VANET,” International Journal of Ad Hoc and
Ubiquitous Computing, vol. 6, no. 3, pp. 150–163, 2010.

[30] T. Wang, L. Song, and Z. Han, “Collaborative data dissemination in
cognitive vanets with sensing-throughput tradeoff,” in Proceedings of the
IEEE International Conference on Communications in China. IEEE,
2012, pp. 41–45.

[31] N. Kumar and J.-H. Lee, “Peer-to-peer cooperative caching for data dis-
semination in urban vehicular communications,” IEEE Systems Journal,
vol. 8, no. 4, pp. 1136–1144, 2013.

[32] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of
real-time stream processing,” ACM Sigmod Record, vol. 34, no. 4, pp.
42–47, 2005.

[33] V. Gulisano, D. Palyvos-Giannas, B. Havers, and M. Papatriantafilou,
“The Role of Event-Time Order in Data Streaming Analysis,” in

https://www.vinnova.se/globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/effektiva-och-uppkopplade-transporter-rapporter/2016-04260eng.pdf
https://www.vinnova.se/globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/effektiva-och-uppkopplade-transporter-rapporter/2016-04260eng.pdf
https://www.vinnova.se/globalassets/mikrosajter/ffi/dokument/slutrapporter-ffi/effektiva-och-uppkopplade-transporter-rapporter/2016-04260eng.pdf

66 BIBLIOGRAPHY

Proceedings of the ACM International Conference on Distributed and
Event-based Systems. ACM, 2020, p. 214–217.

[34] G. Pandey, J. R. McBride, and R. M. Eustice, “Ford campus vision and
lidar data set,” The International Journal of Robotics Research, vol. 30,
no. 13, pp. 1543–1552, 2011.

[35] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache Flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[36] S. Costache, V. Gulisano, and M. Papatriantafilou, “Understanding
the data-processing challenges in Intelligent Vehicular Systems,” in
Proceedings of the IEEE Intelligent Vehicles Symposium. IEEE, 2016,
pp. 611–618.

[37] T. Suel, ”Delta Compression Techniques”. Springer International Pub-
lishing, 2018, pp. 1–8.

[38] K.-P. Chan and A. W.-C. Fu, “Efficient time series matching by
wavelets,” in Proceedings of the IEEE International Conference on Data
Engineering. IEEE, 1999, pp. 126–133.

[39] F. Eichinger, P. Efros, S. Karnouskos, and K. Böhm, “A time-series
compression technique and its application to the smart grid,” The VLDB
Journal, vol. 24, no. 2, pp. 193–218, 2015.

[40] R. Duvignau, V. Gulisano, M. Papatriantafilou, and V. Savic, “Stream-
ing Piecewise Linear Approximation for Efficient Data Management in
Edge Computing,” in Proceedings of the ACM/SIGAPP Symposium On
Applied Computing. ACM, 2019, pp. 593–596.

[41] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: a novel
symbolic representation of time series,” Data Mining and knowledge
discovery, vol. 15, no. 2, pp. 107–144, 2007.

[42] H. Najdataei, Y. Nikolakopoulos, V. Gulisano, and M. Papatri-
antafilou, “Continuous and Parallel LiDAR Point-Cloud Clustering,”
in Proceedings of the IEEE International Conference on Distributed
Computing Systems. IEEE, 2018, pp. 671–684.

[43] S. Yousefi, M. S. Mousavi, and M. Fathy, “Vehicular ad hoc networks
(VANETs): challenges and perspectives,” in Proceedings of the IEEE
International Conference on ITS Telecommunications. IEEE, 2006, pp.
761–766.

[44] D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou, “GeneaLog:
Fine-Grained Data Streaming Provenance at the Edge,” in Proceedings
of the ACM Middleware Conference. ACM, 2018, pp. 227–238.

[45] J. Zhou, R. Q. Hu, and Y. Qian, “Scalable distributed communication
architectures to support advanced metering infrastructure in smart grid,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 9,
pp. 1632–1642, 2012.

BIBLIOGRAPHY 67

[46] A. Keramatian, V. Gulisano, M. Papatriantafilou, P. Tsigas, and Y. Niko-
lakopoulos, “MAD-C: Multi-stage Approximate Distributed Cluster-
Combining for Obstacle Detection and Localization,” in Proceedings
of the European Conference on Parallel Processing. Springer, 2018, pp.
312–324.

[47] J. van Rooij, V. Gulisano, and M. Papatriantafilou, “LoCoVolt: Dis-
tributed Detection of Broken Meters in Smart Grids through Stream
Processing,” in Proceedings of the ACM International Conference on
Distributed and Event-based Systems. ACM, 2018, pp. 171–182.

[48] V. Gulisano, V. Tudor, M. Almgren, and M. Papatriantafilou, “Bes: Dif-
ferentially private and distributed event aggregation in advanced metering
infrastructures,” in Proceedings of the ACM International Workshop on
Cyber-Physical System Security. ACM, 2016, pp. 59–69.

[49] V. Gulisano, M. Almgren, and M. Papatriantafilou, “Metis: a two-
tier intrusion detection system for advanced metering infrastructures,”
in International Conference on Security and Privacy in Communication
Systems. Springer, 2014, pp. 51–68.

[50] V. Gulisano, Y. Nikolakopoulos, D. Cederman, M. Papatriantafilou, and
P. Tsigas, “Efficient Data Streaming Multiway Aggregation Through
Concurrent Algorithmic Designs and New Abstract Data Types,” ACM
Transactions on Parallel Computing (TOPC), vol. 4, no. 2, pp. 11:1–
11:28, 2017.

[51] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina,
M. Stonebraker, and R. Tibbetts, “Linear Road: A Stream Data Manage-
ment Benchmark,” in Proceedings of the VLDB Endowment. VLDB
Endowment, 2004, pp. 480–491.

[52] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker,
“Fault-tolerance in the Borealis Distributed Stream Processing Sys-
tem,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data. ACM, 2005, pp. 13–24.

[53] E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. Pietzuch, “THEMIS:
Fairness in Federated Stream Processing Under Overload,” in Proceedings
of the ACM SIGMOD International Conference on Management of Data.
ACM, 2016, pp. 541–553.

[54] Y. Ji, H. Zhou, Z. Jerzak, A. Nica, G. Hackenbroich, and C. Fetzer,
“Quality-Driven Continuous Query Execution over Out-of-Order Data
Streams,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data. ACM, 2015, pp. 889–894.

[55] N. Zacheilas, V. Kalogeraki, Y. Nikolakopoulos, V. Gulisano, M. Papatri-
antafilou, and P. Tsigas, “Maximizing determinism in stream processing
under latency constraints,” in Proceedings of the ACM International
Conference on Distributed and Event-based Systems. ACM, 2017, pp.
112–123.

68 BIBLIOGRAPHY

[56] B. Babcock, S. Babu, R. Motwani, and M. Datar, “Chain: Opera-
tor Scheduling for Memory Minimization in Data Stream Systems,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data. ACM, 2003, pp. 253–264.

[57] B. Babcock, M. Datar, and R. Motwani, “Load shedding for aggregation
queries over data streams,” in Proceedings of the IEEE International
Conference on Data Engineering. IEEE, April 2004, pp. 350–361.

[58] M. Datar and R. Motwani, “The sliding-window computation model and
results,” in Data Streams. Springer, 2007, pp. 149–167.

[59] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker,
“Load shedding in a data stream manager,” in Proceedings of the VLDB
Endowment. VLDB Endowment, 2003, pp. 309–320.

[60] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm
for segmenting time series,” in Proceedings of the IEEE International
Conference on Data Mining. IEEE, 2001, pp. 289–296.

[61] H. Elmeleegy, A. K. Elmagarmid, E. Cecchet, W. G. Aref, and
W. Zwaenepoel, “Online piece-wise linear approximation of numeri-
cal streams with precision guarantees,” in Proceedings of the VLDB
Endowment. VLDB Endowment, 2009, pp. 145–156.

[62] E. Berlin and K. Van Laerhoven, “An on-line piecewise linear approxima-
tion technique for wireless sensor networks,” in Proceedings of the IEEE
Local Computer Network Conference. IEEE, 2010, pp. 905–912.

[63] Q. Xie, C. Pang, X. Zhou, X. Zhang, and K. Deng, “Maximum error-
bounded Piecewise Linear Representation for online stream approxima-
tion,” The VLDB Journal, vol. 23, no. 6, pp. 915–937, 2014.

[64] G. Luo, K. Yi, S.-W. Cheng, Z. Li, W. Fan, C. He, and Y. Mu, “Piecewise
linear approximation of streaming time series data with max-error guar-
antees,” in Proceedings of the IEEE International Conference on Data
Engineering. IEEE, 2015, pp. 173–184.

[65] F. Grützmacher, B. Beichler, A. Hein, T. Kirste, and C. Haubelt, “Time
and Memory Efficient Online Piecewise Linear Approximation of Sensor
Signals,” Sensors, vol. 18, no. 6, p. 1672, 2018.

[66] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[67] R. B. Rusu, “Semantic 3D object maps for everyday manipulation in
human living environments,” KI-Künstliche Intelligenz, vol. 24, no. 4, pp.
345–348, 2010.

[68] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, A. C. Koppisetty,
and M. Papatriantafilou, “DRIVEN: a framework for efficient Data
Retrieval and clusterIng in VEhicular Networks,” in Proceedings of the
IEEE International Conference on Data Engineering. IEEE, 2019, pp.
1850–1861.

BIBLIOGRAPHY 69

[69] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algo-
rithm for discovering clusters in large spatial databases with noise.” in
SIGKDD Conference on Knowledge Discovery and Data Mining. ACM,
1996, pp. 226–231.

[70] I. Wald and V. Havran, “On building fast kd-trees for ray tracing, and
on doing that in O(N log N),” in Proceedings of the IEEE Symposium
on Interactive Ray Tracing. IEEE, 2006, pp. 61–69.

[71] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding mobility
based on GPS data,” in Proceedings of the International Conference on
Ubiquitous Computing. ACM, 2008, pp. 312–321.

[72] Y. Zheng, X. Xie, and W.-Y. Ma, “Geolife: A collaborative social network-
ing service among user, location and trajectory.” IEEE Data Engineering
Bulletin, vol. 33, no. 2, pp. 32–39, 2010.

[73] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting loca-
tions and travel sequences from GPS trajectories,” in Proceedings of
the International Conference on World Wide Web. ACM, 2009, pp.
791–800.

[74] M. A. Eriksen, “Trickle: A Userland Bandwidth Shaper for UNIX-like
Systems.” in Proceedings of the USENIX Annual Technical Conference,
FREENIX Track. USENIX, 2005, pp. 61–70.

[75] S. Wagner and D. Wagner, Comparing clusterings: an overview. Uni-
versität Karlsruhe, Fakultät für Informatik Karlsruhe, 2007.

[76] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[77] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. De Carvalho,
and J. Gama, “Data stream clustering: A survey,” ACM Computing
Surveys (CSUR), vol. 46, no. 1, p. 13, 2013.

[78] L. Ulanova, N. Begum, M. Shokoohi-Yekta, and E. Keogh, “Clustering
in the Face of Fast Changing Streams,” in Proceedings of the SIAM
International Conference on Data Mining. SIAM, 2016, pp. 1–9.

[79] A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492–1496, 2014.

[80] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. Keogh,
“Beyond one billion time series: indexing and mining very large time series
collections with i sax2+,” Knowledge and information systems, vol. 39,
no. 1, pp. 123–151, 2014.

[81] C. A. Ralanamahatana, J. Lin, D. Gunopulos, E. Keogh, M. Vlachos,
and G. Das, “Mining time series data,” in Data mining and knowledge
discovery handbook. Springer, 2005, pp. 1069–1103.

70 BIBLIOGRAPHY

[82] J. Lin, M. Vlachos, E. Keogh, D. Gunopulos, J. Liu, S. Yu, and
J. Le, “A MPAA-based iterative clustering algorithm augmented by
nearest neighbors search for time-series data streams,” in Proceedings of
the Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2005, pp. 333–342.

[83] M. Kakkasageri and S. Manvi, “Information management in vehicular ad
hoc networks: A review,” Journal of network and computer Applications,
vol. 39, pp. 334–350, 2014.

[84] D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou, “Haren: A
Framework for Ad-Hoc Thread Scheduling Policies for Data Streaming
Applications,” in Proceedings of the ACM International Conference on
Distributed and Event-based Systems. ACM, 06 2019, pp. 19–30.

[85] G. Ulm, E. Gustavsson, and M. Jirstrand, “Active-Code Replacement in
the OODIDA Data Analytics Platform,” in Proceedings of the European
Conference on Parallel Processing. Springer, 2019, pp. 715–719.

[86] I. Ku, Y. Lu, M. Gerla, R. L. Gomes, F. Ongaro, E. Cerqueira
et al., “Towards software-defined VANET: Architecture and services.” in
Proceedings of the Annual Mediterranean Ad Hoc Networking Workshop,
2014, pp. 103–110.

[87] K. Wevers and M. Lu, “V2X Communication for ITS-from IEEE 802.11
p Towards 5G,” IEEE 5G Tech Focus, vol. 1, no. 2, 2017.

[88] A. Fernandez and M. Fallgren, “5GCAR Scenarios, Use cases, Re-
quirements and KPIs,” Fifth Generation Communication Automotive
Research and innovation, Tech. Rep. D, vol. 2, 2017.

[89] F. Kong and J. Tan, “A collaboration-based hybrid vehicular sensor
network architecture,” in Proceedings of the International Conference on
Information and Automation. IEEE, 2008, pp. 584–589.

[90] U. Lee, E. Magistretti, M. Gerla, P. Bellavista, and A. Corradi, “Dissem-
ination and harvesting of urban data using vehicular sensing platforms,”
IEEE Transactions on vehicular technology, vol. 58, no. 2, pp. 882–901,
2009.

[91] Y. Yao and J. Gehrke, “The cougar approach to in-network query pro-
cessing in sensor networks,” ACM Sigmod Record, vol. 31, no. 3, pp.
9–18, 2002.

[92] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih,
H. Balakrishnan, and S. Madden, “CarTel: a distributed mobile sensor
computing system,” in Proceedings of the International Conference on
Embedded Networked Sensor Systems. ACM, 2006, pp. 125–138.

[93] Y. Zhang, B. Hull, H. Balakrishnan, and S. Madden, “ICEDB:
Intermittently-connected continuous query processing,” in Proceedings of
the IEEE International Conference on Data Engineering. IEEE, 2007,
pp. 166–175.

BIBLIOGRAPHY 71

[94] U. Lee, J. Lee, J.-S. Park, and M. Gerla, “FleaNet: A virtual market place
on vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 59, no. 1, pp. 344–355, 2010.

[95] Y. Zhang, J. Zhao, and G. Cao, “Roadcast: a popularity aware content
sharing scheme in vanets,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 13, no. 4, pp. 1–14, 2010.

[96] T. Delot, N. Mitton, S. Ilarri, and T. Hien, “Decentralized pull-based infor-
mation gathering in vehicular networks using GeoVanet,” in Proceedings
of the IEEE International Conference on Mobile Data Management.
IEEE, 2011, pp. 174–183.

[97] G. M. N. Ali, E. Chan, and W. Li, “Supporting real-time multiple data
items query in multi-RSU vehicular ad hoc networks (VANETs),” Journal
of Systems and Software, vol. 86, no. 8, pp. 2127–2142, 2013.

[98] Y. Lai, L. Zheng, T. Wang, F. Yang, and Q. Zhou, “Cloud-assisted
data storage and query processing at vehicular ad-hoc sensor networks,”
in Proceedings of the Interntional Conference on Security, Privacy and
Anonymity in Computation, Communication and Storage. Springer,
2017, pp. 692–702.

[99] S.-L. Tsao and C.-M. Cheng, “Design and evaluation of a two-tier peer-to-
peer traffic information system,” IEEE Communications, vol. 49, no. 5,
pp. 165–172, 2011.

[100] C.-M. Cheng and S.-L. Tsao, “Adaptive lookup protocol for two-tier
VANET/P2P information retrieval services,” IEEE Transactions on
Vehicular Technology, vol. 64, no. 3, pp. 1051–1064, 2015.

[101] J. Xu, Z. Jin, M. Xu, and N. Zheng, “Mobile-aware anonymous peer se-
lecting algorithm for enhancing privacy and connectivity in location-based
service,” in Proceedings of the International Conference on E-Business
Engineering. IEEE, 2010, pp. 172–177.

[102] X. Huang, R. Yu, J. Kang, and Y. Zhang, “Distributed reputation man-
agement for secure and efficient vehicular edge computing and networks,”
IEEE Access, vol. 5, pp. 25 408–25 420, 2017.

[103] D. Christin, A. Reinhardt, S. S. Kanhere, and M. Hollick, “A survey on
privacy in mobile participatory sensing applications,” Journal of Systems
and Software, vol. 84, no. 11, pp. 1928–1946, 2011.

[104] A. Gidenstam, B. Koldehofe, M. Papatriantafilou, and P. Tsigas, “Scal-
able group communication supporting configurable levels of consistency,”
Concurrency and Computation: Practice and Experience, vol. 25, no. 5,
pp. 649–671, 2013.

72 BIBLIOGRAPHY

	Abstract
	Acknowledgement
	List of Publications
	Overview
	Mining Gold from Fleets of Vehicles
	Vehicular Cyber-Physical Systems
	Defining Characteristics
	Key Challenges for Data Processing

	Research Questions
	Preliminaries
	Fleet Data Heterogeneity
	Data Streaming
	Time-Series Data Compression

	Thesis Contributions
	Efficient, Continuous Data Retrieval and Clustering
	Adaptive, Online Query Spreading Algorithms

	Conclusion and Outlook

	DRIVEN: A Framework For Efficient Data Retrieval And Clustering In Vehicular Networks
	Introduction
	Challenges
	Contributions

	Preliminaries
	Data streaming
	Piecewise Linear Approximation
	Distance-based clustering
	Logical latency

	System model and problem statement
	Overview of the DRIVEN framework
	Sample use case: study vehicles' surroundings
	Data retrieval and PLA approximation
	Data clustering with Lisco

	Evaluation
	Data
	Software and hardware setup
	Evaluation metrics
	Use cases
	Compression evaluation
	Logical latency
	Summary of evaluation results

	Related work
	Conclusion and future work

	Querying Large Vehicular Networks: How To Balance On-Board Workload And Queries Response Time?
	Introduction
	System Model and Problem Definition
	System Model
	Problem Definition
	Performance Metrics

	Query Spreading Algorithms
	Simple Model Description
	General Model

	Evaluation
	Experimental Setup
	Selected Queries
	Experiments

	Related Work
	Conclusions

	Bibliography

