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1  |  INTRODUC TION

Horizontal gene transfer of antimicrobial resistance (AMR) genes 
occurs via the processes of transformation and conjugation. The for-
mer mediates especially narrow range, intra-genus transfers (Gibson 

et al., 2015; Hu et al., 2016), whereas the latter is implicated in a 
wider range of transfer hosts (Garcillán-Barcia et al., 2011; Zrimec & 
Lapanje, 2018) and potentially enables AMR to overcome the tough-
est phylogenetic and ecological transmission barriers (Ben Maamar 
et al., 2020; Dolejska & Papagiannitsis, 2018; Malhotra-Kumar et al., 
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Abstract
Antimicrobial resistance poses a great danger to humanity, in part due to the wide-
spread horizontal gene transfer of plasmids via conjugation. Modeling of plasmid 
transfer is essential to uncovering the fundamentals of resistance transfer and for 
the development of predictive measures to limit the spread of resistance. However, 
a major limitation in the current understanding of plasmids is the incomplete charac-
terization of the conjugative DNA transfer mechanisms, which conceals the actual 
potential for plasmid transfer in nature. Here, we consider that the plasmid-borne 
origin-of-transfer substrates encode specific DNA structural properties that can fa-
cilitate finding these regions in large datasets and develop a DNA structure-based 
alignment procedure for typing the transfer substrates that outperforms sequence-
based approaches. Thousands of putative DNA transfer substrates are identified, 
showing that plasmid mobility can be twofold higher and span almost twofold more 
host species than is currently known. Over half of all putative mobile plasmids contain 
the means for mobilization by conjugation systems belonging to different mobility 
groups, which can hypothetically link previously confined host ranges across eco-
logical habitats into a robust plasmid transfer network. This hypothetical network is 
found to facilitate the transfer of antimicrobial resistance from environmental genetic 
reservoirs to human pathogens, which might be an important driver of the observed 
rapid resistance development in humans and thus an important point of focus for 
future prevention measures.
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2016; Mathers et al., 2015; Sun et al., 2019; Wang & Sun, 2015). 
Consequently, the interaction between conjugative relaxase en-
zymes and their DNA origin-of-transfer (oriT) substrates facilitates 
the majority of all AMR transfers in nature (Alekshun and Levy, 
(2007); Wintersdorff et al., 2016) and is especially important for 
ones related to human infection complications (San Millan, 2018). 
However, the current knowledge on conjugative transfer mecha-
nisms and systems (Fernandez-Lopez et al., 2017; Garcillán-Barcia 
et al., 2009; Smillie et al., 2010a; Zrimec & Lapanje, 2018) is un-
able to describe the unprecedented amount of observed horizontal 
transfer (Lopatkin et al., 2017; Mathers et al., 2015; Sun et al., 2019; 
Wintersdorff et al., 2016) that seems to transcend all transfer bar-
riers between resistance reservoirs and human hosts (Ben Maamar 
et al., 2020; Dolejska & Papagiannitsis, 2018; Malhotra-Kumar et al., 
2016; Salyers & Amábile-Cuevas, 1997; San Millan, 2018; Sun et al., 
2019; Wang & Sun, 2015; Wintersdorff et al., 2016).

The standard approach for characterization of plasmid mo-
bility involves the classification of conjugation and mobilization 
genes (Smillie, et al., 2010), especially typing of relaxase enzymes 
into the respective mobility (Mob) groups (Garcillán-Barcia et al., 
2009; Garcillán-Barcia et al., 2020). However, besides the possibil-
ity of yet unidentified enzymes and mobility groups (Coluzzi et al., 
2017; Garcillán-Barcia et al., 2009; Guzmán-Herrador & Llosa, 2019; 
Ramachandran et al., 2017; Soler et al., 2019; Wisniewski et al., 
2016), multiple new processes have recently been uncovered that 
might confer additional mobility to plasmids and involve the oriT 
substrate. These include (aa) broadened relaxase-binding specifici-
ties to multiple different oriT sequence variants (Chen et al., 2007; 
Fernández-González et al., 2016; Fernández-López et al., 2013; 
Jandle & Meyer, 2006; Kishida et al., 2017), which, according to the 
evolutionary theory of such DNA regions (Becker & Meyer, 2003; 
Parker et al., 2005; Zrimec & Lapanje, 2018), indicates the possibil-
ity of plasmids carrying multiple functional secondary oriTs, and (b) 
trans-mobilization of plasmids carrying oriTs triggered by relaxases 
from co-resident plasmids acting in trans on the non-cognate oriTs 
(Moran & Hall, 2019; O’Brien et al., 2015; Pollet et al., 2016; Ramsay 
& Firth, 2017). The latter mechanism demonstrates that oriT regions 
are the only elements of the conjugation machinery required in cis 
(Guzmán-Herrador & Llosa, 2019) and suggests that many plasmids 
classified as non-mobile due to the absence of putative relaxases 
may be mobilizable (Ramsay & Firth, 2017). However, although typ-
ing the oriT enzymatic substrates instead of the genetic scaffolds 
might present improvements to the current understanding of plas-
mid mobility, no systematic studies of oriTs across sequenced plas-
mids have yet been performed, likely due to the lack of available data 
and tools that would enable such oriT typing.

A major problem with uncovering oriT regions is that, apart from 
being experimentally laborious, it is computationally challenging due 
to multiple molecular mechanisms and a variety of DNA sequence 
elements present and coevolving in the DNA substrate (Zrimec & 
Lapanje, 2018), even among plasmids belonging to a single species 
such as Staphylococcus aureus (O’Brien et al., 2015). The oriT region 
contains recognition and binding sites for the relaxase enzyme as 

well as accessory proteins that help to initiate mobilization. These 
sites include inverted repeats and hairpins (Frost et al., 1994; Sut 
et al., 2009; Williams & Schildbach, 2007) as well as the nicking site 
nic, where relaxase cleaves the DNA to initiate plasmid transfer 
(Frost et al., 1994). They are characterized by specific DNA phys-
icochemical and conformational features that underpin key pro-
tein-DNA readout and activity mechanisms (Kolomeisky, 2011; Rohs 
et al., 2009, 2010; Zrimec & Lapanje, 2015, 2018) as well as define 
conserved niches of structural variants that enable good resolution 
between Mob groups and subgroups (Zrimec & Lapanje, 2018). OriT 
typing thus requires algorithms beyond simple sequence-based 
alignment (Altschul et al., 1990; Li et al., 2018) that can recognize 
and process the more complex molecular motifs and underlying 
DNA physicochemical and conformational (i.e., structural) features. 
The use of DNA structural representations has indeed led to im-
provements in algorithms for the identification of other regulatory 
regions, such as promoters and replication origins (Abeel et al., 
2008; Bansal et al., 2014; Chen et al., 2012; Dao et al., 2018; Samee 
et al., 2019). Despite this, instead of using tools that probe the actual 
relaxase-oriT interaction potential by identifying molecular proper-
ties that are the basis of such interactions, conventional approaches 
for oriT analysis still rely on sequence alignment-based methods 
(Altschul et al., 1990; Li et al., 2018; O’Brien et al., 2015).

Here, we prototype a DNA structure-based alignment algorithm 
for finding oriT variants, which enables finding and also Mob-typing 
oriT regions across thousands of sequenced plasmids. Based on the 
newly uncovered oriT variants, since they can facilitate both in cis 
and in trans plasmid transfer, the amount of putative mobile plasmids 
and putative mobile plasmid-carrying host species is re-analyzed. 
We then evaluate if and how the uncovered fraction of oriTs might 
help to overcome the known barriers to horizontal gene transfer, by 
reconstructing and analyzing a hypothetical network of potential 
AMR transfers between different species and habitats, especially 
those from the environmental reservoir to the human microbiota.

2  |  METHODS

2.1  |  M1. Datasets used for alignments

The full query dataset with known nic sites comprised 112 distinct 
oriT regions from 118 plasmids, where a single oriT sequence was 
selected to represent oriTs with sequence similarity below 15%, and 
6 Mob groups {F,P,Q,V,C,T} (Table A1-1, Dataset S1: https://github.
com/JanZr​imec/oriT-Stras​t/blob/maste​r/data/Datas​et_S1.csv). The 
dataset included (i) 48 experimentally verified oriT regions, of which 
34 contained experimentally verified nicking sites and 14 contained 
putative nicking sites, and (ii) 59 oriT regions with computationally 
predicted nicking sites. The part of the oriT with relevant protein 
binding features from −140 to +80 bp according to the nic site was 
used (Figure 1a).

For initial development and testing of the structural alignment 
algorithm, due to the lack of a sufficient number of elements from 

https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
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Mob groups C, H, and T for correct testing (below 10 elements per 
group), a 4 Mob group {F,P,Q,V} version of the query dataset with 
106 elements was used (Table A1-1). The balanced dataset from 4 
Mob groups {F,P,Q,V} used for s-distance testing was a subset of the 
query dataset containing approx. 16 elements from each Mob group 
(Zrimec & Lapanje, 2018; Table A1-1). A set of negative examples 
was obtained for each element by extracting sequences from the 
neighboring vicinity of oriTs. Specifically, the negative examples 
were selected randomly from a region 200 to 800 bp upstream and 
downstream from experimental nic sites, thus containing different 
non-oriT coding and non-coding regions with low sequence similar-
ity (p-distance >0.6). The testing datasets included (a) 51 plasmids 
with known oriT locations and Mob groups but unknown nic sites 
(Dataset A2: https://github.com/JanZr​imec/oriT-Stras​t/blob/maste​
r/data/Datas​et_S2.csv) and (b) 13 plasmids with 14 experimentally 
determined nic/oriT sites but unknown Mob groups, obtained from 
the OriTDB database (Li et al., 2018; Table A1-3).

2.2  |  M2. Development and testing of 
alignment algorithms

A DNA structure-based alignment algorithm, termed Strast, was de-
veloped and tested. The algorithm: (a) takes as input a set of query 
and target DNA sequences, (b) encodes the input query and target 
DNA sequences into structural representations (Figure A1-1b), and 
(c) finds and returns the most similar segments of target sequences to 
query sequences based on a structural distance measure (s-distance, 
Figure A1-1c: algorithm pseudocode). The practical implementation 
of the algorithm uses precomputed parameters for structurally en-
coding the DNA sequences as well as a precomputed distance matrix 
for computing the s-distance function.

To compute DNA structural representations, 64 models of phys-
icochemical and conformational DNA properties important for pro-
tein–DNA interactions, such as those occurring in oriT regions, were 
compiled (Table A1-3). Next, to obtain the precomputed parameters 
for structurally defined groups of k-mers, termed s-mers (Figure A1-
1b), structural properties of all permutations of k-mers of size s = 7 bp 
(3 neighboring regions around a specific nucleotide) were computed, 
after which dimensionality reduction and clustering were performed. 
Dimensionality reduction was performed using principal component 
analysis (PCA), and the number of used principal components was 18 
(out of 64) to capture over 0.99 of the data variance. The k-means clus-
tering algorithm was used (MATLAB), where the number of clusters k 
was 128, and clusters with the lowest total sum of distances were cho-
sen from 10 runs of up to 1000 iterations at default settings. The s-mer 
size s and number of clusters k were chosen by comparing the algorithm 
performance using s = {3, 5, 7, 9} and k = {4, 8, 16, 32, 128, 256} (Zrimec, 
2020), respectively (Figure A1-7). Finally, the structural representation 
of a DNA sequence is obtained by encoding its k-mers into s-mers 
(Figure A1-1b), where the length of the structural representation equals 
the length of the nucleotide sequence minus the leftover nucleotides at 
the borders (3 bp) due to the neighboring nucleotides in s-mers.

The s-distance between two DNA substrates was the sum of 
squared Euclidean distances between the cluster centroids of all 
equally positioned s-mers in their structural representations of 
length n,

where Cni = cn1, cn2, …, cnk are the cluster centroids of the s-mer at po-
sition i of the first and second sequences, respectively. For algorithmic 
efficiency, the distances between all s-mers were precomputed and 
stored in a distance matrix. The p-distance was equal to the Hamming 
distance corrected for sequence length. The Jaccard distance between 
two DNA sequences was defined as the intersection over the union of 
sets of either their unique k-mers, with nucleotide sequence represen-
tation, or s-mers, with structural representation, respectively.

The performance of the alignment algorithm for typing oriTs in 
target sequences was tested by evaluating the correctness of both 
(a) oriT and nic location finding to within ±1 bp (Francia et al., 2004) 
and (b) typing of Mob groups and subgroups. Query region lengths of 
220 bp and 40 bp, spanning whole oriT regions, and shorter 40 bp re-
laxase-binding substrates (Figure 1a: −30 to +10 bo around the nic site), 
respectively, were assessed in both types of tests. For comparison to 
traditional non-encoded sequence-based algorithms, blastn v2.2.24 
(Altschul et al., 1990; www.ncbi.com) was used with default settings 
(word size = 11, expectation threshold = 10, nucleic match/mismatch 
score  =  2/−3, gap opening/extension costs  =  5/2), where the same 
query and target data as with Strast were used to obtain alignment 
hits. The specific capability of Strast for locating oriT and nic regions 
was compared against the tool OriTfinder (Li et al., 2018; https://bioin​
fo-mml.sjtu.edu.cn/oriTf​inder/), where the web-based version was 
used with default settings (Blast E-value = 0.01) by uploading fasta files 
of the target sequences and relying on the built-in query sequences.

2.3  |  M3. Statistical analysis and machine 
learning metrics

The F-test was performed using PERMANOVA (Anderson, 2001) 
with sequence bootstraps. The statistical significance of s-distance 
scores was evaluated using permutational tests, where bootstrap 
resampling (n_bootstraps =1e6 per sequence) of randomly selected 
query oriT sequences (n_seq = 10) was used to estimate the s-dis-
tance scores at different p-value cutoffs (from 1e-6 to 1e-1). Next, to 
obtain a mapping function of s-distance to permutational p-values in 
the whole range of 1e-132 to 1e-1 (Figure A1-1d), the least-squares 
curve fitting to a second-order polynomial function was performed, 
where the theoretical limit of ~1e-132 was set to correspond to an 
s-distance of 0. For additional statistical hypothesis testing, the 
Python package Scipy v1.1.0 was used with default settings.

The following machine learning performance metrics were used to 
assess alignment algorithm performance: Precision, Recall/Sensitivity, 
Specificity, Accuracy, F1-score, and Matthews correlation coefficient 

(1)s−distance =

n
∑

i=1

d(C1i, C2i)
2,

https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S2.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S2.csv
http://www.ncbi.com
https://bioinfo-mml.sjtu.edu.cn/oriTfinder/
https://bioinfo-mml.sjtu.edu.cn/oriTfinder/
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(Table A1-6). To calculate these metrics, true- and false-positive and 
true- and false-negative counts were obtained from the alignment 
tests (Methods M2) by considering only the most significant hit per 
alignment. A true- or false-positive value was assigned if the result 
was above a specified significance cutoff and corresponded or did not 
correspond, respectively, to the known value (nic location, Mob group, 
or subgroup), and alternatively, a false- or true-negative value was as-
signed to results below the significance cutoff that corresponded or 
did not correspond, respectively, to the known value.

2.4  |  M4. Analysis of alignment hits

The newly uncovered regions were analyzed by comparing the fea-
tures of the oriT alignment hits with those of the query dataset, which 
included sequence properties and inverted repeats. Sequence ho-
mology analysis involved (a) calculation of the sequence homologies 
of the oriT query dataset within each Mob group (b) calculation of se-
quence homologies between each oriT hit and its closest-associated 
query oriT region, (c) comparison of the sequence homologies of the 
oriT query and alignment hit datasets, across the different sized oriT 
subregions. OriT hits with sequences of their relaxase-binding 40 bp 
subregions that deviated below 60% seq. homology from their query 
counterparts were removed. Sequence homology was calculated 
with the ratio function (python-Levenshtein package v0.12), where it 
equaled the Levenshtein (edit) distance divided by the length of the 
sequence. Similarly, analysis of the inverted repeats (IRs) involved 
computation of imperfect IRs in both the oriT query and alignment 
hit datasets, and oriT hits lacking IRs similar to those in the query 
set were removed. The MATLAB package detectIR v2016-01-19 (Ye 
et al., 2014) was used with IR size limits of (6, 15) bp and containing 
at most 2 mismatches. From the initially identified 20,255 oriT hits, 
11,497 (57%) were retained (Dataset S3: https://github.com/JanZr​
imec/oriT-Stras​t/blob/maste​r/data/Datas​et_S3.csv).

2.5  |  M5. Simulations of plasmid mobility

To estimate the results that would be obtained with a larger oriT 
query dataset, the following procedure was applied. The oriT align-
ment results with the dataset of 4602 target plasmids were diluted 
according to 10-fold dilutions of the 102 query regions used to iden-
tify the hits (10 repetitions were used). Least-squares curve fitting 
was performed (Python package Scipy v1.1.0) using a linear function 
and the dataset dilutions—specifically between the size of the query 
oriT dataset and the variables corresponding to the numbers of oriT 
hits, putative mobile plasmids, putative mobile plasmid-carrying 
host species, and overlap with relaxase-typed plasmids.

2.6  |  M6. Network analysis

To study the co-occurrence of different oriT regions or Mob groups 
as nodes, shared across the putative multi-oriT plasmids as edges, 

an undirected multi-edged graph was constructed. The graph con-
tained a total of 79,004 connections and the number of unique oriT 
nodes was 102 since each oriT hit was characterized by its closest-
associated query oriT.

To study the potential for plasmid transfer between different 
habitats, host species of the oriT alignment results within the sub-
set of multi-oriT plasmids were mapped across 9 habitat super-
types (Table A3-4) according to published data on environmental 
(Pignatelli et al., 2009) and human microbiomes (Dewhirst et al., 
2010; Escapa et al., 2018; Forster et al., 2016; Human Microbiome 
Project Consortium, 2012; Lloyd-Price et al., 2017). This retained 
43% (227 of 532) of the unique species carrying multi-oriT plas-
mids, where habitat sizes reflected those of the full habitat data-
set (according to the number of unique species, on average 939 
species) but were on average eightfold smaller (on average 119 
species) varying less than 22% around this value. The habitat tax-
onomy was further expanded to include human commensal and 
pathogen types (Human Microbiome Project Consortium, 2012) 
as well as tissue subtypes (Pignatelli et al., 2009). Next, a directed 
graph representation of habitat nodes connected by potential 
plasmid transfers as edges was constructed, where habitats of 
donor hosts carrying the putative mobile plasmids (outbound con-
nections) connected to habitats of potential acceptor hosts de-
duced from the query oriTs (inbound connections). The network 
comprised 141,395 connected habitat node pairs, with a total of 
1,600,978 plasmid connections between the habitats.

For network analysis, the Python package NetworkX v2.2 was 
used. For typing antimicrobial resistance genes in the plasmids, the 
webserver version of ResFinder v3.2 (Zankari et al., 2012) was used 
with default settings.

2.7  |  M7. Software

MATLAB v2018 (www.mathw​orks.com) and Python v3.6 (www.py-
thon.org) were used.

3  |  RESULTS

3.1  |  Structural alignment algorithm improves oriT 
typing performance

A DNA alignment algorithm performs multiple comparisons be-
tween a query and a target sequence by evaluating a distance 
function. We thus developed a structural distance function, 
termed s-distance (Figure A1-1, Methods M2), which was based 
on encoding the DNA sequences into structural representations 
and defined as the sum of squared Euclidean distances between 
two DNA structural representations. This enabled the compari-
son between structurally encoded oriTs and non-encoded ones, 
where the ungapped p-distance was used. For this comparison, a 
balanced dataset of 64 oriT regions from 4 Mob groups F, P, Q, and 
V (Zrimec & Lapanje, 2018) was used (Methods M1), where region 

https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S3.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S3.csv
http://www.mathworks.com
http://www.python.org
http://www.python.org
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sizes were varied stepwise to cover a single relaxase enzymatic site 
of 40 bp up to the whole oriT region of 220 bp containing multiple 
binding sites (Figure 1a). Furthermore, the comparison included 
discrimination of both (a) positive oriTs (aligned to the nic site) from 
negative non-oriT sequences and (b) Mob groups. With oriT struc-
tural representations, significant (ANOVA p < 1e-4) discrimination 
of both positive/negative and Mob groups was achieved in the 
whole oriT size range (Figure 1b,c), compared to the non-encoded 
nucleotide sequences, where results were significant (ANOVA 
p  <  .05) only with oriT regions equal to or shorter than 120  bp. 
This was corroborated with the Jaccard distance, which signifi-
cantly (ranksum p < 1e-16) decreased by 40% with increasing oriT 
region size when using structurally encoded k-mers (Methods M2, 
Figure A1-2), whereas it increased with nucleotide k-mers (rank-
sum p < 1e-9). The results suggested that our structural encoding 
approach leveraged the chemical information in longer query re-
gions and could thus improve multiple sequence comparisons with 
alignments by increasing the statistical depth (Figure A1-3).

We next prototyped an alignment framework (Figure 1d) that 
employed the s-distance measure to find target hits to query oriTs, 
where p-values were obtained via permutation tests (Figure A1-1, 
Methods M2). A query dataset of 106 query oriT regions from the 
4 Mob groups F, P, Q, and V was compiled as well as two testing 
datasets with experimentally determined oriT regions compris-
ing altogether 64 plasmids, 51 Mob-typed (Francia et al., 2004; 

Garcillán-Barcia et al., 2009) and 13 non-Mob-typed (Li et al., 
2018), respectively (Table A1-1, Methods M1). The algorithm's 
performance was first tested by assessing the oriT location and 
Mob type of the highest-scoring alignment hits using the testing 
dataset of Mob-typed plasmids (Methods M2). By using full-length 
220 bp query regions, on average, 19% more significant (permu-
tation test p  <  1e-13) oriT hits were recovered, and 25% more 
Mob groups were correctly predicted compared to using a 40 bp 
query size (Figure 1e, Figure A1-4). This corroborated that the use 
of longer queries indeed led to improved algorithm performance 
(Figure 1b,c). Furthermore, compared to Blast (Altschul et al., 
1990), our approach uncovered on average 45% more significant 
(permutation test p < 1e-13) oriT hits and correctly predicted 30% 
more Mob groups (Figure 1e, Figure A1-4). By analyzing machine 
learning metrics to better understand the algorithm's performance 
(Methods M3), a marked 43% increase was observed with Recall 
at a relatively constant Precision and Specificity (Figure 1f, Table 
A1-2), which corresponded to recovering a larger amount of the 
correct oriTs (Figure 1e). The new algorithm thus correctly located 
and Mob-typed on average 61% of oriTs in the testing dataset 
(Figure A1-5).

The capability of the algorithm to identify specifically nic sites 
was further validated using the testing dataset of plasmids that 
were not Mob-typed (Li et al., 2018; Table A1-3). Out of 13 such 
plasmids with 14 oriT sites, it correctly identified (permutational 

F I G U R E  1 The structural alignment algorithm improves oriT typing performance. (a) Schematic depiction of the oriT region and different 
analyzed oriT subsets of lengths 40, 60, 90, 120, 160, and 220 bp, which span the single relaxase-binding site or multiple protein recognition 
and binding (ie. ‘active’) sites, respectively. (b, c) Statistical analysis of nucleotide and structural representations (Methods M3) with 
different oriT subsets for (B) Mob group discrimination and (c) discrimination of positive and negative examples. (d) Schematic depiction 
of the structural alignment algorithm, which finds the positions in the target dataset with minimum s-distance to the query sequences. (e) 
Comparison of the amount of correctly identified elements between our algorithm (Strast) and Blast, and by using 220 or 40 bp oriT subsets, 
for oriT typing as well as discrimination of MOB groups and subgroups. Error bars denote 95% confidence intervals. (f) Comparison of 
machine learning performance metrics between our algorithm (Strast) and Blast, and by using 220 or 40 bp oriT subsets. Error bars denote 
95% confidence intervals.

(a)

(b) (c)

(d)

(e) (f)

Nucleotide position in oriT

TestedTT
region
sizes

–140 –100 –60 –20 nic 20 60
(0/1)
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test p < 1e-12) 6 oriT regions in 5 plasmids with 100% sequence 
identity and aligned to within ±1 bp of the nic sites (Francia et al., 
2004; see Table A1-3). In contrast, the tool OriTfinder (Li et al., 
2018) was able to correctly identify the approximate locations of 
10 oriT regions; however, it correctly determined the nic locations 
in only 5 of these oriTs, to within ±1 bp (Table A1-4). The results 
indicated that due to the lack of diversity in the query dataset 
our algorithm altogether missed certain oriTs in the testing data-
sets, which was also confirmed by using smaller query datasets 
that lowered the algorithm's performance especially for locating 
oriT regions (Figure A1-6). Nevertheless, despite the limited oriT 
data availability, the results experimentally verified the algorithm's 
capacity for oriT typing.

3.2  |  OriT typing reveals a twofold increase in the 
number of putative mobile plasmids

The structural alignment algorithm was used to explore the diver-
sity of oriT regions in natural plasmids. To cover all available oriT 
regions, the query dataset was expanded to 112 unique oriTs from 
6 Mob groups that included, besides oriTs from the major Mob 
groups F, P, Q, and V, also 3.6% and 0.9% of oriTs from groups C 
and T, respectively (Figure 2a, Methods M1). The query dataset 
covered 59 unique host species with the majority (88.4%) from the 
phyla Proteobacteria and Firmicutes (Figure A2-1). The target data-
set comprised 4602 natural plasmids with Mob groups determined 

by relaxase amino acid homology analysis (Shintani et al., 2015; 
Figure 2b). Here, 28.7% of plasmids were putatively mobile (1307 
plasmids that contained 1377 distinct relaxases), with the high-
est represented Mob groups F, P, Q, and V (Figure 2a). The target 
dataset contained 893 distinct host species from 22 distinct phyla, 
with the putative mobile plasmids harbored by 40% of the distinct 
species with 88.1% from the phyla Proteobacteria and Firmicutes 
(Figure A2-1).

Based on the 1377 distinct relaxases found in 1309 plasmids 
in the target dataset (Figure 2b: 28.4% of target dataset), at least 
a similar amount of oriT regions can be expected. However, with 
our alignment method, we identified 11,497 significant (q-value 
<1e-8, E-value <0.01) oriT hits present in 69.2% (907) of the re-
laxase carrying plasmids as well as in an additional 1177 plasmids, 
in which a relaxase had not been found (Methods M4). The oriT 
hits were uncovered with 91% (102/112) of the query regions 
and covered all Mob groups and subgroups (Figure 2c). They con-
tained sequence features, including sequence homology and in-
verted repeats (IR) that facilitate relaxase recognition and binding 
(Zrimec & Lapanje, 2018), similar to those of the query regions and 
in accordance with published findings showing that relaxases can 
function with relaxed specificity on non-cognate oriTs with ~60% 
sequence homology (Fernández-López et al., 2013; Kishida et al., 
2017; O’Brien et al., 2015). Indeed, sequence homologies between 
an oriT hit and its closest-associated query oriT region were above 
60% within all the 40 bp relaxase-binding sites and with the ma-
jority (>99.6%) of the larger sized subregions (Figure 2d). Median 

F I G U R E  2 OriT typing reveals a twofold increase in the number of putative mobile plasmids. (a) Distribution of Mob groups across the 
query oriT and target plasmid datasets, where the latter was analyzed using either relaxase typing 51, structural alignment-typing, or a 
combination of both methods. (b) Venn diagram of the number of plasmids (pl.) and plasmid-carrying host species (sp.) in the whole target 
plasmid dataset and the separate subsets uncovered to be putatively mobile by either structural alignment or relaxase typing. (c) Distribution 
of Mob groups in the whole query oriT dataset and in the query subsets that returned alignment hits or were present in the fully connected 
putative oriT co-occurrence network (see Results chapter 3). (d) Average sequence identities across Mob groups with different oriT size 
subsets, calculated pairwise between all query oriTs and between each oriT hit and its closest-associated query oriTs within a Mob group. 
(e) Distribution of Mob groups across relaxase-typed and structural alignment-typed plasmids. (f) Distributions of amounts of putative oriT 
regions and Mob groups across the structural alignment-typed (newfound) and relaxase-typed plasmids.

(a) (b)

(c) (d) (e) (f)

https://paperpile.com/c/IieFQX/ZHz4M
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sequence homologies were well above the ones of the query data-
set, where all pairwise seq. homologies within each Mob group 
were measured (Figure 2d, Methods M4). Furthermore, all the dif-
ferent sizes of oriT subregions were strongly correlated (Pearson's 
r > 0.730, p < 1e-16, Table A2-1) between each other as well as to 
the oriT structural similarity, s-distance (Pearson's r > 0.817, p < 1e-
16, Figure A2-2). Following the analysis of IRs in the query oriTs, 
where in the 60 bp upstream of nic an IR of at least 6 bp could be 
identified (Figure A2-3A: avg. size was 10 bp, Methods M4), in the 
oriT hits all but 6 oriTs (0.05%) carried IRs with similar properties 
(Figure A2-3B: at least 6 bp with an avg. size of 10 bp). Finally, we 
explored if the putative oriTs were located in any specific coding 
or non-coding regions in the plasmids by obtaining and analyzing 
the CDS records of each plasmid (Methods M3). Indeed, a signif-
icant (Fisher's exact test p < 1e-16) 4.6-fold increase of oriT pres-
ence was observed in non-coding areas and a twofold decrease in 
coding ones, as well as a significant (Fisher's exact test p < 1e-16) 
enrichment in genes related to horizontal mobility, namely conju-
gation, transposition, and integration (Table A2-2).

The putative oriT regions combined with the previously typed 
relaxases resulted in a total of 2486 putative mobile plasmids 
(Figure 2b: 54% of target dataset), which represented a 1.9-fold in-
crease compared to the initial relaxase typing. Similarly, a 1.7-fold 
increase in the number of putative mobile plasmid-carrying host 
species was identified, when comparing species from the whole 
set of putative mobile plasmids (Figure 2b: 607 out of 893 species, 
58.2%) with the previous relaxase-typed ones (356 species, 39.9%). 
This also corresponded to a 1.4-fold increase in the number of dis-
tinct Phyla, with putative mobile plasmids representing 19 out of 
the 23 Phyla compared to 14 with relaxase typing (Figure A2-1). 
Furthermore, out of the 907 plasmids where both oriTs and relaxases 
were identified, the same Mob group, indicating that the oriT was 
cognate to the relaxase, was identified in 75% of cases (Figure 2e). In 
the remaining 25% of these plasmids, the oriT hits could have been 
secondary oriTs (Becker & Meyer, 2003; Parker et al., 2005) or cor-
responded to either unknown or in trans acting (O’Brien et al., 2015) 
relaxases. The distribution of the oriT-identified Mob groups was 
found to be comparable to the one expected according to relaxase 

F I G U R E  3 The presence of multiple putative oriT regions might aid plasmid transfer between habitats. (a) Undirected multi-edged graph 
of oriT (nodes) co-occurrence across plasmids (edges). The most frequently co-occurring oriTs from plasmids pBBR1, pNL1, and BNC1 
Plasmid 1 are marked. The putative oriTs were represented by their closest-associated query oriTs. (b) Distribution of the number of unique 
oriT co-occurrences across the multi-oriT plasmids. (c) Undirected graph of Mob group co-occurrence in multi-oriT plasmids based on oriT 
co-occurrence. (d) Directed graph depicting the hypothetical connectivity of habitats (nodes) based on potential plasmid transfers (edges). 
Outbound connections are based on habitats of donor hosts carrying the putative mobile plasmids, and inbound connections are habitats of 
potential acceptor hosts deduced from the query oriTs. (e) The ratio of inbound vs. outbound connections across different habitats, where 
human commensal and pathogen microbiomes are highlighted in red. (f) Amount of AMR genes and classes found in non-mobile and putative 
mobile plasmids.

(a) (b) (c)

(d) (e) (f)
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typing (Figure 2e). Multiple putative oriT regions were identified in 
over 63% of both the relaxase-typed and untyped plasmids, where 
on average, 2 oriTs from 2 different Mob groups were identified per 
plasmid (Figure 2f). This supported the notion that, besides second-
ary and in trans oriTs, the untyped plasmids possibly carried uniden-
tified relaxases (Coluzzi et al., 2017; Garcillán-Barcia et al., 2009; 
Guzmán-Herrador & Llosa, 2019; Ramachandran et al., 2017; Soler 
et al., 2019; Wisniewski et al., 2016).

Since the number of query oriTs was the limiting factor in our 
analysis of plasmid mobility, we explored what effect a larger query 
dataset could have on the findings. Briefly, the use of a larger query 
dataset was simulated by performing curve fitting on results ob-
tained with 10 repetitions of random 10-fold dilutions of the pres-
ent dataset (Methods M5). An approximate linear rule was observed 
between the size of the query dataset and the number of uncovered 
oriTs, as each order of magnitude increase in oriT hits required like-
wise an order of magnitude larger query dataset (Figure A2-4A: e.g., 
1e5 hits would require a query set of ~975 oriTs). Consequently, with 
each order of magnitude increase of the size of the query dataset, 
approximately 1500 more putative mobile plasmids (Figure A2-4b: 
starting from an initial value of 500 with 10 oriT queries) and 250 
more putative mobile plasmid-carrying host species were uncov-
ered (Figure A2-4c). Additionally, to achieve a full overlap with the 
relaxase-typed plasmids, a considerably larger query dataset than 
is currently available would be required, comprising 415 oriTs (95% 
lower and upper bounds were 328 and 532, respectively, Figure A2-
4d). The demonstrated limitations of the query data suggest that the 
present published results (Shintani et al., 2015; Smillie et al., 2010) 
and our findings might still be an underestimation of the true plasmid 
mobility present in nature.

3.3  |  The presence of multiple putative oriT regions 
might aid plasmid transfer between habitats

A large part of the newly uncovered oriTs were additional regions 
to the primary ones that corresponded to the plasmid cognate re-
laxases (Figure 2f), resulting in 1331 multi-oriT plasmids (54% of the 
putative mobile plasmids) that carried on average 5 oriT hits (Figure 
A3-1). First, we analyzed the co-occurrence network between the 
different putative oriT regions (nodes), when they were carried by 
the same multi-oriT plasmids (edges; Figure 3a, Methods M6). Since 
each oriT hit was characterized only by its closest-associated query 
oriT, the actual oriT node diversity was limited to the 102 query oriTs 
that returned hits (Figure 2e). The network contained 552 unique co-
occurring oriT node pairs (Figure 3a), with an average of 6 co-occur-
rences and up to 3528 co-occurrences per oriT node pair (Figure 3b). 
A fully connected component was found, which comprised of 76 oriT 
nodes (75% of all oriTs, Figure 3a) that proportionally represented 
all 6 Mob groups except Mob V (Figure 2c: only 38% of Mob V in 
the fully connected subgraph). Further network analysis showed 
that this oriT network obeys the laws of natural biological scale-free 
networks, with possibly a hierarchical topology (Barabási & Oltvai, 

2004; Figure A3-2). Indeed, specific oriT regions acted as hubs and 
co-occurred with multiple other regions across the Mob groups 
(Figure 3a), with the most highly connected pNL1-, BNC1 Plasmid 
1- and pBBR1-like oriTs from Mob F, Q, and V, respectively, co-oc-
curring with over 50 unique oriTs from all 6 Mob groups (Table A3-1). 
We next investigated the co-occurrence of Mob groups (Figure 3c, 
Methods M6) and measured a 75-fold increase in the amount of Mob 
group co-occurrences compared to relaxase typing. Over 90% of the 
multi-oriT plasmids contained on average 2 unique Mob groups and 
3 unique Mob subgroups (Figure A3-1). The most frequently co-oc-
curring Mob groups were F, Q, and V, where 35,062 co-occurrences 
were measured within Mob Q, 15,081 between Q and F, and 12,637 
between Q and V (Figure 3c, Table A3-2). with the main co-occurring 
subgroups Mob Qu with Q2, Fu, V2 (Table A3-3).

The above results suggested that each multi-oriT plasmid might 
contain the initial means for mobilization by conjugation systems 
belonging to different MOB groups, and could, under specific con-
ditions, connect multiple different plasmid host species either tran-
siently, such as via transient transfer hosts (Klümper et al., 2015; 
Shintani et al., 2014), or via replicative hosts (Garcillán-Barcia et al., 
2011; Zrimec & Lapanje, 2018). To investigate what potential effect 
this could have on connecting different host species across different 
environmental habitats, and whether it could facilitate the spread 
of AMR genes to humans, a hypothetical network was built, where 
habitats (nodes) were inferred from the putative mobile plasmid-car-
rying host species and connected via potential plasmid transfers 
(edges; Figure 3d, Methods M6). On average, each plasmid was pres-
ent in 6 habitats and had access to 5 unique host species as well 
as 6 habitats (Figure A3-3). The network was directed (Figure 3d), 
and the numbers of outbound and inbound connections, though 
differing across the habitat types (Figure A3-4), were strongly 
correlated (Pearson's r = 0.894, p < 2e-3). However, despite this, a 
marked increase was observed in the ratio of inbound vs. outbound 
connections in the human and animal habitats compared to the oth-
ers (Figure 3e: 61% and 29% increase, respectively). Importantly, a 
twofold higher amount of inbound vs. outbound connections was 
measured with human commensals (Figure 3e), whereas human 
pathogens displayed a mere 11% increase. Further analysis of the 
potential transfer only within the human system showed an approx-
imately equal rate of outbound and inbound connections. This is in 
accordance with previous observations showing that commensal 
bacteria can act as an interface for horizontal uptake of genes from 
the environment, which they might then disseminate to the patho-
gens within the human body (Forsberg et al., 2012; Marshall et al., 
2009; Sommer et al., 2010).

Interestingly, among the highest amount of oriTs per plasmid 
was found in the industrial habitat, which included food production 
and water treatment facilities, and the animal habitat, both known 
to harbor resistance (Bengtsson-Palme et al., 2018; Founou et al., 
2016; Hu et al., 2016; Figure A3-5). We, therefore, identified AMR 
genes in the plasmids (Methods M6), finding a moderate positive cor-
relation (Pearson's r = 0.462, p < 1e-16) between the number of puta-
tive oriTs and the number of identified resistance genes in a plasmid 
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(Figure 3f). Thus, 33% of the multi-oriT plasmids carried on average 
4 genes from 3 different AMR classes (Figure 3f). When viewed 
from the perspective of the hypothetical cross-habitat transfer net-
work (Figure 3d), the number of inbound connections of resistance 
genes from the environment to the human microbiota indicated that 
the most abundant flow of genes corresponded to the oldest and 
most widely used classes of antibiotics, for which also resistance is 
most developed and widespread (Hutchings et al., 2019; Figure A3-
6). In this case, the number of inbound connections to pathogens 
surpassed that of commensals by almost 20%, possibly since AMR 
transfer routes might serve a different portion of microbes com-
pared to plasmid transfer in general (Hu et al., 2016; Pal et al., 2016).

4  |  DISCUSSION

Here, the potential for horizontal transfer of natural plasmids is 
explored by attempting to identify all conjugative DNA origin-of-
transfer substrates coded within them. By prototyping a structural 
alignment approach to find and characterize oriT regions across 
plasmids (Figure 1d), an almost eightfold larger amount of puta-
tive oriTs is found than can be expected according to relaxase typ-
ing (Figure 2b). Analysis of these regions indicates that the number 
of transferable plasmids could be as much as twofold higher and 
span almost twofold more host species than is currently known 
(Figure 2b). Consequently, over half of all putative mobile plasmids 
might contain the initial means for mobilization by conjugation sys-
tems belonging to different MOB groups and subgroups (Figure 3c), 
potentially linking multiple host ranges that are currently under-
stood to be confined (Garcillán-Barcia et al., 2011; Zrimec & Lapanje, 
2018; Figure 3d).

Our oriT typing procedure is a result of rationally expanding 
DNA alignment algorithms to incorporate enzymatically relevant 
properties of the oriT substrates (Figure 1a), where the conservation 
of structural properties is detected across the whole 220 bp region 
compared to mere ~40 bp of the nucleotide sequence in the core 
relaxase-binding site (Zrimec & Lapanje, 2018; Figure 1c,d). By al-
lowing the use of at least twofold longer query sequences, structural 
alignment achieves a much larger statistical depth than sequence 
alignment (Figure A1-3), which means that oriTs can be efficiently 
sought across whole plasmids instead of just the vicinity of relaxases 
(Li et al., 2018; Figure 1e). Since, due to the nature of the conserved 
structural properties, each enzymatic substrate corresponds to mul-
tiple possible sequence variants, the benefit of the DNA structural 
encoding is that it exposes these sequence variants by accessing 
the search space of the enzymatic co-evolutionary constraints (i.e., 
DNA structural background; Zrimec, 2020; Zrimec & Lapanje, 2018; 
Figures 1a and 2d). The identified candidate oriT regions serve as 
starting points that can be further verified by typing other known 
molecular features (O’Brien et al., 2015), such as inverted repeats 
(Lanka & Wilkins, 1995; Williams & Schildbach, 2006; Figure A2-
4) and nucleotide sequence properties of the core enzymatic 
binding (Carballeira et al., 2014; Williams & Schildbach, 2007) and 

nicking sites (Francia et al., 2004; Vedantam et al., 2006; Figure 2d). 
Compared to established tools like OriTfinder, our method performs 
similarly, though with some complementarity (Tables A1-3 and A1-
4), suggesting that it is a useful complement to the existing meth-
ods. However, its main advantage is the capability to determine Mob 
groups from mere oriT regions (accuracy >90%, Table A1-2) without 
the requirement for relaxase typing, which also enables typing oriTs 
in plasmids without a (known) relaxase (da Cruz Campos et al., 2019).

Besides uncovering the majority of expected oriT regions of 
known cognate relaxases (Figure 2e), almost ⅔ of the putative 
oriT-bearing plasmids carry multiple oriTs (Figure 2f). These putative 
oriTs are frequently located where they are expected, in non-coding 
regions and within genes related to horizontal mobility (conjugation, 
transposition, and integration; De La Cruz et al., 2010). However, the 
number of Mob groups and depth of enzymatic substrate diversity 
that could be analyzed within each group was constrained by the 
size of the query set of available oriT regions and nic sites (Garcillán-
Barcia et al., 2020; Figures A1-9 and A2-5). By simulating the 
availability of a larger set of query sequences, a linear relationship 
between the amount of uncovered and query oriTs indicates that our 
current sampling might still be an underestimation of the actual plas-
mid mobility in nature that could span all plasmids (Gillings, 2013; 
Smillie, et al., 2010; Figure 2i). The results of a twofold higher puta-
tive plasmid mobility compared to relaxase typing, with an almost 
similar increase in the amount of putative mobile plasmid-bearing 
host species (Figure 2b), point to multiple possibilities that further 
undermine the paradigm of a one relaxase-one oriT conjugative plas-
mid system spanning less than ⅓ of plasmids (Shintani et al., 2015): 
(a) a massive under-identification of relaxase enzymes (Chandler 
et al., 2013; Smillie, et al., 2010), (b) relaxase promiscuity (Becker 
& Meyer, 2003; Guzmán-Herrador & Llosa, 2019) and oriT evolu-
tionary mechanisms (Parker et al., 2005) leading to many functional 
secondary oriTs, and (c) a system-wide adoption of relaxase in trans 
mechanisms (Guzmán-Herrador & Llosa, 2019; Ramsay et al., 2016).

Plasmids are vehicles for the transfer and long-term storage of 
‘common goods’ that include, besides AMR, also virulence, heavy 
metal resistance, and other genes (Bukowski et al., 2019). Based on 
the usefulness of this cargo, one can expect that the global plas-
mid transfer network possesses at least some properties of a ro-
bust fault-tolerant system that would increase the guarantee for 
transfer and information storage (Gillings, 2013; Han et al., 2007). 
Furthermore, recent findings suggest that certain plasmids might be 
able to bypass key horizontal transfer barriers (Ben Maamar et al., 
2020; Dolejska & Papagiannitsis, 2018; Malhotra-Kumar et al., 2016; 
San Millan, 2018; Wang & Sun, 2015; Wintersdorff et al., 2016), in-
cluding phylogenetic (Acman et al., 2020; Hu et al., 2016; Soucy et al., 
2015), host range (defined by Mob and Inc/Rep groups, respectively; 
Garcillán-Barcia et al., 2011; Orlek et al., 2017; Shintani et al., 2015; 
Zrimec & Lapanje, 2018) as well as ecological habitat constraints 
(Bengtsson-Palme et al., 2018; Hu et al., 2016; Manaia, 2017; 
Thanner et al., 2016), for instance, in the transmission of AMR from 
environmental reservoirs to human hosts (Manaia, 2017; Mathers 
et al., 2015; Sun et al., 2019; Wintersdorff et al., 2016). To this end, 
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the putative oriT network topology via the closest-associated query 
oriTs is reminiscent of scale-free and even hierarchical networks 
(Figure 3a) and thus displays robust fault-tolerant properties. As 
sparsely connected nodes without many direct neighbors are linked 
to highly connected hubs, even in case of absence of a large number 
of nodes, the remaining ones are likely still well connected (Barabási 
& Oltvai, 2004; Seyed-Allaei et al., 2006). Moreover, plasmids bear-
ing multiple putative oriTs that could be mobilized by different con-
jugative systems (Figure 3c) possess at least the initial means that 
could enable them to transcend some of the horizontal transfer 
barriers (Gillings, 2013; Haaber et al., 2017; Siefert, 2009). In this 
view, one can hypothesize that certain conjugative transfer mecha-
nisms and their corresponding hosts might act as transfer hubs that 
help to ensure the flow of genetic information among the different 
global microbiomes (Manaia, 2017; Perry & Wright, 2013; Tamminen 
et al., 2012). Interestingly, following these expected properties, the 
amount of identified plasmid-borne AMR genes is found to be pro-
portional to the assessment of putative plasmid mobility (Figure 3f 
and Figure A3-6).

Care should be taken with interpretation of the hypothetical net-
work of plasmid transfers between different hosts and ecological hab-
itats (Figure 3d), due to key limitations in its analysis. Actual plasmid 
transfer is not dependent merely on the correct combinations of oriT 
and relaxase but constrained by additional genetic context due to plas-
mids being highly modular systems (Acman et al., 2020; Nishida, 2012; 
Shintani et al., 2015; Smillie, et al., 2010), which was not accounted 
for here. Nevertheless, the hypothetical network displays interesting 
properties, not at all different from ones that can be expected based on 
current knowledge (Haaber et al., 2017; Lopatkin et al., 2017; Manaia, 
2017; Marshall et al., 2009). For instance, the considerably larger in-
flux of plasmids to humans and animals compared to other environ-
mental habitats (Figure 3d) might be a consequence of the increased 
amount of AMR transfers to these organisms (Bengtsson-Palme et al., 
2018; Dolejska & Papagiannitsis, 2018; Wintersdorff et al., 2016). In 
accordance with published findings (Forsberg et al., 2012; Forslund 
et al., 2013; Marshall et al., 2009), human commensals might act as the 
main interface for horizontal uptake of genes from the environment in 
general (Figure 3e), whereas the transfer of the specific widespread 
AMR genes might be more highly targeted at pathogens (Figure A3-6). 
Despite the hypothetical nature of the network analysis based merely 
on first principles (Figure 3a,c,d), the potential increase in putative 
plasmid mobility that it shows could potentially be an important driver 
of the observed rapid resistance development in humans (Dolejska & 
Papagiannitsis, 2018; Manaia, 2017) and thus an important point of 
focus for further research as well as the development of prevention 
measures.
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APPENDIX A1

TABLE A1 Datasets used in the study.

Task Dataset Composition
Availability / 
Reference

Alignment algorithm testing (Results 
chapter 1)

s-distance testing Balanced dataset of 64 oriTs from 4 Mob 
groups (positives), with 64 negative 
sequence counterparts

Zrimec and Lapanje 
(2018)

Query dataset 106 oriTs with known nic sites from 4 Mob 
groups

Dataset S1: https://
github.com/
JanZr​imec/oriT-
Stras​t/blob/
maste​r/data/
Datas​et_S1.csv

Testing dataset 1 51 plasmids with known oriT regions and 
unknown nic sites, from 4 Mob groups

Dataset S2: https://
github.com/
JanZr​imec/oriT-
Stras​t/blob/
maste​r/data/
Datas​et_S2.csv

Testing dataset 2 13 plasmids with 14 known nic sites and 
unknown Mob groups

Li et al. (2018),
Table A3

Searching for oriTs (Results chapter 2) Query dataset 112 oriTs with known nic sites from 6 Mob 
groups

Dataset S1: https://
github.com/
JanZr​imec/oriT-
Stras​t/blob/
maste​r/data/
Datas​et_S1.csv

Target dataset 4602 plasmid sequences with known Mob 
groups

Shintani et al. 
(2015),

results in Dataset 
S3: https://
github.com/
JanZr​imec/oriT-
Stras​t/blob/
maste​r/data/
Datas​et_S3.csv

Analysis of hypothetical cross-habitat 
network (Results chapter 3)

Dataset of microbial species 
habitats

3050 distinct species from 927 genera 
across 9 environmental habitats, with 
the human habitat, further subdivided 
into commensal and pathogen subtypes

Pignatelli et al. 
(2009), Human 
Microbiome 
Project 
Consortium 
(2012), Escapa 
et al. (2018), 
Forster et al. 
(2016), Dewhirst 
et al. (2010), 
Lloyd-Price et al. 
(2017)

https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S2.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S2.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S2.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S2.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S2.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S2.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S1.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S3.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S3.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S3.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S3.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S3.csv
https://github.com/JanZrimec/oriT-Strast/blob/master/data/Dataset_S3.csv


16 of 31  |     ZRIMEC

APPENDIX A 2

Test Measure
Strast 220 
bp

Strast 40 
bp

Blast 220 
bp

Blast 
40 bp

OriT region locating TPRa  1.000 0.818 0.629 0.523

TNRb  0.895 0.944 0.813 0.838

PPVc  0.941 0.964 0.880 0.850

Accuracy 0.961 0.863 0.686 0.637

F1-score 0.970 0.885 0.733 0.648

MCCd  0.918 0.732 0.409 0.355

Mob group typing TPR 0.968 0.686 0.639 0.551

TNR 0.800 0.750 0.867 0.939

PPV 0.882 0.857 0.920 0.950

Accuracy 0.902 0.706 0.706 0.676

F1-score 0.923 0.762 0.754 0.697

MCCd  0.795 0.406 0.461 0.470

Mob subgroup typing TPR 1.000 0.767 0.639 0.551

TNR 0.773 0.762 0.867 0.939

PPV 0.853 0.821 0.920 0.950

Accuracy 0.902 0.765 0.706 0.676

F1-score 0.921 0.793 0.754 0.697

MCCd  0.812 0.523 0.461 0.470

aTrue-positive rate, Sensitivity, Recall. 
bTrue-negative rate, Specificity. 
cPositive predictive value, Precision.. 
dMatthews correlation coefficient. 

TABLE A2 Performance measures of 
alignment algorithms for locating oriTs and 
Mob typing with testing dataset 1.

TABLE A3 Strast uncovered oriT regions in plasmids of testing dataset 2.

Plasmid name OriT location nic OritDB nic location Mob p-value
nic (between 5th and 
6th nucleotide)

pS7b [415, 870] CTTG|CA

pS7a [415, 870] CTTG|CA

pMAB01 [32885, 33188] CATCCTG|C 32985 P11 −36.6478 TCCTGCCCGC

pSU233 [105, 383] GTGGGGTGT|GG 138 F12 −52.3715 GGGTGTGGTG

pMAS2027 [2060, 2078] TATCCTG|C 2066 P3 −13.3076 ATCCTGCATC

pMAS2027 [38362, 38380] TATCCTG|C 38375 P3 −19.699 CCTGCATCGC

pKL1 [334, 400] CATCCTG|T

pBTK445 [2952, 3002] CATCCTG|A

pRS01 [5497, 5536] CTTG|CA

Tn916 [2441, 2656] TGG|T

LS20 [27531, 27890] GCCGG|CTTTT

pRJ6 [2061, 2299] TGCTTG|CCA 2185 P7 −12.9163 TGCTTGCCAA

Tn1549 [22239, 22266] RYGCTTG|C

ICEKp1 [66386, 66635] GGTTG|GTCGCG 66528 C1 −12.1504 GTTGGTCGCG
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TABLE A4 OriTfinder Li et al. (2018) uncovered oriT regions in plasmids of testing dataset 2.

Plasmid name OriT location nic OritDB nic location E-value nic

pS7b [415, 870] CTTG|CA [699..708] <0.01 CTTGCAGTA

pS7a [415, 870] CTTG|CA [698..707] <0.01 CTTGCAGTA

pMAB01 [32885, 33188] CATCCTG|C [32981..32990] <0.01 CCTGCCCGC

pSU233 [105, 383] GTGGGGTGT|GG [151..160] <0.01 AAACTTGTT

pMAS2027 [38362, 38380] TATCCTG|C

pMAS2027 [38362, 38380] TATCCTG|C

pKL1 [334, 400] CATCCTG|T [430..430] <0.01 CTGATGCGGG

pBTK445 [2952, 3002] CATCCTG|A [2950..2950] <0.01 ATCACCAGCC

pRS01 [5497, 5536] CTTG|CA [5523..5532] <0.01 CTTGCAAAA

Tn916 [2441, 2656] TGG|T [2571..2580] <0.01 TTGGTTACA

LS20 [27531, 27890] GCCGG|CTTTT

pRJ6 [2061, 2299] TGCTTG|CCA [2178..2178] <0.01 CAAACCACTA

Tn1549 [22239, 22266] RYGCTTG|C

ICEKp1 [66386, 66635] GGTTG|GTCGCG [66444..66453] <0.01 CGACCAACC

TABLE A5 Models of physicochemical and conformational DNA properties.

Variable name Units Model Reference

dG kcal/mol Thermodynamic SantaLucia (1998)

dH kcal/mol Thermodynamic SantaLucia (1998)

dS cal/K*mol Thermodynamic SantaLucia (1998)

dGst kcal/mol Thermodynamic Protozanova et al. (2004)

dGbp kcal/mol Thermodynamic Protozanova et al. (2004)

dGkl kcal/mol Thermodynamic Protozanova et al. (2004)

Tm deg C Thermodynamic Gotoh and Tagashira (1981)

BC kJ/mol Thermodynamic Breslauer et al. (1986)

BA kJ/mol Thermodynamic Aida (1988)

BZ kJ/mol Thermodynamic Ho et al. (1986), Hartmann et al. (1989)

BA_k kcal/mol Thermodynamic Kulkarni and Mukherjee (2013)

dGst_2 kcal/mol Thermodynamic Perez et al. (2004)

Zp A Unknown Kulkarni and Mukherjee (2013)

Twist deg Curvature Perez et al. (2004)

Tilt deg Curvature Perez et al. (2004)

Roll deg Curvature Perez et al. (2004)

Shift A Curvature Perez et al. (2004)

Slide A Curvature Perez et al. (2004)

Rise A Curvature Perez et al. (2004)

Phi_slide kJ mol-1 A-2 Curvature Packer et al. (2000)

Phi_shift kJ mol-1 A-2 Curvature Packer et al. (2000)

Maj_bend mu Curvature Gartenberg and Crothers (1988)

Min_bend mu Curvature Gartenberg and Crothers (1988)

Wdg deg Wedge Bolshoy and McNamara (1991)

Dir deg Wedge Bolshoy and McNamara (1991)

HT_wdg deg Curvature Kabsch et al. (1982)

ProT2 deg Curvature Gorin et al. (1995)

C2 A Clash function Gorin et al. (1995)

MajS A Clash function Gorin et al. (1995)
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Measure Shorthand Equation

True positives TP TP

True negatives TN TN

False positives FP FP

False negatives FN FN

Sensitivity (Recall) TPR TP/(TP+FN)

Specificity TNR TN/(TN+FP)

Precision PPV TP/(TP+FP)

Accuracy Acc (TP+TN)/(TP+FP+FN+TN)

F1 score F1S 2*TP/(2*TP+FP+FN)

Matthews corr. coef. MCC (TP*TN-FP*FN)/sqrt((TP+FP)*(TP+FN)*(TN+
FP)*(TN+FN))

TABLE A6 Alignment algorithm 
performance measures.

Variable name Units Model Reference

MajD A Clash function Gorin et al. (1995)

MinS A Clash function Gorin et al. (1995)

MinD A Clash function Gorin et al. (1995)

z nm Inverse Geggier and Vologodskii (2010)

h bp/turn NN Geggier and Vologodskii (2010)

z2_set1 nm Inverse Sivolob and Khrapunov (1995)

z2_set2 nm Inverse Sivolob and Khrapunov (1995)

Deform deg^3 A^3 NN Olson et al. (1998)

Twist2 deg Curvature Olson et al. (1998)

Tilt2 deg Curvature Olson et al. (1998)

Roll2 deg Curvature Olson et al. (1998)

Shift2 A Curvature Olson et al. (1998)

Slide2 A Curvature Olson et al. (1998)

Rise2 A Curvature Olson et al. (1998)

u2 cleavage freq. DNAzeI Brukner et al. (1995a), Brukner et al. (1995b)

Twist3 deg Curvature Karas et al. (1996)

Rise3 A Curvature Karas et al. (1996)

Bend deg Curvature Karas et al. (1996)

Tip deg Curvature Karas et al. (1996)

Inclination deg Curvature Karas et al. (1996)

MajWidth A Curvature Karas et al. (1996)

MajDepth A Curvature Karas et al. (1996)

MinWidth A Curvature Karas et al. (1996)

MinDepth A Curvature Karas et al. (1996)

u cleavage freq. DNAzeI Brukner et al. (1995a), Brukner et al. (1995b)

var fraction Nucleosome Satchwell et al. (1986)

phase deg Nucleosome Satchwell et al. (1986)

Roll3 deg Nucleosome Goodsell and Dickerson (1994)

MGW A DNAshapeR Rohs et al. (2009), Chiu et al. (2016)

ProT deg DNAshapeR Rohs et al. (2009), Chiu et al. (2016)

Roll deg DNAshapeR Rohs et al. (2009), Chiu et al. (2016)

HelT deg DNAshapeR Rohs et al. (2009), Chiu et al. (2016)

HRC cleavage intensity ORChID2 Bishop et al. (2011)

TIDD no. of events TIDD Zrimec and Lapanje (2015)

Tm deg C Oligoprop MATLAB function
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TABLE A7 Pearson correlation coefficients between sequence identities at all region sizes. All p-values were below 1e-16.

Region_size2 40 60 90 120 160 220

Region_size1

40 1 0.940277 0.916119 0.907978 0.889912 0.878428

60 0.940277 1 0.955234 0.940295 0.925025 0.911239

90 0.916119 0.955234 1 0.973206 0.959329 0.944463

120 0.907978 0.940295 0.973206 1 0.979166 0.964006

160 0.889912 0.925025 0.959329 0.979166 1 0.978883

220 0.878428 0.911239 0.944463 0.964006 0.978883 1

TABLE A8 Enrichment analysis of plasmid genomic location of oriT 
regions.

Product type Proportion
Fold 
change

Fisher's test 
p-value

Other 0.501689 0.955218 6.41E-07

Hypothetical protein 0.197835 0.543307 <1E-16

None 0.21256 4.569195 0.00E+00

Transposition 0.0466 1.323258 4.47E-10

Conjugation 0.025379 1.166235 1.06E-02

Integration 0.015938 2.225049 <1E-16

TABLE A9 Top 20 sorted oriTs according to the number of co-occurrences (degree) with other oriTs.

Plasmid name Species Mob
Mob 
subgroup Degree

Degree 
unique

Num. 
plasmids Connected Mob

pNL1 Novosphingobium aromaticivorans F u 18456 56 1512 (P, V, Q, F, T, C)

BNC1 Plasmid 1 Mesorhizobium sp. Q 2 22651 54 1772 (P, V, Q, F, T, C)

pBBR1 Bordetella bronchiseptica V 2 20875 50 1371 (P, V, Q, F, T, C)

pDOJH10S Bifidobacterium longum Q u 24632 42 1617 (P, V, Q, F, T, C)

pKJ50 Bifidobacterium longum Q u 15585 42 921 (P, V, Q, F, T, C)

pTiC58 Agrobacterium tumefaciens Q 2 13879 41 883 (P, V, Q, F, T, C)

ColE1 Escherichia coli P 5 3179 40 250 (P, V, Q, F, T, C)

pMG160 Rhodobacter blasticus Q u 11863 38 698 (P, V, Q, F, T, C)

CloDF13 Escherichia coli C 1 6429 36 334 (P, V, Q, F, T, C)

pSymB Sinorhizobium meliloti Q 2 3535 33 192 (P, V, Q, F, C)

pRetCFN42d Rhizobium etli Q 2 3608 32 175 (P, V, Q, F, C)

pNGR234a Sinorhizobium fredii Q 2 3161 30 171 (P, V, Q, F, C)

pTF1 Acidithiobacillus ferrooxidans Q u 2610 30 136 (P, V, Q, F, C)

pWKS1 Paracoccus pantotrophus V u 1180 29 70 (P, V, Q, F, C)

pIE1130 uncultured eubacterium Q 1 1425 28 88 (P, V, Q, F, C)

pSymA Sinorhizobium meliloti Q 2 718 25 40 (P, V, Q, F, C)

pRA2 Pseudomonas alcaligenes P 13 650 24 35 (P, V, Q, F, C)

pOM1 Oenococcus oeni V u 175 24 19 (P, V, Q, F, C)

p42a Rhizobium etli Q 2 600 23 31 (P, V, Q, F, C)

pDN1 Dichelobacter nodosus Q u 476 23 23 (P, V, Q, F, C)
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TABLE A10 The adjacency matrix of MOB connections across 
plasmids (note: symmetric across diagonal).

Mob C F P Q T V

C 122 742 195 4371 1 889

F 742 970 664 12637 4 2806

P 195 664 140 3118 1 743

Q 4371 12637 3118 35062 17 15081

T 1 4 1 17 0 2

V 889 2806 743 15081 2 1439

TABLE A11 Top 20 sorted connections between Mob subgroups.

Mob subgroup 1 Mob subgroup 2
Num. 
connections

Q2 Qu 15983

Qu Qu 10223

Q2 V1 10223

Fu 8972

Fu Qu 8972

V2 Qu 7309

Q2 Vu 7309

Q2 7268

P7 Qu 7268

T1 Qu 3534

Q2 V2 3534

C1 Qu 3274

Q2 C1 3274

V2 Q2 3095

P7 Vu 3095

Fu 2916

Fu Q2 2916

V2 Fu 2737

Fu Vu 2737

T1 Vu 1220

TABLE A12 Species and genus count across environmental 
habitats.

Habitat type Habitat subtype Species Genus

Animal Animal 1453 1453

Freshwater Freshwater 2814 2814

Human Human_commensal 1677 917

Human_pathogen 293 252

Industrial Industrial 1879 1879

Interface Interface 936 936

Plant Plant 307 307

Saline Saline 2084 2084

Soil Soil 2707 2707

Thermal Thermal 439 439
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Figure A1 Overview of the structural alignment framework. (a) Depiction of the plasmid conjugation process, which can be divided into 
4 steps: (i) formation of a conjugative pilus that connects the donor and recipient cells for transmission of mobile DNA, (ii) expression of 
enzymes (e.g., relaxase) and accessory proteins, which recognize the binding sites at the DNA origin of transfer (oriT), where plasmid transfer 
is initiated, (iii) relaxase cuts into the oriT at the nic site, exposes the single-stranded DNA and, with the help of the protein transport system, 
transfers DNA to the recipient cell, (iv) in the recipient, either the missing DNA strand is synthesized and then circularized, in case of plasmid 
transfer, or the mobile DNA is integrated into the chromosome by recombinant mechanisms, whereas in the donor cell reconstruction of the 
missing DNA occurs. (b) Depiction of the encoding of DNA into structural representations, where consecutive k-mers of the DNA (of length 
7 bp) are encoded with clustered DNA structural property embeddings (marked s. dim. 1, s. dim. 2, …, s. dim. n; n = 18 such embeddings 
used) into a compressed structural representation termed 's-mers'. To compute the s-mers, 64 DNA structural properties were predicted for 
all permutations of nucleotide k-mers, after which principal component analysis (first 18 components with >99% of data variance were used) 
and clustering (number of clusters 128) were performed. (c) Pseudocode giving an outline of the sequence alignment framework, which 
allows the use of the s-distance measures between the target and query sequences. The s-distance is the Euclidean distance between all 
respective embeddings of two such structurally encoded DNA sequences. The algorithm takes as input a set of query and target sequences, 
and for each query and target sequence, encodes them into structural representations, and returns the regions in the target sequence with 
the lowest s-distance to the query sequence. (d) Mapping of s-distance scores to p-values obtained using permutational (bootstrap) tests, 
where bootstraps of the query oriT sequences were used to estimate p-values at cutoffs from 1e-6 to 1e-1. These points together with the 
theoretically predicted limit ~1e-132 were then used to fit to a second-order polynomial function (f = p0. x2 + p1.x + p2; p0 = −3.045e-05, 
p1 = 0.128, p2 = −133.000).

(a) (b)

(c) (d)
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Figure A2 Distribution of pairwise Jaccard distances between 
oriTs, using structurally encoded k-mers (Methods M2) or non-
encoded nucleotide k-mers, with the subsets of different oriT sizes.

Figure A3 Schematic diagram of the estimated maximum statistical 
depth achievable with different sequence lengths, where an over 
1e100-fold difference is observed between the 40 bp and 220 bp 
sizes of oriT.

Figure A4 Percentage of correctly identified elements with the 
structural alignment algorithm (Strast) using the Mob-typed testing 
dataset 1 with 220 and 40 bp query regions sizes and Blast with 
220 bp region sizes.
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Figure A5 The number of recovered elements across (a) 4 Mob 
groups and (b) 19 Mob subgroups in the Mob-typed testing dataset 1.

Figure A6 The effect of query dataset size on the performance 
of the structural alignment algorithm, where a diluted set of 48 
elements was compared to the full query dataset.

Figure A7 The effect of s-mer size and number of clusters on 
the combined F1-score of locating oriTs and Mob typing with the 
structural alignment algorithm. The combination of s-mer size 7 and 
the number of clusters 2^7 (128) resulted in the best performance.

Figure A8 Distributions of phyla in the query dataset as well as in the target dataset obtained by relaxase and structural alignment-typing.
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Figure A9 Correlation analysis between the sequence homology and structural similarities (s-distance) among oriT hits and their closest-
associated query sequences. All p-values were below 1e-16.

Figure A10 Distributions of sizes of inverted repeats identified in the (a) query dataset and (b) dataset of oriT hits.
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Figure A11 Simulated effect of the size of the query dataset on the (a) amount of uncovered oriT regions, (b) amount of putative mobile 
plasmids, (c) amount of putative mobile plasmid-carrying host species, and (d) amount of overlap with relaxase-typed plasmids. Red lines 
denote least-squares fit, and gray areas denote 95% confidence intervals. Black dots and error bars denote 10 repetitions of 10-fold dataset 
dilutions used for curve fitting. 'X' and vertical error bars denote predictions that mark the size of the query dataset required to recover (a) 
1e5 oriT hits (query dataset of 975 oriTs with 95% lower and upper bounds within 0.07 of this value, respectively), (b) OriT regions spanning 
the whole target dataset of 4602 plasmids (query dataset of 4940 oriTs, 95% lower and upper bounds were 3548 and 7003, respectively), (c) 
the whole species diversity of the target dataset - 893 unique species (query dataset of 3101 oriTs, 95% lower and upper bounds were 2491 
and 3891), (d) a full overlap with the relaxase-typed plasmids (query dataset of 415 oriTs, 95% lower and upper bounds were 328 and 532, 
respectively). Horizontal and vertical error bars denote 95 % confidence intervals.
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Figure A12 (a) Distribution of the amount of identified oriTs. Separate median averages are given for all mobile plasmids and those with 
multiple oriTs. (b) Distribution of the number of unique Mob groups in single and multiple oriT plasmids. Median averages for all mobile 
plasmids and those with multiple oriTs are the same. (c) Distribution of the number of unique Mob subgroups in single and multiple oriT 
plasmids. Separate median averages are given for all mobile plasmids and those with multiple oriTs.
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Figure A13 (a) Degree distribution with the power law function (x−a b + c) fit to the data using least-squares regression (red line). Exponents 
were 0.965, 0.147, and 0.012, respectively. The characteristics of networks with degree exponents below 2 are that they are highly 
dependent on hubs (Barabási & Oltvai, 2004) and that making new links between nodes is inexpensive Seyed-Allaei et al. (2006). (b) Scaling 
of clustering coefficient with the degree of connectivity per node. The average clustering coefficient was 0.47. The red line denotes an 
approximate linear fit. (c) Degree rank plot.
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Figure A14 Properties of the horizontal transfer network. (a) Distribution of the number of unique host habitats per plasmid. (b) Distribution 
of the number of potentially accessible hosts of the multi-oriT donor plasmids. (c) Distribution of the number of unique accessible host 
habitats via oriTs.



    |  29 of 31ZRIMEC

Figure A15 (a) The number of outbound and inbound connections across the different habitats. (b) The adjacency matrix of outbound vs. 
inbound connections across the different habitats.
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Figure A16 (a) The average number of oriTs per plasmid across habitats. (b) The relative amount of connections to human habitat from other 
environments.
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Figure A17 Amount of inbound connections of different AMR classes to the human microbiome. Only AMR classes with more than 2000 
connections are shown.


