
Challenges and guidelines on designing test cases for test bots

Downloaded from: https://research.chalmers.se, 2021-08-31 16:54 UTC

Citation for the original published paper (version of record):
Erlenhov, L., Gomes, F., Chukaleski, M. et al (2020)
Challenges and guidelines on designing test cases for test bots
Proceedings - 2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops,

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Challenges and guidelines on designing test cases for test bots

Linda Erlenhov, Francisco Gomes de Oliveira Neto, Martin Chukaleski, Samer Daknache
Chalmers and the University of Gothenburg

Gothenburg, Sweden

linda.erlenhov@chalmers.se,francisco.gomes@cse.gu.se,{guschuma,gusdaksa}@student.gu.se

ABSTRACT

Test bots are automated testing tools that autonomously and peri-

odically run a set of test cases that check whether the system under

test meets the requirements set forth by the customer. The automa-

tion decreases the amount of time a development team spends on

testing. As development projects become larger, it is important to

focus on improving the test bots by designing more effective test

cases because otherwise time and usage costs can increase greatly

and misleading conclusions from test results might be drawn, such

as false positives in the test execution. However, literature currently

lacks insights on how test case design affects the effectiveness of

test bots. This paper uses a case study approach to investigate those

effects by identifying challenges in designing tests for test bots. Our

results include guidelines for test design schema for such bots that

support practitioners in overcoming the challenges mentioned by

participants during our study.

CCS CONCEPTS

• Software and its engineering → Software maintenance tools;

Software design engineering.

KEYWORDS

test bots, devbots, case study

ACM Reference Format:

Linda Erlenhov, Francisco Gomes de Oliveira Neto, Martin Chukaleski,

Samer Daknache. 2020. Challenges and guidelines on designing test cases for

test bots. In IEEE/ACM 42nd International Conference on Software Engineering

Workshops (ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3387940.3391535

1 INTRODUCTION

Testing is an essential activity performed throughout software de-

velopment and maintenance. However, increasing complexity of

software-intensive systems, in addition to resource constraints, hin-

der test effectiveness. A combination of software automation tools

and bots help decrease the time that development teams spend on

software testing and support testers/developers to make smarter

decisions related to testing activities [1]. Literature refers to such

tools as test bots, and have been applied to leverage test coverage,

test flakiness, and test planning [1]. Test bots are part of a wider

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3391535

range of software bots, particularly DevBots, which can be seen as

artificial software developers that are autonomous, adaptive, and

has technical competence [2].

However, current literature lacks studies focusing on the chal-

lenges related to designing and applying test bots, such as the

hindrances or utilities of test bots when designing test cases or

planning test executions. Therefore, our goal is to investigate the

current industry practices and challenges with software testing

aided by test bots, particularly, test design practices. We perform a

case study with an automotive company in Sweden where we (i)

interview industry practitioners and (ii) analyse test artefacts to,

respectively, identify their current practices and associated chal-

lenges, as well as to propose guidelines on how to design tests for

their test bots. In short, our research questions are:

RQ1: What are the main challenges when designing and executing

system tests on software bots?

RQ2: To what extent does the test design affect the effectiveness

of the test bot?

Our contributions are: (i) a list of challenges reported by industry

practitioners related to designing test cases for a test bot, and (ii) a

guidelines with six items to support practitioners in designing test

cases when using test bots. Particularly, factors such as execution

time, cyclomatic complexity of test code and usage of synchronous/

asynchronous programming affect the cost and maintenance of test

bot in software testing. However, our findings are limited to the

context of our case study, i.e., test bots used in system testing.

2 RELATED WORK

According to Lebeuf et al. [3] software bots can help improve the

efficiency of every phase of the software development life cycle,

including test coding. The paper outlines the different types of bots

and how they can respectively help improve software development.

While the paper is beneficial for outlining the difference between

bots, it does not dive deeper into the different instances of bots, but

rather provides an overview of how these bots can be beneficial.

In turn, Erlenhov et al.’s [2] study proposes a taxonomy focused

on DevBots while also providing definition and vision of future

DevBots. Both taxonomies are relevant within our study as they

provide insight on specific properties that helps distinguishing

test bots from other software bot applications (e.g., chat bots). For

instance, the test bots in our study fall in the group of productivity

bots, because they improve the development team’s productivity

by automating the execution of testing tasks [3] and interact with

users via notifications on dashboards and team communication

channels [2], whereas other facets such as language [2] are not

central at the current stage of our investigation.

Moreover, our contributions align with existing literature in test

design practices, but targeting the specific aspects of test bots such

41

2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops (ICSEW)

Table 1: Case study planning according to guidelines by

Runeson et al. [7]

Objective Description

The context Black box, end-to-end system testing

The case One project from the automotive industry

Research Questions RQ1 and RQ2

Theory Test case design, DevBots

Methods Direct and independent data collection

Selection strategy Project using test bots for system testing

Analysis Thematic analysis of interviews

Qualitative assessment of artefacts

as automation and autonomy. For instance, Tsai et al. [4] gives an

overview of how to design tests, and depicts the creation of test

scenario specification, test case generation and tool support. Au-

thors illustrate the effort or time spent when creating end-to-end

(E2E) system tests and the portion which is taken by the integration

tests. Both types of test cases target verification of distinct parts

and properties of a System Under Test (SUT) which, ultimately,

impacts the test costs. Similarly, Mockus et al. [5] investigate how

test coverage affects test effectiveness and the relationship between

test effort and the level of test coverage, whereas Laventhal et al. [6]

discuss in their paper the relevance of negative and positive tests

and how testers show positive test bias, which can affect the quality

of testing. Our results differ from already investigated problems

in automated testing because our guidelines focus to enhance the

test bot’s autonomy and interaction, two facets that are distinguish-

ing bots from plain test automation, where related work on test

automation mainly targets the test’s cost-effectiveness. Although

both aspects are related, we discuss properties that accentuate the

test bot’s capabilities of acting as artificial developers.

3 RESEARCH METHODOLOGY

The summary of our case study planning is depicted in Table 1. Our

case company is a relatively mature company that provides Services

as a Product (SaaP) for different car manufacturing companies. Our

research is going to be performed only within the scope of one

project responsible for developing scalable software solutions for a

specific car manufacturer.

The software under test uses Amazon Web Services (AWS) and

Microsoft Azure as their cloud service providers. The developed

software is deployed in a virtual private cloud (VPC) [8] in order to

offer customer companies the benefits of a private cloud, such as a

granular control over virtual networks and an isolated environment

for sensitive workloads and service isolation. The organization de-

velops their own in house system which is responsible for building

the software artefacts that are constantly updated by the developers.

It supports multiple languages like Java, Python, GO, among others.

We performed a semi-structure interview with selected partici-

pants following standard protocols for data collection where partic-

ipants were asked for consent to use their data and all the collected

data was anonymised. Participants were also given the opportunity

to opt-out of the study at any time. The interviewees were selected

based on having previous experience with the test bots, which

means that they were familiar with the overall scope of software

test bots and had worked on their development. Four participants

Figure 1: Overview of the application of test bots.

agreed to join our study, namely: one software architect, two senior

and one junior software developer.

Our list of questions is available at: https://tinyurl.com/botse2020.

The interviews were recorded, transcribed (upon consent from

participants) and coded. We performed thematic analysis [9] on

the interview data in order to find patterns in the raw data later

used as the base for the coding [10]. The outcome were categories

which summarized the data gathered and expressed key themes

and processes related to their usage of the test bots. Lastly, our

findings were later presented to the participants of the interview

to clarify and validate our understanding of their process.

Additionally, we also collected data from software artefacts

which included test bot code, test case code and requirements for

the SUT in order to investigate the design of the test bots and

their test cases. Moreover, those two data sources (interviews and

development artefacts) offer insights that enable us to answer, re-

spectively, RQ1 and RQ2. The next section comprise our findings

and discussion based on the interviews done with practitioners and

the analysis of the artefacts related to the test bot. Based on our

collected data, we begin by explaining how the test bots are used

at our case company, followed by answer to our research questions

and validity threats to our study.

4 FINDINGS AND DISCUSSION

The company creates various test bots for load testing, integration

testing and system testing, however, for the scope of this study, we

are going to focus only on test bots that are performing system

testing. Figure 1 shows an overview of the test bots and the systems

and tools it interacts with. The test bots used in the program have

the task of performing end-to-end tests with a specific rate on

different functionalities of the system. Depending on the testing

context, whether the system that needs to be tested is back-end or

front-end oriented, different programming languages will be used

to write the test cases and the test bot.

Consequently, in order to design the test cases, practitioners are

required to have knowledge on the corresponding programming

languages and an overview of the architecture of the component,

in order to be able to understand the flow between the different

microservices. The regular workflow of the bot involves the au-

tonomously triggered execution of test cases, logging the test results

42

Test Bots

Challenges

Designing context aware test cases

Changes in the state of the system

System clean up

Flaky Tests

Test Design

Positive flow

Negative flow

Modular and easy to read

Test reports

 In-house built test runner framework

Frameworks

JUnit

AssertJ

Asynchronous programming

Synchronous programming

Server-less functions

Figure 2: Themes and codes from the interview data.

and, in case of failures, include detailed error logs to make debug-

ging easier. Lastly, the test bot interacts with the practitioners in

two ways. First by submitting the results data to virtual dashboards

shown to the entire team indicating the status of test activities.

Secondly, if the test fails, the test bot uses slack to notify the corre-

sponding team about the status and details of test execution.

4.1 Analysis of RQ1

Figure 2 shows the resulting themes and codes from our thematic

analysis of the interviews. The data revealed different aspects about

the test bots, pertaining their composition (e.g., test frameworks),

usage (e.g., design of test cases for the test bots) and, in connection

to our research question, the main challenges in applying them into

the company’s software testing activities.

C1. Designing context aware test cases: Tests can have dependen-

cies to other tests meaning that a particular test ta can only start
executing once another test tb has finished successfully. Perform-
ing this specific chaining on test cases can become quite complex

and timely to achieve using typical test frameworks, such as JUnit.

Issues can arise in the event that a test case fails, thus the follow-

ing dependent tests will be affected by the previous success rate,

hence being hard to determine whether the test failed because of

some dependency or faults in the code. This dependency should be

avoided when designing the test cases, such that modular tests are

preferred to yield more independent test executions.

C2. Changes in the state of the system: Issues can occur when a test

suite has only partially executed leaving, then, corrupt or invalid

data within the system, such as incomplete data models which can

later cause system errors or null pointer exceptions. To mitigate

this problem, the test bot needs to perform roll back techniques in

order to remove the invalid data that has been generated.

C3. System clean up: In scenarios when all of the test cases have

completed successfully, the test bot needs to clean up after them-

selves, since the test bots run on the deployed production environ-

ment. Consequently, there is a risk to mix test bot activity with the

customer activity, hence confusing developers while monitoring

the application logs to debug a problem. For instance, in a scenario

where the test bot is flooding the system with the test associated

logs, it becomes difficult to find, among the logs, other issues that

could be user related. While challenge C2 addresses recovering

from corrupt data of individual tests, the clean up for this challenge

would equate to a tear-down of all tests. Automated test frameworks

often support creation of tear downmethods where the system state

is restored after executing the test suite.

C4. Flaky tests: Flaky tests are false positives, i.e., test cases that

fail when, in reality, there are no faults and the functionality is

working correctly. Consequently, flaky tests consume a lot of the

tester’s time and effort [11]. At the case company, the SUT requires

real time connections with different vehicles in order to collect their

status, and tests often fail due to a lacking connection as opposed to

a fault itself. Test containing asynchronous wait for connection is

among the top categories of flaky tests [11]. Therefore, the stability

of third party incorporated systems must be considered. One way

to mitigate this problem is to mock the vehicle behaviour on a

separate cloud server instance with very high uptime. Conversely,

this can be costly and time-consuming to develop.

RQ1: In short, the challenges identified for system-level test bots

are: (i) designing context aware test cases, (ii) monitoring and

controlling changes in the state of the system, (iii) instrumenting

system rollbacks and (iv) detecting flaky results.

4.2 Analysis of RQ2

Based on the artefacts analysis, we identified two different ap-

proaches to implement the test bots using, respectively, synchro-

nous and asynchronous programming. Even though the different

designs tested identical functionalities of the system, usage of asyn-

chronous programming was more beneficial due to: (i) faster execu-

tion time, (ii) fewer false positive results and (iii) reduced cyclomatic

complexity of the test code.

Regarding execution time, asynchronous allowed different tests

to run in parallel (when applicable) leading to faster test execution.

Consequently, test bots become cheaper for our industry partner

due to the pay per use model of server-less applications where the

test bots are hosted. Moreover, asynchronous approaches motivated

testers remove dependencies between tests, hence mitigating issues

with flaky tests. This factor improves the following DevBot aspects

of test bots: (i) autonomy, since individual test bots can act indepen-

dently from each others, and (ii) user interaction, since notifications

and results sent to developers become more credible. Finally, the

artefact analysis also revealed that less complex tests (regardless of

being synchronous/asynchronous) were easier to maintain by prac-

titioners making it easier to also maintain the test bot. Although

asynchronous programming yields better test cases for a test bot,

such approaches are coupled with the instrumentation offered by

testing frameworks. In order to overcome this limitation, practition-

ers created a simple test runner class which would handle/monitor

all the test cases, together with the creation of the test reports.

RQ2: Design choices affect execution time, flakiness and com-

plexity of test cases executed by the test bot. Particularly, using

asynchronous programming benefits the bot since it enables

(i) parallel and faster execution of tests, and (ii) diligence in

designing context-aware and independent test cases.

43

Table 2: Guidelines for creating good system test case design

ID Description Reason behind guideline Suggestion on how to implement it

G1 Use asynchronous programming
methods to invoke system end-
points.

According to the data analyzed, asynchronous programming meth-
ods allows the tests to continue testing independent functions
simultaneously and can thus reduce execution time.

With the Java framework CompletableFuture test can be exe-
cuted with the method. supplyAsync(), in this case the frame-
work will run the task asynchronously and return the result
from the test without blocking the execution of other test.

G2 Cover test dependencies by chain-
ing dependant test via the specific
callback asynchronous functions.

For dependant tests, tests which require the completion status of
previous tests, this would allow the system to wait before executing
the next tests, while for independent tests, these can be unchained
thus allowing all the non dependant test to run within their order.

With the Java framework CompletableFuture test A can
be executed with the method supplyAsync(), and test B
needs to be chained to the first future using the function
thenComposeAsync(), this way test B will execute once A has
finished without blocking other test executions in the test suite.

G3 Create test that are small, modu-
lar and readable.

By creating smaller and more readable tests, developers can ensure
that future alterations to the tests are easier to implement, as well
as less time will be needed to analyze the existing setup and develop
the new test.

Create test cases that test a specific functionality of the system
rather than multiple flows.

G4 Start clean-up process after the
execution of tests.

In order to avoid adding corrupt or unnecessary test data to real
environments, developers should include a clean-up process after
the execution of tests within the test bot.

Use existing (or implement) functionality to remove data which
was stored in the system by the test suite (e.g., after testing the
user creation functionality, use the delete user service to remove
the test data).

G5 Make use of proper logging tech-
niques which differentiate the
test data from real data.

In order to make it easier to distinguish the test activity logs from
the actual user activity logs.

Use different prefix for test data attributes, thus making it easier
for developers to distinguish test data from real data in real
environments (e.g., username starts with “TEST”).

G6 Implement both positive and neg-
ative flow testing techniques.

According to Laventhal et al. [6], software testing theory suggests
that tests should test inside and outside specification (expected
versus unexpected values) in order to test thoroughly.

Use both invalid and valid test data as input.

4.3 Guidelines for Designing Tests for Test Bots

Using the data collected from interviews and artefacts, we created

guidelines (Table 2) that should mitigate the challenges discussed

in the previous section. The guidelines foster good system test

cases for test bots similar to the ones used at our industry partner.

We also provide a reason for including each guideline along with

suggestions on how to implement it.

Additionally, our findings also relate to existing literature on

guidelines to design test cases, such as creating reusable and read-

able tests (G3) [4] or targeting both positive and negative flows

for tests (G6) [6]. In contrast, literature does not consider unique

aspects of test bots, such as autonomy or interaction with users,

when discussing test design practices to an extent where one can

argue whether current design practices are relevant to a DevBot.

The discussion around challenges also triggered participants to

share what kind of future improvements they would like to add to

the test bot functionality. An example is to predict the time needed

for the system to perform each functionality in the test suite. Later,

this information can be combined with the history of test results to

reveal patterns able to describe how usage spikes can affect system

performance. This data is valuable and can be used to extensively

configure the application for improved performance.

4.4 Threats to Validity

In turn, construct validity is associated to our choice of artefacts,

participants, themes and corresponding codes. One of the main

risks is that literature lacks consolidated constructs or definition

of a bot hindering the proper selection of bots for a study [2]. We

mitigate this threat by using existing taxonomies [2, 3] to identify

whether the investigated test bots have properties based on the

facets of those taxonomies.

Our internal validity is related to the interview process and

the analysis of artefacts, such as overlooking relevant aspects of

participant’s answers. In order to mitigate risks, the interviews were

recorded and transcribed. Moreover, we used a semi-structured

format such that participants were allowed to slightly stray from

the questions in order to convey their own understanding of the

process that the questions may fail to capture. Moreover, the review

of artefacts and interpretation of the test bot process described in

the interviews was later validated with our industry partners.

In turn, our external validity is limited, since our conclusions and

findings are connected to the case company’s context. Future studies

investigating similar aspects of test bots applied to domains beyond

automotive industry can confirm/contrast our findings. Moreover,

clearer definitions of a bot and their role in software development

can support generalization in future studies and enable researchers

to find the commonalities between the applicability of bots across

different domains of software development.

5 CONCLUSION

Our interview with industry practitioners and analysis of software

artefacts revealed a set of challenges faced when designing test

cases for system tests executed by a test bot, such as: designing

context aware tests, monitoring and controlling system states, per-

forming system clean-ups and identifying flaky tests. Moreover, we

provide a list of guidelines to support practitioners in designing

test cases for test bots similar to ones used in our context where

bots are hosted in a cloud infrastructure communicating with vehi-

cles. For instance, our results indicate that usage of asynchronous

programming improves the effectiveness of a test bot since (i) it

reduces time to execute tests and the overall testing costs, and (ii)

brings awareness to issues with dependencies between tests, hence

mitigating risks with flaky tests. Future studies include the investi-

gation of other types of bots used by our industry partner, as well

as investigating the impact of those design practices in other types

of test bots focusing, e.g., integration and performance testing.

44

REFERENCES
[1] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one bot at a

time,” in Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New York, NY, USA:
Association for Computing Machinery, 2016, p. 928–931. [Online]. Available:
https://doi.org/10.1145/2950290.2983989

[2] L. Erlenhov, F. G. de Oliveira Neto, R. Scandariato, and P. Leitner, “Current
and future bots in software development,” in First Workshop on Bots in Software
Engineering, (BotSE ICSE), 2019.

[3] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software bots,” IEEE Software, vol. 35,
no. 1, p. 18–23, 2018.

[4] W.-T. Tsai, X. Bai, R. Paul, W. Shao, and V. Agarwal, “End-to-end integration
testing design,” in 25th Annual International Computer Software and Applications
Conference. COMPSAC 2001. IEEE, 2001, pp. 166–171.

[5] A. Mockus, N. Nagappan, and T. T. Dinh-Trong, “Test coverage and post-
verification defects: A multiple case study,” 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, 2009.

[6] L. M. Leventhal, B. E. Teasley, and D. S. Rohlman, “Analyses of factors related to
positive test bias in software testing,” International Journal of Human-Computer
Studies, vol. 41, no. 5, pp. 717–749, 1994.

[7] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study
research in software engineering,” Empirical software engineering, vol. 14, no. 2,
p. 131, 2009.

[8] N. Serrano, G. Gallardo, and J. Hernantes, “Infrastructure as a service and cloud
technologies,” IEEE Software, vol. 32, no. 2, pp. 30–36, Mar 2015.

[9] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qualitative
Research in Psychology, vol. 3, no. 2, p. 77–101, 2006.

[10] M. Maguire and B. Delahunt, “Doing a thematic analysis: A practical, step-by-step
guide for learning and teaching scholars.” AISHE-J: The All Ireland Journal of
Teaching and Learning in Higher Education, vol. 9, no. 3, 2017.

[11] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of flaky
tests,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2014. New York, NY, USA:
Association for Computing Machinery, 2014, p. 643–653. [Online]. Available:
https://doi.org/10.1145/2635868.2635920

45

