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Abstract: Homogeneous palladium-catalyzed (Pd-catalyzed) cyclocarbonylation of unsaturated
allylic alcohols and alkynols in the presence of hydrogen forms lactone products with important
applications in the food, perfume, and polymer industry. In this work, the cyclocarbonylation
of 2-methyl-3-buten-2-ol was studied for the first time using a very active Pd-DPEphos
(bis[(2-diphenylphosphino)phenyl]ether) catalyst in the presence of the ionic liquid (IL)
[BMIM]Cl (1-butyl-3-methylimidazolium chloride) in dichloromethane to selectively produce
4,4-dimethyl-γ-butyrolactone. The effect of different parameters such as temperature, gas partial
pressures, time of reaction, substrate and ligand concentrations were investigated and found to
provide optimal conditions for lactonization (95 ◦C, 28 bar (CO/H2/N2: 20/5/3)), 18 h, 0.1 M substrate,
and 16 mol% DPEphos), which were significantly milder than previously reported systems for
cyclocarbonylation. Importantly, the study further showed that presence of the IL in the reaction
mixture provided stabilization of the catalyst system and prevented formation of Pd-black, which
allowed reuse of the catalytic system in consecutive reactions after intermediate extraction of the
lactone product.

Keywords: allylic alcohol; ionic liquid; Pd-diphosphine catalyst; cyclocarbonylation; lactone
production; catalyst stabilization and recycling

1. Introduction

Metal-catalyzed cyclocarbonylations of unsaturated allylic alcohols or alkynols with carbon
monoxide are atom efficient synthetic routes for producing important chemicals like lactones and
indanones [1]. In particular, the formation of five- and six-membered (γ and δ) lactones is facile and
has been widely investigated under acidic or neutral conditions using palladium (Pd) complex-based
catalysts in homogeneous liquid-phase reactions [2–6]. In contrast, three- and four-membered (α and
β) lactones are mostly reactive and short-lived intermediates, which cannot be isolated easily and
require specific production routes [7–10].

Several reviews are available in the literature on reactions and mechanisms of transition-metal
catalyzed carbonylation and cyclocarbonylation for lactone production using Group 8–10 catalysts,
including [Fe(CO)5]−, [Co2(CO)8], [Ni(cod)2PCy3] (cod: 1,5-cyclooctadiene, PCy3: tricyclohexyl-phosphine),
[(PPh3)2N][Co(CO)4] ((PPh3)2N: bis(triphenylphosphoranylidene)ammonium), and the aluminum-salen
complex [(salph)Al(THF)2][Co(CO)4]) (salph: N,N’-bis(3,5-di-tert-butylsalicylidene)-phenylenediamino, THF:
tetrahydrofuran) [10–16]. With noble-metal catalysts, Pd has played an almost exclusive role in lactonization
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reactions as it generally provides higher yields of lactones compared to other catalysts [13,14]. In particular, an
interesting cyclocarbonylation catalyst system based on Pd-dppb (dppb: 1,4-bis-(diphenylphosphino)butane)
was introduced by Ali and Alper [1] and Brunner and Alper [17] for the formation of γ-lactones
from secondary-, tertiary- as well as β,γ-substituted allylic alcohols under neutral but quite harsh
reaction conditions (40–54 bar CO/H2, 110–190 ◦C, 18–48 h). They showed that the Pd-dppb system
can catalyze the reaction with good activity, for example, the allylic alcohol 2-methyl-3-buten-2-ol into
4,4-dimethyl-γ-butyrolactone (5,5-dimethyl-dihydro-furan-2-one). This product has important applications
in the food, perfume, and polymer industry [1]. However, in their system, the catalyst was not recoverable
or prone to reuse due to formation of catalytically inactive Pd metal (i.e., Pd-black). This is highly undesired
using an expensive metal inventory such a Pd, where easy catalyst recovery and reusability as well as
stabilization of the reaction system is strongly preferred [18]. Furthermore, introduction of an alternative
Pd-ligand catalyst system possessing higher catalytic activity would facilitate milder reaction conditions.

During the last two decades, ionic liquids (ILs) have demonstrated to be efficient reaction media
for transforming homogeneously catalyzed processes, including carbonylations, into catalytically
active biphasic liquid–liquid systems with the IL providing immobilization and stabilization of
metal-complex catalysts [19–22]. Other solvent advantages of ILs are high thermal and chemical
stability as well as negligible low vapor pressures, which facilitate their reuse in catalyst systems with
only a requirement of small amounts of replacement, thus making the processes greener [23–30]. Ye and
Alper introduced the ILs [BMIM][PF6] and [BMIM][NTf2] (BMIM: 1-butyl-3-methylimidazolium,
NTf2: bis(trifluoromethane)sulfonimide) for cyclocarbonylation of 2-allylphenols and anilines of
2-vinylphenols and 2-aminostyrenes [31]. In the reactions using these ILs, lactones and lactams were
produced with still a high total pressure of CO/H2 (42 bar) but at lower temperatures (90–120 ◦C)
compared to previously described Pd-dppb catalytic systems. Notably, the cheaper and hydrolysis
stable IL [BMIM]Cl alone did not facilitate any cyclocarbonylation reaction which otherwise could
have been preferred.

In this work, a Pd-DPEphos (DPEphos: bis[(2-diphenylphosphino)phenyl]ether) catalyst system
containing the IL [BMIM]Cl is for the first time reported for the selective cyclocarbonylation of
2-methyl-3-buten-2-ol into 4,4-dimethyl-γ-butyrolactone under benign reaction conditions (Scheme 1).
We found that the optimal operating conditions for lactonization in this system are 95 ◦C, 28 bar
(CO/H2/N2: 20/5/3) and 18 h, which are much milder compared to what is reported and discussed
earlier in the literature [1,17,31]. Furthermore, in combination the ligand and the IL give a stabilized
Pd-catalyst system, which is highly active for cyclocarbonylation reactions. Importantly, the precious
Pd-catalyst is also reusable after intermediate product recovery by extraction. Employing IL in the
catalytic system and providing the stability, facile catalyst recovery and its re-usability are the other
main differences of this work compared to previous investigations on this reaction.
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Scheme 1. Cyclocarbonylation of 2-methyl-3-buten-2-ol to 4,4-dimethyl-γ-butyrolactone with Pd-DPEphos
(DPEphos: bis[(2-diphenylphosphino)phenyl]ether) catalyst and CO/H2 in the presence of the ionic liquid
[BMIM]Cl (1-butyl-3-methylimidazolium chloride).

2. Materials and Methods

2.1. Chemicals

Palladium(II) acetate (Pd(OAc)2, ≥99.9%), bis[(2-diphenylphosphino)phenyl]ether (DPEphos,
98%), 2-methyl-3-buten-2-ol (98%), and 1-butyl-3-methylimidazolium chloride ([BMIM]Cl, ≥98%)
were obtained from Sigma-Aldrich (Søborg, Denmark) and diethyl ether (DEE, ≥99% GPR
RECTAPUR®) from VWR Chemicals (Søborg, Denmark) and all were used without further purification.
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Dichloromethane (DCM, 99%) was obtained from Sigma-Aldrich and dried in a solvent distributor
before use. Carbon monoxide (CO, 99.97%), hydrogen (H2, 99.999%), and nitrogen (N2, 99.99%) were
obtained from Air Liquide Denmark (Taastrup, Denmark) and used as received.

2.2. Cyclocarbonylation Reactions

In typical experiments, a solution of Pd(OAc)2 (0.02 mmol, catalyst/substrate molar ratio 4/1),
DPEphos (0.08 mmol, ligand/substrate molar ratio 16/1), [BMIM]Cl (5.7 mmol), and 2-methyl-3-buten-2-ol
(0.1 M, 0.5 mmol) in 5 mL of DCM was charged into customized stainless steel autoclaves (12 mL volume)
equipped with manometers, thermo-elements, and pressure relief valves. After purging three times with
N2 gas, the autoclaves were pressurized at room temperature with CO and H2 gases to a total pressure of
28 bar. Then the autoclaves were heated to a reaction temperature of 95 ◦C, where afterwards the reactions
were continued for 18 h under stirring (700 rpm). When the reactions were completed, the autoclaves
were cooled to room temperature in an ice bath, depressurized, and the reaction mixture analyzed by
nuclear magnetic resonance (NMR) spectroscopy.

For recycling experiments, the reaction mixture was extracted with DEE (3 × 5 mL) and both the
combined extraction phases as well as the remaining catalyst-phase analyzed by NMR spectroscopy to
confirm that all product was extracted successfully. Then, another amount of substrate was added
to the catalyst-phase and reuse experiments performed by applying the same reaction procedure as
described above.

2.3. Product Analysis

The reaction products were dissolved in d-chloroform (CDCl3) and analyzed by high-resolution
NMR spectroscopy at 400 MHz on a Bruker BioSpin GmbH NMR spectrometer (Solna, Sweden)
operating at 25 ◦C using a 5 mm tunable multinuclear probe (PABBO BB-1H/D Z-GRD Z 116098/0150,
Bruker, Solna, Sweden) with 25 s delay and 32 scans. Chemical shifts are referenced to CDCl3 at
7.26 ppm for proton NMR (1H NMR) and 77.16 ppm for carbon-13 NMR (13C NMR). The conversion of
substrate and the yield of reaction were calculated using [BMIM]Cl (when present) as internal standard.

3. Results and Discussion

3.1. Effect of IL and Ligand Content

Initially, cyclocarbonylation with 2-methyl-3-buten-2-ol was performed in the absence of IL with
16 mol% DPEphos at a temperature of 95 ◦C with a total pressure of 28 bar (CO/H2: 23/5 bar)
for 18 h, which was under much more benign conditions compared to previously reported for
cyclocarbonylations with Pd-dppb [1,17]. Comparison of the 1H NMR spectra of the substrate and
the crude reaction mixture (Figure S1) confirmed that the substrate was successfully converted to the
desired 4,4-dimethyl-γ-butyrolactone product in high yield with only a low amount of byproduct
formed. This byproduct could be 4-methyl-3-pentenoic acid formed by hydrolysis of the lactone
or 3-methylbut-1-en formed by hydrogenation of the substrate. Although the Pd-catalyst system
transformed the substrate well without the presence of IL, black precipitate was clearly visible in the
solution after the reaction (Figure 1a). This showed that the Pd-DPEphos complexes were unstable
under the reaction conditions and converted to inactive Pd-black (i.e. Pd metal), which could not
be reused for consecutive cyclocarbonylation. When an analogous cyclocarbonylation reaction with
16 mol% DEPhos was performed with IL present (1 g of [BMIM]Cl), a high yield of the lactone product
also formed as determined from NMR analysis of the reaction solution (Figure S2) and, importantly,
the formation of Pd-black was successfully prevented leaving a clear yellow catalyst solution after
the reaction (Figure 1b). In contrast, some Pd-black formation also occurred with a lower content
of DEPhos corresponding to 4 mol% (Figure 1c), revealing that this ligand amount was insufficient
to maintain the complexes active and stable despite the presence of IL [23]. Hence, the presence of
[BMIM]Cl clearly stabilized the catalytically active system when sufficient ligand was available and
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thereby facilitated catalyst reuse after separation of the lactone product by, for example, extraction
with DEE.
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Figure 1. Reaction mixture after cyclocarbonylation of 2-methyl-3-buten-2-ol to 4,4-dimethyl-γ-butyrolactone
(a) without IL and 16 mol% DPEphos, (b) with 1.0 g IL [BMIM]Cl and 16 mol% DPEphos, and (c) with 1.0 g
IL [BMIM]Cl and 4 mol% DPEphos. Reaction conditions: 0.1 M 2-methyl-3-buten-2-ol, 4 mol% Pd(OAc)2,
5 mL DCM, 95 ◦C, 28 bar (CO/H2: 23/5), 18 h.

3.2. Effect of Reaction Temperature and Time

The effect of temperature on the yield of lactone product formed by the cyclocarbonylation reaction
was examined at temperatures from 65 to 120 ◦C and the results are shown Figure 2a. A maximum
lactone yield of about 65% was achieved at 100–110 ◦C, while the yield was lower at higher temperatures.
This behavior was attributed to the formation of undesired byproducts at higher temperatures, such
as 4-methyl-3-pentenoic acid. Accordingly, 100 ◦C was selected as the optimum temperature for all
further studies.

The lactone formation was next studied as a function of time at the preferred temperature of
100 ◦C. As shown in Figure 2b, the lactone formed relatively fast within the first 6 h where after the
reaction became gradually slower reaching an almost constant plateau in yield around 60%–65% after
18 h of reaction. Based on this reaction profile, a reaction time of 18 h was selected as a good reaction
time to study additional effects of the reaction system.
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Figure 2. Effect of temperature (a) and reaction time (b) on the yield of 4,4-dimethyl-γ-butyrolactone formed
by cyclocarbonylation of 2-methyl-3-buten-2-ol. Reaction conditions: 0.1 M 2-methyl-3-buten-2-ol, 4 mol%
Pd(OAc)2, 16 mol% DPEphos, 1.0 g [BMIM]Cl, 5 mL DCM, 28 bar (CO/H2: 23/5), 18 h (a), 100 ◦C (b).

3.3. Effect of Gas Composition

The influence of the CO/H2 gas composition on the yield of lactone product formed by the
cyclocarbonylation is presented in Figure 3. To investigate the effect of the CO pressure on the reaction
yield, its partial pressure was varied from 9 to 23 bar with a constant partial pressure of H2 of 5 bar
(i.e., CO/H2 ratios 1.8–4.6) and the total pressure maintained at 28 bar with N2 as inert gas (Figure 3a).
By increasing the partial pressure of CO from 9 to around 18–20 bar (corresponding to a CO/H2 ratio
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of 3.6–4), the yield of lactone increased while higher pressure of CO resulted in lower yields thus
suggesting a complex reaction order with respect to the CO pressure. On the other hand, the effect of
increasing the partial pressure of H2, relative to a fixed CO pressure, did not influence the lactone yield
of the reaction therefore indicating a zero-order dependence with respect to the H2 pressure (Figure 3b).
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4 mol% Pd(OAc)2, 16 mol% DPEphos, 1.0 g [BMIM]Cl, 5 mL DCM, 100 ◦C, 28 bar ((a): 5 bar H2, (b): 18 bar
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The observed trends in pressure dependence corroborated well with a suggested reaction
mechanism as shown in Scheme 2 [1,17], where H2 is only required to form active palladium hydride
complex with ligand (L-Pd-H), but CO is involved in a carbonylation step as well as competitive
conversion of the hydride complex into inactive palladium carbonyl complex with ligand (L-Pd-CO).
In the proposed mechanism, the substrate initially added to the L-Pd-H complex followed by hydrogen
migration, which can proceed through two different paths with formation of L-Pd-alkyl complex via
α-addition to the double bond being most likely due to steric reasons. In the consecutive carbonylation
step, CO is inserted forming a L-Pd-acyl complex which after ring closure and elimination of the
lactone product regenerates the L-Pd-H complex.
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forming 4,4-dimethyl-γ-butyrolactone with inserted structure of the L-Pd-H complex (Ph: phenyl,
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3.4. Effect of Substrate Concentration

The influence of substrate concentration on the substrate conversion and lactone yield were next
studied using the optimal CO/H2 ratio of 4 at 28 bar (CO/H2/N2: 20/5/3 bar) and the results are compiled
in Table 1. When the substrate concentration was increased from 0.43 to 0.52 mmol, the conversion
as well as corresponding lactone yield decreased only gradually by 10% (70% to 60%) after 18 h of
reaction, thus providing no indication of product inhibition of the catalyst system. Hence, prolongation
of the reaction time at higher substrate conversion would most likely result in similar high conversion
and yield as with lower substrate concentration.

Table 1. Effect of substrate amount on the cyclocarbonylation of 2-methyl-3-buten-2-ol 1.

Entry 2-methyl-3-buten-2-ol
(mmol)

Conversion
(%)

Yield of Lactone
(%)

Selectivity
(%)

1 0.43 98.1 69.7 71.0
2 0.46 96.8 63.5 65.6
3 0.48 91.4 60.0 65.6
4 0.52 88.8 58.1 65.4

1 Reaction conditions: 4 mol% Pd(OAc)2, 16 mol% DPEphos, 1.0 g [BMIM]Cl, 5 mL DCM, 100 ◦C, 28 bar (CO/H2/N2:
20/5/3), 18 h.

3.5. Reuse of the Catalytic System

As mentioned earlier, one of the most challenging issues in homogeneous catalytic systems used
for cyclocarbonylation is the inability of recovering and re-using the precious catalyst for further
reactions [17]. In the reaction concept studied in this work, the role of the Pd-DPEphos catalyst system
(4 mol% Pd(OAc)2, 16 mol% DPEphos) containing the IL [BMIM]Cl was not only to make the reaction
conditions milder, but also to stabilize and provide facile separation of the catalyst from the products.
With this ability in mind, the reusability of the catalytic system was tested by using DEE (3 × 5 mL)
as an extraction solvent. The recycling experiments were done under the same operating conditions
used in the first run. Recycling of the IL catalytic system was studied by performing four consecutive
reactions for 18 h with a CO/H2 ratio of 4 at 28 bar (CO/H2/N2: 20/5/3 bar) and a temperature of 100 ◦C.
After each reaction the reactor was cooled down, depressurized, and lactone extracted (together with
non-coordinated ligand) before new substrate was added and the reactor re-pressurized.

The results obtained from the reactions showed that the lactone yield decreased by an average of
around 5% for each run from the first to the third run (from 60% to about 45%), whereas it decreased
to around 35% after the fourth run as depicted in Figure 4. Importantly, Pd-black formation was
only evident in the reaction solution after the fourth reaction run (Figure S3), suggesting that the
Pd-complex remained quite stable in the first three runs as no visible precipitate formed after these
runs. The formation of Pd-black has been investigated extensively in literature for homogeneous
Pd-catalysts [22,32]. Garcia-Suarez et al. observed that the interaction of reactants, especially CO
which is a well-known reducing agent with Pd(OAc)2, can lead to metal precipitation and thus lower
the catalyst activity [22]. They attributed this phenomenon to in situ complex formation in the reaction
mixture and in order to eliminate its effect, they suggested pre-formation of the catalytic mixture
under the same conditions as the reaction but in the absence of reactants [22]. We also believe that the
Pd-black formation after the third reaction was most likely due to reduction of the catalyst with the CO
gas, when an insufficient amount of DPEphos ligand was left in the extracted catalyst phase to provide
stabilization of the metal complex.
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4. Conclusions

In this work, the cyclocarbonylation of unsaturated allylic alcohols, exemplified with
2-methyl-3-buten-2-ol to selectively produce 4,4-dimethyl-γ-butyrolactone, was studied under relatively
mild reaction conditions using a Pd-DPEphos catalyst in the presence of the IL [BMIM]Cl. The presence
of the IL successfully stabilized the catalyst system by preventing the formation of Pd-black when
16 mol% DPEphos ligand was present and facilitating product separation and catalyst recovery, while
a lower amount of ligand of 4 mol% led to incomplete formation of catalytically active species resulting
in decreased activity as well as stability. A reaction temperature of 100 ◦C was found to be optimal for
obtaining near quantitative yield of 4,4-dimethyl-γ-butyrolactone, whereas formation of undesired
byproducts (e.g., 4-methyl-3-pentenoic acid or 3-methylbut-1-en) increased at higher temperatures.
Increase in H2 partial pressure higher than 5 bar did not have any significant effect on the yield of
the cyclocarbonylation reaction, while the yield increased considerably when the partial pressure of
CO was increased to 18–20 bar which corresponded to an optimal CO/H2 ratio around 4/1. At higher
pressures of CO (i.e., higher CO/H2 ratios) lower yields of lactone were likely formed due to the
formation of inactive Pd carbonyl complexes as also corroborated with a proposed reaction mechanism.
Recycling experiments showed that the catalytic system with IL could be re-used for three reaction runs
after product extraction without any formation of Pd-black, however a gradual decrease in activity
occurred in the consecutive reaction runs due to simultaneous lowering of the amounts of DPEphos
ligand. Hence, addition of a surplus of ligand after each reaction run could most likely circumvent
catalyst deactivation upon recycling.
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