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Abstract: Standardized and transparent life cycle sustainability performance assessment methods are
essential for improving the sustainability of civil engineering works. The purpose of this paper is
to demonstrate the potential of using a life cycle sustainability assessment method in a road bridge
case study. The method is in line with requirements of relevant standards, uses life cycle assessment,
life cycle costs and incomes, and environmental externalities, and applies normalization and weighting
of indicators. The case study involves a short-span bridge in a design-build infrastructure project,
which was selected for its generality. Two bridge design concepts are assessed and compared:
a concrete slab frame bridge and a soil-steel composite bridge. Data available in the contractor’s
tender phase are used. The two primary aims of this study are (1) to analyse the practical application
potential of the method in carrying out transparent sustainability assessments of design concepts
in the early planning and design stages, and (2) to examine the results obtained in the case study to
identify indicators in different life cycle stages and elements of the civil engineering works project
with the largest impacts on sustainability. The results show that the method facilitates comparisons
of the life cycle sustainability performance of design concepts at the indicator and construction
element levels, enabling better-informed and more impartial design decisions to be made.

Keywords: sustainability; life cycle assessment; life cycle costing; environmental externalities;
indicator; multi-criteria decision analysis; civil engineering; bridge; design

1. Introduction

In civil engineering projects, life cycle environmental, social, and economic sustainability
performance is becoming increasingly important, as reflected in the large number of standards
published on the subject in recent years [1–4]. To make better-informed decisions regarding the impact
of design choices on the sustainability of civil engineering works, sustainability performance assessment
is recommended [5,6]. It is important that assessments are performed in a harmonized way and can
be compared impartially. Current standards provide the general framework for the sustainability
assessment of civil engineering works but do not give detailed guidance on the calculation of indicators
and their aggregation [2,4]. In most studies on sustainability-based design and optimization of bridges,
simplifications are used, and the assessment is based on one or two selected indicators and only
covers certain life cycle stages [6], e.g., CO2 emissions and the cost of construction materials [7] and
of transport and installation [8] and embodied energy of construction materials [9].
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The potential to influence the sustainability of a design is larger in the early stages of the design
process than in later stages [10]. It is therefore important to define indicators that can support
an iterative sustainability-driven design process from concept to final implementation. To enable
the identification of sustainable designs, a formalized method that allows transparent, comparable,
and automatable sustainability design and assessment is desired.

Ek et al. presented a harmonized method for life cycle sustainability assessment and
comparison of civil engineering works design concepts [11]. The proposed method includes guidance
on the calculation of environmental, social and economic indicators, based on life cycle assessment
(LCA), life cycle costing (LCC) and external costs, and aggregation using normalization and weighting
factors, in accordance with the principles and requirements of methods for sustainability performance
assessment given in the standards [2] and [4].

This paper evaluates the previously proposed method by applying it in a road bridge case study.
The study has two primary aims: (1) to analyse the practical application potential of the method
in carrying out transparent sustainability assessments of design concepts in the early planning and
design stages and (2) to examine the results obtained in the case study to identify critical indicators
in different life cycle stages as well as critical elements in the civil engineering works project with
the greatest impacts.

Life cycle stages are classified into so-called modules by the related standards [1–4,12–15],
see Figure 1.
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Figure 1. Schematic illustration of the life-cycle stages of a civil engineering works project and their
classification in modules.

Module A0 is the pre-construction stage. Modules A1–A3 represent the production stage from
raw material extraction to construction material manufacturing where A1 is material extraction,
A2 is transport from extraction to manufacture, and A3 is material manufacture. A4–A5 represent
the construction process stage where A4 is transport from material manufacture to the construction site
and A5 is the construction site works. B1–B5 represent the use stage relating to maintenance where B1
is normal use of the bridge, B2 is maintenance, B3 is repair, B4 is replacement, and B5 is refurbishment.
B6–B7 represent the use stage related to the operation where B6 is operational energy use and B7 is
operational water use. B8 is the use stage related to the user’s utilization of the civil engineering works.
C1–C4 cover the end-of-life stage where C1 is deconstruction, C2 is transport from the deconstruction
site to the waste management site, C3 is the waste processing of materials intended for reuse, recycling,
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and energy recovery, and C4 is waste disposal. Module D represents the benefits and loads beyond
the system boundary of the civil engineering works.

2. Materials and Methods

The new method for life cycle sustainability assessment and comparison of civil engineering
works design concepts presented by Ek et al. [11] was applied to a case study. The case study involved
a bridge in a design-build infrastructure project and was selected for its generality. Two alternative
bridge design concepts were assessed and compared: a concrete slab frame bridge (CSF bridge) and
a soil-steel composite bridge (SSC bridge). The prerequisites for the assessment are presented in Table 1.

Table 1. Case study specific prerequisites for the assessment.

Characteristic Case Study Prerequisite

Object of assessment Bridge 6-1282-1 on Road 26, Sweden
6 m long, 9 m wide, 3 road lanes

Intended use of the assessment Design concept comparison

Additional functions provided -

Functional equivalent:
(a) Type/use of the civil engineering works,

(b) Capacity,
(c) Reference study period and pattern of use,

(d) Design life (required service life, RSL)

(a) Road bridge with fauna passage
(b) 7200 AADT, 100 km/h

(c) 80 years, see Appendix C, Appendix D
(d) 80 years

Time of assessment in the life cycle Detailed design/tender phase

Life cycle stages assessed A1–A5, B1–B8, C1–C4, D

Justification of the exclusion of modules
A0 was excluded because of its insignificant impact

on the sustainability performance and because it does
not differ between the concepts.

Area of influence

Environmental, social, and economic dimensions
(environmental externalities): The surroundings and
people in the direct vicinity of the bridge, receiving
emissions from fuel combustion and other activities
during construction, use and deconstruction from

passing vehicles across the length of the bridge.
Economic dimension (Life cycle costs (LCC) and

incomes): The users of passing vehicles on the bridge
(module B8), the client of the constructed bridge (all

other modules).

Energy and mass flows considered in the assessment See Appendix B

General assumptions and scenarios used See Appendix B

Sources of data for the indicators See Appendix B

Statement about whether data are specific or generic See Appendix A

Reference year for the cost data 2019

The functional unit is 1 m of bridge length and year of required service life (RSL). The reference
study period is equal to the required service life: 80 years. A functional equivalent of 1 km of bridge
and year of RSL is prescribed by the product category rules (PCR) of the International EPD System [13],
but it was decided to use 1 m instead, because the short length of the bridge (6 m) would yield
non-representative results if scaled to 1 km.

Life cycle assessment (LCA) was performed according to the standard EN 15804 [12] using
the LCA software GaBi Professional, version 9.5 (Sphera Solutions GmbH, Leinfelden-Echterdingen,
Germany) [16]. The GaBi datasets used are presented in Appendix A. Normalization and weighting
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factors presented in [11] (adapted from the factors used in the Product Environmental Footprint (PEF)
method [17–19] were used (see Table 2). As proposed in [11], some indicators are categorized into
the environmental dimension and some into the social dimension. In PEF, all indicators are in a single
dimension. The PEF weighting factors of the indicators have thus been scaled to a total of 100 in the
environmental and social dimension, respectively. The life cycle costing (LCC and incomes) was
calculated according to the standard EN 15686-5 [14], and environmental externalities were calculated
in accordance with ISO 14008 [15]. The economic indicators are presented separately in line with
the standards’ requirements. LCC and incomes as well as environmental externalities are presented as
the net present value (NPV) using a discount rate of 3%. This discount rate was chosen as it is the rate
prescribed by the currently available standard on calculation methods for economic performance
(for buildings) [20]. Environmental externalities were calculated using the EPS 2015dx method [21].
Abbreviations and units of measurement used for the indicators included in the assessment are
presented in Table 3.

Table 2. Normalization and weighting factors used for environmental and social indicators [11].

Dimension Indicator Normalization
Factor (NF)

Weighting
Factor (%)

Environmental

Acidification potential 55.6 8.43
Eco-toxicity potential (freshwater) 42,683 2.61

Potential soil quality index 819,498 10.80
Global warming potential total (fossil + biogenic + luluc) 8096 28.63

Abiotic depletion potential for non-fossil resources 0.0636 10.27
Abiotic depletion potential for fossil resources 65,004 11.31

Eutrophication potential (freshwater) 1.61 3.81
Eutrophication potential (marine) 19.5 4.02

Eutrophication potential (terrestrial) 177 5.04
Ozone depletion potential 0.0536 8.58

Photochemical ozone creation potential 40.6 6.50

Social

Potential ionizing radiation—human health 4220 18.94
Human toxicity potential—cancer effects 0.0000169 8.05

Human toxicity potential—non-cancer effects 0.000230 6.96
Particulate matter emissions 0.000595 33.88

Water user deprivation potential 11,469 32.17

The method requires the use of a life cycle inventory (LCI) to calculate the indicators. In the case
study, the LCI was in the form of a bill of materials (BOM), which was calculated for each design
concept for modules A1–A5 as well as for the use (B1–B8) and end-of-life (C1–C4 and D) stages. It was
created based on data available in the tender phase. The BOM is presented in Appendix B. The values
of modules B1–B8, C1–C4, and D were calculated based on the scenarios presented in Appendix C.
Realistic and representative scenarios of the resource consumption and costs of modules B–D were
developed for each design concept. Scenarios were developed based on project documentation and
literature data, if available, as well as expert knowledge. Expert knowledge was based on both
the project manager of the construction project used as case study, and the authors’ previous experience
from bridge design, construction and maintenance projects in Sweden.

For the LCC, the average market prices per unit for each of the resources included were used.
Average prices were supplied by the project manager of the case study project.

Transport modes and distances are presented in Appendix D. Cut-offs were made for the transport
of form oil, bitumen sheet, bitumen sealant, impregnation, geotextile, mortar, graffiti protection,
polypropylene pipe, polyethylene foam, bituprimer, epoxy sealant, and plastic film.
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Table 3. Sustainability dimensions, categories, indicator names, abbreviations, and units of measurement
for the indicators.

Dimension Category Indicator Name Abbreviation Unit of Measurement

Environmental

Acidification Acidification potential AP mol H + eq

Biodiversity
Eco-toxicity potential (freshwater) ETP-fw CTUe

Potential soil quality index SQP Dimensionless

Climate change Global warming potential total
(fossil + biogenic + luluc) GWP-total kg CO2 eq

Depletion of abiotic
resources—minerals

and metals

Abiotic depletion potential
for non-fossil resources ADPE kg Sb eq

Depletion of abiotic
resources—fossil fuels

Abiotic depletion potential
for fossil resources ADPF MJ, net calorific value

Eutrophication

Eutrophication potential (freshwater) EP-freshwater kg P eq

Eutrophication potential (marine) EP-marine kg N eq

Eutrophication potential (terrestrial) EP-terrestrial mol N eq

Ozone depletion Ozone depletion potential ODP kg CFC 11 eq

Photochemical
ozone creation Photochemical ozone creation potential POCP kg NMVOC eq

Social Health and comfort

Potential ionizing
radiation—human health PIR kBq U235 eq

Human toxicity
potential—cancer effects HTP c CTUh

Human toxicity
potential—non-cancer effects HTP nc CTUh

Particulate matter emissions PM Disease incidence

Water user deprivation potential WDP m3 world deprived eq

Economic

Life cycle
economic balance LCC and incomes - Euro

External cost Environmental externalities - Euro

3. Results

The results are first presented separately for the CSF bridge design concept and the SSC bridge
design concept. The results for the two concepts are then compared. Positive economic indicator values
indicate costs, while negative values indicate incomes. For the environmental and social indicators,
positive values indicate a negative impact, and negative values indicate a positive impact.

The result for module B8 is presented in a separate figure, since it is relatively higher than that
of the other modules. Furthermore, the result for module B8 was excluded from the comparison
of the concepts, since it would have disguised the differences in concepts among the other modules.
In addition, the result for module B8 was found to be equal for both concepts.

3.1. Concrete Slab Frame Bridge Design Concept

The results for each indicator of the sustainability assessment of the CSF bridge in units
of measurement and per life cycle stage are presented in Table 4.

The results for the CSF bridge are presented per life cycle stage in Table 5. The results
for the environmental and social dimensions are aggregated on the dimension level, using
the normalization and weighting factors in Table 2, while the results for the economic dimension are
summarized at the indicator level. The normalized and weighted results for the environmental and
social dimensions are presented per life cycle stage and per indicator in Figure 2 (excluding module B8).
Figure 3 shows the contribution of each resource to the total impact over the life cycle (modules A–C
excluding B8) in the environmental dimension and the social dimension, respectively, for the resources
with the greatest contributions. The normalized and weighted results for the environmental and social
dimensions are presented for module B8 per indicator in Figure 4.
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Table 4. Results for the concrete slab frame bridge (CSF) bridge design concept per indicator in units
of measurement per life-cycle stage for the functional unit. Modules not assessed are abbreviated
as “MNA”.

Indicator A0 A1–A3 A4–A5 B1–B5 B6–B7 B8 C1–C4 D

AP MNA 0.78 0.57 0.049 0 4.2 0.29 −0.18
ETP-fw MNA 1780 1642 133 0 4063 380 −333

SQP MNA 1002 7588 22 0 22,083 167 −579
GWP-total MNA 313 172 12 0 234 47 −70

ADPE MNA 2.1 × 10−4 1.6 × 10−5 4.4 × 10−6 0 5.4 × 10−5 3.7 × 10−6
−1.0 × 10−4

ADPF MNA 3740 2344 230 0 5229 584 −892
EP-freshwater MNA 5.5 × 10−4 5.6 × 10−4 2.6 × 10−5 0 3.110−2 1.1 × 10−4

−2.3 × 10−4

EP-marine MNA 0.24 0.25 0.015 0 1.68 0.10 −0.05
EP-terrestrial MNA 2.61 2.82 0.17 0 20.4 1.1 −0.5

ODP MNA 6.9 × 10−11 2.6 × 10−11 3.1 × 10−11 0 4.9 × 10−10 8.5 × 10−14
−3.5 × 10−13

POCP MNA 0.64 0.71 0.046 0 2.7 0.28 −0.14
PIR MNA 60 3.1 0.57 0 148.5 0.39 −13

HTP c MNA 1.8 × 10−6 5.6 × 10−8 1.2 × 10−8 0 7.1 × 10−7 2.9 × 10−8
−5.8 × 10−8

HTP nc MNA 4.8 × 10−6 2.0 × 10−6 4.3 × 10−7 0 1.1 × 10−4 2.9 × 10−6
−6.9 × 10−7

PM MNA 1.5 × 10−5 1.2 × 10−5 5.8 × 10−7 0 4.1 × 10−5 2.4 × 10−6
−3.2 × 10−6

WDP MNA 71 11 0.86 0 109 6.3 −16
LCC and incomes MNA 210 287 18 0 86 12 −1.1

Environmental externalities MNA 123 56 2.0 0 31 1.4 −7.8

Table 5. Results for the CSF bridge design concept per life cycle stage aggregated on the dimension
level (and on the indicator level for the economic dimension) for the functional unit. The results
for the environmental and social dimensions are normalized and weighted, and the results for
the economic dimension are summarized. Modules not assessed are abbreviated as “MNA”.

Dimension Indicator (Unit) A0 A1–A3 A4–A5 B1–B7 B8 C1–C4 D

Environmental All (dimensionless) MNA 2.3 1.6 0.12 4.4 0.43 −1.5
Social All (dimensionless) MNA 2.3 0.82 0.057 6.9 0.26 −1.2

Economic
LCC and incomes (Euro) MNA 210 287 18 86 12 −1.1

Environmental externalities (Euro) MNA 123 56 2.0 31 1.4 −7.8
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Figure 2. Normalized and weighted results for the CSF bridge design concept per life cycle stage
in (a) the environmental dimension and (b) the social dimension for each indicator and for the functional
unit. Module B8 is not included. See Figure 4 for module B8. Note that the ozone depletion potential
indicator bar cannot be seen in the figure since it is very small.
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In the environmental dimension, 52% of the total impact of life cycle stages A–C, excluding
module B8, occurs in the production stage (modules A1–A3), followed by the construction stage (36%,
modules A4–A5). If included, B8 would contribute to 50% of the total impact for life cycle stages A–C.
Module D presents the potential to reduce the environmental impact of life cycle stages A–C (excluding
module B8) by 35% through future re-use or recycling. The main contribution to the environmental
impact over the life cycle (modules A–C, excluding B8) comes from the indicators “global warming
potential” (44% of the total impact) and “abiotic depletion potential for fossil resources” (28% of the total
impact, see Figure 2). Fifty-one percent of the global warming potential is caused by the production
(29%) and transport to the construction site (22%) of 6833 tons of aggregates, while 23% is caused by
the production of 472 tons of concrete, and 6% is caused by the production and combustion of diesel
used on the site during construction. The production and transport of aggregates and the landfilling
of aggregate waste contributes to 53% of the total environmental impact over the life cycle (see Figure 3).
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Figure 3. Contribution of resources to the total impact over the life cycle (modules A–C, excluding B8)
for the CSF bridge design concept in the environmental and social dimensions.

In the social dimension, 67% of the total impact for life cycle stages A–C (excluding module B8)
occurs in the production stage, followed by the construction stage (24%). If included, module B8 would
contribute to 66% of the total impact for life cycle stages A–C. Module D presents the potential to
reduce the social impact by 33% of the total impact for life cycle stages A–C (excluding module B8) by
future re-use or recycling. The main contribution to social impact over the life cycle (modules A–C,
excluding B8) comes from the indicators “particulate matter emissions” (49% of the total impact) and
“human toxicity—cancer effects” (27% of the total impact). Thirty-five percent of the particulate matter
emissions are caused by the production of aggregates and their transport to the construction site, and
28% is caused by the production and combustion of diesel at the construction site during construction.
The production and transport of aggregates and the landfilling of aggregate waste contributes to 38%
and reinforcement steel and steel rack production contributes to 29% of the total social impact over
the life cycle (see Figure 3).

In the economic dimension, 54% of the total net cost for the indicator “LCC and incomes” in life
cycle stages A–C (excluding module B8) occurs in the construction stage (mainly in A5), see Table 5.
Forty percent occurs in the production stage. If module B8 was included, it would contribute to 14%
of the total net cost for life cycle stages A–C. Module D presents the potential to reduce the future
net cost (by future re-use or recycling) by 0.2% for life cycle stages A–C (excluding module B8).
The main contributor (30%) to the cost of the LCC and incomes over the life cycle is the work
costs during construction, followed by the costs for production and transport of aggregates (18%)
and for the production and transport of concrete and reinforcement steel (17%). For the indicator
“environmental externalities”, 68% of the total cost in life cycle stages A–C (excluding module B8)
occurs in the production stage, followed by the construction stage (31%). If module B8 was included,
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it would contribute to 12% of the total cost for life cycle stages A–C. Module D presents the potential
to reduce future costs of the total impact for life cycle stages A–C (excluding module B8) by 4%.
The main contributors (43%) to the environmental externalities over the life cycle are the production
and transport of aggregates and transport to waste disposal and the landfilling of aggregate waste.
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Figure 4. Normalized and weighted results for module B8 for both bridge design concepts
in (a) the environmental dimension and (b) the social dimension for each indicator and for the functional
unit. Note that the ozone depletion potential indicator bar cannot be seen in the figure since it is
very small.

3.1.1. Modules A1–A3

In the production stage, greenhouse gas emissions have the largest impact in the environmental
dimension (see Figure 2). The indicator “global warming potential” contributes to 49% of the total
impact in this life cycle stage. Fifty percent of this originates from the production of 6833 tons
of aggregates, 39% from the production of 472 tons of concrete, and 9% from the production of 23 tons
of reinforcement steel (carbon and stainless). The production of asphalt, steel racks, and other built-in
construction materials accounts for 2% of the global warming potential.

The second largest impact comes from the abiotic depletion potential for fossil resources; this
constitutes 29% of the total environmental impact. Sixty-eight percent of this depletion is caused
by the production of aggregates, 16% by the production of concrete, and 11% by the production
of reinforcement steel.

The “acidification potential”, the “eco-toxicity potential”, and the “photochemical ozone creation
potential” indicators also have significant impacts, each accounting for about 5% of the total
environmental impact. The production of aggregates contributes to 46–69% of the total impact
for each of these indicators.
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The largest impact in the social dimension comes from the indicators “human toxicity—cancer
effects” (38%) and “particulate matter emissions” (36%). For “human toxicity—cancer effects”,
97% of the impact comes from the production of 553 kg of stainless-steel reinforcement. For “particulate
matter emissions”, 66% of the impact comes from the production of aggregates.

In the economic dimension, for the indicator “LCC and incomes”, 39% of the total cost is
for the aggregates, 23% is for the ready-mix concrete, and 19% is for carbon steel reinforcement.
There is no income. For the indicator “environmental externalities”, 36% of the total cost is for
the production of aggregates, and 20% each is for the production of stainless-steel reinforcement and
ready-mix concrete.

3.1.2. Modules A4–A5

In the construction process stage, greenhouse gas emissions have the largest impact in the
environmental dimension (see Figure 2). The global warming potential accounts for 39% of the total
impact in this life cycle stage. Seventy percent of this type of emission originates from the transport
of aggregates from the production site to the construction site. Eighteen percent originates from
the production and combustion of diesel in construction machines on the construction site.

The second largest impact comes from the abiotic depletion potential for fossil resources, having
26% of the total environmental impact. Sixty-eight percent of this is caused by the transport of aggregates
to the site.

The third largest impact comes from the combination of the three indicators for eutrophication
potential, together contributing to 9% of the total environmental impact. Approximately 72%
of the eutrophication potential (marine) and eutrophication potential (terrestrial) comes from
the production and combustion of diesel used on site, while 65% of the eutrophication potential
(freshwater) comes from the transport of aggregates.

Significant impacts are also caused by the “eco-toxicity potential”, the “potential soil quality
index”, and the “photochemical ozone creation potential” indicators, each accounting for 6–7%
of the total environmental impact. The transport of aggregates contributes to 69% of the eco-toxicity
potential. Ninety percent of the potential soil quality index value comes from the production of the
ancillary materials wood, particleboard, and plywood for the formworks. The production and
combustion of diesel used on the construction site contributes to 74% of the photochemical ozone
formation potential.

The largest impact in the social dimension comes from particulate matter emissions (84%).
Sixty-nine of this is caused by the production and combustion of diesel used on the construction site.

In the economic dimension, for the indicator “LCC and incomes”, 65% of the total cost is for
the construction workers and 11% is for the transport of aggregates. There is no income. For the indicator
“environmental externalities”, 62% of the total cost is for the transport of aggregates, and 25% is for
the production and combustion of diesel used on the construction site.

3.1.3. Modules B1–B7

In the use stage, “global warming potential” (38%) has the largest impact in the environmental
dimension, followed by “abiotic depletion for fossil resources” (35%), see Figure 2. Fifty-three percent
of the global warming potential is caused by the production of 1.4 tons of steel racks, and 30% is
caused by the production of 14 tons of ready-mix concrete. Thirty-two percent of the abiotic depletion
potential for fossil resources is caused by the production of 10.5 tons of asphalt.

“Particulate matter emissions” (58% of the total impact) has the largest impact in the social
dimension, followed the indicator “human toxicity—non-cancer effects” (23%). Thirty-nine percent
of the particulate matter emissions is caused by the production of steel racks, and 21% is caused by
the production of 35 kg of bituprimer. The largest contributor to “human toxicity—non-cancer effects”
is the production of 77 kg of epoxy (45%).
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In the economic dimension, for the indicator “LCC and incomes”, 46% of the total cost is for
steel racks. The cost for installation of the steel racks is 21% of the total cost. There is no income.
For the indicator “environmental externalities”, 61% of the total cost is for the production of steel racks,
and 23% is for the production of asphalt.

3.1.4. Module B8

The impact of module B8, the stage relating to the user’s utilization, is the same for both design
concepts (see Figure 4, Tables 5 and 6). For the CSF bridge, the environmental impact of module B8 is
equal to the environmental impact of all other modules together (excluding module D). The social
impact of module B8 is 97% greater. The net cost for LCC and incomes is 84% lower for module B8
than for all other modules together (excluding module D). The “environmental externalities” indicator
is 83% lower for module B8 than for all other modules together (excluding module D).

Table 6. Results for the SSC bridge design concept per life cycle stage and aggregated at the dimension
level (or at the indicator level for the economic dimension) for the functional unit. The results for
the environmental and social dimensions are normalized and weighted, and the results for the economic
indicators are summarized. Modules not assessed are abbreviated as “MNA”.

Dimension Indicator (Unit) A0 A1–A3 A4–A5 B1–B7 B8 C1–C4 D

Environmental All (dimensionless) MNA 5.0 1.4 0.078 4.4 0.44 −2.1
Social All (dimensionless) MNA 1.6 0.63 0.029 6.9 0.25 −1.4

Economic
LCC and incomes (Euro) MNA 295 99 16 86 10 −0.8

Environmental externalities (Euro) MNA 1 087 52 1.5 31 1.3 −14

The indicators “abiotic depletion potential for fossil resources” and “global warming potential”
account for 21% and 19% of the total impact, respectively, in the environmental dimension. Fifteen
percent comes from the indicator “acidification potential”, and 13% comes from the indicator
“eutrophication potential” (terrestrial). However, if the results for all three eutrophication indicators
are pooled, they account for 23% of the total environmental impact. Fifty-four percent of the global
warming potential originates from the production and combustion of hydrogenated vegetable oil
(HVO) (rapeseed methyl ester (RME) was used as a proxy for HVO). Fifty-eight percent of the abiotic
depletion potential for fossil resources originates from the production of electricity. Seventy-six percent
of the total eutrophication potential originates from the production and combustion of HVO.

Forty-seven percent of the total impact in the social dimension comes from the indicator
“human toxicity potential—non-cancer effects”, and 34% comes from “particulate matter emissions”.
Ninety-seven percent of the “human toxicity potential—non-cancer effects” originates from
the production of HVO. For particulate matter emissions, 48% originates from the production of HVO,
and 45% comes from the combustion of diesel.

In the economic dimension, for the indicator “LCC and incomes”, 46% of the total cost is for
steel racks. The cost for installation of the steel racks is 21% of the total cost. There is no income.
For the indicator “environmental externalities”, the largest contributor is the production of HVO.

3.1.5. Modules C1–C4

In the end-of-life stage, global warming potential has the largest impact in the environmental
dimension (38%), followed by abiotic depletion potential for fossil resources (23%), the three
eutrophication potential indicators together (12%), and photochemical ozone creation potential
(11%), see Figure 2. Forty-six percent of the global warming potential and 49% of the abiotic depletion
potential for fossil resources are caused by the landfilling of 683 tons of aggregate waste. Nineteen
percent of the global warming potential and 21% of the abiotic depletion potential for fossil resources
is caused by the production and combustion of diesel used in deconstruction.

Particulate matter emissions have the largest impact on the social dimension (56% of the total
impact), followed by the indicator “human toxicity—non-cancer effects” (35%). Thirty-two percent
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of the particulate matter emissions is caused by the transport of 683 tons of aggregate waste, and 23%
is caused by the production and combustion of diesel used during deconstruction of the bridge.
Ninety percent of the impact of “human toxicity—non-cancer effects” is caused by the landfilling
of aggregate waste.

In the economic dimension, for the indicator LCC and incomes, 93% of the total cost is
for deconstruction workers. There is no income. For the indicator “environmental externalities”,
the largest part of the cost (52%) comes from the landfilling of aggregate waste and the second largest
(20%) portion comes from the production and combustion of diesel used for deconstruction.

3.1.6. Module D

Regarding benefits and loads beyond the system boundary, the largest benefit in the environmental
dimension is offered by the potential avoidance of contributing to global warming potential (45% of the
total benefit) and the potential avoidance of contributing to the abiotic depletion potential for fossil
resources (34%), see Figure 2. The main part of this benefit is due to the potential re-use of aggregates.

The largest benefit in the social dimension is offered by the potential avoidance of particulate
matter emissions (55%) and the avoidance of ionizing radiation (21%). Here, as well, the main part
of this benefit is due to the potential re-use of aggregates.

In the economic dimension, for the indicator “LCC and incomes”, 41% of the total income comes
from the potential recycling of concrete as a filling material, and 37% comes from the potential recycling
of carbon steel reinforcement. For the indicator “environmental externalities”, the largest benefit comes
from the potential re-use of aggregates (48%).

3.2. Soil-Steel Composite Bridge Design Concept

The results for each indicator used in the sustainability assessment of the SSC bridge per metre
of bridge in units of measurement and per life cycle stage are presented in Table 7.

Table 7. Results for the SSC bridge design concept per indicator in units of measurement per life-cycle
stage for the functional unit. Modules not assessed are abbreviated as “MNA”.

Indicator A0 A1–A3 A4–A5 B1–B5 B6–B7 B8 C1–C4 D

AP MNA 0.95 0.56 0.031 0 4.2 0.34 −0.8
ETP-fw MNA 1773 1571 89 0 4063 360 −1348

SQP MNA 977 781 13 0 22,083 156 −644
GWP-total MNA 369 164 9.1 0 233 42 −309

ADPE MNA 1.5 × 10−2 1.4 × 10−5 7.5 × 10−7 0 5.4 × 10−5 3.5 × 10−6
−2.9 × 10−5

ADPF MNA 4667 2210 149 0 5222 554 −3646
EP-freshwater MNA 6.3 × 10−4 5.0 × 10−4 1.2 × 10−5 0 3.1 × 10−2 9.8 × 10−5

−4.1 × 10−4

EP-marine MNA 0.24 0.25 0.0089 0 1.7 0.12 −0.20
EP-terrestrial MNA 2.6 2.8 0.10 0 20 1.4 −2.2

ODP MNA 3.8 × 10−11 2.6 × 10−11 2.3 × 10−14 0 4.9 × 10−10 8.5 × 10−14
−1.5 × 10−12

POCP MNA 0.69 0.70 0.028 0 2.7 0.36 −0.59
PIR MNA 53 2.2 0.39 0 149 0.39 −43

HTP c MNA 2.9 × 10−7 3.3 × 10−8 9.4 × 10−9 0 7.1 × 10−7 2.8 × 10−8
−3.0 × 10−7

HTP nc MNA 4.4 × 10−6 1.9 × 10−6 1.4 × 10−7 0 1.1 × 10−4 2.9 × 10−6
−2.6 × 10−6

PM MNA 1.7 × 10−5 9.6 × 10−6 2.9 × 10−7 0 4.1 × 10−5 2.5 × 10−6
−1.5 × 10−5

WDP MNA 53 1.9 0.47 0 109 2.5 −48
LCC and incomes MNA 295 99 16 0 86 10 −0.8

Environmental externalities MNA 1087 52 1.5 0 31 1.3 −14

The results for the SSC bridge are presented per life cycle stage in Table 6. The results
for the environmental and social dimensions are aggregated on the dimension level, while the results
for the economic dimension are aggregated on the indicator level. The results for the environmental
and social dimensions are normalized and weighted using the factors in Table 2, and the results for
the economic indicators are summarized. Normalized and weighted results for the environmental and
social dimensions per life cycle stage are presented per indicator in Figure 4 (only module B8) and
Figure 5 (excluding module B8). Figure 6 shows the share of contribution of each resource to the total
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impact over the life cycle (modules A–C excluding B8) in the environmental dimension and the social
dimension respectively, for the resources with the greatest contributions.

In the environmental dimension, 72% of the total impact for life cycle stages A–C (excluding
module B8) occurs in the production stage (modules A1–A3), followed by the construction stage
(20%, modules A4–A5). If module B8 was included, it would contribute to 38% of the total impact
for life cycle stages A–C. Module D has the potential to reduce the future environmental impact
(by future re-use or recycling) by 31% for life cycle stages A–C (excluding module B8). The main
contribution to the environmental impact over the life cycle (modules A–C, excluding B8) is accounted
for by the indicators “abiotic depletion potential for non-fossil resources” (35% of the total impact),
“global warming potential” (30% of the total impact), and “abiotic depletion potential for fossil resources”
(19% of the total impact). Practically all (99.6%) of the abiotic depletion potential for non-fossil resources
and 36% of the global warming potential are caused by the production of structural steel for the bridge.
Forty-seven percent of the global warming potential is caused by the production and transport
of aggregates. The production of structural steel for the bridge contributes to 54% and the production
and transport of aggregates contributes to 30% of the total environmental impact over the life cycle
(see Figure 6).
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Figure 5. Normalized and weighted results for the SSC bridge design concept per life cycle stage
in (a) the environmental dimension and (b) the social dimension per indicator and for the functional
unit. Module B8 is not included. See Figure 4 for module B8. Note that the ozone depletion potential
indicator bar cannot be seen in the figure since it is very small.

In the social dimension, 64% of the total impact of life cycle stages A–C (excluding module
B8) occurs in the production stage, followed by the construction stage (25%). If module B8 was
included, it would contribute to 73% of the total impact for life cycle stages A–C. Module D presents
the potential to reduce the future social impact by 56% for life cycle stages A–C (excluding module
B8). The main contributor to the social impact over the life cycle (modules A–C excluding B8) is
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accounted for by the indicators “particulate matter emissions” (66% of the total impact) and “human
toxicity—non-cancer effects” (11% of the total impact). The largest portion of the particulate matter
emissions is caused equally by the production of aggregates and the production and combustion
of diesel used for the construction, maintenance, and deconstruction of the bridge over the life cycle
(each 36%), followed by the production of structural steel (23%). Over the life cycle, the production
and transport of aggregates contributes to 44%, the production of structural steel for the bridge
contributes to 26% and the production and combustion of diesel used for the construction, maintenance,
and deconstruction of the bridge over the life cycle contributes to 21% of the total social impact
(see Figure 6).Int. J. Environ. Res. Public Health 2020, 17, x 13 of 35 
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Figure 6. Contribution of resources to the total impact over the life cycle (modules A–C, excluding B8)
for the SSC bridge design concept in the environmental and social dimensions.

In the economic dimension, 70% of the total net cost for the indicator “LCC and incomes”
in life cycle in stages A–C (excluding module B8) occurs in the production stage, and 24% occurs
in the construction stage (see Table 6). If module B8 was included, it would contribute to 17% of the total
net cost for life cycle stages A–C. Module D presents the potential to reduce the future net cost (by future
re-use or recycling) by 0.2% for life cycle stages A–C (excluding module B8). The greatest contributor
(39%) to the cost of the LCC and incomes over the life cycle is the production of structural steel for
the bridge. For the indicator environmental externalities, 68% of the total external cost in life cycle
stages A–C (excluding module B8) occurs in the production stage. Ninety percent of the environmental
externalities are caused by the production of structural steel for the bridge. If module B8 was included,
it would contribute to 3% of the total external costs for life cycle stages A–C. Module D presents
the potential to reduce the future external costs by 1% for life cycle stages A–C (excluding module B8).

3.2.1. Modules A1–A3

In the production stage, the abiotic depletion potential for non-fossil resources has the largest
impact in the environmental dimension (see Figure 5). This indicator has 48% of the total impact
in this life cycle stage. Almost all (99.7%) of the depletion is caused by the production of 40 tons
of structural steel. The second largest contributor is the global warming potential; this constitutes
26% of the total environmental impact. Fifty-seven percent of this indicator is accounted for by
the production of structural steel plates for the bridge and 42% by the production of aggregates.
The abiotic depletion potential for fossil resources also has a significant impact (16% of the total
environmental impact).

Particulate matter emissions have the largest impact in the social dimension (60%). Fifty-eight
of this originates from the production of aggregates and 40% comes from the production of bridge steel.

In the economic dimension, for the indicator “LCC and incomes”, 67% of the total cost is
for structural steel and 28% is for aggregates. There is no income. For the indicator “environmental
externalities”, 96% of the cost is for the production of structural steel.
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3.2.2. Modules A4–A5

In the construction stage, greenhouse gas emissions have the largest impact in the environmental
dimension (see Figure 5). The global warming potential contributes to 41% of the total impact
in this life cycle stage. Seventy-three percent of this originates from the transport of aggregates to
the construction site. Nineteen percent originates from the production and combustion of diesel used
in construction machines on the construction site. The second largest impact comes from the abiotic
depletion potential for fossil resources, causing 27% of the total environmental impact. Seventy-two
percent of this is caused by the transport of aggregates to the site. The three eutrophication potential
indicators make a significant contribution, together contributing to 9% of the total environmental
impact. The production and combustion of diesel used at the construction site contributes to 71%
of the total eutrophication potential.

In the social dimension, particulate matter emissions have the largest impact by far (86%).
Eighty-seven percent of these emissions are caused by the production and combustion of diesel used at
the construction site.

In the economic dimension, for the indicator “LCC and incomes”, 32% of the total cost is
for the transport of aggregates, 28% is for the construction workers, and 20% is for transport
of the bridge’s structural steel plates. There is no income. For the indicator “environmental externalities”,
66% of the total cost is for the transport of aggregates and 27% is for the production and combustion
of diesel used at the construction site.

3.2.3. Modules B1–B7

In the use stage, greenhouse gas emissions have the largest impact in the environmental dimension
(42%), followed by the depletion of fossil resources (33%) (see Figure 5). Seventy-three percent
of the global warming potential is caused by the production of 1.4 tons of steel racks and 16% is caused
by the production of 10.5 tons of asphalt. Fifty percent of the abiotic depletion potential of fossil
resources is caused by the production of asphalt and 41% is caused by the production of steel racks.

In the social dimension, particulate matter emissions have the greatest impact (59% of the total
impact), followed by 16% each from the indicators “human toxicity—cancer effects” and “human
toxicity—non-cancer effects”. Seventy-six percent of particulate matter emissions comes from
the production of steel racks. The production of steel racks contributes to 87% of the factor “human
toxicity—cancer effects” and 55% of “human toxicity—non-cancer effects”. The production of asphalt
contributes to 31% of “human toxicity—non-cancer effects”.

In the economic dimension, for the indicator “LCC and incomes”, 50% of the total cost is
for steel racks. The installation of steel racks accounts for 23% of the total cost. There is no income.
For the indicator “environmental externalities”, 81% of the total cost is for the production of steel racks.

3.2.4. Module B8

The environmental impact of module B8, the stage relating to the user’s utilization, is 38% lower
than the environmental impact of all other modules together (excluding module D) for the SSC bridge,
see Table 6. The social impact of module B8 is almost three times larger. The net cost for LCC
and incomes is 80% lower for module B8 than for all other modules together (excluding module D).
The “environmental externalities” indicator is 97% lower for module B8 than for all other modules
together (excluding module D). For other aspects of module B8 that do not depend on the bridge type,
see Section 3.1.4.

3.2.5. Modules C1–C4

In the end-of-life stage, global warming potential has the largest impact in the environmental
dimension (34%), followed by the abiotic depletion potential for fossil resources (22%), the three
eutrophication potential indicators together (14%), and the photochemical ozone creation potential
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(12%), see Figure 5. Fifty-one percent of both the global warming potential and the abiotic depletion
potential for fossil resources is caused by the landfilling of 683 tons of aggregate waste. Thirty-three
percent of the global warming potential is caused by the production and combustion of diesel used for
deconstruction. Thirty-four percent of the abiotic depletion potential for fossil resources is caused by
the production of diesel used for deconstruction.

In the social dimension, particulate matter emissions have the greatest impact (56% of the total
impact), followed by the indicator “human toxicity—non-cancer effects” (35%). Seventy-seven
percent of particulate matter emissions and 90% of human toxicity—non-cancer effects are caused
by the landfilling of aggregate waste.

In the economic dimension, for the indicator “LCC and incomes”, 90% of the total cost is
for deconstruction workers. There is no income. For the indicator “environmental externalities”,
the largest portion of the cost (55%) comes from the landfilling of aggregate waste and the second
largest portion (33%) comes from the production and combustion of diesel used for deconstruction.

3.2.6. Module D

Regarding the benefits and loads beyond the system boundary, the largest potential future benefit
in the environmental dimension is the avoidance of contributing to global warming potential (51%
of the total benefit) and the avoidance of abiotic depletion for fossil resources (30%), see Figure 5.
The main factors involved in the avoidance of contributing to global warming potential are the potential
recycling of bridge steel (52%) and the potential re-use of aggregates (45%).

Table 8. Comparison of the design concepts for modules A–C and for module D for the functional
unit. The results are aggregated at the dimension level for the environmental and social dimensions
and at the indicator level for the economic dimension. The results for the environmental and social
dimensions are normalized and weighted, while the results for the economic dimension are summarized.
Module B8 is not included in the comparison. The best options are highlighted in grey.

Dimension, Indicator (unit) CSF Bridge SSC Bridge

A–C D A–C D
Environmental, all (dimensionless) 4.4 −1.5 7.0 −2.1

Social, all (dimensionless) 3.5 −1.2 2.5 −1.4
Economic, LCC and incomes (Euro) 526 −1.1 421 −0.8

Economic, Environmental externalities (Euro) 182 −7.9 1 142 −14

The greatest potential future benefits in the social dimension are the avoidance of particulate
matter emissions (61%) and the avoidance of ionising radiation—human health (14%). The main
factors involved in the avoidance of particulate matter emissions are the potential re-use of aggregates
(59%) and the potential recycling of bridge steel (39%).

In the economic dimension, for the indicator “LCC and incomes”, 94% of the total income comes
from the potential recycling of the bridge’s structural steel plates. For the indicator “environmental
externalities”, the largest benefit comes from the potential recycling of the bridge’s structural steel
plates (70%).

3.3. Comparison of the Design Concepts

A comparison of the two design concepts over the life cycle (modules A–C excluding module B8)
and in terms of the future re-use, recovery, and recycling potential (module D) is presented in Table 8
and Figures 7–9. The results are aggregated on the dimension level for the environmental and social
dimensions and on the indicator level for the economic dimension. The results for the environmental
and social dimensions are normalized and weighted, and the results for the economic dimension are
summarized. The results for the environmental and social dimensions per life cycle stage for the two
concepts are presented in Figure 10, and the summarized results for the economic indicators are
presented in Figure 11 (excluding module B8).
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Figure 7. Comparison of the design concepts in the environmental dimension for (a) life cycle stages
A–C excluding module B8 and (b) module D per indicator and for the functional unit. Note that
the ozone depletion potential indicator bar cannot be seen in the figure since it is very small.
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In the environmental dimension, the CSF bridge performs better than the SSC bridge over the life
cycle (see Table 8 and Figure 7). The environmental impact of the CSF bridge is approximately one-third
lower than that of the SSC bridge. After the end-of-life stage (in module D), the potential avoidance
of a negative environmental impact is 39% greater for the SSC bridge.

In the social dimension, the SSC bridge performs better than the CSF bridge over the life cycle
(see Table 8 and Figure 8). The social impact of the SSC bridge is 27% lower than that of the CSF bridge.
After the end-of-life stage (in module D), the potential avoidance of negative social impact is 22%
greater for the SSC bridge.

In the economic dimension, the SSC bridge performs better than the CSF bridge over the life cycle
for the indicator “LCC and incomes”, but it has a significantly worse performance than the CSF bridge
for the indicator “environmental externalities” (see Table 8 and Figure 9). The net cost of the SSC
bridge is 20% lower than that of the CSF bridge when it comes to the indicator “LCC and incomes”.
In contrast, the impact of the factor “environmental externalities” is six times greater for the SSC
bridge than for the CSF bridge. After the end-of-life stage (in module D), the potential income and
the avoidance of environmental externalities have very small impacts for both concepts.

Considering the different life cycle stages, the SSC bridge has double the environmental impact
in the material production phase (modules A1–A3) compared with the CSF bridge (see Figure 10).
This is mainly due to the abiotic depletion potential of non-fossil resources caused by the manufacture
of structural steel plates for the SSC bridge. This indicator contributes to almost half of the total
environmental impact of the SSC bridge in the production stage (see Figure 7). The indicator
global warming potential contributes to one-quarter of the environmental impact of the SSC bridge
in the production stage.Int. J. Environ. Res. Public Health 2020, 17, x 20 of 35 
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The CSF bridge has a 44% larger social impact in the material production phase than the SSC
bridge (see Figure 10). This is primarily due to “human toxicity—cancer effects”, which are mainly
caused by production of stainless-steel reinforcement, and the particulate matter emissions, which are
mainly caused by the production of aggregates.

In the production stage, the impact of the environmental externalities of the SSC bridge is almost
nine times greater than that of the CSF bridge (see Figure 11). This is due to the use of non-renewable
elements in the production of the bridge’s structural steel plates. In the construction stage, the net cost
for LCC and incomes is almost three times larger for the CSF bridge. This is because of the larger cost
for construction workers for the CSF bridge compared with the SSC bridge.

4. Discussion

In the environmental dimension, the CSF bridge was found to perform better than the SSC bridge
over the life cycle (see Table 8 and Figure 7). The environmental impact of the CSF bridge was 37%
lower than that of the SSC bridge. Similar results were demonstrated in an LCA study comparing
a steel box girder bridge and a concrete box girder bridge, where the concrete bridge alternative
performed best environmentally overall [22]. However, another LCA study on four CSF bridges and
four SSC bridges showed the opposite result: the SSC bridges performed better than the CSF bridges
over the life cycle [23]. This is partly because only 54–74% of the structural steel mass was used
in three of the SSC bridges in the study by [23], compared with the SSC bridge in this case study. It is
also partly because 37% of the structural steel plates were assumed to be secondary steel produced
in an electric arc furnace (EAF) route in [23], while in this case study, all of the structural steel plates
are from primary steel produced through a blast furnace (BF) route.

In the social dimension, the SSC bridge was found to perform better than the CSF bridge over
the life cycle (see Table 8 and Figure 8). The social impact of the SSC bridge was 27% lower than that
of the CSF bridge. A similar result was demonstrated by [23], where particulate matter emissions were
slightly lower for three of the SSC bridges compared with the CSF bridges.

In the economic dimension, the SSC bridge was found to perform better than the CSF bridge over
the life cycle for the indicator LCC and incomes, but it performed significantly worse than the CSF
bridge for the indicator environmental externalities (see Table 8 and Figure 9). The opposite result was
shown for environmental externalities in [23]. Using the Ecotax02 and Ecovalue08 monetary weighting
methods updated with the Ecovalue12 method indicators [24,25], the SSC bridges performed better
than the CSF bridges. This might be explained by the fact that the depletion of abiotic resources
indicator was not included in the calculation of environmental externalities in [23], even though it is
part of both the Ecotax02 and the Ecovalue08 and Ecovalue12 methods. Non-renewable elements and
non-renewable energy resources were found to be the major contributors contribute to the environmental
externalities in this case study.

For both design concepts, the majority of the negative impact on sustainability was found to
occur in the production stage (modules A1–A3). This was also shown in [23], where between 55%
and 92% of the environmental impact occurred in the production stage, depending on the indicator.
An LCA study of a steel box girder bridge and a concrete box girder bridge similarly showed that
the production of materials for the bridge superstructure and the abutments accounted for the main
share of the environmental impact, with a limited number of materials being important [22].

Furthermore, the case study demonstrated that 36% of the life-cycle environmental impact for
the CSF bridge and 20% for the SSC bridge occurred in the construction stage (modules A4–A5). In [23],
it was also shown that the environmental impact of the construction stage is significant; causing up to
34% of the life cycle impact for some indicators. However, in [22], the construction phase accounted
for a relatively small part of the impact, and the use phase contributed more significantly, which is
contrary to the results of this case study. A main difference between the two concepts in this case study
is that a large part of the economic impact (LCC and incomes) was found to occur in the construction
stage for the CSF bridge, and this was mainly due to the cost of construction workers.
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Module B8 was found to contribute to 50% and 38% of the total environmental impact and 66%
and 73% of the total social impact over the life cycle (modules A–C) for the CSF bridge and SSC
bridge, respectively. This demonstrates that the environmental and social impacts of the bridge itself
are, in fact, significant in comparison to the impact from traffic on the bridge. This was even more
obvious for the economic impacts, as module B8 was shown to only contribute to between 3% and 17%
for the two economic indicators considered for both bridge types.

The main contribution to the environmental impact over the life cycle (modules A–C excluding B8)
was shown to come from the indicator abiotic depletion potential for non-fossil resources for the SSC
bridge (35%) and the indicator global warming potential for the CSF bridge (44%). Similar results
were demonstrated in an LCA study of a concrete box girder bridge and a steel box girder bridge
where global warming, abiotic depletion, and acidification were found to be the indicators with
the greatest contributions [22]. In [23], on the contrary, it was shown that the SSC bridges performed
better than the CSF bridges regarding the indicator global warming potential. This was partly because
less structural steel was used in the SSC bridges and because 37% of the structural steel plates were
assumed to be secondary steel produced via an EAF route in [23] (see further explanation above).
If only the indicator “global warming potential” had been considered in this case study, the SSC
bridge would have performed only 7% worse than the CSF bridge in the environmental dimension.
When considering all environmental indicators, the SSC bridge was found to perform 60% worse
in the environmental dimension. This demonstrates the importance of including more indicators than
only global warming potential, as shown in previous studies [26]. This is an important observation,
as today, it is common practice to solely consider global warming potential (or one other indicator
such as embodied energy) in assessments of environmental performance [9,26,27].

The main contributor to the social impact over the life cycle (modules A–C excluding B8) was
shown to be the indicator particulate matter emissions for both concepts. This is, in part, because
of the large weight given to this indicator, but also because construction activities are significant
sources of particulate matter emissions, for example, when crushing aggregates [28,29]. For the CSF
bridge, the indicator “human toxicity—cancer effects” was also shown to contribute to a large portion
of the social impact. For the CSF bridge, it was shown that approximately one-third of the particulate
matter emissions were caused by the production of aggregates and their transport to the construction
site, and one-third were caused by the production and combustion of diesel used at the construction
site. For the SSC bridge, it was shown that one-third of the particulate matter emissions were
caused by the production of aggregates; one-third by the production and combustion of diesel used
for the construction, maintenance, and deconstruction of the bridge over the life cycle; and one-quarter
by the production of structural steel.

The net cost for the LCC and incomes indicator was found to be 25% higher for the CSF bridge
than the SSC bridge over the life cycle. For the CSF bridge, the main costs came from cost for workers
during construction, and the production and transport of aggregates, concrete, and reinforcement
steel. For the SSC bridge, the main contributor to the cost of the LCC and incomes was the cost for
the production of structural steel. The environmental externalities of the SSC bridge was six times
greater than that of the CSF bridge over the life cycle because of the use of non-renewable elements
in the production of the bridge’s structural steel plates.

The production of aggregates and their transport to the construction site was shown to be the main
factor in the environmental and social impacts of the CSF bridge and the social impact of the SSC bridge.
It was also shown to be the second greatest factor in the environmental impact of the SSC bridge. Hence,
there is great potential to reduce environmental and social impacts by re-using aggregates on site
in the next life cycle to avoid the production of virgin aggregates and their transport to the construction
site. The production of the bridge’s structural steel plates plays the largest role in the environmental
impact as well as the impact on environmental externalities for the SSC bridge due to the depletion
of metals. Thus, there is great potential to reduce the impact by using steel produced from recycled
steel. Regarding the LCC and incomes over the life cycle, the results show that costs can be reduced
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by lowering the work costs as well as the material costs for the materials purchased in large quantities,
such as aggregates, steel and concrete.

It is important to keep in mind that the environmental and social impact results are highly
dependent on the LCA datasets chosen for the calculations. It is possible to apply the method using
generic licensed datasets or generic datasets from open online LCA databases or Environmental
Product Declarations (EPDs), provided they follow the EN15804 + A2 standard. The use of supplier
EPDs instead of generic datasets further increases the accuracy of the environmental and social
assessment results, since EPDs contain supplier-specific declarations, while generic datasets may not
be fully representative of the actual materials supplied in an assessed civil engineering works project.
In this case study, only generic datasets were used. They are not completely representative of the
resources purchased for the object of assessment. For example, the generic dataset used for aggregates
differed from the aggregates purchased, especially regarding the distance between the mining site and
crushing plant (10 km in the generic dataset, a few hundred metres for the actual supplier). Generic
datasets were used because supplier specific EPDs that follow the EN15804 + A2 standard are not
yet available.

As shown from the examination of results, this method allows the sustainability performance
of design concepts to be compared at the life cycle stage and construction component level in the early
design and planning stages. The data available in these early stages are sufficient for assessment.
Through the examination possibilities made available by the transparency of the method, it is possible
to identify the critical elements in a civil engineering works project with the greatest impacts
on sustainability. This allows necessary adjustments to be made to achieve more sustainable design
concepts. Due to its general character, the method can be applied to other types of civil engineering
works, not only bridges.

For the social dimension, in particular, but also for the environmental dimension, further research
is needed to define appropriate indicators for civil engineering projects. The sustainability dimensions
could also be further aggregated using a multi-criteria decision analysis (MCDA) method to obtain
an overall sustainability score [30–32]. Furthermore, scenarios for the construction, use, and end-of-life
stages may be improved by collecting data from ongoing projects [5]. It is recommended that future
studies carry out a sensitivity analysis to assess the influences of different scenarios and datasets whose
uncertainty is considered important for the evaluated impacts.

5. Conclusions

The case study demonstrates that our method can be used to carry out comparable and transparent
life cycle sustainability performance assessments in the early design and planning stages of a civil
engineering works project. It allows the sustainability performance of design concepts to be compared
at the life cycle stage and construction component level. The method enables the identification of critical
indicators with the greatest impacts on sustainability at the different life cycle stages and for the critical
elements. The method is transparent, because the underlying BOMs, scenarios, and datasets used
for the assessment are clearly described, and the results can be evaluated down to the building material
level. Since the method is based on quantitative indicators and fixed factors, the calculation process
used in the assessment is automatable.

The use of supplier EPDs instead of generic datasets will further increase the accuracy
of the environmental and social assessment results, since EPDs are supplier-specific declarations,
while generic datasets may not be fully representative of the actual materials supplied in an assessed
civil engineering works project.

The case study demonstrates the importance of including more indicators than global warming
potential in environmental assessments. Environmental and sustainability performance is clearly
dependent on several indicators, and care should be exercised when generalising results obtained
in assessments that only take into account only one or a few indicators.
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The method used in the case study includes state-of-the-art indicators according to current
standard specifications and can be complemented with additional indicators. For the social dimension,
in particular, but also for the environmental dimension, further research is needed to define appropriate
indicators for civil engineering projects.

The results of the case study show the importance of the production stage (modules A1–A3)
and the construction stage (modules A4–A5) on the sustainability performance over the life cycle.
Production of structural steel for the SSC bridge has the greatest environmental impact and accounts
for almost all of the environmental externalities, which explains the poorer performance of this bridge
in the environmental dimension. However, the CSF bridge was shown to perform worse than the SSC
bridge in the social dimension with a higher LCC. The former point can be mainly explained by the large
global warming potential of the CSF bridge due to concrete production, and the latter point can be
explained by higher costs during construction due to being more labour-intensive. The production and
transport of aggregates have large negative environmental and social impacts for both bridge types.

In summary, the examination of the case study assessment results provides important knowledge
on the indicators and life cycle stages associated with large sustainability impacts for each of the bridge
concepts investigated. We conclude that to reduce the overall negative impact on sustainability,
mitigation measures should primarily address the production and construction stages. Our findings
contribute to the development of a better understanding of the sustainability impact of civil engineering
works through the identification of elements with the greatest impacts. A special focus and adaptations
of identified elements (e.g., origin and type of materials, equipment used, structural optimization)
could significantly improve the sustainability performance of the design concepts. After necessary
adaptations have been applied to a design concept, the assessment can be re-performed to assess
the new conditions. If the assessment is automated, this step could be iterated until the most sustainable
alternative is found.
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Appendix A

The life cycle inventory (LCI) database provides the life cycle inventory data. The datasets used
in the life cycle assessment (LCA) modelling are presented in Table A1.

Table A1. Assignments of inputs and outputs to LCIs from the GaBi database for the LCA.

Inventory Description Assumption GaBi Dataset Country Source

Acetylene Acetylene - Ethine (acetylene) DE Generic dataset
from Sphera

Aggregate waste
treatment

Aggregate and
macadam waste 90% is re-used as aggregates

on site, 10% is transported to
landfill

Crushed stone grain
2–15 mm (undried)
(EN15804 A1–A3)

EU-28 “

Inert matter
(Construction waste)

on landfill
DE “

Aggregates 0/16
and 0/90 mm

Crushed
aggregates 0/16
and 0/90 from
igneous rock
in Sweden

European limestone 2/15 mm
crushed stone

Crushed stone grain
2–15 mm (undried)
(EN15804 A1–A3)

EU-28 “
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Table A1. Cont.

Inventory Description Assumption GaBi Dataset Country Source

Asphalt ABb ABb asphalt
from Sweden

European average supporting
layer asphalt

Asphalt supporting
layer (EN15804

A1–A3)
EU-28 “

Asphalt ABT ABT asphalt
from Sweden

European average asphalt
pavement

Asphalt pavement
(EN15804 A1–A3) EU-28 “

Asphalt recycling
Recycling of ABb,

ABT, and
Viacogrip asphalt

0.7 kWh of Swedish grid mix
electricity used per ton of recycled

asphalt (crushing). 1000 kg
of recycled asphalt replaces 740 kg

of virgin aggregates and 60 kg
of virgin bitumen.

Crushed stone grain
2–15 mm (undried)
(EN15804 A1–A3)

DE “

Bitumen (Eurobitume
LCI report 2019) w

infrastructure
EU-28

Generic dataset
based

on Eurobitume
report 2019 [33]

Asphalt ViacoGrip
ViacoGrip

asphalt from
Sweden

European average SMA asphalt
Stone mastic asphalt

SMA (EN15804
A1–A3)

EU-28 Generic dataset
from Sphera

Average
electricity/diesel

driven train
- -

Rail transport
cargo—average,

average train, gross
tonne weight 1000

t/726 t payload
capacity

GLO “

Bitumen sealant Bitumen emulsion (EN
15804 A1–A3) DE “

Bitumen sheet Icopal Membrane
5BRO (YEP 6500) Produced in Germany

Bitumen sheets
PYE-PV 200 S5 ns
(slated) (EN15804

A1–A3)

DE “

Bitumen sheet
waste

Incineration in
Swedish district

heating plant
(Jönköping)

Incineration of average municipal
solid waste (MSW) in Germany

Commercial waste
in municipal waste
incineration plant

DE “

Bituprimer Degadur®112 -

Methacrylate resin
products, highly-filled,

flow
coatings—Deutsche

Bauchemie e.V.
(DBC) (A1–A3)

DE “

Carbon steel
reinforcement

recycling
- Average German production Recycling potential

steel profile (D) DE “

Concrete elements Concrete
kerbstone Bricks of concrete C20/25 Concrete bricks

(EN15804 A1–A3) DE “

Concrete waste
treatment -

0.7 kWh of Swedish grid mix
electricity used per ton of recycled

concrete (crushing). 1 kg
of recycled concrete replaces 1 kg

of virgin aggregates.

Crushed stone grain
2–15 mm (undried)
(EN15804 A1–A3)

DE “

Container ship - -
Container ship, 5000 to
200,000 dwt payload
capacity, ocean going

GLO “

Diesel Diesel 7%
bioblend Diesel 6,4% bioblend Diesel mix at

filling station EU-28 “

Diesel combustion Diesel
combustion

Combustion of diesel (modified
for diesel 7% bioblend)

Diesel combustion
in construction

machine
GLO “

Electricity Swedish grid
mix electricity - Electricity grid mix SE “

Electricity
generation from

waste incineration

Electricity
generation from

incineration
wood, particle

board, plywood,
plastic, bitumen

sheet, and
hazardous waste

Swedish grid mix electricity Electricity grid mix SE “

Epoxy sealant NM Försegling
62F Tix Primer for exterior applications

Powder coating based
on epoxy resin

(EN15804 A1–A3)
DE “

Form oil Form oil From crude oil Lubricants at refinery EU-28 “
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Table A1. Cont.

Inventory Description Assumption GaBi Dataset Country Source

Geotextile
Drefon ST 550

(polypropylene
fibre geotextile)

Approximated
by woven cotton

fibre fabric

Textile Manufacturing
—Woven Fabric GLO Generic dataset

from CottonInc

Graffiti protection Graffiti Shield
wax emulsion From crude oil Wax/Paraffins at

refinery DE Generic dataset
from Sphera

Hazardous waste
treatment - Incineration

Hazardous waste
in waste

incineration plant
SE “

HDG steel racks
Birsta W, single

sided safety barrier
(HDG)

Produced by blast
furnace (BF) route,
average European

production

Steel forged
component

(EN15804 A1–A3)
EU-28 “

HDG steel recycling - Average German
production

Recycling potential
steel sheet
galvanised

(EN15804 D)

DE “

HDG structural
steel plates

SSAB Hot-rolled
coils S355MC,

produced in a blast
furnace (BF) route

in Sweden and
galvanized
in Poland

Produced through
a BF route and

galvanized,
German average

Steel sheet HDG
(EN 15804 A1–A3) DE “

HVO combustion HVO combustion

Approximated by
a combination of
biomass/regular

diesel combustion

HVO combustion
in car GLO

Dataset based on
CO2e emission
data from the

Swedish EPA 2018,
combustion of

“Other biomass”,
other emissions
(SO2, NOx, PM

etc.) based on data
for regular diesel

Hydrogenated
Vegetable Oil (HVO) HVO combustion Approximated

by RME
Rapeseed Methyl

Ester (RME) DE “

Impregnation
(direct emissions) SILRES® BS 1701

Silicate
emulsion primer

Primer silicate
emulsion (building,

exterior, white)
(EN15804 A5)

DE “

Impregnation
(production)

Liquified Petroleum
Gas (LPG)

SILRES® BS 1701
Liquified

Petroleum Gas

Silicate emulsion
prime coat

average European
production

Primer silicate
emulsion (building,

exterior, white)
(EN15804 A1–A3)

DE “

Thermal energy
from LPG EU-28 “

Macadam 8/16 mm
Crushed macadam
8/16 from igneous

rock in Sweden

European
limestone 16/32

mm crushed rock

Crushed rock 16–32
mm (undried)

(EN15804 A1–A3)
EU-28 “

Mortar
Fine concrete K40

and expander
concrete EXM 702

Average European
production

Normal mortar
(A1–A3) EU-28 “

Particle board Form board
from Sweden

Average European
P2 (Standard FPY) Particle board EU-28 “

Plastic film - - Plastic Film (PE, PP,
PVC) GLO “

Plastic waste treatment

Incineration in
Swedish district

heating plant
(Jönköping)

Incineration
in average

European waste
incineration plant

Plastic packaging
in municipal waste
incineration plant

EU-28 “

Plywood Formply from
Sweden

Pine plywood
produced

in Germany

Plywood board
(EN15804 A1–A3) DE “

Plywood and
particleboard

waste treatment

Incineration
in Swedish district

heating plant
(Jönköping)

Incineration
in German waste
incineration plant

Particle board
in municipal waste
incineration plant

DE “

Polyethylene foam Concrete carpet Consisting of
polyethylene foam

Polyethylene foam
(EN15804 A1–A3) DE “

Polypropylene pipe PP road drum PP pipe produced
in Germany

Polypropylene
pipe (PP) (EN15804

A1–A3)
DE “
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Table A1. Cont.

Inventory Description Assumption GaBi Dataset Country Source

PVC tube PVC drain hose
PVC drain pipe

produced
in Germany

Rain drain pipe (PVC
pipe) (EN15804

A1–A3)
DE “

PVC waste
treatment

PVC waste
incineration

in Swedish district
heating plant
(Jönköping)

Incineration
in German waste
incineration plant

Polyvinyl chloride
(PVC) in waste

incineration plant
DE “

Ready-mix
concrete C35/45

Betongindustri
concrete C35/45

vct = 0,40

Average European
production

Concrete C35/45
(Ready-mix concrete)

(EN15804 A1–A3)
EU-28 “

Recovery of heat
for district heating

Heat recovery from
wood, particle

board, plywood,
plastic, bitumen

sheet, and
hazardous waste

District heating
produced by plant

in Jönköping

District heating mix
Jönköping 2019 SE

Specific dataset
based on fuel

use for
Jönköping

district heating
plant

Reinforcement
(carbon steel) B500B

Produced by
the electric arc

furnace (EAF) route,
average European

production

Reinforced steel (wire)
(EN15804 A1–A3) EU-28 Generic dataset

from Sphera

Reinforcement
(stainless steel) LDX2101

Produced from 100%
alloyed stainless

steel scrap

Fixing material screws
stainless steel

(EN15804 A1–A3)
DE “

Road salt - From rock salt Sodium chloride (rock
salt) DE “

Stainless steel
reinforcement

recycling
- Average German

production

Recycling potential
stainless steel sheet

(EN15804 D)
DE “

Tap water
Truck, Euro 6

Tap water
-

Swedish tap water
produced from
groundwater

-

Tap water from
groundwater (for
regionalization)

GLO (SE chosen
in dummy) “

Truck, Euro 6, 20–26 t
gross weight/17.3 t
payload capacity

GLO “

Untreated wood Spruce wood
from Sweden

Coniferous wood
produced

in Germany

Solid construction
timber (softwood)
(EN15804 A1–A3)

DE “

Wood waste
treatment

Wood waste
incineration in

Swedish district
heating plant
(Jönköping)

Incineration
in German waste
incineration plant

Wood (natural) in
waste incineration

plant
DE “

“ denotes ‘Same as above’.

Appendix B

Table A2. Bill of materials (BOM) for the design concepts for each module. Amounts are representative
of the required service life (RSL) and for the bridges as a whole. The amounts for modules B1–B8,
C1–C4 and D were calculated based on the scenarios presented in Tables A3–A5.

Concept Module Resource/Waste Amount Unit

Both

A1–A3

Aggregates 0/16 and 0/90 mm 6,820,600 kg
Macadam 8/16 mm 12,000 kg

Asphalt Abb 6983 kg
Asphalt ABT 4364 kg

Asphalt ViacoGrip 5237 kg
Concrete elements 8100 kg
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Table A2. Cont.

Concept Module Resource/Waste Amount Unit

Hot-dip galvanized (HDG) steel racks 250 kg
Polypropylene pipe 106 kg

Geotextile 17 kg

A5

Electricity (Swedish grid mix) 4560 kWh
Tap water 1500 liters
PVC tube 105 kg

PVC waste 105 kg

B1
Zinc to fresh water 0.55 kg
PAH to fresh water 0.112 kg

B2
Tap water 400 liters
Road salt 65 kg

B3
HDG steel racks 692 kg

HDG steel racks waste for recycling 692 kg

B4

HDG steel racks 692 kg
Asphalt 10,500 kg

Diesel 7% bioblend 17 liters
Tap water 10,000 liters

HDG steel racks waste for recycling 692 kg

B5 N/A -

B6 N/A -

B7 N/A -

B8

Diesel 7% bioblend 11,797 liters
Hydrogenated Vegetable Oil (HVO) 41,611 liters

Electricity (Swedish grid mix) 357,209 kWh
Particles to fresh water 10,950 kg

Micro plastics to soil 131 kg

C1 Diesel 7% bioblend 39 liters

C2 See Table A6 -

C3
Aggregates for re-use 6,149,340 Kg

Asphalt waste for recycling 16,580 Kg
Polypropylene plastic waste for incineration 106 Kg

C4 Aggregates on inert landfill 683,260 Kg

D Electricity (Swedish grid mix) 19 kWh

CSF bridge

A1–A3

Ready-mix concrete C35/45 463,700 Kg
Reinforcement (carbon steel) 22,680 Kg

Reinforcement (stainless steel) 553 kg
Bitumen sheet 380 kg

Mortar 180 kg
Epoxy sealant 77 kg

Bituprimer 35 kg
Impregnation 19 liters

Graffiti protection 19 liters
Bitumen sealant 10 kg

Polyethylene foam 5 kg

A5

Untreated wood 5400 kg
Diesel 7% bioblend 5280 liters

Particle board 1600 kg
Plywood 1000 kg
Form oil 130 kg

Plastic film 22 kg
Concrete waste for recycling 23,185 kg
Wood waste for incineration 5400 kg

Plywood and particleboard waste for incineration 2600 kg
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Concept Module Resource/Waste Amount Unit

Reinforcement waste (carbon steel) for recycling 1134 kg
Plastic waste for incineration 22 kg

Bitumen sheet waste for incineration 19 kg

B1
CO2 uptake 1139 kg

Zinc oxide to air 0.55 kg

B2
Diesel 7% bioblend 70 liters

Tap water 29,400 liters
Graffiti shield 15 liters

B3
Concrete C35/45 1344 kg

Tap water 1000 liters
Concrete waste 1411 kg

B4

Concrete C35/45 12,600 kg
Diesel 7% bioblend 27 liters

Bitumen sealant 10 kg
Bitumen sheet 380 kg

Bituprimer 35 kg
Epoxy sealant 77 kg

Bitumen sealant waste for incineration 10 kg
Bitumen sheet waste for incineration 380 kg

Bituprimer waste for incineration 35 kg
Epoxy sealant waste for incineration 77 kg

C1
Diesel 7% bioblend 1453 liters

Tap water 386,000 liters

C2 See Table A6 -

C3

Concrete for recycling 448,615 kg
HDG steel for recycling 250 kg

Carbon steel reinforcement for recycling 22,680 kg
Stainless steel reinforcement for recycling 553 kg

Bitumen sealant waste for incineration 10 kg
Bitumen sheet waste for incineration 380 kg

Bituprimer waste for incineration 35 kg
Epoxy sealant waste for incineration 77 kg

C4 N/A -

D Electricity (Swedish grid mix) 340 kWh

SSC bridge

A1–A3 HDG structural steel plates incl. bolts and nuts 40,653 kg

A5 Diesel 7% bioblend 5230 liters

B1 Zinc oxide to air 3.35 kg

B2
Diesel 7% bioblend 52 liters

Tap water 26,200 liters

B3 N/A -

B4 N/A -

C1
Acetylene 8300 liters

Diesel 7% bioblend 2339 liters

C2 See Table A6 -

C3 HDG structural steel plates incl. bolt and nuts for
recycling 40,653 kg

C4 N/A -

D N/A -
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Appendix C

Common scenarios for both design concepts are presented in Table A3. Specific scenarios for
the CSF bridge and the SSC bridge design concepts are presented in Tables A4 and A5, respectively.

Table A3. Common scenarios for both design concepts for each module (B–D).

Module Scenario

B1

(1) Zinc in steel racks oxidizes and is released to air and water. The amount of zinc
released from galvanized steel racks on a highway was calculated to be 0.95
kg/year/km [34]. It is assumed that 50% of this is released as zinc oxide particles to air
and 50% is released in soluble form to water, giving a total of 0.55 kg of zinc released
from the bridge to water and air respectively over 80 years.

(2) Bitumen in asphalt is degraded and PAH leaches into the local environment at a rate
of 0.5 mg PAH/m2 asphalt over 25 years [35], giving a total of 112 mg of PAH is
released from the bridge to soil over 80 years.

B2

(1) Washing of steel racks with drinking water occurs twice a year. Approximately 25 L
is used per 100 m rack according to expertise within the Swedish Transport
Administration, giving 400 L of water consumed over 80 years. The work cost is
negligible and therefore was not included.

(2) A total of 0.8 kg of salt is administered per year across the whole road surface of the
bridge [36], giving 65 kg over 80 years. The work cost is negligible and therefore was
not included.

(3) A total of 0.07 h is needed for snow removal per km of lane per year [36]. The bridge
has 3 lanes, and we assumed the use of a diesel-driven vehicle of 100 kW, giving 1.3 L
of diesel over 80 years, which is considered negligible and was therefore not included.

B3

10% of the steel rack mass is repaired every second year, giving 692 kg over 80 years. The
cost for this amount of steel is 8650 Euros. The energy used for the repairs is estimated to
be negligible and was therefore not included. The work cost was calculated assuming 1 h
of work per occasion and a salary of 60 Euros/h, giving 2400 Euros.

B4

(1) Steel racks are replaced completely every 20 years, giving 692 kg over 80 years. The
cost for this amount of steel is 8650 Euro of which the work cost is 2 400 Euro.

(2) A depth of 30 mm of the top asphalt layer is replaced every 40 years, giving 10,500 kg
of asphalt over 80 years. The amount of diesel used for milling is 1.6 L/ton asphalt
milled, giving 17 L over 80 years. The work cost is negligible and was therefore
not included.

B5 No refurbishment needed

B6 No energy consumption

B7 No water consumption

B8

(1) Energy consumption of passing vehicles: It is estimated that the mean daily traffic
on the bridge per year over the RSL will increase, as illustrated in Figure A1. It is
assumed that 50% of the vehicles will be diesel-driven and 50% will be electric up
until 2030; 20% will be diesel-driven, 20% will be HVO-driven, and 60% will be
electric in 2030–2045; and 30% will be HVO-driven and 70% electric from 2045
onwards. The diesel and HVO consumption is assumed to 0,06 L/km and
the electricity consumption is assumed to be 0.2 kWh/km, giving 11,797 L of diesel,
41,611 L of HVO, and 357,209 kWh of electricity over 80 years.

(2) A total of 760 kg of asphalt is abraded per 100 m lane/year (at AADT 15,000, 100 km/h
according to [37], giving 10,950 kg particles (of diameter 50–1000 µm) over 80 years.

(3) Tires are abraded by 0.05 g/km and vehicles [38], giving 131 kg of microplastic over
80 years (25% styrene and 75% butadiene).

C1

(1) Steel racks are lifted away using a diesel-driven crane. It is estimated that 1 h is
needed for 14 m of racks using a crane that consumes 12 L/h [39], giving 12 L
of diesel. The work cost is negligible and was therefore not included.

(2) Asphalt is milled using a machine that consumes 1.6 L of diesel/ton asphalt milled,
giving 27 L. The work cost was calculated assuming 16 h of work and a salary of 60
Euros/h, giving 1000 Euro.
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Module Scenario

C2

(1) Steel racks are transported by truck to a storage facility.
(2) Asphalt is transported by truck to recycling.
(3) A total of 90% of the aggregates are not moved, and 10% are transported 39 km by

truck to landfill.

C3 N/A, end-of-waste is reached for asphalt and steel racks before waste treatment takes place.

C4 A total of 10% of the aggregates are disposed on an inert landfill = 683,260 kg. The cost for
landfilling is 30 Euros/ton.

D

(1) 100% of the steel racks are recycled. The selling price is 0.1 Euro/kg steel.
(2) 100% of the asphalt is recycled. Crushing of the recycled asphalt is done with

an electric crusher using 0.7 kWh/ton, giving 19 kWh in total. The selling price is 5
Euros/ton asphalt.

(3) A total of 90% of the aggregates are not moved and are re-used as filling material
on site.
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after construction).

Table A4. Specific scenarios for the CSF bridge design concept for each module (B–D).

Module Scenario

B1

Carbonation of the concrete surfaces was calculated according to [40] with the
following assumptions:

• Area exposed to rain: 55 m2

• Area protected from rain: 210 m2

• Area in ground: 300 m2

giving that 1139 kg CO2 is taken up by the bridge over 80 years.

B2

Graffiti removal is done every 10 years by washing with hot water under high pressure.
After washing, new graffiti protection is applied. It is assumed that 10% of the
available surface area of 170 m2 is covered by graffiti over 10 years, giving 17 m2. It is
estimated that it takes 15 min to wash 1 m2, giving 4 h to wash in total per occasion.
The equipment consumes 2.15 L of diesel/h, giving 70 L over 80 years. It consumes 15 L
of drinking water/minute, giving 29.4 m3 in total over 80 years. Graffiti protection
of 10% of the surface, giving 15 L over 80 years.
The work cost was calculated assuming 32 h of work and a salary of 60 Euros/h, giving
1 920 Euro.
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Module Scenario

B3

Minor repairs in the concrete parts are needed every 10 years. A 1 m2 layer of concrete
with a thickness of 70 mm is repaired per occasion, giving 1344 kg concrete repaired
over 80 years. A total of 2000 L of water is used per m3 of concrete repaired, giving
1000 L over 80 years. The amount of diesel consumed is negligible and was therefore
not included.
The work cost was calculated assuming 14 h of work and a salary of 60 Euros/h, giving
840 Euros.

B4

Replacement of edge beams is done every 40 years. The two edge beams are 400 mm
wide, 500 mm high, and 6 m long, giving 5 m3 of concrete is replaced over 80 years.
The equipment has a diesel consumption of 5.3 L/h, and 1 m3 concrete is removed/h,
giving 27 L over 80 years. It also consumes 2000 L of drinking water/h [41], giving 10
m3 in total over 80 years. The bridge insulation is totally replaced every 40 years,
giving 77 kg of epoxy sealant, 10 kg of bitumen sealant, 35 kg of bituprimer, and 380 kg
of bitumen sheet over 80 years.
The work cost was calculated assuming 16 h of work and a salary of 60 Euros/h, giving
1000 Euro. The cost for 1 day of scaffolding rent is estimated to be 100 Euros.

C1

(1) Concrete is demolished using equipment that consumes 2000 L of drinking water
and 5.3 L of diesel per m3 of concrete, giving 386 m3 water and 1023 L of diesel
in total. The work cost was calculated assuming 193 h of work and a salary of 60
Euros/h, giving 11,600 Euros.

(2) A total of 90% of the aggregates is not handled at all, and 10% is excavated using
an excavator consuming 1.5 L/m3 of excavated material, giving 430 L of diesel.
The work cost was calculated assuming 290 h of work and a cost of 100 Euros/h,
giving 29,000 Euros.

C2
(1) Reinforcement steel is transported by truck to a storage facility.
(2) Concrete is transported by truck to a recycling facility.

C3 N/A, end-of-waste is reached for concrete and reinforcement steel before waste
treatment takes place.

C4 N/A, no waste is disposed.

D

(1) All of the concrete is recycled into filling material. Crushing of the recycled
concrete is done with an electric crusher using 0.7 kWh/ton, giving 340 kWh
in total. The selling price is 5.3 Euro/ton concrete.

(2) All of the reinforcement steel is recycled into reinforcement steel. The selling
price is 0.1 Euro/kg of carbon steel and 0.9 Euro/kg of stainless steel.

Table A5. Specific scenarios for the SSC bridge design concept for each module (B–D).

Module Scenario

B1

Zinc oxidizes on the bridge’s structural steel plates into a powder which is assumed to
disperse into the surrounding air (since the steel surface is protected from rain).
Conservatively, it is assumed that 0.5 g of Zn is dispersed per m2 plate and year [34,42].
The area is 70 m2, giving 2.8 kg of Zn is released to air over 80 years.

B2

(1) Graffiti removal is done every 10 years by washing with hot water under high
pressure. No graffiti protection is needed on steel. It was assumed that 10% of the
available surface area of 126 m2 is covered by graffiti over 10 years, giving 13 m2. It
was estimated that it takes 15 min to wash 1 m2, giving 3 h to wash in total per
occasion. The equipment consumes 2.15 L of diesel/h, giving 52 L over 80 years. It
consumes 15 L of drinking water/minute, giving 22.4 m3 in total over 80 years.
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Module Scenario

The work cost was calculated assuming 32 h of work and a salary of 60 Euros/h, giving 1
920 Euro.
Washing of the bridge’s structural steel plates surface of 95 m2 is also done by using hot
water under high pressure. It is done once a year using 0.5 L of drinking water/m2, giving
3800 L over 80 years.

B3 No repairs are needed.

B4 No replacements are needed.

C1

(1) Masses covering the bridge’s steel construction are excavated. A total of 4600 m3 is
excavated using an excavator with a capacity of 40 m3/h using 20 L of diesel/h, giving
2300 L of diesel.

(2) Steel plates are cut with a cutting torch consuming 0.3 m3 acethylene/h to cut 36 m
of steel plate/h [43], giving 8.3 L/m. A length of 1000 m was assumed to be cut, giving
8300 L used over 80 years (corresponding to 9 kg of ethine).

The work cost was calculated assuming 16 h of work and a salary of 80 Euros/h, giving
1280 Euros.

C2 The bridge’s structural steel plates are transported by truck to a storage facility.

C3 N/A, end-of-waste is reached before waste treatment takes place.

C4 N/A, no waste is disposed.

D All of the bridge’s structural steel plates are recycled. The selling price is 0.1 Euro/kg steel.

Appendix D

Table A6. Transport modes and distances travelled for the resources (applicable for modules A4, A5,
B1–B4 and C2).

Concept Resource Transport Mode Distance (km)

Both

Aggregates (crushed
rock), asphalt

Truck, Euro 6, 20–26 t gross weight/17.3 t
payload capacity, 55% utilisation 39

Concrete elements “ 66

Diesel 7% bioblend “ 100

Steel racks “ 646

Aggregate waste, Asphalt
waste, Concrete waste “ 39

Steel waste (racks,
reinforcement steel,

stainless steel)
“ 50

Plastic waste “ 38

CSF bridge

Ready-mix concrete C35/45 “ 40

Reinforcement (carbon steel)

Average electricity/diesel driven train,
gross tonne weight 1000 t/726 t payload

capacity, 40% utilisation
Truck Euro 6, 20–26 t gross weight/17.3 t

payload capacity, 55% utilisation

1510
198

Reinforcement (stainless steel)

Container ship, 5000 to 200,000 dwt
payload capacity, ocean going, 70%

utilisation
Truck Euro 6, 20–26 t gross weight/17.3 t

payload capacity, 55% utilisation

49
1045

Untreated wood, particle
board, plywood

Truck Euro 6, 20–26 t gross weight/17.3 t
payload capacity, 55% utilisation 20
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Table A6. Cont.

Concept Resource Transport Mode Distance (km)

Bitumen sheet waste,
wood waste “ 38

Hazardous waste “ 200

SSC bridge

Structural steel plates

Container ship, 5000 to 200,000 dwt
payload capacity, ocean going,

70% utilisation
Truck Euro 6, 20–26 t gross weight/17.3 t

payload capacity, 55% utilisation

360
2027

Steel waste (structural
steel plates)

Truck Euro 6, 20–26 t gross weight/17.3 t
payload capacity, 55% utilisation 50

“ denotes ‘Same as above’.
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