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We investigate a model for opinion dynamics, where individuals (modeled by vertices of a graph) hold
certain abstract opinions. As time progresses, neighboring individuals interact with each other, and this in-
teraction results in a realignment of opinions closer towards each other. This mechanism triggers formation
of consensus among the individuals. Our main focus is on strong consensus (i.e., global agreement of all
individuals) versus weak consensus (i.e., local agreement among neighbors). By extending a known model
to a more general opinion space, which lacks a “central” opinion acting as a contraction point, we provide
an example of an opinion formation process on the one-dimensional lattice Z with weak consensus but no
strong consensus.

Keywords: consensus formation; Deffuant model; interacting particle system; invariant measures; Markov
process; opinion dynamics

1. Introduction

Background

A major theme of statistical physics is to derive macroscopic properties of a system from simple
interactions at the microscopic level. A prime example is the well-known Ising model, where the
strength of mutual influence of neighboring magnetic dipoles depends on the temperature. While
at high temperature the state is incoherent and chaotic so that the mean magnetization is 0, at low
temperature, the spins align collectively and form a macroscopic magnet.

Transitions from individual to collective behavior, as observed in interacting particle systems
like the Ising model, attracted the attention of social sciences. Despite being overly simplistic,
an abundance of similar but qualitatively different interacting particle systems (such as the voter
model or the majority rule model or the contact process) were introduced in order to describe
and explain group behavior and swarm phenomena, which can be observed in real life. A broad
overview of models, which fall into the research field commonly known as opinion dynamics, can
be found in the survey article “Statistical physics of social dynamics” by Castellano et al. [3]. For
more mathematical background of models in this spirit, we refer to Liggett’s monograph [12].

The model which Deffuant et al. [4] introduced almost 20 years ago is a simple representative
of the so-called bounded confidence models: An opinion is represented by a real number and
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neighboring agents update their opinions in pairwise interactions towards a compromise, but
only if the opinions with which they enter the interaction do not differ by more than a given
threshold. This is supposed to shape the phenomenon that humans in general are inclined to
modify their opinion on a specific topic when confronted with arguments differing from their
own belief, but openness of mind is lost if a priori the opinions are differing too much.

A rigorous and comprehensive mathematical understanding of bounded confidence models
such as the one introduced by Deffuant et al. on infinite graphs (in particular on grids of dimen-
sion greater than 1) is still lacking.

A mathematical model for opinion dynamics

We now describe the Deffuant model as a continuous-time Markov process. To this end, we
consider a connected and locally finite graph G = (V ,E), where the vertices are interpreted as
individuals or agents. Our graphs will always be undirected and two individuals interact when-
ever they are linked by an edge. We further denote by S a compact and convex space of opinions
with metric d , and the state space of the Markov process is given by � = SV (equipped with
the product topology). For given parameters μ ∈ (0, 1

2 ] and θ > 0, the dynamics of the process is
described by the probability generator

Lf (η) =
∑
e∈E

(
f (Aeη) − f (η)

)
, η ∈ �, (1)

where f is a continuous test function, and the operator Ae for the edge e = 〈u,v〉 acts on η ∈ �

as

Aeη(v) =
{

η(v) if v /∈ e;
η(v) + μ1{d(η(v),η(u))≤θ}

(
η(u) − η(v)

)
if e = 〈u,v〉. (2)

Mind that, given η ∈ �, the convexity of S implies Aeη ∈ � for all e ∈ E. Existence and unique-
ness of a Feller process having L as its generator is standard, cf. Chapter IX in [12].

The dynamics defined in (1) and (2) can best be explained via the graphical construction: On
every edge e there is an independent Poisson clock. Upon clock rings, the two incident individu-
als interact, and the result of the interaction is as follows: if the opinions differ by at most θ , then
the two individuals alter their opinions and move both a proportion μ closer towards each other
(in the extreme case μ = 1/2, they even agree on the average opinion). If, however, the opinions
differ by more than the “confidence bound” θ , then there is no change.

One of the main questions related to this model is the following: Given an initial distribution,
will the opinions of different individuals align as t → ∞ (we call this consensus) or not? Our
prime example for G = (V ,E) is the two-sided infinite path with V = Z and E = {〈v, v + 1〉,
v ∈ Z}.

Previous work

In 2011, Lanchier [11] was the first to publish a result about the standard Deffuant model on Z:
For i.i.d. initial opinions that are uniform on [0,1], he proved that there is a sharp phase transition
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at θ = 1
2 , from almost sure no consensus in the subcritical regime (θ < 1/2) to almost sure

consensus in the supercritical regime (θ > 1/2), irrespectively of the value of μ. In the same year,
using different techniques, Häggström [7] reproved and slightly sharpened Lanchier’s result:
He showed in addition to it that in the supercritical regime, the almost sure consensus is not
only local (i.e., between neighbors, cf. weak in Definition 1) but global (corresponding to strong
in Definition 1) with 1

2 as deterministic limit for each individual opinion. Later these results
were extended beyond the uniform distribution on [0,1] for the initial opinions, first to general
univariate distributions by Häggström and Hirscher [8], then to vector-valued [9] and measure-
valued opinions [10] by Hirscher.

In addition to the Euclidean norm, other measures of distance of two opinions were proposed
and analyzed, however, the underlying opinion space S considered was always convex: Rn for
some n ∈ N in the finite-dimensional case and the set of probability densities on [0,1] in the
measure-valued case.

The compass model

In contrast to the standard Deffuant model and its generalizations described above, we want to
consider opinion spaces that are not necessarily convex but only path-connected, and shall see
that this modification can change the limiting behavior fundamentally; further, for simplicity, we
set θ = ∞, in other words ignore the “confidence bound” modeled by the parameter θ ). This
modification is motivated by extensions of the Ising model to more general state spaces, for
example, the unit circle, see the book [6]. We will come back to related models and give more
details towards the end of the introduction.

For a non-convex opinion space S , the interaction rule laid down in (2) has to be adapted so
that updates do not lead out of S . The arguably most natural way to achieve this is to measure
distance between two opinions as the length of their geodesic (with respect to a metric d on S),
along which compromising agents then align their opinions, cf. Figure 1. In case the geodesic is
not unique, the selection is randomized.

Our choice for S will be the unit circle S1, so that updates do not make opinions approach the
center, but happen along their geodesic in S , that is, the circle arc. This change turns out to be

Figure 1. For non-convex S , the opinions of interacting agents move towards each other along the geodesic
between them.
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Figure 2. Both on a star and a spiral with suitable curvature, updates along geodesics are contracting
towards the center, e.g. for uniform initial marginals.

crucial and the essential difference to opinion spaces considered earlier is the following: Given
Euclidean geometry, for convex S ⊆R

n there always exists a reference point s ∈ S such that

(i) the sum of distances to s of two interacting opinions can not increase through the update
and

(ii) E[d(ηv(t), s)] decreases strictly with t (provided 0 < E[d(ηv(0), s)] < ∞).

Note at this point that convexity is a sufficient, not a necessary condition for symmetric ap-
proaches along geodesics to be contracting in the above sense: Also a star and the so-called
Lituus spiral, given by r(ϕ) = 1

ϕ2 (see Figure 2), with respect to their centers and Euclidean
geometry have this property (where in the case of the spiral, the center is not even part of the
opinion space).

On S = S1, however, the dynamics does not have this two-part contraction property: while
the (almost sure) weak contraction condition (i) fails for all points but the origin (i.e. the circle
center), the strict one (ii) fails for the center with respect to any initial distribution. We will
parametrize S = S1 via the quotient space R/2Z, that is,

S = {[x];−1 < x ≤ 1
}
, where [x] =

{
y ∈ R; y − x

2
∈ Z

}
,

and define on it the canonical metric d([x], [y]) = min{|a − b|;a ∈ [x], b ∈ [y]}. Since elements
in S have an interpretation as direction (cf. Figure 3), we propose to call our model the compass
model.

For ease of notation, we simply write S = (−1,1] instead of using the more accurate repre-
sentation by equivalence classes and write x (mod S) to refer to the unique representative of [x]
in (−1,1]. Note that d is indeed a metric and coincides with the length of the Euclidean shortest
path, if distances are taken along the circle arc (rescaled such that the total perimeter is 2). More
precisely,

d : S × S → [0,1], (x, y) 	→ min
{|x − y|,2 − |x − y|}.
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As indicated above, we change the dynamics to happen along geodesics in S . To this end, we
consider the Markov process with a (formal) generator similar as in (1), namely

Lf (η) =
∑
e∈E

(
1

2

[
f
(
A(1)

e η
)+ f

(
A(2)

e η
)]− f (η)

)
, η ∈ �, (3)

with

A(k)
e η(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(v) if v /∈ e;
η(v) + μ

(
η(u) − η(v)

)
if e = 〈u,v〉, ∣∣η(u) − η(v)

∣∣< 1;
η(v) + μ

(
2 − ∣∣η(u) − η(v)

∣∣) sgn
(
η(v)

)
(mod S)

if e = 〈u,v〉, ∣∣η(u) − η(v)
∣∣> 1;

η(v) + (−1)kμ sgn
(
η(v)

)
(mod S)

if e = 〈u,v〉, ∣∣η(u) − η(v)
∣∣= 1,

(4)

for k ∈ {1,2}, where sgn(x) = 1{x>0} − 1{x<0} is the sign function.

In contrast to (1), the jump part in (3) is split up into two contributions, A
(1)
e and A

(2)
e .

This is necessary to implement a (uniformly) random choice of geodesic in the case when
|η(u) − η(v)| = 1 (i.e., when the two interacting opinions are diametrically opposed). In this
way, a rotational symmetry on the opinion space is preserved by the dynamics as it does not
depend on the parametrization of S . Note, however, that for absolutely continuous initial distri-
butions, diametrically opposed opinions will a.s. not occur.

Informally, there are independent Poisson clocks on all edges. Whenever the clock on the edge
〈u,v〉 rings, the opinions at u and v jump closer to each other, see Figure 3. The parameter μ

determines how much they are approaching each other; in the extreme case μ = 1
2 , an update on

〈u,v〉 results in η(u) = η(v) after the jump. The existence of this Markov process – which is not
a Feller process – follows from its graphical representation.

Figure 3. On the left a visualization of the opinion space and a single opinion (or direction, represented by
an “angle” α), on the right the effect of an update of two neighboring opinions α and β .
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The opinion formation model with the unit circle as opinion space, i.i.d. unif(S) initial opin-
ions and dynamics with respect to the distance measure d , as described in (3) and (4), will be
referred to as the uniform compass model.

Our results

Our main focus is on the long-time behavior of the compass model: Will opinions of neighboring
individuals align (‘weak consensus’)? Will there be global agreement on one direction (‘strong
consensus’)? Our main results answer this question for the uniform compass model on Z, see
Theorem 1.1. For the compass model on Z

n, n ≥ 2, we only have a partial answer, see part (c) of
Remark 4.2. We start by formalizing these notions.

Definition 1. We distinguish the following three asymptotic regimes:

(i) No consensus. There exist ε > 0 and two neighbors 〈u,v〉, s.t. for all t0 ≥ 0 there exists
t > t0 with

d
(
ηt (u), ηt (v)

)≥ ε. (5)

(ii) Weak consensus. Every pair of neighbors 〈u,v〉 will finally concur, that is, for all e =
〈u,v〉 ∈ E

d
(
ηt (u), ηt (v)

)→ 0, as t → ∞. (6)

(iii) Strong consensus. The value at every vertex converges to a common (possibly random)
limit L, that is, for all v ∈ V

d
(
ηt (v),L

)→ 0, as t → ∞. (7)

In cases (ii) and (iii), we speak of almost sure consensus/consensus in mean/consensus in proba-
bility whenever the convergence in (6) and (7) is almost surely/in L1/in probability.

It is a simple exercise to show that on finite graphs weak consensus directly implies strong
consensus (making both equivalent). This, however, is not necessarily true on infinite graphs.

For the Deffuant model described earlier, only two scenarios have been observed so far: either
there is almost sure strong consensus, or a.s. no consensus. We prove that for the compass model,
the situation is quite different, and fairly delicate:

Theorem 1.1. For the compass model on Z with i.i.d. uniform initial distribution, there is weak
consensus in mean, but no strong consensus in probability.

We show that the opinions will not converge to one common value (Proposition 4.1), although
the pairwise differences of neighboring opinions converge to 0 in L1 (Proposition 5.1). Mind that
if there is no strong consensus in probability, there cannot be strong consensus in mean or almost
surely. Further, these results imply that the probability of an individual opinion in the compass
model on Z to converge equals 0 (Corollary 5.3).
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In Theorem 1.1, we start the process from an i.i.d. initial configuration (but the independence
is lost immediately). We believe our results to be true for more general initial distributions (cf.
Remark 1.4). On the other hand, they cannot be true for all initial distributions, as there are
multiple invariant measures. Indeed, our second result gives a complete characterization of the
invariant measures. To this end, let I denote the set of invariant measures for the generator (3).
Furthermore, for s ∈ S , denote by s̄ the configuration which assigns the value s to all vertices,
and let δs̄ denote the δ-measure which assigns mass 1 to s̄ and 0 to all other configurations.

Theorem 1.2. The set I of invariant measures for the compass model is given by the convex hull
of the set

{δs̄; s ∈ S}.

Theorem 1.1 and Theorem 1.2, together with the rotational symmetry of our model, immedi-
ately imply the following.

Corollary 1.3. For the compass model on Z with i.i.d. uniform initial distribution, the distribu-
tion of ηt = (ηt (v))v∈Z converges weakly to

∫ 1
0 δs̄ ds as t → ∞.

This means that in a “typical” configuration, there will be larger and larger intervals in which
the individual opinion values (almost) agree, but on the other hand, these values will change with
time. To illustrate this phenomenon in the case of discrete opinions, consider the easier (and well-
known) voter model on Z with an “interface”, that is, starting with the configuration η0, where
η0(v) = 1{v>0}. It is known, see [12], Chap. V, Thm. 1.9, that then ηt = (ηt (v))v∈Z converges
weakly to 1

2δ0̄ + 1
2δ1̄. This means that in any fixed finite interval most likely the vertices either

all have the value 0 or all have the value 1, each with probability close to 1
2 for large t . On

the other hand, the value of each vertex will change infinitely often as time progresses. In this
Boolean example, one can easily see what causes the phenomenon: the configuration at time
t will still have one edge with all values 0 to the left and all values 1 to the right. The only
thing changing is the position of this “interface” between 0’s and 1’s, which moves as a simple
symmetric random walk. Hence, for any finite interval, the probability to see both values at time t

equals the probability that the random walk is in that interval at time t , which goes to 0 (due to the
central limit theorem). On the other hand, since the random walk on Z is recurrent, the interface
will return infinitely often to any given edge and hence each vertex will change its value infinitely
often as time progresses. We believe that something similar happens for the compass model and
conjecture in particular that there is no almost-sure weak consensus, see Section 7.

Remark 1.4. Inspecting the proofs shows that indeed Theorem 1.1 and Corollary 1.3 remain
valid if we start from a translation invariant, ergodic sequence (η0(v))v∈Z, having the uniform
law unif(S) as its marginal. For better readability, we gave the statements and proofs for i.i.d.
initial opinions.
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Comparison with a dynamic XY-model

The compass model has the same state space as the famous XY-model, which is the O(N)-model
in the special case N = 2 (see, e.g., Chapter 9.1 of [6]). However, the behavior of this model is
rather different from the compass model, as we explain next.

As for the XY-model on the one-dimensional lattice Z, it is implicit in the work of McBryan
and Spencer [13] that the correlations decay exponentially fast, consequently there is a unique
Gibbs measure in one dimension. Bauerschmidt and Bodineau [1] show that this implies a log-
arithmic Sobolev inequality for high temperature, and it may be possible to extend this to low
temperature. The general criterion of Stroock and Zegarlinski [14] then implies that the Glauber
dynamics of the XY-model on Z is ergodic, that is, there is a unique stationary distribution
(namely, the Gibbs measure) and for any starting point, the law at time t converges to this sta-
tionary distribution. This is in sharp contrast to our results for the compass model.

Organization of the paper

In the next section, we introduce the difference process, which plays a crucial role in the forth-
coming sections. We then turn to the compass model on finite graphs – more precisely paths
and rings – in Section 3. In addition to it, we draw a comparison to the trivial standard Def-
fuant model (i.e., i.i.d. unif([0,1]) initial opinions and θ = 1) on finite graphs and highlight the
qualitative differences in Section 3.3. In Section 4, we verify that in the uniform compass model
on Z, due to its symmetries, there can’t be any form of convergence to a common value. That
the differences of neighboring opinions in this setting converge to 0 (in mean) is established in
Section 5, completing the proof of Theorem 1.1. A characterization of invariant measures for the
compass model on Z is given in Section 6. We close the paper with a discussion of related open
problems in Section 7.

2. Preliminaries

2.1. The difference process

Let us now introduce a slight change of perspective and consider differences between neighbors
instead of the plain opinion values; an approach which will turn out to be more suitable in the
context of weak consensus.

Definition 2. Given a configuration of opinions ηt = (ηt (v))v∈V ∈ (−1,1]V , define the corre-
sponding configuration of edge differences �t = (
t (e))e∈E in the following way: Assign to
each edge e = 〈u,v〉 the unique value 
t(e) ∈ (−1,1], such that

ηt (u) + 
t(e) = ηt (v) (mod S).

See Figure 4 for a numerical illustration on a section of Z.
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Figure 4. An illustrating example of the transition from plain angles/directions to edge differences in the
compass model.

As far as the dynamics is concerned, recall that a Poisson event at time t on the edge e = 〈u,v〉
changes the (S-valued) opinions of the incident vertices u and v by pulling them symmetrically
towards their angle bisector (cf. Figure 3). For the difference process, this corresponds to a μ-
fraction of 
t−(e) being added to all edges to which exactly one of 〈u,v〉 is incident, while at
the same time 
t−(e) decreases by a factor 1 − 2μ and no changes are made on edges to which
neither u nor v are incident, that is,


t

(
e′)=

⎧⎪⎨
⎪⎩

(1 − 2μ)
t−(e), for e′ = e


t−
(
e′)+ μ
t−(e) (mod S), for

∣∣e′ ∩ e
∣∣= 1


t−
(
e′), for

∣∣e′ ∩ e
∣∣= 0.

(8)

See Figure 5 for an illustration of the dynamics (in the special case of a path).

2.2. Ergodicity on Z

A key ingredient in our proofs is the following version of Birkhoff’s ergodic theorem. Let η0 =
(η0(v))v∈Z be the i.i.d. sequence of initial opinions and T denote the shift to the left on Z, i.e.
T (v) = v−1. Given a two-sided sequence X = (Xv)v∈Z, we write T X for the sequence in which
all labels got shifted down by one, that is, the value at v is taken to be Xv+1 for all v. Further,
let Yv stand for the couple consisting of η0(v) and the Poisson process associated with the edge
〈v, v + 1〉. Observe that Y = (Yv)v∈Z is also an i.i.d. sequence and embodies the full randomness
of the model. From ergodicity, we can conclude that the limit of spatial averages almost surely
converges to the mean.

Lemma 2.1. Let Y = (Yv)v∈Z be as above and f be a real-valued integrable function of Y .
Further let (�n)n∈N be a nested sequence of finite sections of Z that are strictly increasing in
size. Then

lim
n→∞

1

|�n|
∑
k∈�n

f
(
T kY

)= E
(
f (Y )

)
a.s. (9)

Bearing in mind that any integrable factor of an i.i.d. sequence is ergodic (with respect to
the shift T , see for instance Thm. 7.1.3. in [5]), the statement is an immediate consequence of
Birkhoff’s pointwise ergodic theorem (see, for instance, Thm. 7.2.1. in [5]) adapted to two-sided
sequences.
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So, if we look at the regimes from Definition 1 from the perspective of pointwise convergence,
ergodicity of the model on Z (with respect to shifts) ensures that each of the corresponding three
events (being translation invariant) either occurs with probability 0 or 1.

3. Asymptotics on finite graphs

In order to get acquainted with both the model and some of the arguments/tools, which will be
used in the analysis of the uniform compass model on Z, we start with an investigation of basic
finite networks that share some essential properties with the two-sided infinite path.

Before we turn to finite networks, however, let us make the following two simple observations
about the process of edge differences, which also apply to infinite networks: First, on any tree
(i.e., cycle-free graph), the properties of the initial opinion configuration η0 in the uniform com-
pass model make �0 an i.i.d. collection of unif((−1,1]) random variables as well. Second, if
the maximal degree in the network is 2, two compromising agents change the edge difference
on at most three edges. As a consequence, for an update on e = 〈u,v〉 at time t , the following
inequality holds: ∑

e′∩{u,v}=∅

∣∣
t

(
e′)∣∣ ≤

∑
e′∩{u,v}=∅

∣∣
t−
(
e′)∣∣. (10)

To see this, note that d(ηt (u), ηt−(u)) = d(ηt (v), ηt−(v)) = μ · |
t−(e)|, hence the edge differ-
ence on edges incident to exactly one of u, v can not increase by more than that. Since there
are at most two such edges and |
t(e)| = (1 − 2μ) · |
t−(e)|, the claimed inequality follows.
Observe at this point, that (10) can fail whenever e intersects more than 2 other edges (e.g., in
Z

n, n ≥ 2).

3.1. The compass model on paths

As a warm-up, let us analyze the compass model on finite paths Pn = (Vn,En) with vertex set
Vn := {1, . . . , n} and edge set En = {e1, . . . , en−1}, where ev := 〈v, v + 1〉, v = 1, . . . , n − 1.
Here, a Poisson event on ev will effect only the differences on edges in the set {ev−1, ev, ev+1} –
it might be only {ev, ev+1} or {ev−1, ev} respectively, in case ev lies at one end of the path. More
precisely, the update rule for the process of edge differences on a path reads:

⎛
⎝
t(ev−1)


t (ev)


t (ev+1)

⎞
⎠=

⎛
⎝
t−(ev−1) + μ
t−(ev)

(1 − 2μ)
t−(ev)


t−(ev+1) + μ
t−(ev)

⎞
⎠ (mod S) (11)

and no changes for edges other than ev−1, ev or ev+1; see Figure 5 for an example.
Since on Pn the maximal degree is 2, inequality (10) applies and is sufficient to settle the

compass model’s asymptotic behavior.
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Figure 5. The evolution of the process (�t )t≥0, driven by the Poisson events, illustrated by a numerical

example (here with μ = 1
3 ) on a path.

Lemma 3.1. Fix n ∈ N and consider the compass model on the path Pn. There will be almost
sure weak consensus in the limit, that is,

lim
t→∞

∑
e∈En

∣∣
t(e)
∣∣= 0 a.s. (12)

Proof. By (10), the random variable Wn(t) = ∑
e∈En

|
t(e)| is non-increasing in t ≥ 0 (and
non-negative). For it to converge, the value 
t(e1) has to converge to 0 as t → ∞, since any
update on e1 = 〈1,2〉 will decrease Wn(t) by at least μ|
t(e1)| – and due to independence of the
Poisson processes there will a.s. be updates on e1 at arbitrarily large time points. This in turn can
only happen if 
t(e2) also converges to 0: For arbitrary ε > 0, given |
t(e1)| ≤ ε, any update on
e2 will increase |
t(e1)| by at least μ|
t(e2)| − ε. Iterating this argument proves the claim. �

Note that by the finiteness of Pn – as mentioned just after Definition 1 – Lemma 3.1 in fact
proves almost sure strong consensus for the compass model on Pn (even irrespective of the initial
configuration).

Using Lemma 3.1, we are further able to conclude that appropriate sequences of updates can
produce a flat configuration on any finite path in the network G = (V ,E) in terms of the absolute
values of edge differences, uniformly in the configurations on which they are applied: Let us
consider the compass model on G, together with a path Pn = (Vn,En) ⊆ G on n nodes and let

Fn := {
e = 〈u,v〉; e /∈ En,Vn ∩ {u,v} =∅

}
denote the edge boundary of Pn in G.

Corollary 3.2. Let Pn and Fn be as above and fix ε, δ > 0. Then, uniformly in T ≥ 0, the fol-
lowing event has probability p = p(ε, δ) > 0: In the time period (T ,T + δ] there will be no
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Poisson events on Fn and sufficiently many on the edges in En so that
∑

e∈En
|
T +δ(e)| ≤ ε,

irrespectively of the configuration �T .

Proof. To begin with, note that our general assumptions (G is locally finite) ensure the finiteness
of Fn. Then convince yourself of the following three simple facts:

(i) On a finite collection of edges, with probability 1 there will be only finitely many and no
simultaneous Poisson events during a finite time period.

(ii) By independence of the Poisson processes, for any T ≥ 0, s > 0, m ∈ N and e(k) ∈ En ∪
Fn, 1 ≤ k ≤ m, the chronologically ordered pattern of locations of all Poisson events on
the edges in En ∪ Fn during the time period (T ,T + s] has strictly positive probability to
be given by the finite sequence (e(1), . . . , e(m)).

(iii) The time homogeneity of the Poisson processes implies that for every such pattern and
fixed δ, the probability to occur in (T ,T + δ] is the same for all T ≥ 0.

From Lemma 3.1 together with facts (i) and (ii), we can deduce that for every configuration
�T , there exist m ∈ N and (e(1), . . . , e(m)) ∈ (En)

m such that the following holds: If the chrono-
logically ordered pattern of locations of all Poisson events on the edges in En ∪ Fn during the
time period (T ,T + δ] is given by (e(1), . . . , e(m)), we end up with

∑
e∈En

|
T +δ(e)| ≤ ε.
To verify the claim, we have to find one such pattern which achieves this for all possible �T at

once. By fact (iii), we can set T = 0 without loss of generality. Now consider the configuration
of all ones, that is, ξ ∈ (R≥0)

E given by ξ(e) = 1, for all e ∈ E. Each Poisson event on an edge
e ∈ E at a time t > 0 will lead to an update of �t according to (11). We will set ξ0 := ξ and
update it simultaneously, according to the very same rule (11) but drop the modulo calculation,
that is,

ξt

(
e′)=

⎧⎪⎨
⎪⎩

(1 − 2μ)ξt−(e), for e′ = e

ξt−
(
e′)+ μξt−(e), for

∣∣e′ ∩ e
∣∣= 1

ξt−
(
e′), for

∣∣e′ ∩ e
∣∣= 0.

While this makes ξt (e) > 1 possible, it is not hard to check that for any e ∈ E and t ≥ 0, the
domination

ξt (e) ≥ ∣∣
t(e)
∣∣ (13)

holds uniformly in �0 and the sequence of updates. As the inequality (10) remains valid with
ξ t in place of �t (i.e., without the modulo calculation), the line of reasoning in the proof of
Lemma 3.1 applies without any further amendments to {ξt (e); e ∈ En} as well and by (13), the
pattern of locations of Poisson events (e(1), . . . , e(m)) ∈ (En)

m, which achieves
∑

e∈En
ξδ(e) ≤ ε

works for all configurations �0 and thus verifies the claim. �

3.2. The compass model on rings

As an extension of Lemma 3.1 and a warm-up for the analysis of the compass model on Z, let us
look at the model on finite rings. Based on the notation of Section 3.1, we write Rn = (Vn, E̊n)

for the ring on n nodes, with Vn as before and E̊n = En ∪{en} = {e1, . . . , en}, where en := 〈n,1〉,
see Figure 6.
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Figure 6. In this subsection, we consider a finite ring as underlying network graph.

Proposition 3.3. Fix n ∈ N and consider the compass model on the ring Rn. There will be almost
sure strong consensus in the limit.

Proof. As long as there is no Poisson event on the edge en, the compass model on Rn behaves
exactly like the model on Pn. From Lemma 3.1, we know that in this setting

∑
e∈En

|
t(e)|
converges to 0 almost surely.

In fact, Corollary 3.2 is the key ingredient for the remainder of the proof. Choose ε > 0 and
let At be the event that during the time period (t, t + 1] there are no Poisson events on en and
sufficiently many on the edges in En such that

∑
e∈En

|
t+1(e)| ≤ ε, irrespectively of the config-
uration �t . Applying the corollary with G = Rn, hence Fn = {en}, and δ = 1, we are guaranteed
a number p > 0, such that P(At ) = p for all t ≥ 0.

At this point, the following three observations are crucial: First, by the triangle inequality it
trivially holds that |
t(en)| ≤∑

e∈En
|
t(e)|. Second, W(t) =∑

e∈E̊n
|
t(e)| is non-increasing

by (10) and third, the events (Ak)k∈N are independent by the memoryless property of the Poisson
processes. If we now use the sequence (Ak)k∈N to define a random variable Y by letting Y(ω) = k

whenever ω ∈ Ak \⋃k−1
j=1 Aj , for all k ∈ N, then {W(k) > 2ε} ⊆ {Y > k} and Y is geometrically

distributed with parameter p. We conclude that

P

(
lim

t→∞W(t) ≤ 2ε
)

= 1

and hence almost sure weak consensus. As before, by the finiteness of the network, this directly
implies a.s. strong consensus and thus proves the claim. �

3.3. Compass vs. Deffuant model

In this subsection, we want to compare the asymptotic behavior of the compass model with the
one of the trivial (θ = 1) standard Deffuant model – as mentioned in the introduction, the latter
has in principle the same dynamics (compare (2) and (4)), however, with the interval [0,1] a
convex opinion space.

It is not hard to see that on Pn and Rn, the standard Deffuant model with trivial confidence
parameter θ exhibits the same asymptotics (a.s. strong consensus) – in fact by the very same
arguments. Nevertheless, there are qualitative differences in terms of randomness and distribution
of the limiting variable L.
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Due to the fact that there is no modulo operation involved, the dynamics of the Deffuant model
preserves the sum of updated opinions. For this reason, on a finite graph, the initial opinions
already determine the final consensus value, simply being their average.

Let us, for the sake of simplicity, go back to Pn = (Vn,En), the path on n nodes, and illustrate
the qualitative differences between compass and trivial standard Deffuant model with help of
the following example: Start with an i.i.d. uniform initial configuration (η0(v))v∈Vn , to be more
precise: with unif(S) as marginal for the compass and unif([0,1]) as marginal for the trivial
Deffuant model. As derived above, in both models we observe almost sure strong consensus in
the limit. However, while the common final value L = limt→∞ ηt (v) in the trivial Deffuant model
equals LD(Pn) = 1

n

∑
v∈Vn

η0(v) (and hence does not depend on the dynamics), the modulo
operation in the compass model (with fixed starting configuration) produces in the limit t → ∞
a value

Lc(Pn) = 1

n

[
2K +

∑
v∈Vn

η0(v)

]
,

where K is an integer-valued random variable, depending on the sequence of updates (and in fact
also the initial values). It is easy to see that given (ηt (v))v∈Vn , the common limit value Lc(Pn)

can depend on the future dynamics only if {ηt (v);v ∈ Vn} is not yet contained in a half-circle,
more precisely a connected part of S containing exactly one of each pair of diametrically opposed
opinion values.

Furthermore, in the limit of longer and longer paths (n → ∞), the strong law of large numbers
dictates that LD(Pn) converges to 1

2 almost surely (i.e., becomes degenerate), while Lc(Pn) is a
unif(S) random variable for all n, caused by the rotational symmetry in the opinion space of the
compass model.

Finally, in contrast to the Deffuant model, the compass model is noise-sensitive in the follow-
ing sense: Let us couple two copies of the compass model on Pn by starting from two initial
configurations, (η0(v))v∈Vn and (η′

0(v))v∈Vn respectively, which disagree only at one site, that is,
there exists v ∈ Vn s.t. η′

0(u) = η0(u) for all u ∈ Vn \ {v}, and further taking the very same i.i.d.
Poisson processes to drive the dynamics. Let Lc(Pn), L′

c(Pn) denote the corresponding limit
values of both copies. While in the trivial Deffuant model, altering one single initial opinion can
change the common limit by at most 1

n
, the two limits Lc(Pn) and L′

c(Pn) can be at distance 1,
which is the maximal possible value as d(x, y) ≤ 1 for all x, y ∈ S . To see why this is true, let
us sketch a numerical example:

Example 3.4. Take P2n−1 and let η0(v) = v
n

− 1, for all v ∈ V2n−1 = {1, . . . ,2n − 1}. To get to
(η′

0(v))v∈Vn , we only replace η0(n) = 0 by η′
0(n) = 1. See Figure 7 for an illustration. If up to

some large time T there are no updates involving site n, but plenty of Poisson events on all other
edges e ∈ En \ {en−1, en}, both of the configurations will see the opinions at sites 1 through n−1
gather around the value − 1

2 and opinions at sites n + 1 through 2n − 1 gather around the value
1
2 . If after T the Poisson events on en−1 and en are somewhat alternating, that is, not too many
updates on one of both during a time period that does not see any update on the other, it will lead
to Lc(Pn) = 0 and L′

c(Pn) = 1.
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Figure 7. Two almost identical starting configurations that demonstrate the noise-sensitivity of the compass
model.

It is further not so hard to come up with an example, in which even a slight change of one
value can cause this kind of butterfly effect.

Let us now leave finite paths and focus on the case of G being the one-dimensional integer
lattice Z. As far as the trivial standard Deffuant model is concerned, the asymptotic behavior
actually remains almost sure strong consensus (cf. Thm. 1.4 in [11] or Thm. 6.5 in [7]). In higher
dimensions (i.e., Zd , d ≥ 2) even for trivial bounded confidence parameter (i.e., θ = 1) so far
only almost sure weak consensus could be verified (cf. Thm. 3.1 in [8]). Nonetheless, for the
trivial Deffuant model it is believed that even on Z

d , d ≥ 2, almost sure strong consensus is
the right answer and the step from weak to strong consensus more a technical cumbersomeness,
which has to be taken care of.

The different topology in the opinion space of the compass model, however, renders a central
energy argument (cf. Lemma 3.2 in [8]) void and in some sense opens a door to qualitatively
different asymptotics. As we will see in the subsequent sections, the behavior of the uniform
compass model on Z (in the limit as t → ∞) is indeed strictly weak consensus (in mean).
Note at this point that simulation studies are rather not a suitable tool to tell apart strong and
weak consensus, since strictly weak consensus cannot appear on finite graphs, as remarked ear-
lier.

4. No strong consensus in the uniform compass model on Z

For the remainder of this paper, we analyze the compass model on Z with i.i.d. unif(S) initial
opinions. In this section, we show that the symmetries of the uniform compass model rule out
strong consensus (in any sense).

Proposition 4.1. For the uniform compass model on Z, there is no strong consensus in the limit
(not even in probability).
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Proof. This result readily follows from the symmetries and invariances of the model. Let us first
rule out almost sure strong consensus and assume for contradiction that there exists a (−1,1]-
valued random variable L for which (7) holds a.s. Consequently,

B =
{

lim
t→∞d

(
ηt (v),L

)= 0, for all v ∈ Z

}

is an almost sure event and either B ∩{L ∈ (−1,0]} or B ∩{L ∈ (0,1]} has probability at least 1
2 .

As the uniform initial opinions entail a complete rotational symmetry in S , we can in fact con-
clude that these probabilities coincide, that is, P(B ∩ {L ∈ (−1,0]}) = P(B ∩ {L ∈ (0,1]}) = 1

2 .
Finally, the event B ∩ {L ∈ [0,1)} is invariant with respect to shifts on Z, thus forced to either

have probability 0 or 1, due to ergodicity of the model: Take f = 1B∩{L∈[0,1)} in Lemma 2.1,
which makes the left hand side of (9) either have value 0 or 1, depending on f (Y ), but not n.
From this contradiction, it follows that there is no random variable L fulfilling (7) almost surely.

It remains to verify that assuming the existence of a random variable L such that only

d
(
ηt (v),L

) P−→ 0, as t → ∞, for all v ∈ Z (14)

holds, similarly leads to a contradiction.
For ease of notation, let us relabel the vertices of Z to form a one-sided infinite sequence, for

example by means of the standard enumeration

v1 = 0, v2m = m and v2m+1 = −m for all m ∈ N.

By the subsequence criterion (cf. for instance, Thm. 20.5 in [2]), we can deduce from (14) that
there exists a subsequence of (ηk(v1))k∈N, say (η

k
(1)
j

(v1))j∈N, such that d(η
k
(1)
j

(v1),L) converges

almost surely to 0 as j → ∞. By the same token, we can choose a subsequence (k
(2)
j )j∈N of

(k
(1)
j )j∈N such that d(η

k
(2)
j

(v2),L) converges almost surely to 0 as well. Now iterate this thinning

and use Cantor’s diagonal argument: Setting tj := k
(j)
j , we accomplished that (ηtj (vm))j∈N is a

subsequence of (η
k
(m)
j

(vm))j∈N for all m ∈ N (apart from finitely many elements in the beginning)

and consequently

d
(
ηtj (v),L

) a.s.−→ 0, as j → ∞, for all v ∈ Z.

Taking B = {limj→∞ d(ηtj (v),L) = 0, for all v ∈ Z}, the reasoning used in the almost sure case
above still applies and hence the claim follows. �

Remark 4.2.

(a) The rotational symmetry of the model and its initial configuration implies L(ηt (v)) =
unif(S) for all v ∈ Z and all times t > 0. The independence property of (η0(v))v∈Z is,
however, lost immediately. The fact that ηt (0) has a uniform distribution on S for all t

implies that the marginals of any possible (weak) limit must be uniform as well.
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(b) Further, observe that the proof of Proposition 4.1 is based on the symmetries and invari-
ances of the uniform compass model only. If one introduces – in analogy to the non-trivial
Deffuant model – a confidence bound θ ∈ (0,1), such that only opinions at distance at
most θ will symmetrically approach each other in an update, the line of reasoning above
still applies, and consequently Proposition 4.1 holds just as well for a uniform compass
model with bounded confidence.

(c) Finally, since Z is a subgraph of Zn for all n ≥ 2, the above proof immediately transfers
to higher dimensions, that is, the statement of Proposition 4.1 holds true for the uniform
compass model on Z

n, n ≥ 2.

5. A case of strictly weak consensus

In view of Definition 1 and Proposition 4.1, the behavior of the uniform compass model on Z in
the limit either has to be no consensus or a form of weak consensus. We establish the latter.

Proposition 5.1. The compass model on Z with uniform initial opinions exhibits weak consensus
in mean.

To see, how Corollary 3.2 comes in useful here, imagine the following scenario: During a
given time interval, the agents on a fixed finite section of Z interact a lot, while there is no
interaction with the two neighboring ones left and right of this section. Albeit rarely, this scenario
will occur, vacate the corresponding section in terms of the absolute values of edge differences
(irrespectively of the configuration before) and as a result enable us to establish weak consensus
in mean.

It should be mentioned that for a fixed edge eu = 〈u,u + 1〉, the value of 
t(eu) matches
d(ηt (u), ηt (u + 1)), apart from the fact that it additionally carries the sign (clockwise (+) or
counterclockwise (−)) of the smallest angle formed by the directions represented by ηt (u) and
ηt (u + 1). Bearing d(ηt (u), ηt (u + 1)) = |
t(eu)| in mind, weak consensus is equivalent to the
corresponding componentwise convergence of �t to 0.

As a final preparation for the proof of Proposition 5.1, let us verify that the expected value
E|
t(e)|, which by symmetry coincides for all e ∈ E, does not increase with t .

Lemma 5.2. The function t 	→ E|
t(e)|, t ∈ [0,∞) is non-increasing.

Proof. To begin with, recall that a Poisson event on ev at time t can change the 
-values on the
edges ev , ev−1 and ev+1 only and we further have∣∣
t(ev−1)

∣∣+ ∣∣
t(ev)
∣∣+ ∣∣
t(ev+1)

∣∣≤ ∣∣
t−(ev−1)
∣∣+ ∣∣
t−(ev)

∣∣+ ∣∣
t−(ev+1)
∣∣

by (10). For any t ≥ 0, we can take f (Y ) = |
t(e0)| in Lemma 2.1 to get

lim
i,j→∞

1

i + j

j−1∑
v=−i

∣∣
t(ev)
∣∣= E

∣∣
t(e0)
∣∣ a.s. (15)
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Next, we can conclude from the independence of the Poisson processes associated to the
edges that for all t, ε ≥ 0, there will a.s. be two strictly increasing sequences of natural num-
bers, say (in)n∈N and (jn)n∈N, with the property that neither of the edges incident to a vertex
v ∈ {−in, jn;n ∈N} has seen a Poisson event in the time interval (t, t + ε].

This choice ensures that for each n ∈ N, the average edge difference on the section
{−in, . . . , jn}, i.e. 1

in+jn

∑jn−1
v=−in

|
s(ev)|, can change only at times s ∈ (t, t + ε], which involve
a Poisson event on the section between the vertices −in and jn (in fact −in + 1 and jn − 1), and
further that it must be non-increasing as a consequence of the above inequality (10). Together
with (15), this establishes the claimed monotonicity of E|
t(e)|. �

Note that the statement of Lemma 5.2 is not limited to the uniform case, but holds for the
compass model in general, that is, for initial marginal distributions other than unif(S).

Proof of Proposition 5.1. Let us assume for contradiction that some (
t (e))t≥0 does not con-
verge to 0 in mean as t → ∞. Due to stationarity, we can assume e = e0 without loss of general-
ity.

Our assumption (together with Lemma 5.2) implies

1

2
= E

∣∣
0(e)
∣∣≥ E

∣∣
t(e)
∣∣≥ lim

s→∞E
∣∣
s(e)

∣∣= ε, (16)

for some ε > 0 and all t ≥ 0. We will lead this to a contradiction by showing that given (16),
the difference E|
t(e)| − E|
t+1(e)| is bounded away from 0 (uniformly in t ), thus forcing
lims→∞ E|
s(e)| = −∞.

To achieve this, we fix t ≥ 0, set K = � 6
ε
� and do the following construction: Partition the

edges of Z into disjoint blocks of length K , that is, paths (P
(j)
K )j∈Z, such that P

(j)
K connects the

vertices jK and (j + 1)K , for all j ∈ Z.
Next, observe that 1

K

∑K−1
v=0 |
t(ev)| is a [0,1]-valued random variable with expectation

E|
t(e)| ≥ ε. Therefore, it must hold (uniformly in t ) that

P

(
1

K

K−1∑
v=0

∣∣
t(ev)
∣∣≥ ε

2

)
≥ ε

2
. (17)

Further, from Corollary 3.2 we get that the following event, for which we will write A
(0)
t , has

positive probability, say p := P(A
(0)
t ) > 0: In the time interval [t, t + 1], there are no Poisson

events neither on e0 nor on eK−1 and sufficiently many on the edges in EK−1 = {e1, . . . , eK−2}
such that

∑
e∈EK−1

|
t+1(e)| ≤ 1
2 , irrespectively of the configuration �t .

For all j ∈ Z, let us write A
(j)
t for the event A

(0)
t shifted by jK edges and

B
(j)
t :=

{
1

K

(j+1)K−1∑
v=jK

∣∣
t(ev)
∣∣≥ ε

2

}
.
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From stationarity and (17), it follows that P(B
(j)
t ) = P(B

(0)
t ) ≥ ε

2 . Due to the memoryless prop-
erty of the Poisson processes and the fact that they are independent from �0, or rather η0, for each
j ∈ Z the events A

(j)
t (depending on the Poisson events in the time interval (t, t + 1] only) and

B
(j)
t (depending on the start values and dynamics up to time t ) are independent. Consequently,

A
(j)
t ∩ B

(j)
t has probability at least pε

2 . Since the Poisson processes are time homogeneous and

the lower bound on P(B
(j)
t ) is uniform in t , the same actually holds for all t ≥ 0.

To conclude, we gather a few simple observations: First, given the event A
(j)
t , it holds that

(j+1)K−1∑
v=jK

∣∣
t+1(ev)
∣∣≤ 2 +

(j+1)K−2∑
v=jK+1

∣∣
t+1(ev)
∣∣≤ 5

2
,

as |
t+1(ejK)| and |
t+1(e(j+1)K−1)| are trivially bounded by 1. Second, given B
(j)
t , we have

a reverse inequality for the time point t ; more precisely, by our choice of K :

(j+1)K−1∑
v=jK

∣∣
t(ev)
∣∣≥ K · ε

2
≥ 3.

In other words, given A
(j)
t ∩ B

(j)
t , the sum

∑(j+1)K−1
v=jK |
t+s(ev)| decreases by at least 1

2 as s

increases from 0 to 1.
Let S denote a section between two blocks (indexed by j and k) such that A

(j)
t ∩ B

(j)
t and

A
(k)
t ∩B

(k)
t hold, but not for any block in S. Now it is crucial to notice that the sum

∑
e∈S |
t(e)|

is non-increasing until time t + 1: Let e and e be the two edges of P
(j)
K and P

(k)
K , respectively

sharing a vertex with an edge in S. Since there are no Poisson events on e and e during (t, t +
1], no Poisson event outside of S can change the 
-values inside S during this time period.
According to (10), events inside S can only decrease the sum and the claimed monotonicity
follows. The fact that Poisson events on the marginal edges in S might cause |
t+1(e)| > |
t(e)|
or |
t+1(e)| > |
t(e)| doesn’t have to bother us, since we estimated the values on these edges
with the utterly crude upper bound 1 anyway.

Finally, applying Lemma 2.1 one last time, taking T K instead of T and f (Y ) = 1
A

(0)
t ∩B

(0)
t

, we
get

lim
i,j→∞

1

i + j

j−1∑
k=−i

1
A

(k)
t ∩B

(k)
t

= P
(
A

(0)
t ∩ B

(0)
t

)≥ pε

2
a.s. (18)

Choosing instead f (Y ) = 1
K

∑K−1
v=0 |
t+s(ev)| for s ∈ {0,1}, gives

lim
i,j→∞

1

(i + j)K

jK−1∑
v=−iK

∣∣
t+s(ev)
∣∣= E

∣∣
t+s(e0)
∣∣ a.s.
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From the above, in particular (18), we can deduce the following inequality:

E
∣∣
t(e0)

∣∣−E
∣∣
t+1(e0)

∣∣= lim
i,j→∞

1

(i + j)K

jK−1∑
v=−iK

[∣∣
t(ev)
∣∣− ∣∣
t+1(ev)

∣∣]

≥ lim
i,j→∞

1

(i + j)K

j−1∑
k=−i

1

2
· 1

A
(k)
t ∩B

(k)
t

≥ pε

4K
,

where the equality and second inequality hold almost surely. Since p depends on K only, this
bound is uniform in t ; we arrive at the contradiction sketched above and have thus ruled out the
initial assumption. �

Proof of Theorem 1.1. This follows from Proposition 4.1 and Proposition 5.1. �

Next, we observe that Proposition 5.1, together with the symmetries of the uniform compass
model, renders convergence of individual opinions impossible.

Corollary 5.3. Consider the uniform compass model on Z. For any fixed vertex v ∈ Z,

P

(
lim

t→∞ηt (v) exists
)

= 0.

Proof. Let us write A := {limt→∞ ηt (v) exists} and assume P(A) =: p > 0 for contradiction.
From the rotational symmetry in S , it follows that

P

[
lim

t→∞ηt (v) ∈ (−1

2
,0

]
|A] = P

[
lim

t→∞ηt (v) ∈ (
1

2
,1

]
|A] = 1

4
.

By ergodicity, cf. Lemma 2.1, the density of nodes at which the opinion converges to a value
in (− 1

2 ,0] and ( 1
2 ,1] respectively, therefore a.s. equals p

4 . Hence, for big enough D ∈ N, with
probability at least 1

2 there exist two nodes u,w ∈ {0, . . . ,D} such that both limt→∞ ηt (u) and
limt→∞ ηt (w) exist and the former lies in (− 1

2 ,0], the latter in ( 1
2 ,1]. This, however, forces

D−1∑
v=0

∣∣
t(ev)
∣∣≥ 1

2
, for all t large enough,

contradicting Proposition 5.1. �
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6. Invariant measures

In this section, we finally prove Theorem 1.2. Trivially, constant profiles, that is, η(v) = s for all
v ∈ Z and some s ∈ (−1,1], are invariant under the dynamics of the compass model. We prove
now that these are the only extremal invariant distributions.

To this end, we first establish that for invariant measures, the edge differences on neighboring
edges must have the same sign a.s. at all times.

Lemma 6.1. Consider an invariant measure ν for the compass model on Z. Given that we start
with η0 ∼ ν as initial configuration, it is true that at any time t ≥ 0,


t(ev) · 
t(ev+1) ≥ 0 a.s. for all v ∈ Z. (19)

Proof. Let us start by calculating the probabilities for infinitesimal changes of the difference on
a given edge, say e0. To this end, we consider the section P = {e−2, e−1, e0, e1, e2} – as depicted
in Figure 8 – and write Ne(t) for the Poisson process associated with edge e ∈ E. Let A∅(t)

denote the event that no updates occur neither on e0, nor e−1, nor e1 until time t , that is,

A∅(t) := {
Ne−1(t) = Ne0(t) = Ne1(t) = 0

}
.

For e ∈ P , let Ae(t) := {∑e′∈P Ne′(t) = 1 = Ne(t)} be the event that until t , there is exactly one
Poisson event on P , occurring on edge e. Finally, let A≥2(t) denote the event that there are at
least 2 Poisson events on P until time t .

For a Poisson process (N(t))t≥0 of unit rate, starting with N(0) = 0, it holds

P
(
N(t) = n

)= tn

n!e−t , for all n ∈N0. (20)

Simple calculations – based on (20) and the independence of Poisson processes associated with
different edges – yield

P
(
A∅(ε)

)= e−3ε = 1 − 3ε + O
(
ε2),

P
(
Ae0(ε)

)= P
(
Ae−1(ε)

)= P
(
Ae1(ε)

)= ε · e−5ε = ε + O
(
ε2) and

P
(
A≥2(ε)

)= O
(
ε2).

(21)

Figure 8. To understand the infinitesimal evolution of the edge difference 
t(e0), essentially only updates
on e0 and its neighboring edges matter.
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Consequently, we find (cf. Figure 5)


ε(e0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩


0(e0) with probability 1 − 3ε + O
(
ε2),

(1 − 2μ)
0(e0) w.p. ε + O
(
ε2),


0(e0) + μ · 
0(e−1) (mod S) w.p. ε + O
(
ε2),


0(e0) + μ · 
0(e1) (mod S) w.p. ε + O
(
ε2) and

Z w.p. O
(
ε2),

where Z is some (−1,1]-valued random variable. As the distributional invariance L(η0) = ν =
L(ηt ) directly implies E|
0(e0)| = E|
t(e0)| for all t > 0, we can conclude (looking at time
t = ε and using the independence of η0 from the Poisson processes) that

2(1 + μ)E
∣∣
0(e0)

∣∣≤ E
∣∣
0(e0) + μ
0(e−1)

∣∣+E
∣∣
0(e0) + μ
0(e1)

∣∣+ O(ε),

where the inequality comes from the potentially involved modulo calculation. Letting ε tend to
0 and using the triangle inequality, we get

2E
∣∣
0(e0)

∣∣≤ E
∣∣
0(e−1)

∣∣+E
∣∣
0(e1)

∣∣. (22)

Since these conclusions similarly apply to any other edge, in place of e0, the convexity condi-
tion (22) must be an equality, as E|
0(ev)| ∈ [0,1], for all v ∈ Z, would be violated otherwise.
Consequently, for invariant ν it holds

2E
∣∣
0(e0)

∣∣= E
∣∣
0(e−1)

∣∣+E
∣∣
0(e1)

∣∣. (23)

This in turn implies that v 	→ E|
0(ev)| is a linear function and, due to boundedness, it must be
constant. To get equality in (22) requires

E
∣∣
0(e0) + μ
0(e−1)

∣∣= E
∣∣
0(e0)

∣∣+ μE
∣∣
0(e−1)

∣∣ and

E
∣∣
0(e0) + μ
0(e1)

∣∣= E
∣∣
0(e0)

∣∣+ μE
∣∣
0(e1)

∣∣,
which proves the claim for v ∈ {−1,0} and t = 0. To arrive at the full claim, observe once more
that in the above argument we can simply replace e0 by any other edge ev and that for fixed
v ∈ Z, due to the invariance of ν, (19) either holds for all times t ≥ 0 or none. �

Proof of Theorem 1.2. We proceed indirectly by assuming that there is an invariant law L(η0)

that is non-constant, which means that there is no S-valued random variable L, such that η0(v) =
L a.s. for all v ∈ Z. We shall prove that, under this assumption, with positive probability


t(ev) · 
t(ev+1) < 0 for some (v, t) ∈ Z× [0,∞), (24)

thereby constructing a contradiction to Lemma 6.1.
Given an invariant distribution for η0, from (23) we learn that there exists a constant c ∈ [0,1],

such that E|
0(ev)| = c for all v ∈ Z, and the assumption that η0 is not almost surely constant
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forces c > 0. Using 0 ≤ |
0(ev)| ≤ 1, we can further conclude that

P

(∣∣
0(ev)
∣∣≥ c

2

)
≥ c

2
for all v ∈ Z. (25)

Let K := � 2
c
�(� 4

c
� + 3) + 1 and consider the section PK = (VK,EK) ⊆ Z, where VK =

{1, . . . ,K} and EK = {e1, . . . , eK−1}. Let

X :=
∣∣∣∣
{
e ∈ EK ; ∣∣
0(e)

∣∣≥ c

2

}∣∣∣∣
be the number of edges in EK on which initially there is an edge difference of at least c

2 . From
(25), EX ≥ c

2 (K − 1) ≥ � 4
c
� + 3 follows. Consequently, P(A) ≥ P(X ≥ EX) > 0, where

A :=
{
X ≥

⌈
4

c

⌉
+ 3

}
.

Conditioned on A, we distinguish two cases:
Case 1: With positive probability, there are (not necessarily neighboring) edges e, e′ ∈ EK ,

whose initial edge differences have opposite sign, i.e.


0(e) · 
0
(
e′)< 0.

Let us choose a pair of such edges with minimal distance, say e = ev and e′ = ev+k , for some
k ∈ {1, . . . ,K − 2}. If k = 1, we directly arrive at (24). If k > 1, however, our choice implies


0(ev+1) = · · · = 
0(ev+k−1) = 0.

Let B be the event that the chronologically ordered sequence of Poisson events on the edge set
{ev−1, ev, . . . , ev+k, ev+k+1} during the time period 0 ≤ t ≤ 1 is given by (ev+k, ev+k−1, . . . ,

ev+2). Since B is independent of A – as the Poisson processes are independent of the starting
configuration – we get P(A ∩ B) > 0. Given A ∩ B , we arrive at 
1(ev) · 
1(ev+1) < 0, which
concludes the first case.

Case 2: A.s. either 
0(e) ≥ 0 for all e ∈ EK or 
0(e) ≤ 0 for all e ∈ EK . By symmetry, we
can w.l.o.g. assume the former. Given A, we are guaranteed at least � 4

c
� + 3 edges e ∈ EK with


0(e) ≥ c
2 . Let ev be the leftmost, ev+k the rightmost of these edges and observe that

k−1∑
j=1


0(ev+j ) ≥ c

2

(⌈
4

c

⌉
+ 1

)
≥ 2 + c

2
.

Imagine having no updates on neither ev+1 nor ev+k−1 and plenty on all edges in between these
two until time t = 1, such that

∑k−2
j=2 |
1(ev+j )| ≤ c

3 , cf. Corollary 3.2. Then the following
scenario must occur: An update on ev+j for some j ∈ {2, . . . , k − 2} at time t ∈ [0,1] makes at
least one of the neighboring edge differences, that is, 
t(ev+j−1) or 
t(ev+j+1), flip to negative
sign. This comes from the fact that in the process of balancing the section {ev+2, . . . , ev+k−2}
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until time t = 1 (if no such sign flip occurs earlier) the amount of positive difference cumulated
at either ev+1 or ev+k−1 must exceed 1 and hence cause a sign flip there.

If μ < 1
2 , the edge on which the Poisson event occurred that caused the first sign flip retains

strictly positive edge difference and we arrive at (24). If μ = 1
2 , we can argue as in the second

part of case 1.
In conclusion, we showed that if there was an invariant distribution ν on Z

S , attributing posi-
tive probability to non-constant profiles, (24) has to occur with positive probability, which in turn
contradicts the invariance in view of Lemma 6.1. This concludes the proof. �

7. Further research

We have established that the compass model with i.i.d. uniform initial configuration exhibits
weak consensus in mean (and thus also in probability) and no strong consensus (in any sense).
It remains open whether or not there is weak consensus also in the almost sure sense. While it
is known that there is almost sure weak consensus in the standard Deffuant model with trivial
confidence bound on Z

n (i.e. i.i.d. unif([0,1]) initial opinions and θ = 1, cf. Thm. 3.1 in [8]),
it is still unknown, if in this setting there is any form of strong consensus for n ≥ 2. With this
in mind the question can be put more broadly, namely whether there is any (meaningful) model
with almost sure weak consensus but no strong consensus.

Further, one could ask to what extent our results carry over to natural extensions of the model
analyzed here, for instance the (uniform) compass model in higher dimensions (i.e., on Z

n,
n ≥ 2), the compass model with a non-trivial “confidence bound” θ (as in the Deffuant model),
or different initial conditions. Apart from Proposition 4.1, which holds both in higher dimen-
sions and with bounded confidence as remarked earlier, most of our proofs are not robust to such
fundamental changes of the model. Even though some of our techniques carry over to higher
dimensions, we crucially exploit the fact that the maximal degree in the graph Z is 2 in the proof
of Corollary 3.2.

Concerning the initial configuration, it seems that many of our arguments could be extended
to more general distributions. However, in view of Theorem 1.2 it is clear that some condition
must be assumed. Further, it should be mentioned that monotonicity plays an important role in
the analysis of the Deffuant model. In the compass model, where there is no apparent order in
the state space, monotonicity becomes a subtle issue. There still is monotonicity in the form of
Lemma 5.2; the edge difference process on a fixed edge itself, however, is not a supermartin-
gale.
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