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Abstract

The decrease of sequencing cost in the recent years has made genome-wide studies of transcription factor (TF) binding
through chromatin immunoprecipitation methods like ChIP-seq and chromatin immunoprecipitation with lambda exonu-
clease (ChIP-exo) more accessible to a broader group of users. Especially with ChIP-exo, it is now possible to map TF binding
sites in more detail and with less noise than previously possible. These improvements came at the cost of making the
analysis of the data more challenging, which is further complicated by the fact that to this date no complete pipeline is pub-
licly available. Here we present a workflow developed specifically for ChIP-exo data and demonstrate its capabilities for
data analysis. The pipeline, which is completely publicly available on GitHub, includes all necessary analytical steps to ob-
tain a high confidence list of TF targets starting from raw sequencing reads. During the pipeline development, we empha-
sized the inclusion of different quality control measurements and we show how to use these so users can have confidence
in their obtained results.
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Introduction

Transcription factors (TFs) are one of the main determinants of
transcriptional regulation and therefore there has been much
interest in precisely mapping their binding sites to identify their
regulatory targets. To this date, several methods have been de-
veloped to map TF binding sites in the genome. Most of these
were based on chromatin immunoprecipitation (ChIP), a
method in which antibodies are used to selectively enrich for a
certain TF or chromatin feature. The first usage of ChIP for
genome-wide mapping was ChIP-chip, using DNA microarrays
to quantify the bound sequences [1]. Shortly afterwards the
method was upgraded to utilize the available sequencing

technology to increase the quality of obtained data and to be in-
dependent on predefined sequences on the DNA microarrays
(ChIP-seq) [2]. In 2011, this method was further refined by Rhee
et al. using an additional exonuclease treatment following the
immunoprecipitation (chromatin immunoprecipitation with
lambda exonuclease; ChIP-exo), to improve the resolution of the
mapped TF peaks to the single nucleotide level and to increase
the signal-to-noise ratio (SNR) of the method [3]. An updated
protocol simplifying the method was published in 2018 (ChIP-
exo 5.0) [4].

Even though the original ChIP-exo method is now available
for nearly 7 years, so far, no complete bioinformatics pipeline
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for analyzing the data is publicly available. Here we demon-
strate such a pipeline, starting from the raw sequencing files,
to identified peaks and gene targets. This pipeline stitches
together heavily used software tools from other parts of the ge-
nomic research areas, like Bowtie2 for mapping the sequencing
reads [5], and a peak finding tool developed for ChIP-seq and
ChIP-exo called Genome wide Event finding and Motif discovery
(GEM) [6]. The outputs of the software tools are analyzed using
custom designed scripts written in Python to ensure a wide ap-
plicability of our pipeline. This pipeline is only for ChIP-exo data
and not applicable for ChIP-seq data as there are fundamental
differences about how ChIP-seq and ChIP-exo data should be
handled. The pipeline also includes analytical steps leveraging
the high resolution of ChIP-exo which would not be possible
with ChIP-seq data.

Materials and methods
Mapping of sequencing reads

The obtained paired-end sequencing reads where mapped to the
previously published CEN.PK113-7D genome [7] using bowtie2 [5].
The settings –no-mixed and –no-discordant were used to ensure
that only read pairs where both reads map together where kept.

Filtering of PCR duplicates

During library preparation of the ChIP-exo samples, PCR amplifi-
cation is used which can result in PCR duplicates. PCR duplicates
are defined as a set of read pairs, that all have an identical read_1
and also an identical read_2 (see also Rossi et al.[4]). The thought
behind this definition is that only the position of read_1 is clearly
defined by the exonuclease treatment, while the position of
read_2 is caused by the random fragmentation of the DNA
through sonication. Therefore, there are many read_1’s that have
identical positions, but the chance of obtaining the same read_2
position is so small that one can assume that any duplication
observed was caused by the PCR amplification. To find and
exclude these PCR duplicates, samtools was used [8] using the
following steps: filter out low-quality (<20) reads, sort reads by
name (sort -n), fix read pairs (fixmate), sort reads by chromo-
somal position (sort), mark duplicates (markdup), and finally
extract only read_1 from each nonduplicated pair (view -f 0x40).

Determining optimal trim length

The main difference of ChIP-exo to ChIP-seq is that the obtained
sequence reads mark the boundaries of the TF binding site. To
ensure that the reads from both sides will overlap and therefore
mark the position of the TF binding site, one has to select an ap-
propriate trim length. The optimal trim length for each TF will
be different, because TFs have different sizes and consequently
differently sized footprints on the DNA. Therefore, we developed
a set of mathematical formulas to convert the sequence length
of a TF into an approximate footprint size, as shown below:

TFweight ¼ sequenceLength nuc½ � � 1 AA
3 nuc

� 110
daltons

AA

TFradius ¼ 0:066
nm

daltons
� TFweight daltons½ �

1
3

TFfootprint ¼ 3 � TFradius � 3:03
bp
nm

First, the weight of the TF is calculated based on an average
amino acid weight of 110 daltons. Then the radius of the TF is

estimated based on the assumption that the shape is spherical
(see Erickson [9]). The majority of TFs bind as dimers (either
homo or hetero) and we make the assumption that the dimers
overlap for half their size. Therefore, we take 3 times the radius
of the TF and convert that size into number of bps. After round-
ing, this results in the optimal trim length in bp.

Creating read profile files

The reads determining the border positions of the TF have to be
converted into the binding profiles. For this step, first the
“genome coverage” function of BEDTools [10] is used to generate
the read profiles for both strands separately using the deter-
mined optimal trim length. Subsequently, both strands are
combined and only base position where there are reads on both
strands are reported as the TF binding profile. After this step,
the replicates are normalized based on their average back-
ground read count and then combined using their average read
count per base position.

Peak detection

To detect the TF peaks, the software GEM [6], version 3.4, was
used on the trimmed bam files (trimming was performed us-
ing bamUtils [11]). The following parameters where set: q-
value threshold of 0.01, length of kmer between 5 and 18,
smoothing width of 3, minimum number of events of 5 and a
maximum read count per base position of 50. For each
detected peak, the measured IP strength was normalized to
the expected strength at that position and peaks with a result-
ing SNR �2 were filtered out.

The resulting peaks where mapped to genes based on their
distance to the transcription start site (TSS), which were
obtained from Börlin et al. [12]. Peaks that have their center
point <1000 bp away from a TSS annotation (independent of
upstream of downstream) are assigned to the corresponding
gene. If a peak is close enough to two genes, it will be assigned
to both genes.

Motif discovery

For motif discovery, the 60 bp sequence underneath the
detected GEM peaks (centered on the GEM peak position) were
extracted using the “getfasta” function from BEDTools and
analyzed using MEME [13]. The following settings for MEME
were used: classic objective function, size of motif between 5
and 20, search mode zoops, 0-order Markov model, identify
up to three motifs, also search for reverse complementary
motifs.

Creating an artificial dataset with increasing levels of
noise

For creating an artificial dataset with defined levels of added
noise, the tool ArtificialFastqGenerator [14] was used to create
75 bp paired-end reads with an average (SD) insert length of
225 (75) (the values were chosen to match the Ino2 sequencing
data). The reads were mapped to the genome using the same
steps as for the Ino2 data to create a randomly distributed set of
reads.

Both replicates of Ino2 in the glucose-limited condition were
merged together using “samtools merge” to create a unified set
of Ino2 reads.

Following this, five different mixed datasets with specified
levels of noise (0, 25, 50, 75, and 100%) were created with 100.000
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reads each by subsampling from the two datasets (Ino2 and the
artificial data) using the “samtools view -s” command. The
number of reads that were randomly selected for each noise
level is shown in Table 1.

For each noise level, two independent samples were created
to mimic biological duplicates. For each call of the “samtools
view -s” command, a different seed was used to ensure inde-
pendent sampling.

Results and discussion

Here we show the results from the analysis pipeline run on
ChIP-exo sequencing data of Ino2 in two different conditions;
respiratory glucose metabolism using glucose limitation (abbre-
viated as Glu) and gluconeogenic respiration using ethanol limi-
tation (abbreviated as Eth). The sequencing data were
previously published in Bergenholm et al. [15]. A detailed over-
view of each individual step in the pipeline, as well as which
program or script was used is shown in Fig. 1.

In short, the pipeline starts with mapping the sequencing
files to the genome and subsequently removes PCR duplicates
and converts it into .bam files. Based on the predetermined op-
timal trim length, determined by the sequence length of the TF,
the .bam files are trimmed and subsequently converted into wig
files. In the conversion process to the wig files, read positions
that do not overlap any read on the other strand are filtered out.
The reasoning behind this is that ChIP-exo defines both borders
of the TF, one on the forward strand and one of the reverse
strand, with the TF sitting in between. One can only be confi-

Table 1: Number of reads subsampled for creating the mixed
datasets

Noise level (%) Number of Ino2
reads sampled

Number of artificial
reads sampled

0 100.000 0
25 75.000 25.000
50 50.000 50.000
75 25.000 75.000
100 0 100.000

Figure 1: Overview of bioinformatics pipeline for ChIP-exo data. Here all steps are shown, with computational steps represented as arrows and boxes for files. The pipe-

line starts with a number of computational steps using existing software tools (marked with black arrows), producing intermediate results files (marked with blue

boxes). The final analysis of the output is done using custom made python scripts (marked with gray arrows) producing the final output files (marked with red boxes).
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dent in the presence of a TF if both borders are mapped with se-
quencing reads and overlap in the middle, which is then the ac-
tual location of the TF.

These wig files are the base for most of the subsequent
analysis we show here, they also have the added benefit that
they are easily visualized in a genome browser like the
Integrated Genomics Browser [16].

To make it easier for the reader to follow, the section about
the output of the pipeline will be split into two parts: (i) the text
file outputs and (ii) the graphical outputs.

Text file outputs

The pipeline has two major text file outputs, the gene target
list and the GEM analysis file. The gene target list is a csv file
that shows which genes are targeted by the selected TF in
which condition. This is done by displaying the number of
peaks on each gene in each condition, a gene is considered a
gene target if it has at least one TF binding peak. With this
file, one can easily run a gene set enrichment analysis to get
further insight into which genes are targeted and how
that changes between the different conditions. Therefore, this
is the most important output of the pipeline and provides the
basis for most subsequent analysis the user can perform on
their own.

The other text file, the GEM analysis file, gives more de-
tailed about each individual detected peak that could be
assigned to a gene (that means the peak center was <1000 bp
away from the gene’s TSS). Here each peak is listed with its
strength and position, as well to which gene it was assigned.
With this, one can compare more in detail how different genes
are targeted by the selected TFs and check if there are correla-
tions between TF binding strength and the response in expres-
sion levels.

Graphical output

The pipeline produces four different graphical outputs, which
will be described in detail together with instructions on how to
use and analyze them.

The first plot produced is the sample correlation plot,
which main function is to serve as quality control, as one can
easily check if the replicates show a high correlation to each
other. It is produced by binning all the reads over the whole ge-
nome into bins of 1 kb size. This binning strategy greatly
reduces the number of variables to a manageable number
and smoothens out noise in individual locations. Bins that
had zero reads in all samples were filtered out and the remain-
ing binned value for each replicate where log2 transformed
and plotted against each other. In addition, the Pearson corre-
lation coefficient was calculated and shown in the graphical
output (Fig. 2).

In the example dataset for Ino2, one can observe that
the replicates for both conditions show a high correlation to
each other, highlighting the high quality of the sequencing
data. Due to low noise sensitivity of the ChIP-exo method,
replicates should show a Pearson correlation coefficient of at
least 0.85 to each other, good replicates have �0.9. Both condi-
tions also show a strong correlation to each other, hinting
that the underlying regulatory program and therefore the tar-
gets of Ino2 are very similar in both these respiratory
conditions.

The second plot produced is showing the overall distribution
of reads around the TSS using the previously created read

profiles. For this, all positions 61000 bp of each TSS where aver-
aged, normalized to the average background read count across
the genome and then plotted (Fig. 3A). This plot also serves as a
quality control, as it is known that most TFs bind in the region
upstream of the TSS up to 750–1000 bp away in yeast. Therefore,
one would expect an enrichment of reads in this region in com-
parison to the average, which is exactly what one can observe
in the example data (Fig. 3A).

The last two plots enable analysis of the peak shape of the
mapped TF. For this, the single nucleotide read profile on both
strands around each TF peak (as identified by GEM) was plot-
ted as a line in the peak profile histogram (Fig. 3B). All individ-
ual peak profiles were also averaged and plotted together
(Fig. 3C). These two plots show the identified borders of the TF
and can therefore also serve as a quality control. Ideally, one
would like to obtain a histogram with exactly one fine blue
line and one fine red line, showing that the distance from the
peak center to the borders is identical for each individual peak.
In reality, this perfect border will be very difficult to obtain,
and the norm would be to have a clearly defined peak on both
strands with some smear to the sides. The results in Fig. 3B
and C show this smeared behavior and we would still classify
this as a very clear result. If the peak detection would have
failed or the peaks being of very different size and shape, one
would expect a much wider smear, completely obscuring the
single peak. In the example data, one can see that the highest
peak is at 11–13 bp away from the center point for both the
plus strand (shown in blue) and the minus strand (shown in
red). This resulting 22–24 bp window between the two peaks
matches very well to the calculated footprint of 19 bp using the
above described formula, demonstrating that this approxima-
tion is sound. The footprint calculation is influenced by the
shape and therefore also by the class of the TF in question. In
Supplementary Fig. S1, we show the results for two other clas-
ses of TFs, the zinc clusters and the basic leucine zippers, with
high-quality results. In addition, we also show that the
method does not only work on Ino2 as the example for a basic
helix–loop–helix TF but show one more TF of this class. Taken
together, we are confident that our footprint calculation
method is valid for all classes of TFs in yeast.

All in all, the main purpose of the different graphical outputs
is more quality control than generating actual biological
insights. However, with ensuring high quality through the
graphical outputs, one can place more trust in the raw data and
the obtained target lists.

Motif discovery

As part of the pipeline, enriched motifs in the peaks are
detected using MEME. Running this part of the pipeline will
create an output folder specific for MEME including the html
report. In this report, one can see which motifs are detected
in how many of the sequences. In addition, one can use the
detailed text output files to find which sequences exactly are
bound. The most enriched detected motif for Ino2 in both
conditions is shown in Fig. 4. The published Ino2 motif
obtained from the JASPAR database [17] is also displayed in
Fig. 4, showing a high degree of similarity, validating the pipe-
line. The same approach was used for the three other TFs
used in this study, Stb5, Gcn4, and Cbf1, and their discovered
motifs in comparison to the published motifs are shown in
Supplementary Fig. S2.
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Validating the noise robustness of the pipeline on
artificial mixed data

To assess the robustness of the pipeline to noisy datasets and to
further demonstrate how the graphical outputs can be used for
quality control, we created five artificial datasets, mixing the
real Ino2 data with artificial created sequencing reads (corre-
sponding to noise) with 0, 25, 50, 75, and 100% noise as de-
scribed in the materials and methods section.

The pipeline was run on these 10 artificial samples (two for
each noise level) and the correlation between the duplicates of
each noise level is shown in Fig. 5A. The full pairwise correla-
tion plot can be found in the Supplementary Fig. S3. The
Pearson correlation coefficient between the samples decreases
with increasing level of added noise as expected and shows

a strong drop in the samples with 75% noise. The pearson corre-
lation coefficient (PCC) of 0.79 is below the threshold of 0.85, the
limit of what we would consider acceptable. The 100% noise
sample shows no correlation as one would expect in two
completely randomized “replicates.” In Fig. 5B, the read profile
for each noise level is shown and here one can also observe
that the enrichment in the promoter region decreases with in-
creasing level of noise. The samples with 0, 25, and 50% of
noise still show a strong enrichment while the 75% noise sam-
ple only shows a very weak enrichment and the 100% noise
sample shows no enrichment.

Based on the low PCC between the replicates in the 75%
noise sample as well as the weak enrichment of the reads in the
promoter region, we would consider this a bad dataset which is

Figure 2: Pairwise comparison of all four samples. This automatically generated output figure shows the correlation between each individual sample using genomic

bins of 1 kb size. The Pearson correlation coefficient is also shown in the title of each plot. This result shows a very high correlation between the four samples in the

study, highlighting the quality and low level of noise of the ChIP-exo method.
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too noisy for further analysis, while the data with 0, 25, and 50%
noise would pass our quality control steps.

Conclusion

In this protocol, we comprehensively show how to analyze
ChIP-exo data starting from raw sequencing results. The pipe-
line, which is freely available at GitHub, produces a number of
graphical output files for quality control, as well as an easy to
use gene target list. Therefore, the pipeline provides the user

with a strong basis for further analysis of the TF binding
behavior.

Data and code accessibility

The complete pipeline is hosted at Github: https://github.com/
SysBioChalmers/ChIPexo_Pipeline

The ChIP-exo data for Ino2 in the two conditions shown here
is directly accessible through Zenodo: https://doi.org/10.5281/
zenodo.3242510

Figure 3: Overview of the pipeline output figures. (A) In this plot, the overall read count distribution (coming from overlapping reads on both strands) is shown across

the promoter region. One can observe an enrichment of reads upstream of the TSS. (B) This histogram shows the read distribution (with only the first base of each read

mapped to the genome) around all 874 peaks for Ino2 in glucose-limited conditions on an individual peak level, where every line corresponds to a single peak. (C) This

plot shows the average read distribution from all the Peaks shown individually in B.

Figure 4: Motif comparison for Ino2. The upper row shows the discovered motifs by MEME, on the left in the glucose-limited condition, on the right in the ethanol-

limited condition. For comparison, the published motif obtained from the JASPAR database is shown in the bottom row.
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Figure 5: Comparison of artificial noisy data for robustness. (A) In this panel, the duplicates for each different noise level are compared and the Pearson correlation co-

efficient is shown. (B) In this panel, the read distribution around the TSS is shown for each of the five different noise levels.
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The full ChIP-exo dataset (including two more conditions) is
accessible at the Gene Expression Omnibus (GEO) under the ac-
cession number GSE88941 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi? acc¼GSE88941).

Supplementary data

Supplementary data is available at Biology Methods and
Protocols online.
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Appendix
How to setup the pipeline to run it on the provided example
data:

1. Clone/download the code from Github (https://github.
com/SysBioChalmers/ChIPexo_Pipeline)

2. Download the Ino2 data from Zenodo (https://doi.org/10.
5281/zenodo.3242510) in to the Data folder, filename
should be Ino2_rawdata.tar.gz.

3. In the script update the paths to Bowtie2, samtools,
BEDTools and bamUtils so that they can be added to the
$PATH Linux variable, if they are not already added and
callable (Lines 26–30).

4. Set the paths for the output and data files if needed
(Lines 13–23). The basic setup is using relative path that
does not need to be changed.

5. Select which parts of the pipeline should be run (Lines
40–48) and how many cores are available for computa-
tion (Line 50).

6. To run it, use a Linux terminal, navigate to the main
folder where the ChIPexo_Pipeline_MAIN.bash file is lo-
cated and execute it using “bash
ChIPexo_Pipeline_MAIN.bash.”

How to run it for a different TF or condition:

1. Change the variable TF in Line 33 and/or variable
condList in Line 37 of the ChipExo_Pipeline_MAIN.bash
file

2. Create a file called TFName_sequenceLength.txt to re-
place Ino2_sequenceLength.txt in the Data folder speci-
fying the sequence length of the chosen TF. The file
should contain one line “seqLength¼X” where X is the
actual sequence length in bp of the chosen TF.

3. Create a file called TFName_seqFiles.txt to replace
Ino2_seqFiles.txt in the Data folder. In this file, the
names of the sequencing files for each sample should be
specified for Read 1 and Read 2. If multiple files should
be used one can separate the files using a colon [e.g.
seqFiles(“NewTF_NewCondition_R1”)¼“File1_R1.fastq.gz,
File2_R1.fastq.gz”].

How to change to another organism/genome version:
To run the pipeline for another organism or genome version,

the following files are needed to replace the CENPK113-7D files
distributed with the pipeline:
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1. Update the variable refGenomeName in Line 22 of the
ChipExo_Pipeline_MAIN.bash file to the name of the new
reference genome

2. Genome sequence as a fasta file to replace file
CENPK113-7D.fasta in Data/RefGenomeBowtie

3. Bowtie2 index of the genome to replace CENPK113-
7D.XXX files in Data/RefGenomeBowtie

4. Sequence of each individual chromosome as a fasta file
starting with chr for GEM, replacing the files in Data/
RefGenome

5. Text file with the length of each chromosome, replacing
CENPK113-7D_chromSizes in Data/RefGenome

6. If GEM should filter out a certain region of the genome,
this needs to be specified in the file GEMexclude.txt in
Data/RefGenome

7. If the pipeline should filter out a certain region of the
genome or whole chromosomes (e.g. the mitochondria)
this needs to be specified in the files Filterlist_regions.txt
and Filterlist_chromosomes.txt in the Data folder.

8. TSS annotations to replace TSSData.tsv in the Data
folder. This file should be tab separated and list a TSS in-
cluding the strand for each gene. It has to include these
four columns in this order: name of the gene, chromo-
some, TSS position and strand.

A bioinformatic pipeline to analyze ChIP-exo datasets | 9


	app1

