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Abstract
The planning and design of buildings and civil engineering concrete structures constitutes a complex problem subject to
constraints, for instance, limit state constraints from design codes, evaluated by expensive computations such as finite
element (FE) simulations. Traditionally, the focus has been on minimizing costs exclusively, while the current trend calls for
good trade-offs of multiple criteria such as sustainability, buildability, and performance, which can typically be computed
cheaply from the design parameters. Multi-objective methods can provide more relevant design strategies to find such
trade-offs. However, the potential of multi-objective optimization methods remains unexploited in structural concrete design
practice, as the expensiveness of structural design problems severely limits the scope of applicable algorithms. Bayesian
optimization has emerged as an efficient approach to optimizing expensive functions, but it has not been, to the best of our
knowledge, applied to constrained multi-objective optimization of structural concrete design problems. In this work, we
develop a Bayesian optimization framework explicitly exploiting the features inherent to structural design problems, that is,
expensive constraints and cheap objectives. The framework is evaluated on a generic case of structural design of a reinforced
concrete (RC) beam, taking into account sustainability, buildability, and performance objectives, and is benchmarked against
the well-known Non-dominated Sorting Genetic Algorithm II (NSGA-II) and a random search procedure. The results
show that the Bayesian algorithm performs considerably better in terms of rate-of-improvement, final solution quality, and
variance across repeated runs, which suggests it is well-suited for multi-objective constrained optimization problems in
structural design.

Keywords Structural design · Multi-objective optimization · Bayesian optimization · Reinforced concrete beam ·
Sustainability · Buildability

1 Introduction

The construction, operation, and maintenance of civil
engineering and building structures account for not only
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very large costs, but also major negative environmental
and social impacts in terms of the tremendous material
consumption, as well as health and safety issues often
associated with construction activities.

Today, it becomes increasingly important to take var-
ious objectives into account to improve buildability and
performance of structures and reduce their economic, envi-
ronmental, and social impacts in a life cycle perspective.
Nevertheless, in the early structural design process, when
the possibility to influence the outcome is the largest,
the traditional practice is to focus solely on the lowest
initial costs, see, e.g., International Federation for Structural
Concrete (2009), Mathern et al. (2013), and World Eco-
nomic Forum (2016). Cost optimization is often conducted
by means of employing a point-based incremental improve-
ment strategy, relying on trial-and-error and the designer’s
intuition, see, e.g., Parrish (2009) and Maher (1987). This
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approach overlooks potentially better design solutions and
neglects other relevant objectives than cost.

A better alternative is to take into account many different
aspects simultaneously in the design process to find the
most efficient design solution with regard to all relevant
objectives simultaneously. Finding the most appropriate
design for the set of objectives considered requires modern
design methods that allow to explore many design choices
and evaluate them against these objectives.

Multi-objective optimization concerns the problem of
simultaneously maximizing the utility values of multiple,
typically conflicting, objective functions (Tamaki et al.
1996). For engineering applications, this setting is generally
more common than the single-objective setting as usually
many objectives have to be balanced (Nakayama 2005), e.g.,
the cost and performance of a construction. Typically, the
different objectives are conflicting, which is why no single
solution exists and hence instead the challenge becomes
to retrieve a set of solutions providing a human decision
maker with a set of diverse objective trade-offs (Vlennet
et al. 1996). Additionally, in real-world optimization
applications, constraints are generally imposed on the
candidate solutions, which may render individual solutions
infeasible despite exhibiting favorable objective values (Deb
et al. 2001). In structural design, such constraints take
the form of requirements defined by structural norms and
standards such as the Eurocodes (European Committee
for Standardization 2005). Appropriate structural and load
models are required to determine the design effects of
actions and verify the associated design constraints in
ultimate limit states (ULS) and serviceability limit states
(SLS).

Mathematically, we are interested in solving the problem:

min
x

(f1(x), . . . , fm(x)) (1a)

s.t . gj (x) ≤ 0, (1b)

x ∈ R
D, (1c)

where fi , i = 1, . . . , m, are objective functions, gj , j =
1, . . . , n, are constraint functions, and the variable x is a D-
dimensional real valued input. Given a set of multi-objective
solutions retrieved by some kind of search procedure,
the quality of individual solutions is often classified in
terms of Pareto optimality. Again, assuming minimization
of m objectives subject to n constraints according to (1),
a feasible solution x∗ is said to be Pareto optimal, or
equivalently, non-dominated, if there does not exist another
feasible x such that fi(x) ≤ fi(x

∗) for all i ∈ {1, 2, . . . , m}
and fj (x) < fj (x

∗) for at least one j (Miettinen 2012).
Structural optimization problems for RC structures are

characterized by their evaluation expensiveness. The veri-
fication of the constraints, in particular, is often associated

with relatively expensive computations, involving structural
analysis with 2D or 3D finite element (FE) models and pos-
sibly a large number of load combinations (e.g., in bridge
design). In order to compute high-quality solutions in a fea-
sible amount of time, the constraint evaluations require a
high degree of efficiency in the optimization process; hence,
the number of applicable algorithms is severely limited.

Bayesian optimization has emerged as a capable
approach to optimizing expensive functions by iteratively
constructing a probabilistic surrogate model of the underly-
ing target function, and has had many previous successful
applications (Snoek et al. 2012; Calandra et al. 2016; Imani
and Ghoreishi 2020). An acquisition function is used to
translate the surrogate model to a metric reflecting poten-
tial for improvement, which is in turn used to guide the
optimizer toward a promising new query point. Bayesian
methods are designed to be efficient in terms of func-
tion evaluations, but in turn require extensive computational
resources on the modelling side, which of course needs to
be balanced against the computational time of the underly-
ing function. Bayesian optimization has also been extended
to constrained problems (Bernardo et al. 2011; Snoek 2013;
Gelbart et al. 2014), and to multi-objective settings (Zuluaga
et al. 2013).

Structural optimization of RC structures has been
examined previously. Various evolutionary algorithms
have been studied (Jahjouh et al. 2013; Mergos and
Mantoglou 2020), however without explicitly dealing with
the expensiveness aspect of the problem. In order to deal
with expensiveness, Penadés-Plà et al. (2019) suggest fitting
a constraint-weighted surrogate model to prior evaluations
sampled from a latin-hypercube, whereafter the surrogate
is optimized in order to select the final design. In contrast
to this approach, Bayesian optimization allows surrogate
models to be constructed sequentially, utilizing information
from prior evaluations at each iteration, while guiding the
search procedure, which should decrease the sensitivity to
poor initialization.

The aim of this paper is to study the applicability and
efficiency of a state-of-the-art constrained Bayesian opti-
mization algorithm on a generic structural design case. The
benchmark problem considered consists of structurally opti-
mizing a doubly reinforced concrete beam over a number of
design parameters (i.e., dimensions, reinforcement layout,
material type) with respect to objective functions covering
economic, environmental, and social factors, buildability,
and performance aspects of the design options, while fulfill-
ing structural design constraints according to design codes.
Two other optimization algorithms are also applied for com-
parison: the commonly applied NSGA-II (Deb et al. 2002),
which is a genetic algorithm specifically targeting multi-
objective problems, and a slightly modified random search
algorithm.
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Fig. 1 Drawing of the RC beam considered as design case with
indication of the index of the design parameters (see Table 1)

2Method

2.1 Design case definition

The structural design case considered in this work is the
one of a RC beam, as illustrated in Fig. 1. The beam is
simply supported with an effective span length (Lspan) of
14 m. It is designed for two uniformly distributed loads: a
characteristic permanent load gk = 12 kN/m + gsw, where
gsw corresponds to the self-weight of the beam per unit
length (assuming densities of 24 kN/m3 and 78.5 kN/m3

for concrete and steel, respectively), and a characteristic
variable load qk = 18 kN/m. This design case was chosen

for its simplicity and because the structural design process
for a RC beam constitutes the basis of many more complex
common structural engineering cases (e.g., design of parts
of buildings’ structural systems, of RC beam bridges, of RC
wailing beams for support of sheet pile walls). The design
parameters considered and their possible values, detailed in
Table 1, generate a design space consisting of more than 186
million possible configurations.

2.2 Structural design

The structural analysis was conducted in accordance with
Eurocode 2 (European Committee for Standardization
2004) considering bending and shear in ULS and deflection
control in SLS. Bending is checked taking into account the
parabola-rectangle diagram for concrete under compression
and the design stress-strain diagram with an inclined top
branch for reinforcing steel under tension and compression.
The resulting design constraints are described in Table 2.
Crack control and anchorage of longitudinal reinforcement
are not included in this study.

2.3 Evaluation of sustainability, performance, and
buildability

The objective functions taken into account in the evaluation
of a design choice are described in Table 3. These were
carefully chosen to address the aim of this work, while
being relevant to building or civil engineering design cases
regardless of their complexity. All objective functions are to
be minimized in the optimization process. Unit values used
in the evaluation of the different objectives are described in
Appendix 1.

The first objective function, f1(x), corresponds to the
total production cost, C, which is estimated as the sum of
the cost of materials, Cm, and the cost of labor, Cw, for the

Table 1 Set of design parameters and possible values

Design parameters Index Values

Concrete Strength class x1 15 values: 14 classes from European Committee for Standardization (2004) and C100/115

Beam Height (mm) x2 21 values in [500, 1500] with step of 50

Width (mm) x3 10 values in [150, 600] with step of 50

Longitudinal bars Diameter (mm) x4 6 values: 12, 14, 16, 20, 25 and 32

No. of bars (top) x5 13 values in [2, 14] with step of 1

No. of bars (bottom) x6 19 values in [2, 20] with step of 1

Stirrups Diameter (mm) x7 5 values: 6, 8, 10, 12 and 14

Spacing (mm) x8 8 values in [100, 450] with step of 50
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Table 2 Set of design constraints

Design constraints Index Definition

Geometry and buildability Placing of longitudinal bars g1 Number of bar layers − 3 ≤ 0, to ensure that bars fit (in
max. 3 layers)

according to detailing rules from European Committee for
Standardization (2004)

Ultimate limit state (ULS) Bending resistance g2 MEd − MRd ≤ 0

Shear resistance g3 VEd − VRd ≤ 0

Serviceability limit state (SLS) Deflection control g4 dmax − Lspan/250 ≤ 0

related construction works:

f1(x) := C(x) = Cm(x) + Cw(x). (2)

The material cost, Cm, is equal to the unit price, pm,i , for
each material i (i.e., concrete, steel, and form) times the
respective material quantity, Qm,i . That is:

Cm(x) =
∑

i

pm,i · Qm,i(x), (3)

and the cost of construction works, Cw, is equal to the
unit labor cost, pw, times the time required for construction
work, Tw:

Cw(x) = pw · Tw(x). (4)

The time of construction works, Tw, which also corresponds
to the third objective function, f3(x), is calculated
according to (5). It is the sum of the unit time for the
construction activity associated with each material times the
respective material quantity:

f3(x) := Tw(x) =
∑

i

tm,i · Qm,i(x), (5)

where tm,i refers to the unit construction time for the
activities related to each material.

In addition to the construction time, another objective
function related to buildability is considered: the height
of the beam, f4(x). This choice is also motivated by
the interest, in this work, of using an objective function
directly equal to one of the design parameters and strongly
conflicting with some others.

The second objective function, f2(x), corresponds to the
aggregated life cycle analysis (LCA) result for the 16 impact
categories using the normalization and weighting factors
defined in the European Product Environmental Footprint
(Sala et al. 2017, 2018) considering the life cycle stages A1–
A3 (material production) and A4 (transportation to the site)
(European Committee for Standardization 2019). Impact
categories in both the environmental dimension (e.g., cli-
mate change, ozone depletion, acidification) and the social
dimension (e.g., water use, human health) are covered.

Finally, the fifth objective function, f5(x), is equal to
the maximum deflection of the beam at mid-span, dmax .

Although the maximum deflection is limited by design
codes, which results in a design constraint, it is interesting
to include it as an objective as well, as there may be reasons,
when it comes to performance or safety, to optimize design
options beyond the design requirements set in the codes.

2.4 Formalizing the problem

In this paper, we consider the problem of structurally
optimizing a RC beam over the 8 design parameters
(x1, . . . , x8) specified in Table 1 with respect to the
5 objective functions (f1, . . . , f5) described in Table 3.
Furthermore, each design candidate is obliged to pass three
(g1, g2, g3) of the four constraints in Table 2 during the
structural analysis procedure described in Section 2.2. The
remaining constraint g4, directly corresponding to objective
f5, is left out for implementation reasons.

As the design parameters are either discrete or categorical
(but of ordinal type), each parameter value is chosen to
be represented by a non-negative integer index value of
its discrete domain. The allowed input space in (1c) hence
becomes x ∈ B8 ⊂ Z

8
≥0, where B8 is an 8-dimensional

integer-valued hypercube, with the length of each side given
by the number of allowed values per design parameter in
Table 1.

For the objectives, all functions are to be minimized
and no modifications of the problem specified in (1a) are
needed, using the case of m = 5.

Table 3 Set of objective functions considered

Objective functions Index

Economic Production cost f1

Environmental and social Aggregated LCA result f2

Buildability Construction time f3

Height of the beam f4

Performance Mid-span deflection of the beam f5
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As previously declared, the three constraint functions
g1, g2, and g3 in Table 2 are considered. Furthermore,
the routine for evaluating the beam constraints imposes a
conditional structure on the evaluations of the constraint
functions where g2 and g3 may only be evaluated if g1 is
satisfied.

With these modifications, the problem in (1) is restated
as:

min
x

(f1(x), . . . , f5(x)) (6a)

s.t . gj (x) ≤ 0, j = 1, . . . , 3, (6b)

x ∈ B8 ⊂ Z
8
≥0, (6c)

which defines the optimization problem that is examined.
The constraint functions gj in (6b) are assumed to be
prohibitively expensive to evaluate due to underlying
numerical computations. In contrast, the objective functions
in (6a) are assumed to have known analytical expression that
allow for cheap evaluation.

In order to determine the quality of a solution set in multi-
objective problems, the hypervolume indicator measure is
commonly employed.

Given a finite set of t objective points, F =
{f (1), . . . , f (t)} ⊂ R

m the hypervolume indicator (Zitzler
and Thiele 1999), denoted HV, measures the volume of the
subspace dominated by F , given a from above bounding
reference point r ∈ R

m:

HV(F, r) := λm(∪f ∈F [f , r]), (7)

where λm is the Lebesgue measure on R
m.

Typically, the objective values are normalized to [0, 1]m,
so that we emphasize all objective functions equally while
working with the hypervolume indicator. Furthermore, a
reference point r = 1m can be used. This, however,
implies that the minimum and maximum values of each
unconstrained objective functions are known beforehand,
which may be reasonable considering that the evaluations
of the objective functions are cheap. If this is the case,
objective values can be normalized by:

f̂i (x) := f (x) − fi∗
f ∗

i − fi∗
, i = 1, . . . , m, (8)

where f ∗
i = maxx∈B8 fi(x) and fi∗ = minx∈B8 fi(x). If

these values are not known on beforehand, the normalized
objective values may be recomputed from (8) whenever a
new minimum or maximum solution is encountered.

2.5 Examined algorithms

Three different optimization algorithms are employed to
solve the problem defined in (6), as introduced here.
Additional details on the implementation are provided in
Appendix 2.

2.5.1 Bayesian algorithm

Gelbart et al. (2014) proposed a Bayesian optimization
approach to expensive, unknown-constraint optimization.
To solve a one-dimensional optimization problem with n

unknown constraints, the authors suggested using a separate
Gaussian process (see Rasmussen 2004) surrogate model
for the objective and each constraint, while employing a
constraint-weighted acquisition function of the form:

a(x) := EI(x)

n∏

j=1

Pr(−gGP
j (x) ≥ 0), (9)

where EI is the standard expected improvement acquisition
function, Pr is the probabilistic probability function for
constraint satisfaction, and gGP

j is the Gaussian process
surrogate model of constraint function gj . In this work,
this method is expanded upon to handle the multi-objective
setting with cheap objective evaluations.

Considering the cheapness of the objective functions, EI
in (9) may be replaced with actual improvement I, i.e.,
I(x) = f (x) − fbest , as there is no need in constructing
surrogates for non-expensive functions.

We now wish to extend (9) to the multi-objective setting.
By using the hypervolume indicator definition as stated in
(7), the hypervolume improvement may be defined as:

HVI(f (x);F, r) := HV({f (x)}∪F, r)−HV(F, r). (10)

Finally, the acquisition function of (9) is restated as:

a(x) := HVI(f (x);F, r)

n∏

j=1

Pr(−gGP
j (x) ≥ 0), (11)

now adapted to the cheap and multiple-objective setting,
as in problem (6). A flowchart of the proposed Bayesian
algorithm is presented in Fig. 2.

A common procedure to optimize the acquisition func-
tion in Bayesian optimization is to start with initialization of
randomized points and thereafter utilize local search. How-
ever, a by-product of the definition of HVI (10) is that as
soon as a decently estimated Pareto front is found, the HVI
is equal to zero for many x. This generally risks trapping
the search algorithm in these regions. In order to alleviate
this problem, we implement a pattern search (Torczon 1997)
algorithm including a tie-breaking strategy for inputs with
zero HVI. See Appendix 2 for details.

2.5.2 NSGA-II algorithm

As a benchmark to the Bayesian algorithm, the NSGA-II
(Deb et al. 2002), which is a standard genetic algorithm
often employed in multi-objective optimization, is included
in the study.
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Fig. 2 Flowchart of the proposed Bayesian algorithm

In the NSGA-II algorithm, each solution candidate (i.e.,
input) is viewed as an individual with a set of properties
(a specific design choice), which may be manipulated by
mathematical operators representing biological phenomena
such as selection, reproduction (crossover), and mutation.

The performance of the NSGA-II algorithm has been
evidenced to depend strongly on its hyperparameter
configurations (Andersson et al. 2015), such as population
size, crossover rate, and mutation rate parameters, implying
that some kind of tuning procedure should be performed in
practical applications.

2.5.3 Random search algorithm

Finally, a randomized search algorithm is also included as a
baseline. Random search optimization works by randomly
sampling the input space and evaluating the solutions in
sequence. Random search is considered a naive strategy as no
information from previous search history is utilized in selecting
the next evaluation points. It has however been evidenced

that random search generally compares favorably to grid
search (Bergstra and Bengio 2012), i.e., sweeping param-
eters over a manually specified input subset, especially in
situations where only a small number of dimensions bears
high influence on the objective function(s).

As the Bayesian algorithm incorporate mechanisms as to
avoid evaluating an input with non-positive HVI, the random
search algorithm is slightly modified as to avoid wasting evalu-
ations on redundant inputs. For each new evaluation, the
objective values of a randomly sampled input are evalu-
ated. If the set of objective values does not yield a posi-
tive improvement, the input is re-sampled and the process
repeats. Once an input with positive improvement in the
objectives is found, the constraint functions are evaluated.

2.5.4 Experimental setup

The three algorithms are examined by running 25 inde-
pendent optimization runs with an allowed budget of 1000
expensive constraint evaluations.

For the Bayesian algorithm, Gaussian process surrogates
were used for the constraint function modeling, using the
Matèrn 3/2-kernel (Rasmussen 2004), with a single length-
scale parameter. This kernel is a sensible default given
the assumption that no prior information exists of the
constraints functions being modeled. The hyperparameters
of the Gaussian process are determined by maximum
likelihood estimation optimized by L-BFGS-B algorithm
(Byrd et al. 1995). Input parameter bounds are normalized
to the [0, 1]8 hypercube. For constraint evaluation where g1

is not fulfilled, implying that g2, g3 are not available at this
input, the corresponding surrogate models are not updated.

The simple structure of the objective functions allows
minimum and maximum values of each objective to
be discovered by any suitable optimization procedure,
whereafter the normalization strategy of (8) is employed.

In each iteration, the acquisition function in (11) is
optimized by the pattern search algorithm including the tie-
breaking strategy described in Appendix 2, using a budget
of 5000 acquisition function evaluations.

For the NSGA-II algorithm, a tuning procedure is first
performed as an attempt to mitigate the risk of choosing
poor hyperparameters by varying algorithm parameters
population size, crossover rate, and mutation rate according
to values stated in Table 4. Each of the 27 configurations
is run 10 times with seeded initialization. From these
results, the highest performing configuration in terms of
final hypervolume is selected and then evaluated along
the Bayesian algorithm and the random search algorithm.
For inputs where constraint evaluations are undefined,
that is g2, g3 at inputs where g1 is not fulfilled, the
NSGA-II algorithm is provided with the value 0.0 for
both constraint functions. This is motivated by the internal
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Table 4 Examined NSGA-II hyperparameter values

Hyperparameter Examined values

Population size {50, 100, 200}
Crossover rate {0.6, 0.8, 1.0}
Mutation rate {0.001, 0.01, 0.1}

sorting procedure included in NSGA-II, where multiple
constraints are summed to quantify the degree of in-
feasibility of a solution; a zero value hence avoids shifting
this measure in any direction.

For the random search algorithm, no modifications are
needed.

In each of the 25 runs, the algorithms are provided
with 100 initial evaluations, including both objective and
constraint functions, with inputs generated by sampling
from a seeded uniform distribution over the defined input
domain of (6c). Initialization inputs are shared for all
algorithms per individual run, with the exception of the
NSGA-II algorithm using hyperparameter configurations
with the population size parameter set to 50, hence using
only the first 50 initialization inputs.

All algorithms are implemented in Python 3. The hypervol-
ume computations are carried out using the pygmo-library
(Biscani and Izzo 2019). For the constraint surrogate mod-
els, the Bayesian algorithm uses the default implementa-
tions provided in the pyGPGO-library (Jiménez and Ginebra

2017). The NSGA-II algorithm uses the default implemen-
tation provided in the Platypus-library (Hadka 2015).

3 Results and discussion

The performance of the three examined algorithms has
been compared in terms of rate of improvement and final-
evaluation normalized hypervolume.

As a reference point, r = 18 is used, which implies
that the hypervolume is bounded to [0, 1] with larger values
indicating higher quality solution sets.

In the tuning procedure for the NSGA-II algorithm a
configuration with population size 50, crossover rate 0.6,
and mutation rate 0.1, was seen to exhibit the best results
in terms of final hypervolume. Hereafter, NSGA-II refers to
this configuration, which is compared along the other two
algorithms.

For each algorithm, Fig. 3 shows the 25-run hypervolume
mean as a function of constraint evaluation, while Table 5
lists the mean hypervolume obtained after the final
evaluation.

As shown in Fig. 3, the best performance is by far
achieved by the Bayesian algorithm followed by that of the
NSGA-II algorithm. After the random initialization phase,
the Bayesian algorithm quickly improves its hypervolume.
Already at constraint evaluation 150, the Bayesian algo-
rithm has surpassed the end-of-the-run results for both
the NSGA-II and random search algorithms. At around

Fig. 3 Normalized hypervolume improvement as a function of con-
straint evaluation for the three examined algorithms, averaged over
25 runs with seeded initialization. Solid lines indicate the average,
and upper/lower limits of the shaded areas represent ±1 standard
deviation from the average. For the Bayesian and the random search

algorithms, each run is initialized with 100 inputs generated by seeded
randomized sampling (marked by the dashed black line). For the
NSGA-II algorithm, only the first 50 inputs per seed (marked by the
gray dashed line) are used due to its population-size hyperparameter
being set to 50
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Table 5 Mean normalized hypervolume across 25 runs per algorithm
at the final constraint evaluation

Algorithm Final hypervolume

Bayesian algorithm 0.536(±0.00415)

NSGA-II 0.433(±0.0223)

Random search 0.310(±0.0386)

Estimated standard deviation within parentheses

evaluation 400, the Bayesian algorithm improves only with
a very small rate, barely noticeable on the linearly scaled
plot. It should also be noted that the Bayesian algorithm
exhibits the lowest variance among the algorithms across the
runs, as relevant to practical applications in the expensive
setting where multiple runs in general cannot be afforded.
Using the end-of-run final hypervolume means listed in
Table 5, the Bayesian algorithm yields a 72.8 % larger
volume than the random search algorithm.

In Fig. 3, the NSGA-II algorithm is seen to distinctly
outperform the random search algorithm from approxi-
mately constraint evaluation 700 and onwards, displaying
zero overlap with random search in the 1 standard deviation.
And, as displayed in Table 5, it achieves an approximately
39.7 % increase in final hypervolume with respect to the
random search result, however with a larger variance com-
pared to the Bayesian algorithm. It should be pointed out
that the NSGA-II algorithm was subjected to a hyperpa-
rameter tuning procedure prior to algorithm evaluation,
which is not desirable for practical applications in expensive
constraint evaluation settings.

Finally, the random search algorithm exhibits a compara-
tively low rate-of-improvement, and displays the largest vari-
ance exceeding all algorithms at the final constraint evaluation.

In order to demonstrate the applicability of the proposed
approach in a more practical sense, results are analyzed
in more detail for the two objective functions subjectively
deemed the most important: the production costs f1, and the
aggregated LCA result f2. Figure 4 displays the complete
set of solutions belonging to the Pareto front spanning
the final hypervolume, projected to the cost/LCA-subspace,
for the best run per algorithm. In Fig. 4, solutions along
the estimated 2D dominating fronts can for the Bayesian
algorithm be seen to dominate solutions for the other two
algorithms.

It can also be observed that the whole set of Pareto solutions
(i.e., the estimated 5D Pareto front) obtained by the Bayesian
algorithm appears to cluster in a better region (lower left
corner in Fig. 4) of the subspace, compared with solutions of
the NSGA-II and the random search algorithms which show
more spread. This, together with the previous observations
made on the respective performance of the algorithms,

Fig. 4 Set of algorithm solutions projected to the objective dimensions
f1 and f2, for the best (highest final hypervolume indicator) run
per algorithm. Opaque diamond markers represent solutions on the
estimated 2D Pareto front while faded cross markers represent the
remaining solutions belonging to the estimated 5D front

indicates that the Bayesian algorithm is capable of finding
higher quality trade-offs among the five objectives.

A more detailed view of the solutions on the estimated
2D Pareto fronts of Fig. 4 is shown in Fig. 5.

Among the three annotated solution points produced by
the Bayesian algorithm, representing the attained trade-
offs between objectives f1 and f2, we notice that values
for the input parameters x5−8 remain fixed; variability
in this subspace hence seems to originate only from the
x1−4 parameters. Also, considering the objectives f3−5, we
observe some variability among the solutions in that the
objectives f3 and f4 seem negatively (positively) correlated
with f2 (f1) while f5 exhibits the opposite behavior.

However, as evident in Fig. 4, a lot of additional
solutions are found in the very near vicinity of annotated 2D
dominating solutions, and may offer more desirable trade-
offs in the 5D with an apparent very low penalty in the (f1,
f2) space. In a practical setting, where we assume that more
than two objectives are of interest, alternative visualization
techniques, e.g., parallel-coordinates plots (Inselberg 1985),
could be employed.

Such visualization of the results, preferably including
interactive features, is particularly important to analyze
in multi-objective optimization as it can provide valuable
insights for a designer or a decision maker when selecting
among different designs.

One advantage of employing Bayesian algorithms in
general is that prior domain knowledge may be incorporated
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Fig. 5 Scatter plot of estimated 2D Pareto front after projection to
the f1 and f2 subspaces, for the best (highest final hypervolume
indicator) run per algorithm. Three particular solutions yielded by the
Bayesian algorithm are annotated with solution input-variables x1−8
and objectives f1−5

directly by specifying the hyperparameters. For instance,
if the order of differentiability of the target function (here
constraint) is known, this prior information could guide
the process of selecting the Gaussian process kernel. It
should be noted that in this work, no prior knowledge or
tuning procedure was used in the selection of Gaussian
process hyperparameters. Another advantage is that once
the optimization is completed, one callable probabilistic
surrogate model per constraint over the input domain has
been constructed. This provides the possibility to retrieve
estimates of both constraint values and corresponding
uncertainties for new inputs, providing information about
constraint behavior and unexplored regions.

In order to tackle the multi-objective setting, we have used a
normalized hypervolume approach, which has the advantage
that the objective importance does not need to be quantified
on beforehand. Furthermore, the iterative nature of the proposed
Bayesian algorithm allows the HVI factor in (11) to be
modified during optimization (e.g., by means of rescaling
the objective normalization constants, which governs rela-
tive importance of each objective in terms of hypervolume
contribution). This allows a decision maker to influence
the search procedure dynamically according to his or her
preferences, without requiring rework from the designer.

The good performance attained by the proposed Bayesian
algorithm in this work together with capabilities demonstrated
in previous works leads us to believe that this approach has a
large potential to generalize its results to more complex problem
settings. For instance, problems involving FE computations
(e.g., 3D model of a bridge), could be expected to exhibit
similar properties to those of the RC beam problem while
further pronouncing evaluation expensiveness.

The proposed algorithm’s sensitivity to increasing problem
dimensionality remains to be explored. While increased
dimensionality is expected to increase problem difficulty for
literally any algorithm, Bayesian methods are, in general,
especially sensitive to the curse-of-dimensionality problem.
Previous works have tackled this issue by learning subspace
projections reducing the effective dimensionality (Moriconi
et al. 2019), or to decrease time complexity by sparse
approximation methods, in turn allowing for a larger
number of evaluations (Quiñonero-Candela and Rasmussen
2005). The potential benefits of pursuing such approaches
would depend on the actual problem considered.

The approach of this paper to estimate the entire Pareto
front will become intractable at some point as the number
of objectives increases. In such a case, one may have to
resort to actively incorporating the decision makers into the
process to learn the decision makers’ preferences online;
see, e.g., Astudillo and Frazier (2020). However, in most use
cases for structural design, the actual number of objectives
is usually fairly low.

In the explored case of RC beam optimization, imposed
constraints included the number of bar layers, and bending
and shear resistances. Naturally, one can expect some
correlation in these constraints. Further improvements on
the Bayesian algorithm proposed in this paper could hence
be to include correlation among the surrogate models, as has
been previously suggested (Shah and Ghahramani 2016).

Wu et al. (2019) propose a method for multi-fidelity
Bayesian optimization. The multi-fidelity setting has interest-
ing parallels to the structural optimization in that FE simu-
lations of constraints could be evaluated using a variable
mesh resolution, hence introducing multiple noise levels of
the constraint functions, and should be explored in future
work.

Finally, in the problem setting at hand, all input parameters
were of ordinal type. In practice, design cases could of course
include categorical values (e.g., material types or types of
cross sections such as I-beam or T-beam), or even condi-
tional ones, such as dimensions dependent on the choice
of cross section. Bayesian optimization has previously been
successfully extended to such input domains in the con-
text of hyperparameter optimization domain (Sjöberg et al.
2019), and we expect the results therein to be transferable.
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4 Conclusions

In this paper, a state-of-the-art constrained Bayesian opti-
mization algorithm has been adapted to a RC beam opti-
mization problem incorporating multiple objectives. Con-
trasting previous approaches, the Bayesian algorithm pro-
posed in this work explicitly utilizes that objective functions
are cheap to evaluate while constraint functions have expen-
sive evaluations, as constraint function evaluations include
expensive numerical computations, which are common
characteristics in structural engineering design problems.

The efficiency and applicability of the Bayesian algo-
rithm were studied on a benchmark problem consisting in
optimizing a RC beam over eight design parameters with
respect to five objective functions covering economic, envi-
ronmental and social, buildability, and performance aspects.
Additionally, design constraints were imposed to ensure that
the configuration of the beam could be built and that it sat-
isfied the required bending and shear capacity according to
structural design codes. It was shown that the Bayesian algo-
rithm could effectively find high-quality estimated Pareto
sets for the considered benchmark problem using a very lim-
ited number of constraint function evaluations, and that it
outperformed NSGA-II and random search algorithm by a
large margin.

The good performance exhibited by the Bayesian algorithm
opens up possibilities for its application to more complex
cases in the field of structural engineering. The limited number
of function evaluations required is particularly interesting to
enable performing structural calculations using a finite element
analysis software, whose computational cost usually limits
the number of possible evaluations and hinders their
application in structural design optimization problems.
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Appendix 1: Data used for objectives
evaluation

The unit values per construction material and activity used for
evaluating the economic (production cost), environmental and
social (aggregated LCA result), and buildability (construc-
tion time) objectives are detailed in Table 6.

Appendix 2: Algorithm implementation
details

In the hypervolume computations, we have employed
normalization of objective values. The objective function
minimum and maximum values used per objective are
declared in Table 7.

2.1 Bayesian algorithm implementation

For the Gaussian process surrogate models, the pyGPGO-
library (Jiménez and Ginebra 2017) was used with the
software version given in Jiménez (2019). Default values
for the Gaussian processes with associated initial values for
hyperparameters and bounds were used in the maximum
likelihood estimation process.

In order to optimize the acquisition function, a pattern
search algorithm was used. The core idea of the pattern
search is that it evaluates neighboring points, chosen
randomly, and moves in an ascent direction, while
maintaining a tabu list of already evaluated points. Since the
HVI is 0 for many inputs (as described in Section 2.5.1), a
tie-breaking strategy is devised to allow inter-comparison of
such inputs. For inputs when the HVI factor of (11) is equal
to 0, this factor is replaced with a convex combination of the
objective functions, i.e.,

∑m
i=1 αifi(x), where

∑m
i=1 αi =

1 and each αi ≥ 0 is chosen randomly each time the
acquisition function is called. The pattern search algorithm
always favor a input with HVI greater than zero over an
input with a convex combination.

In the implementation, the pattern search is initialized
with 25 inputs randomly sampled from the input domain,
each one marking the start of a series of evaluations
hereby denoted as trails. For each trail, the initial input

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
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Table 6 Unit values used for objectives evaluation

Material/ Value Unit Source
activity

Material Concrete 11.36fck + 1585 (SEK/m3) Wikells (2014)2

prices Steel 14.4 (SEK/kg) Wikells (2014)
Form 123.0 (SEK/m2) Wikells (2014)

Construction Concreting 0.7 (h/m3) Wikells (2014)
times Steel placing 1.42 · 10−2�−1.415

s (h/kg) Ljungkrantz et al. (1997)3

Formwork 1.1 (h/m2) Wikells (2014)
Labor costs All 733 (SEK/h) Wikells (2014)
LCA1 Concrete 0.0193fck + 0.407 (m−3) Thinkstep (2019)4

Steel 0.014 (kg−1) Thinkstep (2019)
Form 0.055 (m−2) Thinkstep (2019)
Transport 0.00043 (t−1 km−1) Thinkstep (2019)

Distance Concrete 30 (km)
to site Steel 100 (km)

Form 30 (km)

1 LCA values correspond to the aggregated result for the 16 environmental and social impact categories using the normalization and weighting
factors defined in the European Product Environmental Footprint (Sala et al. 2017, 2018), and data from GaBi life cycle database (Thinkstep
2019). Material values (concrete, steel and form) concern the life cycle stages A1–A3 (material production), while the transport value is used for
stage A4 (transportation to the site)
2 Equation obtained by linear regression on four available values from C25/30 to C50/60 (R2 > 0.995)
3 Equation obtained by power regression using the time per ton vs. bar diameter values given in Ljungkrantz et al. (1997) (R2 > 0.995)
4 Equation obtained by linear regression on six available values from C20/25 to C50/60 (R2 > 0.995)

is perturbed by a single smallest possible step along a
randomly selected dimension. The acquisition value of this
new input is computed and then compared (according to
the precedence rule of the tie-breaking strategy) to the
former solution, where the better solution is kept as the
reference point for future perturbations. Each trail keeps a
tabu list which prohibits the re-visiting of inputs already
evaluated in the individual trail and also inputs evaluated
in the global evaluations (i.e., inputs used in any of the
surrogate models). Using a total budget of 5000 acquisition
function calls, each initial trail is allowed 200 calls, and is
evaluated by the stepping procedure until either its budget
is reached or a local maxima is obtained. If all initial trails
have been evaluated and the total budget is not exhausted,
trails are evaluated until convergence in the order of best-
yet solutions. If the total budget is still not exhausted, new

Table 7 Values per objective function used in computation of
normalized hypervolume

Objective index Max. value Min. value

f1 1.72 · 105 2.02 · 104

f2 8.54 · 101 2.46

f3 1.05 · 102 2.11 · 101

f4 1.50 5.00 · 10−1

f5 5.41 · 101 4.85 · 10−3

trails are initialized and evaluated sequentially, until the
total budget is spent.

2.2 NSGA-II algorithm implementation

The examined NSGA-II algorithm implemented uses the
default implementation provided in the Platypus library
(Hadka 2015). As crossover operator, the half-uniform
crossover (HUX) operator is used. As mutation operator,
probabilistic mutation (PM) with distribution index 20.0 is
used.
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