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We perform fully kinetic simulations of flows known to produce dynamo in magnetohydrodynamics
(MHD), considering scenarios with low Reynolds number and high magnetic Prandtl number, relevant for
galaxy cluster scale fluctuation dynamos. We find that Landau damping on the electrons leads to a rapid
decay of magnetic perturbations, impeding the dynamo. This collisionless damping process operates on
spatial scales where electrons are nonmagnetized, reducing the range of scales where the magnetic field
grows in high magnetic Prandtl number fluctuation dynamos. When electrons are not magnetized down to
the resistive scale, the magnetic energy spectrum is expected to be limited by the scale corresponding to
magnetic Landau damping or, if smaller, the electron gyroradius scale, instead of the resistive scale. In
simulations we thus observe decaying magnetic fields where resistive MHD would predict a dynamo.

DOI: 10.1103/PhysRevLett.124.255102

The energy density corresponding to the microgauss
(10−10 T) magnetic field permeating the Universe at galaxy
[1] and galaxy cluster [2] scales is comparable to that of the
turbulent flows [3] on these scales. This approximate
equipartition of magnetic and directed kinetic energies is
consistent with the field being generated and maintained by
a turbulent dynamo (see Ref. [4] and references therein).
Small seed fields are amplified by the dynamo until
they become dynamically significant, after which the field
strength nonlinearly saturates in a self-consistent turbulent
state. Because of the multiscale and inherently three-
dimensional [5,6] nature of dynamos, they have almost
exclusively been studied within the framework of mag-
netohydrodynamics (MHD). Although MHD is well jus-
tified for the modeling of dynamos in dense and collisional
stellar interiors, it breaks down when the mean free path of
the plasma particles becomes comparable with the scales of
interest, such as in galaxy clusters.
Recent efforts have started to shed light on turbulent

dynamos in the collisionless regime. Using kinetic tools
for the ion dynamics and isothermal fluid models for the

electrons, dynamo amplification of magnetic fields has
been demonstrated [7]. The role of pressure anisotropy
instabilities, such as firehose and mirror instabilities, has
been shown to be critical for dynamo amplification [8],
leading to the development of sharp magnetic field line
features, thereby breaking magnetic moment conservation
and alleviating the issue of related stringent constraints [9]
on field growth. While the role of kinetic ions in the context
of the dynamo is only just beginning to be explored, what
effects, if any, kinetic electrons have on the dynamo have
yet to be studied.
In this Letter, we consider a kinetic electron effect on

dynamos: the Landau damping of magnetic fluctuations.
This enhances the decay of magnetic perturbations com-
pared to resistive diffusion, thereby reducing the range of
scales where field amplification occurs. We also show that
this effect impedes dynamo field amplification in fully
kinetic simulations of weakly collisional nonmagnetized
hydrogen plasmas. The possibility of Landau damping of
magnetic fields has not received wide attention in the
literature, except for a few sporadic applications, affecting,
e.g., the persistence of magnetic fluctuations downstream
of ultrarelativistic pair-plasma shock waves with conse-
quences on synchrotron emission in gamma-ray bursts [10].
The turbulent dynamo is a multiscale problem:

Kinetic energy injected into flows at the outer scale l0,
nonlinearly cascades down to viscous scales lν ∼ Re−3=4l0,
where the energy is dissipated. The scale separation, l0=lν, is
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characterized by the fluid Reynolds number, Re ¼ u0l0=ν,
where ν is the kinematic viscosity and u0 is the characteristic
flow velocity at scale l0. The dissipation scale of magnetic
fluctuations, below which resistive diffusion of the fields
dominates, is the resistive scale lη. A key dimensionless
quantity in dynamo theory is the magnetic Reynolds
number, Rm ¼ u0l0=η, as dynamo field amplification
requires a minimum Rm that depends on the properties of
the flow. Here η ¼ ðσμ0Þ−1 is the magnetic diffusivity, with
the Spitzer conductivity σ, and themagnetic permeability μ0.
When themagnetic Prandtl number, Pm ¼ Rm=Re ¼ ν=η is
large, as in galaxies, galaxy clusters, the intracluster
medium, and in some hot accretion disks [11], then
lη ≪ lν, and magnetic field growth mostly takes place in
the range between the lν and lη scales [4]. In astrophysical
systems of interest, Pm can be extremely large.
The physics is kinetic for scales comparable to or smaller

than the Coulomb mean free path λ. Using lν ∼ Re−3=4l0
and λ ∼ Re−1l0M0, where M0 is the Mach number corre-
sponding to u0, for a moderate Re and aM0 ∼ 1, we see that
λ and lν are comparable. Therefore, the scales of interest for
Pm ≫ 1 are kinetic.
Several processes have been proposed to generate the

seed field for dynamos (see Ref. [12] and references
therein). One of the leading candidates is the Biermann
battery [13] at ionization fronts in the early Universe,
thought to produce a typical seed field of B ∼ 10−24 T
[14–16]. While galaxy clusters are magnetized down to
the resistive scale at current magnetic field levels, at the
time when the field was comparable to that of seed fields,
the electron Larmor radius was comparable to the mean free
path. That is, electrons were not magnetized on kinetic
scales for the Biermann seed case, allowing for magnetic
perturbations to be Landau damped.
We consider here fully kinetic simulations of spatially

periodic flows, which are known to produce a dynamo in
MHD simulations. As has been done in several dynamo
studies [4,8,17], we sacrifice the fluid cascade for numeri-
cal feasibility and focus on subviscous scales. Accordingly,
l0 and lν are comparable to our simulation box size L0. The
simulations employ the kinetic-Maxwell solver [18] of the
Gkeyll [19] plasma physics simulation framework, which
applies a discontinuous Galerkin method to solve the
kinetic equation

∂tfa þ v · ∇fa þ aa ·∇vfa ¼ C½fa�; ð1Þ

for all species a, with mass ma, charge ea, and distribution
function fa. In the acceleration term, aa ¼ fa=ma þ
ðea=maÞðEþ v ×BÞ, the electric and magnetic fields,
E and B, are computed from Maxwell’s inductive
equations, and faðx; tÞ is an externally prescribed forcing.
Inter- and intraspecies Coulomb collisions are modeled by
a conservative Dougherty (or Lenard-Bernstein) operator
[20,21], C½fa�. The simulations are initialized with

Maxwellian electrons (e) and protons (i), with temperature
Ta ¼ 1 keV, density na ¼ 2.3 × 1028 m−3, and a flow with
a characteristic speed u0 ¼ M0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Te=mi

p

and M0 ¼ 0.35.
Our baseline plasma parameters are not representative of
astrophysical plasmas, rather they are chosen to give
estimated values of Rm ≈ 13 (with Spitzer resistivity)
and Re ≈ 0.64 (with nonmagnetized collisional viscosity),
thus Pm ≈ 20 for a box size of L0 ¼ 9.73 μm and an
assumed Coulomb logarithm of 10. The collisional mean
free path is λ ¼ 1.25 μm.
First, we consider the time-dependent Galloway-

Proctor (GP) flow [22] that produces a fast dynamo
(Rm-independent growth rate, for Rm ≫ 1) and requires
a low critical Rm,

uGPðx; tÞ ¼ u0fsinðk0zþ sinωtÞ þ cosðk0yþ cosωtÞ;
cosðk0zþ sinωtÞ; sinðk0yþ cosωtÞg; ð2Þ

where k0 ¼ 2π=L0, ω ¼ 2π=tt, and tt ¼ L0=u0 ≈
9 × 10−11 s is the turnover time. The flow is sustained
by exerting a force of fi ¼ Cfmiuðx; tÞ=ti on the ions,

with the thermal ion passing time ti¼L0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ti=mi

p

; we set
Cf¼1. The magnetic field is initialized as Bi ¼
B0

P

j≠i;n bij;n cos½nkðxi þ φij;nÞ�, where bij;n and φij;n

are uniform random numbers on [0, 1], n ¼ 1; 2;…; N
with N ¼ 4, and B0 ¼ 40 (the thermal electron Larmor
radius at this field strength is 2.7 μm). In addition to uGP,
the initial electron flow velocity also has a component
producing a current consistent with the magnetic seed field.
The value Rm ≈ 13 is sufficiently large for the GP

flow to produce magnetic field growth in resistive MHD.
Indeed, solving the MHD induction equation ∂tB ¼
∇ × ðu ×BÞ þ η∇2B with u ¼ uGP, using the high order
finite-difference MHD solver Pencil Code [23] at spatial
resolutions between 123 and 323, we find that, after a slight
decay, the magnetic field starts to grow exponentially, as
shown in Fig. 1 (dashed). Additional MHD simulations (not
shown here) also evolving the flow produce similar results.
However, in the kinetic simulation, the field energy is
observed to monotonically decay (solid). The magnetic
energy in the kinetic simulation rapidly develops a strongly
decaying wave number spectrum (solid lines in Fig. 2). In
contrast, the spectrum corresponding to the MHD induction
equation quickly assumes its weakly decaying shape
(dashed), which is then preserved in the phase of exponential
growth (dotted line). The kinetic simulations used 12 grid
cells in each direction of the configuration space, 10 in
velocity space extending between−3 and 3 times the thermal
speed of each species, and employed a set of basis functions
of polynomial order 1, i.e., a resolution equivalent to 24 and
20 grid points, respectively, in a finite-difference scheme.
The decay of the magnetic field energy in the kinetic

simulation is caused by Landau damping of the magnetic
fluctuations. To elaborate on this effect, we performed
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decaying magnetic field simulations in 1 spatial and 2
velocity coordinates, initialized with Bzðx; t ¼ 0Þ ¼
B0 cosðkxÞ, and the corresponding current deposited as a
flow of Maxwellian electrons in the y direction. The plasma
parameters are similar to the GP flow simulation, and the
simulations use up to 40 spatial and 20 velocity cells, with a
polynomial order of 2. For an elementary magnetic
perturbation of this form, resistive magnetic diffusion
∂tB¼η∇2B leads to a decay Bz∝expð−γtÞ¼expð−k2ηtÞ.
In a weakly collisional plasma, i.e., νei → þ0, where νei is
the electron-ion collision frequency, such a fluctuation
decays due to Landau damping with a decay rate γ ¼
jkj3c2ve=ð

ffiffiffi

π
p

ω2
peÞ ¼ jkj3veme=ð

ffiffiffi

π
p

μ0nee2Þ [24], where

ωpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nee2=ðϵ0meÞ
p

, ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Te=me

p

is the electron
thermal speed, −e and ne are the electron charge and
density, and ϵ0 denotes the vacuum permittivity.
We would get this decay rate from resistive diffusion,
if we replaced σ−1 with a scale-dependent effective resis-
tivity σ−1eff ¼ jkjveme=ð

ffiffiffi

π
p

nee2Þ, which corresponds to

an effective magnetic diffusivity ηeff ∼ ηλ=l, where
λ ¼ ve=νei, and 2π=l ¼ jkj.
We introduce an overall collisionality scaling factor, Cν,

that multiplies all inter- and intraspecies collision frequen-
cies calculated for the given plasma parameters. Figure 3
shows the Cν dependence of σ−1eff that is calculated as an
instantaneous value of jy=Ey, and is consistent with the
exponential decay rate of current perturbations. At the
longest wavelength considered (L0 ¼ 9.73 μm, dark solid
curve) the effective resistivity starts deviating from the
Spitzer resistivity below Cν ¼ 0.5, and for Cν → þ0 it
asymptotes to a collisionality independent value deter-
mined by Landau damping. As the wavelength of the
perturbations is decreased (lighter curves) the effective
resistivity increases; in particular when k ¼ 2k0, σ−1eff
remains already above the Spitzer level over the collision-
ality range plotted. We note that perfectly collisionless
simulations exhibit an echolike recurrence of the magnetic
field energy, unlike the weakly collisional simulations
shown here, where a simple exponential decay is observed.
The simple physical picture behind the magnetic field

decay in the collisionless regime is the following. A current
perturbation of wave number k would, without the self-
consistent electromagnetic fields, decay on a time scale
∼ðvekÞ−1 due to free streaming; however, the correspond-
ing ∂tB induces an electric field that inhibits this current
decay. The induced electric field being proportional to the
current can be thought of as an effective resistivity, which
leads to a diffusion, and thus a decay, of the magnetic field
perturbation. In a collisional plasma, the electric field is
balanced by collisional friction, resulting in a Spitzer
response. In the weakly collisional case, however, the
electric field is balanced by a viscous stress corresponding
to an off-diagonal element of the electron pressure tensor,
analogously to collisionless reconnection [25–27]. This
viscous balance is illustrated in Fig. 4(a), where the ratio of
the relevant viscous stress component to the electric force is

FIG. 1. Volume integrated magnetic energy. Solid lines: kinetic
simulation; dashed lines: resistive MHD induction equation. Red,
blue, and green correspond to the contributions from the x, y,
and z field components to the total (black). For reference,
ð3=2ÞniTiL3

0 ¼ 5.1 × 10−3J.

FIG. 2. Wave number spectra of magnetic energy, EBðkÞ
(normalized to its value at k0, t ¼ 0), for t ¼ f0; 1; 2;…; 6g ×
10−11 s (lines lightening). Solid lines: kinetic simulation; dashed
lines: MHD induction equation; dotted line: MHD induction
equation in the growing phase t ¼ 2 × 10−10 s.

FIG. 3. Effective resistivity, 1=σeff ½Ωm�, as a function of
collision scaling factor Cν, for four values of the wavelength
of the current perturbation, increasing from L0=8 to L0 ¼
9.73 μm (solid lines darkening). The Spitzer resistivity (dotted
line), and the collisionless, unmagnetized theoretical limits
(dashed lines) are also indicated.
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shown as a function of Cν for various wavelengths. In all
cases, the small Cν limit is close to unity, within a small
difference due to electron inertia. The contribution from the
viscous stress monotonically decreases with Cν as the
friction on ions becomes more important in balancing
the electric field; at the longest wavelength (darkest curve)
the viscous stress contribution is negligibly small for
Cν ¼ 1, consistently with the Spitzer response observed
in Fig. 3.
Free streaming of electrons across the current perturba-

tion is inhibited when the electrons are magnetized and are
thus confined to magnetic field lines. Therefore, the Landau
damping of magnetic field fluctuations becomes unimpor-
tant with increasing magnetic field strength, as illustrated in
Fig. 4(b), showing the reduction of the effective resistivity
with increasing B0 (ρe0 is the electron thermal Larmor
radius at B0). For low L0=ρe0, the σ−1eff is comparable to the
theoretical collisionless value from Landau damping, and it
drops rapidly with increasing L0=ρe0. As for its relevance in
dynamos, when the magnetic field energy grows, the range
of scales where Landau damping of magnetic fluctuations
are important decreases with the electron Larmor radius.
Note that accurate interpretation of fully kinetic dynamo

simulations is made difficult by currents unavoidably
driven by the forcing. Even exerting a force on ions and
electrons appropriately scaled by their masses leads to a
current, as the momentum transport properties of the two
species are different (and magnetization-dependent); in
weakly collisional plasmas, the corresponding driven
current is comparable to that when forcing only acts on
the ions. Therefore, a magnetic field is being generated that
may be larger than the initial seed fields. This effect is
illustrated in Fig. 5, which shows the magnetic field energy

in a simulation with a driven, time independent Roberts
flow [28]

uRðx;tÞ¼u0fcosðk0yÞ−cosðk0zÞ;sinðk0zÞ;sinðk0yÞg: ð3Þ
In these simulations, L0 ¼ 1.22 μm, B0 ¼ 10 T, the colli-
sionality is scaled as Cν ¼ 0 (solid) and Cν ¼ 0.3 (dashed),
and the flow is more strongly forced Cf ¼ 3, otherwise the
parameters are similar to those of the Galloway-Proctor
flow simulation. The magnetic field energies level off after
an initial growth phase in both cases. We find that the final
field strength is of the size ∼eu0niμ0L0, which is expected
to arise from the forcing of the ion flow. Indeed, at the end
of the simulations, the current density has a form close to
uR (as does B, since the field is essentially force free).
When simulations are started from a higher initial B0, the
magnetic energy decays down to the same level, where the
continuous drive is balanced by the effect of Landau
damping and collisions. For these parameters no dynamo
amplification is observed in the simulation.
Finally, we consider the implication of Landau damping

on fluctuation dynamos with asymptotically large Pm. In
the MHD framework, lη is estimated by balancing the
rate of stretching of magnetic fluctuations at the viscous
scale uν=lν with the dissipation rate at the resistive scale
η=l2η, yielding lη ∼ l0Re−3=4Pm−1=2 ∼ lνPm−1=2 [4]. In a
weakly collisional plasma, we may introduce the analogous
Landau dissipation scale lL, where magnetic field growth
due to stretching at the viscous scale balances decay
due to Landau damping. Thus, recalling ηeffðlÞ ¼ ηλ=l,
we balance uν=lν ∼ u0=ðl0Re1=2Þ and ηeffðlLÞ=l2L ∼ ηλ=l3L ∼
νλ=ðl3LPmÞ. This result, combined with λ ∼ l0M0=Re,
yields the estimate

lL ∼ l0
M1=3

0

Re5=6Pm1=3 ∼ lν
M1=3

0

Re1=12Pm1=3 : ð4Þ

When Re1=2=M2
0 ≪ Pm, as for instance in galaxy clusters,

lη ≪ lL, implying that the range of scales over which

(a) (b)

FIG. 4. Solid lines: The ratio of the relevant component of the
electron viscous stress and the electric field force. In (a) the ratio
is shown as a function of collision scaling factor Cν, for four
values of the wavelength of the current perturbation, increasing
from L0=8 to L0 ¼ 9.73 μm (lines darkening). In (b) the ratio is
shown as a function of the electron magnetization L0=ρe0, where
ρe0 is the electron Larmor radius at a field strength of B0. Here,
the effective resistivity is also shown [dashed curve, normalized
to its highest value, 1.65 × 10−8 Ωm]; the wavelength is L0, and
Cν ¼ 0.05.

FIG. 5. Volume integrated magnetic energy in a forced Roberts
flow simulation, for Cν ¼ 0 (solid) and 0.3 (dashed). Red,
blue, and green correspond to the contributions from the x, y,
and z field components to the total (black). For reference,
ð3=2ÞniTiL3

0 ¼ 9.94 × 10−6 J.
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magnetic field growth can occur is reduced compared to the
prediction of resistive diffusion.
In conclusion, considering weakly collisional, nonmag-

netized initial conditions, we have performed fully kinetic
continuum simulations of model flows known to produce
dynamo amplification of the magnetic field in resistive
MHD. The magnetic field energy—apart from that corre-
sponding to a current caused by the forcing of the ion flow
—in these cases is observed to decay due to the Landau
damping of the magnetic perturbations. Demonstrating
dynamo growth in this setting will demand an increased
scale separation between the flows and the effective
magnetic dissipation. The computational feasibility of
greater scale separation would require employing reduced
physics parameters, which we avoided here. The effect of
the Landau damping is similar to that of a magnetic
diffusivity that scales with the wave number of the
perturbation jkj. In high magnetic Prandtl number plasmas
(such as on galactic scales and above), the damping is
expected to lead to a peak of the magnetic spectrum at lL, a
scale larger than that given by resistive diffusion, lη,
potentially reducing the total energy in magnetic fluctua-
tions. As the magnetic field grows during the dynamo
process, the scale at which electrons demagnetize
decreases, shrinking the region where this process is
operational. While the maximum of the saturated magnetic
energy spectrum in kinetic ion hybrid simulations appears
to be linked to the ion gyroradius scale [8], our results
suggest that a resolved and saturated fully kinetic dynamo
simulation would produce a magnetic spectrum peaked
around the electron gyroradius scale, or lL, whichever is
smaller. On scales where electrons are magnetized, the
issue of magnetic moment conservation potentially imped-
ing dynamo growth [9] becomes relevant. It is possible that,
similarly to ions [29], electrons develop their own insta-
bilities and corresponding sharp phase space structures,
leading to breaking magnetic moment conservation, and
alleviating this problem. This remains to be demonstrated.
The simulation data presented in this article is available

at Zenodo [30].
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