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Abstract—Cloud computing is revolutionizing the backbone
of data analysis applications, including industrial ones. One of
its main pillars is the separation of the logic with which data
is accessed (e.g., to study the efficiency of a manufacturing
system) from the actual hardware (e.g., server) that maintains
and analyses the data. Large distributed cyber-physical systems
enabled by, among other technologies, the Internet of Things
(IoT), made nonetheless clear that “what to do” with the data and
“where to do it” are not disjoint problems; i.e., cloud computing
on its own is not enough. Fog and edge computing have emerged
as complementary options, to distribute the analysis, helping with
challenges by means of close-to-the-source data analysis.

We show for a key problem for industrial processes, that of
shifting bottleneck detection, how to take advantage of such
multi-tier computing architectures, to perform continuous and
configurable analysis of data from Manufacturing Execution
Systems. We propose a processing framework, STRATUM, and
an algorithm, AMBLE, for continuous, data stream processing.
STRATUM seamlessly distributes and parallelizes the processing
across the tiers and AMBLE guarantees consistent analysis in
spite of timing fluctuations, which are commonly introduced
due to e.g. the communication system; it also achieves efficiency
through appropriate data structures for in-memory processing.
The experimental study on a real-world dataset, taken from
a production line over two years and including 8.5 million
entries, shows the benefits of the proposed solution in enabling
configurable and efficient analysis.

I. INTRODUCTION

A. Motivation

Throughput is an important indicator to measure production
system performance [6]. It is often affected by arbitrary
disruptions in the machines, such as fluctuations in the cycle
time, down times and minor stops [11]. Machines in the
production system can thus form throughput bottlenecks [16].
Improvements such as cycle time reductions and dynamic
buffering are prioritizing the bottleneck machines for activities
to improve the throughput [7], [15], [20].

Regarding bottleneck detection, methods in the extensive
literature about this challenging problem, use information
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about e.g., blockage, turning-point, inter-departure-time-
variance, shifting-bottleneck, active-period-percentage (cf. [3]
and references therein). Detecting the bottlenecks efficiently
can have large impact in productions systems. Even more
important is to detect them at configurable time granularity
(e.g. the bottlenecks of minutes, hours, shifts, days, months,
etc), since the latter can provide key indicators to the system
analysts for improvements in the production pipelines and
even support adaptive, dynamic pipelines. Further, given the
new possibilities with high-rate sensors, it is useful to utilize
the continuous flows of data to understand properties about
the system in a continuous fashion, to process them on-the-fly
and to understand how the results can vary with time.

To define methods for continuous data analysis, the
data stream processing paradigm is complementing the
conventional store-then-process one [2]. The former processes
continuous flows of data on-the-fly, while the latter first
stores the data and then runs the analysis on it. The
widely adoption of stream processing is motivated by the
increase in data generated at high rates by sensors in various
application domains, since the data streaming paradigm offers
solutions for efficient data analysis, overcoming limitations
of other methods in latency and system memory [18].
Stream Processing Engines (SPEs) are software systems
designed to provide high-level programming interfaces for
stream processing. Stateful analysis in stream processing is
commonly done in defined windows over the streams, to
capture the analysis relevant time-horizon.

The design of algorithmic approaches that can enable
stream processing is problem-dependent and hence appropriate
problem-analysis methods are required. Moreover, enabling
configurable ways for utilizing the computing architectures in
cyber-physical, IoT-based systems in the cloud, fog, and edge
layers, shown in Figure 1, where the distribution of data pro-
cessing is enabled along the Things-to-Cloud continuum [1],
is another issue to be addressed.

B. Challenges and Related Work

Regarding bottleneck detection, the method introduced
in [17], forms a prominent approach that has the potential
of enabling detection of bottlenecks in continuous fashion,
by defining momentary and shifting bottlenecks. The method
has been originally proposed based on a discrete event model
(DES) of a simulation system, which was an interesting
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Fig. 1: Multi-tier data processing architecture including cloud,
with computing devices ranging from single-board, resource
constrained ones to high-end servers.

platform to demonstrate it. However, it was identified that the
method needs further development to suit the real-world in-
dustrial shop floor practice of bottleneck management; towards
that, a data-driven approach for the shifting bottleneck identi-
fication was proposed in [19], using the online data collected
from Manufacturing Execution Systems (MES), to facilitate
it for the shop-floor engineers to understand the production
system behavior in real-time and thus enable faster actions
on the bottlenecks. Although the latter has been an important
contribution towards improving industrial practice, the method
needs to be further developed to yield results continuously
and allow multiple, configurable time granularity, that can be
enabled in terms of time-windows in the stream processing
terminology. Moreover, a critical question in the data-driven
shifting algorithm application is the speed at which the algo-
rithm detects the real-time bottlenecks and yield insights (i.e.
elapsed time from data generation process to detection of bot-
tlenecks). Existing literature does not include an analysis or an
approach that pipelines data generation and processing. Given
that data rates are increasingly high, the existing methods can
be prohibitive for very high volumes of data, that are becoming
the norm in evolving systems. Hence, efficient stream process-
ing is a challenging necessity from this point of view as well.

C. Goals and Contributions

We aim at an efficient streaming algorithm for the shifting
bottleneck detection method of [17], [19] and a configurable
methodology to enable deployment considering practicalities
in actual systems, including multi-tier computing architectures
of IoT-based systems. Our contributions provide:
• a 2-tier framework (STRATUM) to support configurable

and automated analysis, leveraging stream processing and
enhancing task parallelism by distributing the work on
embedded processing units at the machines, as well as
the analysis center; the lower tier is responsible for data
validation and filtering, while the upper one takes care of the
combined data-stream analysis; the system analyst provides
information about the parameters, e.g. number of machines,
working hours, size of the processing window;

• an efficient algorithm (AMBLE) for streaming shifting-
bottleneck-detection, for fine-grained continuous processing,
that also preserves determinism (implying consistent results
despite timing variation in e.g. the communication network),
thanks to leveraging recent research contributions, namely
the ScaleGate [8] data object;

• complexity analysis of AMBLE, showing constant overhead
per data point, depending only on the number of machines,
which is fixed for each configuration;

• an explanation of how the methodology enables configurable
analysis, through parallel instances of streaming operators
with different window sizes at the upper tier;

• experimental evaluation of the methods, using over 8.5
million data points, collected from a production system
over two years; the evaluation shows the effectiveness of
STRATUM and AMBLE algorithm in providing multiple-
configuration results in a timely fashion.

Given the challenges in the previous subsection, these results
can influence significantly the state of the art in the area.

II. DATA STREAM PROCESSING BACKGROUND

In data streaming, each data source produces a stream, that
carries data records, aka tuples, sharing a common schema
< ts,A1, A2, ..., An > where ts is the creation timestamp
and A1, ..., An are the attributes of the tuple. Data stream
processing applications are modeled as Directed Acyclic
Graphs (DAGs) where vertices represent processing operators
and edges specify how tuples flow from data sources through
several processing operators and eventually, to the data sinks
where results are delivered.

A processing operator in data streaming, is either stateless,
i.e. does not keep any state, or stateful, i.e. maintaining a
state that depends on previous tuples. Due to the unbounded
nature of data streams, stateful operators compute over a
window of the stream which contains the most recent tuples.
In this paper, we use tumbling windows which are fixed
size, non-overlapping time intervals. Tumbling windows are
defined by size parameter, i.e. the length of the window,
commonly in time-units. SPEs can provide various operators,
but a subset of basic ones is common among all, including:
• Filter, a stateless operator that for each input tuple produces

at most one output tuple by forwarding or discarding the
former, based on a filtering condition.

• Map, a stateless operator that transforms each tuple from one
schema to another and produces zero, one or more tuples,
based on the mapping condition.

• Aggregate, a stateful operator that is used to aggregate
information from multiple tuples over a window.
Determinism is a requirement to ensure correct results in

spite of varying interleaving of input tuples. Even assuming
each input stream delivers its tuples in timestamp-order, it is
still challenging to preserve determinism for operators that
receive tuples from various streams, as they can be interleaved
due to communication. A recently proposed mechanism to
support deterministic processing is ScaleGate [8], [9], a par-
allel coordinator that efficiently supports merging of several
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Fig. 2: Active and inactive machine states (adopted from [16])

timestamp-sorted streams, using fine-grained synchronization.
It allows for an arbitrary number of reader entities to con-
sume tuples from the merged stream while encapsulating the
communication between sources and readers through defining
two methods; (i) addTuple(tuple,sourceID), which
allows source entity sourceID to add tuple to the Scale-
Gate, and (ii) getNextReadyTuple(readerID), which
provides the next tuple in the output stream that has not been
consumed yet by the reader entity readerID. ScaleGate is
a key component of our methods and its use is detailed in the
corresponding context in the paper.

III. PROBLEM OVERVIEW AND MODELING

A. Shifting Bottleneck Detection

In a nutshell, the shifting bottleneck detection method uses
the notion active period of machines to detect momentary bot-
tlenecks of a production system and identifies sole and shifting
bottlenecks over a selected interval of time T (e.g. a production
run hour, shift, day, week). Further, the method calculates the
fractions of T that each machine was a bottleneck and reports
the one with the highest fraction as the primary bottleneck.

In the following, we introduce terms and refine the descrip-
tions in [17], for ease of reference in subsequent parts of the
paper, where we model the problem and describe our proposed
stream processing methods.

Definition 1. A machine state is inactive when the machine
is waiting (for e.g. arrival or removal of a part), otherwise it is
active. An active period of a machine is a time interval during
which a machine is active without interruption.

To calculate the active periods of a machine, first its states
during a production run need to be distinguished into active or
inactive (c.f. Figure 2 for an example; notice that consecutive
active periods are concatenated). Having this information, the
momentary bottlenecks are defined as follows.

Definition 2. A momentary bottleneck at any time t is the
machine i with the longest active period up to t, among all
active machines at that moment. Let Ai denote this active
period of machine i that causes the latter to be characterised
as momentary bottleneck; in the following we will slightly
abuse the term and use it for both i and Ai.

The importance of the momentary bottleneck is due to
the fact that there is a correlation between machines in a
production system, where activity of a machine affects the
states of the others, i.e. the longest a machine is active,
the highest its influence is on the other machines. Having
identified the momentary bottlenecks, the method in [17]
continues by defining the critical chain of momentary
bottlenecks during the selected time interval T .

(a) Activity of machines during time

(b) The percentage of being bottleneck for each machine.

Fig. 3: Illustration of terms in shifting bottleneck method for
two machines (adopted from [17])

Definition 3. The critical chain of momentary bottlenecks
during a time interval T , i.e. (Tstart,Tend), is a sequence of
active periods, A0, ..., Ak of different machines, where A0 is
the momentary bottleneck at time Tend, A1 is the momentary
bottleneck at time A0

start (i.e. the starting moment of the
active period A0), ..., Ak is the momentary bottleneck at time
Ak−1

start. The chain stops at k because either Ak
start ≤ Tstart

(i.e. Ak starts before or at the same time as the interval of
interest), or there is no active machine at time Ak

start.

The critical chain of momentary bottlenecks in T specifies
how several machines might affect the performance of each
other. It also provides information about the sole and shifting
bottlenecks during T , as defined in the following:

Definition 4. Given a critical chain of momentary bottlenecks
A0, ..., Ak: (i) shifting bottlenecks (resp. sole bottlenecks) are
the machines in the overlap of pairs Ai and Ai+1 (resp. the
non-overlapping parts of each Ai) i ∈ {0, 1, ..., k} in the chain.

Figure 3a illustrates an example of active periods, critical
chain of momentary bottlenecks as well as sole and shifting
bottlenecks in a production system consisting of two machines.

As the last step in the shifting bottleneck method, the
percentages of being sole bottleneck or part of shifting bot-
tlenecks are calculated for all machines in the system. In the
end, the one with the highest percentage is defined as the
primary bottleneck in T , which has the highest impact on the
system throughput in the period. Following the same example,
Figure 3b shows the percentages of the two machines being
sole and shifting bottlenecks. As shown in the figure, since
M1 has the highest percentage, it is defined as the primary
bottleneck of the time interval.
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Fig. 4: System model for STRATUM framework

B. System and Problem Model

We consider production lines consisting of m machines and
an analysis center where data from the machines are gathered,
through a communication network, and analysed. We assume
the analysis center is deployed at the fog/cloud layer, where it
employs high-end multi/many-core servers. Furthermore, each
machine is connected to MES (i.e. to monitor the machines
status) and is equipped with an embedded device. Embedded
devices are resource constrained, i.e. provide limited computa-
tional power. The analysis that is carried out on these devices is
also known as edge processing, implying running the analysis
close to where data originates.

Based on the system model and the defined notions of
the shifting-bottleneck method, we aim at providing (i) a
framework to utilize the distributed resources at IoT-based,
multi-tier architectures, while improving the quality of data
and timeliness of the response as well as reducing contention
on the communication system; (ii) an efficient algorithm to
process the data while it is being collected, to correctly
calculate the momentary, sole, and shifting bottlenecks at
any time, with low latency (the latter being defined as the
timestamp-difference of any result tuple and the latest input
tuple that caused it to be produced).

IV. THE STRATUM FRAMEWORK

In this section, we present STRATUM (STReaming Ar-
chitecTUre for Manufacturing), which is a 2-tier processing
framework, combining edge and fog/cloud computing (cf.
Figure 4). The lower tier, deployed at the edge, receives a
flow of MES data as input and produces a stream of sanitized
and organized data for the upper tier. The upper tier, deployed
at a fog server or in the cloud, receives the stream of clean
and organized data from several sources at the lower tier
and carries out the analysis required by the system analyst.
The algorithm that we propose for the continuous bottleneck-
detection analysis is described in Section V.

A. Data Validation at the Lower Tier

In the edge tier, a flow of MES data as input is received
and a flow of sanitized and organized data is produced. Each
machine in this tier works independently as an edge node
to carry out streaming-based queries. To start composing the
queries, the first step is to define the input stream as a sequence
of tuples, sharing the same schema. To this end, among all the
attributes that a MES data record carries, we keep the creation
timestamp, id of the machine, the period during which data is
valid, and information about the activity of the machine (in the
example system that we use for the experimental evaluation
this information is the value of ANDON, aka signal lights).

Table I shows an example MES record of the production
line. As shown in the table, there are four ANDON lights,
which are mounted on machines and change the status (i.e.
on or off) upon receiving a signal from the machine. At any
instance of time, one or several of lights may be on for each
machine which indicate the state of machine to be either active
or inactive. Table II indicates how combinations of ANDON
lights signify a specific state of a machine.

By keeping the above mentioned attributes of MES data
record, we use the following schema for input tuples:

< ts,machineID, duration, red, yellow, green,white >

where ts is the creation timestamp of the tuple, machineID is
the id of the production machine, duration shows the validity
time interval of the data, and red, yellow, green, and white
are ANDON lights.

timestamp machineID duration ANDON lights
r y g w

2017-08-09 14:57:23 M1 1101 1 1 0 0
2017-08-09 15:08:20 M2 190 0 0 1 0
2017-08-09 15:11:30 M2 382 0 1 1 0
2017-08-09 15:15:47 M1 85 1 1 0 0

TABLE I: Example MES record of two machines

ANDON light Status State
yellow

producing activegreen
white

yellow+white
red down activeno light

green+yellow
blocked / starved / idle inactivegreen+white

green+yellow+white

TABLE II: Combinations of ANDON lights and corresponding
machine states

We now define and explain the operators to run the queries
on the data stream. Figure 5 shows the proposed graph of
streams and operators to be deployed on each machine. The
operators that are proposed for this query are standard SPE
operators which make the framework usable by engineers with
common programming skills. In the following we describe the
functionality of each operator.

996



Fig. 5: The directed graph deployed in the STRATUM frame-
work to perform the continuous query

• M1 is a Map operator to transform the initial ituple schema
into a new one: < ts,machineID, duration, active >
where active is a Boolean attribute, computed using Table II
and the ANDON lights in the input tuple.

• F is a Filter operator to discard all the tuples whose active
attribute is FALSE. It also discards noise, e.g. the tuples that
are outside the scheduled hours. Scheduled hours indicate
the time during a day that the production line is active
(e.g. from 06:00AM till 11:59PM on Mondays). The output
tuples keep the schema of the input ones.

• M2 is another Map operator to organize data, based on the
windows defined by the system analyst. Windows show the
time granularity that the analyst seeks to identify the shifting
bottlenecks through (e.g. every 6 hours). M2 is used to either
forward or split the tuples. If a tuple is located in more than
one window, due to its duration attribute, the M2 operator
splits the tuple into two or more with the same schema as
before but with updated ts and duration.
The output stream of the last operator in the graph is

continuously sent to the next tier of STRATUM, for continuous
shifting bottleneck detection analysis.

B. Data Processing at the Upper Tier

The first step is to merge all tuples from several
streams, in a deterministic way in the framework. We
employScaleGate, (Section II), so that sources (the same
as machines in this paper) insert a timestamp-sorted stream
of tuples each, and readers (processing threads at the
analysis center) retrieve tuples in timestamp order from the
merged stream. To feed the ScaleGate, each machine runs
addTuple(tuple,sourceID) method and adds the

validated tuples into the ScaleGate using the machine’s id as
sourceID, constantly. The threads operating at the analysis
center continuously retrieve the tuples from ScaleGate, using
getNextReadyTuple(readerID) and perform the
analysis.

Concurrent multiple-instance analysis: Notice the ability to
have more than one readers in the ScaleGate, allowing several
threads to execute the analysis using different input param-
eters, such as multiple window sizes, to identify bottlenecks
during shorter and longer periods, e.g. hourly, diurnal, weekly,
monthly, yearly. This ability results to a configurable, multiple-
granularity concurrent analysis. It can facilitate to give to the
analysts information to support e.g. dynamic pipelines.

In the next section we describe the proposed algorithm to
be used as for the analysis at the upper tier.

V. THE AMBLE ALGORITHM

The AMBLE algorithm (Automated Manufacturing BottLe-
neck dEtection), as shown in Figure 5, is applied on the input
stream as an Aggregate operator, A. Here we present the details
of AMBLE and argue about its correctness and complexity.

A. Algorithm description

The main idea of AMBLE is to use a tree data structure,
whose nodes are active periods of machines; data tuples
(nodes) are added to the tree upon reception, in order to
maintain all chains of momentary bottlenecks. Those nodes
(i.e., active periods) that cannot be momentary bottlenecks are
not inserted in the tree at all. AMBLE enables fast identification
of the critical chain at any time instant, by simply making the
chain equivalent to a path in the tree, starting from the node
which is the momentary bottleneck at that time.

Algorithm 6 presents the main loop in AMBLE (L. 6). The
input parameter ws, given by the analyst, is the size of time
interval T , during which the analyst is interested to find the
bottlenecks, while the set lastNodes is used to keep the latest
tuple received from each machine. Once a tuple p is read from
ScaleGate, a matching node is created using CreatNewNode
function (L. 11), with its parent initially set to null and its
ts and te fields set to the starting and ending timestamps of
the active period of p. (L. 2-5). Once node is created, AMBLE
checks if the former lies in the current window, by comparing
its timestamp with the value of Tstart and ws (Tstart, initially
set to zero, indicates the starting timestamp of the current
window); if not, the algorithm updates the current window,
traverses the tree to output the critical chain, and empties the
lastNodes set. (L 12-15). Otherwise, if tuple p lies in the
current window, the algorithm compares the current node with
the ones in the lastNodes set, to find a parent and insert the
node in the tree (if needed). The idea is to set the parent-child
link in a way that the parent of the node containing tuple p, be
the momentary bottleneck at the moment p.ts, i.e. the starting
moment of the active period of tuple p.

Claim 1. In a system with m machines, the parent of a node
p can be found by AMBLE through at most m comparisons.
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Algorithm 1: Algorithm AMBLE

1 Function creatNewNode(Tuple p)
2 set parent to null
3 set ts to p.ts . starting timestamp of the active period
4 set te to p.ts+ p.duration . ending timestamp
5 set machineID to p.machineID

6 Function Main(ws)
7 Node[] lastNodes = ∅
8 firstT imeSeen = true
9 while executing do

10 retrieve p from ScaleGate
11 node = createNewNode(p)
12 while node.ts ≥ Tstart + ws do
13 increase Tstart by ws . tumbling window
14 traverse(lastNodes, Tstart) (Alg 2)
15 empty lastNodes

16 for l ∈ lastNodes do
17 if l.machineID = node.machineID then
18 substitute l with node in lastNodes
19 firstT imeSeen = false
20 continue

21 if l.te < node.ts then
22 continue

23 if l.te ≥ node.te then
24 break

25 if node.parent = null or
node.parent.ts > l.ts then

26 node.parent = l

27 if firstT imeSeen then
28 add node to lastNodes

Proof. (sketch) Since tuples are processed in starting-
timestamp order and there is no overlap between tuples from
the same machine, the momentary bottleneck at the starting
time of p, p.ts, is one of tuples in the set containing the latest
tuple seen from each machine.

Following Claim 1, instead of comparing the specific node
(corresponding to p) with all the nodes in the tree, AMBLE
only looks into the latest node of each machine (L 16),
i.e. those in lastNodes. While looking for the parent of
node among each node l in the lastNodes, there are four
possibilities: (i) Both node and l originated from the same
machine (L. 17), hence it cannot be the parent. AMBLE only
substitutes l by node in lastNodes set and sets the flag for
firstT imeSeen for later on. (ii) The starting time of node is
after the ending time of l (L 21). In this case, l can not be the
momentary bottleneck at the starting time of node, because it
is not active at that moment. (iii) The ending time of node is
before the ending time of l (L 23). In this case, adding node
to the tree is redundant because at any point in time during the
node’s active period, node can not be a momentary bottleneck.

Instead, l, that fully overlaps node’s active period and started
no later than the latter, can potentially be. Therefore, it is
enough to keep l in the tree and not include node. (iv) The
ending time of l falls between the starting time and the ending
time of node, which implies l is active at the moment that
node is started and therefore, l can be a potential momentary
bottleneck prior to node. In this case, l is set as the parent
of node if either the parent attribute is not set or the node’s
current parent has a starting time later than l’s one (L 26).
After the for loop, node is added to the lastNodes set, if it is
the first tuple that originated from the corresponding machine
in the current window.

Algorithm 2 shows the procedure of traversing the tree
at the end of each window, to detect the critical chain,
starting from a leaf which is the momentary bottleneck at
the end of the window. Following Claim 1, the momen-
tary bottleneck at the ending timestamp of any window is
amongst the latest tuples of different machines. In this regard,
momentaryBottleneck method returns the node from the
set lastNode (by iterating on it), which is the momentary
bottleneck at timestamp t (Alg. 2 L. 2). Starting from that
node, AMBLE continues traversing the nodes using the parent-
child link until lit reaches the root. The result of traverse is
returned as the critical chain.

Algorithm 2: traverse function for AMBLE

1 Function Node[] traverse(lastNodes, t)
2 b = momentaryBottleneck(lastNodes, t)
3 while b.parent 6= null do
4 add b to results
5 b = b.parent

6 add b to results
7 return results

There is a direct match of the steps of the algorithm
traversing a directed path in a tree starting from a momentary
bottleneck node, with the definition of the critical chain of
momentary bottlenecks in Section III. After detecting the
critical chain of momentary bottlenecks, the sole and shifting
bottlenecks can be found using Definition 4. The above leads
to the following claim:

Claim 2. Algorithm AMBLE, given sequences of timestamp-
sorted tuples describing sequence of machine states (one se-
quence per machine) over a time interval T , correctly identifies
the critical chain of momentary bottlenecks in T and the
resulting sole and shifting bottlenecks.

Continuous querying: Notice that at any point in time t
(i) the lastNodes set can provide, through an iteration, the
momentary bottleneck at t and (ii) traversing the tree from
the momentary bottleneck at t up to the root gives the critical
chain at that time. With this notice we can deduce that, besides
offering the window-based analysis as shown in the previous
subsections, the AMBLE’s data structures can provide the
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means to support an operation that can request the shifting
bottleneck information in a continuous manner, with per input-
tuple granularity.

B. Complexity

To study the complexity of AMBLE, we distinguish two
parts; the complexity of node insertion and the complexity of
traversing the tree.

As stated in Claim 1, at most m − 1 comparisons are
needed to insert a node into the tree, where m is the number
of machines in the system. Therefore, the complexity of
processing a tuple, i.e. a node insertion in the tree depends
linearly only on the number of machines, m, implying that
for any given system configuration (i.e. given the number of
machines) it is constant, independent of the number of tuples.

The complexity of traversing the tree at the end of the period
depends on the length of the critical chain of momentary
bottlenecks, hence the overhead is a constant per output tuple.
In the worst case, this can be at most linear on n (where n
is the total number of tuples received from all machines in
the specified window size). Such a case is extremely unlikely
though, since for this to happen, all tuples from all machines
need to be part of the critical chain.

Compared to [20], besides that the analysis in the latter is
taking place after all the data is gathered, another significant
difference is due to the data structure over which data is
processed; in [20], a matrix with m rows and N columns
is maintained, N being the number of measurement intervals,
typically large, since the measurement intervals are commonly
only a few seconds long; the matrix is traversed twice to carry
out the calculations, resulting to O(mN) operations.

VI. EXPERIMENTAL STUDY AND DISCUSSION

We evaluate here, the performance of the STRATUM frame-
work, running the AMBLE algorithm for bottleneck detection,
on a dataset taken from a production line in an automotive
manufacturing company in Sweden. The production line con-
sists of 33 machines and 6 gantries, where gantries transport
the material between the parallel machines, all connected to
MES for status monitoring (Figure 6). The dataset, collected
over two years, contains approximately 8.7 million records.

The STRATUM framework is implemented in Java on top
of the Apache Flink SPE [4]. The AMBLE algorithm is
also implemented in Java and imported to an operator in

the framework, as discussed in Section V. Since inter-tier
communication is not in the scope of this work, we run the
experiments on a 2.10 GHzIntel(R) Xeon(R) E5-2695 with 38
cores on 2 sockets (18 cores per socket) and 64 GB memory.

As discussed in Section IV, the framework employs a thread
to read timestamp-sorted tuples from ScaleGate and perform
the analysis over a window of the data stream. Figure 7 shows
the result of running the AMBLE algorithm on the same data
with different window sizes. As shown in the figure, applying
different windows results to a different critical chain and
accordingly, different pattern of sole and shifting bottlenecks.
The reason is that a chain is selected among all others in the
AMBLE algorithm based on the momentary bottleneck at the
end of the window. For instance, at time 12:00 (at the end of
the window with ws equal to six hours), Machine M26 is the
momentary bottleneck. This means, AMBLE starts from the
leaf containing the last tuple of M26 and traverses the tree to
detect the critical chain. Nevertheless, by choosing larger win-
dow size (e.g. ws is equal to one day) the system gets a wider
perspective of the critical chain. In this example, the momen-
tary bottleneck at the end of the one-day window is the latest
tuple of machine M11, from which AMBLE starts traversing
the tree. In the new critical chain, M26 is not involved.

Since STRATUM pipelines collecting and validating data
at the lower tier with the analysis at the upper tier, as well
as using AMBLE to create the internal data structure in
streaming fashion, it is expected to get the results in near
real-time. Figure 8 shows the average latency of applying
STRATUM framework including data validation and AMBLE
algorithm over the data, for different window sizes. As shown
in the figure, smaller time granularity causes higher latency
because of the time it takes for data validation. By choosing
a small window size, many tuples might lie in more than one
window, which in turn demand to be split and duplicated.
Nonetheless, even with a window size equal to three hours,
the average latency is less than one second.

VII. CONCLUSIONS AND FUTURE WORK

We proposed the STRATUM framework for data processing
in production systems to utilize the distributed resources at
multi-tier architectures; STRATUM is leveraging data stream
processing to improve quality of data and reduce overhead
on the communication bandwidth. We also proposed a con-
tinuous shifting bottleneck detection algorithm, AMBLE, for
efficient, automated and configurable continuous processing.
In the experimental evaluation using real-world data of 2
years, we show the potential of STRATUM using AMBLE
for high impact on the state of the art. As mentioned in
the introduction, the design of algorithmic approaches for
stream processing is problem-dependent and hence appropriate
methods are required. AMBLE is such an example, that is
presented here as a streaming operator. In line with approaches
in [12]–[14], enabling the algorithmic implementation of AM-
BLE through primitive streaming operators and enhancing the
algorithmic implementations with parallelization of the data
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Fig. 7: Sole and Shifting pattern of machines at different times during the same day
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Fig. 8: Average latency of STRATUM framework, including
data validation at the lower tier and AMBLE at the upper level

structures maintenance and with elasticity in dealing with
varying streams, are interesting future directions.

Problems related to predictable distributed processing
using flexible real-time service-oriented approaches in factory
automation, have also been studied in contexts of web-based
infrastructures (e.g [5], [10]). Here we study the problems
from a continuous processing perspective, working on
the flows of data generated in IoT contexts with multiple
sensors and show how the multi-tier processing architecture
can be utilized for accurate, low-latency processing. A
holistic, service-level-agreement related perspective is also an
interesting area of study, as also described in [1].
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