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Comparison of incineration and pyrolysis of NMC-lithium-ion batteries – determination 

of the effects on the chemical composition, and potential formation of hazardous by-

products. 

 

GABRIELE LOMBARDO 

Department of Chemistry and Chemical Engineering 

Chalmers University of Technology 

Abstract 

Several industrial lithium battery recycling processes use thermal pre-treatment in an oxidative 

or inert atmosphere, or in a vacuum, to separate the battery components and remove organic 

material. However, a comparison of these pre-treatments on the microstructure and composition 

of waste material and production scrap LiBs has not been explored as well as there is a scarcity 

of information about the character of by-products generated during the processing. 

In this work the effects of incineration and dynamic pyrolysis on the composition of spent Li-

ion batteries (LiBs) and the effects of incineration, dynamic pyrolysis, and pyrolysis under 

vacuum on the composition of production scrap Li-ion batteries (LiBs) were investigated. LiBs 

with cathode active material based on Li(NixMnyCoz)Oj, i.e. NMC-LiBs, were treated from 15 

to 180 minutes at a temperature between 400-700°C. During the pyrolysis, reactions with C and 

CO(g) led to a reduction of metal oxides, with Co, CoO, Ni, NiO, Mn, Mn3O4, Li2O, and Li2CO3 

as the main products. During the incineration, the organic material was removed more 

efficiently than in pyrolysis and the lithium metal oxides were subjected to both carbothermic 

reduction and oxidation. During pyrolysis at 700°C for 180 minutes, the carbon content 

decreased to 15w%, in comparison to the initial 41w%. The incineration performed under the 

same conditions resulted in almost complete removal of the graphite and organic species, 

~0.6w%. Gas and organic oil by-products from the decomposition of the organic components 

were characterized. The presence of HF was detected and fluorine was identified also in the oil 

by-products. The decomposition of the binder facilitated the separation by mechanical 

treatment of the active material from the current collector. The best method to recover cathode 

material was shown to be incineration at a temperature range between 550˚ and 650˚ C for at 

least 90 minutes, followed by ball milling. The recovered fraction of active material was >95%.  

The formation of HF in the case of high temperature accident involving NMC-LiB was also 

determined. Four commercial refrigeration liquids containing halogens were investigated. The 

presence of these refrigeration liquids leads to an increase of the quantity of HF released during 

a simulated fire.  

Keywords: Lithium-ion batteries; recycling; carbothermal; incineration; vacuum; pyrolysis. 
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ABBREVIATIONS AND DEFINITIONS 

The following abbreviations and definitions are used throughout this thesis: 

 

°C Degrees Celsius 

> More than 

<  Less than 

w %  Percentage weight total 

∆G0
f  Standard Gibbs free energy of formation 

∆H0
f  Standard Enthalpy of formation  

∆S0
f Standard Entropy of formation 

EV Electric vehicle 

FTIR Fourier Transform Infrared Spectroscopy 

g  gram(s) 

µg microgram(s) 

GC-MS  Gas Chromatography coupled with Mass Spectrometry 

IC Ion Chromatography 

ICP-OES  Inductively Coupled Plasma-Optical Emission Spectroscopy 

LiB Lithium-ion battery(s) 

M  Molar concentration (mol/L) 

min  minute(s) 

mL  millilitre(s) 

PP  Polypropylene 

PVDF Polyvinylidene fluoride 

RL  refrigeration liquid  

SEI  Solid electrolyte interphase 

SEM Scanning Electron Microscopy 

TCD  Thermal conductivity detector 

XRD  X-Ray Diffraction 
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1. Introduction 

 

Since the 1990s, Li-ion batteries (LiBs) have been widely used as the power source for portable 

electronic devices. This is because they can provide high energy and power per unit of battery 

weight, long storage life, low self-discharge, and a wide range of application temperatures 1,2,3. 

The use of LIBs in portable electronic devices has doubled from 2014 to 2019 4,5.  

Due to its performance, the LiB is also widely used in the car industry for fully electric and 

hybrid engines6,7. Since LiBs have become a promising option for the reduction of CO2 

emissions, government and societal awareness of climate change are supporting the growth of 

the electrical vehicle (EV) industry8,9.  

 

The forecast indicates that there is a good chance that the global number of electric vehicles 

will be 50 million by 2025 and 140 million in 2030 10,11. This will lead to the increasing use of 

LiBs and, thus, of the raw materials necessary for their production 12,13. 

Many of these raw materials are concentrated in the two electrodes that compose the LiB cells: 

an anode (negative pole), generally composed of a copper layer covered by graphite, and a 

cathode (positive pole), generally composed of an Al layer coated with an active material 14. 

The performance of the battery cell is influenced by the chemistry of the cathode active material 

and the most used type in the automotive field is the NMC-LiB, i.e. a battery in which the 

cathode active material has the general composition Li(NixMnyCoz)Oj. 

  

Due to the forecast increasing demand for LiBs raw materials, the critical reserves of Co, and 

the instability in supply and price of Li, it is important to develop efficient and cost-effective 

recycling methods for LiB materials16. Furthermore, the lifetime of the LiBs used in EVs is 

around 10 years 20–22. This means that the quick growth in EVs demand will soon cause an 

accumulation of the spent LiBs 18–20. A system for collecting spent LiBs and effective processes 

for recycling the used materials in them is needed to ensure the raw material supply for the 

production of new LiBs 16,21. 

 

The recycling processes used at present are mostly focused on the recovery of the metallic Al 

and Cu parts that compose the battery current collectors 22,23, and Co, Ni, Mn, and Li, from the 

cathode active material 14,24,25,26. 
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The industrial recycling processes generally use hydrometallurgical methods, pyrometallurgical 

methods, or a combination  of both 21, 27–29,30.  

In the pyrometallurgical processes, spent batteries often do not require discharging or 

mechanical pre-treatment, since smelting furnaces are designed for large volumes of raw 

materials 2,31–33. Furthermore, no separation step is required if several types of batteries are 

processed, such as LiBs and Nickel–metal hydride batteries 34,35. An alloy based on Ni, Co, Fe, 

and Cu is formed. Using the hydrometallurgical method, Ni, Co, and Cu are separated and 

recovered effectively from that alloy 
51,58. However, Mn, Li, and Al are lost in slag 32,38. In some 

existing pyrometallurgical industrial processes (Nickelhütte–Germany 59, Sony/Sumitomo-

Japan 39,40, Umicore-Belgium 41–44) the organic components of the batteries are burnt off.  

A major disadvantage of the pyrometallurgy method is the energy demand, as well as the 

necessity to treat the off-gases and loss of valuable components, such as graphite 45. Despite the 

large demand for Li, Li recovery is generally not taken into consideration 46. 

 

In comparison to the pyrometallurgy method, the hydrometallurgical method has many 

advantages, such as lower energy consumption, less hazardous gas emissions, higher total 

amount of material recovered, and the ability to recycle Li, Mn, and Al 47–50,51. The recovery of 

metals from the black mass is carried out through leaching, solvent extraction, precipitation, 

and/or ion exchange methods 18,35,37,52,53. In many cases a reducing agent is added to further 

increase the leaching efficiency. For example, hydrogen peroxide is added to reduce Co, Ni, 

and Mn compounds to species and increase the leachability of these metals 54. Na2SO3, 

NaHSO3, (NH4)2SO3 are also used as reductants in the leaching process 55,56. In some existing 

industrial processes, such as the one used by Retriev Technologies-USA, Li is recovered by 

precipitation, for example as Li2CO3 or Li3PO4 
57,58. The disadvantage is that the 

hydrometallurgical method is more complex than the pyrometallurgical one because it needs a 

series of additional pre-treatments. Indeed, a thermal pre-treatment (Accurec and Redux in 

Germany) or mechanical pre-treatment (Akkuser-Finland) is needed to separate the cathode's 

active material from the aluminum foil 59 and to remove the components that might inhibit or 

complicate leaching and solvent extraction (Recupyl-France) 
2,17,20,65,82–84,87. The thermal pre-

treatment can be performed in three alternative ways: incineration, pyrolysis under inert gas, or 

vacuum pyrolysis. This is used as an effective tool for battery discharging, and electrolyte 

decomposition. Furthermore, the organic binder decomposes, allowing the separation of the 

active material from the current collector by mechanical treatment. In this way, Cu and Al layers 

can be recovered before the hydrometallurgical treatment 27,61. Thermal treatments can also 
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trigger the carbothermic reduction reaction of the carbon present in the battery with the active 

material 5,46,113. The metal ions in the active material are reduced to lower oxidation and/or more 

soluble states. In this way, the addition of a reducing agent during the leaching can be avoided 

64. 

 

Although pyrolysis and incineration as thermal pretreatment is already applied in the industrial 

recycling of LiBs, there is a lack of knowledge about the effects of the thermal treatment on the 

microstructure and composition of the battery material. Furthermore, most of the research is 

focused on LiCoO2 as the active material, while the current trends are toward NMC and 

materials with higher Ni content. Moreover, only a limited number of studies have focused on 

thermal treatment of the other types of active materials, such as LiNiO2 or LiMn2O4. There is 

also a marginal generation of by-products formed during the treatment. A thorough 

investigation of the formation of gas and organic residue is necessary, especially for industrial 

scale processes, as these substances can be toxic and can reduce the efficiency of the process 

and/or be corrosive, damaging the equipment used. One example is the harmful or corrosive 

gas containing HF that can be generated by the evaporation or decomposition of the electrolyte 

and binder during the thermal pretreatment. It is not known if the fluoride is completely 

removed from the battery cells in the form of gaseous HF or if it forms other compounds in 

liquid or solid by-products. 

 

This work aimed to study and compare the effects of incineration with a constant flow of air, 

dynamic pyrolysis with a constant flow of inert gas, and pyrolysis under vacuum, as thermal 

pre-treatments, on the composition of the battery cell materials, as a function of treatment time 

and temperature.  

Emphasis was placed on the characterization of the solid, gas, and liquid by-products generated 

during these treatments.  

The formation of hydrofluoric acid in the case of high temperature accident involving LiBs 

using the cooling system based on the refrigeration liquids containing halogens was also 

studied. Such data are very limited in the literature, but they can contribute to a more sustainable 

design of the future batteries and knowledge about the risks associated with accidents with LiB 

thermal runaway.  
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2. Background and Theory 

 

2.1 Li-ion battery components and composition  

In the LiB, the charging and discharging events are determined by the movement of the Li 

cations from the cathode to the anode and vice versa. During charging, the Li ions move from 

the cathode material through the electrolyte to the separator and then again through the 

electrolyte to the anode. This event creates a flow of current up the negative current collector 

and to the positive current collector. During the charging/discharging cycles, Li ions have to 

intercalate and de-intercalate reversibly in the framework of the active material without 

introducing any significant structural changes 65–67.  

A Li-ion battery (LiB) consists of a number of principal components, which are listed in Table 

1. However, the composition varies according to the brand and application of the battery.  
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Table 1: Composition and function of the main LiB components   

 

Component Composition Function 

The negative 

electrode 

(anode) 

Cu foil coated with graphite 60,68  

The anode receives lithium ions from the cathode during 

charging and emits lithium ions during discharging. Graphite 

is the most commonly used anode material in commercial 

LIBs due to its stable thermal and mechanical structure, 

electrical conductivity, non-toxicity, abundance 60,68 Li 

interacts weakly with graphite, so graphite can be used to 

intercalate and store Li, preventing formation of Li dendrites 

that could short circuit the electrodes and cause thermal 

instability 69. 

The positive 

electrode 

(cathode) 

Al foil covered with an 

electrochemically active material. In 

the automotive field, the active 

material is generally a Li-transition-

metal-oxide (LiMO2), where the metal 

M can be Co, Ni, Mn, Al, or one of their 

combinations. One of the most 

commercialized cathode materials has 

the general composition 

Li(NixMnyCoz)Oj 25,26. Another 

common active material is LiCoO2. 

The cathode is commonly a lithium metal oxide material, 

which emits lithium ions to the anode during charging and 

receives lithium ions during discharging.  

The main benefit of NMC LiBs is their higher energy density 

compared with other chemistries 70. 

Polymeric 

binder 

Generally, it is in polyvinylidene 

fluoride (PVDF) 71.  

The polymeric binder improves the adhesion between the Al 

foil and the active material 72. 

Separator Polypropylene (PP) 73.  The separator is permeable to Li cations but at the same time 

prevents contact between the electrodes and, thus, the internal 

short circuit and cell failure 74.  

Electrolyte Solvent: alkyl carbonates (ethylene 

carbonate, dimethyl, diethyl, and ethyl 

methyl carbonate) 

The electrolyte allows the movement of the Li cations between 

cathode and anode and facilitates the formation of the solid 

electrolyte interphase (SEI) layer, due to the decomposition of 

the electrolyte. Salt: LiPF6
1,75 or LiClO4

76 

Thermal 

management 

system 

A dielectric fluid in which the battery 

is immersed 77,78. 

The thermal management system is necessary to maintain the 

proper temperature range 79,80. 

Cover/shell  Steel or aluminium  All the other components are inserted into a container that can 

be a metal can, a plastic enclosure, or a metal foil-type pouch. 

The electrolyte liquid is injected, and the entire assembly is 

hermetically sealed 81. 
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Significant quantities of heat are created inside LiB cells during the charge and discharge 

cycles. This heat is generated by exothermic chemical reactions 82. The performance, life, and 

safety of LiBs are very sensitive to temperature 83. In the case of abuse of LIBs, such as 

overcharging or high temperature operation, exothermic reactions can be triggered. The heat 

released by these reactions causes a rise in the reaction rate, which can possibly result in an 

explosion. Such kinds of uncontrollable exothermic reactions are called thermal runaway. The 

thermal runaway starts with the decomposition of the SEI and involves the reaction of cathode, 

anode, and electrolyte. The exothermal reactions propagate to adjacent cells and set fire to the 

surrounding combustible materials. To avoid this, the LiBs are provided with a thermal 

management system that is required to maintain the proper temperature range 77,78. Generally, 

LiBs are cooled with forced ambient or cooled air that is directed to flow across the surface of 

the battery cell. One alternative is the direct immersion cooling systems that use single-phase 

dielectric liquids. The battery cells are fully immersed in the dielectric fluid that is typically 

circulated with a pump to ensure a constant flow to make continuous contact with all the battery 

modules 79,80. 

 

  

2.2 Thermodynamics of reactions involved in LiB cathode material high 

temperature treatment methods  

 

2.2.1 Carbothermic reduction 

Both incineration and pyrolysis have been described as valid methods to facilitate the recovery 

of Co, Mn, Ni, and Li triggering carbothermal reduction. Indeed, an improvement in the Co and 

Li recovery rate was achieved for LiCoO2 cathode material subjected to incineration at 700°C, 

due to LiCoO2 carbothermic reduction and carbon removal 45,84,85,86. However, how the 

composition of active material changed during the thermal treatment  has not been published. 

Similarly, during pyrolysis at 650°C, NMC cathode material was reduced into Ni, Co, and MnO 

using lignite as a reducing agent87, 88, 89. This determined an increase in the leaching efficiency 

and the recovery of Ni, Co, and Mn. Instead of employing an external reductant agent, the use 

of the carbon already present in the cathode and anode materials as a reductant agent has not 

been explored.    

The carbothermic reduction aims to reduce the metal oxides to metals in elemental form 90 and  
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produce also CO(g) and CO2(g) 91 as by-products. The thermodynamic of these reactions can 

be predicted using the Ellingham diagram, Figure 1. 

 

The Ellingham diagram is a plot of Gibbs free energy versus temperature, in which the reactions 

of formation of oxides are approximated to straight lines following equation (1) over the 

temperature ranges in which no phase transformations occur. 

 

ΔG0
f = ΔH0

f – TΔS0
f                                                                                                                     (1) 

 

in which ΔG0
f is the change in the Gibbs free energy of formation, ΔH0

f is the enthalpy of 

formation, T is the temperature, and ΔS0
f is the entropy variation. So, ΔS is the slope and ΔH 

is the y-intercept of the straight lines in the diagram. 

  

The carbothermic reduction can be described by the following reactions: 

 

3MO(s) + 2C(s) → 3M(s) + CO(g)  + CO2(g)                                                                         (2) 

MO(s) + CO (g) →M(s) + CO2(g)                                                                                           (3) 

 

in which MO is a generic metal oxide. Reaction (2) is accompanied by a large increase in 

entropy because two solids (MO and C) are converted into one new solid (M) and two gas 

products (CO and CO2). The reduction of metal oxides with C, which occurs when Gibbs free 

energy ΔG for the reduction reaction is negative, therefore becomes progressively more feasible 

at higher temperatures 92.   

 

In contrast, in reaction (3), CO is a gaseous intermediate that is one of the products of the 

oxidation of C, as shown in reactions (4), (5), and (6). 

 

C(s) + O2(g) → CO2(g)                                                                                                            (4) 

2C(s) + O2(g) → 2CO(g)                                                                                                          (5) 

2CO(g) + O2(g) → 2CO2(g)                                                                                                      (6) 

 

CO2 is the thermodynamically most favored product at temperatures below 700°C, as observed 

in the Ellingham diagram.  
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The position of the line of each element in the Ellingham diagram shows the stability of the 

oxide as a function of temperature. Lines closer to the top of the diagram describe the behavior 

of oxides that are unstable and easily reduced. In the lower part of the diagram, the metals 

become progressively more reactive and their oxides become harder to reduce. A set of 

considerations can be described: 

 

➢ Li is extremely reactive, so the probability to find it in the elemental form will be very 

low. Li will keep its oxidation state +1 forming its most stable oxide, Li2O. 

➢ The Al of the cathode sheet forms another extremely stable oxide, Al2O3 (melting point 

2072°C).  

➢ Another element that could keep an oxidation state higher than 0 is the Mn, whereas 

Co, Ni, and Cu are significantly more easily reduced. 
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Figure 1: Ellingham diagram showing the standard Gibbs energies of formation of 

selected oxides as a function of temperature. All the reactions are normalized to consume 

one mole of O2. The software HSC Chemistry 9, developed by Outotec, was used to build 

this diagram. 

 

 

 



 

 10   

 

 

During the thermal treatment, it is expected that the lithium-metal-oxide compounds are 

subjected to a carbothermic reduction, triggered by the carbon present in the samples. Therefore  

the software HSC Chemistry 9, developed by Outotec, was used to carry out thermodynamic 

calculations to propose a hypothesis about which reaction mechanisms are involved during the 

thermal treatment. The oxides (LiCoO2, LiMn2O4, and LiNiO2) were considered individually 

and their possible interactions with O2, C, and CO were studied. All the reactions described 

below are shown in Figures 2 and 3. 

 

Incineration 

LiCoO2 

At temperatures higher than 300˚C, C and CO can reduce this metal oxide. C and CO reduce 

some of the Co(III) present in the LiCoO2 to Co(II) in the formation of Co(II)(III)3O4, in the 

presence of O2, as described in reaction (7). Li2CO3 and CO2 are the other products of these 

reactions. The Co(II)(III)3O4 is further reduced to Co(II)O and Co(0), according to the reactions 

(8) and (9). The trends for the ΔG0 dependence on T for these reactions are shown in Figure 2. 

Li tends to maintain its oxidation state and form stable Li2O. The possible reaction between 

CO2 and Li2O gives Li2CO3 as product, as described by equation (10).  

 

LiMn2O4 

Thermodynamic data regarding LiMn2O4 was not available in the HSC 9 database. Therefore, 

a separate database was created using the entropy and heat capacity data published by Knyazev 

24 and enthalpy data published by Lai 93. These extensions of the database permitted the 

extrapolation of ΔG0 up to 126.85 °C. Above that temperature, the curve that describes the trend 

of ΔG0 was approximated using the same software. 

During the thermal treatment, the thermodynamic promotes the Mn(+3)(+4) reduction to 

Mn(II)(III)3O4 and Mn(II)O and decomposition to Mn(IV)O2, as shown in reaction (11). It can 

be expected that Mn(II)(III)3O4 and Mn(IV)O2 will react with C, CO, and O2 forming Mn(II)O 

as described in reactions (12) and (13). These results are shown graphically in Figure 2. 
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LiNiO2 

There was insufficient data in the HSC Chemistry database available for LiNiO2. Its behavior 

was therefore modeled as being similar to that of LiCoO2 and was estimated using HSC 

Chemistry software. 

The reaction of LiNiO2 with C and CO in the presence of O2 can give Ni(II) O and Li2CO3 as 

the main products, according to reaction (14). Ni(II)O can be further reduced by C and CO into 

Ni(0), as described by reaction (15). These results are shown graphically in Figure 2. 
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                      Figure 2: Plots of ΔG0 (kJ) vs T (°C) for the reduction of LiMOx with C or CO during incineration at different 

temperatures. 
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Pyrolysis  

LiCoO2 

Co(III) is reduced to Co(II)(III)3O4 and Co(II)O by means of reactions (15) and (16). CO is a 

product of the reaction between the metal oxide and C. It can be expected that Co(II)(III)3O4 

and Co(II)O will react with C and CO to form Co(0) as described in reactions (17) and (18). 

Li(I) can be present in the form of Li(I)2O and react with CO2, forming Li(I)2CO3. The plot in 

Figure 3 shows how ΔG0 varies with temperature for these reactions. Figure 4 shows the 

variation in the equilibrium amount versus temperature for each species involved in the 

carbothermic reaction of LiCoO2 with C, resulting in Co, Li2CO3, and gases (CO and CO2) as 

products. Above 600˚C, C forms both CO and CO2.  The amount of CO increases with 

increasing temperature. At 700˚C, the quantity of C reacting with oxygen to form CO and CO2 

is significantly higher than at lower temperatures.   

 

LiMn2O4 

The reactions of LiMn2O4 with C or CO give Mn3O4, and Li2CO3 as products, as described by 

reactions (19) and (20).  

Mn with oxidation states III and IV in LiMn2O4 is reduced to Mn with oxidation states II and 

III in Mn3O4 and II in MnO. Another possible product is Mn(IV)O2. The thermodynamic plots 

of ΔG0 versus T for these reactions are shown in Figure 3. Mn(II)(III)3O4 and Mn(IV)O2 can 

be further reduced by C to give Mn(II)O, as described by reactions (21), (22), and (23).  

Instead, Mn(II)O can act as a reducing agent in the carbothermic reaction of LiMn2O4, as shown 

in (25) and (26), (Figure 3). The thermodynamic calculations show that the reaction (26) of 

LiMn2O4 with CO, in the presence of Mn(II)O, has a lower ΔG0 over the entire temperature 

range compared to without Mn(II)O, as described by reaction (20). 

This means that Mn(II)O can be involved in the reduction of the Mn(III)(IV), but C and CO 

would be the main reductant agents.                                                                        

 

LiNiO2 

The carbothermic reduction of Ni(III) can give Ni(0) and Ni(II)O as the main products, as 

described by reactions (27) and (28). The Ni(II)O can in turn be reduced by C and CO into 

Ni(0) with the associated formation of CO2, as described by reaction (29). The corresponding 

plot of ΔG0 as a function of T is shown in Figure 3. 
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Figure 3: Plots of ΔG0 (kJ) vs T (°C) for the reduction of LiMOx with C or CO during pyrolysis at different temperatures. 

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)            

(26)

(27)

(28)

(29)

-1500

-1300

-1100

-900

-700

-500

-300

-100

300 350 400 450 500 550 600 650 700 750 800

Δ
G

0
(k

J)

T (˚C)



 

 15   

 

 

Figure 4: The variation of the equilibrium amount vs temperature for each species involved 

in the carbothermic reaction of LiCoO2 with C, giving Co, Li2CO3, and gases (CO and 

CO2) as products. 

 

2.2.2 Decomposition of organic components and electrolyte during thermal 

treatment 

Incineration has been shown to be highly efficient for the removal of the organic components, 

such as polypropylene separator, PVDF binder, and electrolyte, which facilitates the leaching 

process 84,85,86. These components decompose releasing mainly CO2(g), CO(g), and H2O(g). 

In contrast, the amount of CO and CO2 produced per time unit during pyrolysis is lower than 

the amount of these gases produced by incineration, so it is generally considered a greener 

process. However, the decomposition mechanism of the battery organic components is more 

complex and can cause the formation of substances that are potentially corrosive and toxic. 

Pyrolyzing the polypropylene separator, the main products, in decreasing yields, are 2,4-

dimethyl-l-heptene (boiling point 136°C)94, 2-pentene (boiling point 38°C)95, and the monomer 

propylene (boiling point -47°C)96, all considered dangerous to health. 

The pyrolysis or incineration of the PVDF binder and electrolyte generates considerable 

amounts of toxic gases, such as HF and fluorinated compounds. In the literature, quantitative 

measurements of HF in the gas emitted from Li-ion batteries are described only in the case of 

failure of the battery cells97,98 and aging99,100. Thus, a qualitative and quantitative study to 

examine by-products generated through the thermal pretreatment of a recycling processes has 

not been carried out. Additionally, it is not known if the fluoride is completely removed from 
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the battery cells in the form of gaseous HF or if it forms other compounds in gas, liquid, or solid 

by-products.  

  

PVDF is a crystalline polymer of quite high thermal stability and its thermal decomposition is 

heavily influenced by the presence of O2
101. Indeed, it has been observed through 

thermogravimetric analysis that the degradation of PVDF begins at around 320°C in O2 and 

450°C in N2 
102. It has been concluded that O2 reduces the activation energy of the thermal 

degradation. This involves the release of gas containing HF(g) and the monomer vinylidene 

fluoride (VDF) (boiling point -85°C)103 (g). In the case of pyrolysis, a small quantity of the 

dimer of VDF(g) and bigger aliphatic and cyclic molecules remain in the liquid fraction104. The 

major pyrolysis products are HF, VDF, 1,3,5-trifluorobenzene (1,3,5-TFB) (boiling point 

76°C)105, 1,2,4-trifluorobenzene (1,2,4-TFB) (boiling point 88°C)106, and 1,4-difluorobenzene 

(DFB) (boiling point 88.5°C)107,108. The thermal treatment of fluorobenzene could also produce 

fluoro-dioxines109, such as 2,3,7,8-TFDD110, which are known for their serious environmental 

problems and significant negative effects on human health due to their toxicity111.  

 

LiPF6 thermally decomposes into gaseous PF5(g) and LiF(s) at around 200°C, when heated in 

a dry and inert environment. In the presence of electrolyte solvents, such as ethylene carbonate, 

dimethyl, diethyl, and ethyl methyl carbonate, the decomposing temperature of LiPF6 can fall 

to as low as 85°C112,113 

 

LiPF6(org. solution) → LiF(s) + PF5(g)                                                                                                    (30) 

 

In contact with moisture/water PF5 reacts to form POF3. 

 

PF5(g) + H2O(g) → POF3 (g)+ 2HF(g)                                                                                 (31) 
 

 

 

POF3 is a reactive intermediate that will react with other organic materials, or with water, 

generating HF 98.  

PF5 also react with HF to form HPF6:  

 

PF5 (g) + HF (g) → HPF6 (g)                                                                                                (32) 

 

HPF6 can further react with water to yield HF and form H3PO4 as a final product:  
 
HPF6(g) + 4H2O(g)  ⇌H3PO4(g) + 6HF(g)                                                                           (33) 
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3. Materials and methods 
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3.1 Materials and thermal treatment 

3.1.1 Spent NMC-LiBs cells (Papers I and II) 

A total of 6 spent NMC-LiBs cells, already discharged by the 

VOLVO CAR CORPORATION, were dismantled by removal 

of the plastic cover for the pyrolysis and incineration 

experiments. A manually crushed mixture of anodes and 

cathodes with separator was used. The electrodes were 

collected and representative samples of 0.5g were obtained by 

pressing using a puncher with a circular diameter of 2 

mm, through an equal number of cathodes and anodes(Figure 5). These samples were subjected 

to incineration and dynamic pyrolysis at different temperatures (400ºC, 500ºC, 600ºC, and 

700ºC) for different time periods (15, 30, 60, 90, and 180 minutes). Standard samples, 

consisting of a mixture of graphite and one of the pure metal oxides present in the black mass 

(LiCoO2, LiMn2O4, and LiNiO2), were subjected to the same thermal treatment. These 

standards were analyzed and compared to the NMC-LiB samples and the results from 

thermodynamic considerations in order to identify the mechanism of decomposition for each 

metal oxide.  

 

3.1.2 Scrap NMC-LiBs cell cathodes (Paper III) 

The starting material was composed of a LiB ribbon-shaped cathode consisting of an Al layer, 

19.4 cm wide and 300 cm long (Figure 6). This was a scrap of a LiB cathode production chain. 

To prepare each sample, an area of 100 cm2 covered by the active material was cut from the 

layer, weighed, and divided into pieces of approximately 5 cm2. Samples of weight 1.95 ±0.3 g 

were prepared. These samples were subjected to incineration, dynamic pyrolysis, and pyrolysis 

under vacuum at different temperatures (450ºC, 550ºC, and 650ºC) for different time periods 

(30, 60, 90, and 150 minutes). 

 

Figure 5: Untreated sample 
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Figure 6: Cathode scrap material.          

 

The choice of the treatment temperature for all the experiments was the result of a compromise: 

at a lower temperature, the efficiency of the PVDF removal, and thus the purity of the treated 

black mass, should be lower than it would be when treated at a higher temperature. On the other 

hand, higher temperatures can cause the Al to melt (melting point 660.3 °C), which in the liquid 

state could coat the samples and inhibit removal of the PVDF and the contact between the 

battery and the reducing atmosphere in the furnace. It was decided to perform the treatment at 

700˚C to determine if there were any effects due to Al melting at this temperature. Experiments 

were carried out in triplicate. 

 

3.1.3 Refrigeration liquids (Paper IV) 

Tests were carried out to define how much HF could be generated in a fire caused by a car 

accident in a case when refrigeration liquid is used. LiB cells Samsung INR21700-50E with a 

weight of 69 g were cut in half to obtain representative samples with a weight of ~34.5 g. Each 

sample was partially immersed in 5 ml of refrigeration liquid (RL) to simulate a real ratio. Four 

commercial refrigeration liquids were tested. To determine how much HF can be generated by 

a refrigeration liquid in a high temperature event, thermal treatment at 700 ºC was performed, 

since 700 ºC is the average surface temperature of the battery cells during thermal runaway98. 

The aim was to trigger the decomposition of the organic material and refrigeration liquid.  

 

 

3.1.4 Equipment for the thermal treatment 

The thermal treatment was performed in a tubular furnace (Nabertherm GmbH Universal Tube 

Furnace RT 50-250/11). Each sample was placed in an alumina sample holder and inserted into 

a high-purity 65 cm alumina tube (Al2O3, 99.7%, Degussit AL23, Aliaxis). Custom-made 

stainless steel connectors were added to both ends of the tube. When the furnaced reached the 

17.6 cm 
19.4 cm 
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selected temperature, the alumina tube was then inserted in the tubular furnace. A constant flow 

of approximately 340 ml/min of 99.9% pure nitrogen (for the dynamic pyrolysis) or air (for the 

incineration) was pumped through the tube, with a flowmeter used to regulate the gas flow at 

the system inlet. For the vacuum pyrolysis, the samples were inserted into the part of the 

alumina tube located outside the furnace, as shown in Figure 7a. Using a  thermocouple it could 

be measured that the samples in this part of the tube were subjected to a temperature no higher 

than 80ºC. A constant flow of N2 was then injected in the furnace to remove the oxygen before 

the vacuum was formed. When the furnace was up to temperature, a vacuum of -0.75 bar was 

applied to the system with a Millipore vacuum pump.  Then, each end of the alumina tube was 

closed with a valve, to keep the pressure in the tube constant. The vacuum pump was then 

turned off. The part of the alumina tube in which the samples were placed was moved into the 

furnace. The pressure inside the system was measured with a manometer (Figure 7b). 

 

The exhaust gas was bubbled through three plastic cylinders filled with 150 ml of MilliQ water 

(ultrapure water with a resistivity of 18.2 MΩ.cm (at 25°C) and a TOC value below 5 ppb).   

The MilliQ water was then collected and analyzed. The MilliQ water from the gas-washing 

bottle directly connected with the alumina tube is referred to as B1. Consequently, the MilliQ 

water from the other gas-washing bottles is referred to as B2 and B3, respectively. 

 

   

Figure 7: Apparatus used for a) incineration/ dynamic pyrolysis and b) vacuum pyrolysis  

 

3.2 Determination of metal concentrations in solid samples by ICP analysis  

The dissolution of the electrode materials was carried out using aqua regia (Merck Millipore 

Nitric acid 65% w/w - EMD Millipore Hydrochloric acid 37% w/w) at approximately 80ºC 

using magnetic stirring. The solutions obtained were filtered. The undissolved fractions were 

washed, dried, and weighed, and analyzed with X-ray diffraction (XRD). The liquid fraction 

was diluted 100 and 1000 times using 0.5M HNO3, and an iCAP™ 6000 Series ICP-OES was 

 a  b 
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used to determine the metal concentrations in the solutions. To analyze the concentration of the 

metals in the organic by-products obtained through the thermal treatment, the organic by-

products were dissolved in a solution 3:1 volume ratio concentrated sulfuric acid (H2SO4) 

(Merck Millipore 98.0% w/w)- hydrogen peroxide (H2O2) (Merck Millipore 30 % w/w in H2O) 

and analyzed by ICP-OES. This acid mixture is a strong oxidizing agent and is thus highly 

efficient for wet combustion (removing most organic components). It will also hydroxylate 

most surfaces (add -OH groups), rendering them highly hydrophilic. Experiments were carried 

out in triplicate.  

 

3.3 X-Ray powder diffraction qualitative analysis of crystalline compounds - 

XRD 

The XRD analyses were carried out using a Siemens D5000 X-ray diffractometer, using an 

accelerator voltage of 40 kV and a current of 40 mA. The X-ray wavelength used corresponds 

to the characteristic Cu K-radiation, and a 2Θ range from 10° to 80° was included in the scans. 

Furthermore, sample rotation was applied with a rotation speed of 15 rpm. The obtained 

diffraction data was evaluated using EVA software by Bruker (USA) and the JCPDS database 

114.  

 

3.4 Fourier Transform Infrared Spectroscopy analysis of the gas produced 

during the thermal treatment - FTIR 

The instrument used was a Perkin Elmer Spectrum Two FT-IR Spectrometer - Standard 

Detector, equipped with a LiTaO3 detector, which has a range between 15700 – 370 cm-1. The 

sample holder was a cell equipped with gas-tight taps, the ends of which were closed with flat-

glass KBr walls, transparent to IR. Since the gas density is low, the optical path was long, about 

10 cm. 

 

3.5 Analysis of carbon content in samples before and after thermal treatment 

in an oxidative atmosphere  

A LECO CS744 instrument was used for the determination of the total carbon content in the 

samples before and after the thermal treatment. This instrument was equipped with a wide-

range IR detector and an induction High-Frequency furnace in which an integrated oxygen 

lance floods the crucible holding the sample with high-purity oxygen to promote complete 
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combustion of the carbon present in the sample. To facilitate ignition, 0.1 g of each sample was 

mixed with 2 g of a tungsten/tin blend accelerator. Experiments were carried out in triplicate. 

 

3.6 Ion chromatography 

The MilliQ water used to wash the gas exiting from the furnace was analyzed using a Dionex 

DX100 Ion chromatograph to measure the concentration of fluorine. The column used was a 

Dionex IonPacTM AS4A-SC RFICTM 4x250 mm Analytical. The eluent was a solution of 1.7 

mM NaHCO3 and 1.8 mM Na2CO3. The pH of the washing water was also measured. The pH 

meter was calibrated to an accuracy of ±0,02 pH units at 25°C (Radiometer Analytical SAS) 

using three buffer solutions at pH 1, 4, and 7. Experiments were carried out in triplicate. 

The concentration of F in the refrigeration liquids was determined by dissolving these liquids 

in an organic solvent (e.g., methyl tert butyl ether) and then diluting the samples using 

methanol. The samples were analyzed at Örebro University by professor Leo Yeung using 

combustion ion chromatography at 1050°C. The solvent used for dilution was also analyzed  

and a very low detectable level of F was found (16 ng F/mL). It was not possible to analyze the 

fluorine concentrations using classical ion chromatography since the refrigeration liquids are 

organic compounds. During the combustion ion chromatographic analysis, the organic F was 

converted into inorganic fluoride to be able to analyze it through a chromatographic column. 

Experiments were carried out in triplicate. 

 

3.7 Scanning Electron Microscope (SEM) 

The morphology of the samples was investigated using a FEI Quanta 200 environmental SEM 

equipped with an Oxford Inca energy dispersive X-ray detector (EDX). Imaging was done with 

an accelerating voltage at 20 kV. 

 

3.8 Ball milling for the mechanical removal of black mass from the aluminum 

layer 

A Fritsch Planetary Mill Pulverisette 7 was used. The machine consists of a rotation plate with 

two symmetrical holders. Each holder hosts a sample holder that contains quartz balls with a 

diameter of 1cm. After the thermal treatment, the cathode was milled in the ball mill for 15 

mins at 1000 rpm. The same treatment was applied to untreated samples, to compare the 

efficiency of the black mass removal and the contribution of the thermal treatment. The 

samples, the internal surface of the sample holders, and the quartz balls were washed with 
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MilliQ water to recover all the cathode material detached from the Al foil. The removed cathode 

active material was then left in the air to dry and weighed. Experiments were carried out in 

triplicate. 

 

3.9 Gas Chromatography coupled with Mass Spectrometry (GC-MS) 

A Hewlett Packard HP 5890 Series II Gas Chromatograph and a Hewlett Packard HP 5972 

Mass Spectrometer were used to analyze the composition of the oil by-product formed by the 

decomposition of the organic components of the LiBs. The GC was equipped with an Agilent 

Technologies column 112-5512, 15 m length, 0.25 mm inner diameter, 0.25 µm film thickness. 

The samples were diluted in Acetone 99.5 w% (Sigma-Aldrich) and 5µL were injected into the 

system The column had a temperature of 220ºC. 

 

3.10 Analysis of the oil by-products 

The oil by-products consisted of a less polar fraction, soluble in petroleum ether (Fraction 1), 

and a fraction with higher polarity (Fraction 2), soluble in acetone. To collect Fraction 1, 

petroleum ether was added to a part of the oil to dissolve the less polar fraction. This solution 

was then filtered to remove possible particles and the undissolved part. Filtration was done by 

leaving the solution to gravity-filter through a glass Pasteur pipette with an inner lining of cotton 

with an effective mesh size of approximately 10 μm as a filtering material. To collect Fraction 

2 a similar procedure was used, treating a part of the oil with acetone and then filtering the 

acetone phase (Figure 8).  

 

   

Figure 8: Organic by-products gravity-filtered through a glass Pasteur pipette with an inner lining of cotton as a filtering 

material.  

´´´´
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3.11 C, H, and F analysis carried out by MedAc laboratories (UK) 

The oil by-product and the MilliQ water used to wash the gas exiting from the furnace were 

sent to MEDAC laboratories (UK) for elemental microanalysis. C and H analysis was carried 

out by combustion analysis. The sample was completely and instantaneous oxidized by 

combustion, which converts all organic and inorganic substances into combustion products. 

The resulting combustion gases passed through a reduction furnace and were swept into the 

chromatographic column by the He carrier gas. Here they were separated and eluted as carbon 

dioxide and water and detected by a thermal conductivity detector (TCD), which gives an output 

signal proportional to the concentration of the individual components of the mixture. The 

instrument was calibrated with the analysis of known standard compounds. 

The F was analyzed by means of combustion, followed by titration or ion chromatography. 
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4. Results and discussion 

 

4.1 Characterization of the battery material 

A total of 6 cells were dismantled by removing the plastic cover. The cathodes and anodes were 

separated from the separators manually and the black mass was scraped from the anode copper foils 

and cathode aluminum foils. Each component was weighed. The average weight of each cell was 

553.1±0.2 g, including an external plastic cover of 23.0 g. Internally, each battery cell consisted of 

19 anodes interleaved with 18 cathodes. The weight of the black mass recovered from the cathode 

aluminum layers was 218.2±0.8 g and represented the main component of each cell, followed by 

graphite (115.9±0.3 g), the copper foils (57.0±0.1 g), aluminum foils (36.0±0.1 g), and separators 

(42.2±0.5 g). A summary of this data can be seen in Figures 9 and 10. The percentage of electrolytes 

in Fig 10 is a calculated value. 

 

 

Figure 9: Components of the LiB cell. 
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Figure 10: Mass balance of used material.  

 

To investigate the composition and microstructure of the batteries, samples consisting of a mixture 

of both cathodes and anodes were prepared. Through the ICP-OES analysis, the weight % of the 

metals in a battery cell was calculated (Table 2). The calculated limits of detection (LODs) for the 

analyzed elements are also shown. 

 

 Table 2: The weight percentage of some elements in the battery cell. (the Metal 

composition of the battery cell). 

Element Mn Ni Co Cu Li Al P 

w% 11.0±0.7 5.6±0.3 5.5±0.3 12.3±0.8 2.4±0.2 6.8±0.5 0.3±0.1 

LODs 0.1 0.2 0.2 0.1 0.2 0.1 0.1 

 

 By analyzing the cathode and anode separately, it was observed, as expected, that the composition 

of the two types of electrodes was considerably different (Table 3): Cu was only detected in the 

anode; Al, Co, Mn, and Ni in the cathode, whereas Li was present in both electrodes. 

 

Table 3: Metal composition of the electrode material [w%]. 

Element Mn Ni Co Cu Li Al 

Anode nd nd nd 27.2±0.8 0.1±0.2 nd 

Cathode 19.0±0.7 9.0±0.3 9.1±0.3 nd 3.7±0.2 10.3±1.2 

 

nd = not detected 
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The identification of crystalline compounds performed by XRD of these samples identified the 

presence of Cu and Al, both in elemental form and oxide form, as shown in Figure 11. The most 

intense peak at 27˚ is generated by the graphitic carbon.  

 

 

 Figure 11: The XRD diffractogram of mixed electrode materials (anode and cathode). 

 

The complexity, and in some cases similarity, of the X-ray diffraction spectra for transition 

metal oxides makes it difficult to identify the specific Co, Ni, and Mn oxides present. Therefore, 

further XRD analysis was performed only on the active cathode material, which was 

mechanically separated from the aluminum layer. The result is shown in Figure 12. It was 

possible to identify the presence of LiMn2O4, LiNiO2, and LiCoO2. The peak at 18.7˚ is 

common for all three metal oxides, therefore, its absence in the spectra of the treated samples 

could be considered as evidence of the almost complete decomposition of the lithium metal 

oxides. 

 

 

Figure 12: The XRD diffractogram of cathode material.  
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The XRD diffractogram of the solid fractions remaining after the attempted total dissolution of the 

samples shows a hump at low angles. This is due to the amorphous nature of the polymers, i.e. the 

separator material and binder, in PP and PVDF. Diffractions originating from Al2O3 were also 

detected. The undissolved fraction obtained from the negative electrodes was essentially graphite.  
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4.2 Pyrolysis 

4.2.1 Spent NMC-LiBs cells (Paper I) 

Change in sample weight during dynamic pyrolysis 

By measuring the weight of the samples before and after the dynamic pyrolysis, a general loss 

of mass was detected, which increased with the rise in temperature and the duration of the 

dynamic pyrolysis (see Figure 13). After treatment at 700ºC for 90 minutes, a loss of ~22 w% 

was measured, doubling the weight loss obtained at 400 ºC for 90 minutes. Increasing the 

temperature from 500 to 600ºC did not have a notable effect on the sample weight. Furthermore, 

the treatment time heavily influenced the change in the weight of the samples (Δw%), especially 

at high temperatures. All samples lost a significant part of their weight in the first 15 minutes 

of the treatment. The reason is the evaporation of the organic solvents present in the battery, 

which happens at a temperature higher than 150ºC. The effect determined by the variation of 

the treatment time is more evident at 700ºC than at a lower temperature. Indeed Δw% passed 

from ~9% at 15 minutes to ~22% after 180 minutes. Furthermore, Δw% reached a maximum 

after 90 minutes, followed by a plateau.  

 

 

Figure 13: Weight loss in dynamic pyrolysis at different temperatures and times. The (0;0) point corresponds to 

the untreated material. The lines are only provided to guide the eye. 

 

To confirm the hypothesis that the Δw% was mainly caused by the decomposition of the organic 

components and oxidation of the graphite, the residual carbon contents in the samples were 

measured. The percentage weight of carbon decreases with the rise in time and temperature of 
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treatment (Table 4). The concentration of carbon in the samples pyrolyzed at 700°C for 180 

minutes is the lowest (15 w%) from an initial 41% in the untreated battery. 

 

Table 4: Change of the carbon content in the sample in the dependence on the time and 

temperature of dynamic pyrolysis. 

T (°C) Time (min) Carbon content (w%) 

Untreated 0 40.8±2.8 

400 

30  35.5± 2.4 

60  32.8±2.0 

90  21.2±1.6 

180  19.0±0.9 

500 

30  32.0±2.5 

60  31.7±2.5 

90  23.3±1.2 

180  20.1±1.0 

600 

30  31.4±1.7 

60  29.4±2.5 

90  21.1±1.6 

180  15.2±1.3 

700 

30  27.2±2.5 

60  25.2±0.6 

90  16.0±1.6 

180  15.0±1.1 

 

 

Changing in metal concentration during dynamic pyrolysis 

The rise in the metal concentrations during heat treatment is almost proportional to the decrease 

in the weight of the sample.  

 

The data in Table 5 and Figure 13 show that the weight of the samples treated at 500˚C and 

600˚C does not differ significantly. The reason is that there are no significant differences 

between the decomposition reactions that occur at these temperatures. The decomposition of 

most of the organic materials occurs before 500°C, such as the decomposition of the PVDF. 

This was confirmed by Kulia and coworkers who carried out a thermogravimetric study of 

PVDF under a nitrogen atmosphere and observed that PVDF exhibited a single degradation at 

450°C, with a material loss of more than 80% of its weight before 500°C was reached 115.  

 

At temperatures between 600 and 700°C, the oxidation of the C in CO and CO2 leads to 

additional weight loss. The amount of CO increases with increasing temperature. At 700˚C, the 
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quantity of C reacting with oxygen to form CO and CO2 is significantly higher than at lower 

temperatures (as shown in Figure 25). Furthermore, the constant flow of nitrogen removes CO 

and CO2 from the system, thus the reaction equilibrium is not reached (see Figure 4). 

 

Table 5: The w% of major elements in the untreated and dynamic pyrolyzed samples. The 

w% of the elements in the treated samples are calculated based on the weight of the 

samples after dynamic pyrolysis.     

  w% 

T (°C) Time (min) Mn Ni Co Cu Li Al P 

Untreated 0 11.0±0.7 5.6±0.3 5.5±0.3 12.3±0.8 2.4±0.2 6.8±0.5 0.3±0.1 

400 
 

30 11.4±0.3 6.0±0.3 5.7±0.3 12.9±0.1 2.6±0.3 7.1±0.3 0.3±0.1 

60 11.6±0.2 6.2±0.3 5.8±0.1 13.1±0.2 2.6±0.1 7.3±0.1 0.3±0.3 

90 11.8±0.2 6.3±0.3 5.9±0.3 13.4±0.3 2.7±0.3 7.4±0.3 0.3±0.2 

180 12.5±0.2 6.5±0.2 6.3±0.1 13.8±0.3 2.9±0.2 7.4±0.2 0.3±0.2 

500 
 

30 11.7±0.3 5.9±0.3 5.7±0.3 13.0±0.3 2.8±0.2 6.0±0.3 0.3±0.1 

60 12.8±0.5 6.1±0.3 6.3±0.3 13.4±0.2 2.8±0.3 7.1±0.2 0.3±0.1 

90 13.2±0.3 6.7±0.3 6.6±0.3 15.3±0.1 3.1±0.3 7.5±0.3 0.3±0.2 

180 13.7±0.3 6.6±0.4 6.5±0.3 15.3±0.1 3.1±0.2 7.7±0.1 0.3±0.2 

600 
 

30 11.7±0.2 6.2±0.3 5.7±0.3 12.5±0.1 2.7±0.2 7.4±0.3 0.3±0.1 

60 12.6±0.1 6.3±0.1 6.1±0.1 13.6±0.2 2.4±0.3 7.3±0.3 0.4±0.1 

90 13.2±0.3 6.7±0.3 6.6±0.3 14.4±0.3 3.1±0.3 9.9±0.3 0.4±0.1 

180 14.4±0.3 7.4±0.3 7.0±0.3 15.0±0.0 3.6±0.3 10.5±0.3 0.4±0.1 

700 
 

30 12.0±0.1 6.5±0.1 5.9±0.1 13.6±0.3 2.9±0.1 8.2±0.1 0.4±0.1 

60 12.2±0.1 7.0±0.3 6.2±0.3 14.3±0.1 3.0±0.3 10.1±0.1 0.4±0.2 

90 14.2±0.3 7.1±0.2 6.7±0.3 15.1±0.3 3.0±0.3 10.3±0.2 0.4±0.1 

180 14.2±0.3 7.5±0.2 7.1±0.3 15.3±0.3 3.6±0.3 10.7±0.2 0.4±0.1 

  

 

Change in the phase composition during dynamic pyrolysis 

The carbothermic reduction of the oxides modified the microstructural composition of the 

samples composed of a mix of both cathode and anode material. In Figure 14, the XRD 

spectrum of the untreated battery is compared with the spectra for the samples treated by 

dynamic pyrolysis for 90 minutes.  
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Making quantitative assumptions based on these spectra is incorrect, but it is evident that an 

increase in the treatment temperature leads to a decrease in the intensity of the peaks at 26.5°, 

43.3 °, and 54.9°, which are the diffraction peaks from the graphitic carbon.  

 

 

Figure 14: Comparison between the XRD spectra of an untreated sample and the spectra 

of samples pyrolyzed for 1.5 h at 400°C, 500°C, 600°C, and 700°C.  

 

The diffraction peak at 18.7˚, which is common for all three lithium-metal oxides, is present in 

the diffractogram for the sample treated at a temperature lower than 500°C, but it was not 

detected for samples treated at higher temperatures. Comparing the spectra of samples exposed 

to dynamic pyrolysis at 700°C for different times (Figure 15), the peak at 18.7˚ disappears only 

after 90 minutes. So, the treatments at 600°C and 700°C for 90 minutes seem to be enough to 

obtain the almost complete carbothermic reduction of the active material. The signals of the 

carbothermic products, such as metals in elemental form Ni, Cu, and Co, were identified in the 

peaks at 50.5° and 74°.  
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Figure 15: Comparison between XRD spectra of pyrolyzed samples at 700°C for 30 

minutes, 60 minutes, and 90 minutes. 

 

The metal species have diffraction peaks at similar 2Θ angles, and this limits the data resolution. 

To obtain a better identification of the compounds, XRD spectra of standard samples, i.e. pure 

metal oxides, mixed with graphite and treated by pyrolysis at 700°C, were collected (Figure 

16).  

 

Figure 16: Comparison of XRD spectra for standard samples, consisting of a mixture of 

graphite and one of the oxides (LiCoO2, LiMn2O4, and LiNiO2.) pyrolyzed for 1.5 h at 700°C. 
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The XRD results confirmed the proposed hypothesis presented in this work through 

thermodynamic calculation (see Figure 3) about the reaction mechanisms involved during the 

thermal treatment.  

The XRD spectrum of the mixture of LiCoO2, pyrolyzed with excess graphite at 700°C for 90 

minutes indicates the presence of Li2CO3, CoO, and Co. This data confirms that reactions (16), 

(17), and (18) correctly describe the carbon induced reduction.  

 

16LiCoO2(s) + 10C(s) → 12Co(s) + Co3O4(s) + CoO(s) + 8Li2CO3(s) + CO(g) + CO2(g)  (16) 

2LiCoO2(s) + 3/10C(s) + CO(g) → 9/10Co(s) + 3/10Co3O4(s) + 3/10CoO(s) + Li2CO3 (s)+  

3/10CO2(g)    (17) 

9/10Co3O4(s) + 34/25C(s) + CO(g) → 14/5Co(s) + 12/5CO2(g)                                           (18) 

 

The presence of CoO was not expected, as even if the reduction of CoO to metal Co by C and 

CO, described by reaction (19), is permitted thermodynamically, there was no complete 

decomposition of CoO. The reason might be the kinetics of this decomposition reaction and/or 

that the gas flow transporting CO and CO2 out of the system is limiting the contact between the 

gas and the solid.  

 

3CoO(s) + C(s) + CO(g) → 3Co(s) + 2CO2(g)                                                                      (19) 

 

Li2O, Li2CO3, and Mn3O4 are the products of the reaction between graphite with LiMn2O4, as 

shown in reaction (30). No reduction to form MnO or MnO2, as described in the thermodynamic 

considerations by the reactions (20), and (21), could be observed. 

 

6LiMn2O4(s) +  4C(s) + CO(g)  + O2(g)  → 4Mn3O4(s)  +  3Li2CO3(s) + CO2(g)                (30) 

10LiMn2O4(s) + 7C(s) → 16MnO(s) + Mn3O4(s) + MnO2(s) + 5Li2CO3(s) + 

                                                                                 CO(g) + CO2(g)                          (20) 

2LiMn2O4(s) + 1/2C(s) + CO(g) → 2MnO(s) + 1/2Mn3O4(s) + 1/2MnO2(s) +  

Li2CO3(s) + 1/2CO2(g)                    (21)  

 

The XRD spectra of LiNiO2 confirms the reduction to NiO and Ni, as described by (27), (28), 

and (29). The time and temperature of treatment did allow the complete decomposition of NiO 

into Ni and the reaction between the total amounts of Li2O with CO2. 
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8LiNiO2(s) + 6C(s) → 7Ni(s)  + NiO(s)  + 4Li2CO3 (s) + CO2(g) + CO(g)                        (27) 

2LiNiO2(s) + 2/3C(s) + CO(g) → 4/3Ni(s) + 2/3NiO(s) + Li2CO3(s) + 2/3CO2(g)             (28) 

3NiO(s) + C(s) + CO(g) → 3Ni(s) + 2CO2(g)                                                                       (29) 

 

4.2.2 Scrap NMC-LiBs cell cathodes (Paper III) 

Change in the phase composition during dynamic and under vacuum pyrolysis 

All the detected peaks in the XRD spectrum of the untreated cathode active material (Figure 

40) are due to the presence of the Li(NixMnyCoz)O2.  

In the spectra of the cathode active materials subjected to vacuum pyrolysis at 450°C and 

550°C, significant differences were not observed when compared with the spectra of untreated 

material. This indicates that such a thermal treatment does not change the elemental 

composition of the active material or the crystalline compounds present in it (Figure 17a). Only 

after vacuum pyrolysis carried out at 650°C for 90 minutes, it was possible to detect the signals 

of Li2CO3, Mn3O4, Co3O4, and NiO (Figure 17b). 
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Figure 17a, b: Comparison between the XRD spectra of an untreated sample and the 

spectra of samples thermally treated under vacuum conditions for 30, 60, 90, or 150 

minutes at 450°C, 550°C, or 650°C.  

  

The same carbothermic reduction products were observed at as low a temperature as 450°C in 

the samples pyrolyzed under inert gas, Figure 18. It may be concluded that the constant flow of 

nitrogen in the system during pyrolysis promotes the carbothermic reaction, bringing the CO2 

that was produced during the reduction out of the system. 

The peaks at 18° and 44° are typical of the Li(NixMnyCoz)O2 compounds. Their presence in the 

spectra even after 150 minutes of treatment at all temperatures indicates that the conditions of 

treatment are not severe enough or the quantity of carbon was not high enough to give a 

complete reduction of the metal oxides. Indeed, Li et al. 64 have proved that by carrying out 

pyrolysis at higher temperature, 1000°C for 30 min, and adding graphite to obtain a molar ratio 

LiCoO2/ graphite of at least 4/3, it is possible to push the reduction of LiCoO2 to form metallic 

Co and Li2CO3. Also, Xiao et al. 116, performing vacuum pyrolysis on NMC-LiB, observed that 

it is possible to reduce LiCoO2 and LiMn2O4 to metallic Co and MnO by performing a thermal 

treatment at a temperature slightly higher, 700°C, and adding the graphite removed from the 

LiB anodes.   

Li2CO3 Co3O4 Mn3O4 NiO 

Mn3O4 
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Figure 18a, b,c: Comparison between the XRD spectra of an untreated sample and the 

spectra of samples pyrolyzed for 30, 60, or 90 minutes at 450°C, 550°C, or 650°C. 

 

 

Effects of dynamic pyrolysis and pyrolysis under vacuum on the morphology and particle 

size of active cathode material. 

The study of the effects of the thermal treatment on the morphology and particle size of cathode 

active material separated from the current collector is important for the subsequent leaching 

and/or possible regeneration for lithium-ion batteries. The untreated samples (Figure 19a) 

appear to be composed of particles of an irregular shape with a dimension <2µm. They are 

grouped in disorganized clusters and organized globular particles. The morphology of the 

dynamic pyrolyzed samples looks to be only slightly affected by the treatment. Indeed, it is 

composed of smaller globular particles (Figure 19b). In contrast, the vacuum pyrolysis causes 

a significant decrease in the number of globular particles and the samples look to be composed 
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of only irregular-shaped particles without any kind of grouping scheme and with smaller size 

when comparing with the other samples (Figure 19c).     

                

              

 

Figure 19: SEM images of cathode active material separated from a)untreated sample, b) sample pyrolyzed 

under inert gas at 550ºC for 30 min, c) sample pyrolyzed under inert gas at 550ºC for 90 min, d) sample 

pyrolyzed under vacuum at 550ºC for 30 min, f) sample pyrolyzed under vacuum at 550ºC for 90 min. 
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The increasing time of treatment does not have evident effects on the morphology except for 

the samples subjected to vacuum pyrolysis, for which the dimension of the irregular-shaped 

particles is reduced. 

Mechanical separation of black mass from the Al layer without and after dynamic, as well 

as after vacuum pyrolysis 

The thermal treatments induced the decomposition of the PVDF and this made it easier to 

remove the cathode material from the metal foils. 

The efficiency of active material removal from the Al foils through a mechanical treatment 

performed in a ball mill was studied. Only 15.8 w% of the cathode material could be separated 

from samples that had not been thermally treated. The results further showed that higher 

temperature and longer duration times used in the thermal treatment increased the separation 

efficiency in the milling. (Figure 20).  

 

 

 

 

 

 

 

 

Figure 20: (a) Untreated samples subjected to mechanical treatment, (b) thermally treated 

samples subsequently subjected to mechanical treatment. 

 

The milling after the pyrolysis showed a complete separation only when a period of 150 minutes 

of heat treatment had been applied. After thermal treatment under inert gas, the quantity of 

active material removed increased from ~56 w%, after 30 minutes of treatment at 450˚C, to its 

maximum at ~98 w% at 550˚C for 90 minutes (Figure 21a). Instead, after vacuum pyrolysis, 

the active material removed by milling increased from ~47 w% after 30 minutes of treatment 

at 450˚C to 98 w% at 650˚C after 90 minutes of treatment (Figure 21b).  

 

 a 

Black mass 

Aluminum foil  

 b 

Untreated                                              Treated 
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Figure 21: Comparisons between cathode active material recovered after 15 minutes of milling from the 

untreated samples with the quantity recovered from samples a) pyrolyzed under inert gas and b) subjected to 

vacuum pyrolysis. 

 

The quantity of active material removed through milling was significantly higher for the 

samples treated for 90 minutes at 550˚C than for those treated at 650˚C after dynamic pyrolysis. 

The main reason for this is the partial melting of the Al foil (melting point 660.3°C). At 650˚C, 

Al melt covered the cathode material and inhibited PVDF removal. 

The quantity of materials removed through milling after dynamic pyrolysis reached over 80 

w% after treatment at 550°C for 60 minutes. By contrast, to reach the same value of material 
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removed by vacuum pyrolysis, it is necessary to treat the samples at a temperature above 550°C 

for at least 90 minutes, so the rate of removal is lower in that experiment setting. This is due to 

the presence of the N2 flow, which constantly carried the PVDF decomposition products away 

from the furnace, thus promoting its decomposition.  

 

The formation of a layer of Al2O3 on the surface of the Al foil during the thermal treatment 

leads to an increased brittleness of the Al foil. It could also lead to increased contamination of 

the removed cathode active material by aluminum powder. The Al content in the cathode active 

material recovered after milling (Table 6) decreased with the time and temperature of treatment. 

Indeed, the highest concentration of Al was detected in the cathode active material recovered 

from the untreated samples after milling, 5.15 w%. This trend is probably caused by the strong 

cohesion between the active material and the Al foil due to the presence of the PVDF. In the 

untreated samples, the adhesion is so strong that Al powder remains attached to the separated 

active material. The increase of temperature and time of treatment determines the 

decomposition of the PVDF and the reduction of the adhesion. 

 

Table 6: Aluminium content in the cathode active material recovered after milling (w%).  

   Al content after milling (w%) 

   30 

minutes 
60 minutes 90 minutes 150 minutes 

Dynamic 

pyrolysis  

450°C 4.1±0.1 3.8±0.1 3.1±0.2 2.1±0.2 

550°C 3.5±0.2 1.7±0.1 1.4±0.2 1.1±0.1 

650°C 2.6±0.2 1.4±0.1 1.3±0.2 1.0±0.1 

Vacuum 

pyrolysis 

450°C 0.8±0.1 0.8±0.1 0.7±0.1 0.6±0.1 

550°C 0.6±0.1 0.6±0.1 0.3±0.1 0.3±0.1 

650°C 0.4±0.1 0.34±0.1 0.2±0.1 0.2±0.1 

Untreated 5.2±0.2 

 

 

To summarize, pyrolysis of a mix of NMC-LiB cathodes and anodes was shown to effectively 

trigger the carbothermic reduction of the lithium-metal-oxides. Co, Mn, and Ni oxides were 

reduced to a lower oxidation state and/or more soluble forms. The graphite already coated on 

the surface of the anode metal layers was more than enough to complete the reduction. The 

addition of an extra reducing agent was not necessary. The remaining part of graphite, which 

was not involved in the carbothermic reduction, can be recovered after leaching as a solid 

residue.  
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Furthermore, decomposition of the PVDF binder was achieved, making the separation of the 

active material from the metal foils more feasible.  
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4.3 Incineration 

4.3.1 Spent NMC-LiBs cells (Paper II) 

Change in sample weight during incineration 

The Δw% is more consistent during incineration than during pyrolysis, with a significant weight 

loss in the first 15 minutes of treatment (Figure 22). 

At 400ºC and 500ºC, the weight loss during 30 and 90 minutes of incineration increased almost 

proportionally with the treatment time. In contrast, the weight of the sample did not change at 

700ºC after 90 minutes of treatment (Δw% ~35%). This is due to the almost complete removal 

of the C content during the first 90 minutes. Indeed, after 180 minutes, at 700 ºC the weight 

loss slightly increased to ~37% and the samples treated at both 600 ºC and 500 ºC reached the 

same value. 

  

 

Figure 22: Weight loss in incineration at different temperatures and times. The (0;0) point corresponds to the 

untreated material. The lines are only provided to guide the eye. 

 

The carbon content in the remaining material after incineration at 700°C for 90 or 180 minutes 

(Table 7) is less than 1%, from an initial 41% in the untreated battery.  
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Table 7: Change of the carbon content in the sample depending on the time and temperature of incineration. 

T (°C) Time (min) Carbon content (w%) 

Untreated 0 40.8±2.8 

400 

30  29.6±1.4 

60  25.0±1.5 

90  19.1±2.3 

180  15.3±1.3 

500 

30  24.0±2.2 

60  21.5±1.2 

90  15.7±1.2 

180  11.7±0.2 

600 

30  16.0±1.3 

60  11.9±1.0 

90  5.5±1.0 

180  0.8±0.2 

700 

30  5.3±0.9 

60  2.2±0.2 

90  0.6±0.2 

180  0.6±0.1 
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Change of metal concentrations in cathode materials during incineration  

The increase of the temperature and time of treatment promotes the oxidation of the carbon 

content and results in a rise in the concentrations of the metals in the samples (Table 8). 

Comparing the untreated sample with the sample treated at 700°C for 180 minutes, the data 

show that the concentration of each metal increased by about ~40%, almost proportional to the 

decrease in the weight of the sample (Figure 22).  

 

Table 8: The w% of major elements in the untreated and incinerated samples.  

  
w% 

T (°C) Time (min) Mn  Ni  Co  Cu  Li  Al    P 

Untreated 0 11.0±0.7 5.6±0.3 5.5±0.3 12.3±0.8 2.4±0.2 6.8±0.5 0.3±0.1 

400 

30 12.2±0.1 6.2±0.1 6.1±0.1 14.2±0.1 2.6±0.1 7.0±0.1 0.3±0.1 

60  12.8±0.2 6.3±0.2 6.5±0.1 15.4±0.1 2.6±0.1 7.9±0.2 0.3±0.1 

90  13.2±0.2 6.5±0.2 6.4±0.2 15.6±0.5 2.7±0.1 7.7±0.4 0.3±0.1 

180 14.3±0.3 7.2±0.2 7.1±0.3 15.9±0.3 3.6±0.3 10.7±0.2 0.4±0.1 

500 

30 12.9±0.2 6.8±0.1 6.2±0.4 15.6±0.3 2.7±0.1 7.9±0.3 0.3±0.1 

60  13.1±0.2 6.9±0.2 6.6±0.3 15.9±0.4 3.4±0.1 8.1±0.5 0.4±0.1 

90  14.3±0.2 6.9±0.1 6.8±0.1 16.9±0.3 3.6±0.1 8.7±0.2 0.4±0.1 

180 15.5±0.2 7.6±0.0 7.7±0.0 17.3±0.1 3.8±0.1 9.4±0.3 0.4±0.1 

600 

30 13.4±0.2 6.8±0.2 6.3±0.1 15.3±0.5 2.6±0.1 7.4±0.1 0.4±0.1 

60  13.8±0.3 7.6±0.1 6.6±0.5 16.6±0.3 2.8±0.1 8.0±0.4 0.4±0.1 

90  14.2±0.3 7.5±0.2 7.3±0.1 16.9±0.1 3.8±0.1 8.8±0.1 0.4±0.1 

180 15.5±0.2 7.6±0.0 7.7±0.0 17.3±0.1 3.8±0.1 9.4±0.3 0.4±0.1 

700 

30 13.9±0.2 6.9±0.1 6.8±0.1 16.3±0.2 2.9±0.1 8.7±0.3 0.4±0.1 

60  14.2±0.3 7.4±0.1 7.3±0.3 16.5±0.1 2.9±0.1 9.7±0.5 0.4±0.1 

90  15.0±0.4 7.7±0.1 7.6±0.1 17.0±0.5 3.2±0.1 9.8±0.3 0.4±0.1 

180 15.5±0.4 7.9±0.0 7.8±0.0 17.3±0.3 3.4±0.1 9.8±0.1 0.4±0.1 
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Change in the composition of the crystalline compounds of the cathode material during 

incineration 

The intensity of the peaks at 26.5°, 43.3°, and 54.9° in the XRD spectra in Figure 23, which 

come from the graphitic carbon, clearly decreases with the rise in the treatment temperature. 

These peaks almost disappear after 90 minutes of treatment at 700°C. Under these conditions, 

the graphite and organic substances are likely totally consumed with the formation of volatile 

species.  

  

 

Figure 23: Comparison between the XRD spectrum of an untreated sample and the XRD 

spectra of the samples incinerated for 1.5 h at 400°C, 500°C, 600°C, and 700°C. 
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The airflow causes oxidation of the Cu foil. The two strong peaks at 2Ɵ 35.5 and 38.7 degrees 

correspond to the most prominent diffraction peaks for CuO: 

 

2Cu(s)  + O2(g) → 2CuO(s)                                                                                                                   (31) 

 

The signal at 2Ɵ=18˚ is common for all three lithium-metal oxides and was observed for 

samples treated at all temperatures. This indicates that it was not possible to obtain the complete 

reduction of these species. The reason is the kinetics for the oxidation of carbon compared to 

the kinetics of the carbothermic reduction. The presence and abundance of O2 give rapid 

incineration of the C, limiting its reaction with the metal oxides. However, some products of 

the carbothermic reduction were detected: CoO, MnO2, Mn3O4, and NiO. To perform a better 

identification of the signals, the XRD spectra of standard samples were collected for reference 

compounds (Figure 24). 
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Figure 24: Comparison of the XRD diffractograms for standard samples, composed of a 

mixture of graphite and one of the oxides (LiCoO2 (a), LiMn2O4 (b), and LiNiO2 (c) 

Incinerated at 700°C for 1.5 h.  

 

Incineration of LiCoO2 into Li2O, Li2CO3, CoO, Co3O4, and Co by graphite was expected from 

the thermodynamic considerations shown in reactions (7) and (8) (Figure 2). The presence of 

CoO and Co3O4 can be due to slow kinetics of their reduction reactions or can be due to 

oxidation of part of the Co formed by reaction with O2. The higher concentration of O2 

compared to the concentration of CO promotes the oxidation reactions. 

 

2LiCoO2(s) + 2/5C(s)  + CO(g) + 2/5O2(g) → 2/5Co(s)  + 2/5Co3O4(s) + 2/5CoO(s) +  

                                                                                                     Li2CO3(s) + 2/5CO2(g)        (7) 

4/5Co3O4 (s) + 2C (s) + CO(g) + O2(g) → 12/5Co (s) + 3CO2(g)                                           (8) 

 

LiMn2O4 decomposed to MnO2 and Mn3O4, reaction (32). No reduction to form MnO, as 

described in the thermodynamic considerations shown in reactions (11), (12), and (13), could 

be observed. 

 

2 LiMn2O4(s) +  C(s) + CO(g)  + O2(g)  → Mn3O4(s)  + MnO2(s) +  Li2CO3(s) + CO2(g)   (32) 

27/10LiMn2O4(s) + 13/10C(s) + CO(g) + O2(g) → MnO(s) + Mn3O4(s) + 13/10MnO2(s) +  

13/10Li2CO3(s) + CO2(g)    (11) 

 

2Mn3O4(s) + 7/4C(s) + CO(g) + 5/4O2(g) → 6MnO(s) + 11/4CO2(g)                                  (12) 

12/5MnO2(s) + 19/10C(s) + CO(g) + 23/20O2(g) → 12/5MnO(s) + 29/10CO2(g)               (13) 
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The X-ray diffractogram of the LiNiO2 in Figure 24 shows that the reaction with C and O2 gives 

Li2O, Li2CO3, NiO, and Ni as its products, as shown in reactions (14) and (15) (Figure 2). 

Similar to the results obtained with the Co-containing compounds, the presence of NiO may be 

due to the oxidation of part of the Ni formed.  

 

4LiNiO2(s) + 2C(s)  + CO(g) + O2(g) → Ni(s)  + 3NiO(s)  + 2Li2CO3(s) + CO2(g)             (14) 

12/5NiO(s) + 19/10C(s) + CO(g) + 23/20O2(g) → 12/5Ni(s) + 29/10CO2(g)                       (15) 

 

 

4.3.2 Scrap NMC-LiBs cell cathodes (Paper III) 

All the detected peaks in the XRD spectrum of the untreated cathode active material (Figure 

25) are due to the presence of the Li(NixMnyCoz)O2. It is not possible to observe any significant 

difference when comparing this with the spectra of incinerated cathode active material. This 

indicates that thermal treatment does not change the composition or microstructure of the active 

material under incineration conditions. The O2 reacts with the entire quantity of C in the 

samples, as described in reactions (2), (3), and (4), with CO and CO2 as products carried out of 

the system by the constant airflow.  

 

 

Figure 25: Comparison between the XRD spectra of an untreated sample and the spectra 

of samples incinerated for 90 minutes at 450°C, 550°C, and 650°C. 
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Effects on the morphology and particle size of active cathode material 

Both the untreated samples and the samples subjected to incineration appear to be composed of 

particles of an irregular shape with dimension <2µm. They are grouped in disorganized clusters 

or as organized globular particles. This indicates that the morphology has not been affected by 

the incineration (Figure 26). 

        

 

            

           

Figure 26: SEM images of cathode active material separated from a)untreated sample, b) 

sample incinerated at 550C for 30 min, c)sample incinerated at 550C for 90 min. 

 

Mechanical separation of black mass from the Al layer without thermal treatment and 

after incineration 

Increasing the time and temperature of thermal treatment positively affected the quantity of 

active material removed from the Al layer by ball milling. The plot in Figure 27 shows that 
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after 90 minutes at 550˚C an almost complete separation of active material is possible, with 

98.6% of material removed; seven times higher than the quantity obtained from the untreated 

material.  

 

      

Figure 27: Comparison between cathode active material recovered after 15 minutes of milling from the untreated 

samples and the quantity recovered from incinerated samples. 

As already described for the pyrolysis, during incineration the partial melting of the Al foil at 

650 ˚C also inhibited PVDF removal, making the quantity of active material removed through 

milling higher for the samples treated for 90 minutes at 550˚C than for those treated at 650˚C.  

 

During incineration, a layer of A2O3 on the surface of the Al foil is formed. The data presented 

in Table 9 show that the content of Al in the cathode active material recovered during milling 

increased with the time and temperature of heat treatment for the incinerated samples, reaching 

4.62 w% after incineration at 650°C for 150 minutes. However, a higher concentration of Al 

was detected in the untreated removed cathode material, 5.15 w%.   
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Table 9: Al content in the cathode active material recovered after milling (w%). 

   Al content after milling (w%) 

   30 minutes 60 minutes 90 minutes 150 minutes 

Incineration 

450°C 0.5±0.1 0.6±0.1 1.0±0.1 1.3±0.1 

550°C 0.9±0.1 2.0±0.2 3.0±0.1 3.1±0.2 

650°C 1.2±0.1 2.3±0.2 3.4±0.2 4.6±0.1 

Untreated 5.2±0.2 

 

Incineration has allowed an almost complete decomposition of the graphite and organic species.  

Efficient separation of the active material and the Al foil was achieved over shorter times and 

at lower temperatures, so a more efficient decomposition of the PVDF than during pyrolysis 

was possible.  

The concentration of C in the waste was enough to trigger a carbothermic reduction of the 

cathode active material. The O2 in the gas flow causes oxidation of the Cu and Al foils, with 

the formation of CuO and Al2O3. The oxidation of the Al metal foils may introduce the need 

for extra steps in the hydrometallurgical recovery of valuable elements following the thermal 

treatment described in this work. On the other hand, the oxidation of Cu can increase its 

leachability, thus making it easier to recover in hydrometallurgical processes. 
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4.4 Analysis of by-products 

4.4.1 FTIR analysis of the gas produced during the thermal treatment (Paper II) 

The FTIR spectra of the gases produced during pyrolysis and incineration show the same peaks 

(Figure 28). The peaks for CO2 at 2400 cm-1 and between 3750 and 3600 cm-1 as well as the 

double peaks of CO around 2125 cm-1 are intense. This shows that the atmosphere in the system 

was rich in CO and CO2. This is caused by the carbothermic reaction of carbon from the organic 

components and graphite with residual oxygen, as well as oxygen from the metal oxides during 

pyrolysis. During incineration, there is also a contribution of O2 present in the airflow. 

Comparing the two spectra in Figures 28a and 28b, the quantity of CO2 detected during 

combustion is higher than that obtained during pyrolysis. The symmetric peaks at 1400-1800 

and 3550 -3900 cm-1 are typical when H2O is present as water vapor in the system. The spectra 

of gas samples collected during incineration at 700°C at different times after the start of 

treatment, Figure 28c, show that the quantity of CO2 in the off-gas decreases during the 

treatment.  

 

a 
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       Figure 28: Comparison of absorbance spectra for samples treated for 5 minutes at 

400˚, 500˚, 600˚, and 700°C. (a) for pyrolysis; (b) for incineration. (c)spectra of gas 

samples collected during incineration at 700°C at different times after the start of 

treatment. 

 

The high temperature promotes the degradation of the PVDF, which typically occurs through a 

mechanism of dehydrofluorination 117. 

                                                               

b 
A

 

cm-1 

c 
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It was expected that the presence of HF would be detected in the gas phase in the FTIR spectra. 

However, the signal for H2O at high frequency probably obscures the signal for this acid. 

Evidence for the degradation of the binder was obtained by analyzing the gas washing water to 

detect the presence of fluoride ions. The analysis did not show any significant difference in the 

amount of gaseous fluorides created when samples were treated at different times and 

temperatures. After thermal treatment of the samples (0.5g), the average concentration of 

fluoride in the absorption solutions was 0.23±0.01 mM, and the average pH value of these 

solutions was 3.1± 0.3 for pyrolysis, and 0.27±0.02 mM and 2.9± 0.3 for incineration. Neither 

the Ion Chromatography nor FTIR performed on the absorption liquid showed any presence of 

volatile phosphates, which could be expected due to the decomposition of the electrolyte.   

 

4.4.2 The organic by-product of the thermal treatment 

The high temperature led to the decomposition of the organic substances present in the samples. 

The decomposition products were brought into the final part of the alumina tube by the constant 

gas flow. This part of the tube was located outside the oven and therefore was colder. In this 

section of the tube, the organic substances condensed, covering the internal part of the tube (see 

Figure 29). The condensates were collected by firstly washing the tube with acetone, followed 

by water and then ether. 

 

 

Figure 29: The internal section of the quartz tube covered with the organic by-product. 

 

The result is a brown-yellow tar with a density similar to oil. This oil is a mixture of many 

decomposition products, therefore, the identification of the exact composition was complex.  

It was observed that this oil consisted of a less polar fraction (Fraction 1), and a more polar 

fraction (Fraction 2). 
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Incineration 

When incinerating all anodes and cathodes contained in a single LiB cell at 650°C for 180 

minutes, 2±0.15 g of oil was collected, which equates to ~0.3% of the weight of the battery. 

From this initial quantity it was possible to obtain ~0.8g of Fraction 1 (corresponding to ~0.1 

w% of the battery) and ~1.2g of Fraction 2 (corresponding to ~0.2 w% of the battery). 

A sample from each of the two collected fractions was sent to the MedAc LTD laboratory (UK) 

for the determination of the contents of C, H, P, and F (Table 10). 

 

Table 10: Elemental analysis of carbon, hydrogen, phosphor, and fluorine in the oil 

collected after incineration at 650°C for 180 minutes, performed by MedAc LTD.  

 Element (w%) 

 C H F P 

Fraction 1 (non-polar) 85.2±0.2 14.0±0.2 0.9±0.1 0.02±0.01 

Fraction 2 (polar) 45.2±0.2 5.6±0.1 35.0±0.3 0.33±0.01 

 

Fraction 1 is almost totally composed of C and H; dividing the percentage of C and H for their 

respective atomic mass, the ratio of carbon and hydrogen is 1 to 2. It can therefore be assumed 

that the hydrocarbons in Fraction 1 most probably consist of molecules containing chains of -

CH2- produced by the decomposition of the polypropylene separator. In Fraction 2  the amount 

of fluorine instead represents one-third of the total (35.0 w%). This indicates that the most polar 

fraction was largely composed of the decomposition products of the PVDF. Fluorine was 

therefore not totally removed from the system as hydrofluoric acid by the flow of gas but instead 

partially remained in this organic by-product. A small quantity of P, produced from the 

decomposition of the electrolyte, was identified in both fractions. 

Based on the acquired data, it is possible to estimate the amount of F in the gas product and the 

residual amount of F in the oil product.  

Considering that F represents 35.0 ±0.3 w% of Fraction 2 (1.2g), then 0.4g of this fraction is 

composed of F. This quantity of F remains in the oil by-product produced by the incineration 

of an entire LiB cell.  

From the ion-chromatographic data, a sample (0.50±0.02 g) releases a quantity of F in gas form 

equal to 0.27±0.02 mM (5.1 mg) in the absorption liquid used. Considering that the samples 

were composed of a mix of cathodes and anodes and the total weight of these components in a 

battery cell is 469.3 g (cathode active material: 218.2±0.8 g, graphite: 115.9±0.3 g, copper foils: 
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57.0±0.1 g, aluminum foils: 36.0±0.1 g, and separators 42.2±0.5 g; chapter 5.2.1), the quantity 

of F released during the thermal treatment of an entire LiB cell is equal to 4.8±0.1 g.  

Therefore, the quantity of F produced during incineration is equal to 5.2 g (0.4 g+4.8 g). The 

majority of this is released in gas form, >90 w% (4.8 g), while the rest remains in the oil by-

products. 

 

Pyrolysis 

When pyrolyzing all anodes and cathodes contained in a single LiB cell at 650°C for 180 

minutes, 5.0±0.2 g of oil was collected, which equates to ~0.7% of the weight of the battery. 

From this initial quantity it was possible to obtain ~1.2g of Fraction 1 (corresponding to ~0.2 

w% of the battery) and ~3.8g of Fraction 2 (corresponding to ~0.5 w% of the battery).  

The quantity of oil collected after pyrolysis was almost three times the quantity collected after 

incineration. In particular, the quantity of the polar fraction (Fraction 2) was increased more of 

three times compared to the quantity of Fraction 2 collected after incineration.    

A sample from each of the two collected fractions was sent to the MedAc LTD laboratory (UK) 

for the determination of the contents of C, H, P, and F (Table 11). 

 

Table 11: Elemental analysis of carbon, hydrogen, phosphor, and fluorine in the oil 

collected after pyrolysis at 650°C for 180 minutes, performed by MedAc LTD.  

 Element (w%) 

 C H F P 

Fraction 1 (non-polar) 82.2±1.0 14.0±0.2 1.0±0.1 0.02±0.01 

Fraction 2 (polar) 45.2±0.2 3.6±0.2 37.1±0.1 0.32±0.01 

 

The composition of oil collected after pyrolysis is similar to the composition of the oil collected 

after incineration. So, also in this case the most polar fraction was largely composed of the 

decomposition products of the PVDF. Fluorine was therefore not totally removed from the 

system as hydrofluoric acid by the flow of gas but partially remained in this organic by-product.  

Considering that F represents 37.1 ±0.1 w% of Fraction 2 (3.8g), then 1.4g of this fraction is 

composed of F. This quantity of F remains in the oil by-product produced by the incineration 

of an entire LiB cell.  

From the ion-chromatographic data, a sample (0.50±0.02 g) releases a quantity of F in gas form 

equal to 0.23±0.01 mM (4.4 mg) in the absorption liquid used. Considering that the samples 

were composed of a mix of cathodes and anodes and the total weight of these components in a 



 

 42   

 

battery cell is 469.3 g (cathode active material: 218.2±0.8 g, graphite: 115.9±0.3 g, copper foils: 

57.0±0.1 g, aluminum foils: 36.0±0.1 g, and separators 42.2±0.5 g; chapter 5.2.1), the quantity 

of F released during the thermal treatment of an entire LiB cell is equal to 4.1±0.1 g.  

Therefore, during incineration, the quantity of F produced is equal to 5.5 g (1.4 g+4.1 g). The 

majority is released in gas form, >75 w% (4.1 g), while the rest remains in the oil by-products. 

 

Gas chromatographic-mass spectrometer analysis of both fractions was performed to identify 

their composition. None of the sample fractions had a spectrum containing the three lines for 

ion masses 256M+, (M-47)+, and (M-56)+ which would identify the fluoro-dioxin 2,3,7,8-

TFDD 109.  

 

To confirm that none of the metals from the cathode active material were lost in the gas flow 

or formed organo-complexes, the oil was treated in a solution consisting of a mixture of 98% 

concentrated H2SO4 and 30% concentrated H2O2, as described in the Materials and Methods 

chapter. The dissolving solution and the gas-washing solution were analyzed by ICP-OES. This 

measurement did not detect any Ni, Co, Mn, Ni, Cu, or Al in those solutions. 

 

The incineration proved to have a larger environmental impact than the dynamic pyrolysis due 

to its greater production of HF, CO, and CO2. By contrast, during vacuum pyrolysis, the gases 

remain trapped in the furnace and the atmosphere becomes rich in CO, CO2, hydrofluoric acid, 

and organic compounds that are volatile at high temperature. The latter re-condense when the 

furnace returns to room temperature, thus preventing them from escaping as gas from the 

system. This reduces the danger of the gas produced during the thermal process and therefore 

the costs of reducing the toxic substances contained therein. Another aspect that needs to be 

considered is the energy consumption. Vacuum pyrolysis has the advantage of not needing 

continuous pumping of gas into the system.  

The PVDF decomposes during the treatment, releasing HF in a gaseous state and an organic 

by-product rich in fluorine. Further analysis is needed to determine which organic molecules 

compose this by-product and if this can have a new application.   
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4.4.3 Formation of HF in the case of a high temperature accident involving the 

NMC-LiB using a cooling system based on the refrigeration liquids (RL) 

containing halogens. (Paper IV) 

The concentration of F in the refrigeration liquids as determined through a Combustion Ion 

Chromatographic analysis is shown in Table 12. 

 

Table 12: The concentration of fluoride in the refrigeration liquids. 

 [F] (mol/L) 

RL1 28.4±0.2 

RL2 18.4±0.1 

RL3 13.7±0.2 

RL4 1.0±0.1 

 

Dense white smoke was produced after 2 minutes from the beginning of the incineration for the 

sample without RL and after 5 minutes with RL. The amount of smoke slowly decreased but 

persisted until 30 minutes from the beginning of the heat treatment. At the end of the 

experiments, all the RLs were decomposed to gas products, without leaving any condensed 

product. The data in Figure 30 and Table 13 show the amounts of HF released during the 

experiments. The use of RL1 contributes to the HF formation by a ratio of 5:1 ([F]RL/[F]LiB) 

when the weight ratio is 1:7 (wRL/wLiB) and produces the highest quantity of HF.  
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Figure 30: Ion chromatographic analysis data of the gas product (HF). B1 is the solution 

from the first washing bottle, B2 is the solution from the second washing bottle and B3 is 

the solution from the last washing bottle in the system.  
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Table 13: Ion chromatographic analysis of the HF in the off-gas  

 [F] (mmol/L) 

 B1 B2 B3 Tot 

without RL 44±1.0 2.3±0.7 0.5±0.0 46.8±1.7 

RL1 232±10 25±2.6 2.2±0.6 259±13 

RL2 162±8.0 10±0.9 1.0±0.1 173±9.0 

RL3 137±7.2 5.4±0.4 2.6±0.7 145±8.3 

RL4 42±1.0 2.5±0.7 0.6±0.0 45±1.7 

   

For the RL1, RL2, and RL3  only ~1% of the initial concentration of F in the RL (Table 12) 

was detected by ion chromatographic analysis of the gas-washing water (Table 13). This 

indicates that only a small quantity of the fluoride is released as HF during the decomposition 

of the RLs. There is not a significant difference between the total concertation of F released 

thermal treating the LiB without refrigeration liquids and the concertation of F released using 

RL4. So RL4 did not contribute significantly to any HF formation, whereas RL1-3 increased 

the HF formation  

 

The pH of the Milli Q water used to wash the off-gas varied depending on which RL was used 

(Table 14). This indicates the presence of hydrogen ions, most probably from HF. The pH 

increased from B1 to B3 for RL1, RL2, and RL3, corresponding to a decrease in F concentration 

in the washing solutions as shown in Table 13.    

The pH measured for RL4 and for the LiB thermal treated without refrigeration liquids has 

similar values in B1. In B2 and B3, RL 4 has a higher pH than LiB without RL. Since RL4 

contains a negligible amount of F this decrease is explained by the formation of another 

substance than HF.   

 

Table 14: Measured pH of the washing solution in the 3 gas-washing bottles, where the 

accuracy of the analysis was ±0.2 (absolute values). The pH meter was calibrated with 

three standard solutions at pH 1, 4, and 7.  

 pH  
B1 B2 B3 

without RL 2.1 3.0 3.0 

RL1 1.3 2.4 2.7 

RL2 1.9 2.4 2.7 

RL3 1.9 2.5 2.6 

RL4 2.1 3.4 3.8 
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The use of an RL with a fluorine-based chemical composition leads to a consistent increase in 

the quantity of HF released in the event of a high temperature accident. However, the F released 

as HF represents a small quantity of the [F] present in the RL before the treatment. The 

decomposition of the RL, therefore, produces a variety of other by-products that need to be 

identified.   
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5. Conclusions 

 

The effects of incineration, dynamic pyrolysis, and vacuum pyrolysis on the composition of 

NMC-LiB were studied. It has been defined how the thermal treatment utilizes the carbon 

already present in the NMC battery. It was demonstrated how this carbon triggers a 

carbothermic reduction of the metal oxides of the cathode active material. In addition, due to 

their hazardous potential, the behavior of the organic components was also followed and 

determined.  

 

In inert or vacuum conditions Co, Ni, and Mn in the cathode materials are carbothermically 

reduced to a lower oxidation state. Co, CoO, Ni, NiO, Mn, and Mn3O4 are the main products. 

Li stays in the oxidation state +1 and forms Li2O and Li2CO3. The lithium-metal-oxides are 

completely decomposed. Instead, during incineration, partial oxidation of the products from the 

decomposition of the lithium-metal-oxide was observed. Co, CoO, Co3O4, Ni, NiO, Mn3O4, and 

MnO2 were formed. Li stayed in the oxidation state +1 and formed Li2O and Li2CO3. The O2 in 

the gas flow caused partial oxidation of the Cu and Al foils, with the formation of CuO and 

Al2O3. 

 

An increase in temperature and duration of treatment promoted the carbothermic reduction and 

the removal of graphite and organic components. The carbon content reached ~15 w% after 

dynamic pyrolysis, starting from an initial 41w%. Almost complete decomposition of the 

graphite and organic species, ~0.6 w% was reached after incineration.  

 

No differences were observed between the effects that the carbothermic reduction had on scrap 

LiB materials and spent LiBs materials and only the vacuum pyrolysis had relevant effects on 

the morphology of cathode active materials. 

 

Thermal treatment followed by milling permits the separation of the cathode active material 

from the Al metal foils. This is due to the decomposition of the PVDF binder at high 

temperature. The best result was >95% of active material removed. However, increasing the 

temperature and time of treatment also resulted in an increase in the contamination with Al 

powder in the separated cathode active material, which decreased the metal yield in the Al 
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recycling process and thus decreases the possibilities for direct utilization of cathode material 

for battery production.  

 

The organic components decomposed, releasing a gas composed mainly of CO2, CO, and H2O. 

The PVDF decomposed to release HF and an organic by-product rich in fluorine. The results 

show the presence of fluoride-containing compounds in both the gas phase and oil organic by-

products.  

 

In the case of a high temperature accident, the use of a refrigeration liquid with a fluorine-based 

chemical composition leads to a consistent increase in the quantity of HF released in the event 

of a high temperature accident. However, the F released as HF represents only a small quantity 

of the [F] present in the RL1-3 before the treatment. The decomposition of the RL1-3, therefore, 

produces a variety of other by-products that need to be identified.  With a refrigeration liquid, 

the smoke formation was delayed 2-2.5 times as compared without using RL (using passive air 

cooling). 

 

The methods that we applied can be applied flexibly on batteries of different chemistry. 

Pyrolysis and incineration are already used as thermal pretreatment in some industrial recycling 

processes. The results achieved in the present work contribute to a better understanding of the 

effect of carbothermal treatments on the complex chemical system in real battery waste 

processing and can be applied to optimize the industrial processing procedures to reach higher 

efficiencies in the transformation of complex oxides and to decrease the treatment time, and 

also the energy demands for the processing.  
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6. Recommendations for future work 

 

➢ Further analysis is needed to define the exact organic molecules and the chemical 

composition of the oil by-product. Tests are needed to identify the performance and 

possible application of the oil produced during the thermal treatment. 

 

➢ It has been observed that during pyrolysis all the cathode active material reacting with 

the C can be reduced. On the contrary, more than 50% of the graphite, which is initially 

present in the samples, is not consumed during the heat treatment. There is therefore a 

possibility to combine this process with the recycling processes of other waste material 

that needs a carbothermic treatment.   
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