
Coded Distributed Tracking

Downloaded from: https://research.chalmers.se, 2021-08-31 11:05 UTC

Citation for the original published paper (version of record):
Severinson, A., Rosnes, E., Graell I Amat, A. (2019)
Coded Distributed Tracking
2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013446

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Coded Distributed Tracking
Albin Severinson†, Eirik Rosnes†, and Alexandre Graell i Amat‡†

†Simula UiB, Bergen, Norway
‡Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden

Abstract—We consider the problem of tracking the state of
a process that evolves over time in a distributed setting, with
multiple observers each observing parts of the state, which is a
fundamental information processing problem with a wide range
of applications. We propose a cloud-assisted scheme where the
tracking is performed over the cloud. In particular, to provide
timely and accurate updates, and alleviate the straggler problem
of cloud computing, we propose a coded distributed computing
approach where coded observations are distributed over multiple
workers. The proposed scheme is based on a coded version of
the Kalman filter that operates on data encoded with an erasure
correcting code, such that the state can be estimated from partial
updates computed by a subset of the workers. We apply the
proposed scheme to the problem of tracking multiple vehicles.
We show that replication achieves significantly higher accuracy
than the corresponding uncoded scheme. The use of maximum
distance separable (MDS) codes further improves accuracy for
larger update intervals. In both cases, the proposed scheme
approaches the accuracy of an ideal centralized scheme when
the update interval is large enough. Finally, we observe a trade-
off between age-of-information and estimation accuracy for MDS
codes.

I. INTRODUCTION

Tracking the state of a process that evolves over time in a
distributed fashion is one of the most fundamental distributed
information processing problems, with applications in, e.g.,
signal processing, control theory, robotics, and intelligent
transportation systems (ITS) [1]–[3]. These applications typ-
ically require collecting data from multiple sources that is
analyzed and acted upon in real-time, e.g., to track vehicles in
ITS, and rely on timely status updates to operate effectively.
The analysis and design of schemes for providing timely
updates has received a significant interest in recent years. In a
growing number of works, timeliness is measured by the age-
of-information (AoI) [4], defined as the difference between the
current time, t, and the largest generation time of a received
message, U(t), i.e., the AoI is ∆t = t− U(t).

Distributed tracking often entails highly demanding com-
putational tasks. For example, in many previous works the
computational complexity of the tasks performed by each node
scales with the cube of the state dimension, see, e.g., [2], [5]
and references therein. Thus, the proposed schemes are only
suitable for low-dimensional processes. A notable exception
is the algorithm proposed in [6], where the overall process
is split into multiple overlapping subsystems to reduce the
computational complexity. However, the algorithm in [6] is

The work of A. Graell i Amat was funded by the Swedish Research Council
under grant 2016-04253.

based on iterative message passing and potentially requires
many iterations to reach consensus, which makes it difficult
to provide timely updates.

Offloading computations over the cloud is an appealing so-
lution to aggregate data and speed up demanding computations
such that a stringent deadline is met. In [7], a cloud-assisted
approach for autonomous driving was shown to significantly
improve the response time compared to traditional systems,
where vehicles are not connected to the cloud. However,
servers in modern cloud computing systems rarely have fixed
roles. Instead, incoming tasks are dynamically assigned to
servers [8], which offers a high level of flexibility but also
introduces significant challenges. For example, so-called strag-
gling servers, i.e., servers that experience transient delays,
may introduce significant delays [9]. Thus, for applications
requiring very timely updates, offloading over the cloud must
be done with care.

Recently, the use of erasure correcting codes has been
proposed to alleviate the straggler problem in distributed
computing systems [10]–[12]. In these works, redundancy
is added to the computation such that the final output of
the computation can later be decoded from a subset of the
computed results. Hence, the delay is not limited by the
slowest server.

In this paper, we consider a distributed tracking problem
where multiple observers each observe parts of the state of
the system, and their observations need to be aggregated to
estimate the overall state [2], [6]. The goal is to provide
timely and accurate information about the state of a stochastic
process. An example is tracking vehicles to generate collision
warning messages. We propose a cloud-assisted scheme where
the tracking is performed over the cloud, which collects data
from all observers. In particular, to speed up computations,
the proposed scheme borrows ideas from coded distributed
computing by distributing the observations over multiple work-
ers, each computing one or more partial estimates of the
state of the system. These partial estimates are finally merged
at a monitor to produce an estimate of the overall state.
To make the system robust against straggling servers, which
may significantly impair the accuracy of the estimate unless
accounted for, redundancy is introduced via the use of erasure
correcting codes. In particular, the observations are encoded
before they are distributed over the workers to increase the
probability that the information is propagated to the monitor.
A salient contribution of the paper is a coded filter based on
the Kalman filter [1] that takes coded observations as its input

and returns a state estimate encoded with an erasure correcting
code. Hence, the monitor can obtain an overall estimate from
a subset of the partial estimates via a decoding operation.
We apply the proposed scheme to the problem of tracking
multiple vehicles using repetition codes and random maximum
distance separable (MDS) codes. We show that replication
achieves significantly higher accuracy than the corresponding
uncoded scheme and that MDS codes further improve accuracy
for larger update intervals. Notably, both schemes approach
the accuracy of an ideal centralized scheme for large enough
update intervals. Finally, for MDS codes we observe a trade-
off between AoI and accuracy, with update intervals shorter
than some threshold leading to significantly lower accuracy.

II. SYSTEM MODEL AND PRELIMINARIES

We consider the problem of tracking the state of a stochastic
process over time in a distributed setting. The state at time
step t is represented by a real-valued vector xt of length d
and evolves over time according to

xt = Fxt−1 + qt,

where F is the matrix representing the state transition model
and qt is a noise vector drawn from a zero-mean Gaussian
distribution with covariance matrix Q. We denote by x̂t the
state estimate at time t and we measure the accuracy of the
estimate by its root mean squared error (RMSE).

At each time step, a set of No observers, O =
{o1, . . . , oNo}, obtain noisy partial observations of the state
of the process. Specifically, the observation made by observer
o at time t is represented by the vector

z
(o)
t = H(o)xt + r

(o)
t ,

where H(o) is a matrix of size h(o) × d representing the
observation model of observer o and r

(o)
t is a noise vector

drawn from a zero-mean Gaussian distribution with covariance
matrix R(o). Furthermore, we denote by zt the overall obser-
vation vector formed by concatenating the observations made
by all observers, z

(o1)
t , . . . ,z

(oNo)
t , and by h the length of

zt. Similarly, we denote by H and rt the overall observation
model and noise vector, respectively, such that zt = Hxt+rt,
and by R the covariance matrix of rt. For simplicity we
assume that all observations are of equal dimension. We also
assume that h ≥ d and that the entries of each observation
z
(o)
t are linear combinations of a small number of entries of

xt, i.e., the observation matrices H(o) are sparse, as is the
case, e.g., for an observer measuring speed. The observations
made by the No observers need to be aggregated to estimate
the overall state. Since d may be large, the work of aggregating
the observations is performed in the cloud over a set of Nw

workers, W = {w1, . . . , wNw}. We assume that the matrices
F , Q, H(o), and R(o) are known.

A. Probabilistic Runtime Model

We assume that workers become unavailable for a random
time after completing a computing task, which is captured by

the exponential random variable V with probability density
function [10], [11]

fV (v) =

{
1
β e−

v
β v ≥ 0

0 v < 0
,

where β is used to scale the tail of the distribution, which
accounts for transient disturbances that are at the root of the
straggler problem. We refer to β as the straggling parameter.

B. Distributed Tracking

At time step t, each observer o uploads its observation
z
(o)
t to the cloud, where the observations are encoded and

distributed over the Nw workers. Next, each worker w that
becomes available during time step t computes locally one or
more partial estimates of the state xt. These partial estimates
are forwarded to a monitor, which is responsible for computing
the overall estimate of xt, denoted by x̂t, from the partial
estimates. Thus, the monitor has access to an updated state
estimate at the end of each time step, which can be used for
other applications (e.g., to generate collision warning messages
in ITS). Finally, the overall estimate is sent back to the workers
to be used in the next time step, i.e., we assume that all workers
have access to x̂t−1 at time step t.

C. Kalman Filter

Denote by x̃t the prediction of the state at time step t
based on the state estimate x̂t−1 at time step t − 1 and
the state transition matrix F , i.e., x̃t = F x̂t−1, and by
P̃t = FPt−1F

T + Q the covariance matrix of the error
x̃t − xt, where (·)T denotes matrix transposition and Pt−1
is the covariance matrix of the error x̂t−1−xt−1 at time step
t − 1. The Kalman filter is an algorithm for combining the
predicted state x̃t with an observation z

(o)
t = H(o)xt + r

(o)
t

to produce an updated state estimate x̂′t with minimum mean
squared error [1]. Let ỹ

(o)
t = z

(o)
t − H(o)x̃t and denote

by S
(o)
t = R(o) + H(o)P̃t

(
H(o)

)T
its covariance matrix.

Then, the updated state estimate is x̂′t = x̃t + K
(o)
t ỹ

(o)
t ,

where K
(o)
t = P̃t

(
H(o)

)T
(
S

(o)
t

)−1
is the Kalman gain that

determines how the observation should influence the updated
estimate. The covariance matrix of the error x̂′t − xt is
P ′t =

(
Id −K

(o)
t H(o)

)
P̃t, where Id is the d × d identity

matrix. If more than one observation is available, the estimate
can be improved by setting x̃t ← x̂′t and P̃t ← P ′t and
repeating this procedure. After repeating this procedure for
all observations, the final estimate x̂t is obtained.

III. PROPOSED CODED SCHEME

In this section, we introduce the proposed coded scheme.
The key idea is the use of two layers of coding to make the sys-
tem robust against straggling servers. The first layer consists of
encoding the observations and distributing them over multiple
workers. More specifically, the overall observation vector zt
is encoded by an (nC, h) linear erasure correcting code over
the reals resulting in the vector Czt, where C is a generator
matrix of the code. Next, the elements of Czt are divided

Fig. 1. System overview example. Each of the No = 4 observers observes
parts of the state, highlighted with a gray cone, and Nw = 2 workers compute
3 coded state estimates from 5 coded observations.

into NC disjoint subvectors C(1)zt, . . . ,C
(NC)zt, where C(i),

i = 1, . . . , NC, is the corresponding division of the rows of
C into submatrices. We denote by n

(i)
C the number of rows

of C(i). For the rest of the paper we refer to C(i)zt as a
coded observation. This coding layer increases the probability
that the information from an observation propagates to the
monitor in case of delays.

The second layer of coding relates to the partial state
estimates computed by each worker. Specifically, we propose
a coded version of the Kalman filter that takes as its input the
overall estimate at the previous time step x̂t−1, provided by
the monitor, one or more coded observations C(i)zt from the
current time step, and outputs a partial state estimate x̂

(j)
t . The

proposed filter is such that the partial state estimate is equal to
the estimate of the regular Kalman filter multiplied by some
matrix B(j). Equivalently, it can be seen as an estimate of the
state of a process represented by the vector B(j)xt. Let B be
a generator matrix of an (nB, d) linear erasure correcting code
over the reals and let B(j) be a submatrix of B of size n(j)B ×d
such that B(1), . . . ,B(NB) correspond to a division of the rows
of B into NB ≤ NC disjoint submatrices. Hence, the partial
estimates are symbols of the codeword Bx̂t and the monitor
can recover the overall estimate x̂t from a subset of the partial
estimates, ensuring that the monitor has access to timely and
accurate estimates even if multiple workers experience delays.

Finally, we associate each coded state estimate B(j)x̂t with
one worker and each coded observation C(i)zt with one coded
state estimate. We index the coded states associated with
worker w and the coded observations associated with B(j)x̂t
with the sets B(w) and C(j), respectively. In total, worker w
receives the set {C(i)zt : i ∈

⋃
j∈B(w) C(j)} of observations.

The overall process is depicted in Fig. 1.

A. Coded Update

When a worker w becomes available it first computes the
set {B(j)x̂t : j ∈ B(w)} of coded state estimates associated
with it. The worker also computes a randomly selected sub-
set of the Kalman gains associated with the uncoded filter,
which will later be used by the monitor to approximate the
covariance matrix Pt. Each coded state estimate B(j)x̂t is

computed from the previous state estimate x̂t−1 and the set
{C(i)zt : i ∈ C(j)} of coded observations associated with
it, and is computed independently from the other coded state
estimates using the following procedure. First, the worker
computes

x̃
(j)
t =

(
B(j)F

)
x̂t−1

and the covariance matrix

P̃
(j)
t =

(
B(j)F

)
Pt−1

(
B(j)F

)T
+ B(j)Q

(
B(j)

)T

of the error x̃(j)
t −B(j)xt. Next, x̃(j)

t and P̃
(j)
t are combined

with the associated observations, i.e., the observations in
{C(i)zt : i ∈ C(j)}, one at a time, to produce x̂

(j)
t and

the covariance matrix P
(j)
t of the error x̂

(j)
t − B(j)xt in

the following way. First, consider a matrix A(i,j) such that
A(i,j)B(j) = C(i)H . Then,

C(i)zt = C(i) (Hxt + rt)

= C(i)Hxt + C(i)rt

= A(i,j)B(j)xt + C(i)rt,

i.e., the vector C(i)zt can be considered as an observation of
the state B(j)xt with observation matrix A(i,j) and observa-
tion noise covariance matrix C(i)R

(
C(i)

)T
. Hence, using an

observation C(i)zt, a partial coded state estimate x̂
′(j)
t and

the covariance matrix P
′(j)
t of the error x̂

′(j)
t − B(j)xt can

be obtained as

x̂
′(j)
t = x̃

(j)
t + K

(i,j)
t ỹ

(i,j)
t , (1)

P
′(j)
t =

(
I
n
(j)
B

−K
(i,j)
t A(i,j)

)
P̃

(j)
t , (2)

where
ỹ
(i,j)
t = C(i)zt −A(i,j)x̃

(j)
t ,

K
(i,j)
t = P̃

(j)
t

(
A(i,j)

)T (
S

(i,j)
t

)−1
,

S
(i,j)
t = C(i)R

(
C(i)

)T
+ A(i,j)P̃

(j)
t

(
A(i,j)

)T
.

Next, we let x̃(j)
t ← x̂

′(j)
t and P̃

(j)
t ← P

′(j)
t and repeat (1)

and (2) for another observation until all observations in
{C(i)zt : i ∈ C(j)} have been used, at which point the coded
state estimate x̂

(j)
t has been computed. The covariance matrix

P
(j)
t is only needed for computing x̂

(j)
t and is discarded at this

point. The worker repeats the above procedure for each coded
state estimate x̂

(j)
t , j ∈ B(w), assigned to it. Once finished, the

worker separately computes the Kalman gain of the uncoded
filter K(o)

t , as explained in Section II-C, associated with some
number NK of observers o selected uniformly at random from
O. Finally, the coded state estimates are sent to the monitor
together with the K

(i,j)
t and S

(i,j)
t matrices and the uncoded

Kalman gains computed by the worker, where they are used to
recover the overall state estimate x̂t and the error covariance
matrix Pt.

B. Decoding

At the end of each time step t the monitor attempts to
recover x̂t from the partial coded state estimates x̂(j)

t received
from the workers. This corresponds to a decoding operation.
Denote by Ut the set of coded state estimates the monitor
receives at time step t and by Bx̂t the vertical concatenation
of the generator matrices associated with those estimates. To
decode, the monitor needs to solve for x̂t in Bx̂t x̂t = yx̂t ,
where yx̂t is the vertical concatenation of the vectors x̂

(j)
t

in Ut. However, there are two issues that need to be ad-
dressed before solving for x̂t. First, due to the dependence
structure of the tracking problem and the coding introduced,
the elements of yx̂t will in general be correlated and have
varying variance, which must be accounted for to recover x̂t
optimally. Second, since the local estimates by the workers
are noisy, Bx̂t x̂t = yx̂t typically does not have an exact
solution. We address the first issue by applying a so-called
whitening transform to the original problem, i.e., we solve
for x̂t in Mx̂tBx̂t x̂t = Mx̂tyx̂t , where Mx̂t is a linear
transform that has the effect of uncorrelating and normalizing
the variance of the elements of yx̂t . The whitening transform
Mx̂t is computed from the singular value decomposition of
the covariance matrix of yx̂t , which we denote by Px̂t , as in
[13]. The covariance matrix Px̂t is given by [14, Eq. (6.47)],
where the covariance matrix, Kalman gain, observation model,
and observation noise covariance matrix of the uncoded filter
update procedure are replaced by their coded equivalents from
Section III-A. We address the second issue by finding the
vector x̂t that minimizes the `2-norm of the error, i.e., by solv-
ing arg minx̂t ||Mx̂tBx̂t x̂t −Mx̂tyx̂t ||2. We achieve this by
decoding x̂t using the LSMR algorithm [15]. The LSMR
algorithm is a numerical procedure for solving problems of
this type that takes an initial guess of the solution as its input
and iteratively improves on the solution until it has converged
to within some threshold. We give x̃t, which the monitor
computes from x̂t−1 as explained in Section II-C, as the initial
guess since the Euclidean distance between x̂t and x̃t typically
is small.

Next, the monitor approximates the error covariance matrix
Pt using the following heuristic. First, the monitor computes
P̃t from Pt−1 as explained in Section II-C. Denote by r
the maximum rank of Px̂t , i.e., the rank of Px̂t when all
workers are available, and by rx̂t the rank of the given
Px̂t . Now, if rx̂t < r we assume that the monitor has
insufficient information to recover x̂t optimally and we let
Pt = P̃t. On the other hand, if rx̂t = r, we assume that the
monitor has recovered x̂t optimally, and the monitor computes
Pt from P̃t using the procedure for a full update of the
uncoded filter (see Section II-C). More formally, denote by
K

(o)
to the most recently received Kalman gain corresponding

to observer o at time step to. Then, the monitor computes
P ′t =

(
Id −K

(o)
to H(o)

)
P̃t, assigns P̃t ← P ′t , and repeats

the procedure for each remaining observer o ∈ O. Finally,
we let Pt ← P̃t. Note that Pt depends only on the statistical
properties of the observations, i.e., it can be computed without

access to the observations themselves.

IV. DESIGN AND ANALYSIS OF THE PROPOSED SCHEME

We analyze the computational complexity of the proposed
coded scheme, design the generator matrices required for the
coded filter update, and choose how the computations are
distributed over the workers.

A. Computational Complexity

We assume that the number of arithmetic operations per-
formed by the workers is dominated by the number of oper-
ations needed to invert S when computing the Kalman gain,
which requires in the order of n3 operations, where n is
the number of rows and columns of S. Since each worker
computes NK Kalman gains associated with the uncoded filter
in addition to those needed for the coded state estimates,
and due to our assumption that all uncoded observations have
equal dimension, the overall number of operations performed
by the workers can be approximated by NKNw

(
h(o)

)3
+∑

w∈W
∑
j∈B(w)

∑
i∈C(j)

(
n
(i)
C

)3
.

B. Code Design

Here, we propose two strategies for designing the sets
B(w) and C(j) and the matrices B(1), . . . ,B(NB) and
C(1), . . . ,C(NC). The matrices A(i,j) are determined implic-
itly since A(i,j)B(j) = C(i)H . The first design is based on
replication, which is a special case of MDS codes, whereas
the second is based on random MDS codes.

1) Replication: This design is based on replicating the
tracking task at each worker, i.e., the code rate is h/nC =
1/Nw. More formally, each worker estimates xt, i.e., NB =
Nw, B(j) = Id, j = 1, . . . , NB, B(w1) = {1}, . . . ,B(wNB

) =
{NB}, and each state estimate is computed from the full set of
observations, i.e., NC = NwNo and the observation encoding
matrices and sets C(j) associated with each estimate x̂

(j)
t = x̂t

are such that {C(i)zt : i ∈ C(j)} = {z(o)
t : o ∈ O}. Note

that the monitor can recover x̂t and Pt immediately upon
receiving these values from any worker without performing
any additional computations. Hence, we let NK = 0 and the
overall number of operations performed by the workers is
approximately No

(h/nC)

(
h(o)

)3
.

2) Random MDS Coding: This design is based on assigning
a large number of coded state estimates of dimension one
to each worker, i.e., we let n(j)B = 1, j = 1, . . . , NB. Fur-
thermore, to ensure that the code is well-conditioned, i.e., the
numerical precision lost due to the coding is low, we generate
C by drawing each element independently at random from a
standard Gaussian distribution [16]. To satisfy the requirement
A(i,j)B(j) = C(i)H we let B(j) = C(i)H and A(i,j) = I1.
As a result, n(i)C = 1, i = 1, . . . , NC, and we associate
each observation one-to-one with a coded state estimate, i.e.,
NB = NC and C(1) = {1}, . . . , C(NB) = {NB}. Next, we split
the coded state estimates as evenly as possible over the Nw

workers, i.e., some workers are assigned bNB/Nwc estimates
and some are assigned dNB/Nwe estimates. Finally, we let

NK =
⌈
No/(h/nC)

Nw

⌉
, which, since n

(i)
C = 1, i = 1, . . . , NC,

means that the overall number of operations performed by the
workers is approximately No

(h/nC)

(
h(o)

)3
.

V. NUMERICAL RESULTS

To evaluate the performance of the proposed scheme,
we consider a distributed vehicle tracking scenario where
Nw workers cooperate to track the position of Nv vehicles
v1, . . . , vNv based on observations received from the vehicles.
We model the state of each vehicle with a length-4 vector
composed of its position and speed in the longitudinal and lati-
tudinal directions, i.e., the overall state dimension is d = 4Nv.
As in [17], we assume that the state transition matrix of a
single vehicle is

Fv =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

and that the associated covariance matrix is

Qv = V

[
σa 0
0 σa

]
V T, with V =

∆t2/2 0

0 ∆t2/2
∆t 0
0 ∆t

 .
Hence, the combined state transition matrix and covariance
matrix for all vehicles is F = INv ⊗ Fv and Q =
INv ⊗ Qv, respectively. We assume that each vehicle ob-
serves its absolute position, e.g., using global navigation
satellite systems (GNSSs), and speed in the longitudinal and
latitudinal directions. The corresponding observation matrix
is Hv = I4, with associated covariance matrix RGNSS =
diag(σ2

GNSS, σ
2
GNSS, σ

2
speed, σ

2
speed), where diag(·) denotes the

diagonal, or block-diagonal, matrix composed of the argu-
ments of diag(·) arranged along the diagonal. Furthermore,
similar to [17] we assume that each vehicle observes the
distance and speed difference in the longitudinal and latitudinal
directions relative to a number s < Nv of other vehicles using,
e.g., radar or lidar. By combining these observations in a coop-
erative manner the accuracy of the vehicle position estimates
can be improved compared to a system relying only on GNSS
observations. The covariance matrix associated with a relative
observation is RRel. = diag(σ2

V2V, σ
2
V2V, σ

2
speed, σ

2
speed).

For each vehicle vi, define the matrix U (vi) of size (s+1)×
Nv, where the first row corresponds to the absolute observation
of the vehicle and each of the s remaining rows correspond
to an observation relative to another vehicle. The i-th column
of U (vi) has s+1 nonzero entries and the remaining columns
each have exactly one nonzero entry. For the first row of U (vi)

the i-th entry has value 1, while the remaining entries have
value 0. For each of the remaining rows the i-th entry has
value −1 and one other entry corresponding to the observed
vehicle has value 1. For example, if s = 2 and vehicle vi
can observe vehicles vj and vk the second and third row
will have value 1 in column j and k, respectively. Then, the
observation matrix for vehicle vi is H(vi) = U (vi) ⊗ Hv.

The corresponding observation noise covariance matrix is
diag (RGNSS, Is ⊗RRel.). Finally, U (vi) is generated for one
vehicle at a time such that the first vehicle observes vehicles
v2, . . . , vs+1, and, in general, vehicle vi observes vehicles
v(j mod Nv)+1, j = i, . . . , i+ s− 1.

We compare the performance of the proposed scheme with
that of an ideal centralized scheme where the monitor has
unlimited processing capacity and processes all observations
itself using the procedure in Section II-C. We also compare
against the performance of an uncoded scheme, where each
observation is processed by a single worker with no coding.
More formally, we divide the No observations as evenly as
possible over the Nw workers, assigning bNo/Nwc obser-
vations to some workers and dNo/Nwe observations to the
remaining workers. Next, each worker estimates xt using the
uncoded update procedure given in Section II-C. For this
scheme, the monitor estimate is equal to the average of the
estimates received from the workers at each time step, i.e., x̂t
is the average of the estimates in Ut and Pt is the average of
the corresponding covariance matrices.

We consider the vehicle tracking problem described above
with σa = 0.3, σGNSS = 2, σV2V = 0.5, and σspeed = 10. For
all schemes, we run 10 simulations, each of T = 10000 time
steps, and compute the RMSE of the position estimate at each
time step. More specifically, we denote by xp,t and x̂p,t the
vectors composed of the entries of xt and x̂t corresponding to
position, e.g., entries 1, 2, 5, 6 if Nv = 2, and compute mt ,√

1
d/2ep,te

T
p,t, where ep,t = x̂p,t − xp,t, for t = 1, . . . , T .

Next, for each simulation, to avoid any initial transients, we
discard the first t0 − 1 samples m1, . . . ,mt0−1. We let t0 be
the smallest value such that

|m̄t0:tm − m̄(tm+1):T |
max

(
m̄t0:tm , m̄(tm+1):T

) ≤ 0.1,

where tm = t0 + b(T − t0)/2c and m̄t1:t2 denotes the mean
of mt1 , . . . ,mt2 . Finally, we plot the 90-th percentile of the
RMSE of the position estimate over the concatenation of the
remaining samples from all simulations.

In Fig. 2, we show the 90-th percentile of the RMSE of
the position as a function of the update interval ∆t for repli-
cation and random MDS codes with rates 1/2 and 1/3. For
replication the code rate is h/nC = 1/Nw (see Section IV-B),
i.e., the number of workers is Nw = 2 and Nw = 3 for rates
1/2 and 1/3, respectively. MDS codes support an arbitrary
number of workers and we let Nw = 16 for this design.
We show the RMSE for 0.01 ≤ ∆t ≤ 0.25 since several
applications in ITS require an AoI in this range [3]. There
are Nv = 10 vehicles, each observing s = 5 other vehicles,
and the straggling parameter is β = 10, i.e., workers become
unavailable for 0.1 seconds on average after a filter update.
Here, replication improves accuracy significantly compared to
the uncoded scheme, with a 90-th percentile RMSE of about
0.27 and 0.25 meters for code rates 1/2 and 1/3, respectively,
when ∆t = 0.1. MDS codes improve the accuracy further at
this point, with about a 2.4% and 5.5% smaller error when
compared at code rates 1/2 and 1/3, respectively. Finally,

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

Update interval (∆t) [s]

R
M
S
E

of
p
os
it
io
n
,
90

-t
h
p
er
c.

[m
]

MDS, 1/2

MDS, 1/3

Replication, 1/2

Replication, 1/3
Uncoded
Ideal

Fig. 2. 90-th percentile of the RMSE of the position over 10 simulations,
each of T = 10000 samples, as a function of ∆t for Nv = 10, s = 5,
Nw = 16 (for MDS codes), and β = 10.

4 8 12 16 20 24 28 32
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Number of workers (Nw)

R
M
S
E

of
p
os
it
io
n
,
90
-t
h
p
er
c.

[m
] MDS, 1/2

MDS, 1/3

Replication, 1/2

Replication, 1/3
Uncoded
Ideal

Fig. 3. 90-th percentile of the RMSE of the position over 10 simulations,
each of T = 10000 samples, as a function of Nw for Nv = 10, s = 5,
∆t = 0.1, and β = 10.

for MDS codes we observe a trade-off between AoI and
accuracy, with update intervals shorter than some threshold,
e.g., ∆t = 0.05 for code rate 1/3, leading to a higher RMSE
since the probability of the monitor collecting enough coded
state estimates to decode x̂t approaches zero when ∆t→ 0.

In Fig. 3, we show the 90-th percentile of the RMSE of
the position for random MDS codes as a function of the
number of workers Nw for Nv = 10 vehicles, each observing
s = 5 other vehicles, ∆t = 0.1, and β = 10. We also
show the error of replication (with Nw fixed to 2 and 3 for
code rates 1/2 and 1/3, respectively) and the uncoded and
ideal schemes. The accuracy of the design based on MDS
codes generally improves with Nw, since the variance of the
fraction of workers available in each time step decreases. In
some cases, e.g., for code rate 1/2 and Nw = 28, the error
increases since the fraction of servers needed to decode x̂t
may increase if the number of coded state estimates does not
divide evenly over the workers. Here, the error of MDS codes
is lower than that of replication when Nw ≥ 12 and Nw ≥ 8
for code rates 1/2 and 1/3, respectively. We also observe that
the performance does not improve significantly beyond some
number of workers.

VI. CONCLUSION

We presented a novel scheme for tracking the state of a
process in a distributed setting, which we refer to as coded

distributed tracking. The proposed scheme extends the idea
of coded distributed computing to the tracking problem by
considering a coded version of the Kalman filter, where
observations are encoded and distributed over multiple work-
ers, each computing partial state estimates encoded with an
erasure correcting code, which alleviates the straggler problem
since missing results can be compensated for. The proposed
coded schemes achieves significantly higher accuracy than
the uncoded scheme and approaches the accuracy of an ideal
centralized scheme when the update interval is large enough.
We believe that coded distributed tracking can be a powerful
alternative to previously proposed approaches.

ACKNOWLEDGMENT

The authors would like to thank Prof. Henk Wymeersch for
fruitful discussions and insightful comments.

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Trans. ASME J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar.
1960.

[2] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in
Proc. IEEE Conf. Decision Control (CDC), New Orleans, LA, 2007.

[3] P. Papadimitratos, A. de La Fortelle, K. Evenssen, R. Brignolo, and
S. Cosenza, “Vehicular communication systems: Enabling technologies,
applications, and future outlook on intelligent transportation,” IEEE
Commun. Mag., vol. 47, no. 11, pp. 84–95, Nov. 2009.

[4] R. D. Yates and S. Kaul, “Real-time status updating: Multiple sources,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Cambridge, MA, 2012.

[5] M. S. Mahmoud and H. M. Khalid, “Distributed Kalman filtering: a
bibliographic review,” IET Control Theory Appl., vol. 7, no. 4, pp. 483–
501, Mar. 2013.

[6] U. A. Khan and J. M. F. Moura, “Distributing the Kalman filter for
large-scale systems,” IEEE Trans. Signal Process., vol. 56, no. 10, pp.
4919–4935, Oct. 2008.

[7] S. Kumar, S. Gollakota, and D. Katabi, “A cloud-assisted design for
autonomous driving,” in Proc. Workshop Mobile Cloud Comput. (MCC),
Helsinki, Finland, 2012.

[8] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
Proc. Eur. Conf. Computer Syst. (EuroSys), Bordeaux, France, 2015.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. Symp. Oper. Syst. Design Implement. (OSDI),
San Francisco, CA, 2004.

[10] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in Proc.
Workshop Network Coding Appl. (NetCod), Washington, DC, 2016.

[11] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Trans. Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[12] A. Severinson, A. Graell i Amat, and E. Rosnes, “Block-diagonal
and LT codes for distributed computing with straggling servers,” IEEE
Trans. Commun., vol. 67, no. 3, pp. 1739–1753, Mar. 2019.

[13] A. Kessy, A. Lewin, and K. Strimmer, “Optimal whitening and decor-
relation,” The American Stat., vol. 72, no. 4, pp. 309–314, Nov. 2018.

[14] S. Polavarapu, “The Kalman filter,” Dept. of Physics, University of
Toronto, Toronto, ON, Canada, Tech. Rep., 2004. [Online]. Available:
http://www.atmosp.physics.utoronto.ca/PHY2509/ch6.pdf

[15] D. C.-L. Fong and M. Saunders, “LSMR: An iterative algorithm for
sparse least-squares problems,” SIAM J. Sci. Comput., vol. 33, no. 5,
pp. 2950–2971, Oct. 2011.

[16] Z. Chen and J. Dongarra, “Numerically stable real number codes based
on random matrices,” in Proc. Int. Conf. Comput. Sci. (ICCS), Atlanta,
GA, 2005.

[17] G. Soatti, M. Nicoli, N. Garcia, B. Denis, R. Raulefs, and H. Wymeersch,
“Implicit cooperative positioning in vehicular networks,” IEEE Trans. In-
tell. Transp. Syst., vol. 19, no. 12, pp. 3964–3980, Dec. 2018.

