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ABSTRACT This paper presents a personalized stochastic optimal adaptive cruise control (ACC) algorithm
for automated vehicles (AVs) incorporating human drivers’ risk-sensitivity under system and measurement
uncertainties. The proposed controller is designed as a linear exponential-of-quadratic Gaussian (LEQG)
problem, which utilizes the stochastic optimal control mechanism to feedback the deviation from the design
car-following target. With the risk-sensitive parameter embedded in LEQG, the proposed method has the
capability to characterize risk preference heterogeneity of each AV against uncertainties according to each
human drivers’ preference. Further, the established control theory can achieve both expensive control mode
and non-expensive control mode via changing the weighting matrix of the cost function in LEQG to reveal
different treatments on input. Simulation tests validate the proposed approach can characterize different
driving behaviors and its effectiveness in terms of reducing the deviation from equilibrium state. The ability
to produce different trajectories and generate smooth control of the proposed algorithm is also verified.

INDEX TERMS Adaptive cruise control, driving sensitive characteristic, expensive control, linear
exponential-of-quadratic Gaussian, stochastic optimal control algorithm.

I. INTRODUCTION
Automated vehicles have drawn considerable attention
widespread from the public recently since they have been
expected to have a transformative impact on road transporta-
tion, for instance, to address critical traffic issues such as
energy and capacity shortage. AVs are those equipped with
embedded sensors named on-board units (OBUs) such as
Radar or LIDAR to acquire real-time driving information
from the leading vehicle via the detecting process [1], [2].
Among vehicle automation functions, longitudinal control,
such as adaptive cruise control plays an essential role to
automatically adjust their speeds to maintain a desired dis-
tance from the preceding vehicle to avoid rear-end collisions.
And ACC provides assistance to the drivers in the task of
longitudinal control during their motorway driving [3], [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Bohui Wang .

With fast-developing communication technologies, cooper-
ative ACC is very heated recently [5], [6]. It is appealing
because of the enhancement of vehicle performance and
situational awareness. However, cooperative ACC can be
unreliable due to the immaturity of vehicle to vehicle com-
munication [7]. Hence, ACC is still worth investigating.

A quantity of ACC car-following optimal control algo-
rithms and strategies were proposed during the past decades.
For example, two illustrious models, the optimal velocity
model (OVM) [8] and intelligent driver model (IDM) [9],
[10], initially designed to mimic human-driven vehicle’s
(HV) car-following behavior are then applied to describe
ACC vehicle behavior. The OVM regulates the vehicle
towards an optimal speed defined as a function of the time
headway, however, it does not have a collision-free prop-
erty. IDM addresses the safety problem by introducing extra
parameters such as a brake term to constrain acceleration.
Nevertheless, these models do not consider human driver
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characteristics and have an obvious flaw in distinguishing
the essential difference betweenHV’s car-following andAV’s
car-following behavior.

Other than directly applying or modifying existed HV car-
following models, a large amount of control theory based
ACC algorithms are developed rapidly, which can be gen-
erally divided into three main categories: (i) optimal con-
trol with explicit objectives and hard constraints [11], [12],
(ii) linear controllers [5], [13] and (iii) nonlinear con-
trollers [14], [15]. The first type is usually implemented in
a model predictive control (MPC) fashion [14], [16]–[20],
which represents a series of control algorithms that use
explicit process models to predict future responses of cer-
tain inputs. The MPC approach is attractive due to its flex-
ibilities on objectives and constraints modelling. However,
especially for constrained MPC, it does not guarantee fea-
sible solutions and requires an efficient algorithm to solve
the constrained optimization problem. Compared with MPC,
objectives of unconstrained nonlinear and linear controllers
are more fixed, and constraints are lack. Linear ACC con-
trollers usually design the acceleration to be proportional to
the spacing deviation and the relative speed with the prede-
cessor, which are fast in computing and easier to apply in
practice. Nonlinear controllers exist to depict some scenarios
more precisely such as a mixed traffic environment consisting
of AVs, HVs, and semi-autonomous vehicles while with the
drawback of increasing calculation complexity [15]. In spite
of the above-mentioned three categories of methods have
both strengths and weaknesses, personalized preferences are
barely considered in previous controller design. AVs are usu-
ally treated as simply homogenous.

Even thoughAVcan satisfy the driving automation require-
ment, personalized automation such as some certain driving
styles, driver-based preferences, and driver patterns has rarely
been considered inside the ACC design yet. As far as authors
know, current ACC control algorithms cannot really incorpo-
rate users driving preference [21]. Besides, as AV’s market
penetration grows gradually, the number of user-preferred
settings can naturally diversify [22], [23]. Among all the
personal settings, risk-taking preference, also known as risk-
sensitivity, is an extremely important characteristic due to
the fact that it has a close relationship with the safety of
car-following behaviors and should be heterogeneous for
different drivers depending on the states and current driving
situations. Hence, it is necessary to fill the gap on risk-
sensitive personalization interpreting in AV control to satis-
fied driver’s expectation better.

Additionally, comfort in AV control process is also crit-
ical. To avoid sudden starts and stops, expensive control
strategy [23] which has an extra penalty on large control
input (acceleration) can also help to smooth car-following
behaviors based on different drivers’ preference. Hence,
to increase the diversity of ACC controller behaviors,
we present a personalized stochastic optimal control algo-
rithm for AV. The developed ACC algorithm shed the
light on diversifying drivers’ choices to satisfy the personal

requirements, which gives two detailed contributions: Firstly,
to show the functionality of being personalized in risk-
sensitive preference, the control framework applies linear
exponential-of-quadratic Gaussian (LEQG) (or risk sensitive
linear quadratic) mechanism via extending LQG, in which
the cost function is designed as an exponential form and
involves a risk-sensitive parameter to interpret different will-
ingness degrees to bear additional risk under mixed uncer-
tainties [25]–[28]. As a result, various driving trajectories
and behaviors are generated by the controller based on dif-
ferent sensitive parameter settings. Secondly, control comfort
requirement in the control process is also incorporated via the
relativemagnitude settings onweight matrices, i.e., switching
between expensive control mode and non-expensive control
mode. These contributions in ACC design are innovative and
important to becoming practical functions in ACC future
industrialization. For verification, the presented controller is
evaluated through several simulation experiments. The results
show that the proposed controller can provide effective and
convergent control as well as generate different trajectories
for AVs with different risk preferences. The control frame-
work has overall satisfying performances.

The remainder of the paper is organized as follows:
Section II presents the continuous and discretized sys-
tem state-space formulation and introduces control design.
Section III describes the validation process of the proposed
control strategy. Finally, Section IV summarizes the key find-
ings and provides future research direction.

II. STATE-SPACE FORMULATION AND CONTROL DESIGN
This section starts by presenting the system state-space for-
mulations in both continuous and discretized form, then
introduces the proposed LEQG stochastic optimal control
problem. For simplicity, some preliminaries are stated firstly.
We postulate that all ACC vehicles can receive real-time
information (e.g. velocity, acceleration) detecting by the sen-
sors regarding the direct predecessor. We also assume all dis-
cretized uncertainties are zero-mean additive white Gaussian
noises. Besides, communication delay and vehicular actua-
tion delay are not considered here since they are not large
compared to the control sample period [5].

A. CONTINUOUS STATE-SPACE FORMULATION
Accordingly, this contribution applies the state-space formu-
lation for ACC system propose by Zhou et al., [18]. The
notable constant time headway (CTH) policy is used in this
paper, thus the target equilibrium spacing at time t is com-
puted as below:

s∗(t) = v(t)× t∗ + s0 (1)

where s∗(t) denotes the desired spacing at time t , v(t) repre-
sents the speed of the follower, t∗ is a predefined desired time
gap and s0 is the minimum spacing between two vehicles in
standstill situation for safety concern. We then define:

1v(t) = v∗(t)− v(t) (2)
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where v∗(t) represents the velocity of the leader. 1v(t) is the
relative speed of an ACC vehicle (follower) with its leader.

Using the above-mentioned variables, the system state x
can be naturally defined as follows:

x(t) = (s(t)− s∗(t),1v(t))T (3)

where s(t) is follower’s actual relative spacing with the lead-
ing vehicle. The first term of x(t) represents the deviationwith
the equilibrium spacing at time t . Thus, the above system
can be formulated as a linear time invariant (LTI) system
with system state x(t) and control input u(t) by assuming
the leading vehicle follows a constant speed during each
sampling interval, the state equation follows:

ẋ(t) = Ax(t)+ Bu(t)+ V (t) (4)

A =
(
0 1
0 0

)
, B =

(
−t∗

−1

)
(5)

where u(t) is the acceleration of an ACC vehicle as well as the
desired system input at time t , V (t) refers to the exogenous
system disturbance which consists of relative speed term and
acceleration term due to unmodeled vehicular and aerody-
namics factors. Eq. (4) and Eq. (5) are obtained according to
definitions in Eqs. (1–3) and the physical relationship among
the distance, velocity, and acceleration. Meanwhile, Eq. (4)
depicts the correlation between the derivative of the system
state, system state, control input and uncertainty.

B. STATE-SPACE FORMULATION DISCRETIZATION
Though continuous system is usuallymore desirable, in appli-
cation, systems usually have a control frequency. Therefore,
to bemore realistic, we discretize the continuous ACC system
proposed in Eq. (4) by assuming control input u(t) to be
zero-order hold same as Zhou et al. [18]:

xt+1 = Adxt + Bdut + Vt (6)

where

Ad = eAts (7)

Bd = (
∫ ts

0
eAτdτ )B (8)

x0 = µ0 (9)

Note that zero-order hold means that within each sampling
interval, the control input is time-invariant [29]. ts is the con-
trol frequency (interval) of the controller. xt , ut , Vt represents
the discretized version of system state, control input and sys-
tem error, respectively. The sequence Vt has zero mean and
satisfies independent and identical distribution. Furthermore,
Vt is independent of xt . Ad and Bd are the discretized form for
weight matrices which are calculated as Eq. (7) and Eq. (8)
respectively. µ0 is a predefined constant value, indicating the
initial system state. After discretization, the system becomes
more realistic and are available for digital-computer imple-
mentation.

C. STATE FEEDBACK CONTROL STRATEGY
Our designing of stochastic optimal longitudinal control of
ACC system applies a linear exponential-of-quadratic Gaus-
sian control framework. LEQG control problem, adopts risk
sensitive control and differential game theory, is an impor-
tant generalization of the linear-quadratic Gaussian (LQG)
control problem. LEQG replaces the original quadratic cost
function in LQG with an exponential form of a quadratic
functional of the state and the input, hence, is called
‘‘LEQG’’. Furthermore, a risk-sensitive parameter is intro-
duced in the cost function of LEQG.Other than being a part of
the control framework, the parameter has a realistic meaning
in this paper in depicting different levels of risk preference
for AVs when facing oscillations.

Firstly, the state feedback control strategy is discussed,
which is a widely applied technique for adaptive cruise con-
trollers. In this strategy, the observation of system is assumed
to be perfect. The control input is a linear function of the state
that defined as state multiplies feedback gain. The running
cost at each time point t of an ACC vehicle in the system is
defined as:

ϒt = x ′tMtxt + u′tNtut (10)

where x ′t denotes the transpose of matrix xt , u′t denotes the
transpose of matrix ut . The way of transpose expression is
also suitable for other matrices in this paper. Mt and Nt are
the predetermined weight matrices of state and input at time t
respectively. In order to guarantee the non-negative, symme-
try property and ensure Eq. (10) is always in a quadratic form,
define theMt and Nt in a diagonal form as below:

Mt =

(
β1,t 0
0 β2,t

)
, Nt = ωt (11)

where β1,t , β2,t , ωt > 0 and all of them are predefined
constant values addressing control target weights. The expo-
nential form quadratic cost function Jθ of the system is
then defined in Eq.(12) and Eq.(13) which subjects to the
state space and initial constraints (Eq.(6), Eq.(9)) concur-
rently [26].

Jθ (xt , ut ) = 2θ−1 logE(e
1
2 θG) (12)

where

G =
∑T

t=1
ϒt (13)

Note that E is the expectation operator. T is the study
period. θ in Eq. (12) is a risk-sensitive parameter used to
interpreting different extent responses of dynamic systems on
exogenous risk.

The objective of the proposed ACC controller is to mini-
mize the cost function defined by Eq. (12) and Eq. (13) which
commits to regulating vehicle’s velocity and spacing towards
the equilibrium one in terms of running cost function, i.e., to
do its best to remain the equilibrium state x(t) = (0, 0)T .
Hence, the optimal control input solution set of the system
cost function constrained by Eq. (6) for ACC is defined by:

u∗ = argmin {Jθ (xt , ut )} (14)

145058 VOLUME 8, 2020



J. Jiang et al.: Personalized Human Drivers’ Risk Sensitive Characteristics Depicting Stochastic Optimal Control Algorithm for ACC

The value of θ has a significant meaning in LEQG problem
and ACC control. The analysis of risk behaviors has been
widely discussed in economics also known as risk evaluation,
which aims to assess the willingness degree to bear additional
risk. For a system optimizer of LEQG type, different signs of
θ suggest different risk-sensitive attitudes, the magnitude of θ
can represent the level of preference for each scenario. Hence,
θ is critical in AV risk personalization. More explicitly, cases
of θ = 0, θ > 0 and θ < 0 respectively correspond to the
situation of risk-neutral, risk-preferring and risk-averse atti-
tude from an economist perspective [25]. The classification
reason can be expressed as follow.

In the case θ > 0, to minimize the cost function, the con-
troller actually attempts to minimize the expectation of a
convex increasing function defined in Eq. (12). The penalties
of the occurrences of values that larger than E(G) are treated
overweight than those less than E(G) to achieve system goal.
Whereas in the case θ < 0, one is maximizing the expecta-

tion of a convex decreasing function in Eq. (12). The system
will take an opposite evaluation in this situation which means
to set the penalties of occurrences of values less than E(G)
larger than those greater than E(G).

Particularly, the developed control problem will reduce to
a conventional LQG problem when θ = 0. And the cost
function for LQG problem relaxes to:

J (xt , ut) = E(
∑T

t=1
x ′tMtxt + u′tNtut ) = E(G) (15)

Remark 1: According to [26], the sign of risk-sensitive
parameter θ can also be interpreted from the perspective
of deterministic linear quadratic differential game in which
both control input and system disturbance are viewed as two
players.
Scenario 1 (θ > 0): Cooperative game. Player ut assumes

that player Vt will be cooperative in minimizing the cost
function even though the preliminary for Vt is to satisfy the
white Gaussian distribution. Then the cost function can be
expressed as a cooperative deterministic game as below:

minimize
{ut },{vt }

∑T

t=1
(x ′tMtxt + u′tNtut+V

′
tQtVt ) (16)

subject to the constraints Eq. (6) and Eq. (9), where Q−1t =
E
[
VtV ′t

]
; t = 0, . . . ,T , E [Vt ] = 0, t = 0, . . . ,T .

Scenario 2 (θ < 0): Non-cooperative game. Player ut
assumes that player Vt will not cooperate and even mess up
in minimizing the quadratic criterion, that is to say ut treats
the expectation of Vt to be max (despite the fact that Vt
behaves as random Gaussian variable), then the cost function
is expressed as follows:

min max
{ut },{vt }

∑T

t=1
(x ′tMtxt + u′tNtut+V

′
tQtVt ) (17)

subject to Eq. (6) and Eq. (9).
Based on Remark 1, we can have a more comprehensive

understanding of the function of the risk-sensitive parameter
in LEQG.

Correspondingly, when θ > 0, the solutions of LEQG state
feedback control problem defined before are equivalent to the
solutions of the cooperative deterministic game defined by
Eq. (6) and Eq. (16). With a risk-preferring attitude, the ACC
controller is thought to be more optimistic than reality (best
case design) as it views system disturbance as minimized.

When θ < 0, similarly, the equivalent deterministic game
problem is determined by Eq. (6) and Eq. (17) and viewed
as a non-cooperative situation. With a risk-averse attitude,
the ACC controller will be treated as more pessimistic than
reality (worst case design) since it maximum the intensity of
system noise.

For the LEQG state feedback control problem defined by
Eq. (6), Eq. (12) and Eq. (13), the optimal control takes the
form [25], [27]:

u∗θ,t = Kθ,txt (18)

where Kθ,t is known as the feedback gain calculated by:

Kθ,t = −N−1t B′d × (BdN−1t B′d + P̃
−1
θ,t+1)

−1
× Ad (19)

The negative sign in Eq. (19) is to indicate the negative
feedback property. And Pθ,t is determined by solving the
discrete-time algebraic Riccati equation (DARE):

Pθ,t = Mt + A′d × (BdN−1t B′d + P̃
−1
θ,t+1)

−1
× Ad (20)

P̃θ,t+1 = (P−1θ,t+1 − θξ )
−1, t = 0, 1, . . . ,T − 1 (21)

ξ is defined as the variance matrix of system disturbance Vt .
In this paper, the tilde operator, ∼, means an estimate of a
variable.

D. OUTPUT FEEDBACK CONTROL STRATEGY
The precondition to applying the aforementioned state feed-
back control strategy is that to assume the system has per-
fect measurement. Nevertheless, it is highly unrealistic in
practice due to inevitable measurement uncertainties. Here
we introduce the measurement equation considering sensor
disturbance as below:

y(t) = Cx(t)+W (t) (22)

where

C =
(
1 0
0 1

)
(23)

Eq. (22) describes the measurement (observation) equal-
ity, in which y(t) is the measurement detecting from AV’s
on-board sensor andW (t) represents the sensor error (distur-
bance) at time t . C is the measurement matrix which is set to
be a unit diagonal matrix without losing generality.

The covariance matrix of two disturbances [V (t),W (t)]′

are given by:

1 =

(
ξ γ

γ ′ 0

)
(24)

with

ξ = H (t), 0 = S(t), γ = cov(V (t),W (t)) (25)
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where H (t) and S(t) are the variances for V (t) and W (t)
respectively, γ is the covariance of V (t) and W (t).
Similarly, we discretize Eq. (22) using the same method

mentioned before and we obtain:

yt = Cdxt +Wt (26)

where Cd is the discretized form for C . Wt represents the
discretized measurement error. Ht and St are the discretized
expression for the covariance H (t) and S(t), computed as:

Ht =
∫ ts

0
eAτM (t)dτ (27)

St =
ts
N (t)

(28)

For the LEQG problem defined by Eq. (6), Eq. (12),
Eq. (13) and Eq. (26), the output feedback case optimal
control can be obtained by using the separation principle [30],
which states that control and estimation are two independent
processes in designing. Therefore, based on this principle,
output feedback control is designed to remain the original
control framework while replaces the unmeasurable param-
eter in the objective function to its estimated value. The
detailed optimal solution follows:

u∗θ,t = Kθ,t (I − θRθ,tPθ,t )−1µθ,t (29)

Further, let x0 ∼ N (µ0,R0), where N represents the
normal distribution.With the cost function defined in Eq. (12)
and Eq. (13), the output feedback DARE has the form:

Rθ,t+1 = ξ + Ad R̃θ,t+1A′d − (γ + Ad R̃θ,t+1C ′d )

×(0+Cd R̃θ,t+1C ′d )
−1
× (γ + Ad R̃θ,t+1C ′d )

′ (30)

where

R̃θ,t = (R−1θ,t − θMt )−1; t = 0, 1, . . . ,T − 1, Rθ,0 = R0
(31)

For state estimation, the Kalman filter which contains pre-
diction stage and update stage is applied [31]. We use super-
scripts + and − to denote predicted estimates and updated
estimates, respectively. Firstly, the predicted state estimate
µ−θ,t+1 at time t + 1 is acquired from the previously updated
state estimate µ̃+θ,t :

µ̃−θ,t+1 = Ad µ̃
+

θ,t + Bdut (32)

µ̃+θ,t = R̃θ,t × R
−1
θ,t µ̃

−

θ,t (33)

Note that we tend to use a different symbol µ to distin-
guish the state in state feedback control and output feedback
control.
In the update stage, the measurement residual z̃t+1 which

represents the difference between the true measurement and
the estimated measurement is computed:

z̃t+1 = yt+1 − Cd µ̃
−

θ,t+1 (34)

The filter estimates the real measurement via using the
product of the predicted state estimate and the discretized

measurement matrix. And we then multiply the residual by
the Kalman gain to update the state estimate together with
the predicted state estimate:

µ̃+θ,t+1 = µ̃
−

θ,t+1 + Lθ,t+1z̃t+1 (35)

where µ̃+θ,t+1 is the current updated state estimate and the
Kalman gain Lθ,t+1 equals:

Lθ,t+1= (γ ′ + Cd R̃θ,tA′d )
′
× (0 + Cd R̃θ,tC ′d )

−1 (36)

where Kθ,t and Pθ,t have been defined in Eq. (19) and
Eq. (20).
Noting that the output feedback strategy has the same logic

with the state feedback strategy in understanding the func-
tionality of θ . For brevity, detailed discussions are omitted
here.

E. EXPENSIVE AND NON-EXPENSIVE CONTROL MODE
To be better personalized in control comfort requirements,
two control modes are proposed below.

1) EXPENSIVE CONTROL MODE
Controlling of a time-invariant dynamic system with a heavy
constraint on the input amplitudes is known as expensive
control since the control cost of input u is more expensive
relative to that of the state x [24]. To achieve this, setNt > Mt
in the system to show the additional emphasis on smooth
driving, indicating that the system gives priority to smaller
control input in order to accelerate moderately in the study
period.

2) NON-EXPENSIVE CONTROL MODE
When Mt and Nt defined in Eq. (10) are set to have same
magnitudes of value or Nt < Mt , it is considered to be a
non-expensive driving scenario. No extra attention is paid on
the input term in non-expensive control mode.
Based on the methodology given above, except for the state

feedback case and output feedback case, the proposed ACC
framework can represent six different AV driving behaviors
shown as Fig.1. In Fig.1, the first level branch is based on
the system control mode and the second level branch dis-
tinguishes different categories of risk sensitivity. For exam-
ple, risk-preferring driving behavior under expensive control
mode implying the ACC controller has an optimistic driv-
ing attitude towards uncertainties meanwhile the acceleration

FIGURE 1. AV driving behaviors classification.
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action magnitude is limited to some extent during the control
period.

III. EXPERIMENTS AND RESULTS ANALYSIS
In order to validate the performance of the proposed stochas-
tic linear optimal control method, numerical simulation
experiments have been conducted since field test is expensive
and beyond scope. This section includes four parts. We firstly
beginwith an experiment set-up part to initialize the condition
and set some parameter default values in Section III.A. Based
on that, we systematically designed multiple scenarios with
different control parameters to show our proposed framework
can produce the heterogeneous driving behaviors. Specifi-
cally, we conducted a sensitivity analysis to compare the
performances difference between input feedback case and
output feedback case with different risk sensitivity parame-
ters in Section III.B. Thenwe analyzed heterogeneous driving
behaviors caused by joint impact of risk sensitivity and mag-
nitudes of disturbances in Section III.C. Finally, two different
control modes adopting output feedback strategy with varied
values of risk sensitivity are discussed in Section III.D.

A. EXPERIMENT SET-UP
As mentioned before, we consider simulation experiments
to validate the proposed algorithm. Firstly, Table 1 gives
the default values of corresponding parameters. The simu-
lation study period T is set as 5s. Considering the balance
of controller efficiency and proper driving comfort, we set
β1,t = β2,t = 1 and ωt = 1 as default values firstly.
Giving the same weights to the deviation from the equilib-
rium spacing and speed with the preceding vehicle suggests
the equal significance of collision avoidance and driving
smoothness. Besides, through parameter tuning, the values of
the risk parameter θ in the proposed controller choose –0.2,
0 and 0.2 for risk-averse (θ < 0), risk-neutral (θ = 0) and
risk-preferring (θ > 0) case respectively. As for the system
initial condition, the initial state is set to be x0 = (2, 0)T as
an illustration for the following experiments, meaning that
the start spacing deviation of system to be 2m and the start
speed difference with the predecessor to be 0m/s. Note that
without additional expression, controller parameters comply
with default values.

TABLE 1. Parameters.

B. STATE FEEDBACK STRATEGY AND OUTPUT FEEDBACK
STRATEGY PERFORMANCE COMPARISON UNDER SAME
INTENSITIES OF MIXED UNCERTAINTIES
We firstly conducted a sensitivity analysis on the control
performance comparison between the output feedback case
and state feedback case with varied variances of both sys-
tem disturbance and measurement disturbance to investigate
joint impact caused by the risk preference and disturbance
intensities on control performance. The test range ofmeasure-
ment disturbance is set according to the authoritative report
National Highway Traffic Safety Administration [32], which
states that radar’s range of accuracy for distance and velocity
are ±0.3m and ±0.83m/s. Therefore, based on the reference
value and considering control range feasibility, we vary the
variance of measurement disturbance St from 0 to 0.2 with an
increment of 0.05. The units for distance and speed arem and
m/s, respectively. As for the variance of system disturbance,
no relative reference was found. Hence, we also varyHt from
0 to 0.2 with an increment of 0.05 to guarantee that Ht is
consistent with the magnitude of St . For simplicity, we pos-
tulate that measurement disturbance and system disturbance
are non-correlative as it has been shown that the potential
correlation between them does not have a critical impact
(i.e., γ = 0).
The relative change percentage of the total cost is chosen to

be an indicator to compare the performancewith/without con-
sidering measurement noises, which is calculated as follows:

Relative change percentage =
Jθ,State − Jθ,Output

Jθ,Output
× 100%

(37)

where Jθ,State and Jθ,Output represent the total control cost for
the state feedback case and output feedback case under same
mixed uncertainties respectively. We set Jθ,Output as a refer-
ence here. The results with different risk sensitive parameters
are given in Fig. 2. To thoroughly describe the sensitivity
analysis results, we discuss them from three aspects. (i) No
measurement disturbance (y = 0). In this case, with available
system states and perfect measurement, the relative change
percentages stay zero. (ii) Small measurement disturbance
(y = 0.05). In this situation, the indicator value of risk-
averse case (θ = −0.2) reaches the maximum values com-
pared with other measurement disturbance intensity settings,
changing from 1.8% to 4.1% as the system disturbance vari-
ance increases. For risk-neutral case (θ = 0), the relative
change percentages locate in 2.5% to 5.1%. The indicator
values of risk-preferring case (θ = 0.2) range from 3.3% to
5.9%. (iii) Largemeasurement disturbance (y = 0.2).We find
conspicuous differences exist in terms of indicator among
scenarios with different risk parameters: risk-preferring case
acquires the largest indicator value while risk-averse case has
nearly zero relative change percentage, risk-neutral case
is slightly less than the maximum indicator value. Hence,
the above indicates that the proposed controller can gen-
erate different trajectories for different risk-resistance set-
tings to depict human drivers’ risk preference in AV control.
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FIGURE 2. Sensitivity analysis of disturbances: (a) θ = −0.2; (b) θ = 0
(c) θ = 0.2.

To further validate this, we plot the vehicle’s state evolutions
shown as Fig.3. Besides, an observe suggests that output
feedback case always outperforms than state feedback case
because the relative change percentage is always positive
within the experiment region.

C. HETEROGENEOUS DRIVING BEHAVIOR CAUSED
BY JOINT IMPACT OF RISK SENSITIVITY AND
MAGNITUDES OF DISTURBANCES
Since the behaviors of different risk sensitivity will react
heterogeneously under different magnitudes of disturbances,
here we investigate the heterogeneous driving behavior
caused by joint impact induced by different risk sensitivity
and magnitudes of disturbances. Since the experiments of
previous part have verified that output feedback case out-
performs state feedback case, we will no longer discuss the
latter one in the following experiments. Further, we extend the
behavior analysis using the default value given in Table 1 but
varying the system disturbance Ht varies in Table 1 but
varying the system disturbance Ht varies from 0 × I2×2 to

FIGURE 3. Performance comparison for state feedback case and output
feedback case (Ht = 0.2,St = 0.05): (a) θ = −0.2; (b) θ = 0 (c) θ = 0.2.

0.2 × I2×2 with 0.1 increment to evaluate the magnitude θ .
The measurement disturbance variance is set at 0.1. The
results are shown in Fig. 4. Furthermore, Fig.5 gives the cost
distribution of three discriminated values of θ corresponds to
the two stochastic cases in Fig.4, in which the total cost is
computed as the sum of state deviation cost and control input
cost.

Cθ,State deviation =
∑T

t=1
xt,θx ′t,θ (38)

Cθ,Control input =
∑T

t=1
ut,θu′t,θ (39)

where Cθ,State deviation is the state deviation cost and
Cθ,Control input is the control input cost. xt,θ and ut,θ are state
and input considering risk sensitive parameter.

Fig. 4 has the characteristics that the system states converge
from the initial condition to the equilibrium state (0, 0)T

for all cases within the study period. We can also find
that when no system disturbance exists, i.e., the determin-
istic scenario, state recovery evolution exhibits as a regular
smooth process. With the growth of Ht , more fluctuations
manifest for both state and speed deviations during conver-
gence. Meanwhile, if we fix the intensity of system distur-
bance and observe vertically, the optimistic case (θ = 0.2)
performs obviously different from the other two cases in
stochastic situations. Therefore, the above proves that for
the developed control algorithm, both risk sensitivity and
magnitudes of disturbance have a significant function in gen-
erating heterogeneous driving behaviors. Notice that θ =
±0.2 does not have a symmetric influence on control perfor-
mance (see Fig.4), we repute this is owing to the exponential
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FIGURE 4. Performance analysis for joint impact of risk sensitivity and magnitudes of system disturbances.

FIGURE 5. AV’s cost distribution of different system disturbances.

design on control cost function instead of the traditional
linear one.

Therefore, for amore in-depth analysis, we study the asym-
metric controller response to θ . This time we fix Ht as 0.2×
I2×2 for three cases while setting θ = −2 for the risk-averse
case. The results are provided in Fig.6. From Fig.6, the dis-
tinctions in control evolution can be obviously seen among

three circumstances. Similarly, Fig.7. provides the explicit
cost distribution. In terms of the total cost, risk-averse case
(θ = −2) costs most followed by risk-neutral case (θ = 0)
and risk-preferring case (θ = 0.2). The underlying reason
may be that risk-averse case viewed system disturbance as
maximum, therefore, more system cost is demanded against
the disturbance. Further, with the changing of risk sensitivity
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FIGURE 6. Asymmetric controller response to the risk-sensitive
parameter: (a) θ = −0.2; (b) θ = 0 (c) θ = 0.2.

FIGURE 7. AV’s cost distribution of asymmetric controller response.

parameter, state deviation cost and control input cost seem
to have an opposite developing trend in relative magnitude
order.

D. HETEROGENEOUS DRIVING BEHAVIOR CAUSED BY
JOINT IMPACT OF RISK SENSITIVITY AND
EXPENSIVE/NON-EXPENSIVE CONTROL MODE
Expensive control mode and non-expensive control mode
are realized by changing the values of predetermined weight
matrices Mt and Nt . As for the expensive control mode,
to avoid sudden starts and stops, we setMt×N

−1
t =

1
2×I

2×2

such that the variation of input is paid additional attention.
On the other hand, we set Mt × N−1t = 2 × I2×2 to
represent non-expensive control which puts more emphasis

FIGURE 8. Performance comparison for non-expensive and expensive
control mode with different risk sensitive parameters: (a) θ = −0.2;
(b) θ = 0 (c) θ = 0.2.

on state deviation. Ht , St are predefined as fixed values 0.1
and 0.2 respectively here. The results are reported in Fig. 8.

Compare horizontally, the spacing convergence speed
towards the equilibrium one for non-expensive control mode
is quicker than expensive mode. Meanwhile, the relative
speed error fluctuates in a smaller range for non-expensive
mode compared with the expensive mode.

This is mainly because the corresponding selectable range
of acceleration for expensive control mode shrinks due to
the larger input weight matrix setting and objective of min-
imizing the cost function. Hence, the system approaches
equilibrium state slower meanwhile less speed change rate
causes speed oscillations more difficult to recover. Studying
vertically gives us more insights into the impacts of the
risk parameters on system control smoothness after con-
vergence. The best smoothness performance happens in the
risk-preferring case (θ = 0.2). The reason can be derived
as risk-preferring attitude considers minimized disturbance
during driving, therefore have a smoother driving pace under
less disturbance.

IV. CONCLUSION
Diverse driving preference requirements on risk call for the
designing of personalized ACC controller considering var-
ious human drivers’ risk sensitivities. In this paper, a driv-
ing risk-resistance characteristic depicting optimal control
algorithm for ACC is presented based on the LEQG con-
trol framework. The proposed algorithm can qualify and
quantify AV’s risk sensitivity preference description under
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mixed disturbances as well as incorporating driving com-
fort. With different settings of risk-sensitive parameters and
control modes, six categories of AVs’ heterogeneous driving
behaviors when facing disturbances can be interpreted. For
the validation of this contribution, sensitivity analysis and
several tests are accomplished. Generally, the control perfor-
mances of the proposed algorithm are satisfying. According
to the results of simulated experiments, risk sensitivity, dis-
turbancemagnitude, and control mode are all effective factors
on trajectory generation. Future work will extended current
framework to CACC case by allowing cooperation multiple
vehicles (such as [33]–[35]).
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