
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Long-Term Localization for
Self-Driving Cars

ERIK STENBORG

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2020

Long-Term Localization for Self-Driving Cars

ERIK STENBORG

ISBN 978-91-7905-377-2

© ERIK STENBORG, 2020.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 4844
ISSN 0346-718X

Department of Electrical Engineering
Signal Processing Group
CHALMERS UNIVERSITY OF TECHNOLOGY

SE–412 96 Göteborg, Sweden

Typeset by the author using LATEX.

Chalmers Digitaltryck
Göteborg, Sweden 2020

Abstract

Long-term localization is hard due to changing conditions, while relative local-

ization within time sequences is much easier. To achieve long-term localization

in a sequential setting, such as, for self-driving cars, relative localization should

be used to the fullest extent, whenever possible.

This thesis presents solutions and insights both for long-term sequential vi-
sual localization, and localization using global navigational satellite systems
(GNSS), that push us closer to the goal of accurate and reliable localization for
self-driving cars. It addresses the question: How to achieve accurate and robust,
yet cost-effective long-term localization for self-driving cars?

Starting in this question, the thesis explores how existing sensor suites for
advanced driver-assistance systems (ADAS) can be used most efficiently, and
how landmarks in maps can be recognized and used for localization even after
severe changes in appearance. The findings show that:

• State-of-the-art ADAS sensors are insufficient to meet the requirements
for localization of a self-driving car in less than ideal conditions. GNSS
and visual localization are identified as areas to improve. (Paper I).

• Highly accurate relative localization with no convergence delay is possible
by using time relative GNSS observations with a single band receiver, and
no base stations. (Paper II).

• Sequential semantic localization is identified as a promising focus point
for further research based on a benchmark study comparing state-of-the-art
visual localization methods in challenging autonomous driving scenarios
including day-to-night and seasonal changes. (Paper III).

• A novel sequential semantic localization algorithm improves accuracy while
significantly reducing map size compared to traditional methods based on
matching of local image features. (Paper IV).

• Improvements for semantic segmentation in challenging conditions can
be made efficiently by automatically generating pixel correspondences be-
tween images from a multitude of conditions and enforcing a consistency
constraint during training. (Paper V).

• A segmentation algorithm with automatically defined and more fine-grained
classes improves localization performance. (Paper VI).

• The performance advantage seen in single image localization for modern
local image features, when compared to traditional ones, is all but erased
when considering sequential data with odometry, thus, encouraging to fo-
cus future research more on sequential localization, rather than pure single
image localization. (Paper VII).

i

List of appended papers

Paper I M. Lundgren, E. Stenborg, L. Svensson, and L. Hammarstrand, "Vehicle

self-localization using off-the-shelf sensors and a detailed map", 2014
IEEE Intelligent Vehicles Symposium, Proceedings pages 522-528.

Paper II E. Stenborg and L. Hammarstrand, "Using a single band GNSS receiver

to improve relative positioning in autonomous cars", 2016 IEEE Intel-
ligent Vehicles Symposium, Proceedings pages 921-926

Paper III C. Toft, W. Maddern, A. Torii, L. Hammarstrand, E. Stenborg, D. Sa-
fari, M. Okutomi, M. Pollefeys, J. Sivic, T. Pajdla, F. Kahl, and T. Sattler,
"Long-Term Visual Localization Revisited", Manuscript submitted for
review to IEEE Transactions on Pattern Analysis and Machine Intelligence

Paper IV E. Stenborg, C. Toft, and L. Hammarstrand, "Semantic Maps and Long-

Term Self-Localization for Self-Driving Cars using Image Segmenta-

tion", Manuscript to be submitted to IEEE Transactions on Robotics

Paper V M. Larsson, E. Stenborg, L. Hammarstrand, M. Pollefeys, T. Sattler, and
F. Kahl, "A Cross-Season Correspondence Dataset for Robust Seman-

tic Segmentation", 2019 IEEE Conference on Computer Vision and Pat-
tern Recognition, Proceedings pages 9532-9542

Paper VI M. Larsson, E. Stenborg, C. Toft, L. Hammarstrand, T. Sattler, and F. Kahl,
"Fine-grained segmentation networks: Self-supervised segmentation

for improved long-term visual localization", 2019 IEEE International
Conference on Computer Vision, Proceedings pages 31-41

Paper VII E. Stenborg, T. Sattler, and L. Hammarstrand, "Using Image Sequences

for Long-Term Visual Localization", Manuscript submitted to 2019 In-
ternational Conference on 3D Vision

ii

Preface

To get to this point where I’m now writing the last few words in my very own
thesis, has been a special experience for me. I’ve been close to quitting numerous
times, but something has pulled me back each time, and I don’t know if it was a
desire to learn more or simple stubbornness that was more to blame.

Anyway, I have learned a few things. I’ve learned not to be greedy and think
that I have more than a 50-50 chance of getting the direction of rotation matrices
right. I’ve learned, through extensive simulation on the computer cluster, that
there are only two integers in the range 1 to 2. Thanks, Mikael @ C3SE, for
helping me run things there. I’ve learned that I need more than 15 minutes to get
from Göteborg to Södertälje, that booking a hotel room in the correct month can
be a lot harder than it seems, and generally that making appointments is easier
than keeping them. But maybe most of all, I’ve learned that the extent of my
knowledge is quite limited. And when this limit is approaching, I’ve learned that
I should ask people for advice. I was stubborn at first, but I think that I am now
better at asking for help.

I want to thank my academic supervisors Lennart Svensson for guiding me
through to the Licentiate, and Lars Hammarstrand for pulling me all the way
here. Your advise, support, and help, that you are so generous with, has been
essential for me to get here. A big thanks also to my industrial supervisor
Joakim Sörstedt, my former manager Jonas Ekmark, and my current manager
Mats Nordlund, for giving me this opportunity, believing in me, and support-
ing me through all these years. I would also like to thank Vinnova, Volvo Car
Corporation and Zenuity for financing my work.

Thanks to all friends and colleagues (both in the past and the present) in
the signal processing and the image analysis groups at Chalmers, at the active
safety department at Volvo and at Zenuity. Special thanks to Malin, for helping
me getting started, to Carl, Måns, Torsten, and Fredrik for being such rocks and
helping me the last few years, to Anders, Samuel, and Juliano for being fantastic
office room mates. To all people who helped me producing this book, whether
co-authoring or proof reading: Thank you all!

The Dudes, Magellanists, and 3D-recon people at Zenuity have all endured
my silly questions at some point or another. Thank you for that! And, brace
yourselves - you’ll be seeing a lot more of me from now on.

Finally, also a warm thanks to family and friends, for pulling me out from
work and reminding me of the world outside. Yoko, I’m very grateful that you
are here with me. Lina och Hanna, jag är så lycklig att ni finns hos mig, och stolt
över allt ni gör. Fortsätt så. Love you all!

Erik Stenborg,
Göteborg, 2020

iii

iv

Contents

Contents v

I Introductory Chapters

1 Introduction 1

2 Localization 5

1 Overview . 5
2 Map representation . 7

3 Sensors and observations 9

1 Global Navigation Satellite System 9
2 Camera . 16
3 Radar . 20

4 Parameter estimation 23

1 Bayesian filtering and smoothing 24
1.1 Problem formulation and general solution 24
1.2 Kalman filter . 26
1.3 Unscented Kalman Filter 27
1.4 Particle filters . 29
1.5 Maximum á-posteriori filters 30

2 Smoothing and mapping . 31
3 Deep learning . 33

3.1 Convolutional neural networks 34
3.2 Loss function and minimization 35
3.3 Overfitting . 36

5 Contributions 37

v

CONTENTS

II Included Papers

Paper I Vehicle self-localization using off-the-shelf sensors and a de-

tailed map 53

1 Introduction . 53
2 Problem formulation . 54
3 Generating a map . 55

3.1 Lane markings and the reference route 56
3.2 Radar landmarks . 57

4 Proposed solution . 57
4.1 The state vector . 58
4.2 Process model . 59
4.3 GPS measurement model 59
4.4 Measurement models for speedometer and gyroscope . . 60
4.5 Camera measurement model 60
4.6 Radar measurement model 61

5 Evaluation . 63
5.1 Implementation details 64
5.2 Performance using all sensors 64
5.3 Robustness . 64

6 Conclusions . 68

Paper II Using a single band GNSS receiver to improve relative posi-

tioning in autonomous cars 73

1 Introduction . 73
2 Problem formulation . 75

2.1 Information sources 76
3 Models . 78

3.1 Measurement models 78
3.2 Augmented state vector and process model 81

4 Implementation and evaluation 82
4.1 Scenario . 82
4.2 Results . 83

5 Conclusions . 85

Paper III Long-Term Visual Localization Revisited 91

1 Related Work . 94
2 Benchmark Datasets for 6DOF Localization 96

2.1 The Aachen Day-Night Dataset 97
2.2 The RobotCar Seasons Dataset 99
2.3 The Extended CMU Seasons Dataset 100

3 Benchmark Setup . 101

vi

CONTENTS

4 Details on the Evaluated Algorithms 103
4.1 2D Image-based Localization 103
4.2 Structure based approaches 104
4.3 Learned local image features 105
4.4 Hierarchical Methods 105
4.5 Sequential and Multi-Camera Methods 106
4.6 Optimistic Baselines 107

5 Experimental Evaluation . 108
5.1 Evaluation on the Aachen Day-Night Dataset 109
5.2 Evaluation on the RobotCar Seasons Dataset 111
5.3 Evaluation on the Extended CMU Seasons Dataset . . . 114

6 Conclusion & Lessons Learned 116

Paper IV Semantic Maps and Long-Term Self-Localization for Self-

Driving Cars using Image Segmentation 129

1 Introduction . 129
2 Related work . 132

2.1 Place recognition . 132
2.2 Geometric localization 133
2.3 Map primitives . 134
2.4 Adapting to changes 134

3 Problem formulation . 135
3.1 Observations . 135
3.2 Bayesian filtering formulation 136

4 System overview . 137
5 Semantic point cloud maps . 138

5.1 Map representation and notation 138
5.2 Map point generation 139
5.3 Map compression . 139

6 Localization models . 140
6.1 Motion model . 141
6.2 Camera measurement model 141

7 Filter implementations . 144
7.1 Semantic-based particle filter 144
7.2 Semantic-based Gaussian MAP filter 145
7.3 Local feature-based Gaussian filter 147

8 Evaluation . 148
8.1 Generated data . 148
8.2 Parameter study - Point selection strategy 148
8.3 Parameter study - Map density 149
8.4 Parameter study - Segmentation algorithms 149

vii

CONTENTS

8.5 Parameter study - Filtering algorithm 152
8.6 Parameter study - Conclusion 152
8.7 Comparison to other methods 152
8.8 Execution time . 153

9 Conclusion . 154

Paper V A Cross-Season Correspondence Dataset for Robust Seman-

tic Segmentation 165

1 Introduction . 165
2 Related Work . 167
3 Semantic Correspondence Loss 168
4 A Cross-Season Correspondence Dataset 169

4.1 CMU Seasons Correspondence Dataset 170
4.2 Oxford RobotCar Correspondence Dataset 171

5 Implementation Details . 173
6 Experimental Evaluation . 174
7 Conclusion . 180

Paper VI Fine-Grained Segmentation Networks: Self-Supervised Seg-

mentation for Improved Long-Term Visual Localization 189

1 Introduction . 189
2 Related Work . 191
3 Fine-Grained Segmentation Networks 193
4 Semantic Visual Localization 195
5 Experiments . 196

5.1 Semantic Information in Clusters 197
5.2 Visual Localization . 199

6 Conclusion . 202

Paper VII Using Image Sequences for Long-Term Visual Localization 213

1 Introduction . 213
2 Related work . 215
3 Problem formulation . 217
4 System overview and models 218
5 Implementation . 221
6 Experimental Evaluation . 222
7 Conclusions . 226

viii

Part I

Introductory Chapters

Chapter 1

Introduction

Autonomous vehicles have several advantages to vehicles that must be driven by
humans, one being increased safety. Despite an increase in number of cars and
total distance driven, traffic injuries are declining in Sweden [69] and the USA
[49], from being the leading cause of death in age groups below 45, to "merely"
being in the top ten [50]. To continue this trend, we increase the scope of traffic
safety from just protecting passengers in case of an accident, to mitigating or
preventing accidents before they happen. Based on studies such as the one from
NHTSA [62], where it is noted that a vast majority of accidents are caused by
human error, we can see that the largest potential to further increased safety,
lies in letting technology assist drivers by automating the driving task, and thus
creating self-driving cars.

Other reasons for self-driving cars are economy, as people can be more pro-
ductive while on the road; equality, as blind and otherwise impaired people then
can ride by themselves; and also environment, since the need for parking in cities
could be reduced if all cars could leave by themselves after the rider has reached
the destination.

Now, let us look into the problems we need to solve to make autonomous
vehicles available. These problems include human factors, economy, legal lia-
bility, equality, morality, etc. This thesis focuses on technical problems, specifi-
cally those regarding precise localization. Economy and safety restrict possible
solutions, but apart from that, we can view the problem of localization inde-
pendently. The technical problem of autonomous driving can be described as a
function which maps sensor data to control signals for the car, primarily wheel
torque for longitudinal acceleration and steering torque for turning the car. The
remaining control needs in the car, e.g. flow of fuel and air to the engine, are
already solved.

There are several possible ways in which we can approach this problem of
mapping sensor data to control outputs. One possibility is to decide on a sensor
setup that seems reasonable, e.g., a set of cameras based on the fact that hu-

1

CHAPTER 1. INTRODUCTION

Map

Sensors

Perception

Prediction

Planning

Actuation

Figure 1.1: Flow of data and processing modules for autonomous driving. Local-
ization is here considered part of the perception module.

mans are able to drive a car mainly based on vision input, and then treat it as
a machine learning problem, using either reinforcement learning or supervised
learning with a human expert driver. This approach has so far rendered some
success [5, 45, 55], but most larger scale projects are focusing on more modular
approaches where the driving task is divided into smaller parts, which can be
designed and verified more independently of each other.

In the modular approach, the problem is divided into a few major modules,
where Figure 1.1 shows one example of such a division. We have one module
that is responsible for planning a trajectory and following it based on information
from the other modules, another that interprets the sensor inputs into a simple
structure that is meaningful for the driving task, and a third that predicts what
other traffic participants will do. The output from the perception block will typi-
cally contain information about both the dynamic environment, such as position
and velocity of other road users, and the static environment, such as which areas
are drivable and which contain static obstacles.

When it comes to describing the static environment, there are two paradigms.
One is to rely only on the input provided by the sensors on the own car, and the
other is to rely also on a predefined map and relating the sensor inputs to that
map. The map paradigm will provide more information about the static envi-
ronment than what is visible using only the sensors, and is thus often preferred.
However, to use a map, one must be able to localize the car relative to the map.
Any uncertainty in position and orientation will translate into uncertainty about
the drivable area and in consequence also the planned path. Thus, we can see that
accurate localization in relation to an accurate map of the close surroundings of
the car, is an enabler for autonomous driving.

2

So, what is needed to solve effective localization for autonomous vehicles?
Firstly, we need a map that connects the observable landmarks with the possi-
bly unobservable, static features of the road that are needed for path planning,
i.e. drivable surface, static obstacles, etc. A few thoughts on this map have
been included in Chapter 2. Secondly, we need sensors capable of observing the
landmarks, and sensor models that describe how the observations relate to the
physical world. In Chapter 3, radars are briefly described, while cameras and
global navigation satellite systems such as GPS, are described in further detail,
with a focus on how they can be used for localization purposes. Lastly, we need
algorithms that combine the given maps and the measurements into estimates of
position and orientation. This is achieved using the Bayesian estimation frame-
work described in Chapter 4, where we see how to combine the models of various
sensors with a motion model for the vehicle to arrive at probabilistic models of
position and orientation.

This thesis examines what level of localization accuracy can be achieved
using different types of automotive class sensors. It further establishes a few
missing pieces, particularly in the area of visual localization, but also relating to
GPS, in reaching the desired performance, and proposes solutions for some of
them. This is done in seven separate papers, briefly summarized in Chapter 5.

3

4

Chapter 2

Localization

As concluded in the introduction, accurate localization with respect to a map is a
key enabler for using information from those maps in the motion planner. In this
chapter we start with a brief overview of the research area, and finish by having
a look at what should go in the map.

1 Overview

If we look at the problem of localization with a given map in a slightly larger
context than for autonomous vehicles, we realize that it can be formulated in
many different ways. We can roughly categorize problems in four categories,
based on two criteria: metric vs. topological, and single shot vs. sequential.
In Table 2.1, the references given below are categorized in either of the four
categories.

The first division between metric or topological localization is regarding the
result of the localization. Topological localization is when the result of local-
ization is categorical and can be represented as nodes in a graph, e.g., a certain
room in a house, or the location where an image from a training data set was
taken. Examples here include place recognition by image retrieval methods,
where an image database of geo-tagged images is used to represent possible lo-
cations, and then a query image is compared to the images in the database, and
the most similar image along with its position is retrieved, see e.g., [68, 70].

Topological Metric
Single shot [10, 52, 68, 70] [26, 37, 59, 60, 64]
Sequential [2, 44, 48] [12, 46, 61, 67, 72]

Table 2.1: Classification of localization problems with a few examples of pro-
posed solutions.

5

CHAPTER 2. LOCALIZATION

Specialized loop closure detectors also belong in this category, see e.g., [10, 52].
These provide information to a larger system doing simultaneous localization
and mapping (SLAM), when a robot has roughly returned to a previously vis-
ited place just by looking at image similarities. In this category, there are also
some solutions which focus on robust localization in conditions with large visual
variations, see e.g., [44, 48]. They make use of sequences of images which as a
group should match a sequence of training images in an image similarity sense.
One could also argue that some hybrid methods, such as [2], belong in this cat-
egory, even though they claim to be "topometric" in the sense that they provide
interpolation between the nodes in the graph and thus give metric localization
result along some dimensions where a whole array of training images has been
collected.

Metric localization is more geometric in nature. The resulting location is in a
continuous space, and most easily expressed in coordinates using real numbers.
There are examples from the computer vision community that does direct metric
localization using a single query image, see e.g., [37, 38, 59, 64], but also exam-
ples where a form of topological localization is performed first as an initial step,
see e.g., [26, 60]. Most localization in robotics, with the purpose of providing
navigational information to a robot, requires metric localization, with some ex-
amples in [12, 46, 67]. Localization using global navigational satellite systems
and inertial measurement units are also examples of metric localization.

The second division we have when categorizing localization, is between sin-
gle shot localization and sequential localization. This is regarding what type of
information is used for the localization. Single shot localization uses only one
observation and no additional information from just before or after. This is rele-
vant when using single images, see e.g., [10, 26, 37, 38, 59, 60, 64, 68, 70], and
sometimes also when using sensors that are specialized for localization, such as
the global navigation satellite systems, see e.g., [8].

Sequential localization means using a sequence of observations and some
motion model to connect them. This is the type of observations available for
on-line robot navigation, see e.g., [12, 44, 46, 48, 61, 66, 67, 71, 72]. The
type of localization needed for autonomous vehicles falls in the intersection of
sequential localization and metric localization. Thus, the rest of the thesis will
focus on metric, sequential localization.

In sequential metric localization, there is a possibility (and to some extent
also a necessity) to use single shot localization towards a "global" reference to
solve the problem. However, using sequences and motion models makes the
problem easier to solve, compared to the single shot problem, and this should
be taken advantage of for increased precision and robustness. For some sensors
there is an obvious way of using them for localization. For example, global
navigational satellite systems provide a global position which is well suited for

6

2. MAP REPRESENTATION

absolute single shot localization. But if looking a little under the hood, there is
also a way to use it that provides high accuracy time relative localization, as is
shown in Paper II.

Localization for autonomous vehicles has been done for quite some time
using expensive sensor setups, including survey grade GNSS receivers, fiber op-
tical inertial measurement units and multi beam rotating laser scanners. Some of
the most well known examples are the contributions to the DARPA Grand Chal-
lenge in 2005, see e.g., [66], and the DARPA Urban Challenge in 2007, see e.g.,
[71]. Some spin-offs from these DARPA challenges, such as Waymo, use simi-
lar technology, arguing that the cost of sensors will fall enough to make it viable
for consumers in a near future. Others argue that more simple sensors should
be enough for accurate and robust localization, but this is yet to be shown in
practice. This cost constraint is the reason that this thesis is focused on solutions
using sensors that are expected to be readily available in future cars.

Localization with a given map, and mapping given known positions and ori-
entations, are considered subproblems to the more general problem of simultane-
ously estimating both location and map (SLAM). See e.g. [3, 7, 11] for surveys
of the SLAM problem. Although localizing with a given map would be sufficient
for an autonomous vehicle, there is still a need to build the map and to keep it
updated. In this thesis, the focus is on the localization problem, but for the exper-
iments maps have been built, and then SLAM methods have been most useful.
And in a longer perspective, to keep maps updated it may be useful to view also
the localization problem as SLAM and thus incorporate updates to the map in
the localization process when needed.

2 Map representation

As previously noted, the problem in this thesis is self localization for autonomous
vehicles using automotive grade sensors, and a map. For this we need a map, and
although we have hinted that this can be solved using SLAM, it could be useful
to discuss what to put in the map.

We know that the path planner needs some navigation information, e.g., driv-
able area, lane connectivity, traffic rules, suitable speed profiles, etc., to do its
job. This navigational information is connected to positions in the world through
markings on the ground, and traffic signs, which can be observed by a forward
looking camera. These cues are what we would like to localize with respect to.
However, some sensors, e.g., cameras looking backwards, radars, or GNSS re-
ceivers, can not directly observe them. Instead we may choose to use some other
observable landmarks, and encode their relation to the navigational information
in the map. With a map that holds both the navigational information needed by
the path planner, and observable landmarks, the car can use on-board sensors to

7

CHAPTER 2. LOCALIZATION

detect angle and/or range to the landmarks, and triangulate a position relative to
the navigational information in the map.

Now, these observable landmarks that we choose to add to the map can be
quite sensor specific. Occupancy grid maps discretize the world in a 2-D or 3-D
grid, and measure how opaque [14, 53] or reflective [36] each pixel (or voxel in
the 3-D case) is to the relevant sensor. Despite efforts to compress them [25],
this dense type of maps requires a lot of storage.

For 3-D maps covering large areas or volumes, a more common approach
is to store sparse features that are possible to describe with a few parameters.
Points, lines, and B-splines are popular, but not the only possible choices. When
using these types of features, we should take care to construct feature detectors
that are able to reliably detect these features in the sensor data.

Reference frame

For the motion planner, the only relevant information needed is the relative po-
sition from ourselves to other traffic participants, and to relevant objects in the
immediate surroundings. Where the origin of the metric map of the world lies
is irrelevant, as long as all relative positions and angles are correct. For most
sensors, especially the cameras and radars used in this thesis, this is also true.
However, GNSS provides global localization in a global frame of reference, and
hence, if we want to use GNSS to localize in the map, the map must be aligned
to the world origin as defined by the coordinate system used in GNSS.

Historically, maps have been thought of as 2-D projections of the surface of
the Earth to a flat surface, such as a piece of paper or a screen. It is mathemat-
ically impossible to map the surface of a sphere to a plane without distortions
and discontinuities, but there are many different projections that minimize vari-
ous distortions, or with some special property preserved at the expense of some
other error being introduced.

For our needs, however, we can drop the requirement that the map must
project well to a 2-D plane. We are merely interested in using the map for local-
ization and path planning, and for that we need to keep track of 3-D position of
landmarks, and the road. The map must be able to store a 3-D representation of
landmarks and the road, in any part of the world without discontinuities.

Arguably, the most straight forward reference frame for a global 3-D map is
an Earth centered and Earth fixed (ECEF) Cartesian coordinate frame that fol-
lows the rotation of the Earth. In this coordinate system there are no problems to
map even the Scott-Amundsen station at the south pole without discontinuities,
and the transformation to a local east-north-up (ENU) frame is a simple rotation
and translation. In the experiments in this thesis, however, the area where the car
is driving is small enough, that a map in the local ENU frame, with a flat Earth
approximation, is sufficient.

8

Chapter 3

Sensors and observations

When self-localization of cars is the topic, people often come to think of a
Global Navigation Satellite System (GNSS), often the Global Positioning Sys-
tem (GPS), which has as its main purpose to measure position of the receiver.
However, there are also other sensors that can be quite useful for localization.
Although primarily used for object detection, cameras and radars are examples
of this type of sensors that are also useful for localization. Together with GNSS,
and motion sensors such as accelerometers, gyroscopes and wheel speed sensors,
they provide the measurements that we use for localization in this thesis.

So, how do these sensors work, and how do we use them for localization?
One common factor is that they capture electromagnetic waves (light or radio)
that was either transmitted or reflected by some object in the environment. They
typically record the angle of arrival, or measure distance to the object by record-
ing the time delay of the captured signal. Sometimes the intensity, and possibly
some other features of the signal are also recorded. With sensors measuring an-
gle to landmarks, the known positions of the landmarks can be used to triangulate
the ego-position, see Figure 3.1. With sensors measuring distance, trilateration
is used, see Figure 3.2. In both cases more than one landmark has to be de-
tected to calculate an unambiguous position. In this chapter we look into more
details on how the sensors used for localization in this thesis work, and how the
measurements are modeled.

1 Global Navigation Satellite System

GNSS is, in a localization context, a rather unique sensor compared to other
sensors. Its sole purpose is localization, while cameras and radars are primarily
used in the self-driving car for their ability to detect obstacles and other road
users.

All GNSS systems, including the most well known, GPS, use the same prin-

9

CHAPTER 3. SENSORS AND OBSERVATIONS

1 landmark 3 landmarks

Figure 3.1: Triangulation from landmarks with known positions. With only one
landmark, there is no unique solution, but with three landmarks we get a unique
solution in 2-D.

1 landmark 2 landmarks

Figure 3.2: Trilateration from landmarks with known positions. With only one
landmark, again there is no unique solution, and with two landmarks we get two
possible positions in 2-D, but no information about orientation.

10

1. GLOBAL NAVIGATION SATELLITE SYSTEM

ciple of positioning. Kaplan and Hegarty describe this in detail in their book [29].
Essentially, a number of satellites with accurately known Earth orbits, transmit
signals at very well defined times, and the receivers measure the delay from the
transmission to the reception. From this delay the receiver can calculate the
range to the satellite. By using multiple simultaneous satellite observations, the
receiver is able to trilaterate its position.

Coarse/acquisition (C/A) code ranging

The signal that is transmitted from the satellite consists of a carrier signal, on top
of which there are up to two other signals, modulated using Binary Phase Shift
Keying. One of the signals is a repeating sequence of pseudo random numbers,
which functions as a unique identifier for the satellite, and is also what is used
for range calculations. The other signal, which is transmitted at a lower bit rate,
is the navigational message. It provides information about the satellite such as
its status, orbital parameters, corrections to its clock, etc.

The normal method for determining position using GPS uses the sequence
of pseudo random numbers to calculate a pseudo range from the receiver to the
satellite. Since the sequence of pseudo random numbers (C/A code) is known in
advance by the receiver, this can be done with a tracking loop that measures how
much a local copy of the C/A code must be time shifted to match the received
signal, see Figure 3.3. If the receiver had a perfect clock, and if smaller error
sources are ignored, one could simply multiply the time shift with the speed of
light to get the distance to the satellite. Given three such measurements to differ-
ent satellites, the 3-D position of the receiver could be trilaterated. However, the
clock in a typical receiver is of relatively low quality, which is why the receiver
time must also be treated as an unknown variable. That increases the require-
ment to four satellites, in order to calculate a solution for position and time. This
is the basic idea of how simple positioning using the C/A code in GPS works.

Accuracy of the estimated position depends on noise and bias in the signal.
There is a noise floor of around 1% of the bit length in the C/A code, which is
difficult to get below. The bit length expressed in meters (calculated as the bit
length in seconds times the speed of light) is around 300 m, meaning that the
receiver tracking loop introduces noise on the pseudo range measurements that
has a standard deviation of about 3 m. However, since modern receivers can use
some tricks, such as carrier phase smoothing [23], the receiver noise is usually
quoted as much lower today, see Table 3.1. Apart from the receiver tracking
noise, there are other errors affecting the pseudo range measurements, leading
to an average error that is typically quoted as around 7 m, for a standard single
frequency receiver.

11

CHAPTER 3. SENSORS AND OBSERVATIONS

Δt

Figure 3.3: The time offset, ∆t, when matching pseudo random numbers in the
received C/A code signal to the internally generated sequence, is unique.

Carrier phase ranging

Now, consider the carrier signal, which has a wavelength of about 0.2 m; much
shorter than the bit length of the C/A code. If the tracking loops in the receiver
are able to determine the phase of the carrier signal within 1%, and if there is a
way to remove additional errors, then potentially a very accurate range measure-
ment to the satellite can be obtained.

The alignment to the carrier phase through phase lock loops in the receiver,
is indeed accurate to about 1 mm. However, there is now another problem. Ev-
ery cycle of the carrier signal looks the same. This means that if we examine
the cross correlation between the received signal and the internal oscillator, we
would find an infinite number of peaks with a spacing that corresponds to the
wavelength of the carrier signal. Which peak the phase lock loop locks on to, is
random. This causes the range measurement using the carrier phase, to be offset
by an unknown integer N times the wavelength. This integer, N , must be deter-
mined if we want to use the carrier phase range measurement as a normal range
measurement, see Figure 3.4.

If we look a little bit deeper inside the receiver, we find that the phase track-
ing is not performed on the raw carrier signal, but instead on an intermediate
frequency signal created by down mixing the carrier signal. When this interme-
diate frequency is 0 Hz, i.e., when the mixing signal has a frequency equal to
the nominal frequency of the carrier, it is easiest to analyze what is going on. If
there was no relative range rate between receiver and satellite, the down mixed
signal would be constant. When there is a relative range rate, the frequency of the
mixed signal equals the Doppler shift of the carrier signal. The change in phase
of this signal, multiplied by the wave length of the nominal carrier signal, equals
a change in range to the satellite. Thus, we get a measurement of how much
closer, or further away, the satellite is now, as compared to when the signal was
first acquired. Instead of wrapping around every whole cycle, the phase should

12

1. GLOBAL NAVIGATION SATELLITE SYSTEM

Δt−1T

Δt+1T
Δt

Figure 3.4: The true time offset, ∆t, when matching the received carrier signal
to the internal oscillator, is not uniquely observable.

continue counting also the whole number of cycles since it locked on to the sig-
nal. This "unwrapped" phase signal, counting number of whole cycles and the
fractional part of the cycle, is what is considered the carrier phase measurement
from the receiver.

In order to use the carrier phase measurements for localization, we need to
solve the problem with the unknown integer of wavelengths between the receiver
and satellite at the time phase lock was acquired. There are various methods for
resolving this unknown variable when 5 or more satellites are visible and the
conditions are otherwise good. The Least-squares Ambiguity Decorrelation Ad-
justment (LAMBDA) [65], is one popular method to resolve the integer ambigu-
ity.

Error sources

In addition to the limited accuracy of the phase lock loops, error in the estimated
range to a satellite also comes from other sources. There is one family of errors
that relate to the accuracy of the navigational message. Both the atomic clock
of the satellite, and the position as given by the orbital parameters encoded in
the navigational message, may be wrong by up to a few meters. The clock error,
measured in seconds, is multiplied by the speed of light, in order to be compara-
ble to other error sources.

On its way from the satellite to the receiver, the signal passes through the
atmosphere, and this affects the time of arrival. In the ionosphere, radiation
from the Sun creates electrically charged particles that delay the signal. This

13

CHAPTER 3. SENSORS AND OBSERVATIONS

Error source Uncorrected Consumer receiver High end receiver
Satellite clock 1.1 1.1 0.03
Satellite orbit 0.8 0.8 0.03
Ionosphere 15 7.0 0.1

Troposphere 0.2 0.2 0.2
Receiver noise N/A 0.1 0.01

Multi-path N/A 0.2 0.01

Total N/A 7.1 0.2

Table 3.1: Standard deviation of user equivalent range errors in meters for a
typical consumer receiver using one frequency band [29], and a high end, dual
frequency receiver using corrections for satellite errors.

delay varies with the time of day and some other factors. When the signal enters
the more dense troposphere, there is yet another delay, which varies less than
the ionosphere delay. Thus, it is more predictable when the altitude and weather
conditions of the location are known. All the errors above are strongly correlated
in space, such that two receivers, with a base line of up to a kilometer, experience
almost the same satellite errors and atmospheric errors.

Finally, there is multi-path error, which is a local error caused by the signal
reflecting from surfaces near the receiver. In contrast to the other error sources
above, the multi-path error is not correlated when the receivers are more than a
few meters apart.

Corrections of errors

All the errors above, with exception for the multi path, are possible to largely
compensate for, because they change relatively slowly over time, and are spa-
tially highly correlated. Corrections of the errors come in two different forms.
Either one tries to model all parts and estimate them accurately from a few well
known reference stations around the world, or one can bundle up all errors and
correct the measurement directly with the help of a nearby reference station. The
assumption in the latter case is that, if the base line between the receivers is short
enough, then the total error at the two receivers will be almost identical. Thus,
the errors will effectively cancel out, when taking the so called double difference
[54].

The largest error source, the ionospheric delay, is inversely proportional to
the carrier frequency, and thus, receivers that use two or more frequency bands
can almost entirely eliminate this error. Single frequency receivers are restricted
to rely either on a model of the ionosphere, or on the canceling effect of a nearby
base station. Rudimentary state space corrections are part of the base GPS sys-

14

1. GLOBAL NAVIGATION SATELLITE SYSTEM

tem, in the form of coefficients to Klobuchar’s ionospheric model [31], and rough
models of satellite clock and orbital parameters. The WAAS/EGNOS/MBAS
corrections provide more detailed ionospheric corrections, satellite clock correc-
tions and satellite orbit parameters. There are even more accurate corrections
available with a delay of a couple of days from the International GNSS Service
(IGS). Because of the delay, the IGS corrections tend to be used mostly in post-
processing.

These corrections are used to a varying degree in receivers, depending on
different design choices. Precise point positioning (PPP) is a technique that aims
at resolving integer ambiguity of the carrier phase measurements by use of these
corrections, but without the use of a nearby base state. In contrast, differen-
tial GNSS (D-GNSS) works with observation space corrections for the C/A code
based pseudo range, and "real time kinematics" (RTK) is when observation space
corrections are used to resolve carrier phase measurement ambiguities. The D-
GNSS solution usually results in position estimates with error below 0.5 me-
ters, while RTK with properly resolved integer ambiguity results in an error of a
few centimeters. Observation space corrections are easy to apply, and converge
quickly to an integer solution of the phase ambiguity when compared to state
space corrections. However, they require a short base line (∼10km) to the base
station to work, and are thus less suitable at sea, or in other areas where there are
no base stations around.

Configuration aspects for GNSS receivers

There are many aspects to consider in the design of a GNSS receiver which all
affect the end performance and cost. Number of frequency bands will affect iono-
sphere error and speed of acquiring integer ambiguity resolution in RTK systems.
Use of carrier phase enables high accuracy techniques such as RTK and PPP.
Corrections can come either as state space corrections where each error source
is estimated, or as observation space corrections where the observations of a
nearby base station are subtracted from the mobile receiver observations to form
single or double differences. Finally, the design of the localization filter where
the GNSS measurements are combined with other position measurements from
e.g., an Inertial Measurement Unit (IMU), can be coupled to various degrees. In a
loosely coupled filter, the GPS receiver calculates a position/velocity/time (PVT)
solution with no feedback from the position filter. The PVT solution provided
by the receiver is then at some frequency, sent to the filter, where it is regarded
as a measurement. A tightly coupled filter uses the pseudo ranges and phase
information to each individual satellite, directly as measurements in the position
filter. There they are combined together with measurements from IMU and other
sources, as any other landmark measurement. One consequence of this is that,
unlike in the loosely coupled filter, pseudo range measurements contribute to the

15

CHAPTER 3. SENSORS AND OBSERVATIONS

Frequency Carrier Correction Filter
bands phase space design
L1∗ no observation∗ loosely coupled

L1+L2 yes∗ state tightly coupled∗

L1+L2+L5 ultra-tight / vector

Table 3.2: Configuration aspects for GNSS receivers. The asterisks mark the
configuration used in Paper II.

position estimate even when there are only 2 or 3 visible satellites. In even more
tightly coupled filters, the solution from the position filter is fed back into the
tracking loops of the receiver. Thus, an IMU can help to reacquire the signal
after short reception outages, or harden the receiver to spoofing. In Paper II we
look at a specific configuration that has not been used much before, but offers a
combination of low cost and high relative accuracy; see the combination marked
with asterisks in Table 3.2.

2 Camera

Cameras are probably the most popular sensors to use with autonomous vehicles.
They combine a low price with information rich measurements. One can also
argue for the use of cameras by noting that humans can drive using only the
same visual information that cameras capture, and that the road environment
with traffic signs, lane markers, etc., is constructed with this in mind.

Cameras typically do not emit any light, and relies on objects scattering light
from various sources in the environment. They measure intensity of light in dif-
ferent angles from the focal point, but usually do not measure the range directly.
As such, when using the camera for localization, we make use of several land-
marks in the environment with known positions, measure the angle to them, and
can then triangulate the ego position.

Camera projection model

The camera sensor is essentially a grid of photo detectors where each one mea-
sures light intensity at a certain angle of incidence to the camera. To be able to
use camera images in our localization process, we need a model which describes
how the camera measurement, comprising the image pixels, relates to angles of
the incoming light from the observed objects. The geometric relation between a
light source in 3-D and the pixel on the flat image sensor that captures the light,
is modeled by the pinhole camera model in conjunction with a simple non-linear

16

2. CAMERA

u

(u
0
,v
0
)

Z
X

Y

f

v

f

Figure 3.5: Pinhole camera projection of two points from an object, with image
plane coordinate system (X, Y, Z), camera coordinate system (u, v), focal length
(f), and principal point (u0, v0) marked.

model for distortion.

Assuming the camera with focal length f is placed with the focal point
(pinhole) in the origin, pointing along the Z-axis, and with the X-axis point-
ing to the right, a 3-D point, [X, Y, Z]⊤, will project to the image plane at
[−fX/Z,−fY/Z]⊤ according to the pinhole camera model. This is under the
assumption that the image plane lies behind the focal point as in the right-
most projection in Figure 3.5. For convenience, we most often pretend that the
image plane lies in front of the focal point, the leftmost projection in Figure
3.5, to get an image that is not upside down, and thus get rid of the negation,
[fX/Z, fY/Z]⊤. The image coordinate frame of digital cameras normally has
its origin in one of the corners such that the point in the middle of the image
is at position [u0, v0]

⊤, leading to an offset in image coordinates as [fX/Z +
u0, fY/Z + v0]

⊤.

This equation can be expressed conveniently when using homogeneous co-
ordinates for both 3-D point, U = W [X, Y, Z, 1]⊤, and the 2-D point in the
image, u = w[u, v, 1]⊤. We also need to loosen the assumption that the cam-
era is located at the world origin, by introducing a rotation matrix from camera
coordinates to world coordinates, R, and a translation vector, C̃, which gives
the camera center in world coordinates. We then get the homogeneous camera

17

CHAPTER 3. SENSORS AND OBSERVATIONS

coordinates as

u = PU (3.1)

P = KR[I | − C̃] (3.2)

K =

fmx 0 u0
0 fmy v0
0 0 1

 , (3.3)

where P is the complete camera calibration matrix, K is the intrinsic parameter
matrix, mu and mv are conversion factors from metric units to pixel units for the
focal length, and u0 and v0 define the principal point of the camera given in pixel
units. Having separate mu and mv allows for different size of pixels in u (right)
and v (down) directions.

For real cameras using optical lenses, the pure pinhole model is not particu-
larly exact, but the errors can usually be described well with a relatively simple
model. By combining the pinhole camera model with a non-linear distortion
model, one can achieve sub-pixel accuracy. A very popular distortion model,
and also the one used in this thesis, was described by Brown [6], comprising two
components: a radial distortion (3.6), and a decentering distortion (3.7),

û = K

xd
yd
1

 (3.4)

[

xd
yd

]

=

[

xu
yu

]

+R+D (3.5)

R =

[

xu
yu

]

(κ1r
2 + κ2r

4 + κ3r
6 + . . .) (3.6)

D =

[

(2λ1xuyu + λ2(r
2 + 2x2u))

(2λ2xuyu + λ1(r
2 + 2y2u))

]

(1 + λ3r
2 + λ4r

4 + . . .) (3.7)

r =
√

x2u + y2u (3.8)

w

xu
yu
1

 = R[I | − C̃]U (3.9)

Here û is the distorted point in the raw image, xd and yd are the normalized
distorted image coordinates, xu and yu are the normalized undistorted image
coordinates, R is the radial distortion, D is the decentering distortion, κi are the
parameters for radial distortion, λi are the parameters for decentering distortion,
and w is the homogeneous scaling factor. Usually the distortion model is good
enough using only κ1 and κ2, but often λ1, λ2, and κ3 are also considered. These
non-linear distortion parameters, together with the parameters in K (3.3), are the

18

2. CAMERA

intrinsic parameters of the camera. They are usually determined in a calibration
procedure by maximum likelihood estimation [24, 75]. With calibrated cameras,
and assuming that the calibration stays constant over time, one only needs to
determine the 6 free parameters of the camera pose for each image frame used
in the localization. This is the procedure used in Papers IV and VII.

Image features and semantic segmentation

With the geometric camera model, we have a modeled how light rays travel
from objects in the world and shine on pixels in the camera. There are methods
to solve the localization problem that directly apply this model to the intensity
values of the pixels, in combination with a photometric calibration that relate the
pixel values to brightness in the world [15, 18]. However, more often the raw
image pixels are pre-processed into some type of image features. Most common
feature extractors detect salient feature points, such as corners or local extrema in
intensity. To enable matching of feature points between images, a small region of
the image around each point is processed into a descriptor vector that describes
its appearance. The idea with this vector is that when a feature of the same object
is detected in two different images, their descriptor vectors will be very similar.
The canonical example of such feature detector and descriptor is SIFT [40], but
there are newer alternatives, e.g. ORB [58] that prioritizes speed, and learning
based D2-Net [13] that prioritizes matching performance.

Another approach to image features, is to detect features which have a special
meaning to humans. In a road environment that could mean e.g., traffic signs,
pedestrians, or lane markers. These detectors are harder to construct, but it is
more obvious how the detections are useful in an autonomous car context, when
compared to general feature points.

Automotive cameras detect and classify objects that are meaningful for the
driving task, such as other vehicles, pedestrians, traffic signs, lane markers, etc.
Usually these features are detected and located in the image, but sometimes the
detected positions are transformed into a vehicle coordinate frame. This trans-
formation into 3-D can be achieved after capturing two or more frames and using
visual odometry to triangulate the position of the object, or by using a flat world
approximation, and knowledge about the mounting position of the camera on the
vehicle. In Paper I we use lane marker descriptions from a camera of this type.

Recently there has been a surge in pixel wise classification, also called se-
mantic segmentation. The task for a semantic classifier is to assign a semanti-
cally meaningful class, such as "human", "car", "building", etc., to each pixel in
the image, as shown in Figure 3.6. For this type of feature, there is no easy way
to define a measurement model. Instead, the problem is often defined as a super-
vised learning task. If Y is the observed image, andX is the underlying semantic
class for each pixel in the image, then we want to find a function fθ(Y) = X .

19

CHAPTER 3. SENSORS AND OBSERVATIONS

Figure 3.6: (Left) Example of an image from a road environment and its se-
mantic segmentation. (Right) The same image colorized according to class by a
semantic segmentation algorithm.

This is typically a very flexible model with lots of model parameters, θ, that must
be learned. To do that, supervised learning is often used, meaning that people
manually annotate lots of example images with the correct class, and then give
this as input to a a training process in which (locally) optimal parameters, θ̂, for
that training set are found. More on how this training is done, comes in Section
4.

In 2015, the first successful semantic segmentation algorithms based on neu-
ral networks were demonstrated [39, 51, 74], and in the five years since then, the
progress has been dramatic.

3 Radar

Radars work by illuminating objects with their own "light" source, and measure
the time it takes for the signal to return, and can hence deduce the distance to the
object. They emit radio waves in a beam which is swept over the scene of in-
terest. Some older models used a physically moving antenna, but modern radars
use electronically steered beams. The antenna elements are arranged such that
by shifting the phase of the transmitted signal slightly, a beam can be directed in
a selected angle. By steering this beam, the angle to objects can be measured.
Besides angle, range and reflectivity of the objects are measured, and most often
also the Doppler shift in the returned signal is measured, which means that the
relative speed between the radar and the object can be determined. As with au-
tomotive cameras, automotive radars do further processing to detect peaks in the
raw data which should correspond to the objects of interest. The radar usually
also tracks and filters these detections over multiple frames before publishing the
information on the data bus. Since the speed of the vehicle relative to the ground

20

3. RADAR

is estimated relatively well by the wheel speed sensors, and the relative speed to
a target is measured by the radar, it is possible to extract the stationary objects for
use in the localization process, while disregarding the moving objects, which are
not of interest for localization purposes. Traffic signs and other metallic poles,
such as the ones holding up side barriers, are typical examples of objects that are
both stationary and good radar reflectors, and thus, of interest as landmarks in a
radar map.

In contrast to camera images, a detection from a radar contains relatively little
information. There is, to our best knowledge, no way to produce an effective
descriptor for the radar detections. Thus, it will be much harder to match radar
detections over time, or to a radar map. One way of handling the measurement
to map association is presented in Paper I, but there are many other possible
solutions to the data association problem, see e.g., [17, 22, 41, 43].

21

22

Chapter 4

Parameter estimation

Parameter estimation is central to almost all scientific endeavors, and localization
is no different. It can be used to answer questions such as, "What is the most
likely location of the car, when taking into account all measurements that we
have done up until now?" or "How certain is this estimated location?".

The location of the self-driving car is continuously estimated in an iterative
process that takes the latest measurements and weighs it against previous knowl-
edge gotten from past measurements. This process, and various ways of imple-
menting it, is described more in section 1 on Bayesian filtering and smoothing.

To build the maps that are needed for localization, the parameters for the map
generally do not need to be estimated in real time. Some particular details on this
process are described in more detail in section 2 on Smoothing and mapping.

In the examples given above, the unknown location of the car or landmarks
were the parameters that we were interested in estimating. There are usually also
a number of nuisance parameters that we are not really interested in knowing,
but that we need to estimate nevertheless. For example, inside the sensor models
that we use, there are parameters, and although we do not necessarily want to use
them for the driving task, they are necessary to know for the sake of estimating
location.

The method for determining those nuisance parameters varies depending on
the nature of the problem. For example, the sensor model for the GNSS receiver
contains a few parameters that are reasonably straight-forward for a human to
estimate by doing certain experiments. However, some other sensor models,
such as the model for semantic pixel-wise labeling of camera images, are very
complex, and use millions of parameters. The process often used to determine
these parameters is a recent development in parameter estimation called deep
learning. A very brief introduction to deep learning and some related concepts
that are used in this thesis are found in section 3.

23

CHAPTER 4. PARAMETER ESTIMATION

1 Bayesian filtering and smoothing

The word "Bayesian" in "Bayesian filtering" means that we make use of Bayes’
rule to update our belief of some state as we collect more measurements. This
belief is expressed as a probability density (or probability mass function in the
case of discrete variables), and is exactly what we use to answer questions about
most likely value or uncertainty about some variable.

"Filtering", in this context, means that we have a sequence of noisy measure-
ments from our sensors, and are interested in recursively estimating some state
(e.g. the current location and orientation of a car), making use of all past mea-
surements to infer this state. This is in contrast to "smoothing" where we are
looking at the problem in an off-line setting, and thus also future measurements
are available for all but the very last time instance.

An example of the on-line filtering setting, is the localization necessary for
autonomous driving. The current location of the vehicle is most relevant for
planning and control but the location one hour ago is not that useful. On the other
hand, creating a map of the static environment around the road, is an example
where smoothing makes more sense. Then, we are interested in creating the best
possible estimate of the positions of landmarks, and we would like to use all
available data. However, it is not critical to make the estimation on-line while
recording the measurements. We may just as well save all the data and process
it afterwards, when we return to the office.

1.1 Problem formulation and general solution

Let us define the state that we are interested in estimating as a vector of real
numbers, xk ∈ R

n, and the measurement we receive at time tk as another vector,
yk ∈ R

m. The subscript k denotes the k:th measurement which is taken at
time tk. One measurement sequence consists of T discrete measurements, which
means that k ∈ [1, . . . , T] and that j < k =⇒ tj ≤ tk. We can now define
filtering as finding the posterior density, i.e., the density over possible states after
all available measurements have been accounted for, p(xk|y1:k), and smoothing
as p(x1:T |y1:T). Here, y1:k is short notation for y1,y2, . . . ,yk, and T is the last
time instance in the sequence.

To find the posterior density, we make a few simplifying assumptions. One
assumption is that the current measurement yk when the corresponding state
xk is given, is conditionally independent of all other states and measurements.
Another assumption is that the state sequence is Markovian, which means that
state xk when given state xk−1 is conditionally independent of all previous states,

p(xk|x1:k−1,y1:k−1) = p(xk|xk−1) (4.1)

p(yk|x1:k,y1:k−1) = p(yk|xk). (4.2)

24

1. BAYESIAN FILTERING AND SMOOTHING

Density (4.1) captures the uncertainties in the state transition, and (4.2) cap-
tures the relation between the measurement and the state. The same relations can
also be expressed as

xk = fk−1(xk−1,qk−1) (4.3)

yk = hk(xk, rk), (4.4)

where qk and rk are random processes, describing the error or uncertainty in the
models. As (4.3) models the procession of states over time, it is called a process
model, or motion model when the state involves position. Similarly, (4.4) models
the measurements, and is called a measurement model.

When we have restricted the class of problems to Markovian processes with
conditionally independent measurements, the filtering and smoothing problems
can be solved with recursive algorithms. In the filtering case, there is a forward
recursion, whereas in the smoothing case, there is also a backward recursion.
The base case in the filtering solution is for k = 0, when we have no measure-
ment, and we base our solution solely on any prior knowledge we may have,
summarized in p(x0).

The forward recursion step is then split in two parts: a prediction using the
process model, and then an update using the measurement model. Assuming
we have a solution for p(xk−1|y1:k−1) from the previous time instance, we can
now express p(xk|y1:k) in terms of already known densities with the help of Dr.
Kolmogorov and Reverend Bayes as

p(xk|y1:k−1) =

∫

p(xk−1,xk|y1:k−1)dxk−1 (4.5)

=

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (4.6)

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (4.7)

where the denominator in (4.7) is constant with respect to the state variable xk.

As mentioned, smoothing can also be done recursively in two passes, where
the first forward pass is identical to the filter recursion, and then a backward pass.
The base case for the backward recursion is the final state at k = T , where the
smoothing solution is identical to the filtering solution, p(xT |y1:T). Then assume
that we have the smoothed solution at time k+1, p(xk+1|y1:T) and now the task

25

CHAPTER 4. PARAMETER ESTIMATION

is to express p(xk|y1:T) in already known terms,

p(xk|y1:T) =

∫

p(xk,xk+1|y1:T)dxk+1 (4.8)

=

∫

p(xk|xk+1,y1:T)p(xk+1|y1:T)dxk+1 (4.9)

=

∫

p(xk|xk+1,y1:k)p(xk+1|y1:T)dxk+1 (4.10)

=

∫

p(xk+1|xk)p(xk|y1:k)p(xk+1|y1:T)

p(xk+1|y1:k)
dxk+1. (4.11)

In (4.11) we see the motion model p(xk+1|xk), the filtering density p(xk|y1:k),
the smoothing density from the previous step p(xk+1|y1:T), and the filtering pre-
diction density p(xk+1|y1:k), all of which are available from before.

1.2 Kalman filter

If the errors qk and rk from (4.3) and (4.4) are additive, normally distributed,
and independent over time, and the models in themselves are linear, then we
can solve the filtering and smoothing problems optimally, in a mean square error
sense, using a Kalman filter [28]. All the assumptions regarding the process
noise are seldom correct, but it is still a useful simplification which works often
enough. Also, there is seldom a need for having different models at each time
instance. Then the simplified models are

xk = Fxk−1 + qk−1, qk−1 ∼ N (0,Q) (4.12)

yk = Hxk + rk, rk ∼ N (0,R), (4.13)

where F is the linear process model in matrix form, H is the linear measurement
model in matrix form, and Q and R are the covariance matrices for the process
noise and the measurement noise, respectively. Under these assumptions, the
posterior distributions for both the filtering problem and the smoothing problem
are also Gaussian, and can be exactly represented by their mean and covariance.
The Kalman filter calculates mean, µ̂k|k, and covariance Pk|k, of the posterior

26

1. BAYESIAN FILTERING AND SMOOTHING

density for each time step, k, with the following recursion

µ̂k|k−1 = Fµ̂k−1 (4.14)

Pk|k−1 = FPk−1|k−1F
⊤ +Q (4.15)

ŷk = Hµ̂k|k−1 (4.16)

Sk = HPk|k−1H
⊤ +R (4.17)

Kk = Pk|k−1H
⊤S−1

k (4.18)

µ̂k|k = µ̂k|k−1 +Kk(yk − ŷk) (4.19)

Pk|k = Pk|k−1 −KkSkK
⊤
k . (4.20)

Here µ̂k|k is the estimated mean at time instance k using measurements up to,
and including time k, while µ̂k|k−1 is the predicted mean at time instance k using
measurements up to, and including time k− 1, ŷk is the predicted measurement,
Sk is the predicted measurement covariance, and Kk is the Kalman gain, all at
time k.

The optimal smoothed solution can be achieved by first applying the Kalman
filter, and then applying the Rauch-Tung-Striebel smoothing recursion [56], start-
ing from k = T − 1 as

Gk = Pk|kF
⊤P−1

k+1|k (4.21)

µ̂k|T = µ̂k|k +Gk(µ̂k+1|T − µ̂k+1|k) (4.22)

Pk|T = Pk|k +Gk(Pk+1|T −Pk+1|k)G
⊤
k . (4.23)

1.3 Unscented Kalman Filter

In many problems either, or both, of the process and measurement models are
non-linear, in which case there is usually no exact solution. One common so-
lution, when the non-linearities are relatively mild, is to linearize the functions
using Taylor series expansion at the estimated mean. This results in the poste-
rior being approximated as a normal distribution, and the algorithms to calculate
it, are the Extended Kalman filter (EKF) [19, 32] and Extended Rauch-Tung-
Striebel smoother (ERTS), respectively.

Another option, which is used in the appended papers, is the sigma point
methods, such as the Unscented Kalman Filter (UKF) [27] and the Cubature
Kalman Filter (CKF) [1]. These methods also approximate the posterior as a
normal distribution, but in a slightly different way than through Taylor series
expansion. One can think of the UKF and CKF in terms of numerical differences
and view them as approximations to the EKF, but that is somewhat unfair, since
both UKF and CKF generally approximate the densities involved better than
what the EKF does [21]. The Unscented transform, which is the basis of the

27

CHAPTER 4. PARAMETER ESTIMATION

UKF, estimates the mean and covariance of y = h(x) where x is a normally
distributed random variable, by first selecting a set of sigma points, X (i), around
the mean of x. These sigma points are then propagated through the non-linear
function, resulting in another set of sigma points, Y(i). Then, the mean and
covariance of y can be approximated from Y(i) as a weighted sum.

The UKF recursion which approximates the posterior density as a normal
distribution, is then given in terms of its approximated mean, µ̂k, and covariance
Pk for each time step k. First determine the sigma points,

X (0)
k−1 = µ̂k−1 (4.24)

X (i)
k−1 = µ̂k−1 +

√
n+ κ

[

√

Pk−1

]

i

(4.25)

X (i+n)
k−1 = µ̂k−1 −

√
n+ κ

[

√

Pk−1

]

i

, (4.26)

then the prediction density,

X (i)
k|k−1 = f(X (i)

k−1) (4.27)

µ̂k|k−1 =
2n
∑

i=0

W (i)X (i)
k|k−1 (4.28)

Pk|k−1 =
2n
∑

i=0

W (i)(X (i)
k|k−1 − µ̂k|k−1)(X (i)

k|k−1 − µ̂k|k−1)
⊤ (4.29)

then the posterior density,

Y(i)
k = h(X (i)

k|k−1) (4.30)

ŷk =
2n
∑

i=0

W (i)Y(i)
k (4.31)

Sk =
2n
∑

i=0

W (i)(Y(i)
k − ŷk)(Y(i)

k − ŷk)
⊤ (4.32)

Ck =
2n
∑

i=0

W (i)(X (i)
k|k−1 − µ̂k|k−1)(Y(i)

k − ŷk)
⊤ (4.33)

Kk = CkS
−1
k (4.34)

µ̂k|k = µ̂k|k−1 +Kk(yk − ŷk) (4.35)

Pk|k = Pk|k−1 −KkSkK
⊤
k (4.36)

28

1. BAYESIAN FILTERING AND SMOOTHING

all with weights as

W (0) =
κ

n+ κ
(4.37)

W (i) =
1

2(n+ κ)
, i = 1, . . . , 2n. (4.38)

Here n is the dimensionality of the state, κ is a tuning parameter,
√
P denotes

any matrix square root such that
√
P
√
P

⊤
= P, and

[

·
]

i
selects the i:th column

of its argument. The special case when κ = 0 turns the UKF into CKF, which is
used in Paper II.

In cases where the noise is not additive, it is possible to augment the state
vector with noise states and use the same updates of the UKF or CKF filters
[73].

1.4 Particle filters

Both the EKF and UKF approximates the posterior density as a normal density.
Sometimes this approximation is too crude. This may happen e.g., when the
process model or the measurement model is highly non-linear, or it is known
that the posterior density is multi-modal, and this needs to be reflected in the
filtering solution. One possible solution when this is the case, is through multiple
hypotheses filters [4, 9, 57], which describe the posterior as a sum of several
normal distributions. Another popular solution is the particle filter, which makes
no parametric approximation of the posterior density, but instead describes the
posterior distribution as a weighted sum of many Dirac delta functions.

When using a particle filter, we draw N samples, x(i), from a proposal distri-
bution q(x0:k|y1:k) and assign a weight w(i) to each sample, where

w
(i)
k =

p(x0:k|y1:k)
q(x0:k|y1:k)

. (4.39)

Now the posterior distribution can be approximated as

p(x0:k|y1:k) ≈
1

N

N
∑

i=1

w
(i)
k δ(x0:k − x

(i)
0:k). (4.40)

For the recursive step, assume that we have x
(i)
0:k−1 and w(i)

k−1 from the previous
step. The new set of samples at step k is drawn from the proposal distribution
and gets weights as

x
(i)
k ∼ q(xk|x(i)

0:k−1,y1:k) (4.41)

w
(i)
k ∝ p(yk|x(i)

k)p(x
(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

0:k−1,y1:k)
w

(i)
k−1. (4.42)

29

CHAPTER 4. PARAMETER ESTIMATION

The version of particle filters that is used in Papers I and IV, called the
bootstrap particle filter [20], uses the motion model as proposal distribution,
q(x

(i)
k |x(i)

0:k−1,y1:k) = p(x
(i)
k |x(i)

k−1), which makes for a particularly easy recur-
sion,

x
(i)
k ∼ p(xk|x(i)

k−1) (4.43)

w
(i)
k ∝ p(yk|x(i)

k)w
(i)
k−1. (4.44)

After the new samples are drawn and the weights are updated, the weights should
be normalized such that

∑

iwi = 1 over time. Due to the possibility of particle
depletion, i.e. most of wi are almost zero, the samples need to be resampled peri-
odically. The resampling creates multiple copies of samples with large weights,
and removes samples with near zero weight, and then resets the weights of the
resampled particles.

1.5 Maximum á-posteriori filters

For both the Kalman filters and the particle filters the cost function they aim to
minimize is the expected error of the estimate. This is often the most reasonable
thing to aim for, but there are other popular alternatives. A notable example is
the maximum likelihood estimation (MLE), or the maximum á-posteriori (MAP)
estimation in case we are considering a prior distribution. These methods find
the maximally likely solution, i.e. the mode of the distribution, instead of the
mean as for previous filters. It is possible to construct degenerate densities that
exhibit unwanted behaviour for either choice, see Fig. 4.1, but for nicely behaved
problems with uni-modal densities, the two estimates are often rather similar.

The solution to the MAP filter is usually found through a local optimization
procedure, where the prediction from the previous time step is used as an initial
guess, and then an iterative local optimization algorithm is applied to the negative
logarithm of the posterior density function. When the gradient of the density
function is straight forward to compute, the Levenberg-Marquardt method is a
popular choice, whereas a gradient free method, such as the simplex algorithm,
may be used if the gradient is hard to compute [30].

A benefit of the iterative MAP filters over the direct solutions used in the
non-linear Kalman filters, is that the linearization point is improved for each
iteration and ends up at the ideal spot if the iteration converges, whereas it may
lie arbitrarily far away for the Kalman filters [16]. This property is a major
reason why MAP filters and smoothers are preferred over Kalman type filters to
solve certain types of problems where large errors may be present in the initial
estimates, e.g. the simultaneous localization and mapping (SLAM) problem.
This is why a MAP smoother is employed in Paper VII.

30

2. SMOOTHING AND MAPPING

Figure 4.1: Examples of degenerate distributions. Minimum mean squared error
estimate is marked with a circle, and maximum á-posteriori estimate with a cross.
To the left 90% of the probability mass is around the left peak, yet, because the
right peak reaches a higher maximum value, it is the MAP estimate. To the right
the MMSE estimate ends up in a spot where there is almost no probability, yet it
is the best trade-off with the smallest average squared error to the two peaks at
the sides.

The MAP filter is also used in Paper IV, but here another feature plays a big
role. The non-linear Kalman filters assume a measurement model that is reason-
ably easy to compute, and that the measurement covariance (4.17) and (4.32) can
be formed. For very high dimensional measurements, such as a megapixel im-
ages, this not the case anymore. Yet, there may be efficient ways to evaluate the
likelihood, and for particle filters and MAP filters that is the only requirement,
which makes them suitable in such circumstances.

2 Smoothing and mapping

Bayesian smoothing of a Markov process can be done optimally in a forward
pass followed by a backward pass. However, for a typical mapping problem or a
localization problem that also does mapping, the Markov property does not hold.
When a landmark is observed from multiple locations, those locations become
related through the landmark, and it is no longer possible to say that the current
position is only dependent on the previous (and next, in the case of smoothing)
position and the current measurement.

Let us create a small example that shows the problem. Assume that we have
two landmarks, l1 and l2, that we are interested in mapping. We drive near them
with a robot, and make noisy observations with a sensor on the robot. Our prob-
lem now, is that we do not know exactly the positions and orientations of the
robot during the measurement campaign. Let us assume that the robot has made
four observations, y1, . . . , y4, of the landmarks from four different positions,

31

CHAPTER 4. PARAMETER ESTIMATION

x
1

y
1

y
4

y
3

y
2

x
2

l
2

l
1

x
3

x
4

Figure 4.2: Bayes net representation of a small SLAM problem with 4 robot
poses, 2 landmarks, and 4 observations. Unknown variables are white, while
given measurements are marked gray.

x1, . . . , x4. Let l1 be seen from x1 and x4, and l2 from x2 and x3. The corre-
sponding Bayes network is shown in Figure 4.2. The relation between the poste-
rior density of interest p(l1, l2|y1:4) and the measurement models p(y1|x1, l1) and
p(y2|x2, l2) can be seen by introducing the x:s in the posterior density,

p(l1, l2|y1:4) =
∫

p(l1:2, x1:4|y1:4)dx1:4. (4.45)

Now, the joint density inside the integral can be factorized in terms of motion
model and measurement model.

p(l1:2, x1:4|y1:4) ∝ p(y1|x1, l1)p(x2|x1)
p(y2|x2, l2)p(x3|x2)
p(y3|x3, l2)p(x4|x3)
p(y4|x4, l1) (4.46)

The landmarks, especially l1 which appears together with x1 to x4, prevent
us from solving this with forward-backward smoothing. One way out of this is
to use iterative methods such as loopy belief propagation [47] that makes many
passes backwards and forwards. Another possibility is to reformulate it as a max-
imum á-posteriori (MAP) problem and consider the whole problem (or at least a
much larger window than just the current time slot) at once. When the noise in
the models is additive and Gaussian, which is an often used approximation, the
MAP problem is equivalent to a weighted, non-linear, least squares problem,

32

3. DEEP LEARNING

arg max
l1:2,x1:4

p(l1:2, x1:4|y1:4) = arg min
l1:2,x1:4

− log p(l1:2, x1:4|y1:4)

= arg min
l1:2,x1:4

||y1 − h(x1, l1)||2R+
||x2 − f(x1)||2Q + . . .+

||y4 − h(x4, l1)||2R, (4.47)

where ||x||2Σ = x⊤Σ−1x. This least-squares problem can be solved using a gen-
eral purpose optimizer, such as Levenberg-Marquardt. This formulation of the
mapping problem is usually called Graph-SLAM.

By solving the optimization problem in (4.47), we get the maximum á-posteriori
solution of both poses and landmarks. As always with local optimization algo-
rithms, there is a risk of getting stuck in local minima, but with good initializa-
tion, this is less of a problem.

3 Deep learning

Deep learning commonly refers to the practice of training and using artificial
neural networks. Artificial neural networks are models made up of a set of lay-
ered functions (more than 3 layers to be considered "deep") with the goal of
approximating a function that transforms an input into an output of some spec-
ified type. See review by LeCun et al. [35], for an overview of the field at the
time. An example task, used frequently in this thesis, is to take an image as input
and transform it into a semantic segmentation, i.e. each pixel in the image is
transformed into a class label (look back at Figure 3.6 for an example).

The task at a high level is described as fθ(Y) = X , where Y is the observa-
tion,X is the output and θ are the model parameters. The whole network consists
of multiple layers (or functions) where the output from an early layer is provided
as input to a later layer. Each layer typically consists of a linear part where the
input is treated as a vector and multiplied by a weight matrix and added with a
bias vector to generate a linear combination of the input as intermediate output,
Zk. Before the output is passed on to the next layer, a non-linear function, ρ(), is
applied to the intermediate vector.

Zk = WkXk−1 + bk (4.48)

Xk = ρ(Zk) (4.49)

X0 = Y (4.50)

X = Xn (4.51)

θ = (W1, b1, . . . ,Wn, bn) (4.52)

33

CHAPTER 4. PARAMETER ESTIMATION

Without the non-linear function, ρ(), the whole system could be reduced to a
single linear expression, which is too restrictive for the often highly non-linear
functions that are desired. A common choice for the intermediate layers is

ρ(zk,i) =

{

zk,i, if zk,i > 0

0, otherwise,
(4.53)

where zk,i denotes the ith element in the intermediate vector, Zk. However, for
the last layer that produces the final output, often some other function is used. For
regression tasks, the last non-linearity is often removed, and for for classification
tasks a popular choice is to use the soft-max function,

ρ(zn,i) =
ezn,i

∑

j e
zn,j

. (4.54)

This way the output becomes a normalized vector that sometimes is interpreted
as a probability mass function over the classes.

We can see already at this level of abstraction, that beside the main parame-
ters, θ, there are a number of hyper-parameters that have to do with number of
layers, dimensionality of each layer, and similar things. These parameters de-
termine the architecture of the network, and ought to be optimized over as well,
but partly due to the time it takes to train the regular parameters and partly due
to their discrete nature, it is impractical to run an outer optimization loop over
hyper parameters.

3.1 Convolutional neural networks

There is a wide variety of ways to connect the layers above. For certain prob-
lems, simply connecting multiple layers where each output in each layer is af-
fected by all outputs from the previous layer ("dense network"), is appropriate.
For recursive tasks, there exist designs where layers connect back in a recursive
manner.

However, for image inputs, where the pixels are regularly ordered in a grid,
and also quite numerous, it is common to use a particular type of artificial neural
network called "convolutional neural network" (CNN). There are two justifica-
tions for using CNN:s: First, for megapixel images, the huge number of pixels
used as individual inputs, make a deep network untractable on current hardware.
Second, the idea that we want the net to react in a similar way to the same sub-
pattern in the image regardless of its location in the image. These two problems
led to this particular type of network.

Instead of feeding the whole input into one big network, the idea is to use a
smaller network and apply it to a small window of the image, and then sweep

34

3. DEEP LEARNING

this window over the whole image. The output from each window is stored in
what is called "activation maps", which have the same spatial (x,y) shape as the
input. One can think of it in terms of a filter bank of weight kernels that the
input image is convoluted with. This design solves both the size problem and
the spatial covariance problems, as each small network kernel is reused for the
whole image, and thus the weights are both much fewer and also used in the
same way in all corners of the input image.

A common design of CNN for image segmentation is to layer several of
these convolutional layers after each other, and between some of them put a spe-
cial type of layer that resamples the feature maps to either decrease or increase
their spatial dimensions. Between the first few layers, the size is reduced, and
between the last few layers, the size is increased back to the original size. This
lets the network work on both fine details in the first and last layers, and at a
higher, more coarse level in the middle layers. See, for example, the works from
2015 [39, 51, 74], when neural networks started to be successfully used for se-
mantic segmentation.

3.2 Loss function and minimization

With a determined architecture, estimation of the model parameters, θ, in su-
pervised training, when there are annotated examples to learn from, is done by
minimizing a loss function defined from the training examples

θ̂ = arg min
θ

L(X,Y, θ) (4.55)

L(X,Y, θ) = 1

N

N
∑

i=1

l(Xi, fθ(Yi)). (4.56)

Here, X = {Xi}Ni=1 denotes the set of all labels in the training set, and Y =
{Yi}Ni=1 denotes the set of all the input data corresponding to X, meaning the
parameters are estimated by minimizing the (empirical) mean loss of the training
examples.

Depending on the task at hand, the loss function for each sample is chosen
accordingly. For regression tasks, the squared error is a popular choice of loss
function, and for classification tasks, such as semantic segmentation, where the
last layer is a soft-max layer, a popular choice of loss function is the cross-
entropy loss

l(X, fθ(Y)) = −XT log fθ(Y). (4.57)

The cross entropy loss emerges when trying to get the distribution p(fθ(Y)|Y)
to be as close to that of p(X|Y) as possible.

35

CHAPTER 4. PARAMETER ESTIMATION

This minimization problem is usually solved by local optimization using a
version of gradient descent, that approximates the full gradient, which is de-
pendent on all samples from the training data, by an approximation calculated
from only a few samples. The approximated gradient is much faster to compute,
but the price for that is that it is noisy. The noise, however, can be handled by
gradually decreasing the step length of the optimizer.

3.3 Overfitting

From trying to fit a polynomial curve through a number of data points, it is obvi-
ous that by increasing the number of parameters (i.e. degree of the polynomial),
the curve gradually fits the data better and better. When increasing the number
of model parameters such that the degrees of freedom of the curve equals or is
greater than the degrees of freedom of the data points, the fit is perfect with no
residual error. However, generalization of the model to unseen data tends to be
quite poor in that case, compared to if fewer model parameters are used. This
phenomena of overfitting model parameters to data would seem to be a huge
problem if the model contains millions or even billions of parameters.

Indeed, it is a problem for deep learning, and there are various counter mea-
sures for it. The first one is to detect when it happens. This is usually done by
reserving some of the manually annotated data as validation data that is not used
in the optimization of θ̂. By comparing model error on the training data and on
the validation data, it is possible to detect when over fitting occurs. If detected,
there are various heuristics to counter the effect, which are often described as
different types of regularization that artificially decrease the degrees of freedom
of the model. However, the best way to combat overfitting is to get more training
data.

Since manual annotation of huge amounts of data can be rather costly, often
one tries to expand the training data set by some automatic process. For example
when using images, a common strategy is to slightly modify the input image by
cropping, flipping, rotating, adjusting colors, adding noise, etc, and assuming
that after applying the same cropping etc on the labels, they should still match
the image content and be usable for training. In Paper V, we present another idea
on how to easily expand the training data set with automatically generated data.
This idea applies specifically to the problem of image segmentation in changing
conditions.

36

Chapter 5

Contributions

Paper I: Vehicle self-localization using off-the-shelf sensors and a detailed

map [42]

We investigate localization performance when using a particular setup of low
cost, automotive grade sensors for ADAS on a production vehicle from 2014.
Performance when both camera and radar are functional and seeing landmarks,
is found to be satisfactory, but when one or both is absent, performance quickly
degrades past acceptable limits. To reach the desired performance, a few items
are identified as candidates for further improvement. Information from the sen-
sors is not used to its fullest extent, due to pre-processing in the sensors; e.g., the
position estimates from the GPS system are not useful for anything more than
a first rough initialization. The examined solution is sensitive to patches where
landmarks are absent, so if error growth was much slower while landmarks are
unavailable, the patches without observable landmarks could be handled better.
The lane marker features provided by the vision system are not sufficient for
stand alone localization. Data association of measurements to the map is not
trivial, and gives rise to large errors if assumed to be correct when they are not.

All work for this paper was shared between the first author and me, under
the supervision of the two last authors. The first author was responsible for the
radar sensor model, while I was responsible for the camera sensor, and motion
models.

Paper II: Using a single band GNSS receiver to improve relative positioning

in autonomous cars [63]

An alternative configuration of GNSS receiver is proposed. It uses only the ba-
sic state space corrections provided in the navigational message, and the carrier
phase observations, to obtain a highly accurate relative positioning without the
need for communication with base stations, or complex and time consuming am-
biguity resolution. Together with a standard automotive grade IMU, and wheel

37

CHAPTER 5. CONTRIBUTIONS

speed sensors, this type of receiver would enable accurate positioning in open
environments where landmarks may be scarce, but GNSS availability is high.

All work, including models, implementation and writing for this article was
done by me under supervision of the second author.

Paper III: Long-Term Visual Localization Revisited

We present a benchmark with three different data sets to evaluate performance
of visual localization algorithms. A number of both historic and state of the art
algorithms are evaluated and compared to each other. This article was written
when the benchmark had been available for over a year, and we can see the
development in the area from when the benchmark was first released. The overall
conclusion is that, although there has been great progress in visual localization,
the problem is not considered solved. One thing we note is that localization
using several images in sequence has great potential to improve results, yet there
has been surprisingly little research in this direction. The CMU dataset is larger,
in terms of number of images, than the other two data sets combined, and has
higher estimated accuracy in the ground truth poses. Of the three, it is also
the only dataset that can be used to evaluate sequential localization over longer
sequences.

My contribution was to produce the ground truth poses for and write parts
about the CMU Seasons dataset, and evaluation and writing for the sequential
localization algorithms.

Paper IV: Semantic Maps and Long-Term Self-Localization for Self-Driving

Cars using Image Segmentation

We aim to increase use of the camera beyond the simplest features, such as lane
markings, while still being robust towards the large changes in visual appearance
that occur naturally due to different seasons and lighting conditions. Aiming
for lower dependence towards the visual appearance of landmarks in the map
representation, a model for localization in semantically labeled point clouds is
proposed, implemented, and evaluated against a reference method based on tra-
ditional image features. Resilience towards changing appearance was partially
achieved, and it is shown that visual localization using point clouds can be done
with far less informative descriptors where matching of feature points from im-
age to map is infeasible, and yet achieve comparable performance.

Idea, models, implementation, and writing was primarily by me with good
help from second author for the idea and evaluation, under supervision of the last
author.

38

Paper V: A Cross-Season Correspondence Dataset for Robust Semantic

Segmentation [34]

Another use for the ground truth poses from the localization benchmark data sets
is found. We show that this data can be used to train consistency over different
conditions, and thus greatly reduce the amount of manual labor needed for state
of the art segmentation performance.

My contribution includes creating one of the underlying data sets and con-
tributing to the idea of using it for consistency training. Most work on models
and implementation was done by the first author. I contributed some parts to
the implementation and evaluation phases, e.g. the patch interpolation, addi-
tional ground truth segmentations for our data set, code for efficiently training
and evaluating on a computer cluster. Writing was primarily done by the first
author.

Paper VI: Fine-Grained Segmentation Networks: Self-Supervised Segmen-

tation for Improved Long-Term Visual Localization [33]

From the earlier conclusion in Paper IV, that more classes are needed in some
areas to provide better performance, a solution is proposed here. We choose to
drop the semantic meaning of the predefined classes, and to instead use a variable
number of classes without semantic meaning, but that are still consistent over
long time periods. The main contribution is how to train these types of networks
and to show that it does indeed lead to improved performance for localization
algorithms based on image segmentations.

My work from Paper IV clearly pointed towards the need for more fine
grained classes, and I was involved from an early stage in the motivations for
the work and was involved in the discussions on how to realize it along the way.
In the later stages I trained and evaluated the different networks to find the one
that performs best for sequential localization. I wrote parts about visual local-
ization from introduction to evaluation.

Paper VII: VoLoc: Image sequences beat single images every day (and

night)

We pick up the thread from Paper III, about using multiple images in sequence to
improve localization performance. Instead of using semantic description of the
environment, we here use more traditional local image features that give rise to
point correspondences between image and map. We show that if decent odome-
try data is available, this significantly improves performance to the point where
the advantage that modern visual localization algorithms have over a method
based on traditional local image features in single image performance, is all but

39

CHAPTER 5. CONTRIBUTIONS

erased.
I have been involved in the discussion that led into this avenue of research, re-

sponsible for the implementation of the coarse localization smoother, the odom-
etry based smoothing, and making modifications in the SLAM-solver, as well as
evaluating results, and most of the writing.

40

Bibliography

[1] Ienkaran Arasaratnam and Simon Haykin. “Cubature kalman filters”. In:
IEEE Transactions on automatic control 54.6 (2009), pp. 1254–1269.

[2] Hernán Badino, D Huber, and Takeo Kanade. “Visual topometric local-
ization”. In: Intelligent Vehicles Symposium (IV), 2011 IEEE. IEEE. 2011,
pp. 794–799.

[3] Tim Bailey and Hugh Durrant-Whyte. “Simultaneous localization and
mapping (SLAM): Part II”. In: IEEE Robotics & Automation Magazine

13.3 (2006), pp. 108–117.

[4] Samuel S Blackman. “Multiple hypothesis tracking for multiple target
tracking”. In: IEEE Aerospace and Electronic Systems Magazine 19.1
(2004), pp. 5–18.

[5] Mariusz Bojarski et al. “End to end learning for self-driving cars”. In:
arXiv preprint arXiv:1604.07316 (2016).

[6] Duane C. Brown. “Close-range camera calibration”. In: Photogramm.

Eng 37.8 (1971), pp. 855–866.

[7] Cesar Cadena et al. “Past, present, and future of simultaneous local-
ization and mapping: Toward the robust-perception age”. In: IEEE Trans-

actions on robotics 32.6 (2016), pp. 1309–1332.

[8] SJ Corbett and PA Cross. “GPS single epoch ambiguity resolution”. In:
Survey Review 33.257 (1995), pp. 149–160.

[9] Ingemar J. Cox and Sunita L. Hingorani. “An efficient implementation of
Reid’s multiple hypothesis tracking algorithm and its evaluation for the
purpose of visual tracking”. In: IEEE Transactions on pattern analysis

and machine intelligence 18.2 (1996), pp. 138–150.

[10] Mark Cummins and Paul Newman. “FAB-MAP: Probabilistic localization
and mapping in the space of appearance”. In: The International Journal

of Robotics Research 27.6 (2008), pp. 647–665.

[11] Hugh Durrant-Whyte and Tim Bailey. “Simultaneous localization and
mapping: part I”. In: IEEE robotics & automation magazine 13.2 (2006),
pp. 99–110.

41

BIBLIOGRAPHY

[12] Hugh Durrant-Whyte, David Rye, and Eduardo Nebot. “Localization of
autonomous guided vehicles”. In: Robotics Research. Springer, 1996,
pp. 613–625.

[13] Mihai Dusmanu et al. “D2-Net: A Trainable CNN for Joint Description
and Detection of Local Features”. In: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition. 2019, pp. 8092–8101.

[14] Alberto Elfes. “Sonar-based real-world mapping and navigation”. In:
IEEE Journal on Robotics and Automation 3.3 (1987), pp. 249–265.

[15] Jakob Engel, Thomas Schöps, and Daniel Cremers. “LSD-SLAM: Large-
scale direct monocular SLAM”. In: European Conference on Computer

Vision. Springer. 2014, pp. 834–849.

[16] Maryam Fatemi et al. “A study of MAP estimation techniques for non-
linear filtering”. In: 2012 15th International Conference on Information

Fusion. IEEE. 2012, pp. 1058–1065.

[17] Maryam Fatemi et al. “Variational Bayesian EM for SLAM”. In: Com-

putational Advances in Multi-Sensor Adaptive Processing (CAMSAP),

2015 IEEE 6th International Workshop on. IEEE. 2015, pp. 501–504.

[18] Xiang Gao et al. “LDSO: Direct sparse odometry with loop closure”.
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE. 2018, pp. 2198–2204.

[19] Arthur Gelb. Applied optimal estimation. MIT press, 1974.

[20] Neil J Gordon, David J Salmond, and Adrian FM Smith. “Novel ap-
proach to nonlinear/non-Gaussian Bayesian state estimation”. In: IEE

Proceedings F (Radar and Signal Processing). Vol. 140. 2. IET. 1993,
pp. 107–113.

[21] Fredrik Gustafsson and Gustaf Hendeby. “Some relations between ex-
tended and unscented Kalman filters”. In: IEEE Transactions on Signal

Processing 60.2 (2012), pp. 545–555.

[22] Lars Hammarstrand, Malin Lundgren, and Lennart Svensson. “Adap-
tive radar sensor model for tracking structured extended objects”. In:
IEEE Transactions on Aerospace and Electronic Systems 48.3 (2012),
pp. 1975–1995.

[23] Ron Hatch. “The synergism of GPS code and carrier measurements”.
In: International geodetic symposium on satellite doppler positioning.
Vol. 1. 1983, pp. 1213–1231.

42

BIBLIOGRAPHY

[24] Janne Heikkila and Olli Silven. “A four-step camera calibration proce-
dure with implicit image correction”. In: Computer Vision and Pattern

Recognition, 1997. Proceedings., 1997 IEEE Computer Society Confer-

ence on. IEEE. 1997, pp. 1106–1112.

[25] Armin Hornung et al. “OctoMap: An efficient probabilistic 3D map-
ping framework based on octrees”. In: Autonomous Robots 34.3 (2013),
pp. 189–206.

[26] Arnold Irschara et al. “From structure-from-motion point clouds to fast
location recognition”. In: Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on. IEEE. 2009, pp. 2599–2606.

[27] S. Julier and J. Uhlmann. “A New Extension of the Kalman Filter to
nonlinear Systems”. In: The Proceedings of AeroSense: The 11th In-

ternational Symposium on Aerospace/Defense Sensing, Simulation and

Controls, Multi Sensor Fusion, Tracking and Resource Management II.
1997.

[28] Rudolph Emil Kalman et al. “A new approach to linear filtering and pre-
diction problems”. In: Journal of basic Engineering 82.1 (1960), pp. 35–
45.

[29] E. Kaplan and C. Hegarty. Understanding GPS: Principles and Appli-

cations, Second Edition. Artech House mobile communications series.
Artech House, 2005.

[30] Carl T Kelley. Iterative methods for optimization. SIAM, 1999.

[31] John Klobuchar et al. “Ionospheric time-delay algorithm for single-frequency
GPS users”. In: Aerospace and Electronic Systems, IEEE Transactions

on 3 (1987), pp. 325–331.

[32] Richard E Kopp and Richard J Orford. “Linear regression applied to sys-
tem identification for adaptive control systems”. In: Aiaa Journal 1.10
(1963), pp. 2300–2306.

[33] Mans Larsson et al. “Fine-grained segmentation networks: Self-supervised
segmentation for improved long-term visual localization”. In: Proceed-

ings of the IEEE International Conference on Computer Vision. 2019,
pp. 31–41.

[34] Måns Larsson et al. “A Cross-Season Correspondence Dataset for Ro-
bust Semantic Segmentation”. In: CVPR. 2019.

[35] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
nature 521.7553 (2015), pp. 436–444.

43

BIBLIOGRAPHY

[36] Jesse Levinson and Sebastian Thrun. “Robust vehicle localization in ur-
ban environments using probabilistic maps”. In: Robotics and Automa-

tion (ICRA), 2010 IEEE International Conference on. IEEE. 2010, pp. 4372–
4378.

[37] Yunpeng Li, Noah Snavely, and Daniel P Huttenlocher. “Location recog-
nition using prioritized feature matching”. In: European conference on

computer vision. Springer. 2010, pp. 791–804.

[38] Yunpeng Li et al. “Worldwide pose estimation using 3d point clouds”.
In: Large-Scale Visual Geo-Localization. Springer, 2016, pp. 147–163.

[39] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolu-
tional networks for semantic segmentation”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 2015, pp. 3431–
3440.

[40] David G Lowe. “Distinctive image features from scale-invariant key-
points”. In: International journal of computer vision 60.2 (2004), pp. 91–
110.

[41] Malin Lundgren, Lennart Svensson, and Lars Hammarstrand. “Varia-
tional Bayesian Expectation Maximization for Radar Map Estimation.”
In: IEEE Trans. Signal Processing 64.6 (2016), pp. 1391–1404.

[42] Malin Lundgren et al. “Vehicle self-localization using off-the-shelf sen-
sors and a detailed map”. In: IEEE Intelligent Vehicles Symposium, Pro-

ceedings. 2014, pp. 522–528.

[43] Christian Lundquist, Lars Hammarstrand, and Fredrik Gustafsson. “Road
intensity based mapping using radar measurements with a probability hy-
pothesis density filter”. In: IEEE Transactions on Signal Processing 59.4
(2011), pp. 1397–1408.

[44] Michael J Milford and Gordon F Wyeth. “SeqSLAM: Visual route-based
navigation for sunny summer days and stormy winter nights”. In: Robotics

and Automation (ICRA), 2012 IEEE International Conference on. IEEE.
2012, pp. 1643–1649.

[45] Urs Muller et al. “Off-road obstacle avoidance through end-to-end learn-
ing”. In: Advances in neural information processing systems. 2006, pp. 739–
746.

[46] Ana Cris Murillo, José Jesús Guerrero, and C Sagues. “Surf features for
efficient robot localization with omnidirectional images”. In: Robotics

and Automation, 2007 IEEE International Conference on. IEEE. 2007,
pp. 3901–3907.

44

BIBLIOGRAPHY

[47] Kevin P Murphy, Yair Weiss, and Michael I Jordan. “Loopy belief prop-
agation for approximate inference: An empirical study”. In: Proceedings

of the Fifteenth conference on Uncertainty in artificial intelligence. Mor-
gan Kaufmann Publishers Inc. 1999, pp. 467–475.

[48] Tayyab Naseer et al. “Robust visual robot localization across seasons
using network flows”. In: Twenty-Eighth AAAI Conference on Artificial

Intelligence. 2014.

[49] National Highway Traffic Safety Administration. Traffic Safety Facts

2015. Tech. rep.

[50] National Highway Traffic Safety Association. Motor Vehicle Traffic Crashes

as a Leading Cause of Death in the United States, 2012-2014. Tech. rep.
2016.

[51] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. “Learning de-
convolution network for semantic segmentation”. In: Proceedings of the

IEEE international conference on computer vision. 2015, pp. 1520–1528.

[52] Edwin Olson. “Recognizing places using spectrally clustered local matches”.
In: Robotics and Autonomous Systems 57.12 (2009), pp. 1157–1172.

[53] Daniel Pagac, Eduardo Mario Nebot, and Hugh Durrant-Whyte. “An ev-
idential approach to map-building for autonomous vehicles”. In: IEEE

Transactions on Robotics and Automation 14.4 (1998), pp. 623–629.

[54] Mark Petovello. “The differences in differencing”. In: Inside GNSS (Sept.
2011), pp. 28–32.

[55] Dean A Pomerleau. “Alvinn: An autonomous land vehicle in a neural
network”. In: Advances in neural information processing systems. 1989,
pp. 305–313.

[56] Herbert E Rauch, F Tung, Charlotte T Striebel, et al. “Maximum likeli-
hood estimates of linear dynamic systems”. In: AIAA journal 3.8 (1965),
pp. 1445–1450.

[57] Donald Reid. “An algorithm for tracking multiple targets”. In: IEEE

transactions on Automatic Control 24.6 (1979), pp. 843–854.

[58] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF.” In:
ICCV. Vol. 11. 1. Citeseer. 2011, p. 2.

[59] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. “Efficient & effective
prioritized matching for large-scale image-based localization”. In: IEEE

transactions on pattern analysis and machine intelligence 39.9 (2017),
pp. 1744–1756.

45

BIBLIOGRAPHY

[60] Grant Schindler, Matthew Brown, and Richard Szeliski. “City-scale lo-
cation recognition”. In: Computer Vision and Pattern Recognition, 2007.

CVPR’07. IEEE Conference on. IEEE. 2007, pp. 1–7.

[61] Markus Schreiber, Carsten Knöppel, and Uwe Franke. “Laneloc: Lane
marking based localization using highly accurate maps”. In: Intelligent

Vehicles Symposium (IV), 2013 IEEE. IEEE. 2013, pp. 449–454.

[62] Santokh Singh. Critical reasons for crashes investigated in the national

motor vehicle crash causation survey. Tech. rep. 2015.

[63] Erik Stenborg and Lars Hammarstrand. “Using a single band GNSS re-
ceiver to improve relative positioning in autonomous cars”. In: Intelligent

Vehicles Symposium (IV), 2016 IEEE. IEEE. 2016, pp. 921–926.

[64] Linus Svarm et al. “Accurate localization and pose estimation for large
3d models”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2014, pp. 532–539.

[65] Peter JG Teunissen. “The least-squares ambiguity decorrelation adjust-
ment: a method for fast GPS integer ambiguity estimation”. In: Journal

of geodesy 70.1 (1995), pp. 65–82.

[66] Sebastian Thrun et al. “Stanley: The robot that won the DARPA Grand
Challenge”. In: Journal of field Robotics 23.9 (2006), pp. 661–692.

[67] Sebastian Thrun et al. “Robust Monte Carlo localization for mobile robots”.
In: Artificial intelligence 128.1-2 (2001), pp. 99–141.

[68] Antonio Torralba et al. “Context-based vision system for place and ob-
ject recognition”. In: Proceedings of the Ninth IEEE International Con-

ference on Computer Vision-Volume 2. IEEE Computer Society. 2003,
p. 273.

[69] Trafikanalys. Vägtrafikskador 2011. Tech. rep.

[70] Iwan Ulrich and Illah Nourbakhsh. “Appearance-based place recogni-
tion for topological localization”. In: Robotics and Automation, 2000.

Proceedings. ICRA’00. IEEE International Conference on. Vol. 2. Ieee.
2000, pp. 1023–1029.

[71] Chris Urmson et al. “Autonomous driving in traffic: Boss and the urban
challenge”. In: AI magazine 30.2 (2009), p. 17.

[72] Anh Vu, Jay A Farrell, and Matthew Barth. “Centimeter-accuracy smoothed
vehicle trajectory estimation”. In: IEEE Intelligent Transportation Sys-

tems Magazine 5.4 (2013), pp. 121–135.

[73] E.A. Wan and R. Van Der Merwe. “The unscented Kalman filter for non-
linear estimation”. In: Proceedings of the IEEE 2000 Adaptive Systems

for Signal Processing, Communications, and Control Symposium (2000).

46

BIBLIOGRAPHY

[74] Fisher Yu and Vladlen Koltun. “Multi-scale context aggregation by di-
lated convolutions”. In: arXiv preprint arXiv:1511.07122 (2015).

[75] Zhengyou Zhang. “A flexible new technique for camera calibration”. In:
IEEE Transactions on pattern analysis and machine intelligence 22.11
(2000), pp. 1330–1334.

47

