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Abstract
We consider the inverse problem of reconstructing an effectivemodel for a prototypical diffu-
sion process in strongly heterogeneous media based on coarse measurements. The approach
is motivated by quasi-local numerical effective forward models that are provably reliable
beyond periodicity assumptions and scale separation. The goal of this work is to show that
an identification of the matrix representation related to these effective models is possible. On
the one hand, this provides a reasonable surrogate in cases where a direct reconstruction is
unfeasible due to a mismatch between the coarse data scale and the microscopic quantities to
be reconstructed. On the other hand, the approach allows us to investigate the requirement for
a certain non-locality in the context of numerical homogenization. Algorithmic aspects of the
inversion procedure and its performance are illustrated in a series of numerical experiments.
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1 Introduction

This paper focuses on the computational solution of multiscale inverse problems, i.e., where
the quantities to be sought are related to an unknownmicroscopic mathematical model, while
measurement data are available only on a much coarser scale. Due to the scale mismatch
between given data and unknowns, the direct recovery of microscopic quantities, e.g., in
the form of a coefficient of a partial differential equation (PDE), is not only expensive but
may also lead to unsatisfactory results. Therefore, the aim of this paper is to introduce a
computational framework—inspired by numerical homogenization methods—to reconstruct
an effective model, i.e., an alternative quantity on the coarse scale of the available data.

Effective models are the key to bridge the discrepancy between a microscopic coefficient
and a coarse scale of interest in the forward setting. They providemodels that compute reliable
approximations of the solution of a PDE even in the presence of microscopic quantities. If
structural assumptions such as (local) periodicity or scale separation hold, classical homoge-
nization methods (see, e.g., [21,28,42,43]) based on analytical homogenization theory can be
used. Thesemethods are local in the sense that the communication among the degrees of free-
dom is only between neighbors. In a more general setting where these structural assumptions
do not hold a priori, numerical homogenization methods (see, e.g., [8,13,17,25,27,33,35])
provably provide an alternative. These methods are based on a coarse mesh with a charac-
teristic mesh parameter and compute special problem-adapted basis functions with optimal
approximation properties. Compared to the locality of classical homogenization methods,
numerical homogenization methods typically involve a slight deviation from local commu-
nication between the degrees of freedomwhich, in turn, leads to somewhat increased sparsity
patterns of the corresponding system matrices. Since this non-locality can be controlled, we
refer to these methods as quasi-local.

This paper follows the pragmatic approach of reconstructing quasi-local effective models
(i.e., their representation in term of quasi-local system matrices) that describe the effective
behavior of a medium with microstructures based on coarse (i.e., low-resolution) mea-
surement. On the one hand, this provides a surrogate to a direct reconstruction in the
above-mentioned multiscale context. On the other hand, the reconstruction of an effective
model allows us to investigate the requirement for a certain quasi-locality in the context of
numerical homogenization approaches.

The goal of thiswork is to promote this idea alongwith algorithmic aspects and preparatory
numerical experiments. To demonstrate the feasibility and the potential of the approach, we
investigate a stationary linear elliptic multiscale diffusion problem. Moreover, we consider
a worst-case scenario without any structural a priori knowledge on the underlying diffusion
coefficient and donot assume that the heterogeneous coefficient can be parameterized by a few
unknown parameters that could more easily be identified. The main novelty of our approach
is that it aims to recover information about the microscopic scale in the sense of reproducing
the effective behavior of corresponding solutions, instead of aiming at identifying the actual
microscopic coefficient. In the multiscale setting, in which measurements are given on a
coarse scale and without a priori assumption on the structure of the microscopic coefficient,
one cannot hope to reasonably identify the actual coefficient and our approach presents an
alternative strategy. Our aim is not to compete with classical inverse strategies but to provide
a first step towards reasonable surrogates in the case where a direct recovery of the coefficient
is either too expensive or not reliable due to multiscale aspects of the problem.

The remaining parts of the paper are organized as follows. We start with introducing
the microscopic forward problem and motivating the reconstruction of an effective model,

123



Journal of Scientific Computing            (2020) 85:10 Page 3 of 23    10 

represented by an effective system matrix (Sect. 2). This strategy is inspired by numerical
homogenization strategies which provably provide reliable effective models for the given
forward model. The rigorous motivation is presented in Sect. 4 and is mainly to emphasize
that an effective model indeed exists in the setting of very general coefficients. Based on
the considerations for the forward problem, we then tackle the reconstruction of an effective
quasi-local model from given measurements. To this end, we prescribe a quasi-local sparsity
pattern of the system matrices and rephrase the inverse problem as a non-linear least squares
problem for which we apply iterative minimization techniques such as the gradient descent or
the Gauß–Newton method (Sect. 3). In a series of numerical experiments (Sect. 5), we show
that quasi-local effective models can indeed be reconstructed. In particular, we consider the
cases where we are given measurements for all possible (coarse) boundary conditions, and
also the setting where solutions are only known for a few boundary conditions. The aim of
the experiments is to show that allowing the model to deviate from locality improves the
inversion process and, thus, justifies the previous discussion.

2 Microscopic Forward Problem

In this section, we present the forward model and identify an effective discrete model, which
is characterized by an appropriate system matrix.

2.1 Problem Setting

We consider the prototypical second-order linear elliptic diffusion problem

− div A∇u = f in Ω,

u = u0 on ∂Ω,
(1)

where Ω ⊂ R
d , d ∈ {1, 2, 3} is a polyhedral domain and the diffusion coefficient A encodes

the microstructure of the medium. We do not make any structural assumptions on the coef-
ficient such as periodicity or scale separation. Admissible coefficients are elements of the
following set,

A :=
{
A ∈ L∞(Ω;Rd×d

sym ) : ∃ 0 < α ≤ β < ∞ :
∀ξ ∈ R

d , a.a. x ∈ Ω : α|ξ |2 ≤ A(x)ξ · ξ ≤ β|ξ |2
}

,

which only requires minimal assumptions.
Since solutions to problem (1) do not necessarily exist in the classical sense, we are

interested in theweak solution of (1) in theSobolev spaceV := H1(Ω)which is characterized
by the following variational formulation. Given A ∈ A, u0 ∈ X := H1/2(∂Ω), and f ∈
L2(Ω), we seek u ∈ V such that

a(u, v) = ( f , v) for all v ∈ V 0 := H1
0 (Ω),

tr u = u0 on ∂Ω,
(2)

where tr : V → X is the trace operator, (w, v) := (w, v)L2(Ω) denotes the L
2 inner product,

and a(w, v) := ∫
Ω

A∇w · ∇v dx . Note that instead of (1), we could as well consider a
general second-order linear PDE in divergence form with additional lower-order terms. It is
important to emphasize that, in the presence of lower-order terms, one cannot necessarily
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exploit symmetry and might need additional assumptions to ensure coercivity. Nevertheless,
such a generalization is straight-forward and is omitted for simplicity.

2.2 Coarse Discretization

In practice, it is favorable to rewrite problem (2) as a problem with homogeneous Dirichlet
boundary conditions in V 0. Let Eb : X → V be a linear extension operator, which also
defines the restriction operator R : V → V 0 by R := 1 − Eb tr. Then, we can decompose
u = Ru + (1 − R)u = Ru + Ebu0 and problem (2) reduces to finding Ru ∈ V 0 such that

a(Ru, v) = ( f , v) − a(Ebu0, v) (3)

for all v ∈ V 0.
Let us now introduce a coarse target scale H (e.g., the resolution of the data available for

the inverse problem). We adopt the notation from numerical homogenization where a capital
H is used to indicate that the scale is indeed a coarse one. In typical applications, H will
be much larger than the microscopic scale, i.e., the scale on which the diffusion coefficient
varies.

In order to discretize (3), let TH be a mesh of orthotopes with characteristic mesh size H
and denote with Q1(TH ) the corresponding space of piecewise bilinear functions. Further,
we define the discrete spaces VH := Q1(TH ) ∩ V , V 0

H := VH ∩ V 0, and XH := tr VH with
dimensionsm = dim VH ,m0 = dim V 0

H , and n = dim XH , respectively. The choice of these
finite element spaces is not unique and other standard finite element spaces could be used.

In the context of inverse problems, it is reasonable to consider that u0 is defined as the
first-order finite element approximation of coarse experimental boundary data which approx-
imate the real data up to order H in the H1/2 norm. That is, in the following we will assume
that u0 ∈ XH . Further, we assume to have a discretized extension operator Eb

H : XH → VH

that fulfills Eb|XH = Eb
H and a corresponding restriction operator RH : VH → V 0

H defined
by RH := 1 − Eb

H tr.
Based on the above spaces, we introduce an injective linear operator

G : VH → V with GV 0
H ⊆ V 0, (4)

which leads to the following discretization of (3): find uH ∈ VH , uH = RHuH + Eb
Hu

0,
such that RuH ∈ V 0

H solves

a(GRHuH ,GvH ) = ( f , vH ) − a(GEbu0,GvH ) (5)

for all vH ∈ V 0
H . Further, we define the solution operator

LA : XH × L2(Ω) → V ,

(u0, f ) �→ u, where u solves (2) (6)

and its discretized version

LG
A,� : XH × L2(Ω) → VH ,

(u0, f ) �→ uH , where uH solves (5). (7)

The operator LA (and similarly also LG
A,�) can be written as

LA(u0, f ) = LA(u0, 0) + LA(0, f ) (8)
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with the linear operators LA(·, 0) : XH → V and LA(0, ·) : L2(Ω) → V . For simplicity,
we assume in the following that f is a fixed function and only the boundary conditions
may change. The generalization to the case where f is variable as well is conceptually
straightforward but slightly more involved. The decomposition (8) motivates the distance
function between operators defined by

dist f (A,B) :=
(
‖A(·, 0) − B(·, 0)‖2L(XH ;L2(Ω))

+ ‖A(0, f ) − B(0, f )‖2L2(Ω)

)1/2
(9)

for all A, B : XH × L2(Ω) → V . Note, however, that also other distance functions could
be used.

2.3 Characterization in Terms of a Stiffness Matrix

As a next step, we discuss an alternative representation of the operatorLG
A,� using the stiffness

matrix corresponding to the discrete formulation (5).Given a coefficient A ∈ A and amapping
G : VH → V as above, the stiffness matrix SH = SH (A,G) is defined by

SH [i, j] := a(G�z j ,G�zi ), i, j ∈ {1, . . . ,m}, (10)

where i �→ zi is a fixed ordering of the m nodes in TH and �z denotes the classical finite
element hat function associated with the node z ∈ TH .

Therefore, we may define the operator

LSH : XH × L2(Ω) → VH ,

(u0, f ) �→ uH , where uH solves{
SH ,0RHuH = RHMH fH − RH SH Eb

Hu
0,

uH = u0 on ∂Ω,

(11)

with the classical finite element mass matrix MH , the restriction SH ,0 = RH SH RT
H of SH

to the inner nodes of TH , and fH := ΠH f the L2 projection of f onto VH . For better
readability, we use the notation vH (or BH ) for both the vector vH ∈ R

m (or the matrix
BH ∈ R

m0×m) and the corresponding function vH ∈ VH (or the mapping BH : VH → V 0
H ).

Remark 1 Note that the extension operator Eb
H , the restriction operator RH , and the mass

matrix MH depend on the coarse finite element space, and are therefore fixed, such that the
operator LSH only depends on SH , u0 and f .

The following theorem is the basis of the inverse strategy discussed in the next section.
It is a direct consequence of Lemma 1 and Corollary 1, which are proven in Sect. 4. It states
the existence of an appropriate coarse model, characterized by an operator G, that is able to
capture the effective behavior of the original model (6).

Theorem 1 (Existence of an effective model) There exists an operator G as in (4) and a
corresponding stiffness matrix SH (A,G) such that

dist f
(
LA,LSH (A,G)

)
� H . (12)

Moreover, there exists a choice of G and � ∼ | log H | such that SH (A,G) ∈ M(�, TH )

with

M(�, TH ) :=
{
SH ∈ R

m×m
sym : ∀ 1 ≤ i ≤ j ≤ m : zi /∈ N�(z j ) ⇒ SH [i, j] = 0

}
(13)
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Fig. 1 Sparsity patterns of matrices in M(�,TH ) for different values of � on a Cartesian grid (H = 2−4)
with lexicographic ordering in two dimensions

defined as the set of matrices that may have a non-zero entry at position [i, j] only if the
corresponding nodes zi and z j belong to the �-neighborhood of each other (see Fig. 1 for an
illustration). The �-neighborhood N� is defined by

N�(ω) := N(N�−1(ω)), � ≥ 1, N0(ω) :=
⋃{

T ∈ TH : ω ∩ T ⊆ T
}

(14)

for ω ⊆ Ω .
We call the operator LSH (A,G) the effective model and SH (A,G) the effective stiffness

matrix.

Theorem 1 justifies the inverse procedure that is presented in the following section. In par-
ticular, we may interpret coarse measurements of a solution operator LA as approximations
obtained by an effective model due to the fact that there exists an appropriate effective model
which is reasonably close.
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2.4 Quasi-Locality and Connection to Numerical Homogenization

The operator G defined in (4) and the corresponding effective stiffness matrix defined in
(10) are strongly related to numerical homogenization methods. In contrast to analytical
homogenization, these approaches provably work beyond structural assumptions such as
(local) periodicity or a clear separation of scales which cannot be guaranteed for general
microstructures.

One such method is the Localized Orthogonal Decomposition (LOD) approach which
provides effective models that provably cope with arbitrary rough coefficients in a large class
of model problems including diffusion problems [15,17,27], elasticity [2,16] and wave prop-
agation [1,10,11,26,37,41], without requiring periodicity or scale separation. This method
allows us to explicitly characterize an operator G to prove Theorem 1 in Sect. 4. For lin-
ear elliptic problems, there are various other numerical homogenization approaches such as
the Generalized Finite Element Methods (GFEM) [3], AL bases [13], Rough Polyharmonic
Splines (RPS) [35], the Generalized Multiscale Finite Element Method (GMsFEM) [8],
Gamblets [33], CEM-GMsFEM [5], the higher-order multiscale approach described in [25,
Ch. 3], and their variants with similar properties as LOD. All these methods compute special
problem-adapted basis functions with optimal approximation properties based on underlying
Galerkin methods. To achieve optimal accuracy, a moderate price in terms of the computa-
tional complexity has to be paid compared to a standard finite element method (fixed order)
on the same mesh in order to account for microscopic information. The computational over-
head is either characterized by an increase in the number of degrees of freedom per mesh
entity (GFEM, GMsFEM), e.g., elements or nodes, or in enlarging the support of the discrete
basis functions (LOD, RPS, Gamblets, AL bases). In both cases, the result is a slightly denser
sparsity pattern of the corresponding systemmatrices which is due an increased communica-
tion between the degrees of freedom. This quasi-locality distinguishes the above numerical
homogenization methods from classical numerical multiscale methods based on homoge-
nization theory such as the Multiscale Finite Element Method (MsFEM) [21], the Two-Scale
Finite Element Method [28], or the Heterogeneous Multiscale Method (HMM) [42,43] that
share the communication pattern of standard finite element methods.

Quasi-locality also showed to be viable in connection with the pollution effect in high-
frequency time-harmonic wave propagation [4] which cannot be avoided unless themesh size
is coupled to, e.g., the polynomial degree [29–31] or the support of the basis functions [37] in
a logarithmic way. Promising results using non-local models have also been achieved in the
field of peridynamics [7,24,40] or in isogeometric analysis [6,22]. Moreover, quasi-locality
also includes the increased communication of higher-order finite element approaches.

3 Inverse Problem: Reconstruction of an Effective Model

Based on the considerations in the forward setting, we are now able to formulate the inverse
problem which reconstructs an effective model characterized by a stiffness matrix with a
certain sparsity behavior.

3.1 Problem Setting

Let us assume that the diffusion coefficient A is unknown and that structural assumptions
such as periodicity, quasi-periodicity, and given parameterization by few degrees of freedom
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are not satisfied a priori. In an ideal setting, information about solutions to problem (2) in the
form of a solution operator

L̃ := LA(·, f ) : X → V (15)

would be given. In practical applications, however, boundary data and information about the
corresponding solutions are only available on some (coarse) scale, possibly much larger than
the (micro) scale on which the diffusion coefficient and the corresponding solutions vary.
A classical formulation of the inverse problem, for a fixed right-hand side f , consists in
recovering A in (2) given the mapping

L̃eff := Leff
A (·, f ) : XH → VH (16)

which comprises coarse measurements of solutions to (2).
However, since the unknowncoefficient A includesmicroscopic features, a direct approach

of recovering A by simulations on the microscopic scale is computationally unfeasible and
does not provide reasonable reconstructions due to the mismatch between coarse data and a
possiblymicroscopic coefficient. In this section,we present an alternative approach to recover
information about the (macroscopic) effective model taking into account the presence of a
micro-scale diffusion coefficient. Rather than reconstructing the diffusion coefficient itself,
we tackle the reconstruction of an effective stiffness matrix that is able to reproduce the given
data related to solutions to (2). Therefore, the alternative formulation of the inverse problem
reads:

given L̃eff : XH → VH , find the corresponding stiffness matrix S̃H . (17)

This alternative inverse problem is built upon the assumption that coarse givenmeasurements
on the scale H may be represented by an effective mapping (up to order H ) based on
Theorem 1.

The effectivemodel corresponding to the reconstructedmatrix provides a reliable surrogate
that contains effective properties and that may be used for simulations on the coarse data
scale. Moreover, knowledge on numerical homogenization methods can, in a second step,
provide further information about, e.g., geometric features.

3.2 Medical Background

The considered inverse problems are of internal type, i.e., we assume that measure-
ments are available on the bulk domain. This setting is motivated by the use of
medical imaging protocols based on Magnetic Resonance Imaging (MRI), which play
a key role in modern diagnostics. Using strong magnetic fields, magnetic field gradi-
ents, and radio waves, MRI allows clinicians to obtain, in vivo and non-invasively (and
without exposing the body to radiation), both geometrical features of the body, e.g.,
shapes of the organs, and functional properties, e.g., motion or diffusion processes. As
an example, Magnetic Resonance Elastography (MRE) is an imaging technique which
is sensitive to mechanical parameters of the tissue. During an MRE examination, the
tissue undergoes an external mechanical excitation, imposed at given frequencies by
so-called actuators, attached to the surface of human tissues. In parallel, using phase-
contrast MRI, i.e., postprocessing the phase of the MRI signal, it is then possible
to measure the internal displacement of the tissue and hence to recover how shear
and compression waves propagate into the body [20,32,39]. In practice, MRE allows
to obtain average displacement fields on each element of a three-dimensional Carte-
sian mesh (a voxel), whose resolution is typically of the order of millimeters, and
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it is practically limited by the examination time and by the properties of the MRI
scanner.

Combining these data with a mechanical tissue model, it is then possible to recover infor-
mation about the elastic behavior of the tissue (a so-called elastogram). Clinical application
of MRE are based on reconstructing tissue properties only on an effective scale, i.e., describ-
ing the living tissue as a (visco-)elastic material with mechanical parameters varying only
on the coarse data scale. The procedure is currently used to diagnose and monitor tissue
diseases such as cancer and fibrosis, that are characterized by different tissue stiffnesses.
However, parameters describing the microscopic scales—such as tissue porosity and vascu-
lar structures—might play an important role in several applications, especially in the context
of poroelastic tissues [18,19]. In those cases, in order to characterize the microstructural
properties from coarse data, mathematical models defined on the effective scale—such as the
one proposed in Sect. 3.1—might provide a valuable alternative to efficiently take smaller
scales into account.

3.3 TheMinimization Problem

We formulate the inverse problem (17) as a minimization problem in the setM(�, TH ), i.e.,

find S̃∗
H = arg min

SH∈M(�,TH )
J̃H (SH ), (18)

where

J̃H (SH ) = 1

2

(
dist f (L̃

eff ,LSH )
)2

. (19)

Based on Theorem 1, we interpret the operator LSH (·, f ) : XH → VH as an effective model
which can be represented by a matrix of size m × n, i.e.,

Leff
SH = LSH (·, f ) =

(
1 − RT

H S−1
H ,0RH SH

)
Eb
H + RT

H S−1
H ,0RHMH FH ,

with FH := [ fH , fH , . . . , fH ] ∈ R
m×n and the identity matrix 1 ∈ R

m×m . The matrix
Leff
SH

comprises full information about the forward problem in the sense that it includes the

solutions of (11) for a complete set of basis functions of XH . The operator L̃eff may also
be interpreted as a matrix, so that the distance between the operators can be measured in
general matrix norms. This is especially useful since a splitting of the form (8) is generally
not known for L̃eff .

Let μ := dimM(�, TH ). Instead of (18), based on the matrix representation introduced
above we consider a minimization problem for the functional JH : Rμ → R defined by

JH (SH ) = 1

2

∥∥L̃eff
∥∥−2
Rm×n

∥∥L̃eff − Leff
SH

∥∥2
Rm×n . (20)

At this stage, the choice of the norm in R
m×n in (20) is arbitrary. The results that we will

show in Sect. 5 have been obtained using the Frobenius norm, which seems to be a natural
candidate.

3.4 Iterative Minimization

In order to find a minimizer of (20), we can now apply standard minimization techniques
such as the Newton method or the gradient descent method. Here, we adopt a Gauß–Newton
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method which, in our numerical computations, showed faster convergence in terms of number
of iterations.

In order to compute the descent direction, the most important step concerns the computa-
tion of the gradient of JH with respect to the relevant entries {si }μi=1 of SH (i.e., the diagonal
and the non-zero entries above the diagonal, due to symmetry). Using the chain rule, we
obtain

∂

∂si
JH (SH ) = −∥∥L̃eff

∥∥−2
Rm×n

(
L̃eff − Leff

SH

)
: ∂Leff

SH

∂si
. (21)

For the Gauß–Newton method, only the derivatives of Leff
SH

are needed, i.e.,

∂Leff
SH

∂si
= −RT

H

(
∂S−1

H ,0

∂si

)
RH (SH Eb

H − MH FH ) − RT
H S−1

H ,0RH

(
∂SH
∂si

)
Eb
H

= RT
H S−1

H ,0

(
∂SH ,0

∂si

)
S−1
H ,0RH (SH Eb

H − MH FH ) − RT
H S−1

H ,0RH

(
∂SH
∂si

)
Eb
H .

Here, the double dot product is defined by M : M̃ = trace(MM̃T ). The derivatives ∂SH
∂si

and
∂SH ,0
∂si

are relatively easy to compute, as they are defined as global matrices that only contain
at most two entries equal to 1.

For ease of notation, let us interpret Leff
SH

and SH as vectors in Rmn and Rm2
, respectively.

The Gauß–Newton method to minimize the functional JH is then defined by the following
steps.

– Let an initial matrix S0H ∈ M(�, TH ) be given.
– For k = 0, 1, . . . (until a certain stopping criterion is satisfied), solve

Hk pk =
[
DLeff

SkH

]T [
L̃eff − Leff

SkH

]
(22)

where D denotes the derivative with respect to the relevant entries of SH and

Hk =
[
DLeff

SkH

]T [
DLeff

SkH

]
.

– Set Pk ∈ M(�, TH ) as the matrix whose relevant entries are given by pk and define

Sk+1
H = SkH + δk Pk (23)

with appropriately chosen step size δk , for example using backtracking line search based
on the Armijo–Goldstein condition.

Due to the ill-posedness of the inverse problem, the matrix Hk might be singular. A possible
approach to overcome this issue consists in adding artificially a diagonal block, i.e., replacing
(22) by

(Hk + η1) pk =
[
DLeff

SkH

]T [
L̃eff − Leff

SkH

]
(24)

with a given parameter η > 0.
Another possible strategy consists in adding a regularization term to the functional to be

minimized, i.e., in replacing (20) by

JH (SH ) = 1

2

∥∥L̃eff
∥∥−2
Rm×n

∥∥L̃eff − Leff
SH

∥∥2
Rm×n + γ

2

∥∥Sreg − SH
∥∥2
Rm×m (25)

where γ > 0 is a given regularization parameter and Sreg is a regularization (or stabilization)
matrix. Additionally, the computations of the gradient in (21) need to be adapted accordingly.
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In the presence of multiple minimizers, this regularization enforces the solution to be close
(depending on the parameter γ ) to the matrix Sreg. For example, if the aim of the inverse
problem is to find defects in an otherwise homogeneous medium, a suitable choice for Sreg
could be a standard finite element stiffness matrix for a constant diffusion coefficient. In our
practical computations, the regularization approach described in (24) is better suited since
an appropriate regularization matrix Sreg is generally not known.

We emphasize that the presented inversion process does not need to resolve any micro-
scopic scales in order to obtain an effective numerical model. The information extracted by
this procedure (i.e., the stiffnessmatrix S̃H )may be used to simulate other problems subject to
the same (unknown) diffusion coefficient. Furthermore, the information gathered can be seen
as an intermediate step towards recovering information concerning the original coefficient
itself. This additional recovery step will be studied in a future work.

4 Justification of the Proposed Inverse Problem

This section is devoted to proving Theorem 1 in Sect. 2. In particular, we explicitly construct
an operator G as introduced in (4). We emphasize, however, that the explicit construction
is only to justify the reconstruction of an effective model. Apart from its communication
behavior, none of the specific properties used below are required for the inverse procedure.

4.1 Effective Forward Approximation Beyond Structural Assumptions

In this subsection, we use the multiscale technique known as Localized Orthogonal Decom-
position (LOD) [17,27] to obtain a coarse forward model on the scale H which produces
a forward operator that can be used as a replacement for LA as given in (6).

To this end, we discretize (3) in a suitable coarse multiscale space. Since the standard
space VH is not suitable for the approximation of u if H is larger than the spatial scale of the
microstructure, we enrich the coarse model with microscopic information about the problem
via corrections of classical finite element functions. The construction of these corrections
is based on a projective quasi-interpolation operator IH : V 0 → V 0

H with standard approx-
imation and stability properties, i.e., for an element T ∈ TH with diameter HT , it holds
that

‖H−1
T (v − IHv)‖L2(T ) + ‖∇ IHv‖L2(T ) ≤ C‖∇v‖L2(N(T )) (26)

for all v ∈ V 0, where the constant C is independent of H , and N(T ) := N1(T ) is the
neighborhood of T as defined in (14). Note that for shape-regular meshes the above estimate
also holds globally. For a particular choice of IH , see [9,12,23].

Based on IH , we define, for any element T ∈ TH and any function vH ∈ V 0
H , the element

correction CT vH ∈ W := Ker IH by

a(CT vH , w) =
∫
T
A∇vH · ∇w =: aT (vH , w) (27)

for all w ∈ W , and the full correction C : V 0
H → W by

C :=
∑
T∈TH

CT .
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Fig. 2 Illustration of a one-dimensional hat function and its correction for the coefficient A(x) = (2 +
sin(28πx))−1

By construction, it holds that
a((1 − C)vH , w) = 0 (28)

for all vH ∈ V 0
H and w ∈ W . The corrections CT vH have, in general, global support.

However, as shown in [17,36] (based on [27]) they decay exponentially fast (see also the
one-dimensional sketch in Fig. 2).

Therefore, we use localized element corrections CT ,�vH which are obtained by solving
(27) on local patches N�(T ) as defined in (14), i.e.,

a(CT ,�vH , w) = aT (vH , w) (29)

for all w ∈ W with w|Ω\N�(T ) = 0. As above, we define the full correction C� : V 0
H → W by

C� :=
∑
T∈TH

CT ,�.
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As shown in [17], we get, for any vH ∈ V 0
H ,

‖∇(C − C�)vH‖L2(Ω) ≤ Ce−c�‖∇vH‖L2(Ω). (30)

The constant c only depends on the contrast β/α, although this dependence seems pessimistic
in many cases of practical relevance [14,38]. For vH ∈ VH , we set CvH := CRvH and
C�vH := C�RvH .

Given a discretized extension operator Eb
H : XH → VH and the corresponding restriction

operator RH : VH → V 0
H as defined in Sect. 2.2, the discretized version of (3) reads: find

uH = RHuH + Eb
Hu

0
H ∈ VH such that

a((1 − C�)RHuH , (1 − C�)vH ) = ( fH , vH ) − a(Eb
Hu

0, (1 − C�)vH ) (31)

for all vH ∈ V 0
H . In (31), fH := ΠH f is the L2 projection of f onto VH , and u0 ∈ XH .

4.2 Error Estimates

The following theorem shows that the approximation error of the presented approach scales
optimally with H and that it is independent of the variations of the diffusion coefficient.

Theorem 2 (Error of the forward effective model) Let u ∈ V be the solution of (2) and uH ∈
VH the solution of (31), for given boundary data u0 ∈ XH , a right-hand side f ∈ L2(Ω),
as well as an oversampling parameter �.

For g ∈ L2(Ω), let û(g) ∈ V denote the solution of (2) with right-hand side g and
boundary condition u0 = 0, and let us introduce the worst-case best-approximation error

wcba(A, TH ) := sup
g∈L2(Ω)\{0}

inf
vH∈V 0

H

‖Rû(g) − vH‖L2(Ω)

‖g‖L2(Ω)

.

It holds

‖u − uH‖L2(Ω) �
(
H2 + e−c� + wcba(A, TH )

) (‖ f ‖L2(Ω) + ‖u0‖X
)
.

Proof We split the error u − uH = (u − ūH ) + (ūH − ũH ) + (ũH − uH ) with the solutions
ūH and ũH of the auxiliary problems

a(RH ūH , (1 − C)vH ) = ( f , vH ) − a(Eb
Hu

0, (1 − C)vH )

and
a(RH ũH , (1 − C�)vH ) = ( fH , vH ) − a(Eb

Hu
0, (1 − C�)vH ).

To bound eH := uH − ũH , we observe that

a((1− C�)eH , (1− C�)vH ) = a(C�RH ũH , (1− C�)vH ) = a(C�RH ũH , (C − C�)vH ), (32)

by the orthogonality property (28). For the next steps, we require the identity

vH = IH (1 − C�)vH , (33)

which follows from the fact that C�vH ∈ W = Ker IH and thus IHC�vH = 0.
Testing with vH = eH in (32) and using (30) as well as

‖∇eH‖L2(Ω) = ‖∇ IH (1 − C�)eH‖L2(Ω) � ‖A1/2∇(1 − C�)eH‖L2(Ω),
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Fig. 3 Left: An example of a microscopic coefficient. Right: Comparison of the finite element method and the
LOD on Ω = [0, 1]2 for f = 1, u0 = 0, and � = 2 for the solution of the diffusion problem corresponding
to the depicted scalar coefficient. The dashed line indicates linear convergence

we obtain

‖A1/2∇(1 − C�)eH‖2L2(Ω)
= a((1 − C�)eH , (1 − C�)eH )

= a(C�RH ũH , (C − C�)eH )

� e−c�‖∇C�RH ũH‖L2(Ω)‖A1/2∇(1 − C�)eH‖L2(Ω).

Further, it follows that

‖eH‖L2(Ω) � ‖A1/2∇(1 − C�)eH‖L2(Ω) � e−c� (‖ f ‖L2(Ω) + ‖u0‖X
)

(34)

where we use (33) and (26). As a next step, we bound ēH := ũH − ūH . We note that

a(ēH , (1 − C)vH ) = a(RH ũH + Eb
Hu

0, (C� − C)vH )

for any vH ∈ V 0
H . With vH = ēH and similar arguments as above, we obtain

‖ēH‖L2(Ω) � ‖A1/2∇(1 − C)ēH‖L2(Ω) � e−c� (‖ f ‖L2(Ω) + ‖u0‖X
)
. (35)

The error u − ūH can be estimated using [12, Prop. 1] which also holds for inhomogeneous
Dirichlet boundary conditions, i.e.,

‖u − ūH‖L2(Ω) �
(
H2 + wcba(A, TH )

) (‖ f ‖L2(Ω) + ‖u0‖X
)
. (36)

The triangle inequality, (34), (35), and (36) yield the desired estimate. ��
To illustrate the advantage of the LOD, Fig. 3 shows the error between the numerical solution
on a microscopic scale and the numerical solutions using the LOD and a classical finite
element approximation on a coarse scale, respectively. The finite element method suffers
from pre-asymptotic effects when the micro scale is not resolved, while the LOD produces
a finite element function with much better approximation properties.

We emphasize that, choosing � large enough (i.e., � � | log H |), it holds e−c� � H or
even e−c� � H2. As discussed in [12], the worst-case best-approximation error is at least
O(H), and it scales possibly even better with H for certain pre-asymptotic regimes. In this
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work, we are mainly interested in solving the inverse problem and do not focus on optimizing
the error estimates derived above.

We can now define the discretized operator corresponding to (31) by

Leff
A,� : XH × L2(Ω) → VH ,

(u0, f ) �→ uH , where uH solves (31). (37)

Using Theorem 2 and the distance function defined in (9), we obtain the following result.

Corollary 1 (Error of the effective forward operator) Let � � | log H |. Then it holds
dist f (LA,Leff

A,�) � H .

4.3 Reformulation Using the Effective Stiffness Matrix

As described in Sect. 2.3, we can alternatively represent the operator Leff
A,� using the stiff-

ness matrix corresponding to the discrete formulation (31). Given a coefficient A ∈ A, the
corresponding LOD stiffness matrix S�

H (A) is defined by

S�
H (A)[i, j] := a((1 − C�)�z j , (1 − C�)�zi ), for i, j ∈ {1, . . . ,m}, (38)

with the ordering i �→ zi as in (10). Further, the set of LOD stiffness matrices with oversam-
pling parameter � based on admissible coefficients is given by

S(�, TH ) :=
{
S�
H (A) ∈ R

m×m
sym : A ∈ A

}
. (39)

By construction of the correctors C� in (29), it holds S(�, TH ) ⊆ M(�, TH ) with the set
M(�, TH ) defined in Sect. 2.

We can now prove the following lemma using the operator defined in (11).

Lemma 1 (Alternative representation of the effective forward operator) Let S�
H (A) ∈

S(�, TH ) be the LOD stiffness matrix corresponding to (31). Assume that Eb fulfills
C�Eb

Hv0 = C�Eb|XH v0 = 0 for any v0 ∈ XH . Then it holds

LS�
H (A)(u

0, f ) = Leff
A,�(u

0, f ) (40)

for all u0 ∈ XH , f ∈ L2(Ω).

Proof Write uH = ∑m
j=1 u j�z j and observe that (31) is equivalent to∑

j : z j �⊂∂Ω

u j a((1 − C�)RH�z j , (1 − C�)�zi ) = ( fH ,�zi ) − a(Eb
Hu

0, (1 − C�)�zi ) (41)

for all i ∈ {k : zk �⊂ ∂Ω}. Inserting fH = ∑m
j=1 f j�zi , using the fact that

a(Eb
Hu

0, (1 − C�)vH ) = a((1 − C�)E
b
Hu

0, (1 − C�)vH )

for any vH ∈ V 0
H , and the definition (38), we can write Eq. (41) as

S�
H ,0(A)RHuH = RHMH fH − RH S�

H (A)Eb
Hu

0,

which shows (40). ��
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Remark 2 Natural choices for the extension operator Eb, in order to fulfill the assumptions
of Lemma 1, are those that extend functions in XH to functions in VH that are only supported
on one layer of elements away from the boundary. In the numerical study presented in Sect. 5,
we use the discrete extension operator Eb

H that maps a nodal basis function on the boundary
to the corresponding nodal basis function in the whole domain.

Lemma 1 and Corollary 1 show that the operators LA(·, f ) and LS�
H (A)(·, f ) are close as

operators from XH to V if � is chosen large enough. This property is essentially the message
of Theorem 1 in Sect. 2. In particular, the theorem holds with the explicit choice G := 1−C�.

5 Numerical Experiments

In this section, we present some numerical experiments that illustrate the capability of the
proposed method. The inverse problem is based on synthetic data, i.e., the coarse measure-
ments used to feed the inversion algorithm are obtained from finite element solutions of (2) in
Vh , defined on a mesh with mesh size h = √

2 · 2−9, that resolve the micro-scale features of
the diffusion coefficient. Furthermore, the data are perturbed by multiplicative, independent
and uniformly distributed randomnoisewith intensity up to 5%. For the iterative optimization
in the following study, we employ the regularization strategy defined in (24) with η = 0.001.
The remaining parameters used to run the inversion algorithm are included below.

5.1 Example 1: Full Boundary Data

In the first experiment, we assume to have full information on the operator (matrix) L̃eff ,
i.e., we assume that measurements in Ω on the coarse scale H = √

2 · 2−5 for a complete
basis of XH are available. The scalar coefficient A for which the effective behavior should
be recovered is constant on a mesh Tε with ε = √

2 · 2−7 and the value on each element is
independently obtained as a uniformly distributed random number between 1 and 50, i.e., for
any T ∈ Tε we have A|T ∼ U (1, 50) (see Fig. 4, left, for the explicit sample used here). We
set f = 1 and start the inverse iteration with the finite element stiffness matrix S0H based on
the constant coefficient with value 1.

The values of the functional JH in the first 20 iterations of the inversion algorithm are
given in Fig. 4 (right). In particular, we compare the performance of a local approach based
onmatrices inM(0, TH )with the sparsity pattern of, e.g., a standard first-order finite element
method, the HMM, or the Two-Scale Finite Element Method, with a quasi-local approach
based onmatrices inM(�, TH ) for � ∈ {1, 2, 3}. One clearly sees that slightly deviating from
locality leads to better results in terms of decrease and value of the error functional JH . In
particular, for � = 0 the functional seems to reach a stagnation relatively quickly, while the
results significantly improve when increasing the value of �.

A necessary validation step, in order to further investigate the behavior dependent on �,
consists in solving a diffusion problem using the stiffness matrices reconstructed with using
different sparsity patterns, and comparing the resulting numerical solutions with the finite
element functions from which the measurements were taken to feed the inversion algorithm.
The outcome of this assessment is shown in Fig. 5, focusing on the cross sections at x2 = 0.5
(left) and at x1 = 0.5 (right) of the numerical approximations corresponding to the boundary
condition u0(x1, x2) = x1. Figure 6 depicts the same cross sections when a random boundary
condition u0 ∈ XH is considered.
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Fig. 4 Left: Diffusion coefficient in Example 1. Right: Values of JH in the first 20 iterations of the inversion
algorithm, using sparsity patterns based on local matrices ( , dotted) and quasi-local matrices with � = 1 ( ),
� = 2 ( ), � = 3 ( ) (Color figure online)

Fig. 5 Cross sections of reconstructed functions with boundary condition u0(x1, x2) = x1 based on local
stiffness matrices ( , dotted) and quasi-local ones with � = 1 ( ), � = 2 ( ), � = 3 ( ) for Example 1
obtained from full boundary data. The corresponding microscopic FE function ( , dashed) is depicted as a
reference. Left: Cross section at x2 = 0.5. Right: Cross section at x1 = 0.5 (Color figure online)

Fig. 6 Cross sections of reconstructed functions with random boundary condition u0 ∈ XH based on local
stiffness matrices ( , dotted) and quasi-local ones with � = 1 ( ), � = 2 ( ), � = 3 ( ) for Example 1 obtained
from full boundary data. The corresponding microscopic FE function ( , dashed) is depicted as reference.
Left: Cross section at x2 = 0.5. Right: Cross section at x1 = 0.5 (Color figure online)
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Fig. 7 Cross sections at x2 = 0.5 of reconstructed functions with homogeneous Dirichlet boundary conditions
based on local stiffness matrices ( , dotted) and quasi-local ones with � = 1 ( ), � = 2 ( ), � = 3 ( ). The
corresponding microscopic FE functions ( , dashed) are given as a reference but were not part of the input
data. Left: Right-hand side g1. Right: Right-hand side g2 (Color figure online)

Besides the accuracy of the numerical approximations computed based on the recovered
stiffness matrices, it is also important to assess the robustness of the reconstructed effective
model, i.e., to investigate to which extent the coarsened information about the diffusion
coefficient encoded in the stiffness matrix can be used to simulate other scenarios.

For this purpose, we employ the reconstructed stiffness matrices to simulate a diffusion
problem with two different right-hand sides, i.e.,

g1(x1, x2) = 20 (1{x1<0.5} x1 + 1{x1≥0.5} (1 − x1))(1{x2<0.5} x2 + 1{x2≥0.5} (1 − x2))

and
g2(x1, x2) = 101{x1≥0.5},

and compare the numerical results with the corresponding microscopic solution using the
diffusion coefficient depicted in Fig. 4 (left). In both cases, homogeneous Dirichlet boundary
conditions are imposed on the outer boundaries.

Representative cross sections of the numerical approximations obtained based on the
reconstructed stiffness matrices, compared to the corresponding microscopic solutions, are
shown in Fig. 7. The numerical results indicate that robustness can be assured only with some
moderate quasi-locality. Moreover, as in the previous experiments, the quality of the results
improves if � is increased.

5.2 Example 2: Incomplete Boundary Data

Next, we consider a more realistic case where the operator L̃eff is only partially known. In
practice, this means that coarse measurements inΩ are available only for q distinct boundary
conditions in XH (q < dim XH ). In our numerical examples, this lack of information is
modeled choosing q distinct functions in XH with independent and uniformly distributed
random values between 0 and 1. In this setting, the aim is to find an effective model that
not only fits the given data, but that is also able to reproduce the coarse behavior for other
boundary conditions not considered as input data.

The scalar coefficient A whose corresponding stiffness matrix should be recovered is
shown in Fig. 8 (left). We set H = √

2 · 2−5, f = 1, q = 40, and the initial matrix S0H
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Fig. 8 Left: Diffusion coefficient in Example 2. Right: Values of JH in the first 20 iterations of the inversion
algorithm with the randomized approach based on local matrices ( , dotted) and quasi-local matrices with
� = 1 ( ), � = 2 ( ), � = 3 ( ) (Color figure online)

is defined as the finite element stiffness matrix based on an independent and uniformly
distributed random coefficient on the coarse scale H with values between 0.1 and 10.

We adapt the randomized approach used in [34] in the context of deep learning. Namely,
in each iteration step, we randomly choose half of the available data to compute the new
search direction, whereas we use all available data for the line search and for the evaluation
of the functional JH . The values of the error functional JH in the first 20 iterations of the
inversion algorithm are shown in Fig. 8 (right). One can observe that classical local stiffness
matrices and even the quasi-local approach with � = 1 cannot significantly improve the
results obtained with the initial guess, while quasi-local matrices with � ≥ 2 are able to
reduce the values of the functional up to a certain degree.

As in the previous subsection, we validate the outcome of the inversion algorithm by
solving a diffusion problem using the reconstructed stiffness matrices and comparing the
numerical results with the corresponding microscopic finite element solutions. The cross
sections at x2 = 0.5 and x1 = 0.5 of the numerical approximations using the different
stiffness matrices are shown in Fig. 9, for the case with boundary condition u0(x1, x2) = x1.
We emphasize that, in this setting, neither the reference finite element function (black dotted
line in Fig. 9) nor a coarse measurement from it were part of the input data.

For a further comparison, we also present in Fig. 10 the same cross sections of the numer-
ical solutions obtained from the stiffness matrices using a full-data approach, i.e., when all
available data (40 measurements) are used in every step to compute the new search direc-
tion. Moreover, a comparison of the values of the error functional is shown in Fig. 11. The
reconstructed matrices behave similarly to the ones obtained with the randomized approach.
However, even for � ≥ 2, the full-data approach leads to a stagnation relatively quickly,
whereas the randomized strategy is generally more robust in the case of incomplete boundary
data and the included randomness results in smaller values of the error functional. Further,
the randomized strategy requires less computational effort. In the presented example, we
observed—employing the randomized strategy—a speed-up by a factor of about 1.7. For
further numerical experiments, see also [25, Ch. 4].
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Fig. 9 Cross sections of reconstructed functions with boundary condition u0(x1, x2) = x1 based on local
stiffness matrices ( , dotted) and quasi-local ones with � = 1 ( ), � = 2 ( ), � = 3 ( ) for Example 2
obtained from incomplete boundary data and the randomized approach. The corresponding microscopic FE
function ( , dashed) is depicted as a reference but was not part of the input data. Left: Cross section at x2 = 0.5.
Right: Cross section at x1 = 0.5 (Color figure online)

5.3 Discussion

The presented inversion results demonstrate that the reconstruction of the stiffness matrix
assuming a local sparsity pattern with communication only between neighboring degrees of
freedom does not allow us to capture effective features of the microscopic problem, while
the reconstruction based on a quasi-local approach, especially with � ≥ 2, is able to mimic
the effective behavior.

Furthermore, some quasi-locality appears to allow for robustness with respect to dif-
ferent right-hand sides, a property which allows us to employ the reconstructed effective
model for the simulation of other scenarios, assuming that the microscopic properties remain
unchanged.

Our experiments also indicate that a lower bound on � seems to be necessary similar to
the forward setting, where � needs to be increased for smaller values of H (� � | log H |)
to obtain improvements in the first place. In that sense, our findings also deviate from the
numerical results in [13] which indicate that truly local numerical homogenization might
always be possible.

6 Conclusion

We proposed a strategy to reconstruct the effective behavior of solutions of a multiscale PDE
model which involves a coefficient varying on amicroscopic scale. The approach ismotivated
by the effective models (represented by effective stiffness matrices) obtained by numerical
homogenization. The aim is to provide a first step towards a reasonable surrogate in the
inverse multiscale setting, which is characterized by a mismatch between coarse data scale
and microscopic quantities. The method relies on a quasi-local behavior in the sense that the
reconstructed system matrices have a slightly denser sparsity pattern than standard finite ele-
ment matrices, and this allows us to recover the behavior related to characteristic microscopic
features of the solutions without requiring numerical computations on the microscopic scale.
The method has been numerically validated on a prototypical model problem, considering a
stationary linear elliptic diffusion problem with inhomogeneous boundary conditions. Fur-
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Fig. 10 Cross sections of reconstructed functions with boundary condition u0(x1, x2) = x1 based on local
stiffness matrices ( , dotted) and quasi-local ones with � = 1 ( ), � = 2 ( ), � = 3 ( ) for Example 2 obtained
from incomplete boundary data and the full-data approach. The corresponding microscopic FE function ( ,
dashed) is depicted as a reference but was not part of the input data. Left: Cross section at x2 = 0.5. Right:
Cross section at x1 = 0.5 (Color figure online)

Fig. 11 Left: Values of JH in Example 2 in the first 20 iterations of the inversion algorithm with the full-data
approach based on local matrices ( , dotted) and quasi-local matrices with � = 1 ( ), � = 2 ( ), � = 3
( ). Right: Comparison of the values of JH for the full-data approach (dotted line) and the randomized
approach (solid line) for � = 2 ( ) and � = 3 ( ) (Color figure online)

ther, even the case of incomplete boundary data can be handled and ideas from learning-type
methods may be adopted.

A possible future extension of the approach includes the identification of further infor-
mation about the underlying coefficient, e.g., geometric features, based on the reconstructed
effective models. Further, more involved combinations with learning-type techniques to deal
with incomplete data could be studied, as well as adaptivity with respect to the parameter �.
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