THESIS FOR THE DEGREE OF PHILOSOPHY

Multipoint Okounkov bodies,
strong topology of
w-plurisubharmonic
functions and Kahler-Einstein
metrics with prescribed
singularities

ANTONIO TRUSIANI

Universita di Roma

CHALMERS Tor Vergata

UNIVERSITY OF TECHNOLOGY

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF T'ECHNOLOGY
& UNIVERSITY OF ROME TOR VERGATA
Goteborg, 2020
Supervisors: prof. Stefano Trapani (University of Rome Tor Vergata),
prof. David Witt Nystrém (Chalmers University of Technology).

Final Defence: 29th September 2020, a.a. 2019/2020.
Tor Vergata: XXXII® ciclo, tutor prof. F. Bracci, coordinatore prof. A. Braides.

Chalmers: assistant supervisor prof. B. Berndtsson, examiner prof. R. Berman.



Multipoint Okounkov bodies, strong topology of w-plurisubharmonic
functions and Ké&hler-Einstein metrics with prescribed singularities
Antonio Trusiani

Goteborg, 2020

ISBN 978-91-7905-372-7

© Antonio Trusiani, 2020

Doktorsavhandlingar vid Chalmers tekniska hdgskola
Ny series nr 4839
ISSN 0346-718X

Division of Algebra and Geometry
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Géteborg

Sweden

E-mail: trusiani@chalmers.se

Department of Mathematical Sciences
University of Rome Tor Vergata
IT-00133 Roma

Ttaly

E-mail: trusiani@mat.uniroma2.it

Typeset with IATEX.
Printed in Gothenburg, Sweden 2020



iii

Multipoint Okounkov bodies, strong topology of
w-plurisubharmonic functions and
Kahler-Einstein metrics with prescribed
singularities

Antonio Trusiani

Abstract

The most classical topic in Kahler Geometry is the study of K&hler-Einstein metrics
as solution of complex Monge-Ampére equations. This thesis principally regards the
investigation of a strong topology for w-plurisubharmonic functions on a fixed com-
pact Kdhler manifold (X, w), its connection with complex Monge-Ampére equations
with prescribed singularities and the consequent study of singular Kahler-Einstein
metrics. However the first part of the thesis, Paper I, provides a generalization of
Okounkov bodies starting from a big line bundle over a projective manifold and a
bunch of distints points. These bodies encode renowned global and local invariants
as the volume and the multipoint Seshadri constant.

In Paper II the set of all w-psh functions slightly more singular than a fixed singular-
ity type are endowed with a complete metric topology whose distance represents the
analog of the L' Finsler distance on the space of Kihler potentials. These spaces
can be also glued together to form a bigger complete metric space when the sin-
gularity types are totally ordered. Then Paper IIT shows that the corresponding
metric topology is actually a strong topology given as coarsest refinement of the
usual topology for w-psh functions such that the relative Monge-Ampére energy be-
comes continuous. Moreover the main result of Paper III proves that the extended
Monge-Ampére operator produces homeomorphisms between these complete metric
spaces and natural sets of singular volume forms endowed their strong topologies.
Such homeomorphisms extend Yau’s famous solution to the Calabi’s conjecture and
the strong topology becomes a significant tool to study the stability of solutions of
complex Monge-Ampére equations with prescribed singularities. Indeed Paper IV
introduces a new continuity method with movable singularities for classical families
of complex Monge-Ampére equations typically attached to the search of log K&hler-
Einstein metrics. The idea is to perturb the prescribed singularities together with
the Lebesgue densities and asking for the strong continuity of the solutions. The
results heavily depend on the sign of the so-called cosmological constant and the
most difficult and interesting case is related to the search of Kdhler-Einstein metrics
on a Fano manifold. Thus Paper V contains a first analytic characterization of the
existence of Kahler-Einstein metrics with prescribed singularities on a Fano man-
ifold in terms of the relative Ding and Mabuchi functionals. Then extending the
Tian’s a-invariant into a function on the set of all singularity types, a first study
of the relationships between the existence of singular Kahler-Einstein metrics and
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genuine Kéhler-Einstein metrics is provided, giving a further motivation to study
these singular special metrics since the existence of a genuine Kahler-Einstein metric
is equivalent to an algebrico-geometric stability notion called K-stability which in
the last decade turned out to be very important in Algebraic Geometry.

Keywords: Kihler Geometry, Complex Monge-Ampére equations, Pluripotential
theory, Kdhler-Einstein metrics, Canonical metrics, Fano manifolds, Okounkov bod-
ies, Seshadri constant, Kihler packing.
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Chapter 1

Introduction

In these my first years in the mathematical world, I pictured Mathematics as an
infinite dimensional puzzle where the pieces are given by theorems, conjectures and
theories. This thesis regards Kahler Geometry, an area in Pure Mathematics which
includes some of the most connected pieces.

Part of this work has a very classical flavor.

There are three names of scientists in the title, and one of them is maybe the most
famous scientist in the history: A. Einstein. Through his general relativity theory in
1915, he revolutionized our vision of the universe, linking space and time in a precise
geometrical way. In the vacuum the Einstein field equation simply asks that the Ricci
curvature is a multiple of the metric, condition that afterward was called Einstein
condition. The notion of metric and of its Ricci curvature come from Riemannian
Geometry. A Riemannian manifold is indeed the data of a geometrical object which
locally looks like the Euclidean space (i.e. a manifold), and of a metric which is,
roughly speaking, a way to measure distances, angles, volumes and in the general to
transfer the usual differential analysis of the Euclidean space to the manifold. Then
the Ricci curvature of a metric intuitively measures how much computing volumes
on the Riemannian manifold differs from the analog on the Euclidean space.

The amount of the proportionality between the Ricci curvature and the metric in
the Einstein field equation depends on the so-called cosmological constant, which
plays a determinate role to estimate the age, to describe the motion and to predict
the future of our universe (i.e. it is the core of Cosmology). For the purposes of the
thesis it is also important to underline that the cosmological constant influences the
shape of the universe in the sense of its global geometry.

Theoretical Physics was reformed since Einstein’s work as can be easily imagined,
but it may appear surprising to find out that also Complex Geometry were strongly
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inspired. The latter is the study of complex manifolds, which can be thought as
manifolds provided with some rigidity.

Indeed in 1933 E. Kéhler introduced the concept of special metrics (now called
Kéhler metrics) for a complex manifold to study the Einstein condition. His work
gave the birth to K&hler Geometry which is a huge very active area in Pure Math-
ematics. A Kaihler-Einstein metric is a Kédhler metric which satisfies the Einstein
condition.

In the compact case there is a topological obstruction (i.e. given directly from the
geometry of the manifold) to the existence of Kéhler-Einstein metric, which splits
the problem to three very different cases based on the sign of the cosmological con-
stant. When the latter is negative the existence and uniqueness of a Kahler-Einstein
metric was completely solved by T. Aubin and S.T. Yau in 1976. S.T. Yau also
showed the existence and the uniqueness when the cosmological constant is null
(Ricci-flat) as special case of his solution to the famous Calabi’s conjecture posed by
E. Calabi in 1954 during the International Congress of Mathematicians in Amster-
dam. The complex compact manifolds admitting a Kahler-Einstein metric with null
cosmological constant are now called Calabi-Yau’s manifold and in the last decades
they come back to be relevant in Theoretical Physics for String Theory.

By what said above a Ké&hler metric induces a way to measure volumes on the
complex manifold. In fact to any K&hler metric on a compact complex manifold is
associated a volume form, and this correspondence is given through the so-called
Monge-Ampére operator. S.T. Yau proved that the Monge-Ampére operator pro-
duces a bijection, 1-1 correspondence, between the set of all K&hler metrics which
are similar to a fixed Kéhler metric (namely, for those who knows, in the same co-
homology class) and the set of all volume forms with the right total mass.

The third paper in this thesis extends Yau’s bijection considering also some sin-
gular metrics in the sense of J.P. Demailly ( 1990) and some singular volume forms.
Actually these two sets can also be endowed with natural geometrical structures
(topologies) and the bijection in the third paper respects these structures. Let me
stress to say that these topologies are related to another classical problem: the con-
tinuity of the Monge-Ampére operator.

The remaining case of positive cosmological constant (Fano manifolds) is more chal-

lenging since there are obstructions to the existence of Kahler-Einstein metrics as

first proved by Y. Matsushima in 1957. Moreover the uniqueness holds modulo
the identity connected component of the automorphism group as S. Bando and T.

Mabuchi showed in 1987. However in 2015 X. Chen, S. Donaldson and S. Sun com-
pleted the characterization of the existence of Ké&hler-Einstein metrics in terms of an

algebrico-geometric stability notion called K-(poly)stability. As predicted by S.T.
Yau in 1993, their result links Riemannian and Algebraic Geometry, underlying the

strength and the beauty of Kdhler Geometry.

Recall that Algebraic Geometry studies projective manifolds, i.e. manifolds given

as common zero sets of some polynomial equations. Thus, roughly speaking, a man-
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ifold can be equipped with its projective structure given by its algebraic definition
and with a Riemannian structure induced by the choice of a metric. This basically
corresponds to studying the manifold using Algebra or using Analysis and Kéhler
Geometry can be thought as the meeting point of Algebraic Geometry and Rieman-
nian Geometry as explained better in the sequel.

The fifth article consists of an analytic characterization of the existence of singu-
lar K&hler-Einstein metric with positive cosmological constants. A first comparison
changing the singularities type is also provided. This gives a further motivation to
study these singular K#hler-Einstein metrics. Indeed in the last decade K-stability
turned out to be a very important notion in Algebraic Geometry since it is strongly
related to other classical problems like the classification of projective varieties, but
it is still hard to detect if a projective manifold is K-stable.

The work of S.T. Yau mentioned above and a different proof due to V. Datar and G.
Székelyhidi of the characterization of Kahler-Einstein metrics on Fano manifolds in
terms of K-stability are based on continuity methods. Namely they constructed a
continuous family of complex Monge-Ampére equations varying a parameter ¢ € [0, 1]
such that at time ¢ = 0 the equation is easier while the solutions at ¢ = 1 give the
Kahler-Einstein metrics. In this way they basically reduced the problem to the con-
vergence of solutions, i.e. if a given family of solutions w; converges for t — o to
a solution u¢,. The fourth article suggests new continuity methods where one
also requires some prescribed singular behavior of the solutions, i.e. some further
constraints. One advantage of this method is that one can choose to move the sin-
gularities without modifying the complex Monge-Ampére equation and a natural
application is the stability of K&hler-Einstein metrics with different prescribed sin-
gularities.

Any PhD student deals with different difficulties during his/her research. The sec-
ond article is the conclusion of mine most challenging period. Its final version, as
often happens, does not keep track of all fails attempts and of all studies. It contains
the metric structure on the space of singular metrics which was essential for all the
sequel of my thesis, and it will be the starting point of some projects I have in mind
for my immediate future.

The other name on the title of this title is A. Okounkov. He won the field medal
recently in 2006 for his works and in particular because he found a way to construct
a simplified image in an Euclidean space of an abstract geometric object. More
precisely he associated to a n-dimensional projective manifold X endowed with an
ample line bundle L (i.e. a manifold embedded in P¥ for some N) a convex bounded
set A(L) C R™ with interior not-empty. This object is now called Okounkov body,
and it provides a way to study important algebrico-geometrical invariants of (X, L),
like the volume of L (a global measure of the positivity of L), through convex
geometry. His construction comes back to the well-known correspondence between
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toric polarized manifolds and their polytopes in toric geometry. A(L) depends on
the choice of a point x € X and it is possible to study the local positivity of L at =
recovering the Seshadri constant of L at x directly from the shape of A(L).

The first article of this thesis regards the construction of N > 1 Okounkov bodies
Ai(L),...,An(L) associated to the choice of an ample line bundle L — X and
of N different points x1,...,xn € X. These multipoint Okounkov bodies contain
global and local positivity properties of (L — X;z1,...,on), for instance in terms
of the volume of L and of the multipoint Seshadri constant of L at x1,...,zn. It is
worth to recall that the latter is related to several renewed conjectures in Algebraic
Geometry and in particular to the Nagata’s Conjecture which was introduced by M.
Nagata in 1959 after he found a counterexample to the 14" Hibert’s problem.

1.1 Kahler geometry

Among all complex manifolds, Kahler manifolds have rich geometry and represent
the transcendental variants of the more classical Projective manifolds.

All the thesis regards compact Ké&hler manifolds. Compactness is a key property
that forces the global geometry of a complex manifold to have some further rigidity,
gaining many global beautiful properties which can be investigated using analytic
and algebraic tools.

The following exposition is necessarily sketchy. Good references are [GH[, |[Har]
for classical results about Kéahler and Algebraic Geometry, while [GZ17] for the
pluripotential description of complex Monge-Ampére equations.

1.1.1 Projective manifolds

Algebraic Geometry is the study of algebraic varieties. The most classical of them
are the projective varieties over C.

Let P™ denote the n-dimensional projective space defined as C"**\{0}/ ~ where the
equivalence relation ~ is given as (zo,...,2n) ~ (Wo,...,wn) if there exists A € C*
such that (zo,...,2n) = AMwo,...,w,). Namely, any point in P" is represented
by a complex line in C"', and in homogeneous coordinates this is expressed as
[Zo : -+ : Zy]. P" is an example of a n-dimensional complex manifold which is
compact. Indeed it is the compactification of C" adding all the points at infinity,
ie. a copy of P" 1,

The zero set of any homogeneous polynomial in 2o, ..., 2z, descends to the quotient
and defines a locus in P™. A projective algebraic set in P" is then the common
zero set of a family of homogeneous polynomials in n + 1 variables, and a projective
variety is a projective algebraic set which is not the union of two distinct proper
projective algebraic sets (i.e. it is irreducible). All projective varieties presented in
this thesis are smooth, i.e. they are projective manifolds .

There is a natural topology for projective manifolds, called Zariski topology, which
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CHAPTER 1. INTRODUCTION 7

arises by their algebraic definition and which is advantageous to explore all the
algebrico-geometrical properties. However we are more interested in the topology
induced by holomorphic coordinates, i.e. in the structure as complex manifolds.
Note that this analytic structure is intrinsic, i.e. it does not depend on the particular
embedding into the projective space. It is also significant to emphasize that there is a
nice correspondence between the algebrico-geometrical and the analytic-geometrical
point of view as the renowned Serre’s GAGA Theorem explains.

1.1.2 Divisors

Many of the geometrical features of a projective manifold X can be described inves-
tigating the geometry of all its subvarieties of codimension 1, i.e. of all its divisors.
An homogeneous polynomial f on C"' cuts out a projective variety in P™ of

dimension n — 1, i.e. D := {f = 0} C P" is a projective subvariety of dimen-
sion n — 1. For instance f = zp defines, in homogeneous coordinates, the locus
D={[0:2Z:---: Zy]} ~P"!. Observe that the zero set of f? coincides with D,

but the homogeneous polynomials are different. In the first case the polynomial is
irreducible while in the second case the multiplicity of f = 0 is double. It is then
convenient to keep track of the multiplicity saying that in the second case  f2 defines
2D.

More generally a prime divisor of a projective manifold X of dimension n is a pro-
jective subvariety D C X of dimension n — 1. In particular by the notation of the
previous subsection any prime divisor is irreducible. Note that if dim X = 1, then
any point is a prime divisor, if dim X = 2 then the prime divisors consists of all the
irreducible projective curves. A divisor D is then given by a finite formal Z-linear
combination of prime divisors.

The additive group Div (X) of all divisors is naturally endowed with a equivalence
relation ~i;,, called the linear equivalence. Recall first that to any rational function
fi=g1/g2: X --» C, i.e. the ratio of two homogeneous polynomial g¢1,g2 of the
same degree where go)x # 0, is associated a divisor (f) := div g1 —div g2 where sim-
ilarly as before div g; is the divisor attached to g; considering its zero locus counted
with multiplicity. Then D; ~y;n D2 if there exists a not trivial rational function
f: X --» C such that D1 = D2 + (f).

The definition of divisors and their linear equivalence transfer to compact complex
manifolds replacing projective subvariety with irreducible analytic subvariety and
rational functions with global meromorphic functions. The latter are locally given
by the ratio of holomorphic functions. It is also useful to recall that any divisor
D can be described by the data {(Uj, f;)}jcs where U; form an open cover of X
induced by holomorphic coordinates and f; are meromorphic functions on Uj such
that g;.x := f; — fx is holomorphic with no zeros on U; N Uy for any j # k. Indeed
(f;) define local divisors which glue together into the divisor D. For those who
know, this description has a precise interpretation in the language of sheaves. In
fact denoting with Ox (respectively with 9tx) the sheaf on X of holomorphic (resp.
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8 CHAPTER 1. INTRODUCTION

meromorphic) functions and with O% (resp. 9% ) the subsheaf of the multiplicative
elements, the space of global sections H°(X, 9% /O%) represents Div(X) as follows
from the short exact sequence of sheaves

0— 0% — My — M /0% — 0. (1.1)

A generic compact complex manifold may have very few divisors. For instance there
are some complex tori with no divisors. However this is not the case when the
manifold is projective since the intersection with hyperplanes on P¥ produce a lot
of divisors on X C P". Indeed we will see in the sequel that projective manifolds
are characterized by the property of having many divisors.

1.1.3 Line bundles and sections

A line bundle L over a compact complex manifold X is a complex manifold of
dimension dim X + 1 with an holomorphic surjective map p : L — X such that
L, ~ C for any x € X where L, :=p () is the fiber over x, and such that locally
L looks like the product of the base X times C. In other words, there exists a open
cover {U;}jecs of X such that Lip-1(w;) = Uj x C for any j € J. Obviously by
compactness of X the open cover can be assumed to be finite.

As immediate consequence of the maximum principle, all holomorphic functions on
X are necessarily constant, but there may be many (global) holomorphic sections
of a line bundle, i.e. s: X — L holomorphic map such that pos = Idx. The set
of all holomorphic sections for a line bundle L is denoted with H°(X, L) and it is a
finite-dimensional vector space over C. Obviously any line bundle has a lot of local
sections, but the existence of global section is a delicate matter which it is connected
to the positivity of the line bundle as it will be more clear in the sequel.

When L twists, i.e. it is not given as L = X x C, any holomorphic section s: X — L
has not-empty zero locus, i.e. s is associated to an effective divisor D. In this case
L is isomorphic to the twisted line bundle Ox (D), whose holomorphic sections are
given by all meromorphic functions which have poles at most D, i.e.

HO(X,OX(D)) = {f meromorphic on X : (f)+ D > 0}

where (f) + D > 0 means that (f) + D is effective. In particular if D’ ~y;, D then
the associated line bundles (i.e the twisted line bundles) Ox (D) and Ox(D’) have
the same space of global sections. Indeed it is possible to prove that two twisted line
bundles are isomorphic if and only if the divisors are linearly equivalent, i.e. there
is a well-defined injective map

Div(X)/ ~iin—s Pic(X) (1.2)

where Pic(X) is set of all line bundles over X modulo isomorphisms. The latter
is a group, the Picard group, since line bundles are endowed with a multiplicative
operation given by the tensor product whose inverse is obtained by considering the
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dual. Indeed ( is a monomorphism, i.e. it respect the group structures, and if
X is projective then ( is an isomorphism.

Recall also that the local trivializations of a line bundle are given by the choice of
nowhere zero holomorphic local sections s;. In fact a line bundle L can be expressed
as an element in H'(X, 0%) from the data {(Uj, s;)}je., and more generally Pic (X)
is actually isomorphic to H*! (X, (‘)})

As example, the projective space PP™ has a natural line bundle Opn (1) whose fiber
over [Zo : -+ : Zy] is given by the dual of the complex line passing through
(20,...,2n). This line bundle coincides with Opn(H) where H is the hyperplane
divisor cut by an homogeneous polynomial of degree 1 in n + 1 variables.

1.1.4 Kahler metrics

An hermitian metric h on a compact complex manifold X is a smooth family of inner
products (positive-definite Hermitian forms) on the holomorphic tangent spaces T, X
for x € X locally generated by {3%17 ce %}. Locally

h=Y" hjrdz; @ dz

k=1

where hj; i are smooth functions and n = dim X. The real part of a hermitian
metric induces a Riemannian metric g on the underlying real manifold, while minus
its imaginary part is a real 2-form w called the fundamental form. In coordinates

i _
w = 5 Z hj’dej N dZg. (13)

7,k=1

The quantities h, g,w preserve the complex structure J,i.e. h(Ju, Jv) = h(u,v) and
similarly for g,w. We recall indeed that the underline 2n-real dimensional manifold
XT® is naturally endowed with a family of endomorphisms J, : T. X% — T, X® on

the real tangent space TX™, given in real coordinates as J(32) = a?,. s Ja (82) =
—8%1_. Clearly J2 = —Id and by C-linear extension {Jy},cxm splits TeX™ =

TX® @R C into the holormorphic tangent bundle 7"°X (simply denoted T'X as
above) and the antiholomorphic tangent bundle T%! X where the almost comples
structure J = {Jz}scx corresponds respectively to the i-action and to minus the
i-action. Observe that for w preserving the complex structure is the same as saying
that it is a (1, 1)-form, according to the natural decomposition of differential forms
induced by J as in ( Moreover w is strictly positive, since for a (1,1)-form its
strictly positivity is equivalent to the positive definiteness of the matrix ()7 x—1
in the associated local expression (

The metric h is then said to be a Kéhler metric if its fundamental form w is closed.
Equivalently, if w is locally d9-exact, i.e. w = %85u for a smooth function wu called
Ké&hler potential. This was the definition E. Kahler gave. Note that if A is Kéhler
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then w is in particular a symplectic form.

Furthermore any strictly positive real closed (1, 1)-form w is said to be a Kdhler form.
Indeed any Kéahler form is the fundamental form of a Kahler metric h = g — iw set-
ting g(u,v) := w(u, Jv).

There are several other equivalent ways to introduce the Kihler condition. How-
ever a very brief upshot is that a Kéhler manifold, namely a manifold admitting a
Kéhler metric, is a manifold which is endowed with three compatible structures: a
Riemannian structure, a symplectic structure and a complex structure.

Moreover compact Ké&hler manifolds can be also thought as the transcendental ana-
log of projective manifolds, and many algebraic properties of projective manifolds
extend analytically to K&hler manifolds. In fact any projective manifold is a com-
pact Kahler manifold. To see this observe that PY is naturally endowed with a
Kahler metric called the Fubini-Study metric, whose Kahler form is expressed as

wg:dbeMF:%%byM| (1.4)

where ||z|]? = Z;.V:O|z]-\2 and d° := ;-(0 — 9). Then any projective manifold
X inherits a Kahler metric given as restriction of the Fubini-Study metric for an

embedding X C PN. However observe that different embeddings into projective

spaces produce different metrics on X.

Finally it is useful to underline that a positive multiple of a K&hler form is still a

Kahler form, as any convex linear combinations Kiahler forms, i.e. the set of all

the cohomology classes in H?(X,R) admitting a Kahler form as representative is a
cone: the Kahler cone K. A complex compact manifold is then K&hler if and only

it % # 0.

1.1.5 Positivity of line bundles

A hermitian metric h on a line bundle L — X is the choice of a smooth family
of inner products on the fibers L, ~ C varying € X. Locally h is determined
specifying the length of the nowhere zero local sections s; chosen for L, i.e. locally
l|s;]|2 = e~% for ¢; : U; — € smooth functions usually called the weights of h.

An important global objects attached to a hermitian metric A is its curvature defined
locally as dd®¢;. Indeed these local (1,1)-forms glue together to produce a closed
smooth (1,1)-form on X, which depends on h but does not depend on the choice of
the local sections s;. If now one fixes a hermitian metric ho for L with curvature
Wh,, then by definition it is easy to check that any other hermitian metric h for L is
given as hoe~® for a global smooth function ¢ on X. In particular its curvature is
given as wp, = wp, + dd°¢, which shows that the cohomology class of the curvature
of hermitian metrics for a fixed line bundle does not depend on the choice of the
metric. In fact the cohomology class of the curvature of any hermitian metric on L
coincides with the first Chern class of L, ¢;1(L), which is given through the cobordism
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operator ¢ : H'(X,0%) — H?*(X,Z) obtained from the short exact sequence

exp

0—7Z 5 0x 28 0% —0.

The whole image of the cobordism operator, i.e. the set of all first Chern classes, has

a natural group structure and it is called Neron-Severi group, NS(X) C H*(X,%).
A line bundle L is said to be positive if ¢;(L) € K, i.e. if there exists an hermitian
metric on L whose curvature is a Kihler form. By a well-known Theorem of Kodaira
(1954) being positive is related to the fact that multiples L®* have enough global
sections to produce an embedding @ : X < P such that L = ®*Opn(1). At level
of curvatures, wn, = ®*wpg|x, in fact wrs is a smooth representative of c; (O]PN (1))
In other words Kodaira’s Theorem says that a complex compact manifold X is pro-
jective if and only if it admits an ample line bundle L, i.e. ¢1(L) € NS(X)NXK # 0.
The notion of ampleness can be also given in terms of divisors. In fact for a pro-
jective manifold X the Neron-Severi group can be expressed as Div(X)/ =num,
where =,um, is the numerical equivalence which grounds on Intersection Theory (see
[Full]). For instance if D1 =pum D2 then D1 - C = D5 - C for any irreducible curve
C on X, where the quantity D; - C' is equal to the number of points counted with
multiplicity if D; and C meet transversely. Obviously the linear equivalence implies
the numerical equivalence. Then on a projective manifold by the Seshadri’s crite-
rion a divisor D is ample if and only if there exists a positive constant ¢ such that
D - C > emaxzec mult,C for any irreducible curve C.

The definition of ampleness extends to @, R-line bundles (resp. @, R-divisors) tak-
ing finite K-linear combinations for K = @, R. With obvious notations NS(X)x =
NS(X) ®k K, which is a finite-dimensional K-vector space. Then the ample cone
is naturally given as A := NS(X)r N XK, and its closure is the algebraic part of the
nef cone N = XK, i.e. Nys := NN NS(X)r. It immediately follows from said above
that on a projective manifold a R-divisor D is nef if and only if D - C > 0 for any
irreducible curve C.

1.1.6 Quasi-plurisubharmonic functions

An important notion of convexity in several complex variables is given by  plurisub-
harmonicity. Letting 2 C C" a domain, a plurisubharmonic function u : Q —
R U {—o0} is an upper semicontinuous function, u # —oo such that ujpnq is sub-
harmonic for any complex line L C C".

The notion is local, and examples of plurisubharmonic functions are given by the
pluriharmonic functions, which locally represent the real part of holomorphic func-
tions and which in particular are analytic. Plurisubharmonic functions instead may
be singular, but they have good integrability properties since PSH(2) C L?  for
any p € [1,+00) with gradients is L? for any 1 < ¢ < 2.

When u € C*(Q) the plurisubharmonicity condition is equivalent to the positivity
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of the Levi form of u, namely

L(u) == i ﬂdz@di >0
A 0705 e

We recall that this positivity is equivalent to the semi-definite positiveness of the
matrix (%)Lk:lw,n. More generally any wu locally integrable upper semicon-
tinuous function is plurisubharmonic if and only if £(u) > 0 in the weak sense of
distributions (see also next subsection).

Another important feature of plurisubharmonicity is that it is preserved under
holomorphic maps with image not contained in the {—oo}-locus, i.e. given u €
PSH(X,Q) and f: Q" — Q holomorphic, uo f € PSH(X,Q') or u = —o0. In par-
ticular it make sense to talk of plurisubharmonic functions on complex manifolds,
but as a consequence of the maximum principle all the global plurisubharmonic func-
tions on a compact complex manifold are constant. However when X is also Kéhler
there are many quasi-plurisubharmonic (q-psh) functions, ie. u: X — R U {—o0}
such that locally wu is given as the sum of a plurisubharmonic function and a smooth
function. The natural topology on these functions is the L!'-topology which in
this thesis will be called weak topology. Note that for L'-topology we mean the
L'(X, dV)-topology where dV is any fixed volume form on X. Finally recall that on
the set of quasi-plurisubharmonic functions the weak topology is equivalent to the
LP-topology for any p > 1.

1.1.7 Currents

A current can be thought as a differential form with distributional coefficients. More
precisely, on a compact complex manifold, a current of bidegree (p,q) (also said
(p, q)-current) is a continuous linear functional on the space of smooth differential
forms of bidegree (n — p,n — ¢q). The pairing is indicated with (T,u) or simply by
fX T A u. Indeed locally

T = Z T[deZ[ NdZ (1.5)

[I|=p,|J|=q

where T7 ; are distributions (against smooth functions) and where with obvious
multi-index notation dzr = dzi; A--- A dz;, and similarly for dz,.

The exterior derivative d naturally extends to currents, i.e. if T is a (p,q)-current
then (dT,u) := (—1)PT9TH(T,du) for any u smooth differential form of the right
bidegree. The currents AT and OT are defined similarly and d = 8 + 0. A current
T is then said to be closed if dT = 0.

This thesis will principally regards (1, 1)-currents which are positive. A (1, 1)-current
T is said to be positive if locally T = dd°u for u local plurisubharmonic function,
where we recall that dd® = ;-00. This is equivalent to ask that (Tj)jk=1,..n

12 1.1. KAHLER GEOMETRY



CHAPTER 1. INTRODUCTION 13

is semi-positive definite in the associated local description as in (1 Similarly a
(n,n)-currents T is positive if [, fT > 0for any f € C*°(X), f > 0. For a current of
bidegree (p,p) the definition of positivity is slightly more complicated. However we
underline that any positive current has order 0, i.e. it acts on continuous differential
forms.

Combining the d9-lemma and the de-Rham’s Theorem one also gets

T closed (1, 1)-current }
HY (X, R) = : .
(X, R) {T dd¢-exact (1,1)-current }

As a consequence given a cohomology class « € H*'(X,R) which admits a closed
and positive (1,1)-current T, i.e. a pseudoeffective, and given a smooth (1,1)-form
0 representative of « the set

PSH(X,0) :={uqgpsh, : 0+dd°u>0}

is not-empty and it is called the set of all 6#-psh functions. At level of topologies
PSH(X,6) is homeomorphic to T3 X x R where the set T(g3 X of all closed and
positive (1,1)-currents with cohomology class {60} is naturally endowed with its weak
topology. When 6 = w is a Kéahler form, the set of w-psh functions will be one of
the principal character of the sequel.

Observe also that since T(g3 X is weakly compact, any set {u € PSH(X,0)
|supx u| < C} for C € R is weakly compact. Moreover if ur — u weakly as
elements in PSH(X,0) then supy ur — supy w (it is often called Hartogs’ Lemma).
Important examples of closed (1,1)-currents are given by currents of integration
along divisors. Letting D be a divisor, the current of integration [D] is given as

(Phw:= [ u

for any smooth (n — 1,n — 1)-form w. Note that if s a holomorphic section of
L := Ox(D) cutting the divisor D (i.e. (s) = D as mentioned in subsection

and h is a hermitian metric on L with curvature 6, then
[D] = 6 + dd° log|s|}.

This follows from the Poincaré-Lelong equation: dd®log |f|* = (f) for f holomorphic
function.

1.1.8 Non-pluripolar product and Monge-Ampére oper-
ator
The wedge product among currents is not always well-defined, but the authors in

[BEGZ10| found a way to define the wedge product of closed and positive (1, 1)-
currents through the so-called mnon-pluripolar product. The term non-pluripolar
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means that such wedge product does not take mass on pluripolar sets, i.e. on Borel
sets locally contained in {u = —oo} for u local psh function.

The construction in [BEGZ10[Irelies on the work of Bedford, Taylor ([BI'87])) where
the coarsest refinement of the usual topology such that all plurisubharmonic func-
tions become continuous (plurifine topology) was introduced, and where the authors
defined the wedge product dduiA---Addug for ui, ..., ux locally bounded psh func-
tions on a complex manifold. One main property of the Bedford-Taylor construction
is that it is local with respect to the plurifine topology, i.e.

1lyddui A--- A ddcup =1yddvi A--- A ddc’l)p

if u; = v; on U plurifine open set. Imposing this property for unbounded psh
functions wui,...,u, in [BEGZI0], the non-pluripolar product (dd®u; A --- A dd°up)
is completely determined by

r p
1m§:1{uj>fc}< N\ ddfu;) = e fu;>—c3 /\ dd° max(u;, —C)

j=1 j=1

for any C' € R since ()}_;{u; = —oo} is pluripolar. We recall that the maximum of
a finite set of psh functions is psh.

The main problem for this construction is that the non-pluripolar product may not
have locally finite mass as an example of Kiselman shows ([Kis84])] but on a com-
pact K&hler manifold X this cannot happen. More precisely given T1,...,T}, closed
and positive (1,1)-currents, the non-pluripolar product (T ...T},) locally defined as
(dd°uy A+ - - Add°uyp) for local psh potentials ui, ..., up, has finite mass over X, it does
not take mass over any pluripolar set, and it is a closed and positive (p, p)-current.
A vprincipal role in this thesis is played by the Monge-Ampére operator. Assuming
w Kéhler, the Monge-Ampére operator is defined as M A, (u) := ((w + dd°u)™) for
any u € PSH(X,w). When u € C? one has locally

n! (o +u)\ .n2 _ _
MAy(u) = 2y et ( 8(:8@ )>z” dzi A~ Ndzn AdZLA - AdZn
where w = ddp. In particular this brief calculation explains the nomenclature

since M A, (-) represents the complex analog of the real Monge-Ampére operator
first studied by G. Monge in the 1780 and A. Ampére in the 1820.

It is also important to underline that [, M A, (u) = [, w" for any v € PSH(X,w)N
C? as an immediate consequence of Stokes’ Theorem, i.e. the Monge-Ampére mass
of smooth w-psh functions is a cohomological quantity called volume (see also next
subsection). More generally one has [, MA,(u) < [, w" since roughly speaking
the non-pluripolar product does not consider the mass contained in pluripolar sets.
Bedford and Taylor also proved that the Monge-Ampére operator is continuous
with respect to monotonic sequences, and this property keep holding for the non-
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pluripolar product if all elements in the sequence and the limit have full Monge-
Ampére mass, i.e. belong to

e(X,w) = {uePSH(X,w) : /XMAw(u):/Xw”}.

In the sequel we will omit the bracket notation for the non-pluripolar product to be
coherent with the notations used in the papers.

1.1.9 Singular metrics and volume

In this thesis particular importance is given to the notion of singular metrics of a
line bundle L introduced by J.P. Demailly in [Dem90]|! Letting hoo be a hermitian
metric on L with curvature 6, a singular metric on L is given as h = hoe™ ¥ for
@ € L'. When ¢ belongs to PSH(X,0) the singular metric h is said positive and
its curvature 6 + dd°p is a closed positive (1,1)-current. Indeed there is a one-
one correspondence between positive singular metrics for L and PSH(X,0), and all
closed and positive (1, 1)-currents representatives of c1(L) are given as curvatures of
positive singular metrics for L.

Thus the algebraic part of the pseudoeffective cone & C H'''(X, R) of all cohomology
classes which admits a closed and positive (1,1)-currents is given by € N NS(X)r
and coincides with the closure of the cone of all (numerical equivalence class of)
effective IR-divisors. In fact any effective RR-divisor D induces a singular metric with
curvature [D] on the associated R-line bundle L.

The interior of the pseudoeffective cone is the big cone B whose cohomology classes
are characterized to admit a Ké&hler current as representative, i.e. a closed and
positive (1,1)-current T such that 7" > ew for € > 0 small enough and w fixed
Kihler form on X. Then the cone B N NS(X)R coincides with the cone generated
by all numerical equivalence classes of big divisors/line bundles, and an analog of
Kodaira’s embedding theorem holds: X admits a big line bundle if and only if X is
birational to a projective manifold (i.e. X is Mosheizon). Indeed for any L — X big
line bundle the space of global sections H°(X, kL) (using the additive notations for
the tensor product) has maximal growth, i.e. its dimension as vector space grows as
k™ where n = dim X, and the quantity

imc H(X, kL
Volx (L) = limsup dimg H™ (X, kL)

k—oo kn/nl < R>0

is called the wvolume of L — X.

The normalization is chosen so that Vol pn (OX(I)) = 1 since the space of all global
sections of Opn (k) := kOx (1) is isomorphic to the space of all homogeneous poly-

nomial of degree k in m + 1 variables. Note that in this case the volume coincides

with the top self-intersection (Opn(l)") analytically described as fX 0" when 0 is
a smooth (1, 1)-form representative of c1(Opn(1)). More generally if L is an ample
line bundle then Vol x (L) = (L") by asymptotic Riemann-Roch Theorem.
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To give a pluripotential description of Vol x (L) and to extend the notion of volume
to big/pseudoeffective cohomology class, we first observe that, for 6 smooth (1,1)-
form, PSH(X,0) has a natural partial order < given as u v if u < v+ C for a
constant C' € R, i.e. the partial order is given comparing the singularities. The

function

Vo :=sup{u € PSH(X,0) : u <0}

is O-psh function and the associated closed and positive (1,1)-current Tmin := 6 +
dd°Vy is said to have minimal singularities for clear reasons. If {0} = c1(L) €
& NNS(X) for a pseudoeffective line bundle L then

Vle(L) :/ T&n (1.6)

where the top wedge product on the right side of (lis in the sense of the non-
pluripolar product. Thus the volume of a pseudoeffective class « not necessarily
integral can be naturally defined as Vol x (o) := [ Tmin and one gets that Vol x (a) >
0 if and only if « is big.

1.1.10 Canonical divisor and volume forms

The canonical divisor Kx possesses many clues about the geometry of X. Local
trivializations of the associated line bundle det(7T*X), always denoted by Kx, are
holomorphic (n,0)-forms. In particular a positive metric h on +Kx naturally de-
termines a volume form pj given locally as

n? +é; — _
=1 e Pidzi N Ndzn ANdZ1 N --- NdZn

where ¢; = —log||s;||2 are the local weights defining h, i.e. s; are nowhere zero
holomorphic local sections of +Kx. For instance when Kx is trivial there is a
nowhere zero global section s and this leads to a volume form dV = "’ A

The first Chern class of the anticanonical bundle —Kx is denoted with ¢;(X) and
it is said the first Chern class of X.

1.1.11 Kahler-Einstein metrics

A Kihler-Einstein metric h is a Kédhler metric on X with associated Riemannian
metric g and fundamental form w (see subsection such that

Ric(g) = \w (1.7)
where Ric(g) is the Ricci curvature of g and X\ € R.

The Ricci curvature is given by taking the trace of the Riemannian curvature which
contains the information about how the manifold is curved. The Ricci curvature
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measures how much the volume form dVj on the manifolds differs from the standard
Euclidean volume form dVg,.. Indeed

1 .
d‘/tq = (1 — gRjkamk + O(HIHs))dVEuCl,

where Ric(g) = 252:1 Rj rdz; A dzy in real coordinates. We also underline that
classical theorems in Riemannian geometry connect the global geometry of the man-
ifold to lower bounds of the Ricci curvature.
In K&hler geometry the Ricci form Ric (g) is a closed (1,1)-form with cohomology
class ¢1(X). In fact

Ric(g) = —dd° log det(g)

which can be seen as the curvature of an hermitian metric on —Kx. This important
remark has key consequences. First, the first Chern class must have a sign to give
a sense to , i.e. the search of K&hler-Einstein metrics can only be performed in
the three following cases:

i) Kx trivial;
ii) Kx ample;
iii) —Kx ample.

The first case corresponds to A = 0 and the problem reduces to find Ricci-flat

metrics. In the remaining cases the cohomology class of the Kéhler form w must be
proportional to ¢1(X), so up to rescaling the Kihler form we may suppose A = +1,
i.e. £w € ¢1(X). In particular w coincides with the curvature of a positive hermitian

metric on FKx. So for wp fixed Kédhler form in K x the problem to find a K&hler-
Einstein metric in (i7), (4¢%) is equivalent to find an element in

Hep :={u € PSH(X,wo) NC™(X) : wo + dd“u > 0},
i.e. a Kahler form w = wo + dd°u in £c¢1(X), such that
Ric(w) = tw

where with obvious notation Ric (w) := Ric(gw) for g, Riemannian metric associated
to w.

As said in the prelude, in the case (i) the problem was completely solved by Yau
([YauT78]) as particular consequence of the resolution of Calabi’s Conjecture. Namely
he proved that for any « € X and for any p closed (1, 1)-form with cohomology class
c1(X) there exists an unique Kéhler form w in « such that Ric (w) = p. In the last
five decades, manifolds with Kx trivial have been denominated Calabi-Yau mani-
folds. If Kx is ample then X is a manifold of general type, and there exists an unique
Kahler-Einstein metric ([Yau78|| [Aub78]), i.e. there exists an unique w Kéahler form
in the cohomology class of Kx such that Ric (w) = —w.

1.1. KAHLER GEOMETRY 17
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Instead, in the Fano case the uniqueness is modulo the identity component of the au-
tomorphism group ([BMS87]) while there are obstructions on the existence of Kahler-
Einstein metrics. For instance Matsushima in [Nat57]Ishowed that a necessary
condition to the existence of Kédhler-Einstein metrics is the reductiveness of the
automorphism group. Recently Chen, Donaldson, Sun ([(DSI15])| proved that the
existence of Kéhler-Einstein metrics for a Fano manifold is equivalent to an algebrico-
geometrical notion called K-(poly)stability (see next subsection).

As consequence of the classical Uniformization Theorem, any Riemann Surface (i.e.
a complex compact manifold of dimension 1) has a Kihler-Einstein metric. For
Kahler surfaces the obstruction found by Matsushima is also sufficient for the ex-
istence of Kihler-Einstein metric as proved by Tian (|T{an90])l For instance IP?
admits a Kahler-Einstein metric, the Fubini-Study metric, while the blow-up at one
or at two distinct points of P2 does not.

In higher dimension the situation is much more complicated and already in dimen-
sion 3 there are Fano manifolds whose K-stability properties are unknown. In fact
detecting K-stability is very hard (see again next subsection), which is one of the
main motivation of the last two papers of this thesis and of future works.

1.1.12 Yau-Tian-Donaldson Conjecture

Given a polarization (X, L), i.e. an ample line bundle L over a projective variety X
(which might have some singularities), the Yau-Tian-Donaldson Conjecture states
that (X, L) is K-stable if and only if L — X admits a hermitian metric h whose
curvature w determines a constant scalar curvature Kihler metric on X. The scalar
curvature of a metric is obtained as trace of the Ricci curvature. In particular any
Kahler-Einstein metric has constant scalar curvature, and when ¢;(X) has a sign
and c1 (L) is proportional to c¢1(X) then it is not difficult to prove that any constant
scalar curvature Kéhler metric is Kéhler-Einstein.

It took several years to give the actual notion of K-stability which was completed by
Tian in [Tian97] and Donaldson in [Don02[] It was inspired by Geometric Invariant
Theory, and involves the positivity of all the weights, called Donaldson-Futaki in-
variants, associated to test configurations (see below). The right definition is quite
technical and it is beyond the purpose of this Introduction, so we just give a sketchy
presentation.

Given an ample line bundle L — X where X is just a projective variety, a test con-
figuration (X, £) for the pair (X, L) is an equivariant C*-degeneration of the pair.
More precisely it is the data of a family p : ¥ — C such that p~'(¢) is isomorphic
to X for any t # 0 through the natural C*-action, and of a C*-equivariant line
bundle £ — X such that (X, £x,) ~ (X, L) for any ¢t # 0 through the C*-action
where we set X; := pil(t). Then the central fiber Xy, which may be singular even
if X is smooth, is endowed with a C™*-action and the Donaldson-Futaki invariant of
(X, £), usually denoted DF(X, £), basically represents the Hilbert-Mumford weight
of the C*-action. Then (X, L) is said K-semistable if DF(X,£) > 0 for any test

18 1.1. KAHLER GEOMETRY



CHAPTER 1. INTRODUCTION 19

configuration (X, £), while (X, L) is said to be K-stable if it is K-semistable and
the Donaldson-Futaki invariant vanishes only when the test configuration is almost
trivial (i.e. the test configuration is close to be the trivial product).

It is worth to underline that any test configuration can be realized as an actual
C*-degeneration of (X, L) into a fixed projective space P”, but the dimension N
can be arbitrarily big which suggests the difficulties in detecting which pairs (X, L)
are K-stable.

Although the definition of K-stability came from the problem to find special metrics
for line bundles L — X in the last decade it gains a great importance in Algebraic
Geometry because of its connection with the Minimal Model Program and with the
construction of moduli spaces.

1.1.13 Complex Monge-Ampére equations

Monge-Ampére equations arise in different areas of Mathematics and in particular
in Optimal Transport Theory. This thesis principally concerns the study of complex
Monge-Ampére equations of the type

MA,(u) = p
{u € PSH(X,w) (1.8)

for p positive Borel measure, where w is a fixed Kdhler form on a compact manifold
X and M A, (u) = (w+dd°u)™ is the Monge-Ampére operator (see subsection 1[1.8)]
When the measure p is smooth with total mass equal to fx w™ it makes sense to look
for a smooth solution, but in general weak solutions are requested to solve (1@
These equations, allowing also some twisting term on the right hand side, are
strongly related to the search of Kahler-Einstein metrics. In fact, assuming X
to be Calabi-Yau and w Kaihler, there exists f € C° smooth function such that
Ric(w) = dd°f while by definition

. . ddu)"
Ric(w + ddu) = Ric(w) — dd° log (u)
wn
Thus since on a compact manifold any pluriharmonic function is constant, the search
of a Kihler Ricci-flat (1, 1)-form w + ddu is equivalent to solve the complex Monge-
Ampére equation

MA,(u) = e tou” (1.9)
u e g{w ’
where @ is a numerical constant given imposing the right total mass, i.e. a =

log fX w™ — log f fw™. Yau showed the existence of an unique Ké#hler-Einstein

metric solving ([l.9). Indeed replacing ef with any arbitrary smooth positive func-

tion, one obtains the pluripotential description of the Calabi’s conjecture.

In the case FKx ample and w with cohomology class +c¢1(X), let f € C* such that
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Ric(w) = £(w 4 dd°f), i.e. f Ricci potential of w. Then finding a Kéahler-Einstein
metric is equivalent to solve the complex Monge-Ampére equation

1.10
u € He. ( )

{MAw(u) = tU—wyn
Analytically the sign on the right hand side in (lyields the possibility to use
the maximum principle to get a CC-estimate. It is in fact worth to underline that
the solution provided by Yau and by Aubin to the K&hler-Einstein problem in the
ample canonical line bundle used a continuity method (see subsection 1.ith a
priori estimates, while in the Fano case the same method does not apply since the
CP-estimate does not always hold.

1.2 Paperl

Paper I regards the data of a big line bundle L over a projective manifold X and of
a choice of N distinct points on X.

1.2.1 Multipoint Seshadri constant

J.P. Demailly in [Dem90] introduced a way to measure the positivity of a nef line
bundle L at a point x of a projective manifold X, the Seshadri constant of L at x:

L-C

L;z) :=inf ———
es(L; x) m mult,C

where the infimum is over all irreducible curves passing through x. Equivalently
es(L;x) = sup{t > 0 : p*L — tEis nef}, where p : Bl, X — X is the blow-up at z
while F is the exceptional divisor. Note in particular that the Seshadri constant is
a cohomological invariant and that necessarily eg(L;z) < {/(L™) for any ample line
bundle. Moreover it is clear that es(L;z) > 0 and that the inequality is strict if L
is ample (see also subsection In fact the Seshadri criterion can be phrased as
infrex es(L;z) > 0 if and only if L is ample.

The Seshadri constant can be also described as the biggest asymptotic order at «
which can be completely prescribed by the ring R(X,L) := @, H*(X, kL), i.e.
in terms of jets. Namely, for any k € N let sx(z) € N be the biggest natural number
such that all jets of order less or equal to si(z) can be prescribed by global sections
in HO(X, kL). Then es(L;x) = limg—oo sk () /k.

This last interpretation easily generalizes to big line bundles. In fact Nakamaye in
[Nak03]| defined the moving Seshadri constants for big line bundles, which can be
compute in terms of jets as in the nef case.

Cousidering more (distinct) points x1,...,xn, the analog of the Seshadri constant
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is the multipoint Seshadri constant

. L.-C
es(L;x1,...,zN) ;= inf 2;11 mult, C
where the infimum is over all irreducible curves passing at least one point among
Z1,...,xN. Similarly to the one point case, it describes the positivity of the nef line
bundle L at the points chosen and es(L;x1,...,zn) =sup{t >0 : p*L — Eis nef}
where p: Bl(y, .y} X — X is the blow-up at {z1,...,zn} while E:= " | E; is
the sum of the exceptional divisors. This yields es(L;z1,...,zn) < ¥/(L™)/N. As
before the multipoint Seshadri constant also coincides with the biggest asymptotic
order at z1,...,xn which can be prescribed by R(X, L), and this jets interpretation
gives an equivalent version of the moving multipoint Seshadri constant for big line
bundles.
Try to compute and/or to estimate the multipoint Seshadri constants is of consider-
able importance in Algebraic Geometry since there are several renowned conjectures
and theories attached to this invariant. A classical example is given by the Nagata’s
Conjecture, stated by M. Nagata in 1958 (|[Nagh8]). It is equivalent to prove that the
multipoint Seshadri constant of Op2(1) at N > 9 points in very general position is
maximal, i.e. es(Op2(1); N) = 1/v/N. Recall that es(L;-) is lower-semicontinuous
for any nef line bundle L and its supremum is reached outside a countable union
of proper subvarieties, i.e. when the points are in very general position. It is then
reasonable to set e€s(L; N) where the N points are in very general position.

1.2.2 Toric manifolds

A toric manifold of dimension n is a complex manifold which has an action (C*) ~ X
with a dense open orbit where (C*)" represents the n-dimensional complex torus.

When X C PV is also projective, it is given as compactification of the (C*)"-
action which lifts to the line bundle L := Opn~(1)|x, and many of the geometrical
properties of (X, L) are encoded in a Delzant polytope Pr C R", i.e. in a convex
hull of a finite number of points in Z™ such that any vertex has exactly n edges
starting from it. Indeed there is a 1-1 correspondence between Delzant polytopes

and polarized toric manifolds (X, L), namely X toric manifolds and L torus-invariant
line bundles. More precisely given a Delzant polytope P, for any k£ € N define the

map frp: (C*)" — PV~ as fip(2) := [z : -+ 2°Vk] where a,...,an, is an
enumeration of all points in kP NZ" and where 2% = [[}_, Z;:Jk Then for £ > 1

big enough, fxp produces an embedding and a polarized toric manifold (Xp, Lp) by
compactification where clearly Lp = Opn,-1(1)|x,. Observe also that

H(Xp,kLp)~ P (%),

ackPNZ™
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namely there exists a basis {Sa }ackpnzn such that so/sg = 2%7# on the torus C™.
In particular
’n!VOl}Rn (P) = VOlXP(Lp). (1.11)

as a consequence of a result of Khovanskii on semigroups ([Kho93[)| and of the
definition of the volume of a line bundle (subsection 1[1.9)] See [Fil2[ And [Cbx] fo

know more about toric varieties.

1.2.3 Okounkov bodies

Passing from a polarized toric manifold (Xp, Lp) to its Delzant polytope P transfers
many abstract geometric questions to convex geometric problems. A. Okounkov in
[Oko96], [Oko03] found a natural way to mimic this nice correspondence to general
polarized projective manifold (X, L). Namely to any (X, L) is associated a convex
body A(L) C R"™, now called Okounkov body, where n is the dimension of X, which
is basically a simplified image of (X, L).

The construction starts fixing a point z € X and an admissible flag centered at
x or, equivalently, holomorphic coordinated on a trivializing open set U centered
at . Letting ¢ : U — L be a nowhere zero local section of L, then any section
s € H°(X,kL) locally writes as sy = ft* for f € Ox(U). The Okounkov body
A(L) is then defined as

A(L) = {%S) © s € HO(X, kL)\{O}}

k>1

where v(s) := mine,{a € N" : aq # Owhere f = Z&ENH aaz%}, le. v is a
valuation which associates to any section its leading term exponent at x with respect
to the lexicographical order. Note that A(L) does not depend on the local section
t chosen, but it depends on the choice of z and of the holomorphic coordinates.
However

n!Volrn (A(L)) = Volx (L), (1.12)

which extends ( Indeed the Okounkov body essentially comes back to the
polytope when (X, L) is a toric polarized manifold if the point chosen is a fixed
point with respect to the torus action.

The Okounkov bodies’ construction works in the more general setting of big line
bundles as pointed out in [LMO09]] [KKhI2]] Moreover A(L) is a cohomological
invariant and together with the variation of Okounkov bodies on the big
cone gives the log-concavity of the volume as consequence of the Brunn-Minkoswki
inequality which was the main reason of A. Okounkov to introduce these invariants.
The volume of a line bundle is clearly a global invariant, but the local aspect of the
construction leads to the natural question if A(L) encodes also local properties of
(L — X, z). Firstable observe that changing order by an unitary trasformation, the
volume of the Okounkov body remains constant although the shape of A(L) may
mutate. Kiironya-Lozovanu proved in [KLI5[land in [KLI7[ that, considering the
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degree-lexicographic order, the Okounkov body is a finer invariant that the Seshadri
constant of L at z since

es(L;x) =sup{t >0 : tX, C A(L)}

where ¥, is the unit n-simplex.

Finally recall that Witt Nystrém in [WN15[lshowed how a torus-invariant domain
D(L) C C", constructed from A(L), equipped with the standard Euclidean metric,
approximates (X, L) in the sense that for any relatively compact open set U C D(L)
there exists an holomorphic embedding f : U — X centered at z such that the
pushforward of the standard Euclidean metric extends to a metric on L and such
that the volume of D(L) is equal to the volume of L (a similar result holds in the
big case). His result should be compared to the well-known characterization of the
Seshadri constant es(L;z) as the supremum of all radii 7 such that there exists an
holomorphic embedding f : B,(0) — X centered at x of the Euclidean complex ball
of radius r into X with the properties that the standard Euclidean metric extends
to a hermitian metric on L.

1.2.4 Main results

Given N different points x1,...,zx on a projective manifold X and a big line
bundle L, it is natural to wonder if it possible to construct N Okounkov bodies
A1(L),...,An(L) which encodes global invariant as the volume and local invariant
as the multipoint Seshadri constant es(L;x1,...,xn). This is part of the content of
Paper 1.

More precisely given (L — X;z1,...,zn) as above, the multipoint Okounkov bodies
are defined as

AL = {”Ij(s) i s€Vi,} CR"

where Vi, ; := {s € H*(X, kL) : v™i(s) < v"i(s)foranyi # j}, and v"', ... v™N are
valuations defined as in the one-point case considering the leading term exponents
at x1,...,xny and > is the lexicographic order (the valuations may also be more
general).

Note that there may be sections which are not associated to any multipoint Okounkov
body since A;(L) is obtained considering all sections whose leading term exponent
at xz; is strictly smaller than the leading term exponent at the other points. This is
the main technical problem in proving the following result.

Theorem A (Theorem Eof Paper I). Let L be a big line bundle. Then

N
n! Y Volrn (A;(L)) = Volx(L).
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Differently from the one-point case, it may happen that some of the multipoint
Okounkov bodies has interior not-empty or it is empty. However they are numerical
invariants and they well-behave under variations of the big cohomology class.
Moreover these multipoint Okounkov bodies connect the geometry of (X, L) to the
notion of Kdhler packing.

Theorem B (Theorem @of Paper ). Let L be a big line bundle and let x1,...,xN be
N distinct points. Then there exist N torus-invariant domains D1(L),...,Dn(L) C
C" such that {(D;(L),wst) }j:Lm’N packs perfectly into (X,L). Namely for any
family of relatively compact open sets U; € D;(L) there exists an holomorphic embed-
ding f : |_|;V:1 Uj = X and a Kéhler form w lying in c1(L) such that fuwst = w)pw,)
forany j=1,...,N. Moreover Z;\;l Volgn (D;) = Volx (L).

A similar result holds for big line bundles.

As a consequence, the multipoint Seshadri constant eg(L;z1,...,2n) can be de-
scribed as the supremum of all radii 7 such that there exists an holomorphic em-
bedding f : |_|;V:1 B.(0) — X centered at z1,...,zny with the properties that the
standard Euclidean metric extends to a hermitian metric on L. In fact the domains
D;(L) in Theorem Blare defined as D;(L) := p~ " (A;(L)***) where p: C* — R",
w(z1,...,z0) = (J21]%, . .., |2n|?) and where A;(L)** is the essential part of A;(L)
([WN15]) which coincides with the interior of Aj;(L) as subset of RY, with its in-
duced topology when L is ample. While it is possible to read the multipoint Seshadri
constants directly from the shape of the multipoint Okounkov bodies Aj;(L) when
the latter are constructed considering the degree-lexicographic order as the next
result recalls.

Theorem C (Theorem Eof Paper I). Let L be an ample line bundle and let
Z1,...,2n be N distinct points. Let also Aq1(L), ..., An(L) be the multipoint Okounkov
bodies constructed considering the degree-lexicographic order. Then

es(Lyz1,...,an) =sup{t >0 : tX, C A;(L)***foranyj=1,...,N}
where Y, is the unit n-simplez.

As said previously, the multipoint Seshadri constant is connected to several conjec-
tures like the Nagata’s conjecture. For surfaces a more precise description of the
shape of the multipoint Okounkov bodies is provided. Finally in the toric case, in
many different situations, the multipoint Okounkov bodies can be directly recovered
subdividing the polytope.

1.3 Paper II - III

In these two papers (X,w) is a compact Kihler manifold.
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1.3.1 Variational approach

A useful way to deal with complex Monge-Ampére equations is through variational
approaches. More precisely to study equations of the type

{MAW(U) =p (1.13)
u € E(X,w),

for pu such that pu(X) = [, w", recalling that €(X,w) is the set of all w-psh functions
with full Monge-Ampére mass, one defines a functional F), whose the critical points
of F), are solutions of . Obviously F), depends on g, but it would be natural
to split it as sum of two functionals whose differentials coincide respectively with
the right and with the left hand in ( Indeed the Monge-Ampére measure of a
smooth w-psh function can be described as differential of a well-known functional F
called Monge-Ampére energy, which was first introduced in [Aub84], [Mab86]. IIt is
defined as

_ 1 5 cu)d A =
E(u).—n+1jzo/xu(w+ddu) Aw" 7.

Thanks to Bedford-Taylor theory, it is possible to extend it to locally bounded w-psh
functions, i.e. to elements in PSH(X,w) with minimal singularities. Thus since E
is non decreasing, it is natural to set

E(u) := inf{E(v) : v € PSH(X,w) with minimal singularities, v > u}.
One problem with this variational approach is that the set
ENX,w) = {u € &(X,w) : E(u) > —o0}

is properly contained in &(X,w). Therefore we are actually restricting the set of
solution in ( from &(X,w) to &' (X,w). Then if u € €'(X,w) one gets

d

%E(Pw(qutf))‘t:O:/XfMAW(u) (1.14)

for any f € C°(X), where
Po(u+tf):= (sup{v € PSH(X,w) : v <u+tf})"

is a Perron-Bremermann envelope. Here the star is for the upper semicontinuous
regularization.

Then, defining the action L, (u) := fx udp and V := fx w", the critical points, when
exist, of the translation invariant functional F, = E — VL, solve ( as showed
in [BBGZ13]. More precisely, setting €1 omm (X, w) := {u € (X, w) : supyx u = 0},

MA,(u) =p
{u € (X, ) —
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admits an unique solution if and only if pu € M*(X,w) := {Vu : pis a probability
measure with E*(u) < 400} where

B'()= sup  Fu(u) < +oo
ue€l(X,w)

is basically the Legendre transform of the Monge-Ampére energy. There are some

key points in their proof. First the continuity of L, with respect the weak topology,
which yields the upper-semicontinuity of F), since the Monge-Ampére energy was
known to be upper-semicontinuity. Second the fact that the boundedness of F),
from above is equivalent to the coercivity of F), with respect to the J-functional
J(u) := —E(u) + [, uw" ([Aub84]), namely the existence of A >0, B > 0 such that

Fl(u) < —AJ(u) + B.

Note that to prove this last property the authors used the convexity of L,, i.e. the
concavity of F, (E is concave).

The sets &' (X, w) and M' (X, w) are then endowed with two natural strong topologies
given as the coarsest refinements of the weak topologies such that the energies FE, E*
become continuous. In fact as showed in [BBEGZ19| ithe Monge-Ampére operator
produces an homeomorphism

MA, : (Eiorm(X, w),strong) — (Ml (X, w),strong). (1.16)

Recall that the Monge-Ampére operator is not continuous with respect to the weak
topology even on &'(X,w).

Finally it is remarkable to observe that a variational approach to solve complex
Monge-Ampére equations was already settled in [K&h33].

1.3.2 L'-metric geometry

The space of Kéhler metrics H,, possesses an infinite dimensional Riemannian struc-
ture as showed in the pioneering works of Semmes ([Sem92[)land Donaldson ([Dbn99]).

It is given by "
(Fa)e = ( [ fow+aaey)”

for any ¢ € H, and any f,g € To,Ho, ~ C®(X). It is important to underline
that the geodesics are given as solutions of homogeneous complex Monge-Ampére
equations (see [Chen00al). More precisely given ¢1,p2 € H, the weak geodesic
joining 1, @2 is the function

D(z,t) := (sup{U € PSH(X x S,mxw) : limshlp U(-,t) < ¢1and
t—0

limsupU(-,t) < Wz})* (1.17)

t—1—
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where S := {t € C : 0 < Ret < 1} and where mx : X x S — X is the usual
projection. These geodesics solve homogeneous Monge-Ampére equations on X X
S, but, although they always exist, they may be just C'. Moreover H, is not
complete. Therefore in [Darl7[|Darvas described the completion of J,, endowed with
the Riemannian structure as the second energy class 82(X7 w), which in particular
becomes a geodesic metric space.

Anyway in this thesis the main interest is on the metric structure on J, given by
the Finsler metric

[l = /X |Fl(w + dd° )"

for any ¢ € H,, and f € T,H,. This structure was introduced in [Darl5[lwhere
the author showed that its metric completion coincides with &'(X,w) and that the
associated distance can be described as

d(u1,u2) = E(ul) + E(U,z) — 2E(Pw(u17 ’LLQ)). (1.18)

for any wi,u2 € &€'(X,w). Here P,(ui,uz) = (sup{v € PSH(X,w) : v <
min(u1,u2)})” is the largest w-psh which is smaller than w1, us (recall that gen-
erally the minimum between two w-psh is not w-psh). The closed formula ( is
very useful to study (El(X,w)7 d) through pluripotential theory exploring the prop-
erties of the Monge-Ampére energy. Moreover the weak geodesics (1re metric
geodesics in (Sl(X, w),d), i.e. for any two potentials w1, us € &'(X,w) there is a
unique weak geodesic joining wuq,us. However (EI(X, w),d) is not a CAT (0)-space
since by ( it immediately follows that

d(ul,uQ) = d(U17 Pw(ul,uQ)) + d(Pw(ul, ’LLQ),UQ).

A great advantage to work with (81(X7w)7d) is that its metric topology (usually
called L'-metric topology for obvious reasons) coincides with the strong topology
of IBBEGZ19] described in the previous subsection. In particular the coercivity
measured through the J-functional can be replaced by the d-coercivity after an
suitable normalization. In fact there is a constant C € R such that

d(u,0) — C < J(u) < d(u,0)

for any u € Eylmrm(Xvw)-

1.3.3 Convergence of metric spaces

The main reference for this subsection is [BBI].
Given two subset A, B of a metric space (X, d) there is a well-known natural distance
between A, B given as

du (A, B) :== max { sup d(a, B),supd(A,b)}
acA beB
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and it is called the Hausdorff distance. Note that d(A, A) = 0, indeed all closed sets
of X endowed with the Hausdorff distance produces a metric space.

This distance suggests a way to measure how much two metric spaces differs from
being isometric, i.e. the Gromov-Hausdorff distance between metric spaces. The
idea is to embed (X, dx), (Y, dy) isometrically into a third metric space (Z,dz) and
compute the Hausdorff distance between the images of X and of Y. Obviously this
distance depends on the metric space (Z,dz) and on the embeddings chosen, so one
defines the Gromov-Hausdorff as infimum among all possible choices, i.e.

deu(X,Y) = inf{dJZ(X,Y) : (X,dx),(Y,dy) C (Z,dz)}

where d}i{Z denotes the Hausdorff distance on (Z,dz). It is then an easy exercise to
prove that one can restrict to consider Z := X | |Y endowed with a distance dz such
that dz|x = dx,dzy = dy. Moreover dgu descends to a distance on the set of all
isometry classes of compact metric spaces, and a sequence of compact metric spaces
{(Xk;7 dx, )}ke]N is said to converge in the Gromov-Hausdorff sense to a metric space
(X,dx) if der (X%, X) — 0 as k — co. Note that although this convergence is useful
for compact metric spaces, it becomes too strong for non-compact metric spaces. For
instance considering X5 = B(0) C R™ with the Euclidean distance, it easily follows
that deu(Xg, Xx+1) = 1 for any k& € N while intuitively (Xk,dpguc) converges
to (R,dEguyct). Therefore for non-compact metric spaces it is more convenient to
consider the pointed Gromov-Hausdorff convergence . For sequences of pointed length
metric spaces this notion of convergence requires the convergence of balls centered
at the points for any fixed radius. Namely a sequence of pointed length metric
spaces {(Xk7pk,dxk)}k€]N converges in the Gromov-Hausdorff sense to a pointed
length metric space (X,p,dx) if for any r > 0, deu (BT (p), Br(p)) —0as k — oo.
Alternatively, when the metric spaces considered are locally compact, one can define

a pointed Gromov-Hausdorff distance for pointed compact metric spaces as

dGH((X7p7 dX)7 (Yv q, dY)) = 1nf{di[Z(X,Y)+dZ(p, q) : (X7 dX)7 (Y7 dY) - (Z’ dZ)},

and then a sequence (Xy,pr,dx, ) converges in the pointed Gromov-Hausdorff sense

to (X, p,dx) if and only if (BT (pk),pk) converges in the pointed Gromov-Hausdorff

sense to (BT (p),p) for any r > 0 fixed.

Observe that the pointed Gromov-Hausdorff convergence is a refinement of the

Gromov-Hausdorff convergence in the sense that if (Xg,dx, ), (X,dx) are compact

sets then (Xg,pw,dx,) pi{i (X,p,dx) implies (X, dx,) GH (X,dx) while vice

versa if (Xg,dx, ) CGH (X,dx) and p € X then there exists a sequence pi € X} such
—GH

that (Xk7pk7 ka) P_> (X,p7 dX)

Finally recall that the morphisms in the category of metric spaces are given by short

maps, i.e. 1-Lipschitz maps.
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1.3.4 Relative setting

Some constraints may be requested on the behavior of canonical metrics. Often this
reduces to solve complex Monge-Ampére equations with prescribed singularities | i.e.

{MAw(u) =

u € E(X,w,v) (1.19)

where p is a positive non-pluripolar measure, ¢ € PSH(X,w) represents the pre-
scribed singularities and similarly to the absolute setting

e(X.w,v) = {ue PSH(X.w) : u<, /XMAw(u) - /XMAw(w) =V}

is the set of all w-psh functions more singular than 1 with relative full Monge-Ampére
mass. These spaces were introduced in [DDNLI&[Iwhere the authors extended to
the -relative setting many known results of the absolute setting (see in particular
[BEGZI0]). A key point in their theory is the fact that the Monge-Ampére mass
respect the partial order < given by the singularities, i.e.

u;<v2>/)(MAw(u)§/)(MAw(v)

as fully showed in [WNI7] In [DDNLIi8[la deep investigation of (1e pre-
(

sented and the authors found out that a necessary assumption to make (119) glways
solvable, under the hypothesis ©(X) = Vi, is that ¢ must be a model type envelope
(as called in Paper II), i.e.

W= (ch_{noo Pu(y+C, 0))*. (1.20)

The right hand in ( is briefly denoted as P, [1]. More generally for a couple of
w-psh functions w, v, the function

Puful(0) 1= ( Jim Pafut €)'

is the largest w-psh function which is smaller that v and more singular than w, and
P,[u] := P,[u](0).

The authors in [DDNL18] also defined the 1)-relative Monge-Ampére energy on the
set PSH(X,w,¢) :={u€ PSH(X,w) : u <1} as

1

Ey(u) := o Z /X(u — ) (w + ddu)’ A (w + dd“¢)" 7

if u — 1 is globally bounded, i.e. if w has t-relative minimal singularities, and, using
the monotonicity property, as

Ey(u) :=inf{Ey(v) : v € PSH(X,w,1)with t-relative minimal singularites , v > u}
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otherwise. It is then naturally defined the set
EI(X,w,¢) = {u € &(X,w,v¥) : Ey(u) > —oo},

and Fy : &'(X,w, ) — R keeps having the Monge-Ampére measure as differential,
i.e. the t-relative analog of ( holds.

1.3.5 Main results

In Papers II, III letting 1 be a fixed model type envelope with non-zero total mass
Vi the set &'(X,w, ) is endowed with a complete metric structure and the home-
omorphism ( is extended to the relative setting. More precisely, defining the
-relative energy Fj, on the set of all probability measures as

Ej(p) = sup  Fuy(u)
u€& (X, w, )
where F), y := Ey — VL, and the action L, is extended to PSH (X, w) basically as
Lyu(u) :== [y (v — P,[u])dp, the set

M (X,w,9) := {Vyu : pis a probability measure with EJ, (1) < +oo}

has a natural strong topology given as the coarsest refinement of the weak topology
such that E;, becomes continuous.

Theorem D (Theorem Eof Paper II, Theorem zB)f Paper III) . Let ¢ € PSH(X,w)
be a model type envelope with Vy > 0 and let

d(u,v) := Ey(u) + Ey(v) — 2Ey (Pu(u,v)).

Then (EI(X,w,w),d) is a complete metric space and the Monge-Ampére operator
produces an homeomorphism

MAy : (Ehorm(X,w,9),d) — (M (X,w,1), strong) (1.21)
where & orm (X, w, ) := {u € (X, w,v) : supy u = 0}.

As proved in Paper III the metric topology on (El(X,w,w),d) is a strong topol-
ogy in the sense of subsection Indeed it coincides with the coarsest re-
finement of the weak topology such that the energy F, becomes continuous and
the set P,[y](H.) is strongly dense. The main difficulties in Theorem I} {s on
showing the homeomorphism ( The bijectivity is an adaptation of the vari-
ational approach to the relative setting since a critical point of F}, y solves (,
while to prove the bicontinuity there are some deeper differences with respect to
the absolute setting. Technically a key point in the absolute setting is that any
potential v € El(X,w) can be approximated with a decreasing sequence of w-
psh continuous functions v; inside the class €'(X,w), and this leads to the con-
tinuity of the action M'(X,w) > MA,(u) — [, vMA,(u) when restricted to
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ME(X,w) == {Vu e MY(X,w) : E*(u) < C} for any C € R fixed. Indeed such map
turns out to be the uniform limit of the maps Mg (X, w) 3 MAu(u) — [, v; M A, (u)
which are continuous by duality. This property does not a priori hold anymore
in the relative setting, obviously considering [ (v — ¥)M Ay, (u). In fact although
P,[¥)(-) : €4(X,w) — &Y(X,w, ) is a projection with many nice properties it is still
not clear if P, [¢](u) — % is continuous for any u € PSH(X,w) N C°(X).

It is then natural to wonder if it is possible to glue together different spaces (81 (X, w, ), d)
into an unique metric space, whose topology is a strong topology connected to the
Monge-Ampeére operator and hence to the stability of solutions of complex Monge-
Ampére equations. Indicating with M the set of all model type envelopes, and with

M™ its subset of all elements with non-zero total Monge-Ampére mass, one has
ENX,w, 1) NEY(X,w,1h2) = B for any v1,1P2 € M but they may have same total

mass Vy, = Vi,. Thus, according to the homeomorphism (1.21)|it is natural to
consider totally ordered sets A C M™.

Theorem E (Theorem Eof Paper IT) . Let A C MY be totally ordered. Then

XA = I_I 81(X7w7w)

PEA

is endowed with a complete distance da which restricts to d on El(X,w,w) for any
P e A

Observe that M C {u € PSH(X,w) : supu = 0} is weakly closed, so A C M,
but the minimum element tmin of A may have zero mass. In this case the set
ENX, W, Ymin) = PSH(X,w, ¥min) is identified with a singleton Py, since By, =
0 by definition. The construction of the distance dx4 of Theorem Ethen relies on
the properties of the projection P,[-](+). Indeed if 91 < 12 < 93 then

L. Pulih](Polth2](u)) = Pu[¢n](u) € €'(X,w,¢1) for any u € (X, w, ¥s);
2. |[Po[tn](u) — Pu[en](v)llzee < [Ju = vl|zee for any u,v € €'(X,w,v2) such
that u — v is globally bounded;
3. d(Ple](u):Ple](U)) < d(u,v) for any w,v € 31(X7w7¢2)-
It seems then natural to define a distance d4 whose value at two potentials u €
ENX,w,¥1),v € E'(X,w,12) is bigger than d(u, P [11](v)) and of d(w, v) if P, [y1](w) =

u. So, using the fact that Vi, < Vi, if 1,2 € MT, 41 < 92, a natural definition
of da(u,v) would be

d(’LL, Pw[wl}(v))+ sup {d(w,’l})fd(u,Pw[¢1}(U))}+V¢2 7V7/)17
{weel(X,w,2) : Pu[¢1](w)=u}

(1.22)

but there are some problem in this definition. First, not any element in  &*(X,w, 11)

is necessarily given as projection of elements in SI(X,w,w2), thus one first need
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to define the distance d4 on a smaller dense subset and then to recover X, as
completion. Second, the supremum in (is not a priori finite and one may
try to pick an element w at minimum distance with respect to 2 but even in this
case such supremum is very unstable since the space (SI(X, w, P2), d) is not locally
compact. Therefore the idea is to adapt (using strongly compact sets given by
the entropy. More precisely for any C' € R the set

Ke = {cp € &'(X,w) : max (|Slgl(pg0|7Hwn/V(MAw(¢)/V)) < C}

is strongly compact in &'(X,w) as proved in [BBEGZI9] where for any couple of
probability measure pu, v the entropy of v with respect to p is given as

H(v) = /X flog fdy

if v is absolutely continuous with respect to p with density f such that flog f €
L'(), and as H,,(v) := +oo otherwise. By the Lipschitz property Lﬂ)d the distance
d stated above, for any 1 € M the set Po(X,w,v) := P,[¢](K¢) is compact in
(EI(X,w,dJ),d) and

P(X,w, ) = | Po(X,w,¢)

CER
includes P, [¢](H,,). Thus for u € P(X,w,91),v € P(X,w,2), %1 < 12, one defines

da(u,v) := d(u, Po[t1](v)) + sup {d(a, b) — d(Pu[¢1])(a), Po [¢1](b))} + Vipy = Vi

where the supremum is over a,b € Prax(c,,c0)(X,w,¥2) where C1,C> are respec-
tively the minimum positive values such that u € P, (X, w,¥1),v € P, (X, w, ¥2).
Anyway da barely satisfies the triangle inequality, so with the usual trick d4 will be
given on | |, 4, P(X,w,¥) X [ |,c 4 P(X,w,9) as infimum of the sum of the value da
over all chains, i.e.

m—1
dA(’U,,U) = ( inf ) Z JA(IU]',’LU]'+1).
U=W0Q,...,Wm =V} <
7=0

Then to conclude the proof of Theorem I jt remains to prove that dyx is a distance
which restrict to d over P(X,w, 1) for any ¢ € A and then to check that its comple-
tion coincides with X 4.

As consequence of Theorem mgiven a decreasing sequence {9x}ren C M con-
verging to ¢ € M7, the sequence of metric spaces (El(X,w,zpk),d) approximates
(El(X,w, ), d). Indeed Theorem @in Paper II shows that the convergence holds
in a compact pointed Gromov-Hausdorff sense. This new type of convergence mim-
ics the characterization of the pointed Gromov-Hausdorff convergence described in
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subsection [.:3.3]replacing the sequence of balls with the compact sets given as pro-
jection of element with bounded entropy. In fact since (€'(X,w,),d) is not locally
compact the pointed Gromov-Hausdorff still seems a too strong convergence. Fur-
thermore the projection maps P;; : Pu[1);](-) : (E"(X,w,:),d) = (E'(X,w,1;),d)
for ¢ < j produce a direct system in the category of metric space as immediate con-
sequence of the contraction property of d, and the space (El(X,w,z/)), d) basically
coincides with the direct limit of such direct system (Theorem Paper II).

In Paper III it is then shown that the metric topology is a strong topology since it
coincides with the coarsest refinement of the weak topology such that FE.(-) becomes
continuous. Namely {ux}ren C X converges to u € X4 in (XA,dA) if and only
if ux — u weakly and Ep_[y,)(ur) = Ep [u(u). In this case we say that up — u
strongly, and we refer to the paper for the natural definition of the weak conver-
gence to the point Py . in the case Vy_, = 0. Note in particular that the strong
convergence does not depend on the set A chosen. In fact endowing the set

Vo= | | MY(X,w,v)
YeA
with its natural strong topology given as the coarsest refinement of the weak topology
such that £}, becomes continuous, the main theorem of Paper III is the following.

Theorem F (Theorem E Paper TIT) . Let A C M* be a totally ordered set. Then
the Monge-Ampére operator

MA, : (XA,m,rm,dA) — (YA,strong)
1s an homeomorphism where with obvious notations XA norm := l—lweﬁ &t orm (X, w, ).

The proof of this Theorem is obviously a bit more involved with respect to that of
(L21), but the idea is basically the same. Indeed the bijectivity is clear, while for
the continuity the proof uses uniform estimates on the 1)-relative functional I, Jy
(and in particular the analog of the so-called convergence in energy) and the upper-
semicontinuity of F.(-) with respect to the weak convergence. Note that this last
property is quite the core of the proof, and the upper-semicontinuity of Ey(-) for
any 1 seems to not be enough to conclude.

Finally it is worth to underline that the strong convergence implies the convergence
in capacity (and in t)-relative capacity for any 1 € M™T). In fact if ux — u strongly
for Vp_[u) > 0 then there exists a subsequence {ug, }ren such that vy, := (sup{ukj :
Ji>h}) wn =P, (Why, > Uky, 415 - - - ) CONVerges to u monotonically.

1.4 PaperlV -V

As in the previous section (X, w) is assumed to be a Kihler compact manifold though
in Paper V w will also be the curvature of a hermitian metric on the anticanonical
bundle, i.e. {w} = c¢1(X) (in particular X will be Fano).
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1.4.1 Ding & Mabuchi functionals

As stated in subsection the study of K&hler-Einstein metrics in the curved
cases reduces to solve

{MA“ (w) = e (1.23)

Ue%w

for A = —1,1 according to c¢1(X) = Aw, i.e. if X is canonically polarized or if X is
anticanonically polarized, where p is a volume form depending on A. (1.23) can be
split in two problems. First finding a weak solution, i.e. a solution of

{MAW(U) = e_’\“+cp (1.24)

u € EHX,w),

and then exploring its regularity.

The second problem classically consists in obtaining a C°-regularity and a Laplacian
estimate C 'w < w4+ dd°u < Cw for C € R. Indeed thanks to the Evans-Krylov
theory u would then be C%® which is enough regularity to apply Shauder’s theorem
and a bootstrap argument to get the smoothness. For the C?-regularity see the
proof of Kolodziej ([Kol98]) where any solution of MA,(u) = fw™ is continuous if
f € LP for p > 1. Observe that in ( the density in the right hand side belongs
to L? for p > 1 as a consequence of the resolution of the strong openess conjecture
(see [GZ15]). Instead, a proof of the Laplacian estimate can be found for instance in
Theorem 10.1 in [BBEGZI19]. As conclusion any weak Kéhler-Einstein metric (i.e.
a solution of ([.24]) is a Kéhler-Einstein metric.

Thus through a variational approach similar to (10ne defines the functional
Lux: &' (X,w) >R

1 o
Lua(u) = TIOg/Xe M

so that the differential of the translation invariant functional D,  :=V L, x—E co-
incides with the equation ( This functional is called Ding functional ([Ding88|)
and its minimizers solve (1.24 Moreover any weak Kéhler-Einstein metric mini-
mizes D, . In fact in the canonically polarized case this follows from the convex-
ity of D,,_1 similarly as in subsection or F,, thanks to Holder’s inequality.
Moreover D, _1 is also lower-semicontinuous and J-coercive in the usual sense (or
equivalently d-coercive over E}LDTm()Qw)). In the Fano case instead the fact that
weak Kéhler-Einstein metrics minimize D := D, 1 is a consequence of a deep re-
sult of Berndtsson on the positivity of direct image bundles (|Berni5])] Indeed an
application of his results yields the weak geodesic convexity of D in (81(X7w), d),
i.e. the convexity along weak geodesic given as solutions of homogeneous complex
Monge-Ampére equations (i.e. geodesics as in (1, and the uniqueness of K&hler-
Einstein metrics modulo the action of Aut (X)° (retrieving a result proved by Bando
and Mabuchi, [BM87]). Here Aut (X)? is the connected component of the identity
of the automorphism group. Note that key points in the proof are also given by
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the linearity of the Monge-Ampére energy along weak geodesics and, as in subsec-
tion [1.3.1]and in the canonically polarized case, by the lower-semicontinuity of D
with respect to the weak topology which follows from the continuity of L, 1 and the
upper-semicontinuity of E.

Weak Kéhler-Einstein metrics can also be expressed as critical points of the Mabuchi
functional M, first introduced in [Mab86]l Indeed M can be defined in a general
setting of (X,w) compact Kihler manifold and its critical points are constant scalar
curvature Kahler metrics. Recall that this functional is weak geodesically convex as
proved in [BDLI5], and in the Fano case the Mabuchi functional can be described
as

M(u) i= (Hon v = E) (MAu(u)/V)

for any u € €'(X,w) thanks to the Chen-Tian formula (|Chen00b[) [ Tian]). Moreover
the following statements are equivalent:

i) u e &(X,w) solves ([1.24);
11) D(’LL) = inf51(X‘w) D7
111) M(’LL) = infgl(X7w) ]\47

as summarized in [BBEGZ19]l Furthermore in the case Aut (X)° the existence of
weak Kahler-Einstein metrics are equivalent to the J-coercivity of D, M or equiva-
lently to the d-coercivity over &L, (X,w), i.e. the following conditions are equiva-
lent:

i) there exists an (unique) solution wu to ([1.24) with supy u = 0;
ii) there exist A > 0, B > 0 such that D(u) > Ad(u,0) — B over &} g (X, w);
iii) there exist A > 0, B > 0 such that M(u) > Ad(u,0) — B over &%, (X,w).

This result is part of what proved in [DRI5]] although there already were a lot of
progresses in this direction (see for instance |Tian97],] [DT92][)l

Observe that the J-coercivity of the Mabuchi functionals is related to K-stability.
Indeed to any test configurations is associated a geodesic ray in (El(X,w), d), ie.
an algebraic geodesic ray, and the slope at infinity of the Mabuchi functional along
algebraic geodesic rays is strongly connected to the Donaldson-Futaki invariants of
test configurations ([BHJ19]). Moreover it is remarkable to say that a big difference
between the Kahler-Einstein case with respect to the cscK case relies on the existence
of the Ding functional, which thanks to the uniform Ding stability (i.e. the uniform
positivity of the slope at infinity of the Ding functional along algebraic geodesic
rays) connects the uniform Mabuchi stability (i.e. the wniform K-stability) to the
existence of Kihler-Einstein metrics as proved in [EBJI8[.] Namely a pluripotential
proof of a slightly different version of the Yau-Tian-Donaldson conjecture in the
Fano case, independent on the proof given in [CDSI5].]
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1.4.2 Continuity method

One classical technique to solve complex Monge-Ampére equations as (1.s
through the continuity method. Namely one defines a family of complex Monge-
Ampeére equations

{MAw (u) = ge(u)w™ (1.25)

u€ &N (X,w)

where {g:(-)}1ejo,1] are the densities and where M A, (u) = g1(u)w" is the requested
Monge-Ampére equation to study. The basic idea is to show that the subset S C [
of all ¢ € I such that ( admits a solution is not-empty, closed and open so that
S = I. Therefore the equation M A, (u) = go(u)w" is usually the one which easilly
admits a solution, while the openness result often follows from the implicit function
Theorem if the family {g:}+c[o,1) has enough regularity. It is important to underline
that sometimes more regularity on the solutions is requested, which also leads to a
stronger continuity of the family of solutions {u}tes.

There are several natural continuity methods for different complex Monge-Ampére
equations. Anyway, since their wide geometrical applications, the class of complex
Monge-Ampére equations

{MAW(U) P (1.26)

u€ &N X,w

is general enough. Here we assume {fi}cp0,1) C L'\ {0} to be a continuous family of
non-negative L'-functions, while {a:}:c[0,1) is a continuous family of real numbers.
Observe for instance that in the case X Fano, {w} = ¢1(X), taking a; = ¢ and

ft = gefﬂn;/t)log”suh’" where s € H°(X,—mKx) is a holomorphic section cutting
a smooth divisor D and g is a suitable smooth positive function, the solutions of
(1.26) correspond to the search of (weak) log Kéhler-Einstein metrics. More precisely
Wy, = w + dd°us for us solution of ( satisfies

Ric(wu,) = twy, + (1 —t)[D], (1.27)

see also subsection Indeed recall that it is possible to extend the Ricci form to
currents as in [BBJI8], i.e. Ric (wu,) := Ric(M A, (u:)) where we set Ric (u) := dd° f

for any p positive measure such that locally p = e 1" QA Q for Q nowhere zero
local holomorphic section of Kx.

The path ( was considered in the proof of the Yau-Tian-Donaldson conjecture
for Fano manifold in [CDST5]] although they did not use uniquely the continuity
method. While if [D] is replaced by a smooth Kéhler form, ( becomes the
continuity path used by Datar and Székelyhidi ([DSI8[) to give a proof of the Yau-
Tian-Donaldson conjecture directly using the continuity method. The main point in
their proof, and the unique obstacle to prove that S = I, relies on the so-called C°-
partial estimate, which basically produces an uniform upper bound on the solutions
Ut.
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1.4.3 Analytic singularities

In Paper IV and Paper V particular importance will be given to model type envelopes
¥ € M with analytic singularities type , i.e. ¢ = P,Ju] where v € PSH(X,w) is
locally given as

u=g+clog (|1 + -+ |ful*)

for g smooth, ¢ € Rso and {fj}§:1 local holomorphic functions, which are local
generators of a coherent ideal sheaf J. In this case given a resolution of the ideal I,
i.e. amap p:Y — X given by a sequence of blow-ups of smooth centers such that
p~'J = Oy (—D) for an effective divisor D over Y, we have

p*(w+ ddu) = n+ c[D] (1.28)

for a semipositive smooth (1,1)-form 1 on Y. The analytic singularities of u are then
formally encoded in (J,c). Recall also that when {n} is a big class, i.e. [, n" >0,
it is also possible to define the space (c‘il(Y7 n), d) similarly to the Kéahler case.

We will say that 1 € M has algebraic singularities type if it has analytic singulaties
and ¢ € Q>o.

1.4.4 Tian’s a-invariant

As said in subsection in dimension 2 the unique obstacle to the existence of
Kahler-Einstein metrics for Fano manifolds is the reductiveness of the automorphism
group, i.e. the obstruction found by Matsushima, as proved by Tian in [Tian90].
His proof was based on a global invariant of (X,w) he introduced in [Tian87], the
so-called a-tnvariant:

a,(0) := sup {oa >0 : sup / e MW" < +oo}.
X

uw€PSH(X,w),supx u=0

A version of the a-invariant to the prescribed singularities setting will be the key
object in Paper V.

The main interests for the a-invariant is when {w} = ¢1(X). In fact as proved by
Tian,

a,(0) > T — there exists a Kihler-Einstein metric .
n

Observe also that, as showed by Demailly, this invariant can be expressed alge-
braically through the log canonical threshold . Namely, assuming for instance {w} =
Cl(X)7
w(0) = a(X,0) := inf let(X,0, F

ow(0) = a(X,0):= = inf sl F)
where lct(X,0,F) := sup{a > 0 : (X,«aF)is kit} is the log canonical thresh-
old and where the @Q-linear equivalence means that there exists r € N such that
rF ~pn —rKx. Recall that being kit (i.e. Kawamata log terminal ) for a pair
(X, F) is a notion coming from Birational Geometry which analytically means that
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— X" ajlogls;|7 . .
¢ Zi=roiloBloslhy o Pl Ghere B = >_ie, a;Fy for Fj prime divisors cut by s; and
where h; are hermitian metrics on Ox (Fj).

1.4.5 Main Results of Paper IV

In the Paper IV a continuity method with movable singularities is provided for (X, w)
compact Kihler manifold. Namely, for ¢ € [0, 1] we set

{MAW (u) = e M fw

we 81X, w, ) (1:29)

where A € R, f; € L'\ {0} continuous family of non-negative functions, and
{¥thepon) C M™ totally ordered set of model type envelopes.

The idea is to generalize many classical continuity methods using a variational ap-

proach and the strong topology introduced in Paper II and Paper III. Obviously the

sign of \ determines three very different cases.

If A < 0 then the existence of a unique solution of (1:29)]is proved in [IDNLIS],Jso
the study of the continuity method with movable singularities reduces to a stability

problem. In this case there are no obstruction to the strong convergence of solutions

(see Theorem Ebelow).

In the case A = 0 the existence of a unique solution of (is related to the
belongness to M*(X,w, ) as recalled in Theorem E| Paper IV then provides a
characterization of the closure of the continuity method with movable singularities.

Theorem G (Theorems Eand Elof Paper IV) . Given the complex Monge-Ampére
equations

wn € EL (X, w, n), (1.30)
for k € N and X <0, assume that
i) fe, f € L'\ {0} non-negative such that fr — f in L';

i) {4 }ren C M7 totally ordered such that ¥ — o € M weakly;

i) frw™ € MY (X, w, ) for any k € N if X = 0;

iv) up € EY(X,w, ) be the unique solutions of (1.30), normalized in the case

X =0 so that up, € ELorm (X, w, Y1), d.e. supy ux = 0.

If A < 0 then ux — u strongly where u € E1(X,w, 1)) is the unique solution of

{MAW (ur) = e frw™

MA — oAU n
“E“) ¢ w (1.31)
u € & (X,w, ).
While if A = 0 then, letting u be a weak accumulation point of {uk}ren, u €

Erorm (X, w, ), ur, — u strongly and u solves if and only if Ey, (ug) > —C
uniformly and

lim sup/ (Vi — ug) frow™ < / (Y —u) fw". (1.32)
X

k—oo X
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While the uniform boundedness of the energies in Theorem (I fpr the case A =0is
obviously necessary, we believe that the condition (1might not be, but in this
generality the situation is quite tricky. However there are some interesting cases
where ( is shown to be unnecessary as, for instance, when f; € LP for p > 1
with || fx||zr < C uniformly.

The case A > 0, finally, is much more complicated. However when {t:}ic(o,1] is
increasing, i.e. the singularities decrease, Paper IV contains an openness result as-
suming f; = f € LP for p > 1 and a closure result depending on a boundedness
from above of the solutions which should be compared with the classical ~C°-partial
estimate as said in subsection T.4.2.]

To state the results, it is necessary to introduce the functional Fy oy x := Ey—Vy Ly x
where Ly x(u) := 5t log [ e M fw™ for u € £'(X,w, ), which generalizes the Ding
functional to the relative setting and to different densities. Indeed it is a transla-
tion invariant functional whose critical points solve the Monge-Ampére equation
MA,(u) = e M fw™. Observe that, already at this point, there is an obvious nec-
essary condition to add on ¥ to solve MA,(u) = e fw" in &'(X,w, ). Namely
the singularities type of 1 must not be too nasty in relation with the singularities of
f. For instance when f = 1, the condition becomes e * € L', i.e. c(1p) > X\ where
c(+) is the complex singularity exponent defined as

c(u) := sup {c >0: /X e MW" < oo}

(see [DKO1]). Another problem of the variational approach is that a priori there
may be solutions of the Monge-Ampére equations which are not global maximizers
of Fr .y a. Since the principal focus in on Kidhler-Einstein metrics with prescribed
singularities on Fano manifolds (see also Paper V), Paper IV does not include a
further study about when solutions are maximizers of F' 4 » and it often assumes
the d-coercivity of Fj . over &} (X, w, ).

Theorem H (Theorem @of Paper IV). Let v € M, A > 0 and f € LP for
p € (1,+00]. Assume also that c(¢) > % where % = Xifp = +oo. If the
functional Fy.  is d-coercive over &y (X,w, ), then there exists A > 1 such
that the complex Monge-Ampére equation

MA,(u) = e fuw™
u€ & (X, w9

admits a solution for any v’ = 1 such that Vy < AV.

The bound for the complex singularity exponent is sharp in the case p = 400 as said
above, while in general it allows to prove the continuity of Ly x over €'(X,w, 1), and
hence the upper-semicontinuity of F' . » which implies the existence of maximizers

given its d-coercivity. Let us stress that the coefficient A > 1 of Theorem H]only
depends on the slope at infinity of Ff y .

The closedness result is instead the following.
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Theorem I (Theorem E|0f Paper IV) . Let A > 0, {¢k}ren C M™T totally ordered
set such that Y < Yr+1 for any k € N, and fi, f > 0 such that fi — f in LP for
p € (1,00]. Assume also the following conditions:

i) e(y) > 2

1) the complex Monge-Ampére equations

MA,(uk) = e M frw™
up, € EY(X, w, ¥r)

admit solutions ur given as mazimizers of Fy . x;
111) supy ur < C uniformly.
Then there exists a subsequence {uw, }hen which converges strongly to u € EYX,w,v)
solution of
MA,(u) = e M fuw"
{u € el (X,w, ).

It is important to remark that the (basically unique) obstacle given by the uniform
bound in (#i7) is necessary. Indeed if {w} = ¢1(X) and ¥+ = P,[(1 — t)pp] for
¢p € PSH(X,w) such that w+dd°pp = %[D] for a smooth effective divisor D ~y;p
—rKx, then solving M A, (us) = e™*fw™ for f smooth in the class El(X,w,’l[Jt) is
equivalent to solve

MAW wy) = t_ne_twt_(l_t)‘PD n
(1 ) fo (1.33)
w € & (X, w).
The correspondence is given by w; := %vt where us = v¢ + (1 — t)pp. For suitable

f > 0 the path ([[.33] coincides with ({:27)] which is well-known to admit solutions
for ¢ small enough while sup,.gsupy w; = 400 when (X, —Kx) is not K-stable.
Here S C (0,1] is the set of parameters such that ( admits a solution.
Basically what happened in this case is that we removed the fixed part given by the
divisor %D to any element u < 1; to get an equivalent Monge-Ampére equation in
a different cohomology class (which in this specific case it is just a multiple of {w}).
This is a more general fact about model type envelopes with analytic singularities
type. Indeed in Paper IV it is shown that studying Monge-Ampére equations over
(X,w) in the class &'(X,w,) is the same as studying equivalent Monge-Ampére
equations over (Y,n) in the class &'(Y,n) where (Y,n) are given by the resolution
of the ideal defining the analytic singularities (see subsection 1 This yields
to a natural applications of the study of complex Monge-Ampére equations with
prescribed singularities.
First, recall that given a divisor D such that ¢1(X) — {[D]} = Mw} for A € @,
it makes sense to look at (weak) D-log Kiahler-Einstein metrics, i.e. to find u €
&'(X,w) such that

Ric(w + ddu) — [D] = Mw + dd°u). (1.34)
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In pluripotential sense this corresponds to solve a Monge-Ampére equation of the
type

MA,(u) = e+ fpum

u € &N X,w).

for C € R where fp > 0 encodes the singularities of the divisor D. It is then
convenient to say that w + dd°u is a (D, [¢])-log Kéhler-Einstein metric if u €
ENX,w,1p) and MA,(u) = e+ fpw™ for C € R. Indeed w + dd°u is actually
the curvature of singular hermitian metrics which differ each other by translation
constants and which are D-log Kéhler-Einstein metrics in the sense of (1[34)]

Then as said above, in the case 1 € MT with analytic singularities type, i.e. briefly
¥ € M{,, a (D, [¢])-log Kihler-Einstein metric in the class {w} over X is basically
the same as a D’-log semiKéhler-Einstein metric in the class {n} over Y. Here we
use the word semiKé&hler to denote a big and semipositive smooth form. Namely
there exists a map

®:MS, = {(Y,n) : nsemiKihler with w > p.nwhere p: Y — X is a resolution }/ ~

where (Y, n) ~ (Y',n) if there exists a third element (Z,7) dominating (Y, ), (Y',n)
in the usual sense. Denoting with X (x .) the image of @, the study of the existence
of (D, [¢])-log Kihler-Einstein metrics varying ¢ € M7 then includes the study of
all log semiK&hler-Einstein metrics in pairs (Y, 7). Note in particular that (the class
of) all small pertubations of the class {w} in the direction of exceptional divisors
are contained in K x ). Moreover X(x . inherits a natural partial order, a notion
of strong convergence, and Theorems (]HL]I[fan be naturally translating in this
particular setting (see Theorem En Paper 1V).

1.4.6 Main Results of Paper V

The last Paper of this thesis concerns the study of K&ahler-Einstein metrics with
prescribed singularities on a Fano manifold (X, w), i.e. solutions of

. —u

{MA“JE") —cH (1.35)
u€ & (X,w,)

where p is a suitable volume form (namely p = efw™ for f Ricei potential so that
Ric(u1) = w). A necessary condition on 1 € M7 is that e=¥ € L', i.e. ¢(¢)) > 1. For
obvious reasons it is said that (X)) is klt when this happens and M}, represents
the set of all model type envelopes with non-zero total Monge-Ampére mass such
that (X, %) is klt. In other words M}, is the admissible set of model type envelopes
for the search of K&hler-Einstein metrics with prescribed singularities.
After having defined a 1-relative version of the Ding and of the Mabuchi functional,
i.e. Dy, My, one goal of Paper V is to generalize the characterizations of the ex-
istence of the Kéhler-Einstein metrics to the relative setting. Unfortunately two
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more assumptions on 9 are added before proving these results. First v is given
as decreasing limit of model type envelopes with algebraic singularities types. Mp
briefly denotes this set. Note that M'[")’k“ seems to be the biggest subset of M™
where it may make sense wondering if a relative analog of the Yau-Tian-Donaldson
conjecture holds. However the assumption 1 € Mp is necessary to easily deduce
the linearity of Ey along weak geodesic segments in (81(X,w,w), d) thanks to De-
mailly’s Theorem of Regularization and previous known results in the big absolute
setting.

The second assumption is instead more involved. Indeed 1 is supposed to have small
unbounded locus , i.e. locally bounded outside a complete closed pluripolar set. This
hypothesis is necessary to apply a particular case of Berndtsson’s convexity result.

Theorem J (Theorems Eand E'of Paper V) . Let ¢ € M;Mt with small unbounded
locus and let u € El(X,w,w). Then the following statements are equivalent:
i) w+ dd°u is a Kihler-Einstein metrics with prescribed singularities [1];
Z7,) Dw(u) = infsl(x,w,w) Dw,’
ii1) My(u) = infe1(x o 4y My.
Moreover the uniqueness of Kihler- Einstein metrics with prescribed singularities [
s modulo the action of Aut (X, [¢¥])° := Aut(X, [¢]) N Aut(X)°, where Aut(X, [¢]) is

the subgroup of all automorphisms F' such that F*¢ — 1 is globally bounded.
Furthermore when Aut (X, [¢])° = {Id} then the following conditions are equivalent:
i) there exists an unique Kihler-Einstein metric with prescribed singularities  [];
i) Dy is d-coercive over &%, (X, w,);
i) My is d-coercive over Epopm(X,w, ).
This Theorem together with the continuity method with movable singularities de-
veloped in Paper IV gives the strong continuity of Ké#hler-Einstein metrics with
prescribed singularities [t;] where {t:}cj0,1) C M:lt,D is an increasing segment (i.e.
the singularities of 1); decrease). Indeed this is the content of Theorem Eﬂn Paper
V. The advantage is that one can choose ¥ € M;rlt and consider for instance the
natural path ¢ := (1 — ¢t)¢. It is then clear the importance to understand which
prescribed singularities ¢ € J\/[Lt admits a Kdhler-Einstein metrics with prescribed
singularities [t)]. Therefore in Paper V the Kahler-FEinstein locus

Mip = {1 € Mj}, : there exists a Kihler-Einstein metrics

with prescribed singularities [¢]},

is introduced and a first study of its structure using the relative version of the «-
invariant is provided. More precisely setting M 3 ¥ — ., (¢) € (0, +00),

aw(9) = sup {a >0 : sup / e “du < +oo}
X

{usw,sup x u=0}

as the natural generalization of the «-invariant, the following result holds.
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Theorem K (Theorem [K|of Paper V). Let (X,w) be a Fano manifold. Then

+ n
{w €My, aw(y) > n+1} C MkeE.
Moreover (i) = (ii) = (ii3) in the following conditions:
i) there exists 1 € M, t € (0,1] such that
C(u}(wt) >

n
(n+1)t
for ¥y := Pu[ty];
i) aw(0) > g
iii) Mxp = M.
Furthermore if 1 € My, satisfies Ict(X,0,%) :=sup{p > 1 : (X, py) is kit} > Z;f;
then

2
1
L +1 — 0 € Mkg. (1.36)

o (¥) >

The main upshot of this Theorem is that Mg g seems to be a very rigid locus, and
therefore the study of Kahler-Einstein metrics with prescribed singularities may
help to understand if there exists a genuine Kihler-Einstein metric (and hence to
detect if (X, —Kx) is K-stable). Note for instance that the implication (i) = (i)
and ([1.36) (look at the paper for its sharpest version) give a direct result on the
existence of genuine Ké&hler-Einstein metric estimating the «-invariant at singular
elements ¢ € M;rlt. It is important to stress that, roughly speaking, the more
is singular the easier is the computation of (1)) as it follows from the definition.
For instance in Paper V some rough estimates of «,(¢)) for ¢ with 0-dimensional
equisingularities are presented, i.e. when < has analytic singularities at N points
of the same weight. These estimates are given in terms of multipoint Seshadri
constants and of pseudoeffective thresholds. Note that this kind of computations
may be improved with the idea to produce new K-stable Fano manifolds.

On the other hand the implication (¢2) = (i%¢) implies that all Fano manifolds
with o (0) > 41 have many canonical metrics, i.e. for any admissible prescribed
singularities there exists a K&hler-Einstein metrics with such prescribed singularities.
In particular for these manifolds there are many log Kéhler-Einstein metrics for weak
Fano pairs (Y,7) given by resolution of integrally closed coherent analytic sheaves.
However (i7) cannot be replaced with a.,(0) > 47 as a counterexample with X = P?
shows. This leads to the following conjecture.

Conjecture A (Conjecture A). Let (X,w) be a Fano manifold with Aut (X)° =
{Id}. Then
0 € Mgp <= Mxr = M,

Conjecture A]would yield that showing the non-existence of Kihler-Einstein metrics
with prescribed singularities implies in many cases the non-existence of genuine
K&hler-Einstein metrics.
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Chapter 2

Multipoint Okounkov bodies

Abstract

Starting from the data of a big line bundle L on a projective manifold X
with a choice of N > 1 different points on X we give a new construction
of N Okounkov bodies which encodes important geometric features of (L —
X;pi,...,pN) such as the volume of L, the (moving) multipoint Seshadri
constant of L at pi,...,pn, and the possibility to construct Kahler packings
centered at pp,...,pn. Toric manifolds and surfaces are examined in detail.

Keywords: Okounkov body, Seshadri constant, packings problem, projective man-
ifold, ample line bundle.

2010 Mathematics subject classification: 14C20 (primary); 32Q15, 57R17 (sec-
ondary).

2.1 Introduction

Okounkov in [Oko96] and [Oko03[lfound a way to associate a convex body A(L) C
R" to a polarized manifold (X, L) where n = dimg X. Namely,

ALy = {”p(s) : s € HO(X, kL)\{O}}

k
k>1

where VP (s) is the leading term ezponent at p with respect to a total additive order
on Z" and holomorphic coordinates centered at p € X (see subsection . This
convex body is now called Okounkov body .

Okounkov’s construction was inspired by toric geometry, indeed in the toric case, if
Lp is a torus-invariant ample line bundle, A(Lp) is essentially equal to the polytope
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P.

The same construction works even if L is a big line bundle, i.e. a line bundle such
that Volx (L) := limsup,,_, % dimg H°(X, kL) > 0, as proved in [LM09], [KKh12]
(see also [Bould]) and the Okounkov body captures the volume of L since

Volx (L) = n!Volrn (A(L)).

Moreover if > is the lexicographical order then the (n—1)—volume of any not trivial
slice of the Okounkov body is related to the restricted volume of L —tY along Y
where Y is a smooth irreducible divisor such that Yy, = {z1 = 0}.

Another invariant which can be encoded by the Okounkov body is the (mowving)
Seshadri constant €s(||L||;p) (see [Dem90] in the ample case, or [Nak03[|for the

extension to the big case). Indeed, as Kiironya-Lozovanu showed in [KIL15a], [KL17],

if the Okounkov body is defined using the deglex orderEl, then

es(||L|[;p) = max {0,sup{t > 0 : tS, C A(L)}}

where 3., is the unit n—simplex.

As showed by Witt Nystrom in [WN15]] we can restrict to consider the essential
Okounkov body A(L)®® to get the same characterization of the moving Seshadri
constant.

Recall that A(L)* := |, 5, A¥(L)*, where A*(L) = Conv({*{) : s € HO(X, kL)\
{0}}) and the essential part of A®(L) consists of its interior as subset of RZ, with
its natural induced topology. N

Seshadri constants are also defined for a collection of different points. For a nef line
bundle L, the multipoint Seshadri constant of L at p1,...,pN is given as

L-C

es(L;p1, ..., pN) = inf ——"—.
¢ 37— multy,C

In this paper we introduce a multipoint version of the Okounkov body. More pre-
cisely, for a fixed big line bundle L on a projective manifold X of dimension n and
p1,...,pN € X different points, we construct N Okounkov bodies A;(L) C R"™ for
j=1,...,N.

Definition 2.1.1. Let L be a big line bundle and let > be a fized total additive order
on Z".

A;(L) := U {L(S) : sEVk,J} CR"

k
E>1

is called multipoint Okounkov body of L at p;, where Vi ; := {s € H°(X, kL) \ {0} :
vPi(s) < vPi(s)foranyi # j} for any k > 0.

la <deglez B iff |a = ;7:1 aj < |B| or |af = |B] and a <jep B, where <y is the
lexicographical order
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We observe that the multipoint Okounkov body of L at p; is obtained by considering
all sections whose leading term in pj is strictly smaller than those at the other points.
They are convex compact sets in R™ but, unlike the one-point case, for N > 2 it can
happen that some Aj;(L) is empty (Remark . The definition does not depend
on the order of the points.

Our first theorem concerns the relationship between the multipoint Okounkov bodies
and the volume of the line bundle:

Theorem A. E| Let L be a big line bundle. Then
N
n! Y Volrn (A;(L)) = Volx(L).
j=1

Furthermore, similar to section § 4 in [LMO09], we show that Aj(-) is a numer-
ical invariant and that there exists of a open subset of the big cone containing
By(p))® ={a e N*(X)r : pj ¢ By(a)} over which A;(-) can be extended contin-
uously (see section §. Recall that the points, and more in general the valuations
vPi | are fixed.

Moreover when > is the lexicographical order and Yi,..., YN are smooth irreducible
divisors such that Yj|Upj = {z;,1 = 0}, the fibers of A;(L) are related to the re-

stricted volumes of L —t 3"~ | V; along Y; (see section§.

The multipoint Okounkov bodies can be finer invariants than the moving multipoint
Seshadri constant (a natural generalization of the multipoint Seshadri constant to
big line bundles, see section §[2.5) as our next Theorem shows.

Theorem B. Let L be a big line bundle and let > be the deglex order. Then

es(|[LI;p1, - .- pn) = max {0,E(L;p1,. .., pn) }
where £(L;p1,...,pN) :=sup{t >0 : tX, C A;(L)**foranyj=1,...,N}

Next we recall another interpretation of the one point Seshadri constant: es(L;p)
is equal to the supremum of r such that there exists an holomorphic embedding
f: (Br(0),wst) — (X, L) with the property that f.ws: extends to a Kédhler form w
with cohomology class c¢1(L) (see Theorem 5.1.22 and Proposition 5.3.17. in |Ilaz04]).
This result is a consequence of a deep analysis in symplectic geometry by McDuff-
Polterovich ([MP94]), where they dealt with the symplectic packings problem (in
the same spirit, Biran in [Bir97]l proved the symplectic analogoues of the Nagata’s
conjecture).

Successively Kaveh in [Kav16[l showed how the one-point Okounkov body can be
used to construct a sympletic packing. On the same line Witt Nystrom in [WNI5]

2The theorem holds in the more general setting of a family of faithful valuations vPi :
Ox,p; \ {0} = (Z",>) respect to a fixed total additive order > on Z".
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introduced the torus-invariant domain D(L) := ( (L )ess) (called Okounkov do-
main) for p : C" — R", p(z1,...,20) == (|2 | soooy|znl?), and showed how it
approximates the manifold.

To get a similar characterization of the multipoint Seshadri constant, we give the
following definition of Kdhler packing.

Definition 2.1.2. We say that a finite family of n—dimensional Kdhler manifolds
{(Mj,n;)};j=1,...~n packs into (X,L) for L ample line bundle on a n-dimensional
projective manifold X if for any family of relatively compact open set U; € M; there
15 a holomorphic embedding f : [_|;.V:1 U; — X and a Kdihler form w lying in c1(L)
such that fin; = wpw,). If; in addition,

i_vjlfMjn?—/Xq(L)"

then we say that {(Mj,n;)};=1,....Nn packs perfectly into (X, L).

Following [WN15] we define the multipoint Okounkov domains as the torus-invariant
domains of C" given by D;(L) := pu~ " (A;(L)*).

Theorem C. E|Let L be an ample line bundle. Then {(D;(L),wst)}j=1
perfectly into (X, L).

N packs

,,,,,

Note that for big line bundles a similar theorem holds, given a slightly different

definition of packings (see section P.4.2}.

As a consequence (Corollary 2.5.17)| if > is the deglex order then
es(||L]];p1,...,pn) = max {0,sup{r >0 : B,(0) C D;(L)Vj=1,...,N}}.

This result was known in dimension 2 by the work of Eckl ([EckI17]).

Moving to particular cases, for toric manifolds we prove that, chosen torus-fixed
points and the deglex order, the multipoint Okounkov bodies can be obtained  sub-
diving the polytope (Theorem . If we consider all torus-invariant points the
subdivision is barycentric (Corollary . As a consequence we get that the mul-
tipoint Seshadri constant of N torus-fixed points is in %IN (Corollary .

Finally in the surface case, we extend the result in [KLMI12[ showing, for the lexico-
graphical order, the polyhedrality of Aj;(L) (Theorem . Moreover for Op2(1)
over P? we completely characterize A;(Op2(1)) in function of €s(Op2(1); N) obtain-
ing an explicit formula for the restricted volume of p*Op2(1) — ¢E for t € @Q where
o X — X is the blow-up at N very general points and E := Zj\;l E; is the sum
of the exceptional divisors (Theorem As a consequence we independently
get a result present in [DKMSI5]] the ray p*Op2(1) —tIE meets at most two Zariski
chambers.

3the theorem holds even if vPi is a family of faithful quasi-monomial valuations respect
to the same linearly independent vectors A1,..., A, € N™.
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2.1.1 Organization

Section P.2]contains some preliminary facts on singular metrics, base loci of divisors
and Okounkov bodies.

In section P.3]we develop the theory of multipoint Okounkov bodies: the goal is to
generalize some results in [LM09]lfor N > 1. We prove here Theorem [

Section B.4lis dedicated to show Theorem (]

In section P-5]we introduce the notion of moving multipoint Seshadri constants.
Moreover we prove Theorem JB;Jconnecting the moving multipoint Seshadri constant
in a more analytical language in the spirit of [Dem90[,| and deduce the connection
between the moving multipoint Seshadri constant and K&hler packings.

The last section P.6]deals with the two aforementioned particular cases: toric man-
ifolds and surfaces.

2.1.2 Related works

In addition to the already mentioned papers of Witt Nystrém ([WNI5[)] Eckl
([EckI17]), and Kiirona-Lozovanu ([KLI5al) [KLI7[), during the final revision of this
paper the work of Shin [Sh17[ appeared as a preprint. Starting from the same data
of a big divisor over a projective manifold of dimension n and the choice of r different
points, he gave a construction of an eztended Okounkov Body Ay1 _ yr(D) CR™
from a valuation associated to a family of admissible or infinitesimal flags Y*,...,Y".
In the ample case thanks to the Serre’s vanishing Theorem, the multipoint Okounkov
bodies can be recovered from the extended Okounkov body as projections after suit-
able subdivisions. Precisely, with the notation given in [Sh17[,Jwe get

F(A;(D)) = m; (Axl,.“,y,r(D) NHy;N--NHj—1 ;N Hjp 0N Hr,j)

where Tyt R™ — ]Rn,ﬂ‘j(fh...,fr) = fj, Hl',j = {(f1,...,i‘})€ R™ Ti,1 >
zj1} and F : R™ - R", F(y1,...,yn) :== (lyl,y1,--.,yn—1). Note that x;1 means
the first component of the vector «; while |y| = y1 + -+ + yn. The same equality
holds if L := Ox (D) is big and c1(L) € Supp(I';(X))° (see section P.3.2].

2.1.3 Acknowledgements

I want to thank David Witt Nystrom and Stefano Trapani for proposing the project
to me and for their suggestions and comments. It is also a pleasure to thank Bo
Berndtsson for reviewing this article, Valentino Tosatti for his interesting comments
and Christian Schultes for pointing out a mistake in the previous version.
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2.2 Preliminaries

2.2.1 Singular metrics and (currents of) curvature

Let L be an holomorphic line bundle over a projective manifold X. A smooth
(hermitian) metric ¢ is the collection of an open cover Uj,.; of X and of smooth
functions ¢; € C°°(Uj) such that on each not-empty intersection U; N U; we have
i = @; +In|gi ;|> where g; ; are the transition function defining the line bundle L.
Note that if s; are nowhere zero local sections with respect to which the transition
function are calculated then |s;| = e”%/. The curvature of a smooth metric ¢ is
given on each open U; by dd°p; where d° = ;-(8 — 0) so that dd® = ;~00. We
observe that it is a global (1,1)—form on X, so for convenience we use the notation
dd®p. The metric is called positive if the (1,1)—form dd®yp is a Kihler form, i.e. if
the functions ¢; are strictly plurisubharmonic. By the well-known Kodaira Embed-
ding Theorem, a line bundle admits a positive metric iff it is ample.

Demailly in [Dem90] introduced a weaker notion of metric: a (hermitian) singular
metric @ is given by a collection of data as before but wuth the weaker condition
that @; € L},.(U;). If the functions ; are also plurisubharmonic, then we say that
© is a singula positive metric. Note that dd°y exists in the weak sense, indeed it is a
closed positive (1,1)—current (we will call it the current of curvature of the metric
). We say that dd°p is a Kahler current if it dominates some Kihler form w. By
Proposition 4.2. in [Dem90] a line bundle is big iff it admits a singular positive metric
whose current of curvature is a Kéhler current.

In this paper we will often work with R—line bundles, i.e. with formal linear com-
binations of line bundles. Moreover since we will work exclusively with projective
manifolds, we will often consider an IR —line bundle as a class of IR—divisors modulo
linear equivalence and its first Chern class as a class of R —divisors modulo numerical
equivalence.

2.2.2 Base loci

We recall here the construction of the base loci (see [ELMNPO6]).

Given a Q—divisor D, let B(D) := (,-, Bs(kD) be the stable base locus of D
where Bs(kD) is the base locus of the linear system |kD|. The base loci By (D) :=
A4B(D — A) and B_(D) := |J,B(D + A), where A varies among all ample
Q—divisors, are called respectively augmented and restricted base locus of D. They
are invariant under rescaling and B_(D) C B(D) C B4 (D). Moreover as described
in the work of Nakamaye, [Nak03|| the restricted and the augmented base loci are
numerical invariants and can be considered as defined in the Neron-Severi space (for

a real class it is enough to consider only ample R—divisors A such that D+ A is a
Q—divisor). The stable base loci do not, see Example 1.1. in [ELMNPO06], although
by Proposition 1.2.6. in [ELMNPO06] the subset where the augmented and restricted
base loci are equal is open and dense in the Neron-Severi space N'(X)g.
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Thanks to the numerical invariance of the restricted and augmented base loci, we
will often talk of restricted and/or augmented base loci of a R —line bundle L. More-
over the restricted base locus can be thought as a measure of the nefness since D is
nef iff B_(D) = ), while the augmented base locus can be thought as a measure of
the ampleness since D is ample iff By (D) = (). Moreover B_ (D) = X iff D is not
pseudoeffective while B (D) = X iff D is not big.

2.2.3 Additive Semigroups and their Okounkov bodies

We briefly recall some notions about the theory of the Okounkov bodies constructed
from additive semigroups (the main references are [KKh12| land [Boul4], Isee also
[Kho93]).

Let S C Z""! be an additive subsemigroup not necessarily finitely generated. We
denote by C(S) the closed cone in R™" generated by S, i.e. the closure of the set
of all linear combinations »_, A;s; with A; € R>0 and s; € S. In this paper we will
work exclusively with semigroups S such that the pair (S,R"™ X R>¢) is admissible,
ie. S CR"™ X Rxo, or strongly admissible , i.e. it is admissible and C(S) intersects
the hyperplane R™ x {0} only in the origin (see section §1.2 in [KKh12|). We recall
that a closed convex cone C with apezr the origin is called strictly convez iff the
biggest linear subspace contained in C'is the origin, so if (S, R"™ x R>o) is strongly
admissible then C(S) is strictly convex.

Definition 2.2.1. Let (S,R" X R>0) be an admissible pair. Then
A(S) ==m(C(S)N{R" x {1}})

is called Okounkov conver set of (S,R™ x R>q), where 7 : R"™ — R" is the
projection to the first n coordinates. If (S,R"™ x Rxo) is strongly admissible, A(S)
is also called Okounkov body of (S,R™ X R>o).

Remark 2.2.2. The convexity of A(S) is immediate, while it is not hard to check
that it is compact iff the pair is strongly admissible. Moreover S generates a sub-
group of Z""! of maximal rank iff A(S) has interior not-empty.

Defining S* := {a : (ka, k) € S} C R" for k € N, we get
Proposition 2.2.3 (J[WN15|). Let (S,R"™ x R>0) be an admissible pair. Then

A(S) = | s*.

E>1

Moreover if K C A(S)° C R™ compact subset then K C Conv(S*) for k > 1 divisible
enough, where Conv denotes the closed convex hull. In particular

A(8)° = | Conv(5*)° = | Conv(s*)°

k>1 E>1

with Conv(S*) non-decreasing in k.
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Proof. 1t is clear that A(S) D (J,~, S*. The reverse implication follows from The-
orem 1.4.1in [KKh12] if S is finitely generated, while in general we can approximate
A(S) by Okounkov bodies of finitely generated subsemigroups of S. The second
statement is the content of Lemma 2.3 in when S is finitely generated,
while the general case follows observing that Conv(Sk!) is non-decreasing in k by
definition. O

When a strong admissible pair (S, R" x R>¢) satisfies the further hypothesis A(S) C
RZ, then we denote with

A(S)™ = | J Conv(s")™

E>1

the essential Okounkov body where Conv(S*)°** represents the interior of Conv(S*)
as subset of R%, with its induced topology ([WNI5]). Note that if S is finitely
generated then A(S)®* coincides with the interior of A(S) as subset of RZ,, but
in general they may be different since points in the hyperplanes {z; = 0} may be
contained in A(S)°** but not in A(S)°.

Proposition 2.2.4. Let (S,R"™ x R>o) be a strongly admissible pair such that
A(S) C REy, and let K C A(S)* be a compact set. Then there exists k > 1
divisible enough such that K C Conv(S®)**. In particular

A(S)ess _ U Conv(sk!)ess

k>1
with Conv(S*)®® non-decreasing in k, and A(S)* is an open convez set of RZ,.

Proof. We may assume that A(S)®* # 0 otherwise it is trivial. Therefore the
subgroup of Z"* generated by S has maximal rank. Then as in Proposition
is enough to prove the Proposition assuming S finitely generated. Thus we conclude

exactly as in Lemma 2.3 in [WNI4[lusing Theorem 1.4. in [KKh12[.] O

We also recall the following key Theorem:

Theorem 2.2.5 ([Bould], Théoréme 1.12.; [KKh12]] Theorem 1.14.) . Let (S,R" x
R>0) be a strongly admissible pair, let G(S) C Z"T be the group generated by
S and let ind; and inde be respectively the index of the subgroups w1 (G(S)) and
T (G(S)) in Z" and in Z where 1 and T2 are respectively the projection to the first
n-coordinates and to the last coordinate. Then

Volgrnr (A(S)) _ lim #Sm

indlindg‘ m—oco,meN(S) m"

where N(S) := {m € N : S™ # 0} and the volume is respect to the Lebesgue

measure.
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Finally we need to introduce the wvaluations:

Definition 2.2.6. Let V be an algebra over C. A wvaluation from V to Z" equipped
with a total additive order > is a map v :V \ {0} — (Z",>) such that

i) v(f +g) = min{v(f),v(g)} for any f,g € V\{0} such that f+g#0;
i) v(Af) =v(f) for any f € V\ {0} and any C > X # 0;
iir) v(fg) = v(f)+wv(g) for any f,g € V\{0}.
Often v is defined on the whole V adding 400 to the group Z" and imposing v(0) :=

+o0.
For any o € Z" the a—leaf of the valuation is defined as the quotient of vector

spaces
o L EVA{0}  v(p) > a} U0}
T A{revVA{0} s v(f) > afuf{o}
A valuation is said to have one-dimensional leaves if the dimension of any leaf is at
most 1.

Proposition 2.2.7 ([KKh12|, Proposition 2.6.) . Let V be an algebra over C, and
let v:V\{0} — (Z",>) be a valuation with one-dimensional leaves. Then for any
no trivial subspaces W C V,

#r(WA{}) = dime W.

We will say that a valuation v : V' \ {0} — (Z",>) is faithful if the field of fractions
K of V has transcendental degree n and the extension v : K\ {0} — (Z",>) defined
as v(f/g) == v(f) — v(g) (see Lemme 2.3 in [Bould]) has the whole Z" as image.
Note that any faithful valuation has one-dimensional leaves (see Remark 2.26. in
[Bould]).

2.2.4 The Okounkov body associated to a line bundle

In this section we recall the construction and some known results of the Okounkov
body associated to a line bundle L around a point p € X (see [LMO09],[KKh12] and
[Bould)).

Consider the abelian group Z" equipped with a total additive order >, let v :
C(X)\ {0} — (Z™,>) be a faithful valuation with center p € X (see the previous
subsection). We recall that p € X is the (unique) center of v if Ox, C {f € C(X) :
v(f) >0}and mx, C {f € C(X) : v(f) > 0}, and that the semigroup v(Ox ,\{0})
is well-ordered by the induced order (see §2 in [Boul4]).

Assume that Ly is trivialized by a non-zero local section t- Then any section s €
H°(X,kL) can be written locally as s = ft" with f € Ox(U). Thus we define
v(s) := v(f), where we identify C(X) with the meromorphic function field and Ox ,
with the stalk of Ox at p. We observe that v(s) does not depend on the trivialization
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t chosen since any other trivialization t' of L differs from ¢ on U NV by an unit
u € Ox(UNV). We define an additive semigroup associated to the valuation by

U= {(v(s),k) : s€ H(X,kL)\ {0},k >0} C Z" x Z.

We call the Okounkov body, A(L), the Okounkov convex set of (I';R"™ x R>q)
(see Definition , ie.

A(L) = 7(C(T) N {R" x {1}})

where 7 : R" x R — R" is the projection to the first n coordinated. By Proposition

2.2.3] we have

A(L) = U{@ s € HOY(X, kL) \ {0}} =

= Conv({% : s € HO(X, kL) \ {0}, k > 1}),

and we note that it is a convex set of IR™ but it has interior not-empty iff I' generates a
subgroup of Z™ ! of maximal rank (Remark Furthermore for a prime divisor
D € Div(X) we will denote v(D) = v(f) for f any local equation for D near p, and
the map v : Div(X) — Z" extends to a R—linear map from Div(X)r.

Theorem 2.2.8 ([LMO09|,[KKh12]) . The following statements hold:
i) A(L) is a compact convez set lying in R™;
i) n!Volrn (A(L)) = Volx (L), and in particular L is big iff A(L)° # 0, i.e A(L)
is a conver body;
1) if L is big then A(L) = {D € Div>o(X)r : D =num L} and, in particular,
the Okounkov body depends only on the numerical class of the big line bundle.

Quasi-monomial valuation Equip Z" of a total additive order >, fix X1, ..., An €
Z™ linearly independent and fix local holomorphic coordinates {z1,...,2,} around a
fixed point p. Then we can define the quasi-monomial valuation v : Ox ,\{0} — Z"
by

v(f):= min{z aZin . aq # Owherelocally around p, f =¢ Z aaz™}
i=1

acN™

where the minimum is taken respect to the > order fixed on Z". Note that it is

-

faithful iff det(X1,..., An) = £1.
For instance if we equip Z" of the lexicographical order and we take X\; = € (j—th
vector of the canonical base of R™) we get

v(f) :== min{a : ao # 0wherelocally around p, f =v Z aaz"}.

lex
aceN™
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This is the valuation associated to an admissibleflag X =Yy D Y1 D - DY, = {p},
in the sense of [LMOQ]EL such that locally Y; := {z1 = .-+ = 2z = 0} (see also
[WN15]).

A change of coordinates with the same local flag produces the same valuation, i.e.
the valuation depends uniquely on the local flag.

Note: In the paper a valuation associated to an admissible flag Y. will be the valu-
ation constructed by the local procedure starting from local holomorphic coordinates
as just described.

On the other hand if we equip Z" of the deglex order and we take X = €;, we get
the valuation v: Ox, \ {0} — Z",

v(f) == min {a : aq # 0wherelocally around p, f =v Z aaz™}.

deglex
a€N™

This is the valuation associated to an infinitesimal flag Y. in p: given a flag of
subspaces T,X =: Vo D Vi D .- DV, = {0} such that dimc V; = n — 4, consider on
X :=Bl, X the flag

X =Yy DP(Tp,X)=P(Vo) = Y1 D--- D P(Vpo1) =: Y, =: {5}

Note that Y. is an admissible flag around p on the blow-up X. Indeed we re-
cover the valuation on X associated to this admissible flag considering F o v where
the function F : (Z", >degiez) — (Z™,>iez) is the order-preserving isomorphism
F(a) := (Ja|,0a,...,an—1), i.e. considering the quasi-monomial valuation given by
the lexicographical order and XI = €1 + €.

Note: In the paper a valuation associated to an infinitesimal flag Y. will be the valu-
ation v constructed by the local procedure starting from local holomorphic coordinates
as just described, and in particular the total additive order on 7Z"™ will be the deglex
order in this case.

2.2.5 A moment map associated to an (S!)"—action on a
particular manifold

In this brief subsection we recall some fact regarding a moment map for an  (S*)" —action
on a symplectic manifold (X, w) cosntructed from a convex hull of a finite set A C N™
(see section §3 in [WNI5]).

Let A C N" be a finite set, let u : C* — R"™ be the map u(z1,...,2n) =
(I3, ..., |zal?).

Then if Conv(A)®*® # 0, we define

Dy =p "t (Conv(A)*) = ut (ConV(A))O

4Y; smooth irreducible subvariety of X of codimension i such that Y; is a Cartier divisor
inY;_q foranyi=1,...,n.
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where with Conv(A)*° we have indicated the interior of Conv(A) respect to the
induced topology on RZ,. Next we define X 4 as the manifold we get removing from
C™ all submanifolds given by {zi; = --- = z;, = 0} which do not intersect D 4. We
equip the manifold with the form w4 := dd°¢4 where

da(z) :==1In ( Z |z°‘\2).

acA

Here z = {21,...,2n} and 2% = 27* --- 23", Clearly, by construction, wy is an
(Sl)"—invariant Kéihler form on X4, so in particular (X4,wx) can be thought as
a symplectic manifold. Moreover defining f(wy,...,wn) = (e¥V/2,...,e""/?), the
function w4 (w) := ¢4 o f(w) is plurisubharmonic and independent of the imaginary
part y;, and f*wa = dd°us. Thus an easy calculation shows that

c 1 ~ 82’LLA
ddug = j;l Borda, dyi. A dz;

which implies
1o} c 0
d—uq =dd uA((47r)—, )

8$k Gyk
Therefore, setting Hj := %7;“;1 o f~1, since (fil)*(QTI'a%k) = 4#%, we get
0]
dHy, = 2 — ).
e =wa(2mgas,)
Hence pua4 = (Hi,...,H,) = Vug o f! is a moment map for the (S*)"—action

on the symplectic manifold (Xa,wa). Furthermore it is not hard to check that
pa((C*)™) = Conv(A)°, that pa(Xa) = Conv(A)** and that for any U C Xgu,
setting f~1(U) =V x (iR™),

/ wh :/ (ddun)™ = n!/ det(Hess(ua)) =
U V x(i[0,4x])™ v
= n!/ dz = n!Vol(pa(U)).
Vuy (V)

Finally we quote here an useful result:

Lemma 2.2.9 ([WNI15], Lemma 3.1.). Let U be a relatively compact open subset of
Da. Then there exists a smooth function g : Xa — R with compact support such
that w = wa + dd°g is Kdhler and w = wg over U.

2.3 Multipoint Okounkov bodies

We fix an additive total order > on Z" and a family of faithful valuations v%7 :
C(X)\ {0} — (Z",>) centered at pj;, where recall that p1,...,pn are different
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points chosen on the n—dimensional projective manifold X and L is a line bundle
on X.

Definition 2.3.1. We define V.; C R(X,L) as
Vij ={s € H(X,kL)\ {0} : v"i(s) < v7i(s)foranyi # j}.

Remark 2.3.2. They are disjoint graded subsemigroups with respect to the multi-

plicative action since vP7(s1 ® s2) = vPi(s1) + vP7(sz2), but they are not necessarily
closed under addition and UN_,V; ; is typically strictly contained in H°(X,kL)\ {0}
for some k£ > 1. Note that Vi ; contains sections whose leading term at p; with
respect to vP7 is strictly smaller than the leading term at p; with respect to v for

any i # j.
Clearly the properties of the valuations v*7 assure that

i) vPi(s) = oo iff s = 0 (by extension v (0) := 4o00);

ii) for any s € V.; and for any 0 # a € C, v?7 (as) = VP (s).
Thus we can define

;.= {(l/pj (S)Jﬂ) s € Wi k> 0} CZ" X 7.

Lemma 2.3.3. T is an additive subsemigroup of Z"' and (Tj;,R™ x R) is a
strongly admissible pair.

Proof. The first part is an immediate consequence of the definition, while the last

part follows from the inclusion I'; C 'y, := {(v*7(s),k) : s € H*(X, kL) \ {0}, k >
0} (see subsection P.2.4). O
Definition 2.3.4. We call Aj(L) := A(T';) the multipoint Okounkov body of L

at pj, i.e. Aj(L) = Ups, W by Proposition P.2.3)

The multipoint Okounkov bodies depend on the choice of the faithful valuations

vPr ., UPN but we will omit the dependence to simplify the notations.
Remark 2.3.5. If we fix local holomorphic coordinates {zj1,...,2jn} around p;, we
can consider any family of faithful quasi-monomial valuations with center p1,...,pn

(see paragraph , where any v%7 is given by the same choice of a total ad-
ditive order on Z™ and the choice of a family of Z—linearly independent vectors
Xu, cee, Xn,j € Z" (they may be different). For instance we can choose those as-
sociated to the family of admissible flags Yj; := {z;1 = -+ = z;; = 0} (with Z"
equipped of the lexicographical order) or those associated to the family of infinites-
imal flags Y. (with in this case Z" equipped pf the deglex order).

Lemma 2.3.6. The following statements hold:

i) Aj(L) is a compact convez set contained in R™;
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i) if p; ¢ B (L) then Tj(L) generates Z" " as a group. In particular A;(L)° #
ii1) if I;(L) is not empty then it generates Z™ " as a group. In particular A;(L)° #
0 iff A;(L) # 0.

Proof. The first point follows by construction (see Definition 2nd Remark
2.2.2).

For the second point, proceeding similarly to Lemma 2.2 in [LMO09], let D be a big
divisor such that L = Ox (D) and let A, B be two fixed ample divisors such that
D = A — B. Since D is big there exists N 3 k& > 1 such that kD — B is linearly
equivalent to an effective divisor F'.

Moreover, since by hypothesis p; ¢ B (L), by taking k& > 1 big enough, we may
assume that p; ¢ Supp(F) (see Corollary 1.6. in [ELMNPO06]), thus F is described
by a global section f that is an unity in Ox,p;. Then, possibly adding a very ample
divisor to A and B we may suppose that there exists sections so,...,sn € V1;(B)
such that v?9(so) = 0 and vPi (s1) = X; for any I = 1,...,n where Xl,...,Xn are
linearly independent vectors in Z™ which generate all Z" as a group (remember that
the valuations v?7 are faithful). Thus, since s; ® f € Vi ;(kL) for any ¢ =0,...,n
and 73 (f) = 0, we get

(0,k), (X1, k)., (An, k) € T;(L).

And, since (k+1)D—F is linearly equivalent to A we may also assume that (6, k+1) €
I'; (L), which concludes the proof of (it).

Finally to prove (4i7), let s € Vi ;(L) such that (vPi(s),k) € I';(L) and set o :=
vPi(s). Then by Lemma 2.2 in [LM09] there exists m € N big enough and a vector
¥ € Z" such that

(@ m), (T4 Xi,m), ..., (T4 X, k), (#,m +1) € T(L) (2.1)

where with I'(L) we denote the semigroup associated to vP7 for the one-point
Okounkov body (see subsection 3.2.4)[ and where Xh .. .,Xn are linearly indepen-
dent vectors in Z™ as in (i7). The points in ( correspond to sections to,...,tn €
H°(X,mL) \ {0}, tn41 € H°(X, (m + 1)L). Next by definition of V. ;(L) there ex-
ists N > 1 big enough such that s~ ® t; € Vigsm,;(L) for any j = 0,...,n and
sN Qtpn+1 € VNk+m+1(L). Therefore

(NG + @,m), (NG + T+ X1,m), ..., (NG + T+ Xn, k), (NG + 7, m + 1) € T;(L),
which concludes the proof. O

Remark 2.3.7. Let X be a curve, L a line bundle of degree degl = ¢, and
p1,-...,pn are different points on X. Then by the proof of Lemma A;(L)
are intervals in R containing the origin. Moreover if the points are very general and
the faithful valuations "7 are associated to admissible or to infinitesimal flags, then
A;(L) =[0,c¢/N] for any j =1,..., N as a consequence of Theorem [
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Remark 2.3.8. In higher dimension, however, the situation is more complicated.
Indeed it may happen that A;(L) = @ for some j as the following simple example
shows.

Consider on X = Bl,P? two points p1 ¢ Supp(E) and p2 € Supp(E) (F exceptional
divisor), and consider the big line bundle L := H + aF for a > 1. Clearly, if we
consider the family of admissible flags given by any fixed holomorphic coordinates
centered at p1 and holomorphic coordinates {z1,2,22,2} centered at ps where locally
E = {z1,2 = 0}, then Az(L) = (. Indeed by the theory of one-point Okounkov
bodies for surfaces (see section 6.2 in [LM09]) Aqi(L) C AP1(L) = X (where X is
the standard 2—simplex and AP'(L) the one-point Okounkov body) while Ay(L) C
AP2(L) = (a,0) + 27! (7' = Conw(0,&1,& + &) inverted simplex), and the
conclusion follows by construction. Actually, from Theorem AEre get Ai(L)=1X.
We refer to subsection £.6.2 [for a detailed analysis on the multipoint Okounkov
bodies on surfaces, and to subsection J.6.1 for the toric case.

2.3.1 Proof of Theorem [A]
The goal of this section is to prove Theorem 4]

Theorem [A] Let L be a big line bundle. Then
N
!>~ Volrn (A;(L)) = Volx (L)
j=1

We first introduce W. ; C R(X, L) defined as

Wi = {s € H*(X,kL)\ {0} : vPi(s) < vPi(s)if 1 <4 < jand
VvPi(s) < vPi(s)ifj <i < N}
and we set Iw,; = {(vP7(s),k) : s € Wi,k > 0}. It is clear W.; are graded
subsemigroups of R(X, L) and that Lemma olds for I'w,;. Moreover they are

closely related to V. ; and |_|§V:1 Wi; = H°(X,kL) \ {0} for any k > 0, but they
depend on the order chosen on the points.

Lemma 2.3.9. For every k > 1 we have that

N
> #T4y,; = h°(X, kL),

j=1
where we recall that Ty ; == {a € R™ : (ka, k) € Tw;}.

Proof. We define a new valuation v : C(X)\ {0} = Z" x --- x Z™ ~ ZN™ given by
v(f) == WP (f),..., PN (f)), where we put on Z™" the lexicographical order on the
product of N total ordered abelian groups Z", i.e.

(A1, AN) < (p1, - .-, pv) if there exists j € {1,..., N}st. Ay = p Vi < jand A\j < p;.
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Fix k € N. For every j =1,...,N, let F@V’j ={aj1,.. ., a5} and s51,..., 850, €
Wi,; be a set of sections such that vP9(s;;) = o, forany I =1,...,7;.

We claim that {s11,...,5n,ry} is a base of H°(X,kL).

Let >, tisi = 0 be a linear relation in which p; # 0, s; € {s1,1,...,5n,ry} for
all i =1,...,r and s; # s; if ¢ # j. By construction we know that v(s1),...,v(sr)

are different points in Z"". Thus without loss of generality we can assume that
v(s1) < --- < v(sy), but the relation

1 N
S1=—— > s

K15
implies that v(s1) > min{v(s;) : j = 2,...,r} which is the contradiction. Hence
{s1,1,.--,8N,ry } is a system of linearly independent vectors, thus to conclude the

proof it is enough to show that it generates all H°(X,kL).

Let to € H°(X,kL) \ {0} be a section and set o := (Xo,1,--.,Ao,n) := v(to). By
definition of W.; there exists an unique jo € 1,..., N such that tqg € Wy, j,, which
means that Ao > Xo,j, if 1 <@ < jo, and that Ao > Xo,j, if jo < ¢ < N. Therefore
by construction there exists [ € {1,...,7;,} such that Ao j, = VP90 (s4,,1), SO we set
S0 = Sj,,1. But

o ({5 € HOCXLRL)\ {0} = v (s) > Do} U0} |
{s € HO(X,kL)\ {0} : vPio(s) > XojoU{0} ) =

since vPio has one-dimensional leaves, so there exists a coefficient ao € C such that
vPio (to —aoso) > Mo,jo- Thusif £ = agso we can conclude the proof, otherwise we set

t1 := to—aoSo and we want to iterate the process setting A1 := (A1,1,...,A1,n) := v(t1)
and observing that min; A1 ; > min; A\o,; = Ao,j, and that the inequality is strict if
t1 € kajO'

Thus we get to,t1,...,t; € HO(X, kL) \ {0} such that ¢, := t;_1 — a;_15-1 €
Wi.,;, for an unique j; € {1,..., N} where s;—1 € {sj,_,,1,---,S4,_,,~n_, ) Satisfies
VPi-1 (1) = V™11 (s;_1), and min; \;,; > min; A\j—1,; for v(t;) =: A;. Therefore
we get a sequence of valuative points A; such that min; A; ; > minj \j—1; > -+ >
min; Ao,; where by construction there is at least one strict inequality if [ > N. Hence
we deduce that the iterative process have a conclusion since that the set of all val-

uative points of v is finite as easy consequence of the finitess of the cardinality of

F’évyjforeachjzl,,..,N. O

Proposition 2.3.10. Let L be a big line bundle. Then A;(mL)=mA;(L) and
AV (mL) =mA} (L) for any m € N and for any j =1,...,N where A} (L) is the
Okounkov body associated to the additive semigroup T'w, ;(L).

Proof. The proof proceeds similarly as the proof of Proposition 4.1.7% in [LMO09],
exploiting again the property of the total order on Z".
We may assume A;(L) # 0, otherwise it would be trivial, and we can choose 7,t € N
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such that V, j, Vim—r,; # 0, i.e. there exist sections e € V,; and f € Viy—r ;. Thus
we get the inclusions

kT (mL)* + 13 (e) + Vi (f) C (km + r)T; (L) + vPi (f) C (k + t)T;(mL)* .

Letting k — oo, we find Aj(mL) C mA;(L) C A;(mL).
The same proof works for A}V (L). O

Proposition P.3.10 lextends naturally the definition of the multipoint Okounkov bod-
ies to QQ-line bundles.
We are now ready to prove Theorem 4]

Proof of Theorem ] By Lemma P-3.9]and Theorem $.2.5 jve get

a3 Vel AFE) o #Ty
4= indy,;(L)indz,; ()" keN(L) koo kn N

. hO(X, kL
= keN(lgr}k%oo % = Volx(L). (2.2)

where we keep the same notations of Theorem 2.5 fpr the indexes indy ;(L), indz ;(L)
adding the j subscript to keep track of the points and the dependence on the line
bundle because we want to perturb it.
Then we claim that

AJ(L)° = A (L)°, (2.3)
for any j=1,...,N. Note that since I'y,;; C I'w; we only need to prove that
AV (L)"'C A(L)"
Let A be a fixed ample line bundle A such that there exist si,...,sy € H°(X,A)
with s; € V1,;(A) and v?i(s;) = 0. Thus we get A} (mL — A) C Aj(mL) for each
m € N and for any j = 1,..., N since s®s¥ € Vi ;(mL) for any s € Wi j(mL — A).
Hence

1
AV (L~ —A) CAy(L) (2.4)
by Proposition

Moreover since m — indi;(L — =A) and m — ind; (L — = A) are decreasing
functions, ( implies

Volgn AW(L - 14)
| >
lim sup nt Z ind;,;(L)indo ; (L) —

m— o0

N w 1
Volgn (AY (L — L A))
>1i ! J m =1 Volx (L — —A
ZHmswnt D T 1 Aindz (- Ay~ s Volx (= ) =

VOl]Rﬂ 1 )
= Vol =n! 2.5
Volx (L) = n! Z indy ;( 1nd2 J(L) (2:5)
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where we used the continuity of the volume function on line bundles. Thus since
AV(L—LA)c AY(L—31A4)ifl>mforany j=1,...,N, from ( we deduce
that m — Volrn (A} (L — L A)) is a continuous increasing function converging to
Volgn (A (L)) for any j =1,...,N. Hence (. D.3) follows from 2

Finally combining (.3] and Lemma 4:3:6 ] (iii) we find out that 1nd1 (L) =ind2;(L) =
1 if Volgn (AW( )) # 0. Thus using again (2.2) we obtain

N N VOI]Rn j )
| a A — _
n! Ezl Volr ( =n! E lnd1,g 1nd2 L) = Volx (L),

which concludes the proof. O

2.3.2 Variation of multipoint Okounkov bodies

Similarly to the section §4 in [LMO09], we prove that for fixed faithful valuations vP7
centered a IV different points the construction of the multipoint Okounkov Bodies is
cohomological, i.e. A;(L) depends only from the first Chern class ¢i(L) € N*(X) of
the big line bundle L, where we have indicated with N'(X) the Neron-Severi group.
Recall that p(X) := dimN'(X)r < oo where N'(X)g := N'(X) ®z R.

Proposition 2.3.11. Let L be a big line bundle. Then A;(L) depends uniquely on
the numerical class of the big line bundle L.

Proof. Assume A;(L)° # (), which by Lemma s equivalent to A;(L) # 0, and
let L' such that L' = L+ P for P numerically trivial. Fix also an ample line bundle

A. Then for any m € N there exists km € N and s, € H(X, kmm(P + L A)) such
that sm(p;) # 0 for any ¢ = 1,..., N since P + %A is a ample @Q—line bundle.
Hence we get A;(L) C Aj(L' 4+ = A) by homogeneity (Proposition because

s ® sk, € Vi j(kmmL' + ky,A) for any section s € Vi ;(kmmL). Therefore similarly
to the proof of Theorem Eletting m — oo, we obtain A;(L) C A;(L"). Replacing
L by L+ P and P by —P, Lemma P.3.6|concludes the proof. O

Setting r := p(X) for simplicity, fix Li,..., L, line bundle such that {ci(L1),...,c1(Ly)}
is a Z—basis of N'(X): this lead to natural identifications N'(X) ~ Z", N*(X)r ~
R". Moreover by Lemma 4.6. in [LM09]| we may choose L1,..., L, such that the
pseudoeffective cone is contained in in the positive orthant of R".

Definition 2.3.12. Letting
[(X):=T3(X;Ly,...,Ly) :={(@"(s),m) : s € Vizn;(L1,...,L:)) \ {0}, € N"}

be the global multipoint semigroup of X at p; with p1,...p5;,...,pn fixed (it is
an addittive subsemigroup of Z"V") where Vi j(L1,...,Ly) := {s € H°(X,m -
(L1,..., L))\ {0} : vPi(s) < vPi(s)foranyi # j}, we define

Aj(X) = C(T5(X))
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as the closed conver cone in R"™" generated by I';(X), and call it the global mul-
tipoint Okounkov body at p;.

Lemma 2.3.13. The semigroup [';(X) generates a subgroup of Z™"" of mazimal
rank.

Proof. Since the cone Amp(X) is open non-empty set in N'(X)r (we have indicated
with Amp(X) the ample cone, see [Laz04]), we can fix F1,..., F, ample line bundles
that generate N'(X) as free Z—module. Moreover, by the assumptions done for

L1,...,L, we know that for every i = 1,...,r there exists a; such that F; = a; -
(L1,...,Ly). Thus, for any ¢ =1,...,r, the graded semigroup I';(F;) sits in I';(X)
in a natural way and it generates a subgroup of Z" X Z-d; of maximal rank by point
i1) in Lemma P.3.6[since B4 (F;) = . We conclude observing that di,...,d, span
/4 O

Next we need a further fact about additive semigroups and their cones. Let I' C
Z"™ x N" be an additive semigroup, and let C(I') C R™ x R" be the closed convex
cone generated by I'. We call the support of I' respect to the last r coordinates,
Supp(I'), the closed convex cone C(7w(I')) C R" where m : R™ x R” — R" is the
usual projection. Then, given @ € N", we set I'ng := I'N (Z™ x N@) and denote by
C(I'ng) C R™ x Ra the closed convex cone generated by I'ng when we consider it
as an additive semigroup of Z" x Zd ~ Z" 1.

Proposition 2.3.14 ([LMO09], Proposition 4.9.). Assume that T" generates a sub-
group of finite index in Z" X Z", and let @ € N" be a vector lying in the interior of
Supp(I"). Then

C('nz) =C(T)N(R" x Ra)
Now we are ready to prove the main theorem of this section:

Theorem 2.3.15. The global multipoint Okounkov body A;(X) is characterized by
the property that in the following diagram

Aj(X) C R" xR" ~R" x N'(X)r

\ bra

R~ N'(X)r

the fiber of A;(X) over any cohomology class ci(L) of a big Q—Uline bundle L such
that c¢1(L) € Supp(I';(X))° is the multipoint Okounkov body associated to L at pj,
i.e Aj(X)Npryt(ei(L)) = Aj(L). Moreover Supp(lﬂ]-(X))O NNYX)gq = {ci(L) :
A;(L) # 0, L Q—line bundle}.
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Remark 2.3.16. It seems a bit unclear what Supp(I';(X))° is. By second point
in Lemma it contains the open convex set By (p;)¢ where B (p;) := {a €
NY(X)r : p € Bi(a)} is closed respect to the metric topology on N'(X)r by
Proposition 1.2. in [KLI5a] and its complement is convex as easy consequence of

Proposition 1.5. in [ELMNP06]| But in general Supp(I';(X))° may be bigger: for
instance if N = 1 Supp(I';(X))°® coincides with the big cone, and we can easily

construct an example with pi,ps € B_(L) and A;(L)° # 0 for j = 1,2. For
instance consider X = B1qIP27 L := H + F where F is the exceptional divisor
and pi1,p2 € Supp(E) different points. Then given two valuations associated to

admissible flags Y. ; for 7 = 1,2 centered at pi,p2 such that Y1 ; = E for any
j =1,2, it is easy to check that A;(L)° # @ for j = 1,2 since by Lemma 2.3.6 |this
is equivalent to A;(L) # 0.

Proof. For any vector @ € N” such that L:=@- (L1,...,L,) is a big line bundle in
Supp(T;(X))°, we get I';(X)na = I';(L), and so the base of the cone C(I';(X)nz) =
C(T;(L)) C R™ x Ra is the multipoint Okounkov body A;(L), i.e.

AS(L) = ﬂ'(C(Pj(X)]Nd) N (R" x {1})).

Then Proposition £:3.14 jmplies that the right side of the last equality coincides with
the fiber A;(X) over c¢1(L). Both sides rescale linearly, so the equality extends to
Q-line bundles.

Next by Lemma it follows that c1(L) € Supp(T';(X)) for any Q-line bundle L
such that A;(L) # (. On the other hand, by the first part of the proof we get

Supp(T;(X))° NN'(X)q C {a1(L) : Aj(L) # 0, L Q-line bundle}. (2.6)

Thus it remains to prove that the right hand in is open in N'(X)q, which
is equivalent to show that Aj(L — +A) # 0 for k > 1 big enough if A is a fixed
very ample line bundle since the ample cone is open and not empty in N'(X)r
and N'(X)R is a finite dimensional vector space. Considering the multiplication

by a section s € H°(X, A) such that s(p;) # 0 for any ¢ = 1,..., N, we obtain
Ai(L—+A) C Ai(L) for any i = 1,..., N. Therefore by Theorem E}md Lemma
we necessarily have A;(L — 1 A)° # () for k> 1 big enough since Volx (L — £ A) ~
Volx (L) and A;(L)° # (. This concludes the proof. O

As a consequence of Theorem we can define multipoint Okounkov bodies for
R-line bundles. Indeed it is natural to set A;(L) as the limit (in the Hausdorff sense)

of Aj(Ly) if e1(L) € Supp(I';(X))° = {1 (L) : Aj(L) # 0, L Q—line bundle}O where
{Li}ren is any sequence of @Q-line bundles such that c¢i(Lg) — ¢1(L), and A;(L) =0
otherwise. This extension is well-defined and coherent with Lemma 2[3.6, jince we
obtain A;(L)° # 0 iff A;(L) # 0.

Corollary 2.3.17. The function Volg» : Supp(I';(X))° — Rxo, c1(L) — Volr» (A, (L))
is well-defined, continuous, homogeneous of degree n and log-concave, i.e.

Volgn (A (L + L'))/™ > Volgn (A;(L))*™ + Volgn (A; (L))"
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Proof. The fact that it is well-defined and its homogeneity follow directly from
Propositions P.3.10 |and 2.3.11,| while the other statements are standard in convex
geometry, using the Brunn-Minkowski Theorem and Theorem 2 O

Finally we note that the Theorem 2.3.15 dllows us to describe the multipoint Okounkov
bodies similarly to Proposition 4.1. in [Bould4]:

Corollary 2.3.18. IfL = Ox(D) is a big line bundle such that c¢1(L) € Supp(l';(X))°,
then

A;j(L) =vPi{D’ € Div>o(X)r : D! =pum DandvPi (D’) < vPi(D')Vi # j}

where we have indicated with =pum the numerical equivalence. In particular ev-
ery rational point in A;(L)° is valuative and if it contains a small n-symplex with
valuative vertices then any rational point in the n-symplez is valuative.

Proof. The first part follows directly from Theorem ince D =,um D iff
c1(L) = c1(Ox(D")) by definition (considering the R—line bundle Ox(D’)). The
statement about A;(L)° is a consequence of Proposition 3 in [Kho93].§3 and of
Lemma (ZZZ) while the valuative property for the n-symplex is a consequence
of the multiplicative rule of 7. O

2.3.3 Geometry of multipoint Okounkov bodies

To investigate the geometry of the multipoint Okounkov bodies we need to introduce
the following important invariant:

Definition 2.3.19. Let L be a line bundle, V C X a subvariety of dimension d and
H(X|V,kL) := Im (HO(X, kL) — HO(V, kL|V)). Then the quantity

i dim H°(X|V, kL)
VO]X'V(L) = ll]zfisip kd—/d'

is called the restricted volume of L along V.

We refer to [ELMNPO09] and reference therein for the theory about this new object.
In the repeatedly quoted paper [LM09]] given a valuation v?(s) = (vP(s)1,...,07(s)n)
associated to an admissible flag Y. = (Y1,...,Y}) such that Y7 = D and a line bun-
dle L such that D ¢ B (L), the authors also defined the one-point Okounkov body
of the graded linear sistem H®(X|D,kL) C H°(D,kLp) by

with Tx|p := {(t*(8)2,...,V7(s)n, k) € N"7" x N :se€ H*(X|D,kL)\ {0}, k > 1}
and they proved the following
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Theorem 2.3.20 ([LM09], Theorem 4.24, Corollary 4.25). Let D ¢ B4 (L) be a
prime divisor with L big R—line bundle and let Y. be an admissible flag such that
Y1 =: D. Let Cmax :=sup{A >0 : L — ADisbig}. Then for any 0 <t < Caz

A(L)z,>t = A(L —tD) + te
A(L)z,=t = Ax\D(L —tD)

Moreover

’L) VOan—l(A(L)ZI:z) = ﬁVolX‘D(L — tD),

i) Volx (L) — Volx (L — tD) = n [ Volx|p(L — AD)d);

In this section we suppose to have fixed a family of valuations v?7 associated to a
family of admissible flags Y. = (Y. 1,...,Y. n) on a projective manifold X, centered

respectively in pi1,...,pn (see paragraph and Remark Given a big line
bundle L, and prime divisors D1,..., Dy where D; =Y ; forany j=1,..., N, we
set

u(L; D) :=sup{t >0 : L —¢Disbig}

where D := Efvzl D;, and
wu(L; Dj) :=sup{t >0 : A;(L —tD)° # 0}.

Theorem 2.3.21. Let L a big R—line bundle, v*7 a family of valuations associated
to a family of admissible flags Y. centered at p1,...,pn. Then, letting (x1,...,%n) be
fized coordinates on R™, for any j € {1,..., N} such that A;(L)° # 0 the followings
hold:

i) Aj(L)z;>t = Aj(L—tD)+té1 for any 0 <t < pu(L; Dj), forany j=1,...,N;

i) Aj(L)ay=t = Ax|p; (L —tD) for any 0 <t < u(L; D), t # p(L; D;) and for
any j=1,...,N;

i#1) Volgn—1(A;(L)z;=t) = ﬁ\/dxmj (L — tD) for any 0 <t < pu(L;D), for
any j = 1,...,N, and in particular p(L;D;) = sup{t >0 : D; ¢ B (L —
tD)}.

Moreover

i) Volx (L) — Volx (L — tD) = nfot SN, Volx|p, (L - )\]D)d)\ for any 0 <t <

p(L; D).

Proof. The first point follows as in Proposition 4.1. in [LMO09], noting that if L is
a big line bundle and 0 < ¢t < p(L;D;) integer then {s € Vi (L) : vPi(s)y >
kt} ~ Vi ;(L — tD) for any k > 1. Therefore I'j(L)z,>: = ¢¢(I';(L — tD)) where
ot : N x N — N” x N is given by (%, k) := (& + tke, k). Passing to the cones
we get C(Tj(L)e;>t) = ¢t r(C(I;(L — tD))) where ¢ R is the linear map between
vector spaces associated to ;. Hence, taking the base of the cones, the equality
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Aj(L)z, >t = A;(L—tD)+teé follows. Finally, since both sides in %) rescale linearly
by Proposition the equality holds for any L Q—line bundle and ¢ € @). Both
sides in (2) are clearly continuous in ¢ if 0 <t < pu(L; D;) so it remains to extends
it to R-line bundles. We fix a decreasing sequence of (@Q-line bundles {Lj}ren such
that Ly \, L, where for decreasing we mean Ly — Liy1 is an pseudoeffective line
bundle and where the convergence is in the Neron-Severi space N'(X)gr. Then, as
a consequence of Theorem 0 <t < wu(Lk,Dj) for any k € N big enough
where t is fixed as in (i), and {A;(Lg)}ken continuously approximates A;(L) in the
Hausdorff sense. Hence we obtain (7) letting k — oo.

Let us show point i), assuming first L Q—line bundle and 0 < ¢ < u(L; D;) rational.
We consider the additive semigroups

L «(L) ={("(s),k) e N" xN : s € V;(L) and v*7 (s)1 = kt}
Lx|p, (L —tD) := {(¥"(8)2,..., V" (s)n, k) € N" ' xN:
s€ H (X|D;, k(L —tD)) \ {0},k > 1}

and, setting ¢ : N"7' x N — N" x N as (%, k) := (kt, &, k), we casily get
(L) C 9y (FX|DJ. (L — t]D)). Thus passing to the cones we have

C(T5(L))ar=t = C(T;4(L)) € Y (C(Txip, (L — tD)))

where the equality follows from Proposition A.1 in [LM09]. Hence A;(L)z =t C
Ax|p;(L —tD) for any 0 <t < p(L; Dj) rational. Moreover it is trivial that the
same inclusion holds for any p(L; D;) <t < u(L;D).

Next let 0 < ¢ < pu(L; D) fixed and let A be a fixed ample line bundle such that there
exists s; € V1,j(A) with vP4(s;) = 0 and vPi(s;)1 > 0 for any i # j. Thus since to
any section s € H°(X|D;, k(L — tD)) \ {0} we can associate a section § € H°(X, kL)
with vP9(8) = (kt,vP(s)2,...,vP9(s)n) and vPi(5)1 > kt for any i # j, we get that
5™ ® s;? € Vi,j(mL + A) for any m € N. By homogeneity this implies

VI(ET @ s)) _ P(E) g, vPi(s)
mk Tk ( Tk T =t
for any m € N. Hence since A;(L)° # @ we get 0 <t < u(L; D;) and z € Aj(L)g, =t
by the continuity of m — A;(L 4+ = A) (Theorem .
Summarizing we have showed that both sides of i) are empty if p(L;D;) <t <
u(L; D) and that they coincides for any rational 0 <t < u(L; D;). Moreover since

by Theorem

)::a:eAj(L—I-%A)

Axp, (L — tD) = A(L ¢ XN: Di)

x1=t
i=1,i#] !

with respect to the valuation ©P7, we can proceed similarly as in (¢) to extend the
equality in (i%) first to ¢ real and then to R-line bundles using the continuity derived
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from Theorem P.3.15Jand Theorem 4.5 in [LM09].
The point 4i%) is an immediate consequence of i) using Theorem ) and The-

orem A and C in [ELMNPQ9], while last the point follows by integration using our
Theorem (] O

We observe that Theorem £.3.21 nay be helpful when one fixes a big line bundle L
and a family of valuations associated to a family of infinitesimal flags centered at
D1y, pN & B4+ (L). Indeed, similarly as stated in the paragraph § componing
with F': R" — R", F(z) = (|z|,z1,...,Zn-1), the Theorem holds and in particular,
for any j=1,..., N, we get

i) F(A;(L) , = A (f"L —tE) + téy for any 0 <t < pu(f*L; Ej);

)1.7‘,12
)

ii) F(A;(L) = A)?\Ej (f*L —tE) for any 0 <t < p(f*L;E),

Tj,1

iii) Volgn—1(F(A;(L))e; =) = ﬁVoleEj(f*LftIE) forany 0 <t < u(f*L; E);

where we have set f : X — X for the blow-up at Z = {p1,...,pn} and we have
denoted with E; the exceptional divisors. Note that E = Z;'V:1 E; and that the
multipoint Okounkov body on the right side in 4) is calculated from the family of
valutions {Pi }j\;l (it is associated to the family of admissible flags on X given by
the family of infinitesimal flags on X).

This yields a new tool to study the multipoint Seshadri constant as stated in the
Introduction (see Theorem ﬂ And as application in the surfaces case we refer to

subsection R.6.2]

2.4 Kahler Packings

Recalling the notation of the subsection § the essential multipoint Okounkov
body is defined as

Aj(L)ess = U A?(L)ess — U A?!(L)ess

k>1 k>1

where A%(L)** := Conv(T'})** = LConv(v"7 (Vi) is the interior of A¥(L) :=
Conv(I'}) as subset of RZ, with its induced topology.

Fix a family of local holomorphic coordinates {zj1,...,2;n} for j =1,..., N respec-
tively centered at p1,...,pn and assume that the faithful valuations v**,... VPN are
quasi-monomial respect to the same additive total order > on Z"™ and respect to the
same vectors Xl, ey Xn € N (see Remark . Thus similarly to the Definition
2.7. in [WN15], we give the following

Definition 2.4.1. For every j = 1,..., N we define D;(L) := p~*(A;(L)***) and
call it the multipoint Okounkov domains , where p(wi, ..., wn) == (lw1|?, ..., |lw.|?).
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Note that, as stated in the subsection §.2.5, Jwe get n!Volrn (A;(L)) = Volgn (D, (L))
forany j=1,...,N.

We will construct Kdhler packings (see Definition and of the multipoint

Okounkov domains with the standard metric into (X, L) for L big line bundle. We
will first address the ample case and then we will generalize to the big case in

subsection §

2.4.1 Ample case

Definition 2.4.2. We say that o finite family of n—dimensional Kéhler manifolds
{(Mj,n;)}j=1,...~n packs into (X,L) for L ample if for every family of relatively
compact open set Uj € Mj there is a holomorphic embedding f : |_|jv=1 Uj — X and
a Kihler form w lying in c1(L) such that fun; = wpw,). If, in addition,

i/M W= [ awr

then we say that {(M;,n;)}j=1,...,.n packs perfectly into (X, L).

Letting 1 : C™ — R™ be the map u(z;) := (|z;,1]%, - - -, |2j,n|?) where z; = {zj1,...,25n}
are usual coordinates on C" and letting

Dij = p (RAF(L))° = n™" (kAT (L)),

we define Mj, ; like the manifold we get by removing from C™ all the submanifolds
of the form {z;;; =--- = 2;,,, = 0} which do not intersect Dy, ;.

Thus
Prj 1= 111( > |Zjaj|2)
ajEVPj (Vie,5)

is a strictly plurisubharmonic function on My,; and we denote by wy; = dde ¢t
the Kéhler form associated (recall that dd® = 5-00, see subsection .

Lemma 2.4.3 ([Andi3], Lemma 5.2.) . For any finite set A C N™ with a fized
additive total order >, there exists a v € (Nso)™ such that

a<fB iff a-y<B-v
for any o, B € A.
Theorem 2.4.4. If L is ample then for k > 0 big enough {(Mp,;,wk,;)} =1 packs
into (X,kL).

Using the idea of the Theorem A in [WN15] we want to construct a Kédhler met-
ric on kL such that locally around the points pi,...,pn approximates the met-
rics ¢r,; after a suitable zoom. We observe that for any v € N™ and any sec-
tion s € H°(X,kL) with leading term o« € N™ around a point p € X we have
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aq

s(TM 21,00, T 2y) TV ~ 27 oo 20 for Rso O 7 converging to zero. Therefore

Sa; (T725) o
. J . -
locally around p; we have In ( N ajeypj(vkyj)\ Ly [*) ~ ¢r,; where s, are sec

tions in Vj ; with leading terms of their expansion at p; equal to a; € N™. Thus the
idea is to consider the metric on kL given by In(3 1, Zai@pi(vk,iﬂ%F)) and
define an opportune factor ~ such that this metric approximates the local plurisub-
harmonic functions around the points pi,...,pn after the uniform zoom 77 for 7
small enough. This will be possible thanks to Lemma 2[4:3 dnd the definition of
Vk,;. Finally a standard regularization argument will conclude the proof.

Proof. We assume that the local holomorphic coordinates z; = {zj1,...,2jn} cen-
tered a p; contains the unit ball By C C" for every j =1,...,n.

Set A; := vPi(Vy,;) and B? := vPi(V, ;) for i # j to simplify the notation, let & be
large enough so that A¥(L)** = () for any j = 1,..., N (by Lemma and Propo-
sition and let {U; }5\1:1 be a family of relatively compact open set (respectively)
in {My, ;}=,. Pick v € N" as in Lemma for 8 = U;y:1 (A UU,, B7) ordering
with the total additive order > induced by the family of quasi-monomial valuations,
ie.a>fBiffa-y>p-7.

Next, for any j = 1,..., N, by construction we can choice a family of sections sq;
in Vi ;, parametrized by Aj;, such that locally

] . 5
Saj(zj)_zJ +§ Qj,n;Zj

nj>j
Sag(7) = @iz + Y @i m"
m>f3§
with a;,; # 0 and o5 < Bf for any i # j.
Thus if we define, 77z; := (77251 ...,7"™2;n) for 7 € R>g, then we get for any
a; € Aj
Say (T7z;5) = 77%(z;% 4+ O(|7])) V1725 € By 2.7
Sy (T723) = 77 (ai 25" + O(|7]))  V7'm € By (2.8)

Let, for any j =1,...,N, g; : My ; — [0,1] be a smooth function such that g; =0
on Uj and g; = 1 on K¢ for some smoothly bounded compact set K such that
U; € K; C My,;. Furthermore let U be a relatively compact open set in My ; such
that K; C U;.

Then pick 0 < § < 1 such that ¢; := ¢r,; — 40g; is still strictly plurisubharmonic
for any j=1,...,N.

Now we claim that for any j there is a real positive number 0 < 7; = 75(9) < 1 such
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that for every 0 < 7 < 7; the following statements hold:

7725 € By Vz; € Uj,

b, >ln(z Z \S'XTWTQIZJ )—6 on Uj,

i=1 ay€A;

0 < ln(z Z \SO‘T:D“ZJ )—36 near 0K .

i=1 a;€EA;

Indeed it is sufficient that each request is true for 7 € (0,a) with a positive real
number. For the first request this is obvious, while the others follow from the
equations ( and ( since g; = 0 on Uj and g; = 1 on K (recall that g; is
smooth and that ~-a; < - ﬁf if ay € A; for any j # ).

So, since pi1,...,pn are distinct points on X, we can choose 0 < 7, < 1 such that
the requests above hold for every j =1,..., N and W; N W; for j # i where W; :=
<p;1 (T,;YU]/-), where ¢; is the coordinate map giving the local holomorphic coordinates
centered at p;.

Next we define, for any j=1,..., N,

o g

i=1 a;€A;

where max,.4(z,y) is a smooth convex function such that max,eq(z,y) = max(z,y)

whenever |z — y|> §. Therefore, by construction, we observe that ¢; is smooth and
Yz,
strictly plurisubharmonic on Mj, ;, identically equal to In (Zfil S eien,| WF) _

26 near 0K and identically equal to ¢ ; on U;. So
wj = dd°¢);

is equal to wy,; on Uj;. Thus since for k£ >> 1 big enough In (Zl 1 D ageA; |T7 L )—

2§ extends as a positive hermitian metric of kL, with abuse of notation and unless
restrict further 7, we get that {w; }évzl extend to a Kdhler form w such that

wrw,;) = fe(wju;) = fewn,j

where we are set f : |_|j.\7:1 Ui = X, flu; = <pj_1 o 77, the uniform rescaling for the

embedding.

Since {U;}}L, are arbitrary, this shows that {(Mx,;,wr,;)})=1 packs into (X,kL).
O

Theorem E (Ample Case) . Let L be an ample line bundle. We have that {(D;(L),ws:)},
packs perfectly into (X, L).
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Proof. It Uy,...,Un are relatively compact open sets, respectively, in D;(L) then

by Proposition P.2.4|there exists k > 0 divisible enough such that Uj; is compactly

contained in g~ (Conv(A%(L))° for any j =1,..., N, ie. VkU; € Dyj € My,; for

any j=1,...,N.

By Lemma P.2.9]|there exist smooth functions g; : Xj; — R with support on

relatively compact open sets U; D VkU; such that @; := wy,; + dd°g; is Kihler and

@;j = wst holds on \/EUJ-.

Furthermore, fixing relatively compact open sets V; C My ; such that U; € V;

for any j = 1,...,N, by Theorem P.44]|we can find a holomorphic embedding

e |_|;.V:1 Vj — X and a Kéhler form ' in ¢1(kL) such that w( (1) = fiws,; for any

j=1,...,N.

Next, let x; be smooth cut-off functions on X such that x; = 1 on f'(U}) and x; =0

outside f’(V;). Thus, since f'(V;)N f' (Vi) = for every j # i and since g, ofllf_,%v.) has
J

compact support in f'(Uj), the function g = Z;\Izl x;gj o f'~1, extends to 0 outside

U;‘Vzl f'(V;) and g1 (v;) = 95 © f‘}/l(vﬂ-

Finally defining f : |_|;V=1 Uj = X by flu,;(2) = f\l\/EUj (Vkz;), we get

(W' +dd°g) 5w,y = felwry +dd°g;) gy, = kfewsiu,

by construction. Hence w := f(w’ + dd°g) is a Kahler form with class c1(L) that
satisfies the requests since by Theorem JE

N N
> / Wiy =nly " Volwn (A;(L)) = Volx (L) = / W,
—1 7/ Dj(L)

1 j=1 X

J

O

Remark 2.4.5. If the family of valuations fixed is associated to a family of ad-
missible flags Y;; = {z;1 = --- = z;; = 0} then each associated embedding
f: |_|;V:1 U; — X can be chosen so that

firwpii) = {za = -+ = 2, = 0}

In particular if N = 1 we recover the Theorem A in [WN15].

2.4.2 The big case

Definition 2.4.6. If L is big, we say that a finite family of n—dimensional Kdhler
manifolds {(M;,n;)}j=1,...N packs into (X, L) if for every family of relatively com-
pact open set U; € M; there is a holomorphic embedding f : |_|§V:1 Uj - X and
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there erist a kihler current with analytical singularities T lying in c1(L) such that
Jsmi =Tfw,)- If, in addition,

ﬁj; | o= [ e

then we say that {(Mj,n;)};=1,....~n packs perfectly into (X, L).
Reasoning as in the previous section we prove the following

Theorem E (Big Case). Let L be a big line bundle. We have that {(D;(L),ws:)}N,
packs perfectly into (X, L).

Proof. By Lemma P.3.6] D;(L) = ( for any j such that A;(L)° = 0. So, unless
removing some of the points we may assume that A;(L)° # 0 for any j=1,...,N.
Thus letting k& > 0 big enough such that A%5(L)*** # () for any j (Proposition
2.2.4) we can proceed similarly to the Theorem Zith the unique difference that

N Sa; |2 s . . .
In (330 >0 ca =57 ) extends to a positive singular hermitian metric, hence we
- 1 K2

get a (current of) curvature T that is a Kédhler current with analytical singularities.
Next, as in the ample case, we can show that {(D;(L),ws:)}}, packs perfectly into
(X, L). O

Remark 2.4.7. If the family of valuations fixed is associated to a family of ad-
missible flags Y;; = {z;1 = .-+ = z;; = 0} then each associated embedding
f: |_|;V:1 U; — X can be chosen so that

Tty (Vi) = {zia = -~ = 20 = 0}

In particular if N = 1 we recover the Theorem C in [WNI5].

2.5 Local Positivity
2.5.1 Moving Multipoint Seshadri Constant

Definition 2.5.1. Let L be a nef line bundle on X. The quantity

. L-C
es(L;p1,...,pn) :=inf —————
( ) Zfil mult,, C
where the infimum is on all irreducible curve C C X passing through at least one of
the points p1,...,pN is called the multipoint Seshadr: constant at pi,...,PN
of L.
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This constant has played an important role in the last three decades and it is the
natural extension of the Seshadri constant introduced by Demailly in [Dem90]. ]
The following Lemma is well-known and its proof can be found for instance in

[Laz0d], [BDRH 09
Lemma 2.5.2. Let L be a nef line bundle on X. Then

i LimV.y TV
es(Lip1,...,pN) =sup{t >0 : p*L —t ) F;isnef} =inf (Ni) i
= > j= multy, V/

where [ : X — X is the blow-up at Z = {p1,...,pn}, Ei is the exceptional divisor
above p; and where the infimum on the right side is on all positive dimensional
irreducible subvariety V containing at least one point among pi,...,DPN.

The characterization of Lemma $.5.2 hllows to extend the definition to nef ~@Q—line
bundles by homogeneity and to nef R—line bundles by continuity.

Here we describe a possible generalization of the multipoint Seshadri constant for
big line bundles:

Definition 2.5.3. Let L be a big R—line bundle, we define the moving multipoint

Seshadri constant at pi,...,p~n of L as
es(|Ll;p1y - pn) i=  sup  es(A; fH(pa), o £ (o))
f*L=A+E

if p1,...,pn € B (L) and es(||L||;p1,.-.,pN) := 0 otherwise, where the supremum
is taken over all modifications f:Y — X with Y smooth such that f is an isomor-
phism around pi,...,pn and over all decomposition f*L = A+ E where A is an
ample Q—divisor and E is effective with f~'(p;) ¢ Supp(E) for any j=1,...,N.

For N = 1, we retrieve the definition given in [ELMNP09[]
The following properties can be showed exactly as for the one-point case and they
are left to the reader:

Proposition 2.5.4. Let L, L’ be big R—line bundles. Then
i) es(||L[;p1,...,pN) < (%@))l/n;
it) if c1(L) = c1(L') then es(||L[|;p1,....pn) = es(||L'][;p1,- .., pN);
iii) es([|[ALl[;p1,...,pn) = Aes([|L][;p1,...,pN) for any A € Rso;
w) if p1,...,pn ¢ B4(L)UB4(L') then es(||L + L'|[;p1,...,pNn) >
es(|Llpr, - pv) +es(IL [l pr, - pN)-

We check that the moving multipoint Seshadri constant is an effective generalization
of the multipoint Seshadri constant:
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Proposition 2.5.5. Let L be a big and nef Q—line bundle. Then

ES(HLH7P177PN) = 6S(L;p17"'7pN)

Proof. By homogeneity we can assume L line bundle and p1,...,pn ¢ By (L) since
if p; € By (L) for some j then by Proposition 1.1. and Corollary 5.6. in [ELMNPQ9]
there exist an irreducible positive dimensional component V C B4 (L),p; € V such
that LZ4™Y .V = 0 and Lemma gives the equality.

Thus, fixed a modification f :Y — X as in the definition, we get

L-C fL-C A-C
N = &N P =
oimymulty, ¢ T multyoa, € 7 3L multya, C

since f~'(p1), ..., f " (pn) ¢ Supp(E) and es(|[L]];p1,...,pn) < es(L;pi,. .., pn)
follows.

For the reverse inequality, we can write L = A 4+ E with A ample @Q—line bundle
and FE effective such that p1,...,p~n ¢ Supp(E), and we note that L = A, + %E
for any m € N for the ample Q—line bundle A,, := %A + (1 - %)L Thus
es(||L]|;p1,---,pN) > €s(Am;p1,...,pn) and letting m — oo the inequality re-
quested follows from the continuity of eg(:;p1,...,pn) in the nef cone. O

The following Proposition justifies the name given as generalization of the definition
in [Nak03]:

Proposition 2.5.6. If L is a big Q—line bundle such that p1,...,pn ¢ B(L) then

. es(Mi; iy t(p1), - g Hpw
es(ILipr.....p) = lim SQin { ]>€ cew)

_ o es(Miipgt (pr), - iy (pN)
= sup

k— o0 k
where My, := uj (kL) — Ey is the moving part of |mL| given by a resolution of the
base ideal by, := b(|kL|) (or set My, =0 if H°(X, kL) = {0}).

Note that es(Mg; g " (p1), .., p; " (pn))) does not depend on the resolution chosen

and given ki, k> divisible enough we may choose resolutions such that Mg, 1, =
My, + My, + E where FE is an effective divisor with p1,...,pny ¢ Supp(E), so the
existence of the limit in the definition follows from Proposition 2).

Proof of Proposition By homogeneity we can assume L big line bundle, B(L) =
Bs(|L|) and that the rational map ¢ : X \ Bs(|L|) — P" associated to the linear sys-
tem |L| has image of dimension n.

Suppose first that there exist j € {1,...,N} and an integer ko > 1 such that
u,:ol(pj) € By (My,). Thus for any N > k > ko we get u ' (p;) € B4 (My). Then,
since M, is big and nef, there exists a subvariety V' of dimension d > 1 such that
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M-V =0and V 3 u; ' (p;) (Corollary 5.6. in [ELMNP09]), thus by Lemma
es(My; i, ' (1), - -+, 1y, ' (pn)) = 0 and the equality follows.

Therefore we may assume p;, ' (p1),...,u;  (pn) ¢ By (My) for any k > 1 and we
can write My = A+ E with A ample and E effective with ;' (p1),...,u; " (pn) &
Supp(E). Clearly for any m € N, setting A, = #A +(1- %)Mk, the equal-
ity My = Am + %E holds. Hence, since by definition eg(||L||;p1,...,pn) >
%es(Amﬂt;l(pl), <oy iyt (pN)) for any m € N, we finally obtain es(||L||; p1, ..., pn)
zes(Me; py ' (p1), - - -, g ' (pn)) letting m — oo.

For the reverse inequality, let f :Y — X be a modification as in the definition of the
moving multipoint Seshadri constant, i.e. f*L = A+ F with A ample Q—divisor
and F effective divisor with pi,...,pn ¢ Supp(E), and let k > 1 big enough such
that kA is very ample. Thus, unless taking a log resolution of the base locus
of f*(kL) that is an isomorphism around f~*(pi1),...,f *(pn), we can suppose
f*(EL) = My + Ex with p1,...,pn ¢ Supp(E}y) for Ej effective and M, nef and big.
Then, since kA is very ample, My = kA+ E}, with E}, effective and E; < kE. Hence
we get [T (p1),..., [ (pn) ¢ Supp(Er) and ges(Mi; f~H(p1),. .., [ (pN)) >
es(A; f~ (p1),..., ' (pn)) by homogeneity, which concludes the proof. O

Proposition 2.5.7. Let L be a big Q—line bundle. Then

1/dimV
Vle|V(L)
V

es(||L||; p1,---, = inf
(IEllpr,- o) (Zﬁlmultm

where the infimum is over all positive dimensional irreducible subvarities V' contain-
ing at least one of the points pi,...,PN.

Proof. We may assume p1,...,pn ¢ B (L) since otherwise the equality is a conse-
quence of Corollary 5.9. in [ELMNPO09]. Thus V ¢ By (L) for any positive dimen-
sional irreducible subvariety that pass through at least one of the points p1,...,pn,
hence by Theorem 2.13. in it is sufficient to show that

. 1/ dim V'
| Y v | )

es(||L||;p1,-..,pNn) = inf
(1Ll p1s - - pN) <Z§\]1multij

where the infimum is over all positive dimensional irreducible subvarities V that con-
tain at least one of the points pi1,...,p~. We recall that the asymptotic intersection
number is defined as

MEmV Vi MEmV A

kdim V/ - Sl;p kdim V/

| L™V .V ||:= lim
k—oo

where M}, is the moving part of uj(kL) as in Proposition and Vi is the
proper trasform of V through g (the last equality follows from Remark 2.9. in
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ELMNP09)).
Lemma P.5.2|and Proposition M, is nef) imply

es(Mis py  (p1), ... g, (pn
es(IILll:pa....px) = sup AT BT 1))

dimV 17 1/ dimV im 1/ dim V/
it L[ 057 W) o (L2 V]
= supinf - = 1 <in = ] .
k > o multy, V > jo multy, V

Vice versa by the approximate Zariski decomposition showed in [Tak06] {Theorem
3.1.) for any 0 < € < 1 there exists a modification f:Yc — X that is an isomor-
phism around pi,...,pn, f°L = Ac + E. where A, ample and E. effective with

fﬁl(p1)7 i -afil(pN) ¢ Supp(E5)7 and
ASimV . ‘7 2 (1 _ E)din’)V || LdimV .V ||

for any V ¢ B, (L) positive dimensional irreducible subvariety ( V proper trasform
of V through f). Therefore, passing to the infimum over all positive dimensional
irreducible subvariety that pass through at least one of the points p1,...,pn we get

es([|Lll;p1,- .- pn) > es(Ac f (p1), -, f(pw)) 2

. 1/dimV
|| LdlmV .V H
> mult,, V

J

2(1e)inf<

which concludes the proof. O

Theorem 2.5.8. For any choice of different points pi,...,pn € X, the function
NYX)r 3L = es(||L||;p1,...,pN) € R is continuous.

Proof. The homogeneity and the concavity described in Proposition 2[5.4 implies
the locally uniform continuity of es(||L||;p1,...,pn) on the open convex subset
(Uj\;l By (pj))c (see Remark . Therefore it is sufficient to check that
limpp es(||L'||;p1,...,pn) =0if e1(L) € Ujvzl B4 (p;). But this is a consequence
of Proposition using the continuity of the restricted volume described in The-
orem 5.2. in . O

To conclude the section we recall that for a line bundle L and for a integer s € Z>o,
we say that L generates s—jets at p1,...,pnN if the map

N
HY(X,L) » @ H (X, L ® Ox, /my1)

Pj
=1

is surjective where we have set m,; for the maximal ideal in Ox,;. And we report
the following last characterization of the moving multipoint Seshadri constant:
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Proposition 2.5.9 ([Itol3], Lemma 3.10.). Let L be a big line bundle. Then

s(kL;p1,. .., . s(kL;p1,...,
es(ILlipr,. o) = sup SWEPL o oPN)  yy ORLPL )
k>0 k k— o0 k

where s(kL;pi1,...,pn) 45 0 if kL does not generate s—jets at p1,...,pN for any
s € Z>o, otherwise it is the biggest non-negative integer such that kL generates the

s(kL;p1,...,pn)—jets at p1,...,pN-

2.5.2 Proof of Theorem Bl

In the spirit of the aforementioned work of Demailly [Dem90],|we want to describe
the moving multipoint Seshadri constant €(||L||;p1,...,pn) in a more analytical
language.

Definition 2.5.10. We say that a singular metric ¢ of a line bundle L has isolated

logarithmic poles at p1,...,pn of coefficient ~ if min{v(e,p1),...,v(p,pN)} =7
and ¢ 1is finite and continuous in a small punctured neighborhood V;\ {p;} for every
j=1,...,N. We have indicated with v(p,p;) the Lelong number of ¢ at p;,

N~ fiminf P
V(Lpapj) T hIZIi}Bf IH‘Z _ x‘g

where ; is the local plurisubharmonic function defining ¢ around p; = x.
We set y(L;p1,...,pn) := sup{y € R : L has a positive singular metric with
isolated logarithmic poles at pi,...,pn of coefficient ~}

Note that for N =1 we recover the definition given in [IDem90].
Proposition 2.5.11. Let L be a big Q—line bundle. Then
Y(Lip1,...,pn) = es([[Ll[;p1, ..., pN)

Proof. By homogeneity we can assume L to be a line bundle, and we fix a family of

local holomorphic coordinates {z;1,...,2,n} in open coordinated sets Ux,...,Un
centered respectively at pi,...,pn.

Setting z; := (2j,1,...,25,~5) and s := s(kL;p1,...,pn) for k > 1 natural number,
we can find holomorphic section f,, parametrized by all a = (a1,...,an) € NV
such that |a;| = s and foyu;, = 2;7 for any 7 = 1,...,N. In other words, we
can find holomorphic sections of kL whose jets at pi1,...,pn generates all possible

combination of monomials of degree s around the points chosen. Thus the positive
singular metric ¢ on L given by

o= plog (SIfal?)
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has isolated logarithmic poles at p1, ..., pn of coefficient s/k. Hence v(L;p1,...,pn) >
s(kL;p1,...,pn)/k, and letting k — oo Proposition implies Y(L;pi,...,pNn) >
es([L]l;p1,- .-, pnN).

Vice versa, assuming y(L;pi,...,pn) > 0, let {v:}ten C Q be an increasing se-
quence of rational numbers converging to ~y(L;p1,...,pn) and let {ki}ien be an
increasing sequence of natural numbers such that {kt’yt}ten\f converges to +00. More-
over let A be an ample line bundle such that A — Kx is ample, and let w = dd°¢ be
a Kibhler form in the class ¢1(A — Kx).

Thus for any positive singular metric ¢ of L with isolated logarithmic poles at
P1,--.,pn of coefficient > ¢, kit + ¢ is a positive singular metric of k:L+ A — Kx
with Kéhler current dd°(k:¢:) + w as curvature and with isolated logarithmic poles
at p1,...,pn of coefficient > ki7v;. Therefore, for ¢t > 1 big enough, k:L; + A gen-
erates all (k:y:+ —n)—jets at p1,...,pn by Corollary 3.3. in [Dem90]| and thanks to
Proposition P.5.9]we obtain

1 kiye —m n
L+ —Al||;p1,..- > =y — .
es (]| + 1 l[;p1,. . pN) > » "

Letting t — oo we get es(||L||;p1,...,pn5) > ¥(L;p1,...,pN) using the continuity
of Theorem P.5.8] O
Remark 2.5.12. We observe that the same result cannot be true if we restrict to
consider metric with logarithmic poles at p1, ..., pny not necessarily isolated. Indeed
Demailly in [Dem93] showed that for any nef and big Q—line bundle L over a pro-
jective manifold, for any different points pi,...,pn~, and for any 7i,..., 7N positive

N n

real numbers with 3°.", 7;' < (L") there exist a positive singular metric ¢ with
logarithmic poles at any p; of coefficient, respectively, 7;. We thus conclude that
the result in Proposition £.5.11 holds considering metrics with logarithmic poles at
p1,...,pnN not necessarily isolated if and only if the multipoint Seshadri constant is
maximal, i.e. es(||L|[,p1,...,pn) = (Volx(L)/N)'/™.

From now until the end of the section we fix a family of valuations v*7 associated to
a family of infinitesimal flags centered at pi,...,pn and the multipoint Okounkov
bodies A;(L) constructed from 177 (see paragraph P.2.4Jand $.3.5)|

Definition 2.5.13. Let L be a big line bundle. We define
E(L;p1,...,pN) i=sup{€ > 0s.t. £X, C A;(L)*™ forevery j=1,...,N}.

Remark 2.5.14. By definition, we note that £(L;p1,...,pn) =sup{r >0 : B.(0) C
Dj(L)foranyj=1,...,N}

If N =1 then A;(L) = A(L), and it is well-known that the maximum ¢ such that
0%, fits into the Okounkov body, coincides with eg(||L||;p) (Theorem C in [KL1T7]).
The next theorem recover and generalize this result for any V:
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Theorem Let L be a big R—Iline bundle, then
max {&(L;p1,...,pn), 0} = es(|[Llf;p1, .-, pn)

Proof. By the continuity given by Theorem 7:3.15 hnd Theorem 2[5.8 gnd by the
homogeneity of both sides we can assume L big line bundle. Moreover we may also

assume A;(L)° # () for any j = 1,..., N since otherwise it is a consequence of point
ii) in Lemma
Let {Am}men C @Q be an increasing sequence convergent to &(L;p1,...,pn) (as-

suming that the latter is > 0). By Proposition for any m € N there exist
km > 1 such that A\, 2, C A?m (L)®*® for any j =1,..., N. Therefore, chosen a set
of section {sj.a}ja C H°(X,kmL) parametrized in a natural way by all valuative

points in A?m(L)ess \ A 255 for any j =1,...,N (ie. $ja € Vi,,.5, VP9 (Sj,0) =
and a ¢ A\ X5®) the metric

-—iln(iZ]s- )
P Fim j=1 « e

is a positive singular metric on L such that v(¢s,,,p;) > Am while ¢y, is continuos
and finite on a punctured neighborhood V;\ {p;} for any 7 =1,..., N by Corollary
Hence letting m — oo, we get es(||L||;p1,-..,pn) = Y(L;p1,...,pN) >
&(L;p1,...,pN), where the equality is the content of Proposition 2

On the other hand, letting {An»}men C @ be a increasing sequence converging to
es(||L||; p1,-..,pN) > 0, Proposition implies that for any m € N there exists
km > 0 divisible enough such that s(tkmL;p1,...,pn) > thmAm for any t > 1.
Thus, since the family of valuation is associated to a family of infinitesimal flags, we
get

“’?Zﬂzn C AB (D)™ C AJL)™ Vj=1,... Nand Vi > 1.
Hence AmXn C A;(L)® for any j = 1,..., N, which concludes the proof. O

Remark 2.5.15. In the case L is an ample line bundle, to prove the inequality
es(L;pi,...,pn) > &(L;p1,...,pN) we could have used Theorem @In fact it im-
plies that {(Be(Lip,,....pn)(0), wst)}é\f:l fits into (X, L), and so by symplectic blow-up
procedure for Kéhler manifold (see section §5.3. in [MP94[Jor Lemma 5.3.17. in
[Laz04]) we deduce &(L;pi,...,pn) < es(Lipi,-..,DN).

Remark 2.5.16. The proof of the Theorem shows that &(L;pi,...,pn) is indepen-
dent from the choice of the family of valuations given by a family of infinitesimal
flags.

The following corollary extends Theorem 0.5 in [EckI17| to all dimension (as Eckl
claimed in his paper) and to big line bundles.
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Corollary 2.5.17. Let L be a big line bundle. Then
es(|L|:p1, ..., pn) = max {O,sup{r >0: B.(0) C D;(L)Vj= 1,...,N}}

For N =1 it is the content of Theorem 1.3. in [WN15].

2.6 Some particular cases

2.6.1 Projective toric manifolds

In this section X = XA is a smooth projective toric variety associated to a fan A in
Nr ~ R", so that the torus T := N ®z C* ~ (C*)" acts on X (N ~ Z" denote a
lattice of rank n with dual M := Homgz(N,Z), see [Ful93], [Cox11] for notation and

basic fact about toric varieties).

It is well-known that there is a correspondence between toric manifolds X polarized
by T'n —invariant ample divisors D and lattice polytopes P C Mr of dimension n. In-
deed to any such divisor D = ZpeA(l) ap,D, (where we indicate with A(k) the cones
of dimension k) the polytope Pp is given by Pp := ﬂpeA(l){m € Mg : (m,v,) >
—a,} where v, indicates the generator of p N N. Vice versa any such polytope P
can be described as P := (\poi™m € Mr : (m,nr) > —ar} where a facet is a
1—codimensional face of P and nr € N is the unique primitive element that is nor-

mal to F' and that point toward the interior of P. Thus the normal fan associated to
Pis Ap := {og : Ffaceof P} where o is the cone in Ng generated by all normal
elements nr as above for any facet containing the face . In particular vertices of P
correspond to T —invariant points on the toric manifold Xp associated to Ap while
facets of P correspond to T —invariant divisor on Xp. Finally the polarization is
given by Dp :=> . . arDF.

Thus, given an ample toric line bundle L = Ox (D) on a projective toric manifold
X we can fix local holomorphic coordinates around a 7y —invariant point p € X
(corresponding to a vertex xz, € P) such that {z; = 0} = D;|y, for D; Ty —invariant
divisor and we can assume D)y, = 0.

Proposition 2.6.1 ([LMO09], Proposition 6.1.(1)) . In the setting as above, the equal-
1ty

¢mrn (Pp) = A(L)
holds, where ¢r is the linear map associated to ¢ : M — Z", p(m) := ({(m,v1),..., (m,v,)),
for vi € Ap, (1) generators of the ray associated to D;, and A(L) is the one-point
Okounkov body associated to the admissible flag given by the local holomorphic coor-
dinates chosen.

Moreover we recall that it is possible to describe the positivity of the toric line
bundle at a Ty —invariant point x, corresponding to a vertex in P directly from the
polytope:
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Lemma 2.6.2. (Lemma 4.2.1, [BDRH *09|) Let (X, L) be a toric polarized manifold,
and let P be the associated polytope with vertices %o,,...,%s,. Then L generates
k—jets at xo; iff the length |ejq| is bigger than k for any i = 1,...,n where ej; is
the edge connecting Tg; to another vertex To (s -

Remark 2.6.3. By assumption, we know that P is a Delzant polypote, i.e. there
are exactly n edges originating from each vertex, and the first integer points on such
edges form a lattice basis (for integer we mean a point belonging in M). Moreover if
one fixes the first integer points on the edges starting from a vertex =z, (i.e. a basis
for M ~7"), then we the length of an edge starting from =z, is defined as the usual
length in R"™. Observe that it is always an integer since the polytope is a lattice
polytope.

Similarly to Proposition $.6.1,|chosen R Ty —invariants points corresponding to R
vertices of the polytope P, we retrieve the multipoint Okounkov bodies of the cor-
responding R T’y —invariant points on X directly from the polytope:

Theorem 2.6.4. Let (X, L) be a toric polarized manifold, and let P be the associ-
ated polytope with vertices To,,...,Ts, corresponding, respectively, to the T'n—points
pi,...,pi. Then for any choice of R different points (R < 1) piy,...,pig among
D1, .., D1, there exist a subdivision of P into R polytopes (a priori not lattice poly-
topes) Pi,...,Pr such that ¢rn ;(P;) = Aj(L) for a suitable choice of a family

of valuations associated to infinitesimal (toric) flags centered at ps,,...,Dip, where
¢mrn,; is the map given in the Proposition or the point  zo;.

Proof. Unless reordering, we can assume that the 7 —invariants points pi,...,pr
correspond to the vertices Toy,...,Top-

Next for any j = 1,..., R, after the identification M ~ Z" given by the choice of a
lattice basis m; 1,...,m;n as explained in Remark £.6.3,we retrieve the Okounkov
Body A(L) at p; associated to an infinitesimal flag given by the holomorphic co-
ordinates {21,j,...,%n,;} as explained in Proposition £.6.1 fomposing with the map
¢rn,;. Thus, by construction, we know that any valuative point lying in the diagonal
face of the n—symplex §%,, for § € @ correspond to a section s € H°(X,kL) such
that ord,; (s) = kd. Working directly on the polytope P, the diagonal face of the
n—symplex §%, corresponds to the intersection of the polytope P with the hyper-
plane H; ; parallel to the hyperplane passing for myi j,...,mn,; and whose distance
from the point z,, is equal to 0 (the distance is calculated from the identification
M ~7Z").

Therefore defining

P; = U H§1710-~~QH§R,ROP=
(81,0--,6n) EQL 87 <6 Vit

= U Hglﬁlﬂ---ﬂHgR,RﬂP
(615-,8n) ERY 1,65 <6; ViZ]
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we get by Proposition ¢rn,;(Pj) = Aj(L) since any valuative point in Hs, 1 N
-+ N Hsp,r N P belongs to Aj(L) if §; < d; for any ¢ # j, while on the other hand
any valuative point in Aj;(L) belongs to Hs, ;1 N---N Hs, r N P for certain rational
numbers 61,...,0r such that §; < 6. O

Remark 2.6.5. As easy consequence, we get that for any polarized toric manifold
(X, L) and for any choice of R Ty—invariants points pi,...,pr, the multipoint
Okounkov bodies constructed from the infinitesimal flags as in Theorem 2[5.4 afe
polyhedral.

Corollary 2.6.6. In the same setting of the Theorem if R =1, then the
subdivision s barycenteric. Namely, for any fived vertex o, if F1,...,F, are the
facets containing x,; and by, ..., b, are their respective barycenters, then the polytope

Pj ts the convez body defined by the intersection of P with the n hyperplanes Ho,;
passing through the baricenter O of P and the barycenters bi,...,bj—1,bj41,...,bn.

Finally we retrieve and extend Corollary 2.3. in [EckI17] &s consequence of Theorem
B.6.4] and Theorem Bl

Corollary 2.6.7. In the same setting of the Theorem for any j=1,..., R, let
€s,j = min;—1,. n{d;.:} be the minimum among all the reparametrized length |e;;
of the edges e;; fori=1,...,n, i.e. §; = |eji| if e connect x5, to another point
To, corresponding to a point p & {p1,...,pr}, while §;; := %|e;| if €;: connect to
a point T, corresponding to a point p € {p1,...,pr}. Then

es(L;p1,...,pr) =min{es; : j=1,..., R}

In particular es(L;p1,...,pr) € %IN.

2.6.2 Surfaces

When X has dimension 2, the following famous decomposition holds:
Theorem 2.6.8 (Zariski decomposition) . Let L be a pseudoeffective Q—line bundle
on a surface X. Then there exist Q—Iline bundles P, N such that

i) L=P+ N;

1) P is nef;

1) N s effective;

iv) HY(X,kP) ~ H°(X,kL) for any k > 1;

v) P-E =0 for any E irreducible curves contained in Supp(N).

Moreover we recall that by the main theorem of [BKS04[ there exists a locally finite
decomposition of the big cone into rational polyhedral subcones ( Zariski chambers )
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such that in each interior of these subcones the negative part of the Zariski decom-
position has constant support and the restricted and augmented base loci are equal
(i.e. the divisors with cohomology classes in a interior of some Zariski chambers are
stable, see [ELMNDP06]).

Similarly to Theorem 6.4. in [LM09[land the first part of Theorem B in [KILMI12] |
we describe the multipoint Okounkov bodies as follows:

Theorem 2.6.9. Let L be a big line bundle over a surface X, let p1,...,pN €
X, and let vP7 a family of valuations associated to admissible flags centered at

P1,...,pN with Yi; = C“Upi for irreducible curves C; for i = 1,...,N. Then
for any j = 1,...,N such that A;(L)° # () there exist piecewise linear functions
o, Bt [tg.— s tj+] = Rxo for

0<tj—:=inf{t>0:C; ¢ B{(L-1tG)} <
<tj+:=sup{t>0:C; ¢ B-(L—tG)} < u(L; G) :=sup{t >0 : L—tGisbig}

where G = Z;V:l Cj, with o convez and B; concave, a; < B, such that
A(L) ={(t,y) €R? : tj— <t <tjranda;(t) <y < Bi(1)}
In particular Aj(L) is polyhedral for any j=1,...,N.

Proof. By Lemma and Theorem [ |we may assume A;(L)° # 0 for any
j = 1,..., N unless removing some of the points. Then by Theorem A and C in

it follows that 0 <¢;_ < t;+ < p(L; G) and that [t;,—,t; +]XR>o is the
smallest vertical strip containing A;(L). Thus by Theorem £.3.21 hnd Lemma 6.3. in

[LMO09] we easily get A;(L) = {(t,y) € R? : #;,— <t <t;4anda;(t) <y < B;(1)}
defining a;(t) := ordy, (Ny|c;) and B;(t) := ordy; (Nyjo; ) +(P;-Cy) for P+ Ny Zariski
decomposition of L—tG (IN; can be restricted to C; since Supp(N;) = B_(L—tG)).
Next we proceed similarly to [KLMI2[lto show the polyhedrality of A;(L), i.e.
we set L' := L —t;+G, s = t;+ —t and consider L, :=L' +sG =L —tG for
s € [0,tj,+ —tj,—]. Thus the function s — N/ is decreasing, i.e. N., — N} is effective
for any 0 < s’ < s <tj4+ —t;,_, where L, = P+ N/ is the Zariski decomposition of

L. Moreover, letting F1,..., F}. be the irreducible (negative) curves composing Ny,
we may assume (unless rearraging the F;’s) that the support of Nt'j#_tj _ consists
of Fyy1,...,F, and that 0 =: 5o < 51 < -+ < s < tj4 — tj,— =: Sk41 where

s;:=sup{s >0 : F; C B_(L,) = Supp(N,)} forany i =1,... k.
So, by the continuity of the Zariski decomposition in the big cone, it is enough to

show that N/ is linear in any not-empty open interval (s;,si+1) for i € {0,...,k}.
But the Zariski algorithm implies that N, is determined by N, -F; = (L' +sG) - F}
for any | =i+ 1,...,r, and, since the intersection matrix of the curves Fii1,...,F:

is non-degenerate, we know that there exist unique divisors A; and B; supported
on Uj_; 1 F; such that A; - Fy=L"-Fyand B; - F;, =G - F, forany [ =4+ 1,...,7r.
Hence N, = A; + sB; for any s € (si, si+1), which concludes the proof. O
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Remark 2.6.10. We observe that A;(L)N[0, u(L; G)—€] xR is rational polyhedral
for any 0 < e < p(L; G) thanks to the proof and to the main theorem in [BKS04].

A particular case is when pi,...,pnv ¢ By (L) and v?/ is a family of valuations
associated to infinitesimal flags centered respectively at pi,...,pn. Indeed in this
case on the blow-up X = Blip,,....pn3X we can consider the family of valuations
PPi associated to the admissible flags centered respectively at points pi,...,pn € X
(see paragraph § . Observe that Y3 j = I; are the exceptional divisors over the
points.

Lemma 2.6.11. In the setting just mentioned, we have t;— = 0 and ¢;+ =
w(f*L;E) where E = Zfil E; and f: X — X is the blow-up map.

Proof. Theorem easily implies t;— = 0 for any j = 1,..., N since p1,...,pNn &
B4 (L) and F(A;(L)) = Aj(f*L) for F(z1,x2) = (z1 + x2,21)-

Next assume by contradiction there exists j € {1,..., N} such that ¢;+ < pu(f*L;E).
Then by Theorem £.3.21]and Theorem A and Cin [ELMNP09] we obtain f :=
sup{t > 0 : E; ¢ IB+(fL—t]E)} =sup{t >0 : E; ¢ B_(f"L —tE)} <
u(f*L; E). Therefore setting L; := f*L —tIE and letting L; = P; + Ny be its Zariski
decomposition, we get that F; € Supp(Vy) iff t > ¢ (see Proposition 1.2. in [KL15al).
But for any ¢ <t < u(f*L;E) we find out

0= (L +tE)-E; = Ly - E; + tE] < —

where the first equality is justified by P: + N: + tIE = f*L while the inequality is a
consequence of L;- E; < 0 (since F; € Supp(N;)) and of E; - E; = §;,j. Hence we
obtain a contradiction. O

About the Nagata’s Conjecture: One of the version of the Nagata’s con-

jecture says that for a choice of very general points pa,...,px € P2, for N > 9, the
ample line bundle Op2(1) has maximal multipoint Seshadri constant at pi,...,pn,
ie. €s5(0p2(1); N) = 1/v/N where to simplify the notation we did not indicate the

points since they are very general. We can read it in the following way:

Conjecture 2.6.12 ([Nagb8|, Nagata’s Conjecture) . For N > 9 very general points
in P2, let {A;(Op2(1))};1, be the multipoint Okounkov bodies calculated from a fam-
ily of valuations VP9 associated to a family of infinitesimal flags centered respectively
at p1,...,pn. Then the following equivalent statements hold:

i) es(Op2(1); N) = 1/VN;
1) A;j(Op2(1)) = ﬁEz, where X2 is the standard 2—symplex;
wi) D;j(Op2(1)) = B_1_(0);

Remark 2.6.13. It is well know that the conjecture holds if N > 9 is a per-
fect square. And a similar conjecture (called Biran-Nagata-Szemberg’s conjecture)
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claims that for any ample line bundle L on a projective manifold of dimension n
there exist No = No(X, L) big enough such that es(L; N) \/> for any N > Ny
very general points, i.e. it is maximal. This conjecture can be read through the
multipoint Okounkov bodies as Aj(L) = "\L/LWTETL for any N > No very general
points at X.

Theorem 2.6.14. For N > 9 very general points in P2, there exists a family of
valuations vP7 associated to a family of infinitesimal flags centered respectively at
Pi,...,PN such that

AJ(OW(U):{("’UW)ERQ : OSxSeaﬂdOSySNLe(l_f)}:

where € := e5(Op2(1); N). In particular p(L,E) = + and

. t if 0<t<e
VOlX\Ej (f OIP2(1) - tE)) = € (7 _ t) if e<t< L

ﬁfe Ne Ne

where f: X = Bl{pl,,',7pN}IP2 — X s the blow-up at Z = {p1,...,pn}, Er,...,En
the exceptional divisors and E = Zj\;l E;

Proof. Tf es(Op2(1); N) = 1/+/N, i.e. maximal, then A;(Op2(1)) = LZQ as conse-

quence of Theorem E}and Theorem EThus We may assume es(Op2(1 ) N)<1/vN
and we know that there exists C' =~vyH — E _, mjE; sub-maximal curve, i.e. an

irreducible curve such that es(Op2(1); N) = 4 where M := Zj:1 m;. Moreover,
since the points are very general, for any cycle o of lenght N there exists a curve
Co =vH — Zjvzl Me(;)Ej, which implies p(f*Op2(1);E) > 1\% = 4 since there
exists a section s € H°(IP?, Nv) such that ordp,(s) = M for any j. Recall that
w(f*Op2(1);E) =sup{t >0 : f*Op2(1) — tEisbig}. Next for any j=1,...,N we
can easily fix holomorphic coordinates (z1,j, z2,;) such that v?7(s) = (0, M) with re-
spect to the deglex order. So considering an ample line bundle A such that there exist
sections s1,...,sn € H°(X, A) With vPi(s;) = (0,0) and vPi(s;) > 0 for any i # j
and for any j =1,..., N, we get s' ®s; N e Vg s(IL+A), ie. (0, N,y) € Aj(L+14)
by homogeneity (Propos1t10n mfor any [ €N and any j=1,...,N. Hence by
Theorem we get (0, 2L 5) €A;(L) forany j=1,...,N.

Finally since by Theorem e know that eg(Ope (1);N)22 C Aj(L) for any j =
1...,N, Theorem [KJand the convexity imply that the multipoint Okounkov bodies
have necessarily the shape requested. O

Corollary 2.6.15. The ray f*Op2(1) — tIE meet at most two Zariski chambers.
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This result was already showed in Proposition 2.5. of [DKMS15].

Remark 2.6.16. We recall that Biran in [Bir97]l gave an homological criterion to
check if a 4—dimensional symplectic manifold admits a full symplectic packings by
N equal balls for large N, showing that (IP?,wrs) admits a full symplectic packings
for N > 9. Moreover it is well-known that for any N < 9 the supremum 7 such
that {(Br(0),ws¢)}j=; packs into (IP?, Op2(1)) coincides with the supremum 7 such
that (P2, wrs) admits a symplectic packings of N balls of radius r (called Gromov
width ), therefore by Theorem Ehnd Corollary he Nagata’s conjecture is true
iff the Gromov width of NN balls on (IP2, wrg) coincides with the multipoint Seshadri
constant of Op2(1) at N very general points.
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Chapter 3

L! metric geometry of
potentials with prescribed
singularities

on compact Kahler manifolds

Abstract

Given (X,w) compact Kihler manifold and v € M*T C PSH(X,w) a model
type envelope with non-zero mass, i.e. a fixed potential determing some sin-
gularities such that [y (w + dd°¥)™ > 0, we prove that the ¢—relative finite
energy class &1 (X, w, ) becomes a complete metric space if endowed of a dis-
tance d which generalizes the well-known d; distance on the space of Kihler
potentials.

Moreover, for A C MT total ordered, we equip the set X, :=
I—lweﬁ &1(X,w, ) of a natural distance d4 which coincides with the distance
don & (X, w,) for any 3 € A. We show that (XA, dA) is a complete metric
space.

As a consequence, assuming ¥ N\, ¥ and ¥y, € M1, we also prove that
(E1(X,w,vy),d) converges in a Gromov-Hausdorff sense to (E'(X,w,v),d)
and that there exists a direct system <(81(X, w, VK, d) R Pk,j> in the category

of metric spaces whose direct limit is dense into (&(X,w,),d).
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3.1 Introduction

In the last forty years it has become important to understand the space of Mabuchi
X, i.e. the space of Kihler potentials in a fixed Kéhler cohomology class {w} €
H2(X,R) N H"'(X) for (X,w) compact Kihler manifold of dimension n:

H:={p e C™ : w+dd°pisaKahler form},

where d° := ﬁ(a — 5), so that dd° = %85. By the pioneering papers [Mab86]]
[Sem92] and [Don99] H can be endowed with a Riemannian structure given by the

metric 12
(ra)e = ( [ fotorare))

where ¢ € H, f,g9 € T,H ~ C°°(X) and the metric geodesic segments are solutions
of homogeneous complex Monge-Ampére equations (see also [Chen00])] Later Dar-
vas introduced in [DarI5] the Finsler metric |f|1,, := [ [f|(w + dd°¢)™ on H with
associated distance di, that we will simply denote by d. The metric completion of
(%, d) has a pluripotential description ([Darl5[] since it coincides with

&' (X,w) == {u € PSH(X,w) : E(u) > —oo}
where E(-) is the Aubin-Mabuchi energy defined as

1 n ) )
B(u) = S j €)™
(u) n+1j_0/)<uw A (w + ddu)

if u is locally bounded and as FE(u) := lim; o E(max(u, —j)) otherwise (see

[Mab86], [Aub84], [BBI10]l and [BEGZ10]]. Here for the wedge product among

(1, 1)-currents we mean the non-pluripolar product (see [BEGZ10]). Moreover the
d-distance can be expressed as

d(u,v) := E(u) + E(v) — 2E(P.(u,v)),

where P, (u,v) := sup{w € PSH(X,w) : w < min(u,v)} is the rooftop envelope
operator introduced in [RWNI4]l The complete geodesic metric space (€' (X,w), d)
turned out to be very useful to formulate in analytic terms and in some cases to solve
important conjectures regarding the search of special metrics (see [BBGZ13[, |DR17], ]
[BBEGZ19], [BDLI6], [BBI15] [DHI7]) [(CT7]) [ACI8al,] [OCI8hY Furthermore
the metric topology is related to the continuity of the Monge-Ampére operator since
it coincides with the so-called strong topology ([BBEGZ19]).

The space &'(X,w) contains only potentials which are at most slightly singular (see
DDNL18a|). Thus Darvas, Di Nezza are Lu introduced in [DNLI8b] the analogous
set &' (X, w, ) with respect to a fixed w-psh function ). More precisely,

&' (X,w,¥) == {ue PSH(X,w) : u< ¢+ CforC € R and Ey(u) > —oco},

104 3.1. INTRODUCTION
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where

Ey(u) =

! 9 c j c \n—j
n+1Jz;/x(“—w)(erddd))J/\(erddu) i

if |u — 1| is globally bounded and Ey(u) := lim;_,00 Ey (max(u,v — j)) otherwise.
One of the reasons that leads them to investigate and develop the pluripotential
theory of these sets was the search of solution with prescribed singularities  [¢)] for
the complex Monge-Ampére equation (w+ dd“u)"™ = u (see also [DDNLI&d]). They
found out that there is a necessary condition to assume on : ¥ — P, [%](0) must
be globally bounded where P, [4](0) := (limc—oo Pu(¥; + C,0))", ([RWNI14], the
star is for the upper semicontinuous regularization). So, without loss of generality,
one may assume that 1) is a model type envelope , i.e. Y = P,[¢](0) (see section .
In this setting they were able to show the existence of Kdhler-Einstein metric with
prescribed singularities [¢] in the case of X manifold with ample canonical bundle
and in the case X Calabi-Yau manifold.

Therefore one of the main motivations for this paper is to endow the set &€'(X,w, )
of a metric structure to address in a future work the problem of characterize ana-
lytically the existence of Kdhler-Einstein metrics with prescribed singularities in the
Fano case.

Thus, assuming v to be a model type envelope and defining

d(u,v) 1= Ey(u) + Ey(v) — 2Ey (Pw(u, v))
on &' (X,w, ) x (X, w, ), we prove the following theorem.

Theorem A. E| Let ¢ € PSH(X,w) be a model type envelope with non-zero mass
Vo = [ (w+dd®y)" > 0. Then (El(X,w,’(/)),d) is a complete metric space.

The non-zero total mass V, > 0 condition is a necessary hypothesis because other-

wise d = 0 (Remark B.3.10).

The second main motivation of the paper is to set up a new way to compare and to
study the solutions of a complex Monge-Ampére equation (w+dd°u)™ = p associated
to different spaces &'(X,w,v) (see [Tru20]). This leads to wonder, first of all, how
a sequence of spaces &'(X,w, ) converges to E'(X,w, ) if ¥, — 1. The most
interesting case seems to be when {v}ren is totally ordered with respect to the
natural partial order < on PSH(X,w) given by u < v if u < v + C for a constant
C eR.

Thus in the second part of the paper, denoting with M the set of all model type
envelopes and with M™ its elements with non-zero mass, we assume to have a totally

IThe assumption on w to be Kihler is unnecessary, i.e. this Theorem easily extends to
the big case.
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ordered subset A C M and we define

XA = |_| EI(XWJJ?)

YEA

where A C M is the closure of the set A as subset of PSH (X, w) with its L'-topology.
Our next result regards the existence of a natural metric topology on X4 induced
by a distance da4 which extends the distance d over &'(X,w, ) for any ¢ € A (see
section . Here for ¢ € M\ MT we identify the set &'(X,w,) with a singleton
Py.

Theorem B. Let A C M total ordered. Then (Xa,da) is a complete metric space
and da restricts to d on (X, w, ) x E1(X,w,v) for any o € A.

The distance dj4 is a natural generalization of the distances d, indeed in the compan-
ion paper [Tru20] we show how its metric topology defines a strong topology which
is connected to the continuity of the Monge-Ampére operator.

As a consequence of Theorem ]Econsidering a decreasing sequence {1y }ren C MT
converging to ¢ € M*, one immediately thinks that the metric spaces (€'(X,w, ¥x), d)
essentially converges to (El(X,w,z/)),d). The problem here is that these metric
spaces are not locally compact, therefore it is not clear what kind of convergence one
should look at. In section @we introduce the compact pointed Gromov-Hausdorff
convergence (cp-GH) which basically mimic the pointed Gromov-Hausdorff conver-
gence (see [BH99| and [BBIO1[) replacing, for any space, the family of balls centered

at the point with an increasing family with dense union of compact sets containing
the point chosen (see Definition 3.4.19)|

Theorem C. Let {¢xtren C MT be a decreasing sequence converging to ¢ € M™T.

Then
cp—GH

(81(X7W,¢k)7¢kad) E— (81(X7w7¢)7¢7d)~
Furthermore we show that the maps
Py j = Pu[;]() : (E1(X,w,i,d)) = (E'(X,w,15),d)

for i < j are short maps (i.e. 1-Lipschitz). Hence <(81(X,w,¢i),d),Pi7]-> is a direct
system in the category of metric spaces. We denote with m —lim__, the direct limit
in this category.

Theorem D. Let {1 }ren C MT be a decreasing sequence converging to 1 € M™*.
Then there is an isometric embedding

m— lir_l;l<(€1(X,w,'l/J7,),d),Pz,]> — (81(X7w7w))d)

with dense image equal to | J,cn Pu V] (EN(X,w, ¥r)).
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3.1.1 Related Works

During the last period of the preparation of this paper, Xia in [X19b[ independently
showed Theorem Eas particular case of his main Theorem.

3.1.2 Structure of the paper

After recalling some preliminaries in section 32, |the third section is dedicated to
prove Theorem ] In this section many of the proofs are just easily adapted to our
setting from the absolute setting in the Kahler and in the big case (in particular
[DDNLI&]).

Section @is the core of the paper, where we show Theorems mmd H:

3.1.3 Acknowledgments

The author is grateful to his two advisors S. Trapani and D. Witt Nystrom for their
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3.2 Preliminaries

Let (X,w) be a compact Kihler manifold ( w fixed Kihler form on X). We denote
with PSH(X,w) the set of all w-psh (w—plurisubharmonic) functions on X, i.e.
the set of all functions u given locally as sum of a plurisubharmonic function and
a smooth function such that w + dd“u > 0 as (1,1)-current. Here d° := 5-(0 —
0) so that dd® = ~00. We say that u is more singular than v if there exists a
constant C' € R such that u < v + C. Being more/less singular is a partial order
on PSH(X,w). We use < to denote such order, and we indicate with [u] the class
of equivalence with respect to this order. Moreover, according to the notations in
[DDNL18b], PSH(X,w, ) is the set of all w € PSH(X,w) such that u < v, and
u € PSH(X,w,) is said to have t-relative minimal singularities if u € [¢]. To
start the investigation of these functions we recall the construction of the envelopes
introduced in [RWN14]: for any couple of w—psh functions w, v, the function

Polu](v) = (clirfoo Po(u+C, v)) )

is w—psh, where P, (u,v) := sup{w € PSH(X,w) : w < min(u,v)} is the rooftop
envelope (the star is for the upper semicontinuous regularization). Roughly speaking
if u < v then P,[u](v) is the largest w—psh function that is bounded from above by
v and that preserves the singularities type [u]. We say that an w-psh function 1 is
a model type envelope if P,[¢] := P,[¥](0) = 9. There are plenty of these functions
and P,[P.,[¢]] = P,[¢]. Hence » — P,[¢)] may be thought as a projection from
the set of w-psh functions to the set of model type envelopes. We refer to Remark
1.6 in [DDNL18D]| for some tangible examples of these functions. Denoting with M
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the set of model type envelopes, it is easy to see that if 1,12 € PSH(X,w) satisfy
1 < 2 then Y1 < 1h2. Hence the partial orders <, < coincide on M.

Given T1,- -, T, closed and positive (1, 1)-currents, with 71 A - - AT, we will mean
the non-pluripolar product (see [BEGZI0]). It is always well-defined on a compact
Kéhler manifold (Proposition 1.6 in [BEGZ10]) and it is local in the plurifine topol-
ogy, i.e. in the coarsest topology with respect to which all psh functions on all open
subsets of X become continuous (see also [BT87[). Moreover, setting w, := w+dd
if p € PSH(X,w), the map

PSH(X,w)3> ¢ —V, ::/wZG]R
X

respects the partial order defined before by the main theorem in [WNI9[ li.e. if
u < v then V,, < V,. Such monotonicity still holds considering the mixed product,
e [y wuy A Awu, < [y woy Aeo-Awy, if uj S vj forany j =1,...,n (Theorem
2.4 in [DDNLI8b]). Generally we have the following principle:

Proposition 3.2.1. (Comparison Principle). Let u,v € PSH(X,w) such that u <
v, and wi, ..., Wn—p € PSH(X,w) for 1 < p <n integer. Then

/ wﬁ/\wwl/\---/\wwn_pg/ W AWy A AW, -
{v<u} {v<u}

Proof. The proof proceeds as that of Corollary 1.4 in [WNI9|. For any € > 0, set
ve := max(v,u — €). Thus

/wSAwwl/\"‘/\wwn,p:/wﬁe/\wwl/\"'/\wwnfpz
X X

2/ wﬁ/\wwl/\-n/\wwnw—&—/ Wy AWy A AW,
{v>u—e} {v<u—e}

which implies
/ wZ/\wwl/\---/\wwnfpS/ wfj/\wwl/\~~~/\wwn7p.
{v<u—e} {v<u}

The result follows from letting € — 0. (|

We also recall some results of |[DDNL18b]| which will be very useful in the sequel:

Lemma 3.2.2 (Lemma 3.7, [DDNL18b]). Let u,v € PSH(X,w). If P,(u,v) #
—o00, then

w;l)w(u,v) < H{Pu(u,v):u}w: + I{Pw(u,v):v}w17}~
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Theorem 3.2.3 (Theorem 3.8, [DDNLI18b|). Let u,v € PSH(X,w) such that u is
less singular than 1. Then

M A, (Po[¢](w) < 1p,wiw=uy MAw(u).
In particular if 1 is o model type envelope then M A, (1) < 1iy—0y M A, (0).

Theorem 3.2.4 (Theorem 2.3, [DDNLISB|) . Let {uj,uf}j=1,..n € PSH(X,w)
such that u? — wu; in capacity as k — oo for 5 = 1,...,n. Then for all bounded
quasi-continuous function X,

liminf/ XWyk N+ NWyk 2/ XWuy A+ A Wy, -
b's ! " b's

k—oo

If additionally,

/wul/\'--Awuﬂ,ZIimsup/ Wyk N s AWk
b's x !

k—oo "

then wyr A Awyk — Wuy A+ AWy, i the weak sense of measures on X.
1 n

It is also useful to recall that if PSH(X,w) 5 u; \yu € PSH(X,w) decreasing, then
u; — w in capacity, and that the convergence in capacity implies the L'-convergence
(see [GZ17)).

3.2.1 Potentials with -relative full mass.

If u,v belongs to the same class [¢)] then V,, = V,,, but there are also examples of
w-psh functions w,v such that v < v and V,, = V,,. Thus v € PSH(X,w,) is
said to have v-relative full mass if Vi, = Vi, and the set of all w-psh functions with
tp-relative full mass is denoted with &(X,w, ) (see [DDNL18b]).

Theorem 3.2.5. (Theorem 1.3, [DDNLI8b[). Suppose ¥ € PSH(X,w) such that
Vi >0, and u € PSH(X,w, ). The followings are equivalent:
(1) we&(X,w,v);
(1) Polul(¥) = ;
(i11) P.[u] = P[]
This result suggests that any function in the class &(X,w, ) is at most mildly more
singular than 1. Moreover this also implies that &(X,w,11) N (X, w,12) = 0 if

1,12 are two different model type envelopes with non zero total masses V,, > 0,
sz > 0.

For any u1,...,up € PSH(X,w), and for any ji,...,Jp € N such that ji+---+jp =
n we introduce the notation

Ji Jpy . J1 Jp
MAG(ul', . up”) = wih A A,
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for the (mized) non-pluripolar compler Monge-Ampére measure associated (it is a
positive Borel measure) and we set M A, (u) := M A, (u"™). Note that if Vi, > 0 then
the map

E(X,w,¥) >u — MA,(u)/Vy
has image contained in the set of non-pluripolar probability measures M (X). More-
over if 1 is also a model type envelope then this map is surjective and it descends to
a bijection on the space of all closed and positive (1,1)-currents with t)-relative full
mass, i.e. on &(X,w,?)/R (see Theorem A in [BEGZ10] when 1 = 0, Theorem 4.28
in when 1) has small unbounded locus, and Theorem 4.7 in
for the general case). See the companion paper [Tru20[ hnd references therein for a
further analysis of the Monge-Ampére operator.

3.2.2 The t-relative finite energy class &'(X,w, ).

From now until section §.4Jwe will assume ¢ model type envelope and V, > 0, ie.
1 € MT with the notations of the Introduction.

Definition 8.2.6. [DDNLI&b| The v-relative energy functional Ey : PSH(X,w, ) —
R U {—o0} is defined as

Ey(u) = ﬁ Z/X(u — )M Ay (1, ")

if u has 1-relative minimal singularities, and as
Ey(u) :=inf{Ey(v) : v € E(X,w, ) with ¢)— relative minimal singularities, v > u}
otherwise.

When 9 = 0 this functional is, up to a multiplicative constant, the Aubin-Mabuchi
energy functional , also called Monge-Ampére energy (see [Aub84], [MabS6]).

Remark 3.2.7. The authors in [DDNLI8b] introduced this functional assuming 1
with small unbounded locus, but the integration by parts formula showed by Xia in
[X19a] allows to work in the more general setting and all properties of Ey recalled
below easily extend.

By Lemma 4.12 in [DDNL18b] Ey(u) = limj_, Ey(u;) for arbitrary u € PSH (X, w, )
where u; := max(u, v — j) are the -relative canonical approzimants . Moreover, fol-

lowing the notations in [DDNLISD]] we recall that
eNX,w, ) = {u € E(X,w, ) : Ey(u) > —oo0}

and that Ey,(u) > —oco is equivalent to Vi, = Vy and [, (u — ¢)MA,(u) > —oc0
(compare also Proposition 2.11 in [BEGZ10]).
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Proposition 3.2.8. [DDNLI8b| The v-relative energy functional is non-decreasing,
concave along affine curves and continuous along decreasing sequences.

Moreover we also have the following properties:
Proposition 3.2.9. Suppose u,v € & (X,w,v). Then:
i) By(u) = Ey(v) = gy Yjoo Jx (u — v) M A, (w,0"77);
1) if u < v then fX(u —v)MA,(u) < Ey(u) — Ey(v) < %H fX(u —v)M A, (u);

ii) [ (u—v)MAy(u) < Ey(u) — Ey(v) < [ (u—v)MA,(v).

Proof. If u,v have t-relative minimal singularities then it is the content of Theo-
rem 4.10 in [DDNLI8b], while in the general case the proof is the same to that of

Proposition 2.2 in [DDNL18¢| replacing Vp with 1, using the Comparison Principle
of Proposition B.2.1and the fact that for any w € &'(X,w, )

lim j/ MA,(max(w, ¥ — j)) = lim j/ MAL,(w) <
{w<y—j} {w<y—j}

Jj—oo Jj—oo
< lim (6 — w)MAu(w) =0
I MHwsy—j}
since [, (w — )M A, (w) > —o0. O

We conclude the subsection showing that the envelope operator P, (-, -) is an operator
of the class SI(X,w,w) (in the absolute setting, this problem was addressed by
Darvas, see Corollary 3.5 in [Darl5]).

Proposition 3.2.10. Assume u,v € &' (X,w,v). Then P,(u,v) € &YX, w, ).
Moreover if {uj,v;}jen C E'(X,w,v) decreasing respectively to u,v € E'(X,w, 1),
then Ey, (Pw(ujmj)) N\ Ey (Pw(u, 1}))

Proof. Up to rescaling we may assume u,v < 0. For any j € N let u; := max(u, ¢ —
7),v; := max(v,9¥ — j) be the w-relative canonical approximants of wu,v. Then
wj := P,(u;,v;) is a decreasing sequence of potentials with t-relative minimal
singularities. Moreover it is easy to check that w; \( P, (u,v). Thus by Proposition
[3-2.8]it is sufficient to find an uniform bound for Ey(w;), and by Proposition
this is equivalent to find C > 0 independent of j such that [, (¢—w;)M A, (w;) < C.
But Lemma implies

[w—wpaswy < [ - u)Mau)+
X {wj=u;}
+/{ _ ‘}(w—vj)MAw(’Uj) < (n+D)[Ey (ug) + By (v;)| < (n+1)| By (u) + Ey (v)].

The second statement is now an easy consequence of the monotonicity of FEy since
P, (uj,v5) \y Po(u,v) for any couple of decreasing sequences u; \, u,v; \ v. O
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3.3 A metric geometry on (X, w,v).

Recall that we are assuming € M™", i.e. 1 model type envelope with Vi > 0.

3.3.1 &(X,w,v) as metric space.

In this subsection we prove that (£'(X,w, ), d) is a metric space where d : (X, w, 1) x
EY(X,w, 1) — Rxo is defined as

d(ul, UQ) = E¢(U1) + Ew(’ltz) — 2Ew(PW(U1, UQ))

It follows from section §.2Jthat d assumes finite non-negative values, and that d is
continuous along decreasing sequences converging to elements in &' (X, w, ).
Lemma 3.3.1. Assume u,v,w € (X, w,v). Then the followings hold:
i) d(u,v) = d(v,u);
it) if u < v then d(u,v) = Ey(v) — Ey(u);
1) if u < v <w then d(u,w) = d(u,v) + d(v,w);
w) d(u,v) = d(u, Po(u,v)) + d(v, Po(u,v));
v) d(u,v) =0 iff u=.
Proof. All points are straightforward except one implication in (v). Thus assume
d(u,v) = 0. Then by (i) and (iv) we get Ey(u) = Ey(P.(u,v)), which implies
P, (u,v) = u a.e. with respect to M A, (P.(u,v)) (Proposition B.2.9)]. Hence by the

domination principle (Proposition 3.11 in [DDNLI8b|) we obtain P, (u,v) > u, i.e.
P, (u,v) = u. The conclusion follows by symmetry. O

To prove that &*(X,w, 1) is a metric space, it remains to prove the triangle inequal-
ity. We proceed as in section 3.1 in [DDNL18c|, but for the courtesy of the reader
we will report here many of their proofs adapted to our setting.

Proposition 3.3.2. Let u,v € &' (X,w,v) be potentials with -relative minimal
singularities. For t € [0,1] set ¢ := P,((1 — t)u+ tv,v). Then for any t € [0,1]

d

aEu)(%) = /X (v — min(u, v)) M Au (@)

Proof. Let us prove the formula for the right derivative. The same argument easily
works for the left derivative. Thus fix ¢ € [0,1), let s > 0 small and f; := min ((1 —
t)u + tv,v). Using Proposition (zn) and Lemma it is easy to check that

/X (Fiss — FOMAu(rrs) < Bylprrs) — Bulpr) < /X (Fovs — FOMAL(p0).
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Moreover ;. — o uniformly as s — 0T since [lu —v||zee < C, thus M Ay, (pits)
converges weakly to M A, (¢:). Therefore since fiis — fi = s(v — min(u,v)) and
since and again ||u — v||p < C, Theorem B.2.4[yields

lim Ew(%“)s_ Eu(pt) :/ (v — min(u, v)) M Au (@)

s—0t
O
Proposition 3.3.3. Let u,v € '(X,w, ). Then d(max(u, v),u) > d(v,Pw(u,v)).
Proof. Setting ¢ := max(u,v) and ¢ := P, (u,v), the inequality to prove is equiva-

lent to Ey(v) — Ey(¢) < Ey(p) — Ey(u). By Proposition B.2.8 [we may assume u,v

having -relative minimal singularities.

Next Proposition 3 1mphes

Bule) = Bow) = [ [ (o=l ((1=u o)t =

/ / —u)MA, (max W, U / /{v>u} v —u)M A, (wy)

for wy := (1 — t)u + tv for t € [0, 1], and where the last equality follows from the
locality of the Monge-Ampére operator with respect to the plurifine topology.

On the other hand combining Proposition 3.2 fith Lemma 3[2.2 gnd  {w: < v} =
{u < v} we get

By (v) / [ (o= minu, ) MA (P wr,0) <

< / /{ L A

which concludes the proof. O
Corollary 3.3.4. Let u,v,w € €' (X,w, ). Then d(u,v) > d(P.(u,w), P,(v,w)).

Proof. It follows from Lemma (#i7) and Proposition y an easy calculation
(see Corollary 3.5 in [DDNLI8c]| for the details). O

We are now ready to prove the main theorem of this subsection:
Theorem 3.3.5. (£Y(X,w,v),d) is a metric space.

Proof. As said before, it remains only to prove the triangle inequality (see Lemma
3.3.1).
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Let u,v,w € & (X,w,) and observe that the inequality d(u,v) < d(u,w) 4 d(w,v)
is equivalent to

Ey(Po(u,w)) — Ey (Pu(u,v)) < Ey(w) — By (Po(w,v)).
By Corollary and using the monotonicity of the 1-relative energy functional
(Proposition we get
Ey(w) — Ey (Pw(w,v)) = d(w,Pw(w,v)) > d(Pw(w,u),Pw(w,v,u)) =
= By (Po(w,u)) = By (Po(w,v,u)) 2 Ey(Pu(w,u)) — By (Pu(u,v)),

which implies the Theorem. O

3.3.2 Completeness of (£'(X,w,v),d).

To show the completeness we first need to extend some results known in the absolute
setting (i.e. if ¢ = 0, see [BEGZ10], [DDNLI8c]).

Proposition 3.3.6. Assume u,v € &' (X,w,v). Then

1

m(/x fu = vl (MAu(u) + MAL(v)) ) < d(u,0) <

< / lu — v[(MAy,(u) + MA,(v)).
bl
Proof. The proof is the same as that of Theorem 3.7 in [DDNLI18c| replacing their
Theorem 2.1 and Lemma 3.1 by our Proposition nd Lemma O

Lemma 3.3.7. There exist positive constants A > 1,B > 0 such that for any
ue &'(X,w,)

—d(¢,u) < Vysup(u — ¢) = Vysupu < Ad(,u) + B.
X X

Proof. The equality follows from w —supy u < P[] =9 < 0.

Next, if supy u < 0 then the right inequality is trivial for any A, B > 0 while the left
inequality is a consequence of d(i,u) = —Ey(u) > —Vy supy (u — 1) (Proposition
3.2.9).

Therefore, let us assume supy u > 0. By Proposition 2.7 in [GZ05] there exists an
uniform bound C > 0 such that

/ |v —supv|MA,0) <C
X X

for any v € PSH(X,w). Hence, since Theorem 4.2.2 gives M A, (¢)) < 1{y=0} M A (0),
we also have

/ |u—supu—w|MAw(w)§/ |lu —supu|MA,((0) <C
X X X X
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for any u € &'(X,w, ). So, by Proposition
dw) 2D [ Ju=vMAW) >
X
> DVysupu — D/ |lu —supu — Y|M A, () > DVysupu — DC.
X X X X

Take A:=1/D and B := C to conclude the proof. O

Proposition 3.3.8. Let {u;};en C &'(X,w, ) be an increasing sequence uniformly

bounded by above, and let u = (limj oo u;)" € PSH(X,w). Then u € &'(X,w,)
and Ey(u;) = Ey(u) as j — co.

Proof. Since supy u; = supy(u; — %) is uniformly bounded, we immediately get

that u < 1 + C for a certain constant C € R, i.e. u € PSH(X,w,). Furthermore
since u > wu; for any j € N by construction, we also obtain u € &'(X,w,v) by
[WN19] and the monotonicity of E,. Thus since Ey(u) = limg_ 0o By (u®), By(u;) =
limp o0 By (u¥) where u* := max(u, ¢ — k), u¥ := max(u;, 1) — k) are the 1)-relative
canonical approximants, it is enough to check that Ey(uf) N\, Ey(u;) as k — oo
uniformly in j. Indeed this would imply

Ey(u) — By (u;) < [Ey(u) — By (u®)] + By (u®) — By (uf)| + | By (uf) — Ey(u;)| = 0

letting first j — oo and then k — oo, since |Ey(u”) — Ey(u})| — 0 as j — oo as a
consequence of Lemma 4.1 in (see also Lemma §.4.3 pelow).
Assume without loss of generality that « < 0. By Proposition B.2.9]we have

“+oo
0< Bulu) = Bolw) < [ (uf —u)MAuw) = [ Mot ({us < v = )t

(3.1)

Next we set v; ¢ 1= and we note that the following inclusions hold:

ujtp—t
2
{uj <=t} C{ur S wje} C{ur < —1t/2}

Indeed the first inclusion follows from w; < w; while the last is a consequence
supy u = supy (u — ) (Lemma B.3.7). Thus, by the comparison principle (Propo-
sition we have

MAu(ug)({u; < ¥=t}) < MAu(w;)({wr S wje}) < 2"MAL(vie) ({ur S vja}) <
<2"M Ay (ur) ({ur < wvji}) <2"MAL(ur) ({ur < o —t/2}).
Therefore, continuing the estimates in (
0 < By(ul) — By(uy) <2t o MAy(ur)({ur < —t})dt =
k/2

_ 2”+1/ (W2 — u) M Ay (wr),
X
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which concludes the proof since the right hand goes to 0 as k — +o0o (recall that
w € E(X,w,¥)). O

Theorem 3.3.9. (£1(X,w,v),d) is complete.
Proof. Let {u;}jen C (6*(X,w,%),d) be a Cauchy sequence. Up to extract a sub-
sequence we may assume that d(uj,uj+1) < 277 for any j € N. Define vj; =
P,(uj,...,u) for j,k € N,k > j, ie.

vjx =sup{v € PSH(X,w) : v < min(uj,...,ux)}".
Clearly v;r = Pu(uj,vj11.k) < vjr1k if k> 75+ 1 and vjx € E'(X,w,?) as con-
sequence of Proposition §.2.10 kince P, (P.(u,v),w) = P, (u,v,w) for any u,v,w €
PSH(X,w). Thus for any k> j+1

d(uz, vjk) = d(us, Po (g, vit1,k)) < dug, vigrk) < d(ug, ujen) + d(ugn,v401,5)

using Lemma Iterating the argument we get

i o1 > 1 1
d(uj,vj6) < . d(Ujrs—1,uj1s) < Zl Sie-1 < 35 Tt
sS= sS= s=]

Moreover, since v; is decreasing in k, there exists a constant C; € R such that
vjk <Y+ Cj for any k > j. So

Cj—Eyp(vik) = d(+Cj,vjk) < d(@+Cyuy) +d(uj, ) < d(+Cjoug) +2777,
which implies that v; := limpseovjr € €'(X,w,v) by Proposition and

d(vj,uj) < 279! by continuity of the distance along decreasing sequences.
Next we observe that v; is increasing in j and that

Vi sup(v; — ) = Vysupv; < Ad(y,v;) + B <
X X

j—1

< A(d(,w) + Y d(t, uesn) + d(uy,v;) ) + B < Ad(,w) + 34+ B

s=1

where the first inequality is the content of Lemma 3[3.7. | Hence Proposition 3 5.8 |
leads to u := (lim;_ 00 v;)" € €'(X,w,?) and to

d(uj7u) < d(ujv vj) + d(vj7u) < 27j+1 + d(vj7u) —0

for j — oo. O
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Remark 3.3.10. In the case 9y € M\ M7, i.e. if ¢ is a model type envelope with
zero mass Vy = 0, then

PSH(X,w,y) = &(X,w, ) = &' (X,w, ).

Indeed any function uw € PSH(X,w, ) has zero mass V,, = 0 ([WN19]) and Ey(u) =
0 since for any ¢ with t¢-minimal singularities |Ey(¢)| < Vysupy [¢ — | = 0. In
particular d(u,v) := Ey(u) + Ey(v) — 2By (Pu(u,v)) = 0 for any u,v € €' (X,w, ).
Moreover if P, (1/)1,1/12) % —oo for 1,12 model type envelopes with zero masses
Vg, = Vg, = 0 then EY(X,w, 1) N ENX,w,2) = (X, w, Pu[Pu(b1,12)]) is not
empty.

3.4 The metric space (X4,d,) and consequences.

In this section we will prove the main Theorem Iﬂi.e. assuming A C M7 total
ordered subset (recall the the partial order = coincides with the order < on M),
we will endow the space X4 := I-'weﬁ &Y (X,w,v) with a metric topology. Here A
denotes the closure of A as subset of PSH(X,w) with its L'-topology.

We will show that A C M and we will define a natural distance d4 on X4 which
extends the distance d (Theorem E on &Y(X,w, ) for any 3 € A where if o) =
infA € M\ M" we identify the space &'(X,w,1) with a point since in this case
necessarily dq = d = 0 (Remark

We recall that the distance d on &' (X, w,) for ) € M7 is defined as

d(u,v) = Ey(u) + Ey(v) — 2By (Pu(u,v)).

Definition 3.4.1. Given 1 € M, the strong topology on &'(X,w, ) is defined as
the metric topology given by the distance d.

In the case 1 = 0 the strong topology was introduced in [BBEGZI19]|(Definition
2.1.), see also Proposition 5.9 and Theorem 5.5. in [Darl5].

The following Lemmas regarding the weak convergence of Monge-Ampére measures
for functions belonging in different &!-spaces will be essential in the sequel.

Lemma 3.4.2. Let {¢r}ren C M be a monotone sequence converging a.e. to

Y € PSH(X,w). Then ¥ € M and M A, (vr) = M A, (v) weakly.

Proof. Assume first ¥ \ . ~

Since supy ¥r = 0 for any k¥ € N we immediately obtain ¢ < P,[¢)] =: ¢ which
implies ¢ = P, [¢] since clearly P < P, [1x] for any k € N. For the second statement,
we first observe that

k—oo

/ M A () > lim sup / M A () (3.2)
X {v>-C}
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for any C' € R fixed since M A, (¢;) — MAL(y) weakly in the plurifine topology
over {1 > —oco} and {1 > —C'?} is a plurifine closed set (see [BT82[land [BT8T]).
On the other hand, by Theorem 4.2.2 | M A, (r) < Liy, =0} M AL, (0) for any k € N.
Thus for any C >0

limsup/ MA, (¢x) < limsup MA,(0) =0, (3.3)
{v<-C}

ko0 ko0 /{w<—cm{wk=0}

where the last equality follows from (), x{%x = 0} = {¢ = 0} since ¥ \( ¥ and
¥, 1 < 0. Hence combining (§.2)] and ( we obtain

[ ) = imswp [ ML)

X k—oc0 X

and Theorem B.2.4implies M A, (x) — M A. () weakly.

Assume now i " 1) almost everywhere.

Again by Theorem $.2.4 |we immediately get MA,(r) — MA, (1) weakly since
1r — % in capacity. Moreover, similarly as before, ¢ < P,[t]. Thus to conclude
the proof it remains to prove that ¢ > P, [1)].

We note that M A, () < Liy=0yMAL(0) since MA,(Yx) < Ly, =03 MAL(0) for
any k € N (Theorem . Therefore

0< / (Paltf] — ) MAL () < / (Pulth] — $)MAL(0) = 0
X {y=0}

where the last equality follows from 1 < P,[¢)] < 0. Hence by the domination
principle (Proposition 3.11 in [DDNLI18b|) we conclude that P,[¢)] < ¢, i.e. ¢ €
M. (]

As a consequence of Lemma e get that A C M. Indeed since A is totally
ordered, any Cauchy sequence {9 }ren admits a _subsequence monotonically con-
verging a.e. to (limk_,oo ’([)k)*. We also note that A remains totally ordered.

Lemma 3.4.3. Let {¢x}ren C M total ordered such that i — ¥ € M mono-
tonically almost everywhere. Let also wui,us € EY(X,w,v), and let {u1 i, usk }ren
be two sequences converging in capacity respectively to ui,uz such that uy g, usk €
EY(X,w,¥r). Then for any j=0,...,n,

MAu(u] ) — MAs(uf,uy ™)
weakly. Moreover if w1, — Uz i is uniformly bounded then, for any j=0,...,n,
(w1, — ug,k)MAw(u{’k,u;;j) — (w1 — u2) M Ay (u),uy ™) (3.4)

weakly. In particular if either ui g \( Ui, U2,k N\ U2 G.€. OT Uik / Ui, U2k /* U2
a.e. and Uy, — U2,k uniformly bounded, then

d(u1,k, u2,k) = d(u, u2).
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Proof. MAw(ujl"k,ug;j) — MA, (), ul™) weakly as a consequence of Theorem
and Lemma Thus the proof of the weak convergence in (3is an
adaptation of the proof of Lemma 4.1 in (and it is a particular case of
Theorem 2.2. in [X19a)).

Next assume that uix,u2,r converge monotonically almost everywhere to w1, us
as in the statement. Thus to prove that d(u1,k,u2,k) — d(ui,u2) we only need
to show that P, (u1k,u2k) — Pu(u1,u2) almost everywhere since clearly wu;r —
P, (u1,k,u2,k) is uniformly bounded. From P, (u1k,u1,k) < U1k, U2,k we immedi-
ately have (limkaoo Pw(ul,k,uz,k))* < P, (u1,u2). Therefore if the convergence is
decreasing then P, (u1,u2) < P, (u1,k, u2,x) and we get the convergence of the d dis-
tances. If instead the convergence is increasing then, setting ¢ := (limkﬁoo P, (ulyk, uzk))*,
we observe that ¢ € €(X,w, 1)) and that M Au (Pu(u1,k, u2,k)) = MAu(¢) weakly
as a consequence of Theorem $.2.4 and Lemma Moreover since by Lemma
B22

MA, (Pw(ul,k,uz,k)) < ]l{qbzulyk}MAw(ul,k) + ]]-{¢Zu2yk}MAw(u2,k) <
< 1{¢Zu1,j}MAw(u1,k) + 1{¢Zu2,j}MAw(u2,k)
for any j < k, and M A, (u; k) — M Ay (u;) weakly for i = 1,2, we get
MAG($) < Vip>uy ;3 MAu(u1) + Lig>u, ;3 MAu(uz).

Therefore letting j — oo we obtain

0< /X (Po(u1,u2) — @) M AL (¢) < /{¢>u } (Puo(u1,ug) — ur) M Ay (u1)+

+/ (Po(ur,u2) — ug) M Ay (uz) <0,
{¢p>uz}

which by the domination principle of Proposition 3.11.in implies P, (u1,us2) <
¢. Hence P, (u1,u2) = ¢ which as said above concludes the proof. O

3.4.1 The contraction property of d.
Lemma 3.4.4. Let 1, v1,%2 € M such that Y2 < 1 <X . Then:
i) Pultha](Pult](u)) = Puy2](u) for any u € €'(X,w,v);
i) Pu[$r](€'(X,w,9)) C €1 (X, w,91);
ii) for any u,v € EY(X,w, ) such that u — v is globally bounded, ||P,[¢1](u) —

P,[¢2](0)||pe < |Jlu—v||re~ and in particular P.,[y1](u) has 1 -relative mini-
mal singularities for any u € &'(X,w, ) with -relative minimal singularities.

Proof. The inequality P,[t1](u) < u immediately implies P, [¢2](Po[t1](u)) <
P, [¢2](u). Vice versa P,[i2](u) < P,[¢1](u) since 92 < 11. Thus the first point
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follows applying P.,[12](-) to both sides.
For the third statement, letting C := ||u — v||roo, it is an easy consequence of the
definition that

Poln](u) = Puln](v — C) = R[] (v) -
By symmetry, we also have P,[¢1](u) < P,[¢1](v) + C which gives (ii). This
immediately yields (i7) if ¢; € M\ MT. Therefore it remains to prove (4i) assuming
P € MT, Letting u; := max(u, 1y — j) be the t)-relative canonical approximants of
a generic u € &'(X,w, ), we get that v := P, [¢1](u) belongs to €'(X,w, 1) if and
only if [ (Y1 —vj)M A, (vj) is uniformly bounded in j where v; := P, [¢1](u;) (see
Proposition B.2.8) - But taking D :=supyx u > 0 and using Theorem mwe get

DV + [ (1 —epMAL) < [ @ D) M A <
< DVw—i—/ (w—Uj)MAw(Uj) <FelR
X

for an uniform E € R since u € £*(X,w, ) and u; \, . O

We are now ready to prove the following key property of the distance d.

Proposition 3.4.5. Let 1,1’ € M such that v’ < 1. Then the map
Pa[¢']() : (E1(X, w,9),d) = (E1(X,w, %), d)

is a Lipschitz map of Lipschitz constant equal to 1, i.e.

d(u,v) > d(Po[](u), Pul](v))
for any u,v € E1(X,w, ).
Proof. Let u,v € &'(X,w,). Set

p(u,v) ::/X(u—v)MAw(v).

if u > v and p(u,v) := p(v,u) if v > u. Proposition B.2.9fimplies d(u,v) < p(u,v).
Moreover assuming v’ € M™ such that ¢’ < 1 as in the statement of the Proposition,

p(Pola/) ), Pof)(0) = [ (ol )00 = PoldJ(0) M AL (P [ )(0) <
< u—v)MA,W) < plu,v
< (DM AL) < ol

by Theorem Therefore we define for any wu,v € £'(X,w, )

m—1
d(u,v) := inf( u, w1) + Z p(wj, wjt1) +p(wm,v))
Jj=1
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where the infimum is over all chain € = {u = wo,w1,...,Wmn,Wns+1 = v} for any
m € N such that any pair of consecutive elements in the chain wj,w;y1 satisfies
wy 2 Wj41 Or Wy S Wj+1-

Clearly d(u,v) > d(u,v) and it is straightforward to check that d is symmetric and
that it satisfies the triangle inequality. Moreover by construction and Lemma 3.f4_]
we also have J(Pw[w/](u),Pw[w/}(v)) < d(u,v) since p has the same property and
P,[¢'](w) < P,[Y'](v) if u < v. Thus to conclude the proof it remains to prove that
d < d, which would imply d = d.

We first observe that it is enough to show that d(u,v) < d(u,v) assuming u > v
since it would lead to

d(ﬂnﬂl&) < d(wl,Pw(wl,wg)) + d(WQ,Pw(w1,w2)) <
< d(thw(wl,'wg)) =+ d(wg,Pw(wl,wg)) = d(wl,wg)

by Lemma E.S.l (iv). Therefore let u > v, fix N € N and set w;,n := Lu+ %v for

j=0,...,N. Then Cy := {wo,n,...,wn,~N} is an admissible chain for the definition
of d(u,v). So
B N-1 N-1 1
d(u,v) <> plwjn, wisn) = Y v [ (= v)MAL(w;N) =
j=0 =0 X
N-1
_ n 1 J\? N_j)n—s s n—s
- <s> N (N) ( N X(“ VIMAL (W, v )
s=0 7=0
Next by Lemma below for any s=0,...,n,
VT =
N & AN N (M(n+1)’

as N — oco. Hence we get

d(u,v) < !

which concludes the proof. O

Lemma 3.4.6. Let n, N € N and let s be a non negative integer such that s < n.

Then
N-1

Jmoy () ()= % ®5)

Jj=0
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Proof. Consider the function f :[0,1] - R,z — 2" °(1 — z)°, it is immediate to
see that the sequence in ( is the upper Darboux sum of f with respect to the
partition 0 < % <+ <% <--- <1 Thus
N-1 . . : 1
: 1 J\? N —J\"° _ n—s s
dm oy () ()= e aras

0

<

A brief calculation shows that fol 2" 71— z)°dx = O

1
()41

The contraction property showed above implies an uniform convergence on some
compact sets.

Proposition 3.4.7. Let {{x}rexn C M be a sequence monotonically converging to
1 € M almost everywhere. Then for any ' € M such that ' = 1y for any k > ko
big enough and for any compact set Kc EY(X,w, ) with respect the strong topology
on EY(X,w, "), the sets K := P,[Y](K) C (EMX,w,%),d), K = P.[Yw](K) C
(Sl(X,w,dJk),d) are compact in their respective strong topologies for any k > ko,
and

d(Pu[ve] (1), Putr](2)) = d(Pul](¢1), Pu[¥)(¢2))
uniformly on K x K, i.e. varying (¢1,92) € K x K.

Proof. 1t follows from Lemma nd Proposition at P, [¢x])(K) is compact
in ("(X,w,¥x),d) for any k € N, and similarly for K.

Next, we define fj : K X K — R>o for kK € N and f: KxK — R >0 respectively as

fr(p1, 2) := d(Pur](p1), Poltr](@2))
flp1,02) == d(Pu[¢] (1), Pu[9)(p2)).

We observe that fi, f are Lipschitz continuous with respect the strong topology on
K x K (Proposition . Moreover by Lemma fr — f pointwise on a dense
subset of K x K and {fr}ren is a monotone sequence. Hence Dini’s Theorem implies
that fr — f uniformly on K x K. O

3.4.2 The metric space (|, P(X,w,v),da)-
Definition 3.4.8. Let ¢ € M. We introduce the set

Pyc(X,w,9) = {Pu[¢](p) : ¢ € H}
where H := {p € PSH(X,w) : w+ dd°p Kdihler form }.

Observe that by Lemma ny u € Pyc(X,w, ) has t-relative minimal singular-
ities. This smaller set is dense in (El(X,w, P), d) as the next result shows:
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Lemma 3.4.9. Let ) € M. Then Poc(X,w,v) is dense in E'(X,w,1p) with respect
to the strong topology.

Proof. We can assume 1) € M, otherwise it is trivial. Let u € &'(X,w, ).
We first observe that v; := P,[1)](max(u, —5)) belongs to &'(X,w,) and it has
t-relative minimal singularities by Lemma 3:4.4.|Moreover since

u= P,[¥](u) <v; < max(u,—j)

we also get that v; \  u. Therefore d(u,v;) — 0 for j — oo since d is continuous
along decreasing sequences. Next, by density of I into &'(X,w) := €'(X,w,0), for
any j € N there exists ¢; € H such that d(p;, max(u,—j)) < 1/j. Therefore, letting
w; == Pu,[Y](¢;) € Psc(X,w, ), by Proposition B.4.5]it follows that

1
d(wj7u) < d(wj7vj) + d(U]',U) < d(u,’U]') + ; =0
as j — 0o, which concludes the proof. O

Remark 3.4.10. By the main Theorem in [Mcl8]l if the singularities of ) are
analytic, i.e. ¥ = P,[u] for v with analytic singularities of type a° for an analytic
coherent ideal sheaf a C Ox, ¢ € R0, then any function v € Psc(X,w, ) is Cllo’i (X\
V(a)).

We need now to recall the definition of the entropy.

Definition 3.4.11. [Definition 2.9., [BBEGZ19]| Let p,v two probability measures

on X. The relative entropy H,(v) € [0,+00] of v with respect to p is defined

as follows. If v is absolutely continuous with respect to p and f = g—; satisfies

flog f € L' () then

H,(v):= /Xflogfdp: /Xlog (g—:)du.

Otherwise H,(v) := 400.

The relative entropy provides compact sets in  €(X,w) endowed with the strong

topology (Definition $.4.1).

Theorem 3.4.12. [Theorem 2.17., [BBEGZ19]| Let C be a positive constant. Then
the set

Ko := {tp € &'(X,w) : max (\SI)I(pSDLHMAw(o)/VO (MAw(go)/Vb)) < C’}

is compact in &Y (X,w) with respect to the strong topology.
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Definition 3.4.13. Given ¢ € A, we define for any C >0

Po(X,w, ) = Pu[Y](Kc) =
= {Pw[ll’](@) € &'(X,w,v) : max (|Sl)l(p90‘>HMAw(0)(MAw(<P))) < C},

and

PX,w, )= ] Po(X,w,v).

CeRx

As a consequence of Theorem nd Proposition 3 Pe(X,w, ) is compact
in (EY(X,w,9),d) and Po, (X, w,v) C Pc,(X,w, ) if C1 < Ca. Moreover since
Hpa,0)(MAL(p)) < oo for any ¢ € H, Py (X, w,9) = UC€R>0 P,[¢](KeNH) C
P(X,w,v). It is also clear that for any u € P(X,w, 1)) there exists C € R0 minimal
such that u € Po(X,w,v). We set P(X,w) := P(X,w,0) and we call ¢ € P(X,w)
a minimal entropy function for u € P(X,w,v) if ¢ € K¢ and P,[Y](p) = u for C
minimal.

Definition 3.4.14. Let u € P, (X, w,¥1),v € Pey (X, w,¥2) for 1,92 € A such
that 2 < 1. Assume also that Ci (respectively Cz) is minimal such that u €
Poy (X, w, 1) (resp. v € Poy, (X, w,12)). We define

da(uy0) = d(v, Pula)(w) + sup {d(a,) — d(P. 2] (@), Pulua](8)} + Vi~ Vo
where the supremum is over all a,b € Praxc,,00) (X, w,P1).

We observe that d takes finite values since the supremum in the definition is actually
equal to

max {d(Pulr](01), Pultn)(2) —d(Pulial (1), Pultal(¢2)) |-

(¢1,92)€X max(cy,C9) XKmax(cq,C9)

Proposition 3.4.15. Let u € P(X,w,1),v € P(X,w,2) for 11,1¥2 € A such that
o < YP1. Then the followings hold:
i) da(u,v) = da(v,u);
i) da(u,v) € Rso and da(u,v) =0 if and only if u = v;
ii) if Y1 = ba then da(u,v) = d(u,v);
w) da(u,v) > d(v, Py[a](u)) and da(u,v) > d(u, Pu[1](p)) where € P(X,w)

is & minimal entropy function for wv.

Proof. The first point is trivial. By Proposition 4.5 hnd the main Theorem in
[WNT9] da € Rso, and if 1 = b2 then da(u,v) = d(u,v). For (iv), instead,
the first inequality is immediate, while the second inequality follows considering
a =u,b= P,[t)1](p) in the supremum.
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Therefore it remains to prove that da (u,v) = 0 implies u = v. But if da (u,v) =0
then in particular V,, = Vy,, and Theorem implies 11 = 2. Hence the third
point and Theorem KJconclude the proof. O

The map ds does not seem to be a distance on Uyea P(X,w, 1), since it hardly
satisfies the triangle inequality. Indeed it is composed of three parts, and clearly two
parts behaves well for the triangle inequality, but the part given by the supremum
seem to be very unstable since the set of the supremum depends on the functions
u, v taken. Therefore we want to modify da to get a distance d4 which still coincides
with the d-distance on P(X,w, ) for any ¢ € A. The next Lemma is the key point
to proceed.

Lemma 3.4.16. Let u,v € P(X,w, ) for ¢» € A. Then for any m € N and any
Wi, ..., Wn S l—l’LZJ’EA iP(XWJ»l/)/),

—1

d(u,v) SJA(u,wl) da (w]-,wj+1)—|—cz,q(wm,v).

j=1

3

The proof of this Lemma is quite laborious and it will be presented in the subsection

.43

Next we define da : | |,c, P(X,w,9) X [|c 4 P(X,w,9) = R0 as

m—

da(u,v) = inf{dﬂ(u,wl Z Aa(wj, wit1) +cz,q(wm,v)}

where the infimum is over all possible chains in I—L/)EA P(X,w, ).
We can now prove Theorem B|

Theorem E (|_|¢€A TP(X7w,1/J),dA) is a metric space, and denoting with X, its

metric completion, we have
Xa= || e'(X,wv)
YEA

where A C M is the closure of A as subset of PSH(X,w) with its L*-topology and
where we identify £'(X,w,v’) with a singleton Py if ¢ :=inf A € M\ M*.

In particular the complete metric space (Xa,da) restricts to (Sl(X,w7w)7d) on
EY(X,w, ) for any ¢ € A.

Proof. Step 1: (I—lweﬂ T(X,w,w),dﬂ) is a metric space.
As a consequence of Lemma §.4.16 Jve immediately get

dap(x w0 xP(Xw,y) = d
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for any ¢ € A. Therefore to prove that d4 is a distance on |_|¢6A P(X,w, ) it
remains to prove that du(u,v) = 0 implies u = v since the triangle inequality easily
follows from the construction (see also Proposition 3 But given wi,...,wm €
uweﬂ P(X,w, ), the uniform bound

d~A(u,w1) +JA(1U17'UJ2) + -+ gA(wm7U) > ‘Vu - Vv|

holds. Therefore da(u,v) = 0 leads to V,, = V,, and since A is totally ordered,
by Theorem we obtain that u,v € &'(X,w,v) for a common 1 € A. Hence
0 = da(u,v) = d(u,v), which implies v = v and concludes the first step.

Step 2: (I—lweﬁ (Sl(X,w,w),d)) C (X, da).

For any ¢ € (A \ A) there exists a monotone sequence {vy}ren such that @ =
(limg—oo ¥x)". Thus, letting Po(X,w,¥) > u = Pu[Y](p) for ¢ € K¢ minimal
entropy function for w and letting uy := P.[x](v), we claim that {ux}ren is a
Cauchy sequence with respect the distance dx.

Indeed if {¢k}ren is increasing, then for any j, k such that j > k we have

da(uk,uj) < dA(Uk7uj) <

< sup{dla,b) = d(Pulnl (@), Puln](4) } + Vi, = Vi, <
a,bePc (X, w,;)

< sup {d(a,b) — d(Puln](@), Pufl®) } + Vi~ Vi,
a,beP e (X,w,b)

by the definition of d4 and Proposition since Y = Y for any k € N. There-
fore by Proposition 8.4.7 |(see also Lemma 3.4.2)| {ux}ren is a Cauchy sequence in
( I_lwef[ (P(X7 w, ¢), dfl .

If instead ¥, \( ¥, we first denote with C; € R>o the minimal constant such that
u1 = P,[i1](¢) for ¢ € K¢, . Thus for any j, k such that j > k we have

d_A(Uk,Uj) S JA(Uk,Uj) S

< s {d(a,b) = d(Pfi)(e), Puls)0) } + Vi, — Vi, <
a,b€Pcy (X,w,¥k)
< swp {dla,b) — d(Pull(@), PulI0) } + Vi, — Ve

a,b€Pcy (X,w, k)

and as before Proposition nd Lemma mply that {uk}ren is a Cauchy
sequence.

Hence we define the map

$ ( | (fP(X,w,z/)),d)) — (Xa,da)

YEA
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as ®(u) := [u] where we recall that (X, ds) is by definition the metric completion
of Uyeca (P(X,w,1),d). We need to check that it is well-defined.

Let assume u = P,[¢¥](¢) = Po[¢](¢’) for ¢, € K¢ minimal entropy functions.
Define also uy := P [¢x](¢), u), := Pu[r](¢") where 3 = (limkﬁoo qj)k)* monotoni-
cally. Then by Proposition

lim sup da (ug, u,) = lim d(ug,uy,) = d(u,u) = 0.
k—oo k—o0

Next assume that u = P, [](¢), uk := Pu[ti](¢), u), == Pu[yi](#) for {thx}ren, {rtren C
A monotone sequence converging to 1 almost everywhere. We need to check that
da(uk,uy) — 0 as k — co. Let C1,C] € R be minimal constants such that wu; =
P,[Y1](9),ur = P,[y1](¢") for ¢ € Key, ¢’ € Koy, and set Co := max(C, C1,C1).

Then for any k£ € N such that 9}, < ¥k,

da(up, ur) < da(ug, up) <

< s {d(eb) — d(Pulgi)(a), PlpkIB) } + Vi, — Vi
(a,0)EP oy (X, w,thy)

and similarly if 1}, = 1. Therefore, proceeding similarly as before, it is not difficult
to check that da(uk,u)) — 0 as kK — oo using again Proposition Hence @
is well-defined, P(X,w,®) C (Xa,da) and if u := P,[Y](p1),v := Pu[Y](p2) for

minimal entropy functions 1, @2 then
da(u,v) := lim da(ug,vr) = lim d(ug,vk)
k—oo k—oo

where uy := Pu[Yr](p1), vk := Po[r](v2) for {x}ren C A monotonically converg-
ing a.e. to 1. Therefore d(u,v) = d(u,v) by Proposition B.4.7 Jand it easily follows
from Lemma B-Z.9]that there is an unique continuous extension

i (L (' (X w),d)) = (Xasda)

PYEA

which restricts to an isometric embedding on any metric space (EI(X, w, ), d).
Step 3: set up the final strategy.

It remains to prove that ||, (E'(X,w,1),da) is complete. Thus let {u;}jen C
Uyex P(X,w, 1) be a Cauchy sequence. Up to extract a subsequence, we may
assume d.a(uj, uj11) < 55. For any j € N let also ¢; € P(X,w) a minimal entropy
function for u; and ¢; € A such that u; € P(X,w, ;). Since A is totally ordered, up
to consider a subsequence, we may assume that {;};en converges monotonically
a.e. to Y € A.

Step 4: {¢;};cn increasing.

Let for any k > j, v := P, (Pw[wj}(goj),.-. ,Pw[i/lj](gok)) and let for any k > j,
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i€ N, v, =P, (Pw[zpi](apj),-n ,Pw[wi](gak)). Note that U;k = v, and that
vk = PW(Uj,U§+1’k). Moreover we claim that P,[1);](v} ) = vjx if i > j. Indeed

Pu[th](vjx) < vjk since v < Polthi)(9;), .- -, Pultil(r) implies Po[yhs](v; ) <
P,[Y51(¢5), - -, Po[t;](¢r) by Lemma While the reverse inequality follows
applying P, [t;]() to the trivial inequality v;r < v . As a consequence we get that

d(uj,vj,k) = d(“ja Pw(uj,v§+17k)) < d(“dv”§+1,k) < da(uj, vj41,k)

where the last inequality follows from Proposition 314.15. |(iv). Iterating, by the
triangle inequality we have

k—j—1 k—j—1
1 1

d(ug,vj0) < D dlusp ugrien) < Y2 2 = g1
=0 =0

Clearly vj,i is decreasing in k, thus, letting C; € N such that v, < ¢; + C; for any
k € N, we get

Cj=Ey; (i) = Bu; (¥ +C5) = By, (vj6) = d(; +C;,v50) < d($j+Cj,u5) + 5=,
which implies that v; 1= limy—cc vjk € &Y(X,w, ;) by Proposition Moreover
d(uj,v;) < 279%! by continuity along decreasing sequence. Observe also that v; <
vj+1 by construction since v; < v; i < vi:l < vjy1,k forany k> j+ 1.

Then by Lemma B.3.7 there exists two uniform constants A > 1, B > 0 such that

1
sup(v; — ;) = supv; < v (Ad(¢j,v;) + B)
X X j

J

which implies that u = (limjev;)” € PSH(X,w,t). Therefore, assuming
supy v = 0 up to add a constant, by Theorem §.2.4 Jwe also have M A, (v;) —
M A, (u) weakly, which implies V,, = V4 and, for any m € N fixed,

/X (1/) — max(u, ) — m))MAw(max(u,w — m)) =

= lim (¢; — max(vj,1h; — m)) M A, (max(v;,¢; —m)) <

J—ro0 X

< hm (n + 1)d(¢]7 ma'X(Ujv 1/’]’ - m)) < Jll>nolo(n + 1)d(1/117 Uj)

J—ro0

using also that max(v;,¢; —m)  max(u,1 — m) almost everywhere. Therefore
u € & (X,w,) as a consequence of

d(s,v5) < da(@y, ) +d(hr, ur) +da(ur, ug) +d(ug, vi) < Vi — Vi, +d(31, ur) +2.

Thus to finish this step it remains to check that da(u,u;) — 0 as j — oo, or
equivalently that da(u,v;) — 0.
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Set for any k > j, vl := P,[t;](vr). Then by construction {v}}>; is an increasing
sequence converging strongly in &'(X,w, ;) to P,[w;](u). For € > 0 fixed, let also
¢ € H such that d(u, P, [¢](¢€)) < e. Next, for any j fixed let s € N depending on
7, € such that d(
[B.435] we have

V)4 g Pu[t] (u)) < e. Thus by the triangle inequality and Proposition

s—1
da(vj,u) < Z d(”§+l» ”§+l+1) + d(”§+s7 P, [¢J](u))+

1=0

d(Pu[5](u), Polth)(¢e)) + da (Polths)(¢e), Polth](de)) + d(Polth](de), u) <

< + 3¢+ da (Pu[¥](de), Pulth](0e)),

S 52

which by Proposition mplies limsup,_, ., da(v;,u) < 3e since

da (Pulths](e), Pult))(¢e)) < da(Pulths)(¢e), Pult)(4e)) <

< sup {d(p1, p2) — d(Pu[1hj)(p1), Pultr](2)) } + Vg = Vi, = 0
P1,02€P0, (X,w,1)

for a certain constant C. € R.

Step 4: {¢;}jen decreasing.

We define for any j € N, w; := P,[¢](u;). Clearly {w;}jen C EY(X,w,) is a
Cauchy sequence since for any j > k

d(wj, wr) < d(uy, Po[ts](ur)) < daluj,ur) < Qk%

by Proposition and Proposition Thus w; converges strongly to a func-
tion u in (X, w, 1) and to conclude the proof it remains to prove that d (u;,u) — 0

as j — oo. Therefore, letting for any k € N, ¢ € H such that d(uk,Pw [1/)k](¢>k)) <
1/k, we get for any k < j

da(uj,u) < d(uj, Poltos](ur)) + d(Po 1) (ur), Polth;](¢r))+
+ da (Poltj)(dr), Po[)(dr)) + d(Po[¥](¢r), 1) < da(uj,ur)+
+ d(uw, Po[tr](r)) +dA( [V5](dr), Po[)(¢r)) + d(Pultb](dr), u) <

L L da (Pulws) (00), Pol)(60)) + d(Pult] (68), 1) (3.6)

= 2k=1 "k

combining Proposition §.4.5 hnd Proposition 34.15. [Therefore since clearly P, [1)](¢%)
converges strongly to u in &'(X,w, ) and since, similarly to before, we have that

limsup; _, .., da (Pu[th;](¢r), Polt)](¢1)) = 0, it follows from the inequality (§.6)| that
limsup;_, . da(u;,u) = 0 letting j — co and then k — oo. O
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3.4.3 Proof of Lemma B3.4.16]

The proof of Lemma §.4.16 [proceeds by induction on m € N length of the chain.
Step 1 (m=1): Assume w € P(X,w,?’) for ¥’ € A. Then by Proposition
3.4.15| (1v) we get that

da(u, w) +da(w,v) > d(u, P [$)(9)) + d(Pu[¢](p),v) = d(u,v)

where ¢ € P(X,w) is a minimal entropy function for w.

Step 2 (m — m + 1): reduce to an easier case 1. Assume now that the Lemma
holds for any chain of length n < m € N, and let w1, ..., Wm4+1 € I—lw’eﬂ P(X,w, ).
To fix the notations assume w; € P(X,w, ;) and that, for any j =0,...,n, p; €
Ke : is a choice of minimal entropy functions for wj.

Next, using the definition of d4 and Proposition if Y41 < Yj-1 < ¢, then

da(wj—1,w;) + da(ws, wis1) > da(wj—1, Pu[th;-1](;)) + da(Pulthj—1](5), wj+1).

Therefore we may assume there exists jo € {1,...,m+ 1} such that ¢ =1 = - =
Yjo and Yjo S Yjo+1 < -0 S Y.

Step 3 (m — m+1): reduce to an easier case 2. We claim that if there
exists j € {1,...,m + 1} such that C; > max(Cj_1,Cj+1) (where we set wp := u,
Wm+2 := v) then

da(wj—1,w;) + da(wj, wi41) > da(wj—1,wj41). (3.7)

Indeed, if j # jo, assuming by symmetry j < jo, then by Lemma and Propo-
sition B.4.5]the inequality ($.7)]is an easy consequence of

d(Polths](wj-1),w5) + d(Polthja](w)), wisa) >
2 d(Po[¥j1)(wj-1), Po[$ja)(wy)) + d(Polthj](ws), wisn) >
2 d(PW[’(/)jJrl](wj*l)’wjnLl),

and of

sup  {da,b) — d(P.[y)(a), PIbi](0) }+

a,bePo, (Xw,dj—1)

+ swp {d(a,h) = d(Pofpyal(a), Pulthy)(0) | >

a,beP0; (Xow,v))

> sup {d(a,b) = d(Pols41)(0), Pultrsa]®)) }.

D€ Prnax(0;_1,C;41) (Kwij—1)
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In the case j = jo, instead, assuming ;1 < ¥;+1 the inequality ( follows from

d( P[] (wj—1), w;) + d(Pulths](wj1), wy) +
+ s {dab) —d(Pulyl(@), Pl 0) } 2

a,bePo; (X,w,j-1)

> d(Pofp](wj—1), Potojl(wjs1)) 4+ d(wj-1, Po[thi—1](wj41)) —
— d( P[] (wj—1), Po[ts](wjt1)) = d(wj—1, Polthj—1](wjt1)).

Indeed it implies

da(wj—1,w;) + da(wj, wit1) > d(wj—1, Pulthj1](wj1))+

+ sup {d(a, b) — d(Pw [¥;](a), P [’(/)]](b))} + Vw_7’+1 - V'LUj—l >
a,bePc; (Xw¥jt1)

> da(wj—1,wj41).

Therefore, using again the inductive hypothesis, we may assume there exists g €
{O,...,m—i—Q} such that Co > C71 > --- > Cio—l > Cio and Cio < Ci0+1 < e <K<
Cm+1 < Cmt2, where moreover C;, < max(Ci,—1,C5,+1) (in the extreme cases
io = 0, m + 2 the last inequality obviously restricts respectively to Cj;, = Co < C\
and to Cio = Cm42 < Cm+1).

Step 4 (m — m + 1): case |ip — jo| > 1. By symmetry we may assume 49 < jo—1.
So Cjy—2 < Cj-1 < Cj, < Cjy41, which implies

da(wjo—1,w50) + da(wj, wjp41) >

> da(wjo—1, Poje] (win—1)) + da (Pu[thjo) (wjo 1), wjg 1)

using the definition. Letting @ := P,[j,](wj,—1) and C be the smallest non-
negative real number such that W € P5(X,w, ), we conclude this case by the ar-
gument exposed in the previous step since C< Cjo—1 by construction and Cj,—1 >
Cio—2-

Step 5 (m — m+ 1): case |ip — jo| = 1 Let assume 9 = jo — 1. Since Cj,—1 <
Cjo, < Cjo+1, as in Step 4, we can substitute wj, by P.,[¢;,](wj,—1). Therefore, up
to replace ip by io + 1, we have 79 = jo that is the last case addressed in the final
step.

Step 6 (m — m+1): case ip =jo Since Cy > C1 > --- > Cj_1 > Cj, al-
ternating several times Proposition (w) and the triangle inequality for d on
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EN(X,w, ;) for i =0,...,50 — 1 we get
da(wo, wr) + -+ + da(wso—1,w5) >
> da(wo, wr) + -+ + da(wjo—2, wio—1) + d(wjo—1, Pulthjo—1)(#50)) >
> da(wo, w1) + -+ + da(wjo—3, wjo—2 +d( [io-1](¢io—2) Pu[io—1](io)) +
+ sup {d(a,b) = d(Palrig—1)(@), Pulthio-1]0) } =

abePC; , (Xwabjo—2)
a(wo, w1) + -+ + da(wig—3, wjo—2) + d(wjg—2, Pulthjo—2)(050)) >
> > da(wo, w1) + d(wi, Pu[t1](s)) > d(wo, Pultbo](¢)o))-
Proceeding in the same way, by symmetry, we also get

da(wjo, wjg41) + -+ + da(Wimt1, Wint2) > d(Putbo] (@50 ), Wim+2).

Hence ~ _
da(wo,w1) + -+ + da(Wmi1, Wmt2) 2 d(wo, Wmt2) = d(u,v),

which concludes the proof.

3.4.4 Gromov-Hausdorff types of convergences & direct
limits: proof of Theorems [C|]and

In this section we assume A = {wk}keN C M* to be a total ordered subset such
that 41 < @y for any k € N. Moreover we suppose that 1 \, 1 € M.

Definition 3.4.17. Let A and ¢ € MT as above. Then the elements of the family

= U {K C &'(X,w, ) compact such that K C P,[4](K)
kEN

for K C El(X,w7 Ur) compact}

are called A-compact sets .

We recall that for a couple of compact metric spaces (X, dx), (Y, dy), the Gromov-
Hausdorff distance between them is defined as

den(X,Y) = inf{d%(X,Y) : dadmissible distance on X LI Y}

where a distance d on X Y is said to be admissible if d|xxx = dx and djyxy = dy
and where d% indicates the Hausdorff distance on the closed sets of (X UY,d).

A sequence of compact metric spaces (Xn,d,) converges in the Gromov-Hausdorff
sense to a compact metric space (X,d) if dog(Xn,X) — 0. We will use the nota-

tion (Xn,dn ) (X, d) and we refer to [BBIO1] and to [BH99[/for this notion of
convergence.
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Proposition 3.4.18. For any A-compact set K C K4 there exists a sequence of
strongly compact sets (Ki,d) C (<€’1(X7w7 Yr), d) for k> 1 big enough such that

(Kr,d) <5 (K, d).

Proof. Let ko € N such that K C P,[¢](K) for a strongly compact set K C
(E"(X,w, ¥, ),d). Then we define

Kiy = K N P,[y] " (K),
noting that it is a compact set in €'(X, w, Wi, ). Therefore we define for any k > ko
K i= Pultn] (K) N Puly] ™ (K) = P[] (o)

and a correspondence R C Kj x K as (ug,u) € R if u = P,[¢)](ux). Thus to prove
that dgu (Kg, K) — 0 with respect to the d-distances it is enough to check that

dis Ry := sup {|d(u, v) — d(ur,ve)| : (ur,u), (vk,v) € R} =0

as k — oo (see Theorem 7.3.25. in [BBI0L]). Hence Proposition §.4.7 foncludes the
proof. O

For non-compact metric spaces there is a weaker notion of convergence than the
Gromov-Hausdorff convergence, that is the pointed Gromov-Hausdorff convergence.
We recall that a sequence of pointed compact metric spaces (Kp,pn,drn) converges
in the pointed Gromov-Hausdorff sense to (K, p,d) if ch((Kn,pn), (K, p)) — 0 as
n — oo where

dan ((Kn,pn), (K, p)) := inf {d%(Km K)+d(pn,p) : dadmissible metricon X LY }.

Thus a sequence of non-compact pointed metric spaces (Xn,pn,dr) is said to con-
verge in the pointed Gromov-Hausdorff sense to a non-compact pointed metric space
(X,p,d) if for any r > 0

dau ((Br(pn),pn), (Br(p),p)) = 0
as n — u We will use the notation (Xn,pn,dn) poGH, (X,p,d).
If the pointed metric spaces are locally compact this convergence seems to be the
most natural kind of convergence to look at. But if the pointed metric spaces are
not locally compact, the pointed Gromov-Hausdorff convergence still seems a too
strong kind of convergence. Thus we give the following general definition:

2This is actually not the right definition of point Gromov-Hausdorff convergence, but it
is a characterization which holds when the sequence and the limit point are lenght spaces
(IBBIOT)).
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Definition 3.4.19. A family of pointed metric spaces (Xn,Dn,drn) converges in the
compact pointed Gromov-Hausdorff convergence to a pointed metric space (X,p,d)
if there exist a family of compact set {K;}jen C X and, for any n € N, a family of
compact sets {Kjn}tjen C Xpn such that

i) pn € Kjn for any n € N and for any j € N;
i) p € K; for any j € N;

1) for any n € N fized, K;n C Kjy1,n for any j € N and |
Xn;

w) Kj C Kj41 for any j € N and |J
'U) dGH((Kj,’nvpn)a (Kjvp)) — 0.
cp—GH

We will use the notation (X, pn,dn) — (X, p,d).

JEN K n is dense in

ien K is dense in X;

We can now prove Theorem ]

Theorem @ Let {¢r}ren C MT such that Y \ ¥ € MT. Then

cp—GH

(El(X,w,wk),d) p=GH, (Sl(X,w,w),d>.

Proof. For any j € N let K; be the strongly compact set in &'(X,w) containing all
w-psh functions with bounded entropy by j (see Theorem . Thus, defining
for any j € N and for any k € N, K, := P,[¢x](X;) and K; := P,[¢](X;), the
theorem immediately follows from Lemma 4.9 gnd Proposition 3[418. | O

The maps Pi; : Po[th;](-) : (EM(X,w,¥k),d) = (E'(X,w,1;),d) for k < j are
morphisms in the category of metric spaces (see Lemma 3nd Proposition
. Moreover { Py ;}i<k,(kj)en Produces a direct system again by Lemma
and ((&'(X,w,v),d), Py) is a target of this direct system where Py := P,[¢](-) :
(EMX,w, k), d) = (EN(X,w, ), d).

We recall that a target <(X7 dx), fx,n> of a direct system of metric spaces <(Xn7 dn), fn,m>
is a metric space (X,dx) with 1-Lipschitz maps fx.n : (Xn,dn) — (X, dx) such that
fxn = fx,m O fmn for any n < m.

Therefore since by the universal property the direct limit is the initial target, we
immediately find out that the direct system ((€'(X,w,1;), Pr,;) admits a direct
limit (recall that some direct systems in the category of metric spaces do not ad-
mit any not-trivial target like, for instance, the direct system <(Xn,dn),fn,m> =
<(]R, %deucl),ld». We denote with m — lim__, the direct limit in the category of
metric spaces.

Theorem There s an isometric embedding
m — lim <((81(X7 w, w1)7 d)7 Pi,j)> — (El(X,UJ, ?/1)7 d)
p—

with dense 1mage. More precisely the direct limit in the category of metric spaces is

isometric to (Uke]N Pw[dJ] (EI(X, w, ¢k))a d)-
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Proof. As a consequence of Lemma he set T :=Jycn Pol¥](EN(X,w,v5)) is
dense in (€'(X,w,1),d). Then, since as stated before ((T',d), Py) is a target of the
direct system considered, to conclude the proof it is enough to show that for any
other target ((Y,dy), Py,k> there exists a 1—Lipschitz map Py,7 : T — Y such that
PY,T o P = Py,k for any k € N.

Therefore, letting <(Y, dy), Py,k> a target, for any u € T we denote with k, € N the
minimum natural number k such that u € P,[¢] (€' (X,w, ¢x)) and we fix a function
0y € EY(X,w, Y1, ) such that P, [¢])(pu) = u. Next we define Pyr: T — Y as

Py,r(u) := Py, (#u),

i.e. it is defined so that Py, 7 o P, = Py for any K € N. Note that the def-
inition does not depend on representatives since Py, (¢1) = Py, (¢2) for o1 €
81(X7W7¢k1)7802 € 81(X7w7wk2) lf Pkl (901) = Pk2(¢2) Indeed

dy (Pyky (#1), Py ks (92)) = dy (Py,j 0 Pjg, (¢1), Py,j © Pjky(02)) <
< d(Pj 1y (1), Pjky (92)) = d(Pry (1), Pry(02)) = 0

as j — oo by Proposition
To finish the proof it remains to check that Py, 7 is 1-Lipschitz. Fixed u,v € T', we
have for any j € IN big enough

dy (Py,r(u), Py,r(v)) = dy (Py,; 0 Pk, (¢u), Pr,j © Pjg,(¢0)) <
< d(Pjk, (u), Pk, (00))

(
where Py, (¢u) = u, Py,(¢s) = v. Hence dy (Pyr(u), Py,r(v)) < d(u,v) letting
j — +o0. O
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Chapter 4

The strong topology of
w-plurisubharmonic functions

Abstract

On (X,w) compact K&hler manifold, given a model type envelope ¢ €
PSH(X,w) (i.e. a singularity type) we prove that the Monge-Ampére opera-
tor is an homeomorphism between the set of i-relative finite energy potentials
and the set of ¥-relative energy measures endowed with their strong topologies
given as the coarsest refinements of the weak topologies such that the relative
energies become continuous. Moreover, given a totally ordered family A of
model type envelopes with positive total mass representing different singular-
ities types, the sets X 4,Y, given respectively as the union of all i-relative
finite energy potentials and of all i-relative finite energy measures varying
1 € A have two natural strong topologies which extends the strong topologies
on each component of the unions. We show that the Monge-Ampére operator
produces an homeomorphism between X, and Yj,.

As an application we also prove the strong stability of a sequence of solu-
tions of complex Monge-Ampére equations when the measures have uniformly
LP-bounded densities for p > 1 and the prescribed singularities are totally
ordered.

Keywords: Complex Monge-Ampére equations, compact Kéhler manifolds, quasi-
psh functions.

2020 Mathematics subject classification: 32W20 (primary); 32U05, 32Q15
(secondary).
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4.1 Introduction

Let (X,w) be a compact Kéhler manifold where w is a fixed Kéhler form, and let
H., denote the set of all Kiahler potentials, i.e. all ¢ € C° such that w + dd°yp is a
Kihler form, the pioneering work of Yau ([Yau78[) shows that the Monge-Ampére
operator

MAy : Honorm — {dVvolume form : / dV :/ w”}, (4.1)
x X

MA,(p) := (w+dd°p)" is a bijection, where for any subset A C PSH(X,w) of all
w-plurisubharmonic functions we use the notation Anorm :={u € A : supy u = 0}.
Note that the assumption on the total mass of the volume forms in (4s neces-
sary since H, norm represents all Kihler forms in the cohomology class {w} and the
quantity [, w" is cohomological.

In [BEGZ10] the authors extended the Monge-Ampére operator using the non-
pluripolar product and the bijection ( to

MAy : Enorm (X, w) — {,u non-pluripolar positive measure : u(X) = / wn}
R

where &(X,w) := {u € PSH(X,w) : [, MA,(u) = [, MA,(0)} is the set of all
w-psh functions with full mass.
The set PSH(X,w) is naturally endowed with the L'-topology which we will call
weak, but the Monge-Ampére operator in ( is not continuous even if the set of
measures is endowed with the weak topology. Thus in [EBEGZI9[,Isetting V, :=
fX M A, (0), two strong topologies were respectively introduced for

ENX,w) :={u € &(X,w) : E(u) > —o0}
MY (X, w) = {Vou : pis a probability measure satisfying E™(u) < +oo}

as the coarsest refinements of the weak topologies such that respectively the Monge-

Ampére energy F(u) (JAub84], [BB10], [BEGZI10]) and the energy for probability
measures £ ([BBGZ13], [BBEGZ19]) becomes continuous. The map

MA, : (ELOTW(X,w),strong) — (M1 (X, w),strong) (4.3)

is then an homeomorphism. Later Darvas (|Darl5]) showed that (&'(X,w), strong)
actually coincides with the metric closure of H,, endowed with the Finsler metric
[fl1e = [x [fIMAL(p), ¢ € Hu, f € TpHy ~ C*(X) and associated distance

d(u,v) == E(u) + E(v) — E(Pu(u,v))

where P, (u,v) is the rooftop envelope given basically as the largest w-psh function
bounded above by min(u,v) ([RWNI4]). This metric topology has played an impor-
tant role in the last decade to characterize the existence of special metrics ([DRI5], ]
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[BDL16], [CC17), [CC18al, [CCI8b]).

It is also important and natural to solve complex Monge-Ampére equations requiring
that the solutions have some prescribed behavior, for instance along a divisor.

We first need to recall that on PSH(X,w) there is a natural partial order < given
as u < v if u < v+ O(1), and the total mass through the Monge-Ampére operator
respects such partial order, i.e. V, = [, MA,(u) < V, if v < v ([BEGZIQ],
[WN17]). Thus in [DDNLIT] the authors introduced the t-relative analogs of the
sets &(X,w), €(X,w) for ¢ € PSH(X,w) fixed as

E(X,w,¥) = {u€ PSH(X,w) : ux¢and V, =V, }
81(X7w>¢) = {u € E(X,w,zp) : Ei/)(u) > —OO}

where Ey is the i-relative energy, and they proved that

MA, : Enorm (X, w, ) — {u non-pluripolar positive measure : u(X) = Vw}
(4.4)
is a bijection if and only if ¥, up to a bounded function, is a model type envelope,
te. ¥ = (limesteo P(¥ + C, 0))*, satisfying Vi, > 0 (the star is for the upper
semicontinuous regularization). There are plenty of these functions, for instance to
any w-psh function 1 with analytic singularities is associated an unique model type
envelope. We denote with M the set of all model type envelopes and with M7 those
elements v such that V3 > 0.
Letting « € MT, in [Trul9], we proved that &'(X,w,) can be endowed with a
natural metric topology given by the complete distance d(u,v) := Ey(u) + Ey(v) —
2Ey (P (u,v)).
Analogously to E* there is a natural 1)-relative energy for probability measures FEj),
thus the set

M (X, w,) := {Vyp : pis a probability measure satisfying Ej,(u) < 400}

can be endowed with its strong topology given as the coarsest refinement of the weak
topology such that [, becomes continuous.

Theorem A. Let o) € MV, Then
MAs : (Enorm(X,w,9),d) = (M'(X,w, 1), strong) (4.5)
is an homeomorphism.

Then it is natural to wonder if one can extend the bijections (4 (40 bigger
subsets of PSH(X,w).

Given 1,12 € M7 such that w1 # 1o the sets E(X,w, 1), &(X,w, =) are disjoint
(Theorem 1.3 [DDNL17] quoted below as Theorem %t it may happen that

Vg, = Vu,. So in that case, as an easy consequence of (|4.4) one cannot consider a
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set containing both &(X,w, 1) and €(X,w,12). But given a totally ordered family
A C M* of model type envelopes, the map A > ¢ — V, is injective (again by
Theorem 1.3 [DDNLI17]), i.e.

MA, : |_| (X, w,¥)/R — {,u non-pluripolar positive measure
YEA

(X)) = Vi forp € A}

is a bijection.
In [Trul9] we introduced a complete distance da on

Xa=| | &'(X,w,v)
YEA
where A C M is the weak closure of A and where we set €'(X,w, ¥min) = Py,
if v € M\ M™T (since in such case Ey = 0). Here tmin is given as the smallest
element in A, observing that the Monge-Ampére operator MA, : A — MA,(A)
is an homeomorphism when the range is endowed with the weak topology (Lemma
. We call strong topology on X, the metric topology given by dx since
dajel (X,w,0)xe1(X,w,p) = d- The precise definition of dx is quite technical (in section
we will recall many of its properties) but the strong topology is natural since it
is the coarsest refinement of the weak topology such that F.(-) becomes continuous
as Theorem [[.6.2]shows. In particular the strong topology is independent on the set
A chosen.
Also the set
Vo= | | MY(X,w,v)
YEA
has a natural strong topology given as the coarsest refinement of the weak topology
such that E7(-) becomes continuous.

Theorem B. The Monge-Ampére map
MA, : (qu’nmm,dﬂ) — (Y, strong)
is an homeomorphism.

Obviously in Theorem Blwe define M A, (Py,,,) :=0if Vi . = 0.

Note that by Hartogs’ Lemma and Theorem he metric subspace X norm
is complete and it represents the set of all closed and positive (1,1)-currents T =
w~+dd°u such that u € X4, where Py_. encases all currents whose potentials u are
more singular than Y, if Vy,,, = 0.

Finally, as an application of Theorem I fwe study an example of the stability of
solutions of complex Monge-Ampére equations. Other important situations will be
dealt in a future work.
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Theorem C. Let A := {tr}ren C M be totally ordered, and let {fxlren C
L'\ {0} a sequence of non-negative functions such that fi, — f € L'\ {0} and such
that fX frw™ = Vy, for any k € N. Assume also that there exists p > 1 such that
[l fxllze, || fllzr are uniformly bounded. Then x — ¢ € MT weakly, the sequence
{ur}ren of solutions of

{MAw(uk) = fkwn (46)

Ur € E'}zorm(Xv w, 1/%)

converges strongly to u € X4 (i.e. da(uk,u) — 0), which is the unique solution of

MA,(u) = fw™
u e giLOTm(X7w7 ¢)'

In particular ur — w in capacity.

The existence of the solutions of (4.6)|follows by Theorem A in [DDNLIS], while the
fact that the strong convergence implies the convergence in capacity is our Theorem
Note also that the convergence in capacity of Theorem (was already obtained

in [DDNL19] (see Remark £.7.1)]

4.1.1 Structure of the paper

Section §is dedicated to introduce some preliminaries, and in particular all neces-
sary results presented in [Trul9]l In section §e extend some known uniform esti-
mates for €' (X, w) to the relative setting, and we prove the key upper-semicontinuity
of the relative energy functional F.(-) in X,4. Section §regards the properties
of the action of measures on PSH(X,w) and in particular their continuity. Then
Section § is dedicated to prove Theorem }EWe use a variational approach to
show the bijection, then we need some further important properties of the strong
topology on &' (X, w, ) to conclude the proof. Section §s the heart of the article
where we extends the results proved in the previous section to X4 and we present
our main Theorem B] Finally in the last Section §4[7 ye show Theorem C[]

4.1.2 Future developments

As said above, in a future work we will present some strong stability results of more
general solutions of complex Monge-Ampére equations with prescribed singulari-
ties than Theorem ] starting the study of a kind of continuity method when also
the singularities will vary. As an application we will study the existence of (log)
Ké&hler-Einstein metrics with prescribed singularities with a particular focus on the
relationships among them varying the singularities.
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4.2 Preliminaries

We recall that given (X,w) a Kahler complex compact manifold, the set PSH(X,w)
is the set of all w-plurisubharmonic functions ( w-psh), i.e. all u € L' given locally as
sum of a smooth function and of a plurisubharmonic function such that w-+ddu > 0
as (1,1)-current. Here d°:= ;-(0 — 9) so that dd® = £90. For any couple of w-psh
functions wu,v the function

*

P,u](v) :== (Cliinwpw(u+0,v))* = (sup{w € PSH(X,w) : wu,w < v})

is w-psh where the star is for the upper semicontinuous regularization and P, (u,v) :=
(sup{w € PSH(X,w) : w < min(u,v)})". Then the set of all model type envelopes
is defined as

M:={¢ € PSH(X,w) : v = P,[¢](0)}.
We also recall that M ™' denotes the elements 1 € M such that Vi, > 0 where, as said
in the Introduction, Vi := [ M A, ().
The class of 1)-relative full mass functions &(X,w,)) complies the following charac-
terization in terms of M.

Theorem 4.2.1 (Theorem 1.3, [DDNL1T7|). Suppose v € PSH(X,w) such that
Vo >0 and u € PSH(X,w) more singular than v. The followings are equivalent:
(i) uwe &(X,w,v);
(1) Po[ul(v) =v;
(ii1) Polu](0) = Pu[v](0).

The clear inclusion &(X,w,v) C &(X,w, P,[v](0)) may be strict, and it seems more
natural in many cases to consider only functions ¢ € M. For instance as showed
in [DDNL17] 1 being a model type envelope is a necessary assumption to make the

equation

u € (X, w,1)

always solvable where p is a non-pluripolar measure such that w(X) = Vy. It is
also worth to recall that there are plenty of elements in M since P[P, [¢]] = Pu[¢].
Indeed v — P, [v] may be thought as a projection from the set of w-psh functions
to M.

We also retrieve the following useful result.

{MAw(U) =p
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Theorem 4.2.2 (Theorem 3.8, [DDNLIT]) . Let u,vp € PSH(X,w) such that u = .
Then

MA (Polpl(w) < Lip, (w)(w=uy M Au (w).
In particular if ¢ € M then M A, (1)) < 1iyp=0} M AL (0).

Note also that in Theorem 4.2.2 fhe equality holds if w is continuous with bounded
distributional laplacian with respect to w as a consequence of [DNT19]l In particular
MAL(WY) = L1iyp=0y MA,(0) for any ¢ € M.

4.2.1 The metric space (&'(X,w,),d).

In this subsection we assume 1 € M' where Mt := {sp € M : V3, > 0}.

As in we also denote with PSH(X,w,®) the set of all w-psh functions
which are more singular than 1, and we recall that a function v € PSH(X,w,)
has -relative minimal singularities if |u — 1| is globally bounded on X. We also
use the notation

MA, (', .. udh) o= (w + dd®ur)* A - A (w4 ddu)™
for u1,...,u; € PSH(X,w) where j1,...,5; € N such that j1 +---+j; = n.

Definition 4.2.3 ([DDNLI17]). The v -relative energy functional Ey : PSH(X,w,¢) —
R U {—o0} is defined as

1

Bow) = oy 3 [ (u oMALG 9)

if w has P-relative minimal singularities, and as
Ey(u) :=inf{Ey(v) : v € E(X,w, V) with -relative minimal singularities ,v > u}
otherwise. The subset &'(X,w, ) C &(X,w, ) is defined as
ENX,w, ) = {u € E(X,w,v) : Ey(u) > —o0}.

When 1 = 0 the i —relative energy functional is the Aubin-Mabuchi energy func-
tional, also called Monge-Ampére energy (see [Aub84],[Mab86]).
Proposition 4.2.4 ([DDNLI1T7]). The following properties hold:

(i) Ey is non decreasing;

(i1) Ey(u) = limj_e0 By (max(u,v — j));

(iii) Ey is continuous along decreasing sequences;

(iv) Ey is concave along affine curves;

(v) u € ENX,w, ) if and only if u € E(X,w,?) and Jx(u—Y)MA,(u) > —o0;
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(vi) Ey(u) > limsup,_,  Fy(ug) if up,u € E1(X,w, 1) and up — u with respect
to the weak topology;

(vii) letting u € EY(X,w, ), x € C%(X) and us := sup{v € PSH(X,w)v < ut+tx}*
for any t > 0, then t — Ey(u:) is differentiable and its derivative is given by

d
Gt = [ AL
i X

(viii) if u,v € EY(X,w,v) then

n+1

Ey(u) Z/ (w—v)MA, (W, 0"

and the function N > j — fX(u—’U)MAw (u?,v"™7) is decreasing. In particular
[ = oMAL@) < B - Bolo) < [ (- o)MAL);
X X

(iz) if u < v then Ey(u) — Ey(v) < 27 [ (u—v)M Ay (u).

Remark 4.2.5. All the properties in Proposition 4.2.4 hre showed in [DDNLI7[]
when the authors worked assuming 1 having small unbounded locus , but the general
integration by parts formula proved in [X19a[lallows to extend these properties to
the general case.

Recalling that for any u,v € £'(X,w, 1) the function P,,(u,v) = sup{w € PSH(X,w) :
w < min(u,v)}* belongs to &'(X,w, ) (see Proposition 2.10. in [Trul9]), the func-
tion d: EM(X,w, ) x EY(X,w, ) = Rx>o defined as

d(u,v) = Ey(u) + By (v) — 2By (Pu(u,v))
assumes finite values. Moreover it is a complete distance as the next result shows.
Theorem 4.2.6 (Theorem A, [Trul9]) . (EI(X,w, ), d) 18 a complete metric space.

We call strong topology on EI(X,w,z/)) the metric topology given by the distance d.
Note that by construction d(ug,u) — 0 as k — oo if ux \( u, and that d(u,v) =
d(u,w) + d(w,v) if u < w < v (see Lemma 3. 1 in [Trul9)).
Moreover as a consequence of Proposition 4.2.4 it follows that for any C € R the
set
e (X, w, 1) :={u e & (X,w, 1) : supu < Cand Ey(u) > —C}
X

is a weakly compact convex set.

Remark 4.2.7. As described in [Truld], if ¢ € M\ M’ then &(X,w,¢) =
PSH(X,w,) since Ey = 0 by definition. In particular d = 0 and it is natural
to identify (El(X,w7w), d) with a point Py,. Moreover we recall that &'(X,w, 1) N
EI(X,W,¢2) =0 if Y1, P2 € M, 91 # 2 and Vi, > 0.
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4.2.2 The space (Xy,dg).

From now on we assume A C M7 to be a totally ordered set of model type envelopes,
and we denote with A its closure as subset of PSH(X,w) endowed with the weak
topology. Note that A C PSH(X,w) is compact by Lemma 4.2 in [Trul9]. Indeed we
will prove in Lemma hat actually A is homeomorphic to its image through
the Monge-Ampére operator M A, when the set of measure is endowed with the
weak topology, which yields that A is also homeomorphic to a closed set contained
in [0, [, w"] through the map ¢ — V.

Definition 4.2.8. We define the set
Xa=| | &'(X,0,v)

YEA

if Ymin 1= inf A satisfies Vi, > 0, and
X4 =Py, U L X, w, )

! €A PFE Y min
if Vi =0, where Py, is a singleton.
X4 can be endowed with a natural metric structure as section 4 in [Trul9] shows.

Theorem 4.2.9 (Theorem B, [Trul9]) . (Xa,da) is a complete metric space such
that d.A\Sl(X,w,w)Xgl(X,w,w) =d fOT any w S AN M+.

We call strong topology on X4 the metric topology given by the distance d4. Note
that the denomination is coherent with that of subsection 5[2.1 dince the induced
topology on &'(X,w, 1) C X4 coincides with the strong topology given by d.

We will also need the following contraction property which is the starting point to
construct dg.

Proposition 4.2.10 (Lemma 4.4., Proposition 4.5., [Trul9[} . Let v¢1,v2,%5 € M
such that 1 < Y2 < 3. Then Pu[tr](Pult](v)) = Pu[tr](u) for any u €
EN(X,w,¥3) and |Po[n](u) — 1| < C if |u — 3] < C. Moreover the map

Pu[t1]() : €Y (X, w,2) — PSH(X,w, 1)

has image in EY(X,w,v1) and it is a Lipschitz map of constant 1 when the sets
ENX,w, ), i = 1,2, are endowed with the d distances, i.e.

d(Pu[y1](w), Pu[th1](v)) < d(u,v)
for any u,v € EY(X,w, s).

Here we report some properties of the distance d,4 and some consequences which
will be useful in the sequel.
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Proposition 4.2.11 ([Trul9]). The following properties hold:
/L) qu S 81(X7w7w1)7v € 81(X7w77/}2) fOT 7/}1,1/}2 S Z; 1/}1 = 1112 then

da(u,v) > d(Po[tha](u), v);

i) if {Uk}tren, ¥ € M with Y (¢ (resp. Vi /U a.e.), up \(u, vg (U (Tesp.
ur S aee., v v a.e.) for ug,vp € ENX,w, ), u,v € (X, w, ) and
|ur — vi| is uniformly bounded, then

d(uk,vi) — d(u,v);
iii) if g, € M such that Yx — ¢ monotonically a.e., then for any ' € M such

that ' = Yr for any k > 1 big enough, and for any strongly compact set
K - (EI(X,LU,’IZJI),d),

d(Pu[vk] (1), Polthr)(2)) — d(Polt] (1), Pu[t](2))

uniformly on K X K, i.e. varying (p1,p2) € K X K. In particular if Yr, ) € A
then

da (Pu[¥](u), Pultr](u) = 0
d(Pu[tr](w), Pu[tr](v)) = d(Pult)(u), Pu[](v))
monotonically for any (u,v) € EM(X,w, ") x EX(X,w,v’);

) da(ui,uz) > |V, — V| if w1 € EX(X,w, 1), us € E1(X,w,1b2) and the
equality holds if w1 = 1, ua = 2.

The following Lemma is a special case of Theorem 2.2 in (see also Lemma

4.1. in [DDNLIT]).

Lemma 4.2.12 (Lemma 4.3, [Trul9]). Let ¥x,v» € M such that pr, — 1 mono-
tonically almost everywhere. Let also uk,vr € EY(X,w,¥r) converging in capacity
respectively to u,v € &(X,w, ). Then for any j =0,...,n

MA,(ul, v 7)) = MA, (W, 0" 77)
weakly. Moreover if |up — vi| is uniformly bounded, then for any 7 =0,...,n
(ur — vp)M Aw(ul, 07 7)) = (u— v)M Ay (v, 0™ )
weakly.

It is well-known that the set of Kihler potentials 3, := {¢ € PSH(X,w)NC*(X) :
w + dd°p > 0} is dense into (€'(X,w),d). The same holds for P.,[¢](H.) into
(&1(X, w,9),d).

Lemma 4.2.13 (Lemma 4.9, [Trul9]). The set Py, (X, w, ) := P,[¢](H) C P(X,w, )
is dense in (£'(X,w,v),d).
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4.3 Tools.

In this section we collect some uniform estimates on EI(X,W7’([)) for ¢ € M, we
recall the v-relative capacity and we will prove the upper semicontinuity of F.(-) on
X4.

4.3.1 TUniform estimates.

Let ¢ € M*.
We first define in the 1)-relative setting the analogous of some well-known functionals
of the variational approach (see [BBGZ13[land reference therein).

We introduce respectively the v-relative I-functional and the -realtive J-functional
(see also [Aub84]) I, Jy : E1(X,w, ) x EY(X,w,) — R where ¢ € MT as

Iy (u,v) ::/X(u—v)(MAw(v)—MAw(u))7

T (u,0) = JE () 1= By(u) — Eo(v) + /X(v W) M A ().

They assume non-negative values by Proposition 4 1, is clearly symmetric while
Jy is convex again by Proposition Moreover the 1)-relative I and J functionals
are related each other by the following result.
Lemma 4.3.1. Let u,v € &' (X,w,v). Then

() wrlo(u,v) < TP (0) < Jhly(u,v);

(i) I () < JY(u) < nJf (v).
In particular

(¥, u) < ndy () + ([[¢llpr + [lullr)

for any u € EY(X,w, ) such that u < 1.

Proof. By Proposition 2.4t follows that
n/ (u —v)M A, (u) +/ (u —v)MA,(v) <
b's b'e
< (n+ (B - Bow) < [

X

for any w,v € €'(X,w, ), which yields (i) and (i7).
Next considering v = 1) and assuming u < v from the second inequality in (7¢) we
obtain

(u—v)MA,(u) + n/x(u —v)M A, (v)

d(u, ) = —Ey(u) < nJ? () + / (4 — w) M Ay (),

b
which implies the assertion since M A, (¢)) < M A, (0) by Theorem O
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We can now proceed showing the uniform estimates, adapting some results in [BBGZ13[."]

Lemma 4.3.2 (Lemma 3.8, [Trul9]). Let » € M. Then there exists positive
constants A > 1, B > 0 depending only on n,w such that

—d(l/}»u) <Vy sup(u - 11’) = VIP supu < Ad(l/%u) + B
X X
Remark 4.3.3. As a consequence of Lemma 4.3.2 if d(¢,u) < C then supyu <
(AC + B)/Vy while —Ey(u) = d(¢ + (AC + B)/Vy,u) — (AC + B) < d(¢,u) < C,
ie. u € Ep(X,w, 1) where D := max (C, (AC + B)/Vy). Vice versa it is easy to

check that d(u,v) < C(2Vy + 1) for any u € €&(X,w, ) using the definitions and
the triangle inequality .

Proposition 4.3.4. Let C' € R~o. Then there exists a continuous increasing func-
tion fc : R>0 — R>o depending only on C,w,n with fc(0) =0 such that
| [ (=) (MAuor) - MALe))| < o (dwv) (47)
X

for any u,v, 1,2 € Sl(Xawvw) with d(u7 ?P),d(vaw)»d(¢17¢)ad(802a¢) <C.

Proof. As said in Remark J.3.3]if w € €'(X,w,v) with d(¢,w) < C then W :=
w — (AC + B)/V,, satisfies supy @ < 0 and

—Ey () = d(y), %) < d(¢), w) + d(w, @) < C + AC + B =: D.

Therefore setting @ := u — (AC + B)/Vy, v := v — (AC + B)/V, we can proceed
exactly as in Lemma 5.8 in [BBGZI3] using the integration by parts formula in

[X19a] (see also Theorem 1.14 in [BEGZ10]) to get
‘ /X(a —0)(MAy(p1) — MAW(W))‘ < Ly (@, 0) + hp (I (@, 7)) (4.8)

where hp : R>o — R>¢ is an increasing continuous function depending only on D
such that hp(0) = 0. Furthermore, by definition

d(¢, Po(a,9)) < d(¢, @) + d(@, Po(@,0)) < d(¢,a) + d(a,7) < 3D,
so, by the triangle inequality and ( we have

| [ (= o) (MAuor) — MALg) | < I (@ Pot@ 0) +
X
Ty (8, P (it 8)) + hap (Ip(it, P (i, ) + hap (Is (i, Po(ii, @) (4.9)
On the other hand, if wy,ws € &'(X,w, ) with w; > wo then by Proposition
I¢(w1,w2) < / (w1 — 'LUQ)MAW('LUQ) < (TL+ l)d(wl,wg).
X

Hence from ( it is sufficient to set fo(x) := (n+1)z+2hsp ((n+1)z) to conclude
the proof since clearly d(a,v) = d(u,v). O
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Corollary 4.3.5. Let ¢ € M and let C € Rso. Then there exists a continuous
increasing functions fc : R>o — Rxo depending only on C,w,n with fc(0) = 0
such that

/X lu— 0| MAu(p) < fo(d(u,v)

for any u,v, ¢ € EY(X,w, ¥) with (v, u),d(¥,v),d(¥, ¢) < C.

Proof. Since d(zﬁ,Pw(u,v)) < 3C, letting gsc : R>0 — R0 be the map ( of
Proposition it follows that

/X(uwa(u,v))MAw(ga)S/ (u = Po(u,v)) M Ay (Po(u,v))+

+ gsc (d(u, P, (u, v))) <(n+ 1)d(u, P, (u, v)) + g3c (d(u, v))),

where in the last inequality we used Proposition Hence by the triangle in-
equality we get
/ lu — v|MAy,(p) < (n+ 1)d(u, Po(u,v)) + (n+ 1)d(v, Po(u,v))+
b's
+ 2gs3¢ (d(u, v)) = (n+ 1)d(u,v) + 2g3c (d(u, v))
Defining fc(z) := (n+ 1)z + 2g3c(x) concludes the proof. O

As first important consequence we obtain that the strong convergence in Sl(X7 w, )
implies the weak convergence.

Proposition 4.3.6. Let ¢ € M7 and let C € Rso. Then there ezists a continuous
increasing function foy @ R>o — Rxo depending on C,w,n,v with fc,(0) =0
such that

lu—=vllp1 < fou(d(u,v))
for any u,v € EY(X,w, ) with d(¥,u),d(y,v) < C. In particular ux — u weakly if
ur — u strongly.

Proof. Theorem A in [DDNLI8] (see also Theorem 1.4 in [DDNLI7|) implies that
there exists ¢ € €'(X,w,) with supy ¢ = 0 such that

MAL($) = cMAL(0)
where ¢ : =V, /Vh > 0. Therefore it follows that
1
[lu—v||p1 < ~9¢ (d(u,v))

where C := max (d(w,qb),C) and gp is the continuous increasing function with
g (0) = 0 given by Corollary Setting  fo 4 1= %gé concludes the proof. O
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Finally we also get the following useful estimate.

Proposition 4.3.7. Let ¢ € MT and let C € Rsqo. Then there erists a constant C
depending only on C,w,n such that

| [ =)0 4u(01) ~ MAL(o2) | < CTu(or) (4.10)

fOT‘ any u,v, Y1, P2 € Sl(Xawvw) with d(ur ?P)»d(”ﬂ/’)»d(vhip)ad(@%iﬁ) <C.

Proof. As seen during the proof of Proposition 4:3.4 jnd with the same notations,
the function @ := u — (AC + B)/V, satisfy supyu < 0 (by Lemma and
—Fy(u) < C+ AC + B =: D (and similarly for v, ¢1,p2). Therefore by integration
by parts and using Lemma 4.3.8 |below, it follows exactly as in Lemma 3.13 in
[BBGZ13] that there exists a constant C depending only on D, n such that

=

\/X(a_@)(MAW(@)—MAw(sbz))) < O Iu(é1,82)%,

which clearly implies ( O

Lemma 4.3.8. Let C € Rso. Then there ewists a constant C depending only on
C,w,n such that

/ o — $|(w + dd°u) A -+ A (@ + dd°un) < C
X

for any uo, - ,un € EY(X,w,v) with d(uj,v) < C for any j =0,...,n.

Proof. As in Proposition [L.3.4and with the same notations v, := u; — (AC'+ B)/V,,
satisfies supy v; < 0, and setting v := %(Uo + -+ 4 vp) we obtain ¥ — up <
(n+1)(¥p — v). Thus by Proposition .2.4 it follows that

[ =A@ < ) [ @ =0)MAL) < (0411 Bu )] <

<(m+1)> |Ep() < (n+1) Y (dh,u;) + D) < (n+1)*(C + D)

j=0 j=0
where D := AC + B. On the other hand M A, (v) > E(w +dd°ui) A« -+ (w+ dduy)
where the constant F depends only on n. Finally we get
/ luo — P|(w + ddur) A -+ A (w + ddun) <
b'e

(n+1)*(C+ D)

1
3D+E/X(¢—UO)MAw(v)gD+ 1 ,

which concludes the proof. O
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4.3.2 1-relative Monge-Ampére capacity.
Definition 4.3.9 ([DDNLI17|, [DDNLIS8]) . Let B C X be a Borel set, and let ) €

M™T. Then its p-relative Monge-Ampére capacity is defined as
Cap,(B) = sup{/ MA,(u) : ue PSH(X,w), p —1<u< w}.
B

In the absolute setting the Monge-Ampére capacity is very useful to study the exis-
tence and the regularity of solutions of degenerate complex Monge-Ampére equation
([Kol98]), and analog holds in the relative setting ([DDNLI7[,|[DDNLI8[)] We refer
to these articles just cited to many properties of the Monge-Ampére capacity.
Here, for any constant A we introduce the let Ca, be the set of all probability
measures p on X such that

w(B) < ACap,,(B)

for any Borel set B C X ([DDNLI1T]).

Proposition 4.3.10. Let u € & (X,w, ) with v-relative minimal singularities.
Then MA,(u)/Vy € Ca,y for a constant A > 0.

Proof. Let 7 € R such that u > ¢ — j and assume without loss of generality that

u < 9 and that 7 > 1. Then the function v := j_lu—l—(l—j_l)w is a candidate in the
definition of Cap,,, which implies that M A, (v) < Cap,. Hence, since M A, (u) <
J"MA(v) we get that M A, (u) € Ca,y for A = j" and the result follows. O

We also need to quote the following result.

Lemma 4.3.11 (Lemma 4.18, [DDNL17|). If € Ca,y then there is a constant
B > 0 depending only on A,n such that

/X(u — )’ < B(|Ey(u)| + 1)

for any uw € PSH(X,w, 1) such that supy u = 0.

Similarly to the case 1 = 0 (see [GZ1T]), we say that a sequence ui € PSH(X,w)
converges to u € PSH(X,w) in 1)-relative capacity for v € M if

Cap,, ({|ur —u| > 6}) =0

as k — oo for any § > 0.

By Theorem 10.37 in [GZ17] (see also Theorem 5.7 in [BBGZ13]) the convergence in
(SI(X7 w),d) implies the convergence in capacity. The analogous holds for ¢ € M,
i.e. that the strong convergence in &'(X,w, ) implies the convergence in t-relative
capacity. Indeed in Proposition e will prove the the strong convergence implies
the convergence in 1)’-relative capacity for any ¢’ € M™.
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4.3.3 (Weak) Upper Semicontinuity of v — Ep ,j(u) over
Xq.

One of the main feature of Ey for ¢p € M is its upper semicontinuity with respect
to the weak topology. Here we prove the analogous for FE.(-) over X 4.

Lemma 4.3.12. The map MA, : A = MA,(A) C {p positive measure on X} s
an homeomorphism considering the weak topologies. In particular A is homeomor-
phic to a closed set contained in [0, [ M A, (0)] through the map ¢ — V.

Proof. The map is well-defined and continuous by Lemma 4.2 in [Trul9]. Moreover
the injectivity follows from the fact that Vi, = Vi, for 91,12 € A implies ¥1 = 12
using Theorem and the fact that A C M*.

Finally to conclude the proof it is enough to prove that 1, — 1 weakly assuming
Vi, — Vi and it is clearly sufficient to show that any subsequence of {9x }ren admits
a subsequence weakly convergent to 1. Moreover since A is totally ordered and 3=
coincides with > on M, we may assume {9 }rcn monotonic sequence. Then, up to

considering a further subsequence, 1 converges almost everywhere to an element

' € A by compactness, and Lemma mplies that Vg =Vy, iep = O

In the case A := {¢r}ren C MT, we say that up € €'(X,w, ) converges weakly
to Py, .. where thmin € M\ M7 if |supy ux| < C for any k € N and any weak
accumulation point w of {uk}kE]N satisfies ¥ < ®min. This definition is the most
natural since PSH(X,w, ) = &YX, w, ¥min).

Lemma 4.3.13. Let {ur}tren C X4 be a sequence converging weakly to u € X 4. If
Ep, ju)(ur) > C uniformly, then P, [ux] — Po[u] weakly.

Proof. By Lemma the convergence requested is equivalent to Vy, — Vi,
where we set ¥y := P, [uk], ¥ := P,[u].

Moreover by a simple contradiction argument it is enough to show that any subse-
quence {tr, }ren admits a subsequence {wkhj}je]N such that Vwkh]_ — Vi. Thus

up to considering a subsequence, by abuse of notations and by the lower semi-

continuity liminfy_ o Viy, > Vi of Theorem 2.3. in [DDNL17], we may suppose
by contradiction that r N\, ¢’ for ¢’ € M such that Vi > V,. In particular
Vy > 0 and ¢’ = 9. Then by Proposition $.2.2 and Remark 4.3.3 fhe sequence

{P.[¥'](uk) }ren is bounded in (€'(X,w,v’),d) and it belongs to €./ (X,w,’) for
some C’ € R. Therefore, up to considering a subsequence, we have that {uj}ren
converges weakly to an element v € 81(X7w7¢) (which is the element wu itself
when u # Py, ) while the sequence P, [¢'](ux) converges weakly to an element
w € EY(X,w,v’). Thus the contradiction follows from w < v since ¢’ 3= 9, Vyyr > 0
and &YX, w, ) NENX,w, ) = 0. O

Proposition 4.3.14. Let {ur}ren C Xa be a sequence converging weakly to u €
Xa. Then
lim sup Epw[uk](Uk) S Epw[u] (u) (4.11)

k—oo
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Proof. Let ¢, := P,[ug],? := Pu,[u] € A. We may clearly assume ), # t)min for
any k € N if ¢ = Yyin and Vi, = 0.

Moreover we can also suppose that FEy, (ux) is bounded from below, which implies
that u, € E5(X,w, ) for an uniform constant C' and that i, — v weakly by
Lemma Thus since Ey, (ur) = Ey, (up — C) + CVy, for any k € N, Lemma
implies that we may assume that supy ur < 0. Furthermore since A is totally
ordered, it is enough to show ( when 1, — % a.e. monotonically.

If Y5 \ ¢, setting vy := (sup{u; : j > k})* € &YX, w,r), we easily have

lim sup Ey, (ux) < limsup Ey, (vx) < limsup Ey (Po[y](vk))

k—oo k— oo k— oo

using the monotonicity of Ey, and Proposition Hence if ¢ = ¥min and Vi, =
0 then Ey(P.[¢](vk)) = 0 = Ey(u), while otherwise the conclusion follows from

Proposition [[.2.4]since P.,[¢)](vx) \  u by construction.
If instead ¥ 9, fix € > 0 and for any k € N let ji > k such that

sup By, (u;) < Ey;, (uj,) + €.
jizk

Thus again by Proposition By, (uj,) < Ey, (Poltn](usy)) for any 1 < ji.
Moreover, assuming Ey; (u;,,) bounded from below, —Ey, (Poltn)(uz,)) = d(v1, Pult] (uy,,))
is uniformly bounded in [, k, which implies that sup yx P.[t:](u;, ) is uniformly bounded

by Remark since Vzpjk > a > 0 for £ > 0 big enough. By compactness,

up to considering a subsequence, we obtain P, [¢i](uj,) — v weakly where v; €

&' (X, w, 1) by the upper semicontinuity of Fy, () on &'(X,w, ;). Hence

limsup By, (ux) < limsup Ey, (Po[1](u;,)) + € = Ey, (v1) + €
k—oco

k—oco

for any [ € N. Moreover by construction v; < P, [¢](u) since P, [¢i](uj,) < uj, for
any k such that jr > ! and uj, — u weakly. Therefore by the monotonicity of Ey, (+)
and by Proposition 4.2.11 |(i7) we conclude that

limsup Ey, (ur) < lli}?o Ey, (Pu[ti](u)) + € = Eyp(u) + €

k—oo

letting [ — oo. O

As a consequence, defining

Xac:=| ] (X, w,9),
PYEA

we get the following compactness result.
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Proposition 4.3.15. Let C,a € R~o. The set

Xac=XacnN ( |_| 81(X7w7¢))

YEA: Vy>a
is compact with respect to the weak topology.

Proof. It follows directly from the definition that
X4oC {u € PSH(X,w) : |supu| < c/}
X

where C' := max(C,C/a). Therefore by Theorem 8.5 in [GZ17|, X3 o is weakly
relatively compact. Finally Proposition 4.3.14 hnd Hartogs’ Lemma imply that
X4 ¢ is also closed with respect to the weak topology, concluding the proof. O

Remark 4.3.16. The whole set X 4, ¢ may not be weakly compact. Indeed assuming
Vipmin = 0 and letting 1z € A such that 1x \, Ymin, the functions uy := ¢ —1/1/Vy,
belong to Xav for V = [, MA,(0) since Ey, (ur) = —+/Vi, but supyup =
—1/ Vll)k — —OQ.

4.4 The action of measures on PSH(X,w).

In this section we want to replace the action on PSH(X,w) defined in [BBGZ13|
given by a probability measure p with an action which assume finite values on

elements u € PSH (X, w) with 1-relative minimal singularities where ¢ = P, [u] for
almost all ¥» € M. On the other hand for any 3 € M we want that there exists many
measures p whose action over {u € PSH(X,w) : P,[u] = 9} is well-defined. The
problem is that p varies among all probability measures while 1 among all model
type envelopes. So it may happen that u takes mass on non-pluripolar sets and that

the unbounded locus of 1 € M is very nasty.

Definition 4.4.1. Let p be a probability measure on X. Then u acts on PSH(X,w)

through the functional L, : PSH(X,w) = R U {—o00} defined as L,(u) = —oc0 if u
charges {P.,[u] = —o0}, as

L, (u) ::/X(u—Pw[u])u

if u has P,[u]-relative minimal singularities and p does not charge {P,u] = —oo}
and as

L, (u) :=1inf{L,(v) : v € PSH(X,w) with P,[u]-relative minimal sing., v > u}

otherwise.
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Proposition 4.4.2. The following properties hold:

(i) L, is affine, i.e. it satisfies the scaling property L,(u+c) = L,(u)+c for any
ceER,u€e PSH(X,w);
(11) L, is non-decreasing on {u € PSH(X,w) : P,[u] =¥} for any ¢ € M;
(i) Ly (u) =lim;_ o L, (max(u, Pu[u] — j)) for any u € PSH(X,w);
(iv) if p is non-pluripolar then L, is convez;
(v) if p is non-pluripolar and wi — u and P,ux] — P.[u] weakly as k — oo then
L, (u) > limsupy_, . Lu(uk);
(vi) if w € EY(X,w, ) for € M then Ly ag v, s finite on ENX,w, ).
Proof. The first two points follow by definition.
For the third point, setting 1 := P, [u], clearly L, (u) < lim; o0 Ly (max(u, v — j)).
Vice versa for any v > u with t-relative minimal singularities v > max(u, vy — j) for
j >> 0 big enough, hence by (ii) it follows that L, (v) > lim; o0 Ly ( max(u, v — j))
which implies (éi7) by definition.
Next, we prove (iv). Let v = Y ;" aju; be a convex combination of elements wu; €
PSH(X,w), and without loss of generality we may assume supy v,supy w < 0. In
particular we have L, (v), L,(w) <0.
Suppose L, (v) > —oo (otherwise it is trivial) and let ¢ := P,[v], ¢, := P,[w]. Then
for any C' € R it is easy to see that

> wPu(u +C,0) < Pu(v+C,0) < ¢,

=1

which leads to Y ;" aithr < 1 letting C' — oo. Hence (4i¢) yields

—oo < L,(v) = /v— M<Zaz/ up — Y1) p ZazL ()

The point (v) is an easy consequence of limsup,_, ., max (u;€7 P, [uk —j) < max (u7 P, [u]—
j) and (%i1), while the last point is a consequence of Lemma ‘. O

Next, since for any ¢ € [0,1] and any u,v € £'(X,w, )

/;((u—v)MAw(tu—l—(l—t)u) =
:(l—t)"/(u—v YM A, ( Z( )H 1—t)" /(U—U)MAw(uj,v"’j)Z
Z(1—t)n/)((U—U)MAw(v)+(1—(1—t)")A(u—v)MAw(u),

we can proceed exactly as in Proposition 3.4 in [BBGZ13] (see also Lemma 2.11. in
[GZ07)), replacing Vy with 1), to get the following result.
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Proposition 4.4.3. Let A C PSH(X,w) and let L: A — R U {—o0} be a convez
and non-decreasing function satisfying the scaling property L(u + c¢) = L(u) + ¢ for
any c € R. Then

(1) if L is finite valued on a weakly compact convex set K C A, then L(K) is
bounded;

(i) if E'(X,w,¥) C A and L assumes finite values on the set &'(X,w, ) then
Sup{uESIC.(X,w,’d)) ssupx u<0} |L| € 0(01/2) as €' — oo.

4.4.1 When is L, continuous?

The continuity of L, is an hard problem. However we can characterize its continuity
on some weakly compact sets as the next Theorem shows.

Theorem 4.4.4. Let p1 be a non-pluripolar probability measure, and let K C PSH(X,w)
be a compact convex set such that L, is finite on K, the set {P,u] : u€ K} C M

is totally ordered and its closure in PSH(X,w) has at most one element in M\ M™.
Suppose also that there exists C € R such that |Ep_ [y (u)| < C for any u € K. Then
the following properties are equivalent:

(i) L, is continuous on K;
(i) the map 7: K — L'(u), 7(v) := u — P,[u] is continuous;
(iii) the set T7(K) C L*(p) is uniformly integrable, i.e.

/too u{u < P,lul —t} -0

as m — oo, uniformly for v e K.

Proof. We first observe that if u, € K converges to u € K then by Lemma
Y — ¢ where we set ¢y, 1= P,luk], v := Polu].

Then we can proceed exactly as in Theorem 3.10 in [BBGZ13] to get the equivalence
between (i) and (iz), (i) = (i79) and the fact that the graph of 7 is closed. It is
important to underline that (ii7) is equivalent to say that 7(K) is weakly relative
compact by Dunford-Pettis Theorem, i.e. with respect to the weak topology on
L' () induced by L°°(u) = L' (u)*.

Finally assuming that (427) holds, it remains to prove (%). So, letting uy,u € K such
that ux — u, we have to show that [, 7(ux)p — [y T(w)p. Since T(K) C L'(p) is
bounded, unless considering a subsequence, we may suppose fx 7(ug) = L € R. By
Fatou’s Lemma,

L = lim T(uk)ug/xr(u)u. (4.12)

k—oo | x

Then for any k € IN the closed convex envelope

Cr = Conv{r(u;) : 7 >k},
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is weakly closed in L'(u) by Hahn-Banach Theorem, which implies that Cj, is weakly
compact since it is contained in 7(K). Thus since C} is a decreasing sequence of
non-empty weakly compact sets, there exists f € (7),»; Ck and there exist elements
v € Conv(u; : j > k) given as finite convex combination such that 7(vg) — f
in L'(u). Moreover by the closed graph property f = 7(u) since vy, — u as a
consequence of ur — u. On the other hand by Proposition (w) we get

mp

/ Uk/L<Zalk/ T (ur, )1t

if ve = > % aikur,. Hence L > fx u)p, which together (m implies L =
Jx T(u)p and concludes the proof. O

Corollary 4.4.5. Let ¢ € M" and pu € Ca . Then Ly, is continuous on E&(X,w, )
for any C € Rso. In particular if u = MAy(u)/Vy for u € EY(X,w, ) with -
relative minimal singularities then L, is continuous on E&(X,w,) for any C €
R>o.

Proof. With the notations of Theorem 4.4.4,] m 7(E6(X,w,v)) is bounded in L?(u) by
Lemma, E 3.11 Hence by Holder’s inequality T((SO(X w, w)) is uniformly integrable
and Theorem Eylelds the continuity of L, on £5(X,w,®) for any C' € Ro.

The last assertion follows directly from Proposition 4“ O

The following Lemma will be essential to prove Theorem A, [Theorem B[]

Lemma 4.4.6. Let ¢ € H, and let A C M be a totally ordered subset. Set also
vy 1= Pu[Y](p) for any ¢ € A. Then the actions {VyLra,, (v,)/v, tvea take finite
values and they are equicontinuous on any compact set K C PSH(X,w) such that
{P.,[u] : w € K} is a totally ordered set whose closure in PSH(X,w) has at most
one element in M\ MT and such that |Ep [, (u)| < C uniformly for any u € K. If
W € M\ M, for the action VoLma, (vy)/v, we mean the null action. In particular
if Y — ¥ monotonically almost everywhere and {uk}ren C K converges weakly to
u € K, then

/X (ur — Polur]) M Au(vy,,) — /X (u — Puu]) M A (vy). (4.13)

Proof. By Theorem }.2.2) ‘V¢LMAW(%)/VW(u)’ < [y lu — Py[u]|]MA,(p) for any

u € PSH(X,w) and any v € A, so the actions in the statement assume finite values.
Then the equicontinuity on any weak compact set K C PSH(X,w) satisfying the
assumptions of the Lemma follows from

Vy LMAw<vw>/v¢(wl)*LMAw(vw)/vw(wz)’ S/ |w1— Pow:i] — w2+ Pu[wa] | M Ay ()
X
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for any wy, w2 € PSH(X,w) since M A, (p) is a volume form on X and P,[w] —
P,|w] if {wg}ren C K converges to w € K under our hypothesis by Lemma
For the second assertion, if v, \, ¥ (resp. i ¢ almost everywhere), letting
fr, f € L* such that M A, (vy,) = fiMAu(p) and MA,(vy) = fMAL(p) (Theo-
rem {4.2.2), we have 0 < fr < 1,0 < f <1 and {fkx}ren is a monotone sequence.
Therefore fi, — f in LP for any p > 1 as k — oo which implies

/X (u— Pulu]) M A, (vy,,) — /X (u — Polu]) M Ay (vy)

as k — oo since M A, (p) is a volume form. Hence ({.13)] follows since by the first
part of the proof

/X (u — Pofus] —u + Polu]) MAy(vg,) — O.

4.5 Theorem A

In this section we fix ¢ € MT and using a variational approach we first prove the
bijectivity of the Monge-Ampére operator between &}, (X, w, ) and M (X, w, 1),
and then we prove that it is actually an homeomorphism considering the strong
topologies.

4.5.1 Degenerate complex Monge-Ampére equations.

Letting 1 be a probability measure and ¢ € M, we define the functional F},  :
ENX,w, ) = RU{—o0} as

Fuy(u) = (Ey — VypLu)(u)

where we recall that L, (u) = lim; 0 Ly ( max(u, ) —j)) = lim; o0 [ (max(u, v —
Jj)— 1/;),u (see section . Fj. 4 is clearly a translation invariant functional and
Fip =0 for any pif V, = 0.

Proposition 4.5.1. Let u be a probability measure, ¥ € M¥ and let F := F, . If
L, is continuous then F' is upper semicontinuous on 81(X,w,1/)), Moreover if L, is
finite valued on &' (X,w,v) then there exist A, B > 0 such that

F(v) < —-Ad(y,v)+ B

for any v € &1 (X,w,), i.e. F is d-coercive. In particular F is upper semi-
continuous on &' (X,w, ) and d-coercive on &} opm (X, w, ) if p = MA,(u)/Vy for
u € ENX,w, ).
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Proof. If L, is continuous then F' is easily upper semicontinuous by Proposition
Ez4
Then, since d(,v) = —FEy(v) on & grm (X, w, 1), it is easy to check that the coer-
civity requested is equivalent to
sup )< L"Ne o),
EL (X, ) EL 4y (Xo00) Vo

which holds by Proposition ii).
Next assuming p = M A, (u)/Vy it is sufficient to check the continuity of L, since L,

is finite valued on &! (X, w, ) by Proposition We may suppose without loss of

generality that u < 1. By Proposition 3.7 hnd Remark 4.3.3 Jfor any C € R0, L,
restricted to £&(X,w, ) is the uniform limit of Ly, where p; := MA, ( max(u, ) —
7)), since Iy(max(u,v — j),u) — 0 as j — oco. Therefore L, is continuous on
EL(X, w,v) since uniform limit of continuous functionals Ly,; (Corollary . O

As a consequence of the concavity of Ey if u = MA,(u)/Vy for u € (X, w, )
where Vi > 0 then

Ti (W) = Fup(u) = sup  Fiy,
£1(X 9)

i.e. u is a maximizer for F 4. The vice versa also holds as the next result shows.

Proposition 4.5.2. Let v € M" and let p be a probability measure such that L, is
finite valued on E(X,w, ). Then p= MA,(u)/Vy for u € EY(X,w,v) if and only
if w is a mazimizer of Fy, 4.

Proof. As said before, it is clear that p = M A, (u)/Vy implies that u is a maximizer
for F, .. Vice versa if u is a maximizer of F), . then by Theorem 4.22 in
w=MA,(u)/Viy. O

Similarly to [BBGZI13] we, thus, define the 1 -relative energy for 1) € M of a proba-
bility measure p as

Ey(p) = sup  Fup(u)
ueEH(X,w,)

i.e. essentially as the Legendre trasform of FEy. It takes non-negative values ( Fj, 4 (¢) =
0) and it is easy to check that Ej, is a convex function.
Moreover defining

M (X,w,9) := {Vyp : pis a probability measure satisfying Ej,(u) < oo},

we note that M (X, w, ) consists only of the null measure if Vi = 0 while in Vi > 0
any probability measure g such that Vyu € M*(X,w,) is non-pluripolar as the
next Lemma shows.

Lemma 4.5.3. Let A C X be a (locally) pluripolar set. Then there ezists u €
EN(X,w, 1) such that A C {u = —oo}. In particular if Vyp € M*(X,w, ) for
W € MY then p is non-pluripolar.
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Proof. By Corollary 2.11 in [BBGZ13] there exists ¢ € (X, w) such that A C {¢ =
—o0}. Therefore setting u := P,[¢](p) proves the first part.

Next let Vyp € MY (X,w,) for p € M and p probability measure and assume
by contradiction that g takes mass on a pluripolar set A. Then by the first part
of the proof there exists u € &'(X,w, ) such that A C {u = —oo}. On the other
hand, since Viyu € M'(X,w, ) by definition u does not charge {1 = —co}. Thus
by Proposition [[.4.2] (iii) we obtain L, (u) = —oo, which is a contradiction. O

We can now prove that the Monge-Ampére operation is a bijection between &'(X, w, )
and M (X, w, ).

Lemma 4.5.4. Let » € MV and let 4 € Ca,y where A € R. Then there exists
U € Ehprm (X, w, ) mazimizing F, .

Proof. By Lemma L, is finite valued on &'(X,w, ), and it is continuous on
EL(X,w, ) for any C € R thank to Corollary Therefore it follows from Propo-

sition that F), . is upper semicontinuous and d-coercive on &porm (X, w, ).
Hence F), 4 admits a maximizer u € &; . (X,w, ) as easy consequence of the weak
compactness of £&(X,w,). O

Proposition 4.5.5. Let 1) € M'. Then the Monge-Ampére map MA : &}, (X, w, 1) —
MY (X, w, ), u — MA(u) is bijective. Furthermore if Vyu = M A, (u) € M*(X,w,v)
foru € EY(X,w, ) then any mazimizing sequence ux € Enorm (X, w, V) for F, 4 nec-
essarily converges weakly to wu.

Proof. The proof is inspired by Theorem 4.7 in .

The map is well-defined as a consequence of Proposition 4i.e. MA,(u) €
M (X, w, ) for any u € E'(X,w, ). Moreover the injectivity follows from Theorem

4.8 in [DDNLIS].

Let up € Ehorm(X,w, ) be a sequence such that F, »(ug) 7 SUPe1 (X w,0) Fhu
where p = M A, (u)/Vy is a probability measure and u € &4 (X, w,9). Up to
considering a subsequence, we may also assume that wur — v € PSH(X,w). Then,
by the upper semicontinuity and the d-coercivity of F), 4 (Proposition it fol-
lows that v € &L, (X, w, ) and F, 4 (v) = SUPe1(x,w,w) Fiu,p- Thus by Proposition
5.2 we get = MA,(v)/Vy. Hence v = u since supy v = supx u = 0.

Then let u be a probability measure such that Vyu € M*(X,w, ). Again by Propo-
sition to prove the existence of u € €L g (X, w, 1) such that p = M A, (u)/Vy
it is sufficient to check that F}, , admits a maximum over el m (X,w, ). Moreover
by Proposition }.5.1 |we also know that F), 4 is d-coercive on €},pm (X, w, ). Thus
if there exists a constant A > 0 such that pu € Ca,4 then Corollary leads to
the upper semicontinuity of F), y which clearly implies that Vyu = M A, (u) for
u € &YX, w,v) since E&(X,w,v) C PSH(X,w) is compact for any C € Ro.

In the general case by Lemma 4.26 in [DDNLIT7] (see also [Ceg98]) u is absolutely
continuous with respect to v € €y 4 using also that p is a non-pluripolar measure
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(Lemma . Therefore letting f € L'(v) such that g = fv, we define for any
keN
wr = (1 + ex) min(f, k)v

where €, > 0 are chosen so that py is a probability measure, noting that (1 +
ex) min(f, k) — fin L'(v). Then by Lemma t follows that pr = M A, (uk)/Vy
for ug € €Ly (X, w, ).

Moreover by weak compactness, without loss of generality, we may also assume that
ur — u € PSH(X,w). Note that u < 1 since ur < ¢ for any k € N. Then by
Lemma 2.8 in we obtain

MAw(u) Z V¢fV = V¢u,

which implies M A, (u) = Vyu by [WNI7| since u is more singular than v and p is
a probability measure. Tt remains to prove that u € &(X,w, ).

It is not difficult to see that pj, < 2u for k >> 0, thus Proposition f.4.3Jimplies that
there exists a constant B > 0 such that

sup  |Lu,|<2 sup |L,| <2B(1+CY?)
EL(X,w,) EL(X,w,y)

for any C € Rg. Therefore

T4 () = Ey(u) + V| Ly, (ur)| < sup (2VyB(1+C'?) - C)
>0

and Lemma [3.1]yields d(¢,ur) < D for an uniform constant D, ie. up €
Eh/(X,w,1) for any k € N for an uniform constant D’ (Remark . Hence
since £/ (X,w, ) is weakly compact we obtain u € &5/ (X, w,v).

4.5.2 Proof of Theorem [Al

We first need to explore further the properties of the strong topology on &' (X, w, ).

By Proposition [[.3.6 bhe strong convergence implies the weak convergence. Moreover
the strong topology is the coarsest refinement of the weak topology such that Fy(-)
becomes continuous.

Proposition 4.5.6. Let ¢y € MV and ug,u € E1(X,w, ). Then uy — u strongly if
and only if ur — u weakly and Ey(ur) — Ey(u).

Proof. Assume that up — u weakly and that Ey(ux) — Ey(u). Then wy :=
(sup{u; : j > k:})* € &'(X,w,v) and it decreases to u. Thus by Proposition

Ew (wk) — Ew (u) and

d(uk, u) < d(uk, wr) + d(wk, u) = 2By (wi) — Ey(uk) — Ey(u) — 0.
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Vice versa, assuming that d(ux,u) — 0, we immediately get that ur — u weakly
as said above (Proposition 4.3.6)] Moreover supy ug,supy ¢ < A uniformly for a
constant A € R. Thus

|Ey(uk) — Ey(u)] = |d( + Ayur) — d(y + A, u)| < d(uk, u) — 0,
which concludes the proof. O

Then we also observe that the strong convergence implies the convergence in  1)'-
capacity for any v’ € M™.

Proposition 4.5.7. Let ¥ € MT and up,u € (X, w,v) such that d(ux,u) —
0. Then there exists a subsequence {ug;}jen such that w; := (sup{ukh : h >
i v o= Po(uk;,uk;yq,---) belong to EY(X,w,v) and converge monotonically
almost everywhere to u. In particular up — u in V' -capacity for any ¥ € MV and
M A, (ul, ") — M Ay (u? )"~ weakly for any j =0,...,n.

Proof. Since the strong convergence implies the weak convergence by Proposition
it is clear that wx € €*(X,w, ) and that it decreases to u. In particular up to
considering a subsequence we may assume that d(ug,wy) < 1/2 for any k € N.
Next for any j > k we set vp; = Po(ur,...,u;) € &'(X,w,¥) and vy, =
P, (vk;,u) € E1(X,w, ). Then it follows from Proposition nd Lemma 3.7 in
[DDNLI7] that

dlwity) < [ (vt )MALE) < [ (6 — vaoy) M Au(v5) <
X {'Uif'j=”k,j}
J J (n+1)
< Z X(ws —us)MA,(us) < (n+1) Zd(ws,us) < ET
s=k s=k

Therefore by Proposition 4.3.15 | v ; decreases (hence converges strongly) to a func-
tion ¢r € EY(X,w, 1)) as 7 — oo. Similarly we also observe that

d(vk,j’ vz,j) S /

{vk,;=u}

(Vk,; —u)M A, (u) < / |og,1 — u|MAy(u) < C
p's

uniformly in j by Corollary Hence by definition d(u,vg,;) < C+ (;tll), ie. v ;
decreases and converges strongly as j — oo to the function vy = P, (ug, k41 ...) €
&' (X,w,v) again by Proposition Moreover by construction ur > vi > ¢k
since vy < vg,; < ug for any j > k. Hence

d(”? 'Uk;) S d(u7 (;bk) S

as k — oo, i.e. v ' u strongly.
The convergence in '-capacity for 1’ € M"' in now clearly an immediate conse-
quence. Indeed by an easy contradiction argument it is enough to prove that any
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arbitrary subsequence, which we will keep denoting with {uj}ren for the sake of
simplicity, admits a further subsequence {uy,}jen converging in ’-capacity to u.
Thus taking the subsequence satisfying v; < ug; < w; where v;, w; are the mono-
tonic sequence of the first part of the Proposition, the convergence in ’'-capacity
follows from the inclusions

{lu—up;| > 6} = {u —ur; >} U{ur —u >0} C{u—v; >t U{w; —u>d}
for any 6 > 0. Finally Lemma [.2.5 [gives the weak convergence of the measures. O

We can now endow the set M'(X,w, ) = {Vyu : pis a probability measure
satisfying E, (1) < 400} (subsection with its natural strong topology given as
the coarsest refinement of the weak topology such that FEj(-) becomes continuous,
and prove our Theorem [

Theorem E Let o € MT. Then
MAs : (Enorm(X,w,9),d) = (M'(X,w, 1), strong)
is an homeomorphism.

Proof. The map is bijective as immediate consequence of Proposition 4

Next, letting ug € &porm (X, w, ¥) converging strongly to u € &L orm (X, w, %), Propo-
sition [.5.7]gives the weak convergence of M A, (ux) — M A, (u) as k — oo. More-
over since Ej, (MA,(v)/Vy) = J¢ () for any v € £'(X,w, 1), we get

| B (M AL(ur) Vi) = BL (M AL () V)| <
< |Botue) = Botu)| +] [ (o0 = uMActw0) — [ (= w)MA(w)] <

< ‘Ew(uk)fEd,(u)‘Jr‘/X(wkfuk)(MAw(uk)fMAw(u))’Jr/x|uk7u|MAw(u).
(4.14)

Hence M A, (ux) — M A, (u) strongly in M'(X,w, ) since each term on the right
side hand of [.14]goes to 0 as k — +oo combining Proposition £.5.6,| Proposition

4.3.7|and Corollary ecalling that by Proposition 4 Iy (ug,u) — 0as k — oo.
Vice versa suppose that M A, (ux) — M A, (u) strongly in M (X, w, ) where ug, u €

&t orm (X, w, ). Then, letting {©;}jen C H, such that ¢; \, u ([BK07]) and setting
v; = Pu[](¢;), by Lemma

(1 + DIy (o v5) < By (ur) — Eo(vy) + /X (v — u) M Ay (ug) =

= By (MAy(uk)/ Vi) — By (M Au(vy)/ Vi) + /X(Uj — ) (M Ay (ur) — M Ay (vy)).
(4.15)
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By construction and the first part of the proof, it follows that Ej, (M Ay (ux)/Vi) —
Ej(MAy,(v;)/Vy) = 0 as k,j — oo. While setting f; := v; — ¢ we want to prove
that

limsup/ fiMA,(ug) = / fiMA,(u)

k—oo

which would imply limsup;_,  limsup,_, ., Ty(ur,v;) = 0 since [, f; (MAy,(u) —
M A (v;)) — 0 as a consequence of Propositions ‘. n#

We observe that ||fj||lz~ < ||¢j|lLe by Proposition p.2.2|and we denote with
{f] }SEN C C*° a sequence of smooth functions converging in capacity to f; such
that || f7||zee < 2||fj||Les. We recall here briefly how to construct such sequence.
Let {gj}sen be the sequence of bounded functions converging in capacity to f; de-
fined as g; := max(v;, —s) — max(¢, —s). We have that ||g;j||re < [|fj||r~ and
that max(vj, —s), max(¢, —s) € PSH(X,w). Therefore by a regularization process
(see for instance [BK0T7]) and a diagonal argument we can now construct a sequence
{f{}jen C C* converging in capacity to f; such that ||f7||ze < 2|g3]| < 2||f;]|ze
where f; = vj —® with v}, ° quasi-psh functions decreasing respectively to wv;, .
Then letting § > 0 we have

/ (5 — £3)MAu(ur) < 6V + 3|5 [ / M Ay (ux) <
X {(fj—13>6)
< 8V + 3] [~ / M Ay ()
{ps—y>8}

from the trivial inclusion {f; — f; > 0} C {¢* — ¢ > §}. Therefore

1imsuplimsup/ (f; — fi)YMAu(ur) < Vy+
X

8—»00 k— oo

+lim sup limsup/ MA,(ug) <6V +limsup/ MAL(u) = 6V,
s—00 k—oo {yps—p>5} §—00 {¢s—>4}

where we used that {¢° —1 > &} is a closed set in the plurifine topology. Hence

since f;7 € C° we obtain

limsup/ fiMA,(ug) =
b's

k—o0

:limsuplimsup(/x(fj —fjs)MAw(uk)—i-/ fjsMAw(uk)) <

5§—>00 k—oco

Slimsup/ FiMAL( /fJMA

5—>00

which as said above implies Iy (ug,v;) — 0 letting k, j — oo in this order.
Next, again by Lemma 4.3.1,|we obtain uy € £5(X,w, ) for some C' € N big enough
since Jg’k (¥) = Ej,(MA,(ur)/Vy). In particular, up to considering a subsequence,
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ur = W € E&porm(X,w, ) weakly by Proposition #.3.15.] Observe also that by
Proposition

’/X(w—uk)(MAw(vj) —MAw(uk))‘ -0 (4.16)

as k,j — oo in this order. Moreover by Proposition 4.3.14 jnd Lemma 4[46 |

k—o0

lim sup (E:Z, (MAw(uk)/V¢) + / (v — Uk)(MAw(Uj) — MAw(uk))) =
b
—timsup (Ey(u) + [ (6= u)MALw)) < Bolw) + [ (6= w)MAw).
k—oc0 X X
(4.17)
Therefore combining (£.16)] and (4.17)] with the strong convergence of v; to u we
obtain

Bofw)+ [ (6= 0)MA(w) = Jim B (MA(w)/Vy) <

<timsup (Bow) + [ (6= w0)MAL) = Bolw) + [ (0= )b Au(w)

j—o0

i.e. wis a maximizer of Fisy (w)/ Vg o Hence w =u (Proposmon - ie. up > u
weakly. Furthermore again by Lemma 4.3.1 dnd Lemma 4[4.6_|

limsup (Ey (v;) — Ey(ux)) <

k—oo

< lim sup (

k—oo

) <

li L ). (418
+ imsup y(uk,v5).  (4.18)

n+1fw Uk, Vj) +‘/ uk — ;) M Ay (v;)

<| [ w=v)mae)

Finally letting j — oo, since v; \, u strongly, we obtain liminf; oo Fy(ux)
limj oo By (vj) = Ey(u) which implies that Ey(ur) — Ey(u) and that up —
strongly by Proposition

Oe IV

The main difference between the proof of Theorem Igzvith respect to the same
result in the absolute setting, i.e. when 1 = 0, is that for fixed u € EI(X,w,w)
the action M'(X,w,1) 3 MA,(v) = [ (u—¥)MA,(v) is not a priori continuous
with respect to the weak topologies of measures even if we restrict the action on
Me (X, w, ) == {Vypp : Ej(n) < C} for C € R while in the absolute setting this
is given by Prop031t10n 1.7. in [BBEGZ19] where the authors used the fact that
any u € &'(X,w) can be approximated inside the class &'(X,w) by a sequence of
continuous functions.
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4.6 Strong Topologies.

In this section we investigate the strong topology on X4 in detail, proving that it
is the coarsest refinement of the weak topology such that F.(-) becomes continuous
(Theorem and proving that the strong convergence implies the convergence in
1p-capacity for any ¢ € M (Theorem , i.e. we extend all the typical properties
of the L'-metric geometry to the bigger space X4, justifying further the construction
of the distance d4 ([Trul9]) and its naturality. Moreover we define the set Y4, and
we prove Theorem B]

4.6.1 About (X4, da).

First we prove that the strong convergence in X, implies the weak convergence,
recalling that for weak convergence of ux € £ (X, w,¥) to Py, where tmin € M
with Vi .. = 0 we mean that |supy ux| < C and that any weak accumulation point
of {uk}ren is more singular than ¥min.

Proposition 4.6.1. Let ug,u € X4 such that uxr — u strongly. If u # Py, then
ur — u weakly. If instead u = Pmin the following dichotomy holds:

(i) wr — Pmin weakly;

(1) limsup,_, . | supy ux| = co.

Proof. The dichotomy for the case u = Py, follows by definition. Indeed if
|supy ug| < C and da(uk,u) — 0 as k — oo, then Vi, — Vi . = 0 by Proposition
4.2.11} (¢v) which implies that 5 — ¥min by Lemma Hence any weak accu-
mulation point w of {ur}ren satisfies u < Ymin + C.

Thus, let 5,1 € A such that uy € E'(X,w, %) and u € (X, w, ) where 1) € M*.
Observe that

d(ur, i) < da(uk,u) +d(u,¥) +da(P, ) < A
for an uniform constant A > 0 by Proposition [[.2.11](iv)
On the other hand for any j € N by [BK07| there exists h; € H,, such that h; > u,

||hj —u||z1 < 1/j and d(u, Pu[¢](h;)) < 1/j. In particular by the triangle inequality
and Proposition e have

lim sup d (P [$r] (hy), ¢¥r) <

k— o0
< timsup (da (Pulu] (hy). Poli)()) + 5+ () +d, 1)) < () + .
(4.19)
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Similarly again by the triangle inequality and Proposition 4[2.11 |

limsup d(ug, Po[yr](h;)) <

k—o0

< timsup (o (Pulun](hy). Po[w](h,)) + % T datu,u)) <

k— oo

(4.20)

S| =

and
limsup ||ug — ul|p1 <
k— o0

timsup ([l — Po ] (i)l 2 +11Po [0)(hs) = Pulb)h) 2 +1IPub) ) =l 1 ) <

k— oo

1 .
< L 4 timsup lug — Pofgnl(h)llr. (421)
J k—o0

In particular from ( and (4.20)|we deduce that d(vr, Po[tr](hy)), d(r, ur) < C
for an uniform constant C' € RR. Next let ¢r € E}lorm(X,w,wi the unique solution

of MA,(dr) = e M A, (0) and observe that by Proposition ‘

Vo

d(tk, 68) = —E, (6%) < /X (0 — ) MAu () <

\%

< [ loMAL©) < flonlls < €
0 Jx

since ¢y, belongs to a compact (hence bounded) subset of PSH(X,w) C L*. There-
fore, since Vi, > a > 0 for £ > 0 big enough, by Proposition t follows that

there exists a continuous increasing function f : R>¢ — R>o with f(0) = 0 such
that

[lue — Poltor] ()] < f(d(ur, Po[vr](hy)))

for any k, j big enough. Hence combining (4.20)) and (4.21)) the convergence requested
follows letting k,j — oo in this order. O

We can now prove the important characterization of the strong convergence as the
coarsest refinement of the weak topology such that F.(-) becomes continuous.

Theorem 4.6.2. Let ur € (X, w,¥r),u € (X, w,) for {¢ktren, v € A. If
Y # Ymin or Vi, > 0 then the followings are equivalent:

i) ur — u strongly;

i) ur — u weakly and Ey, (ur) = Ey(u).

In the case Y = Ymin and Vy_, =0, if up — Py, weakly and Ey, (ur) — O then
ur — Py, strongly. Finally if da(uw,Py,,,) — 0 as k — oo, then the following
dichotomy holds:
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a) up — Py, weakly and Ey, (ux) — 0;

b) limsup,_, . |supx ux| = co.

Proof. Implication (ii) = (i).

Assume that (7¢) holds where we include the case u = Py, setting Ey(Py, . ) :=0.
Clearly it is enough to prove that any subsequence of {uy}ren admits a subsequence
which is d4 —convergent to u. For the sake of simplicity we denote with {ug }ren the
arbitrary initial subsequence, and since A is totally ordered by Lemma e may
also assume either ¥ \( ¥ or ¥ 1 almost everywhere. In particular even if u =
Py, we may suppose that wy, converges weakly to a proper element v € £!(X,w, )
up to considering a further subsequence by definition of weak convergence to the
point Py . . In this case by abuse of notation we denote the function v, which
depends on the subsequence chosen, with w. Note also that by Hartogs’ Lemma we
have up < ¢+ A,u < ¢+ A for an uniform constant A € R>g since |supy ux| < A.
In the case ¥ \ ¥, v := (sup{u; : j > k})* € &YX, w,y) decreases to u. Thus
wy = P[] (vi) € EY(X,w, ) decreases to u, which implies d(u,ws) — 0 as k — oo
(if w = Py, we immediately have wi = Py_,,)-

Moreover by Propositions £.2.4 hnd §:2:2 it follows that

k—oo

> klim (AVy, — d(¥r + A, vi)) = limsup By, (vx) > klim Ey, (ur) = Ey(u)
— 00 k— 0o — 00

since Y +A = P, [¢r](A). Hence limsup,,_, . d(vi, ur) = limsup,_, . d(¢r+A, ur)—
d(vi, YK + A) = limg— oo By, (V&) — Ey, (ur) = 0. Thus by the triangle inequality it
is sufficient to show that limsup,_,. da(u,vi) = 0.

Next for any C € R we set v¢ := max(vg, ¥ — C),u’ = max(u, — C) and we
observe that d(x + A,v¢) — d(1) + A,u) by Proposition since ¢ N, u.
This implies that

d(vi, v ) = d(vhr + A, vi) — d(r + A, v ) = AVy, — By, (vi) — d(vr + A, vf) —
— AV — By (u) —d(¢p+ A, u) = d(¢ + A, u) — d(¢ + A, u) = d(u,u).

Thus, since u — u strongly, again by the triangle inequality it remains to estimate
da(u,v$). Fix € > 0 and ¢ € Pac, (X, w, 1)) such that d(pe,u) < e (by Lemma
[:2.13). Then letting ¢ € H,, such that ¢. = P.[¢](¢) and setting ¢e r = Pu[ts](¢)
by Proposition 2.1 |we have

limsup da(u, vf) < limsup (d(u, ¢e) + da(de, der) + d(der, v5 ) <

k— o0 k— o0
< e+ d(pe,u’) < 2+ d(u, u),

which concludes the first case of (i3) = (i) by the arbitrariety of e since u” — u

strongly in &'(X,w, ).
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Next assume that v ¢ almost everywhere. In this case we clearly may assume
Ve > 0 for any k € N. Then v, := (sup{u; : j > k})" € &'(X,w, ) decreases
to u. Moreover setting wy := P, [vx](vx) € £ (X,w, ) and combining the mono-
tonicity of Ey, (), the upper semicontinuity of E.(-) (Proposition and the
contraction property of Proposition e obtain

Ew (u) = kll)r{olo E¢(vk) = AV¢ - kll}l’{)lo d(Uk, w + A) <

< liminf (AVy, — d(wk, ¥ + A)) = liminf Ey, (wi) < limsup By, (wk) < Ey(u),
k— o0 k— o0 k—s 00

ie. Ey, (wr) = Ey(u) as k — co. As a easy consequence we also get d(wy,ur) =
Ey, (wr) — Ey, (ux) — 0, thus it is sufficient to prove that

lim sup d 4 (u, wi) = 0.
k— oo

Similarly to the previous case, fix € > 0 and let ¢. = P, [¢](¢e) for ¢ € H,, such
that d(u, ¢c) < e. Again Proposition §.2.2 Jand Proposition 4.2.11 Jield

lim sup d4 (u, wg) < € + li&sup (dﬂ (¢67 Pw[wk](@)) + d(Pw [Vr](de), U)k)) <

k— o0
<e+ liinsup (da (e, Pultbr)(de)) + d(pe,vi)) < 2e,

which concludes the first part.

Implication (i) = (ii) if u # Py_, while (i) implies the dichotomy if u=P,___.
If u # Py, Proposition 6.1 ]implies that ug — u weakly and in particular that
|supx ux| < A. Thus it remains to prove that FEy, (ur) = Eqy(u).

If u = Py,,, then again by Proposition 4.6.1 |t remains to show that FEy, (ux) — 0
assuming ux, — Py, strongly and weakly. Note that we also have |supy ui| < A
for an uniform constant A € IR by definition of weak convergence to Py, . .

So, since by an easy contradiction argument it is enough to prove that any subse-
quence of {uy}ren admits a further subsequence such that the convergence of the
energies holds, without loss of generality we may assume that wur — u € 81()(7 w, )
weakly even in the case Vy =0 (i.e. when, with abuse of notation, uw = Py_. ).
Therefore we want to show the existence of a further subsequence {ukh}heN such
tﬁat Ey,, (uk,) = Ey(u) (note that if Vi = 0 then Ey(u) = 0). It easily follows
that

|Ey, (k) — Ey(uw)| < |d(r + A, ur) — d(@ + A u)| + AV, — V| <
< da(u,ur) + d(r + A, + A) + AV, — Vi,

and this leads to limyg_ o0 Ey, (ur) = Ey(u) by Proposition #.2.11 [since ¢, + A =
P,[¢x](A) and ¢ + A = P,[¢](A). Hence Ey, (ur) — Ey(u) as requested. O
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Note that in Theorem {.6.2 the case (b) may happen (Remark but obviously
one can consider
XA,no'rm = |_| Eizorm(X7w7 w)
YEA
to exclude such pathology.
The strong convergence also implies the convergence in  v’-capacity for any ' € M7
as our next result shows.

Theorem 4.6.3. Let ¢y, € A, and let ur, € E'(X,w, ) strongly converg-
ing to u € EY(X,w, ). Assuming also that Vi > 0. Then there exists a sub-
sequence {uy,}jen such that the sequences w; := (sup{ur, : s > i v o=
Pw(ukj,ukﬂ_l,...) belong to Xa, satisfy v; < uk; < w; and converge strongly and
monotonically to w. In particular ux — w in ¢ -capacity for any ¥ € MT and
M A, (ul, bp ™) — M A, (u*, ") weakly for any j € {0,...,n}.

Proof. We first observe that by Theorem up — u weakly and Ey, (ux) —
Ey(u). In particular sup y uk is uniformly bounded and the sequence of w-psh wy :=
(sup{u; : j > k})" decreases to u.

Up to considering a subsequence we may assume either 1y \ ¢ or ¥ 7 1 almost
everywhere. We treat the two cases separately.

Assume first that 5, \, . Since clearly wy, € €'(X,w,¥r) and Ey, (wi) > Ey, (ux),
Theorem [.6.2]and Proposition 4.3.14 Jields

Ey(u) = lem Ey, (ug) < liin sup By, (wi) < Ey(u),
R — 00

i.e. wr — u strongly. Thus up to considering a further subsequence we can suppose
that d(ug,wy) < 1/2k for any k € IN.

Next similarly as during the proof of Proposition 45.7 e define  v;; := P, (uj, ..., ujt1)
for any j,I € N, observing that v;; € €'(X,w,®;4:). Thus the function Vi =
P, (u,vj;) € EY(X,w,v) satisfies

d(u,v})) < / (u—vj ) M Ay (vi) < / (u— ;) MAy(vj1) <
X {v;l:vj,l}
Jt i )
< Z/X(ws —us)MAu(us) < (n+ I)Zd(ws,us) < o (422)
s=] s=j

where we combined Proposition 4.2.4 Jand Lemma 3.7. in [DDNLI7]. Therefore
by Proposition v}, converges decreasingly and strongly in &YX, w,?) to a
function ¢; which satisfies ¢; < u.

Similarly f{Pw(u,v;‘,l)zu} (Wi —u)MA,(u) < [y v} —u|MA,(u) < co by Corollary
which implies that v;,; converges decreasingly to v; € EY(X,w, ) such that
u > wj > ¢; since v; < us for any s > j and v;; > vj;. Hence from (#.22] we obtain

. " n—+1
d(u,v;) < d(u, ¢5) = lim d(u,vj,;) < (23‘—1 3
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i.e. v; converges increasingly and strongly to wu as j — oco.
Next assume 1P 7 1) almost everywhere. In this case wy € &'(X,w,v) for any
k € N, and clearly wy converges strongly and decreasingly to u. On the other hand,
letting wg,x := Pu[r](wk) we observe that wy r — u weakly since wg > wy kx> uk
and

Ey(u) = kILn;o Ey, (ur) <limsup Ey, (we,r) < Ey(u)

k— oo

by Theorem and Proposition 4.3.14,i.e. wg,, — u strongly again by Theorem
m Thus, similarly to the previous case, we may assume that —d(us, w ) < 1/2"
up to considering a further subsequence. Therefore setting v := Po(uj,...,ujy;) €

EN(X,w, ), u = P,[ab;](u) and U;LJZ := P, (vj1,u’) we obtain

J+l

AW ) < [ @ =) A 3 [ - u)MAuw) < TED
X = /x
(4.23)

proceeding similarly as before. This implies that v]“; and v;,; converge decreasingly
and strongly respectively to functions ¢;,v; € €*(X,w, ;) as | — +oo which satisfy

¢; < v; < u’. Therefore combining (4.23), Proposition 4.2.11 and the triangle
inequality we get

lim sup da (u, v;) < limsup (dﬁ(u, ') + d(u? ¢j)) <

j—o0 Jj—o0

< lim sup (dﬂ(u,uj) + (n+ 1)) =0.

Jj—o0 2J71

Hence v; converges strongly and increasingly to wu, so v; " w almost everywhere
(Propositon and the first part of the proof is concluded.

The convergence in 1)’-capacity and the weak convergence of the mixed Monge-
Ampére measures follow exactly as seen during the proof of Proposition 45.7. | O

We observe that the assumption w # Py_, if Vi . = 0in Theorem s obviously
necessary as the counterexample of Remark 54.13 $hows. On the other hand if
da(uk, Py,,,) — 0 then trivially MA,(ul,p ?) — 0 weakly as k — oo for any
j €{0,...,n} as a consequence of Vi, 0.

4.6.2 Proof of Theorem Bl
Definition 4.6.4. We define Y, as

Yai= | | MY(X,w,9),
PYEA
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and we endow it with its natural strong topology given as the coarsest refinement of
the weak topology such that ET becomes continuous, i.e. Vi, pi converges strongly
to Vi if and only if Vi, px — Vpp weakly and Ej, (px) — Ej(p) as k — oo.

Observe that Y4 C {non-pluripolar measures of total mass belonging to
[Vibmin» Vbmax]} where clearly thmax := supA. As stated in the Introduction, the
denomination is coherent with [BBEGZ19[]since if ¢ = 0 € A then the induced
topology on M'(X,w) coincides with the strong topology as defined in [EBEGZI9].]
We also recall that

Xﬂ,nor'm = |_| 8’}Lorm(X7w7w)

peA

where &7 grm (X, w, ) 1= {u € £ (X,w,v) such that supy u = 0} (if Vi, = 0 then
we clearly assume Py_; € XA norm)-

Theorem The Monge-Ampére map
MA, : (X4 norm;da) = (Ya, strong)
is an homeomorphism.
Proof. The map is a bijection as a consequence of Lemma 4[3.12 and Proposition
defining clearly M A, (Py,,.,) := 0, i.e. to be the null measure.
Step 1: Continuity. Assume first that Vi . = 0 and that da(ug, Py,,;,) = 0 as

k — oco. Then easily M Ay, (ur) — 0 weakly. Moreover, assuming uj # Py, for
any k, it follows from Proposition 4.2.4 phat

B (MAu(ui) /Vay) = Eu, (ur) + /X (6 — w) M Ay (ug) <

S /XW — ur)MAu(ur) < —nBy, (ur) = 0

as k — oo where the convergence is given by Theorem Hence MA,(ug) — 0
strongly in Yj4.

We can now assume that u # Py, .

Theorem [£.6.3immediately gives the weak convergence of M Ay, (ux) to M A, (u). Fix
¢; € Ho be a decreasing sequence converging to u such that d(u, Pu[1](p;)) < 1/j
for any j € N ([BK07]) and set vk,; := Po[¢x](p;) and v; := P, [¢](¢;). Observe also
that as a consequence of Proposition 4.:2.1T gnd Theorem 4[6.2, for any j € N there
exists k; > 0 big enough such that d(vYr, vk,;) < da(Vr, ) +d(W,v;)+da(vy, ve,;) <
d(¢,v;) +1 < C for any k > kj;, where C' is an uniform constant independent on

j € N. Therefore combining again Theorem 4.6.2 yith Lemma 4[4.6 ajnd Proposition
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(37l we obtain

limsup | B, (M A () /Vi) = Eiy, (MA(005)/ V)| <

k—o0

< lilzrisip (‘Em (ur) — By, (vig)| + ’ /X(wk — ug) (M Ay (ug) — MAw(Uk,j))‘+

] [ s = wMAsw)]) < [Bot) = oo+

+ limsup Cly, (ur, vk ;) > +/ (vj —u)MAL(v;) (4.24)
k—oo X

since clearly we may assume that either 1, \( 9 or ¥ 7 1 almost everywhere,

up to considering a subsequence. On the other hand, if k > k;, Proposition

implies Ly, (uk, vk ;) < 2fa (d(uk, vk ;)) where C is an uniform constant independent

of j,k and fs : R>0 — R is a continuous increasing function such that fx(0) = 0.

Hence continuing the estimates in ( we get

(4.24) < |Ey(u) = By ()| + 20 f5 (d(u, v5)) + d(vs, ) (4.25)
using also Propositions £.2.4 hnd 4.2.11.|Letting j — oo in (£.25), it follows that

lim sup lim sup ‘E{Lk (M Ay (uk)/ Vi) — Ejy (M Aw(vk,5)/ Vi)

j—oo k— o0

=0

since v; \, u. Furthermore it is easy to check that FEy (MAy(vk;)/Vy,) —
Ej(MAu(v;)/Vy) as k — oo for j fixed by Lemma and Proposition 4.2.11. |
Therefore the convergence

B (M Au(v)/ Vi) — B (M Ay (u)/Vy) (4.26)

as j — oo given by Theorem RJconcludes this step.

Step 2: Continuity of the inverse. Assume ug € & orm (X, w, V), 6 € Eporm (X, w, 1)
such that M A, (ur) - M A, (u) strongly. Note that when ¢ = ¢min and Vi, =0
the assumption does not depend on the function wu chosen. Clearly this implies
Vi, — Vi which leads to ¢ — 19 as k — oo by Lemma since A C M7 s to-
tally ordered. Hence, up to considering a subsequence, we may assume that ¥, — 9
monotonically almost everywhere. We keep the same notations of the previous step
for vg,;,v;. We may also suppose that Vy, > 0 for any k € N big enough otherwise
it would be trivial.

The strategy is to proceed similarly as during the proof of Theorem Am.e. we want
first to prove that Iy, (uk,vk,;) — 0 as k, j — oo in this order. Then we want to use
this to prove that the unique weak accumulation point of {uj}ren is u. Finally we
will deduce also the convergence of the -relative energies to conclude that wur — u

strongly thanks to Theorem
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By Lemma

(n+ 1) L, (e v03) < Fyy (ur) — By (vr) + / (05 — un) M A () =
= By, (MAu(ur)/Vi,) — By, (MAu(vk 5)/ Vi, )+
+/ ('de' — Qﬁk)(MAw(uk) — MAW(’U)CJ)) (4.27)

for any j, k. Moreover by Step 1 and Proposition E;, (MAy(vk,;)/Vy,) con-
verges, as k — 400, respectively to 0 if Vy, = 0 and to Ej, (M Au(v;)/Vy) if Vi > 0.
Next by Lemma

[ s =M = [ @ —oMAL)

letting k — oo. So if Vi, = 0 then from limg_ oo Supx (vk,; — ¥r) = supx (v; — ¢) =
supy v; we easily get limsup,_, . Iy, (uk,vk,;) = 0. Thus we may assume V, > 0
and it remains to estimate [y (vg,; — ¥r) M Aw(uk) from above.

We set fr ;j := vr,j — ¥r and analogously to the proof of Theorem Eve construct a
sequence of smooth functions f; := v; —1° converging in capacity to f; :=v; — ¢
and satisfying ||f7 ||z < 2||f5]|z < 2||@;||ze. Here v;,4° are sequences of w-psh
functions decreasing respectively to wv;,1. Then we write

/ Jrs M A (ur) = / (Frs — FIMAu(ur) + / FiM A (ur) (4.28)

and we observe that limsup, , limsup, . [y fiMAu(ur) = [y fiMAy,(u) since
MA,(ur) = MA,(u) weakly, f; € C, f; converges to f; in capacity and || f; ||z~ <
2||fillLee. While we claim that the ﬁrst term on the right hand side of (4[28) koes
to 0 letting k, s — oo in this order. Indeed for any ¢ > 0

[ s = M AL < 8V, + 2l [ M A (ug) <
X {fk,;—F;>6}
< oVa, + 2llpillo [ MAu(u)  (4.29)

{Ihg,j—h;|>8}
where we set hi; 1= vpj,h; = v; if Y ¢ ¥ and hi; := Y, h; := 9 if instead
i 1 almost everywhere. Moreover since {|hk,; — hj| > 0} C {|hi,; — hj| > §} for
any [ < k, from ( we obtain

lim sup / (s — f5)M Au(ur) <
X

k—oo

< 8Vy + hmsuphmsup2||<,oj||LoC / MA,(ug) <
1— lhy j—h;|>8}

k—oo

§6V¢+limsup2||<pj||mo/ MA,(u) =6V
l—o00 {lhi,5—h;|=6}
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where we also used that {|hi; — h;| > ¢} is a closed set in the plurifine topology
since it is equal to {v;; —v; > 6} if ¢ (¥ and to {¢p — ¢y > 8} if by 7 1) almost
everywhere. Hence limsup, . [y (fr; — fi)MAu(ux) < 0. Similarly we also get
limsup,_,  limsup,_, . [ (fi — f§)MA,(ur) < 0. (see also the proof of Theorem

A).

Summarizing from (4.27), we obtain

limsup(n + 1) ™" Ly, (uk, v,5) < Ef (M Aw(w)/Vy) — B (M Au(v;)/Vy)+

k— oo
+ /X (05 — )M Ay (u) — /X (v — )M Ay () = Fy, (4.30)

and F; — 0 as j — oo by Step 1 and Proposition ince ENX,w,¥) v \(u €
&t orm (X, w, 1), hence strongly.

Next by Lemma uk € Xa,c for C > 1since E* (M A, (uk)/Vy,) = Ji, (¢) and
supy ux = 0, thus up to considering a further subsequence wus, — w € &%y (X, w, 1)
weakly where d(w,v) < C. Indeed if V,, > 0 this follows from Proposition
while it is trivial if V,, = 0. In particular by Lemma

/X (6 — w) M Ay (05) = /X (1 — w) M Ay (v;) (4.31)

/ (s — ux) M Ao (vp5) — / (05 — w) M Aw(v;) (4.32)
X X

as j — oo. Therefore if V,, = 0 then combining Iy, (uk,vk,;) — 0 as k — oo with
(4.32) and Lemma 4.3.1,| we obtain

lim sup ( — By, (ur) + Ey, ('Uk,]')) <

k—oo

)=o0.

This implies that d(¢x,ur) = —Ey, (ur) — 0 as k — oo, i.e. that da(Py,,,,ur) — 0
using Theorem Thus we may assume from now until the end of the proof that
Vy > 0.

By and Proposition 4.3.14 |t follows that

< lim sup (ni Ly, (uk, vk,5) + ’/ (vi,j — ur) M A (vk,5)
X

k—oo 1

k—oo

lim sup (E:Lk (M Ay (uk)/ Vi, ) + /X(d)k — ug) (M Ay (vk,j) — MAw(uk))) =

= timsup (B, (ur) + /X(wk ) MAu(wr,)) < Ey(w) + /Xw W) MAu(v;).

k—oo
(4.33)
On the other hand by Proposition nd (4.30) ]
lim sup ‘ / (Y — ui) (M Ay (vi,;) — MAw(uk))‘ < CFjl/z, (4.34)
k— oo X
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In conclusion by the triangle inequality combining (4and (4e get
Bow) + [ (0= wMAu(w) = Jim B (MAL/(w)/Ve,) <
X o0

< lim sup (Ew(w)—k/ (w—w)MAw(vj)+CF]_1/2) = Ew(w)-i-/ (Y —w)M Au (u)
j—roo b's X

since Fj — 0,i.e. w € &horm (X, w, ) is a maximizer of Frag )y vy,p- Hence w =1u

(Proposition , i.e. ur — u weakly. Furthermore, similarly to the case Vi, =0,

Lemma E.?).l and ( imply

By (vj) — liminf By, (ux) = lim sup ( — By (ur) + Ey, (Uk,j)) <

k—oo

. n
< lim sup (mlwk (uk, vi,j) + ‘ /X(u;C - vj,k)MAw(vk,j)D <

k—o0
n

< n+1Fj+’/X(u—vj)MAw(vj)

Finally letting j — oo, since v; — u strongly, we obtain liminfy_,cc Ey, (ux) >
limj oo Ey(vj) = Ey(u). Hence Ey, (ur) — Ey(u) by Proposition {.3.14 |which
implies da(ug,u) — 0 by Theorem and concludes the proof. O

4.7 Stability of Complex Monge-Ampére equa-
tions.

As stated in the Introduction, we want to use the homeomorphism of Theorem B[t¢
deduce the strong stability of solutions of complex Monge-Ampére equations with
prescribed singularities when the measures have uniformly bounded L” density for
p>1

Theorem @ Let A = {¢}ren C M be totally ordered, and let {fx}ren C Lt
a sequence of non-negative functions such that fi, — f € L*\ {0} and such that
fX few™ = Vi, for any k € N. Assume also that there exists p > 1 such that
| fellze, || flle are uniformly bounded. Then i — ¢ € A C MY, and the sequence
of solutions of

MA,, = "
(ur) = fiew (4.35)
ur € gnorm(Xvwawk)
converges strongly to u € X4 which is the unique solution of
MA,(u) = fw™
f“) J (4.36)
u e ETLOT'TVL(X7UJ’ /l/))'

In particular ur — u in capacity.
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Proof. We first observe that the existence of the unique solutions of follows
by Theorem A in [DDNLIS].

Moreover letting u any weak accumulation point for {uk}k@N (there exists at least
one by compactness), Lemma 2.8 in [DDNLIS8] yields M A, (u) > fw” and by the
convergence of fr to f we also obtain fX fw" = limg_y00 Vi, . Moreover since
ug < ¥y for any k € N, by [WN17| we obtain fx MA,(u) < limg_oo Vi, . Hence
MA,(u) = fw™ which in particular means that there is an unique weak accumula-
tion point for {uj}ren and that ¢, — ¢ as k — oo since Vi, — Vi, (by Lemma
. Then it easily follows combining Fatou’s Lemma with Proposition 5.d
Lemma [.2.5]that for any ¢ € 3,

> timinf (B, (Polunl(9)) + | (00— Polinl(0) o)
> By (Pl9)(9)) + /X (1 — Puly](0)) f"  (437)

since (Yr — Pu[tn](9))fe = (¥ — Pu[4](¢))f almost everywhere. Thus, for any
v e &YX, w, ) letting ; € H,, be a decreasing sequence converging to v ([BK07]),

from the inequality ( we get
lim inf B, (M Aw(uk)/ Vi) 2
> timsup (Bo(R(er)) + [ (0= Pelul(e) 1) =
j—roo X
— B+ [ - 0)fe”
X
using Proposition [L2.4]and the Monotone Converge Theorem. Hence by definition
lim inf Ey, (MAy(ur)/Viy,) = Ey (fw"/Vy). (4.38)
— 00
On the other hand since ||fx||z»,||f||» are uniformly bounded where p > 1 and

ur — u, Y — ¥ in LY for any ¢ € [1,+00) (see Theorem 1.48 in [GZ17]), we also
have

/ (Yr — ug) frw™ — / (¢ —u) fw™ < 400,
X X
which implies that fX(w —u)MA,(u) < +oo, i.e. u € EY(X,w,1) by Proposition
Moreover by Proposition 4.3.14 jve also get
li}rvnsup Ey, (MAu(uk)/Vy,) < By (MAL(w)/Vy),
— 00
which together with (§.14) leads to M A, (ux) — M A, (u) strongly in Y. Hence

ur — u strongly by Theorem Ewhile the convergence in capacity follows from

Theorem [6.3] O
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Remark 4.7.1. Assaid in the Introduction, the convergence in capacity of Theorem
Was already obtained in Theorem 1.4 in [DDNL19]. Indeed under the hypothesis of
Theorem @it follows from Lemma nd Lemma 3.4 [DDNL19| that dg(¢g,) —
0 where ds is the pseudometric on {[u] : v € PSH(X,w)} introduced in [DDNL19]
where the class [u] is given by the partial order <.
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Chapter 5

Continuity method with
movable singularities for
classical complex
Monge-Ampére equations.

Abstract

On a compact Kihler manifold (X,w), we study the strong continuity of solu-
tions with prescribed singularities of complex Monge-Ampére equations with
convergent integrable Lebesgue densities. Then we address the strong con-
tinuity of solutions when the right hand sides are modified to includes all
(log-)Kihler Einstein metrics with prescribed singularities. This leads to the
closedness of a new continuity method when the densities are modified to-
gether with the prescribed singularities setting. For Monge-Ampére equations
of Fano type, we also prove an openness result when the singularities decrease.
Finally we deduce a strong stability result for (log-)Kihler Einstein metrics
on semi-Kéhler classes given as modifications of {w}.
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5.1 Introduction.

Let (X,w) be a compact Kihler manifold endowed with a Kédhler form. This article
concerns the study of (degenerate) complex Monge-Ampére equations of the type
{MAw(u) = e M (5.1)
u € PSH(X,w)
where PSH (X, w) denotes the set of all w-plurisubharmonic functionson X, M A, (u) =
(w + dd°u)™ in the sense of the non-pluripolar product ([BEGZI0]), X € R and
f € L'\ {0}. Here d° := 5-(0 — 9) so that dd° = 190.
The study of equations like ( plays a principal role in several questions in Kéhler
geometry, like the search of (log) Kéahler-Einstein metrics ([Yau78],/[Tian|)! The
classical way to approach the existence of solutions of these equations is through a
continuity method. Namely approximating g (v) := e f with a family {9t}tef0,1)
and proving that the set ¢ € [0,1] such that MA,(u) = gi(u)w™ admits a solu-
tion is not-empty, open and closed. It is also important to underline that along
this continuity method one requires that the set of solutions wu: have enough reg-
ularity, and in particular that they have finite Monge-Ampére energy E(u¢) :=
limg 00 %H >0 [ max(u, —k) (w + dd° max(u, —k))” A w™™? which means u €
&'(X,w) (IBEGZ10]). Usually the hard part of the continuity method relies on the
closedness, i.e. if a sequence of solutions wu:, € E'(X,w) of MA,(u) = gy, (u)w™
converges as tp — to to a solution uy, of MA,(u) = gt (u)w”. The type of con-
vergence required depends on the family of equations considered and on the kind of
regularity one wants to achieve on the solutions.

In this paper we want to study the closedness of some new continuity methods with
movable singularities , i.e. we allow the solutions to have some prescribed singularities
and we require a certain strong convergence .

More precisely for A € R, letting {fx }ren be a sequence of non-negative L' functions
converging to f in L', we assume to have a family of solutions {ux}ren of

{MAw(u) = e M fw”

u € SI(X,UJ,’l/Jk) (5:2)

and we want to give necessary conditions for a strong convergence of uy to a solution
u of

MAw — —Au n
Eu) e Mfw (5.3)
u€ & (X, w, ).
Here 91,% € PSH(X,w) represents the prescribed singularities. Indeed the set
&' (X,w,¥) = {ue PSH(X,w) : u<¢+C,V, := / M A, (u) = Vy and
X
Ey(u) > —oco}

190 5.1. INTRODUCTION.
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was introduced in [DDNLI8b[las the 1-relative version of the set &'(X,w) where Ey
is the natural generalization of the Monge-Ampére energy (see section §5. Note
that by [WNI9] the total mass of the Monge-Ampére operator respects the partial
order < given as u X v if u < v+ C for a constant C' € R, i.e. V,, <V, if u X v.
Hence &'(X,w, ) represents all functions more singular than ) which have the same
-relative full mass (i.e. Vi, = V,) and finite t)-relative energy E,. The set of all
1p-relative full mass is denoted by &(X,w, ).

In the authors also proved that there is a natural assumption to add on
¥ so that M A, (u) = p is solvable in the class &(X,w, ) for any p non-pluripolar
measure with the right total mass, i.e. ¢ must be a model type envelope (see section
. We denote with M™ the set of all model type envelopes 1) such that V,, > 0.

The most interesting case to study is when the singularities are increasing or decreas-
ing, so we suppose to have a totally ordered sequence {v}ren C M™ converging
weakly (i.e. in L') to an element 1 € M*. In this case we can work with the strong
convergence of solutions in the sense of [Trul9]land |Tru20al]i.e. wr — u strongly
if ui, — u weakly (i.e. in the usual L'-toplogy) and Euy, (ur) — Ey(u). In fact this
convergence is equivalent to da(uk,u) — 0 as k — oo, where d4 is the complete
distance on X := ||,z & (X,w,v) introduced in |Trul9] for A := {¢1}ren. Note
that it is a very natural which implies the convergence in capacity ([Tru20al)l

To state the results, we need to distinguish three different cases based on the different
sign of A.

If A = 0, we obviously must add the necessary assumption fX fw™ =V, on (
In this case by Proposition C in [Tru20a] the equation is solvable if and only if
fw™ € MY(X,w, ) (and a solution is unique modulo translation by constants).

Theorem A. Assume
(i) fr,f € L'\ {0} non-negative such that fi, — f as k — oo;
(i1) {x}ren C MT totally ordered such that Vy, = [y fuw™ for any k € N and
such that i, — ¢ € MV in L!;
(iii) frw™ € MY X, w, 1) for any k € N and denote with ur € ELorm (X, w, ¥r)
the unique solution of (5.2)) with supy u =0, for A =0.
Then, letting u be o weak accumulation point of {urtren, 4 € Eporm(X,w,v),
ur — u strongly and MA,(u) = fw™ if and only if Ey, (ux) > —C for an uniform
constant C > 0 and

tiwsup [ (0= w)fe” < [ - uf. (5.4)
k—o0 b'e X

With obvious notations, &3 gm(X,w, ) := {u € E*(X,w, ) : supy u = 0}.

Note that by compactness in L', there always exists a weak accumulation point

u for {ur}ren as in the statement (and it is actually unique, see subsection 5(3.1).]

5.1. INTRODUCTION. 191
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Moreover the not-trivial condition (iii) is satisfied if f, € L”* for px > 1. Since (5.4}
and the uniform boundedness on the energies may be difficult to detect, in Remark
we collect some particular easier cases. Finally we stress that if f € L' but
f & LP for any p > 1, it is often difficult to find out if the unique u € Epnorm (X, w, )
satisfying M A, (u) = fw™ belongs to & orm (X, w, 1), which is essentially a regular-
ity condition. Thus Theorem [ kives a new tool to study the regularity of w.

If A < 0 then ( admits an unique solution by Theorem 4.23 in [DDNL18b] since
the latter can be generalized to the case 1 with not small unbounded locus thank
to [X19a]. In this case there are no obstruction to the strong convergence.

Theorem B. Assume
(i) A <0;
(i) fr, f € L'\ {0} non-negative such that fi, — f in L';
(ii3) {xtrenw C M7 totally ordered such that i — v weakly.
Let up, € EY(X,w,r), u € EY(X,w, 1) be the unique solutions respectively of

(5.5)

MA, (ug) = e 2k frw™ MA,(u) = e M fw"
uk € (X, w, ), u € X, w, ).

Then ur — u strongly.

Finally the case A > 0 is much more complicated. For instance, if ¢ =0, {w} = —Kx
and f = 0 then a solution of ( corresponds to a Kéahler-Einstein metrics on a
Fano manifold, whose existence is characterized by an algebrico-geometrical stability
(see [CDS15]) and the uniqueness depends on the identity component of the auto-
morphism group Aut (X)° (see [Bernl5]).

However through a variational approach, our next Theorem corresponds to an open-
ness result on the continuity method when the singularities decrease and the densi-
ties are constant. Indeed we first introduce a functional F , » which generalizes the
Ding functional (see [Ding88]) and whose maximizers solve M A, (u) = e fw™.
Then we prove that its coercivity on &'(X,w,) expressed in terms of a t-relative
J-functional (or in terms of the distance dajer  (x,wv) (X,w,p)) implies the

1
X STLOT‘TrL

coercivity for any 1’ € M7 slightly less singular than 1.

Theorem C. Let ¢p € MY, X\ > 0 and f € L? for p € (1,00]. Assume also that
c(y) > 1% where ;‘% = X if p = 0o. If the functional Ff x is coercive then the
complex Monge-Ampére equation

{MAw(u) = e M fn

ue (X, w, ) (5.6)

admits a solution for any ' € M, ¢’ = ¢ such that Vi < AV, where A > 1.
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In Theorem [C] the constant A > 1 depends uniquely on the coefficient of the coer-
civity of Ff y,a, i.e. its slope at infinity. Moreover with ¢(¢)) we indicate the classical
complex singularity exponent (see for instance [DKO1[). In particular the more is
higher p and the more is lower A, the more ® can be singular. In the limit case
p = oo the condition ¢(1)) > A becomes necessary to solve the Monge-Ampére equa-
tion as a consequence of the resolution of the strong openness conjecture ([GZ15])J
The reason of this bound on the complex singularity exponent is because it leads to
the upper-semicontinuity of F , », hence to the fact that the coercivity of F' 4 A
implies the existence of a maximizer.

About the continuity of solutions, i.e. the closedness of the continuity method in
the case A > 0, we prove the following result.

Theorem D. Let A > 0, {¢x}ven C M7 totally ordered sequence such that ¥y <
i1 for any k € N which converges to 1 € M1, and fi, f > 0 such that fr, — f in
L? as k — oo for p € (1,00]. Assume also the following conditions:

(i) e(¥) > 2

(ii) the complex Monge-Ampére equations

MAL(uk) = e Mk frw™
uy, € EY(X,w, ¥r);

admit solutions ux given as mazimizers of Fp, . x;
(i) supy ux < C for an uniform constant C.

Then there exists a subsequence {ux, }hen which converges strongly to u € ENX,w, )
solution of

MA,(u) = e fw™

u € &YX, w, ).

Since in many settings we expect that any solution of (5maximizes Fy oy, (see
for instance [Tru20b] for the Fano case), and since the assumption (i) is satisfied
for many 1) € M and as said before it becomes necessary when p = oo, the unique
real big obstacle is the uniform estimate in (#4¢) as in the other classical continuity
methods. This assumption is necessary even when fi = f for any & € N as Example

[5.4.16]shows.

In the second part of the paper we give a definition of (D, [v])-log Kihler-Einstein
metrics, Namely given w Kihler form, ¢ € M*, D Q-divisor, we say that w + dd“u
is a (D, [¢])-log KE metric if

Ric(w + dd°u) — [D] = Mw + dd°u)

for A € Q and u € &'(X,w,4). This abuse of language is due to the fact that the
current w + dd°u actually defines a (class of) singular log KE metric. The extension
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of the Ricci form to the singular setting (|BBJI5[) and a generalization of these
metrics when D is a R-divisor and A € R are provided in section §§.4]

We need also to recall that the definition of log KE metrics extends when w is semi-
Kihler, i.e. w is smooth semipositive and [, w™ > 0.

Then we introduce M, as the set of all model type envelopes 1 such that 1) — ¢ is
globally bounded for a w-psh function ¢ with analytic singularities . The elements in
M, are said to have analytical singularities type . Using these model type envelopes
and the log-resolutions of their ideal sheaves we define a map

oM — {(Y, 1) : nsemi-Kihler with w > p.n, andp: Y — X
given by a sequence of blow-ups }/ ~ (5.7)

where (Y,n) ~ (Y’',n) if there exists an another element (Z,7) which dominates
(Y,n), (Y',n') in the usual way. We denote with X(x ., the image of this map.
X(x,w) inherits a partial order (we say smaller, bigger in correspondence of <, =),
a notion of convergence, and it is possible to define a log-KE metric in o € K(x,w)
as a class of log-KE metrics on any representative (Y, 7n) of a. Moreover, when
{ak}kem is a totally ordered sequence, there is a natural strong convergence for
a sequence of log-KE metrics in {ak}kem which obviously comes from the strong
convergence defined above on PSH(X,w) through the map ( (see section §
for more details). When ax,a have representatives on the same compact Kihler
manifold Y, the strong convergence of log-KE metrics in o implies in particular
the weak convergence of the log-KE metrics on Y.

Theorem E. Let w be a Kdihler form such that c1(X) — {[D]} = Mw} for A € R
and (X, D) kit where D is a R-divisor. If ¥ € MJ,, and w + dd°u is a (D, [¢)])-log
KE metric, then uw € C(X \ A) where A is a closed analytic set. Moreover the
followings holds.

(i) Suppose X\ < 0. Then any element in K x ) admits an unique log-KE metric
and such log-KE metrics are stable with respect to the strong convergence, i.e.
if {on}ren C K(x,w) s a totally ordered sequence converging to o € K(x .,
then the sequence of log-KE metrics converge strongly to the log-KE metric on
Q.

(it) Suppose A > 0 and let o € K(x,w). If the log-Ding functional associated to
(Y,n), representative of «, is coercive, then any o' € K(x ., slightly bigger
than o admits a log-KE metric.

1i) Suppose A > 0. If {ar}tren C K(x.w) 18 an increasing sequence converging
(X,w)
to a € IK&’W), and the sequence ay admits a subsequence of log-KE metrics
which is uniformly bounded from above , then there exists a subsequence which
converges strongly to a log-KE metric in  «.

Some comments about Theorem I
The topological assumption ¢1(X) — {[D]} = A w} is a necessary hypothesis to
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the existence of log-KE metrics while the assumption on the singularity of D (i.e.
(X, D) klt) is necessary when X > 0. In particular there are no obstruction to the
case A = 0, while we do not investigate the case A < 0 with (X, D) not necessarily
klt since it goes beyond the purpose of this paper. We have a precise estimate
about the openness result of the second point in terms of the volumes of « (which
is defined as fy n™ for any (Y,n) representative), and of the slope at infinity of the
log-Ding functional which is independent on the representative chosen. This point
is clearly a consequence of Theorem (mbut it is worth to underline that there is
not assumptions on the class « (while in Theorem glwe restricted to [¢)] satisfying
c(y) > %). Finally in the last point the restriction to IK&M) and the assumption
on the uniform boundedness correspond respectively to the assumptions () and (%i7)
of Theorem DJand we refer to section §4.4 Jor precise definitions.

5.1.1 Structure of the paper.

After recalling some preliminaries in section §5ecti0n §5 the core of the paper
where in three different subsections based on the sign of X we prove Theorems K] B}
and D] Finally in section §¢.4 fve introduce the notion of (D, [¢)])-log KE metrics
and we prove Theorem E]connecting these metrics to the more classical log-KE
metrics when ) € MJ,,.

5.1.2 Acknowledgments.

I would like to thank my advisors Stefano Trapani and David Witt Nystrém for
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5.2 Preliminaries.

The set of all model type envelopes is defined as
M:={¢ € PSH(X,w) : ¥ = P,[¢](0)}.

where for any couple of w-psh functions u,v
Pou(v) = ( lim Pw(u—|—C,v))* =
C—oo
= (sup{w € PSH(X,w) : w=xu,w < v}) € PSH(X,w).

Here the star is for the upper semicontinuous regularization and P, (u,v) := (sup{w €
PSH(X,w) : w < min(u,v)})” (RWN14]). We set P.,[¢] :== P.,[¢](0) for simplic-
ity. As stated in the Introduction, |¢ — P, [¢)]| bounded is a necessary assumption
to make the equation

MAy(u) = p

u € E(X,w, )
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always solvable where 1 is a non-pluripolar measure such that p(X) = V,, ([DDNLI8b]).
So without loss of generality we may assume 1 be a model type envelope. It is also
worth to recall that there are plenty of elements in M since P, [P,[¢]] = P.[¢], i.e.

v — P, [v] may be thought as a projection from the set of w-psh functions to M. We
denote with M* the elements 1) € M such that Vy := [, MA,(y) > 0 ([Truld)).

We also recall that if u € £(X,w,v) and ¢ € MT then P,[u] = % (Theorem 1.3 in

[DDNL18b)).

5.2.1 The metric space (X, dy).

A function v € PSH(X,w,v) := {v € PSH(X,w) : v < v} is said to have -
relative minimal singularities if |u — 1| is globally bounded on X.

Definition 5.2.1 ([DDNL18b]). The t-relative energy functional Ey : PSH (X, w, ) —
R U {—o0} is defined as

1

By (u) = —~ ) Z /X(u — ) (w + dd°u)’ A (w + dd°p)" 7

if u has -relative minimal singularities, and as
Ey(u) :=inf {Ey(v) : v € &(X,w, ) with-relative minimal singularities ,v > u}
otherwise. The subset £'(X,w, ) C &(X,w, ) is defined as

' (X, w, ) == {u € &(X,w,) : Ey(u) > —o0}.

Note that the O—relative energy functional is the Aubin-Mabuchi energy functional ,

also called Monge-Ampére energy (see [Aub84],[Mab86]). As shown in [IDDNLISD[)]

Ey is non-decreasing, continuous along decreasing sequences and the convergence
Ey(u) = limg 00 By (max(u, v —k)) holds. It is worth to underline that the authors
in assumed 1 to have small unbounded locus, but all these properties
extend to the general setting as an immediate consequence of the integration by

parts formula proved in |[X19a]l (see also [Iu20]).

We also recall that (81()(7 w, ), d) for 1) € M™T is a complete metric space where
d(u,v) := Ey(u) + Ey(v) — 2By (P (u,v))

by Theorem A in [Trul9]. A key feature of this distance, which is the starting point
to glue together spaces associated to different model type envelopes, is the following
contraction property.

Proposition 5.2.2 (Lemma 4.4., Proposition 4.5., [Trul9]) . Let 1,112,193 € M
such that Y1 < ¥2 < ¥s. Then Pu[yn](Pu[Y2](v)) = Putr](u) for any u €
EN(X,w,v3) and |Pu[in](u) — 1| < C if |u — b3 < C. Moreover the map

Pu[t1]() : €Y(X,w,2) — PSH(X,w, 1)
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has image in El(X,w,wl) and it is a Lipschitz map of constant 1 when the sets
EN(X,w, ), i = 1,2, are endowed with the d distances, i.e.

d(Pulin)(u), Pufth1](v)) < d(u,v)
for any u,v € EY(X,w,2).

Next, assuming A C MT to be a totally ordered set of model type envelopes, its
closure A as subset of PSH(X,w) (i.e. the weak closure) belongs to M ([Trul9]).
Moreover by Lemma 3.14 the Monge-Ampére operator becomes an homeomorphism
when restricted to A and when one considers the weak topologies.

Assuming from now on that A C M7 (see [Trul9], [Tru20a] for the general case)
and observing that €'(X,w, 1) N ENX,w,v2) = 0 if 1,92 € MT, Y1 < b2, we
have the following theorem.

Theorem 5.2.3 ([Truld], Theorem B). The set Xa := uweﬁgl(X,w,w) can be
endowed of a complete distance da such that dajer(x,w y)xel (x,w,p) = d for any

P €A
We call strong topology the metric topology on X4 given by the distance d4. This
topology is the most natural on X4 as the next result shows (see also [BBEGZ19]].

Proposition 5.2.4 ([Tru20al, Theorems 6.2, 6.3). The strong topology on X is
the coarsest refinement of the weak topology such that FE.(-) becomes continuous, i.e.
given {ur}ren,u C X4 then the followings are equivalent:

i) uk — u strongly;
M) U — U weakly and Epw[uk](uk) — E'pw[u](u).

Moreover if ur — wu strongly, then there erists a subsequence {Ukj }ien such that
vj = (Supp,s; Uk, )" Wy = Po(Uk;, Uk, ;.. ) converge monotonically almost every-
where to w. In particular the strong topology implies the convergence in capacity.

Here we obvious notations P (uk;,ur; ,---) = sup{fw € PSH(X,w) : w <
Uy, for any h > j}. We also recall that a sequence {ux}ren C PSH(X,w) is said to
converge in capacity to uw € PSH(X,w) if for any 6 > 0

Cap({\uk —ul > 6}) —0
as k — oo where for any B C X Borel set

Cap(B) := sup{/ MA,(u) : we€ PSH(X,w),-1<u< 0} (5.8)

(see [Kol98], [GZ17] and reference therein).
Note also that as an immediate consequence of Proposition 5[2.4 the strong conver-

gence does not depend on the choice of the set A.
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Next, since w is Kihler, by [BK07] any element u € PSH(X,w) can be approxi-
mated by a decreasing sequence of Kéhler potentials, i.e. elements in H := {p €
PSH(X,w) N C*(X) : w4+ dd°p > 0}. Thus we will use several times that

By, (Pa[l(9)) = By (Pa[¥](9)) if ¥r,v € M, ¥ — ¥ weakly and ¢ € 7,
which is an easy consequence of Proposition nd the following result (see also
Theorem 2.2 in [X19a], and Lemma 4.1. in [DDNLISD]).

Lemma 5.2.5 (Lemma 4.3, [Trul9]). Let vx,v € M such that 1 — 1 mono-
tonically almost everywhere. Let also ux,vx € EY(X,w,¥r) converging in capacity
respectively to u,v € &(X,w, ). Then for any j=0,...,n

(w + dd°ur)’ A (w + dd°vi)" ™ = (w + dd°u)’ A (w + dd°v)" ™7
weakly. Moreover if |ur — vi| is uniformly bounded, then for any j=0,...,n
(ur — vg)(w 4 ddug)? A (w + ddvi)" ™ = (u — v)(w + ddu)’ A (w + dd“v)" 7
weakly.

Finally we need to recall the following essential property of the energy FE.(-) in X4
and its consequent compactness result.

Proposition 5.2.6 ([Tru20a], Lemma 3.13, Propositions 3.14, 3.15). Let A C M7
be a totally ordered family such that A C M™T, and let {ur}tren C Xa converging
weakly to w € X4. Then

lim sup Ep, u,) (uk) < Ep, ) (w).

k—oo

Moreover if Ep, 1y, (ux) > —C uniformly, then P, [uy] = P.[u] weakly. In particular
for any C € N the set

Xac:={ue Xq :supu < Cand Ep_,)(u) > —C}
X

18 weakly compact.

5.2.2 The space (Y/hStTOTLQ).

On the set of all probability measures the counterpart of the t)-relative energy Ey(-)
and of the correspondent set &'(X,w, ) for 1 € MT are respectively the -relative
energy Ey and the set M (X, w, ).

For p positive probability measure, the first one is defined as

Ei(w)= sw Fuui= s (Eu(w) - VaLu(w) € [0,00]
EL(X,w,) w€E (X, w,)

where Vi := [ MA,(¢)) > 0 and where L, (u) := limg oo [ (max(u,p —k) — 1) p
if 4 does not charge {1 = —oco} and L, = —oo otherwise (see [Itu20al). The
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maximizers of the translation invariant functional F), , solve the Monge-Ampére
equation M A, (u) = Vyu (Proposition 5.2 in [Tru20al) and, defining

MY (X, w, ) := {Vypu : pprobabilty measure such that Ey (1) < oo},

and &lorm(X,w, ) = {u € &'(X,w,?) : supyu = 0}, we have the following
correspondence.

Theorem 5.2.7 ([Tru20a], Theorem A). Endowing M'(X,w,v) with its natural
strong topology defined as the coarsest refinement of the weak topology such that
Ej, becomes continuous, the Monge-Ampéere operator MA,, : (8,110Tm(X,w,1/J),d) —
(MY (X, w, ), strong) is an homeomorphism. Moreover Ej(u) = F,p(u) for any
Vit = M A, (u) € MY (X, w,v).

More generally, given A C M7 totally ordered such that A C M" and endowing the
set

Vo= | | MY(X,w,v)
YEA
with the strong topology given as the coarsest refinement of the weak topology of
measures such that E(-) becomes continuous, we get the following Theorem.

Theorem 5.2.8 ([Iru20al, Theorem B). The Monge-Ampére map
MA, : (XA,norm,dA) — (Ya, strong)

is an homeomorphism where XA norm := Uweﬁ Erorm (X, w, ).

5.3 Strong continuity of solutions.

As stated in the Introduction given a totally ordered sequence ¢y € MT converging
weakly to ¥ € M*, and given fi, € L'\ {0} non-negative functions L'-converging
to f € L'\ {0} we want to give necessary conditions so that a sequence of solutions
{uk}ren of

MAW — —Au n
(11““) e (5.9)
ug € 8 (Xvawk)
converges strongly in X4 for A := {¢x }ren to a solution u of
MAW — —Au n
f“) e w (5.10)
u € ENX,w, ).

We have three very different cases based on the sign of A € R.
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5.3.1 Case )\ =0.

In this subsection A = 0.
In addition to the setting described above, we must assume Vi, = fX frw™ for
any k € N. Moreover we normalize the solution wuy of to have supy ur = 0,
ie. ur € Ehorm(X,w,s). Note that by Theorem he existence of such wuy is
equivalent to ask frw” € M (X, w,r), which is a non trivial condition. However
if frp € LP* for p, > 1 then by Theorem A in [DDNLI&d] there exists an unique
solution ux € &L orm (X, w, ) for and it has vy-relative minimal singularities.
Then letting u € PSH(X,w) be a (weak) accumulation point for {u}ren, Lemma
2.8 in [DDNL18d] gives M A, (u) > fw™. Therefore since u < 1 by Hartogs’ Lemma,
we immediately get

MA,(u) = fw"
as a consequence of [WNI9]l In particular there is exactly one weak accumulation
point for {uy}ren. But a priori u may not belong to €(X,w,) which is essentially
a -reqularity condition. Moreover we want to characterize when w is actually the
strong limit of uy, which in particular would imply that the convergence is in capacity

(Proposition f.2.4]).

Theorem E Let fr,f € L, n, v € M, up € €Y(X,w, 1), and u € PSH(X,w)
as in the setting described above. Then u € S}LOTm()Qw,w) and ur — u strongly if
and only if Ey, (ux) > —C for an uniform constant C > 0 and

lim sup/ (Y — ug) frow”™ < / (Y —u)fw". (5.11)
k—oo X X
Proof. Set A := {¢r }ren.
As said before, by Lemma 2.8 in and [WNI19], MA,(u) = fw™ since
u < .

Then assuming u € &}y (X, w, 1) and da(ug, u) — 0, we immediately obtain uy —
u weakly and Ey, (ux) — Ey(u) as k — oo (Proposition p.2.4). Thus d(¢w,ur) =
—Ey, (u) is uniformly bounded. Moreover by Theorem Ej (MAy(uk)/ Vi, ) —
Ej (MAu(u)/Vy), which implies that [\ (¥ — ux) faw™ — [ (¥ — u) fw™ and con-
cludes one implication.

Vice versa suppose that d(i¢x,ur) < C for an uniform constant C' € R and that
limsupy,_, o [y (Yx — ug) faw™ < [ (1 — u) fw". Next, combining Fatou’s Lemma
with Proposition Lemma 2.5 Jand Theorem 5[2.7, Jit follows that for any
peXH

liminf B, (M Ao (ux)/ Vi, ) =
> timinf (Bo, (Pol0)(0) + [ (b= Pofid(o) ) >

> By (Pu[](0) + /X (W — Polb](9) fo"  (5.12)
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since (Yr — Pu[t](9))fe = (¥ — Pu[t](¢))f almost everywhere. Thus, for any
v € EY(X,w, ) letting ¢; € I be a decreasing sequence converging to v ([BK07]),
from the inequality ( we get

lim inf £y, (M Ay (ug)/Vyg,,) >

> timsup (Bo(Plil(e)) + [ (0= Pelul(e) fr) =

— By(w) + /X (W —v)fw"  (5.13)

using also the continuity of Fy(-) along decreasing sequences and the Monotone
Convergence Theorem. Therefore by definition

hkrr_u)r;f E:Zk (MAw(Uk)/Vwk) Z E:L (fwn/Vw> = E:Z (MAW(U)/Vu,), (5.14)

which together with [\ (¢ —ux) frw™ = [ (¢ —u)fw™ (by Fatou’s Lemma and the

assumption (p.11]) and the upper semicontinuity of FE.(-) (Proposition ply

Ey, (ur) = Ey(u). Hence up — u strongly as consequence of Proposition O

Remark 5.3.1. It is clear from the proof of Theorem Jﬂhat to prove that u €
Enorm (X, w, ) it is enough to show that Ey, (ux) > —C. Moreover we observe
that the assumption can be replaced with the uniform integrability of {(¢x —
uk) fr tken in the measure-theoretical sense, i.e. for every € > 0 there exists § = (¢)
such that supycn [ (¥r —uk) frw™ < € for any measurable set E such that w"(E) <
€. Indeed since (Y — uk)fi — (¥ — u)f almost everywhere and since all that we

need is that [\ (¢Yr — uk) frw™ — [ (1 —u)fw", the equivalence between this two

hypothesis follows from the Vitali Convergence Theorem and Fatou’s Lemma.

Remark 5.3.2. In some cases the assumptions on the boundedness of the energy
and (5.11)) in Theorem []are easily satisfied.

For instance if there exists h € L' such that (¥ — uk) f < h almost everywhere
for any £ € N then ( trivially holds, while by Theorem 4.10 in
_Ewk (uk) < fx(wk - uk)fkwn < ||hHL1

Similarly if || fx||z», || f||zr are uniformly bounded for p > 1, then the boundedness of
the energy and (@ are consequences of ¥r —ur — ¥ —wuin L” for any 7 € [1,00)
(see Theorem 1.48 in [GZ17]). In particular Theorem 4 Jextends Theorem C in
[Tru20a).

Finally if fi = ckgr for gr \( f, then we claim that the assumption (§.11)|can
be substituted with [, fw™ < ACapw (B) for any Borel set B C X and for any
k > 1 big enough where A > 0 is a fixed constant. Here Cap , denotes the -
relative Monge-Ampére capacity introduced in [DDNLI8b]l (see also [DDNLI&])
whose definition is similar to (!. ).8) asking 1 — 1 < u < 4. Indeed combining Lemma
4.18 in and Theorem 4.4 in [ITru20a] we would easily have

limsup/ (Y — uk) frrw™ < limsupck/ (Y — ug) fw™ = / (Y — u) fw™.
X X X

k—oo k—oo
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5.3.2 Case )\ < 0.

Here we deal with the case A < 0.
Letting f € L'\ {0} non negative, we first assume that A € R\ {0} to introduce the
functional Ly : PSH(X,w) — R as

-1 _
Lfyx(u) = TIOg/)( e )\ufwn.

Thus, for ¢ € M, we define the functional Fjf .y »: E(X,w,9) — R as Fyypa(u) :=
(Ey — ViyLys,x)(u). We hope that this functional do not lead to confusion with the
functional F}, 4 defined in section It is easy to see that [ 4, is invariant by
translation, i.e. it descends to the space of currents. Moreover its maximizers solve
the complex Monge-Ampére equation (as the next result recalls.

Theorem 5.3.3 ([DDNLI8b|, Theorem 4.22). Let f € L'\ {0} non negative and
A#0. Ifu € EY(X,w, ) mazimizes Fy .y then u solves

{MA“’(”) =" (5.15)

v E El(X ,w, )
for a constant C € R.
From now on until the end of the subsection we will assume X < 0.

Theorem 5.3.4 (Theorem 4.23 - Lemma 4.24., [DDNLI18b|). Let A < 0 and f €
L'\ {0} non negative. Then the complex Monge-Ampére equation (5admits an
unique solution and it mazimizes Fpyx over (X, w, ).

A key Lemma of the proof of the Theorem just recalled is the following Lemma.

Lemma 5.3.5. Let i be a non-pluripolar measure, gi,g € L' non-negative functions
such that g — g in L', and let u, {ur}ren C PSH(X,w') such that ur, — u weakly
where W' is a Kdhler form on X. Then

/e“kgkwn%/ e guw™
X X

Proof. By an easy calculation we have

/eukgkwngesupxuk/ |gk_g|wn+/ eukgwn
X X X

and the result follows from |supy ux| < C and Lemma 11.5 in [GZ17]. O

as k — oo

We can now prove Theorem B
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Theorem Assume
(i) A <0;
(i) fr, f € L'\ {0} non-negative functions such that fi, — f in L';
(ii3) {r}ren C MT totally ordered such that i, converges weakly to ¢ € M*.
Let up € EY(X,w,Yr), u € EM(X,w, ) be the unique solutions respectively of

MAu(u) = e froo™ [ MA(u) = e~ fur (5.16)
ur, € EN(X, w, Yr), u € ENX,w, ). '
Then ur — u strongly.
Proof. We assume A = —1 for simplicity and we observe that by an easy contradic-

tion argument it is enough to check that any subsequence {uy; }jen admits a further
subsequence {uk].h }hen converging strongly to u. So without loss of generality we
may assume ug; to be the whole sequence and we set Fy := Fy, o, —1, ' := Ffy 1.
Observe that by Theorem ur, maximizes Fy for any k € N while u maximizes
F.

Therefore, letting ¢ € H, it follows that

by Lemmas and Thus, passing to the supremum over ¥, combining
[BKO7], the continuity of E along decreasing sequences and Lemma §.3.5 fve get

lim inf F (uk) > F(u). (5.17)
k—o0

Moreover, up to considering a subsequence, the sequence vy := up — SuUpy uj con-
verges weakly to v € PSH(X,w),v <1 and

ak ::/ e’* frw™ —>/ e’ fw" € (0,11 flz1],
X b's
again by Lemma Thus, using the complex Monge-Ampére equations,

sup ux = log Vi, — log ax
X

is uniformly bounded and {uk}ren admits a subsequence {ukj }jen converging
weakly to 4 € PSH(X,w),u < . Without loss of generality we will assume
{uk; }jen to be the whole sequence {ux}ren. On the other hand from ( and
the triangle inequality, since supy ux is uniformly bounded and fir — f, we have

lim sup d(¢r, ur) <

k—oo

<24V, —liminf Ey, (ur) < 24V, — F(u) —limsup Vi, /X e'* frw™ < —F(u)+C

k—oco
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if A > supy ug for any k € N. Therefore @ € &0, (X,w, ) by Proposition
since {Uk}kE]N C Xy,¢r for an uniform constant C’. Furthermore by Proposition

[6211and Lemma b5.3.5 Iwe obtain

lim sup Fi (ur) < F(a),
k— o0
which implies necessarily that @ = w + B for a constant B € R by (5.17) and
Theorem But from the Monge-Ampére equations it follows that

eB/ e fw" :/ e fw™ = lim e frw™ = lim Vy, =V, :/ e fw",
X X k—oo | x k— o0 x

i.e. B =0. In conclusion we have proved that wu; — u weakly, that Fy(ug) — F(u)
and [, e** frw™ — [ e*fw”. Hence Ey, (ur) — Ey(u), which by Propositon
implies da(uk,u) — 0 and concludes the proof. ]

Remark 5.3.6. It is easy to observe that Theorem IB peneralizes to the case when
w™ is replaced by a non-pluripolar measure p and fr, — f € L'(u) since analogs of

Theorem and of Lemma old in this setting.

5.3.3 Case )\ > 0.

If A > 0 then the study of ( is much more complicated that the case A < 0
even in the absolute setting 1 = 0. As stated in the Introduction, for instance, if
{w} = —Kx, ie. X is a Fano manifold, and f = 1, the existence of a solution
for is characterized by an algebrico-geometric notion called K-stability (see
[CDS15]). The uniqueness of solutions of (is an hard problem as well (see
[Berni5]). Note that in this case Fi 0,1 coincides with the Ding functional ([Ding88][)
where we recall that Fjyx := Ey — VgL for f € L', A € R\ {0}, ¢ € M is the
functional introduced in the previous subsection. We refer to the companion paper
[Tru20b] where we analyze the case when {w} = —Kx more in detail.

To prove Theorems {Jand P Jwe need first to set

Ty (u) = —Ey(u) + /X (1 — ) M Ay (1)

for any u € &'(X,w, ) where 1) € M (see [Tru20a] where the notation is slightly
different). It is immediate to check that Jy is non-negative and translation invariant.
Indeed it represents the translation invariant version of the distance d as the following
key lemma shows.

Lemma 5.3.7. Let 1 € M'. Then there exists C € R>o depending only on (X,w)
such that

for any u € &L ppm (X, w, ).
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Proof. From the definitions it immediately follows that Jy(u) < d(¢,u) for any
U € ELorm(X,w, ). Vice versa it is enough to observe that on &L,,..(X,w, ) we
have

/X (W — WM AL () < /X [l M A (0) = [[ul| 2 < C

as immediate consequence of Theorem 3.8. in [DDNLI8b] and of the weak compact-
ness of {u € PSH(X,w) : supy = 0}. O

Similarly to the case A < 0, since the -relative energy is upper semicontinuous
with respect to the weak topology (Proposition the continuity properties of

Ly x varying also f play a key role to the variational approach, and hence to prove
Theorems [C] D] This is the reason to recall the following well-known and important

quantity (see |DKO01]).

Definition 5.3.8. Let u € PSH(X,w). The quantity

c(u) :=sup{p>0: / e W™ < oo}
X

is called the complex singularity exponent of u.

By the resolution of the strong openness conjecture the supremum in the definition
is never achieved, i.e. e ¢"* ¢ L'  Clearly c(-) increases when the singularities
decreases and it is a lower semicontinuous function with respect to the weak topology
as the Main Theorem in [DK01[/shows. Moreover the next result proves that ¢(-) is
constant on any set &(X,w, ), ¥ € M.

We first need to recall the definition of the Lelong numbers and of the multiplier
ideal sheaves.

Given u € PSH(X,w) and x € X the Lelong number v(u,x) of u at x is given as

v(u,z) :=sup{y > 0 : u(z) <~vlog|lz —z||* + O(1)on U}

where x € U C X is an holomorphic chart. It does not depend on the chart chosen.
The Lelong number measures the logarithmic singularity of an w-psh function at a
point x.

The multiplier ideal sheaf I(tu), ¢ > 0, of u € PSH(X,w) is the analytic coherent
sheaf whose germs are given by

I(tu, x) := {f €0x, ¢ / |f]?e"™w™ < oo for some open set x € V C X}.
%
Proposition 5.3.9. Let u € PSH(X,w) and v := P,[u]. Then

v(u,z) = v(v,z) and I(tu,z) = I(ty, z) forany t > 0, z € X. (5.18)

In particular c(u) = () and a(-) is constant on any &(X,w, ) for v € M™.
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Proof. We first observe that c(u) :=sup {p >0 : J(pu) = Ox }, thus (b.18) implies
immediately c(u) = ¢(¢). Moreover by Theorems 1.2,1.3 in [DDNLI8b] if ¢ € M*
then P,[u] = if and only if u € (X, w, ) and the last assertion follows.

Next, we claim that P,[u](v) = v¢. Indeed clearly P, [u](¢) < 1, while vice versa
for any C € Ry,

P,[u)() > P, (u+ C, Pulu]) > Pu(u+ C, Pu(u+ C,0)) = P,(u+ C,0),

which implies P, [u](¢) > P,[u] = ¢ since P, (u+ C,0) / P,[ul.

Then the proof of (§.18) is similar to that of Theorem 1.1.(i) in [DDNLI8a], but we
write the details for the courtesy of the reader.

Trivially v := v(u,xz) > v(¢,x). Assume by contradiction that v > v(i,z) for
z € X, and fix holomorphic coordinates centered at z such that the unit ball B C C"
is contained in the chart. By definition wu(z) < 7ylog|z|* + O(1) locally in such
coordinates. Let also g be a smooth potential of w such that v+ g,% + g < 0in B.
Thus, locally

g+ =g+ Pulul(¥) < sup{v € PSH(B) : v < 0,0 < ylog|2* + O(1)}

where the inequality follows comsidering P, (u + C,v) for C — 400 instead of
P, [u]() and noting that the right hand is upper semicontinuous since it coincides
with the pluricomplex Grenn function Ggr(z,0) of B with a logarithmic pole at 0 of
order . Hence, by Proposition 6.1 in [K[i91] we get the contradiction v(¢,z) > v
since Gp(z,0) ~ ylog|z|* + O(1).

For the second equality, letting z € X fixed, we observe that J(t¢,z) = J(tP.(u +
C, ), :r) for C' > 0 big enough as a consequence of the resolution of the strong open-
ness conjecture ([GZ15], see also Theorem 1.1 in [Lempl7]) since Po(u+ C,¢) S
for C' — +oo. Therefore to conclude the proof it is sufficient to note that I(tu,z) =
J(th(u + C, w),x) for any ¢,C > 0, x € X since ¥ is less singular than w. O

It is also possible to estimate the complex singularity exponent of ) in terms of the
Lelong numbers by the following classical result.

Proposition 5.3.10 ([Sko72]). Let v € M and set v(¢)) := sup,x v(¢, ). Then
2n
()

We can now introduce an integrability condition which will be sufficient for the
purposes of this paper.

Definition 5.3.11. Given ¢ € M, A > 0 and p € (1,00]. We say that [¢] satisfies
the Strong Integrability Condition (SIC) with respect to A\, p if

Ap
C("b) > pfl’

where we mean c() > X\ if p = co.
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Observe that when p = oo the SIC «(¢) > X is a necessary condition to solve the
Monge-Ampére equation M A, (u) = e~ fw™ in the class &(X,w,®). In general if
Y € M then as a consequence of Proposition he SIC gives e *f € L' for
any u € &(X,w, ) through a clear Holder’s pairing.

Proposition 5.3.12. Let up,u € PSH(X,w) such that ur — u weakly, X > 0 and
let fx, f € L? for p € (1,00] non-negative functions such that fr — f in LP. Letting
Y = P,[u] and ¥y := P.[ug], assume also that c(v),c(vr) > % for any k> 1,

A .
where p—_ﬂ =XNifp=oc. Then

e*)\ukfk N 67/\uf
in L' as k — oo.

Proof. We set g = ¢ " fi, g := ¢ ™f and ¢ := p/(p — 1) for the Sobolev
conjugate of p. Note also that by Hartogs’ Lemma we may suppose supy ux < 0 for
any k € N. By the triangle inequality

lgr = gl < e (fu = llpr + 11 =) fll (5.19)

and the strategy is to prove that both terms in the right hand goes to 0 as kK — oo.
As immediate consequence of the Holder’s inequality we obtain

™ (fie = Pllzr < lle™ *zxall fi = flln

which converges to 0 since fi — f in LP by assumption and ||e”“*||zq is uniformly
bounded by Lemma In fact c(uk) = c(Yr) > Ag,c(u) = c(yp) > Ag (see also
Proposition .

For the second term in ($.19)| again by Hélder’s inequality it follows that it is enough
to prove that

e MRy gAY (5.20)
in L'. But since c¢(u) > Ag, (5.20) is a consequence of the Main Theorem in [DKO01].]
O

Lemma 5.3.13. Let K C PSH(X,w) and p > 0 such that c(u) > p for any u € K.
Then there exists a constant C = Ck p such that

sup/ e Pt < C.
ueK JX

Proof. Let us assume by contradiction that there exists a sequence {u;}jen C K
such that

/ e TPUW" > j (5.21)
X

for any j € IN. Up to considering a subsequence we may also assume that wu; — u €
K weakly. In particular [, e”P“w"™ < co. Thus by the Main Theorem in [DKOI]!
e P — e7P* in L' which contradicts ( O
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We can now prove Theorem g which as said in the Introduction represents an
openness result for a new continuity method where the singularities are movable

(see also [Tru20b]).

Theorem @ Let p € MT, A >0 and let 0 < f € LP\ {0} for p € (1,00]. Assume
also that c(¢) > ;‘%. If there exist A > 0, B > 0 such that

Fy(u) := Fryx < —Ad(u,v) + B

for any u € &} orm (X, w, ), then there exists an uniform constant C = C(Vy, B, X,w) >
0 such that for any ' € M, =

Vo
R =-(1- 2

1- A))d(v,¢’) +C

for any v € €L (X, w, "), In particular for any ' = 4 such that Vi < Vi /(1 —
A), Fys is d-coercive over & gpm (X, w, V") and the compler Monge-Ampére equation

(5.22)

MA,(u) = e fuw™
ue &N (X,w,1")

admits a solution.

Remark 5.3.14. It is easy to check that the constant A > 0 in the d-coercivity
of Fy cannot be larger than 1. Indeed it easily follows from (A — 1)Ey(u) + B >
VTwlog Ix e M ™ > VT’” log||f||z1 for any u €+8,1wrm(X,w,w) and the fact that
SUDycel (Xwy) | By(u)| = +oo for any ¢ € M™.

norm

Proof. We divide the proof in two parts. We first prove that the d-coercivity of
Fy implies the existence of a solution of ( for a fixed 1’ = 1), then we show
that the d-coercivity of F implies the d-coercivity of Fy for any 9’ 3= ¢ such that
Vw/ < V¢/(1 — A)

Let ¢’ = 1 and assume that Fy/ is d-coercive over E}LOTm()Qw,w) with respect
to constants A > 0,B > 0. Then letting {ur}ren C Ehorm (X, w,?’) be a maxi-
mizing sequence for Fy/, ie. Fy(ux) /' super (x4 Fyr, by the coercivity we
immediately have

d(q/)lv uk) <D

for a constant D € Rxo. Therefore by Proposition §.2.1,]up to considering a subse-
quence, ur — 4 € &L ypm (X, w, 1) weakly. Thus Lemma nd again Proposi-
tion [6.2.1]give
sup le = lim F¢,/(Uk) < Fw/ (U),
g}wrm(x7w’¢’) k— o0

ie. w is a maximizer of Fys over & orm (X, w,v"). Hence since F, is translation
invariant, by Theorem here exists a constant A such that u + A solves (
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which finishes the first part of the proof.
Next the d-coercivity of F, implies that for any u € &'(X,w, )

Fy(u) = Fy(u — supu) < —Ad(, u — supu) + B <
X X
< —AJy(u—supu)+ B=—AJy(u)+ B
X
by Lemma which is equivalent to

% log/X e Mfw" < (1—A)Jy(u) + B+ /X(zp —u)M A, () (5.23)

for any u € &' (X, w, ). In particular letting ¢ € J such that supy P.[¢']() = 0
where 9’ = 1) and setting v := P, [¢](p), v’ := P,[¢'](¢), we have

FurW) € Bu(v) + S log [ ' fu” <
X
)
S sz( ) + Vid:p((l — A)J¢(U) +B +/

X

(b —0)MAL@W))  (5.24)

combining the inequality v > v with (5.23). Next by [DNTL9J] M A, (1) = 1 =03 M A, (0)
and similarly for +’. Thus

Je—oma s [ @owmaes [ i <

< [ -vmaw)
b's
for an uniform constant C’' = C’(X,w) > 0 since supy v’ = 0. Hence as a conse-
quence of Proposition §.2.2 Jwe get
Jyp(v) < Jy (v') + 7,
which together with (§.24) and again [DNT19[I(by Remark 5[3.14 | A < 1), implies

Fo) < (U= 1), 00

b
Vi

n
v /X(w—vMA (

Therefore since Jy/(-) and of Fy/(-) are translation invariant and continuous along

decreasing sequences in &'(X,w, ), combining [BK07] and Lemma e finally
obtain

Vs , ’ ’
V—*"(Bw) [ = v imas)
o

D)0+ 28120,

* Vy

Fyo(u) < (%;A) 1)y () + %(B 120 < (W 1)@ u) +C

Or any U € Cporm (X, W, which concludes the proot.
f y &t orm (X, w, 4", which ludes the proof O
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Finally we can give necessary conditions to have the strong continuity of a sequence
of solutions of M A, (ux) = e Mk frw™ with prescribed singularities, i.e. Theorem
Dl

Theorem @ Let A > 0, {¢x}ren C MV totally ordered sequence such that g <
Yy for any k € N which converges to 1 € MT, and fr, f > 0 not trivial such that
S — fin LP as k — oo for p € (1,00]. Assume also the following conditions:

(i) c(4) > 22

(i) the complex Monge- Ampére equations

MA, (ug) = e 2 frw™
ur € €1 (X, w, ¥r);

admit solutions ux given as mazimizers of Fy, . x;
(i1) supy ux < C for an uniform constant C.

Then there exists a subsequence {uy, Ynen which converges strongly to u € € (X, w, )
solution of

MA,(u) = e M fw"
u € ENX,w,v).

Proof. We first observe that c(¢x) > % if £ > 1 big enough since 9, 9 a.e.
and c(-) is lower semicontinuous with respect to the weak topology as said before (it
is the Main Theorem in [DKOT[).

Then we set Fy := FY, y,x forany K € N, F := Fyy x and vx 1= up — supy ux €
&l (X, w, ). In particular MA,(vy) = e MUrTsWPx k) 0 for any k € N
and up to considering a subsequence we may assume that vi converges weakly to a
function v € PSH(X,w). Then by an easy calculation we obtain

Vwk

C1 < 3

v g
log 1/l < “ log | ¢ o™ = Fulin) <
X

v
< Fk(vk) = E¢(vk) —+ ik IOg V¢k —+ V¢k sup Uk < E¢(Uk) + Cs.
X

for two uniform constants C4,C3. Therefore by Proposition e obtain v €

E'(X,w,) and limsup,_,.. By, (ur) < Fy(u). Thus since Lemma $.3.12 |gives
Ix ek frw™ — Ix e M fw™, it follows that

lim sup Fi(vr) < F(v).

k—oco

On the other hand similarly to the proof of Theorem Hj Jetting ¢ € H we obtain

liminf Fi (0x) > liminf Fi (P[] (0)) = F(Pale](¢))
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combining Lemma §.2.5]and Lemma {.3.12,|which together with [BKO7[ and the
continuity of F' along decreasing sequences implies

liminf Fi(vg) >  sup F.
koo (X w,1)

Hence v is a maximizer of F over £'(X,w,) and Fx(vy) — F(v). In particular
there exists a constant C' € R such that MA,(v) = e @+ " (Theorem
and Ey, (i) = Ey(v) which leads to vy — v strongly by Proposition

Next setting Cj := supy ux we observe that

dek :/ e*)\ukfkwn _ e*)\Ck/ e*)\kak(")n7
b's X
ie. Cr — %(log fx e M fw™ — log Vw) = C. Hence ur = vi + C) converges weakly
tou = v+ C and MA,(u) = e fw™. Finally thanks to Proposition to
conclude the proof it is enough to observe that

By (ur) = By (vi) + Ci Vi, = Ey(v) + CVy = Ey(u).
O

Remark 5.3.15. Observe that the assumption (i) in Theorem @is satisfied if
all the Lelong numbers of 1)) are small enough (Proposition §.4.27)| while (i) is a
natural hypothesis when all the solutions are given as maximizers (see also [Ttu20b]).
As stated in the Introduction the real big obstacle is the bound in  (i4¢), which
is necessary even when f; = f (Example see also [[ru20bllfor a deeper
discussion regarding (4i¢) in the Fano case).

5.4 Log semi-Kihler Einstein metrics with
prescribed singularities.

We recall that on a line bundle L — X any (smooth) hermitian metric h can be
described by its weight ¢ = {¢atacr defined locally for a trivializing local section
Sq of L on a open set Uy as ¢ := —log|sa\i. Observe that the current dd°¢ is
globally well-defined and represents the curvature of h. In this section we identify
the hermitian metrics with their weights, and we say for simplicity just metric.
Given a Q-divisor D on X we have the following key definition.

Definition 5.4.1 (Definition 3.1, [BBEGZ19]). Let ¢ be a metric on —r(Kx + D)
where 7 € IN such that D is a divisor. The adapted measure pg is locally defined
by choosing a nowhere zero section o of r(Kx + D) over a small open set U and

setting
2

po = (" a NG |0l
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We observe that jie is globally defined since the definition does not depend on the
choice of 0. Moreover g, = e, if ¢; are metric on —r;(Kx + D) such that
ro¢p1 = ri1¢2. This property allows to enlarge the definition of adapted measures
to metrics of the @Q-line bundle —(Kx + D) where we say that ¢ is a metric on
—(Kx + D) if there exists r € N divisible enough such that r¢ is a metric on
—T(KX + D)

Note that if D =0 and ¢ is a metric on —Kx, then locally

2
po =€ %" dzy Ao Ndzp AdZL A - A dZn.

More generally by the natural identification of —(Kx + D) with —Kx on the com-
plement of the support of the divisor D, if ¢ is a metric on —(Kx + D) then locally
on X \ Supp(D)

[y = o~ (@ loglsrp  1°= L loglsrp_|*) m? AQ
for s;p, , srp_ holomorphic sections cutting respectively the effective divisors rDy,rD_
where D = Dy — D_, and Q is a nowhere zero local holomorphic section of Kx (see
also [Berml6], [BBJ15]). Furthermore the adapted measures are compatible under
blow-ups of smooth centers. Indeed if p:Y — X is a morphism given by a sequence
of blow-ups of smooth centers, letting D’ such that p*(Kx + D) = Ky + D', pp+s
coincides with the [lift of 1 (usually denoted by fie), i.e. with the trivial extension of
the push-forward by p~! of 1tp over the Zariski open set where p is an isomorphism.
Vice versa pufip+¢ = [Le-

Next, it is well-known that smooth positive volume forms u are in one-one corre-
spondence with metrics on the canonical line bundle Kx and the relationship is
given by
_ _f.m? _
p=e 7" QNQ (5.25)

where f :=log \Q@ for any nowhere zero local holomorphic section € of Kx. Thus,
as in [BBJ15], being aware that our definition of d° differs from theirs of a multi-

plicative factor equal to 2, we say that a positive measure p on X is said to have
well-defined Ricci curvature if it corresponds to a singular metric on Kx in the sense
of Demailly ([Dem90]), i.e. if locally it is of the form (6ith f € L%, and in this
case Ric(u) := dd°f. Observe that if ug is the adapted measure of Definition
then Ric(pg) = w + [D] where w is the curvature form of ¢.

Then, letting 1 be a semi-Kdhler form, i.e. a closed smooth semipositive (1,1)-form
such that n™ > 0 (see [EGZ09|), we set, for v € PSH(X,n), Ric(n + dd°u) :=
Ric(MA,(u)) so that Ric(n) := Ric(n") is the usual Ricci curvature when 7 is
actually Kéhler.

Definition 5.4.2. Let D be a Q-divisor and n a (semi-)Kdhler form. A D-log
(semi-)Kéhler Einstein metric on X in the cohomology class {n} is a positive current
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Nu =N + dd°u with well-defined Ricci curvature such that
Ric(n.) - [D] = An.

for X € R where [D] is the current of integration along the divisor D. Furthermore,
when 1 is Kéhler, if n, is a D-log (semi-)KE metric and u € E1(X,n, ) for 1 € M,
then we say that 1y is (D, [¢])-log (semi-)KE metric .

Note that when 7 is Kéhler a (D, [0])-log KE metric in [BBJ15]|is called [D]-twisted
KE, and that the abuse of language is due to the fact that (D, [¢])-log KE metrics
define (class of) singular D-log KE metrics.

When D = 0 one obtains the definition of Kdhler-Einstein metrics (which coincides
with the usual definition of Kihler-Einstein metrics under the additional request on
the regularity).

It is immediate to see that there is the topological obstruction

c1(X) = {[DI} = Mn} (5.26)
to the existence of D-log semi-KE metrics. However under the assumption (5

we recall the following pluripotential description of D-log semi-KE currents.

Lemma 5.4.3. Let D be a Q-divisor such that (5.26) holds for A € Q and n semi-
Kihler form. Let ¢ be a metric on AM{n} with curvature A\n, and let u € PSH(X,n).
Then ny is a D-log semi-KE metric if and only if

MAy(u) = e "y (5.27)
for a constant C € R where g is the adapted measure associated to ¢.

Proof. The proof is similar to that in Lemma 2.2 in [BBJ15], but for the courtesy
of the reader we report it here.
If ue PSH(X,w) solves ( then 7, has well-defined Ricci curvature and

Ric(ny) = Add“u + Ric(pg) = Add°u + An + [D] = A + [D).
Vice versa assume that 7, has well-defined Ricci curvature and Ric(n,) — [D] = An.
Then, letting D = Zj\jzl a;D; for D; prime divisors, {s;}}Z; holomorphic sections
cutting the divisors {D;}}_, and letting {¢;}/=; metrics on the associated line

bundles, we obtain locally on X \ Supp(D)

He =€ Zimraitoelsily; ~dim 0 A 0

where ¢ == ¢ + Z;.V:l aj¢; is a metric on —Kx. In particular we have py =

C5 N g log |ss]2
e 25=1%19815519; g g1 a volume form dV. Therefore by definition there exists
f € L* such that M A,(u) = e~/ dV, which implies
N
Ric(nu) = dd° f + Ric(dV) = dd°f + An + [D] = > a;dd* log|s,[3,.

Jj=1
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Next since Ric(1,) = My + [D], the function f—Au— 3V

=1
monic. Hence there exists a constant C € R such that

ajlog|s; |§,J is plurihar-

— n aj log|s; 2 —
M A, (u) = e~ utC, Yi-1ajlogls;ilg, dV = e Au+Cu¢’
which concludes the proof. O

Remark 5.4.4. If holds for A € R and a R-divisor D then it is possible
to enlarge the definition of D-log (semi-)KE metrics to the class {7} thanks to the
pluripotential description of Lemma §.4.3.|Indeed in this case An can be thought as
the curvature of a metric ¢ on a R-line bundle, i.e. on a formal real combination

of line bundles. More precisely if {An} = {>°]", bxLr} where by € R and L; line
bundles, then there exist metrics ¢}, on Ly such that ¢ := >, by, satisfies dd°¢ =
An. Next if D = Z;‘V:1 a;D; for D; prime divisors, we fix {s;}}_; holomorphic
sections cutting the divisors D; and metrics ¢; on the associated line bundle. Thus
setting ¢ := ¢ + Z;\;l a;j¢; the local volume forms e AQ glue together to

give a global volume form dV. Set us :=e Tiliaslos ‘Sjlij dV, where we mean the
trivial extension to 0 of the measure of the right hand side restricted to X\ Supp(D).
We say that 7 + ddu is a D-log (semi-)KE metric if MA,(u) = e ***Cp, for a
constant C € R, and if 7 is Kihler we say that 7+ dd°u is a (D, [¢])-log KE metric
if we further have u € &(X,n, ). Note that this definition of D-log KE metrics
does not depend on the choice done on the metrics. Moreover if p:Y — X is given
by a sequence of blow-ups of smooth centers iy = pip+y and papipcy = to-

It is not difficult to check that the adapted measure g has finite total mass if and
only if D is kit (see [Koll3]), which reads as a; < 1if D = Z;V:l a;D; for prime
divisors D; when D is assumed to have simple normal crossing. A similar condition
holds when one considers (D, [¢/])-log KE currents. Indeed letting {s;}™,, {¢;}1.,
and dV as in proof of Lemma §.4.3]i.e.

o o Eiam sl g
we obtain the following necessary condition to the existence of (D, [¢])-log semi-KE
metrics in terms of multiplier ideal sheaves.

Corollary 5.4.5. Let n be a Kdhler form such that ( holds for D R-divisor
and A € R. If ny is a (D, [¢])-log semi-KE current, then

J(w + 3 ajlog |s]-|;j) —O0x if A>0, (5.28)
{j:a;>0}
J( 3 g 10g|8j|ij) —0x ifA<o0. (5.29)
{j:a; >0}

If A >0 (resp. A < 0) we will say that (D, [¢]) (resp. D) is kit when (5.28) (resp.
(5.29)) holds. The definition does not depends on the metrics ¢; chosen and it is
coherent with the usual definition (see for instance Proposition 8.2 in [Kol96]).
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5.4.1 Analytical Singularities.

In this subsection w Kihler and ¢ = P,[p] € MT where ¢ € PSH(X,w) has
analytical singularities , i.e. locally ¢y := g + clog (|f1|2 + -4 \fk|2) where ¢ €
R>0, g € C*, and {fj};C are local holomorphic functions. The coherent ideal
sheaf J generated by these functions has integral closure globally defined, hence the
singularities of ¢ are formally encoded in (J,¢). It is well-known in this case that
there exists a smooth resolution p : ¥ — X given by a sequence of blow-ups of
smooth centers such that p*J = Oy (—D) for an effective divisor D. Moreover the
Siu Decomposition ([Stu74]) of p*(w,) is given by

P (we) =n+c[D]

where 7 is a smooth semipositive (1,1)-form on Y, which becomes semi-Kihler if
Jxn™ > 0. In such case it is possible to define the sets &(Y,7) and &' (Y, ) similarly
to the K&hler case (see [ BEGZ10]).

Lemma 5.4.6. In the setting just described fX n" f MA and there is a
bijective map f: PSH(X w,¥) — PSH(X,n) such that f ( 1/]))) =&(Y,n)
and f(E'(X,w,v)) = (Y, n).
Proof. By Remark 4.6 in [RWN14| 1 — ¢ is globally bounded, so for any u €
PSH(X,w,®) we have u < ¢ which implies that p*(w.) — ¢[D] is a closed and
positive current on Y with cohomology class {n}. Therefore there exists an unique
@ € PSH(Y,n) such that supy @ = supy(u — ¢) and

P’ (wu) = na +c[D].

Thus we define f : PSH(X,w,y) — PSH(Y,n) as f(u) := 4. By Proposition
1.2.7.(¢) in [BouTh] f is a bijection. It is also easy to check that 4 — (u — ) op is
pluriharmonic on Y, which leads to f(u) =4 = (u — @) o p.

Next, since p is an isomorphism over Y \p~'V/(J) and [D] has support in a pluripolar
set, it is not difficult to check that

P MA, (@) = M Ay (u) (5.30)

using the definition of non-pluripolar product. Then (5gives f(S(X,w,;/;)) =
&(Y,n). Hence to conclude the proof it is enough to observe that the equalities

/YﬂMAn(ﬂ) = /Xyp*p*((u — ) opMA,(a) =
= [ p(w=eMAcw) = [ w-oMA)+ [ o= o)MA

imply f(€'(X,w,v)) = €'(Y,n) thanks to Theorem 4.10 in [DDNLI8b], Proposition
2.11 in [BEGZI0] and the fact that ‘ [o(o — w)MAw(u)‘ < C uniformly for any
u € PSH(X,w,). O
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For completeness we also prove that in this setting the metric space (SI(X, w, ), d)
is isometric to the metric space (€'(Y,7),d) studied in [DDNLI8c] where

d(u,v) = E(u) + E(v) — 2E(Py(u,v))

for any u,v € €' (Y,n) recalling that P,(,-), E(-) are defined in the same way as in
the Kéhler case, i.e. for instance E(u) = n%rl Yo Jx uln +dd®u)’ An"77 if u has
minimal singularities (remember that 7 is semipositive).

Proposition 5.4.7. The metric space (E'(X,w,),d) is isometric to (€' (Y,n),d)
through the map of Lemma

Proof. With the same notation of Lemma §.4.6 jve have @ := f(u) = (u—¢)op for
i

any u € £'(X,w, ). Moreover similarly as in the proof on Lemma e can show

that p. (7751 A ng;k) = wﬁl A wﬂ;k for any kK = 0,...,n, and that these equalities
lead to E(@t) = Ey(u) — Ey(p) for any u € €'(X,w, ). Hence to conclude the proof
it is enough to prove that f(PW (ul,ug)) = P, (u1,u2). By construction we easily
have @1 < w2 if and only if u; < uz. Therefore we get f(Pw(uhuz)) < P, (t1,02)
from P, (u1,us) < u1,us, while letting ¢ € €'(X,w, ) such that = P, (11, u2) we
have ¢ < wi,uq, i.e. ¢ < P,(u1,u2) which conclude the proof by composing with

I O

We can now relate the (D, [1])-log KE metrics on X with the D’-log semi-KE metrics
on Y. More precisely, let D be a klt R-divisor on X such that

ci(X) —{[D]} = Mw}

for A € R and w Kihler form. Let ¢ € M1 given as P,[p] for a function ¢ €
PSH(X,w) with analytic singularities encoded in (J,¢), and let p : ¥ — X be
a smooth resolution of J. Then p*J = Oy (—D;) for an effective divisor D; and
p*(Kx + D) = Ky + D5 for a R-divisor D2. We denote with 7 the semi-Kihler part
of the Siu Decomposition p*(w,) = n + ¢[D1].

Proposition 5.4.8. In the setting described above, there is a bijection beetwen

the set of all (D, [y])-log KE metrics on X in the cohomology class {w} and the
set of all D'-log semi-KE metrics on Y in the cohomology class {n} where D' :=
Ac[D1]+[Dz]. More precisely letting ¢, and ¢, be metrics respectively on the R-line
bundles —(Kx + D), —(Ky + D2 + AcD1) with curvatures Aw and An, a function
u € &YX, w, ) solves MA,(u) =e g, if and only if 4= (u— ) op e EX(Y,n)
solves M Ay (@) = e g, .

Proof. Let ¢u, ¢y as in the statement. Set also ¢ := p* P, — ¢, metric on AcDq
with curvature 6 := dd°¢. Then for r1 = % € Rso, "1AcD1 = D, is an effective
divisor and there exists an holomorphic section s; on the associate line bundle such
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that 7160 + dd° log |31|31¢ = r1Ac[D1]. Thus, since by construction An+ 6 = p*Aw, it
follows that 1
dd® = log|s1|2,4 = dd°A\p o p,
T1

ie. Apop= % log |s1]2,4 + C for a constant C € R which without loss of generality

we may suppose to be equal to 0. Therefore the lift of the measure efmu% =

e MU= e=A L becomes

e—)\u—— log ‘Sl""ld’u o,
where & = (u — ¢) o p. Next for {a; }] 1,{b; } 2 C Rso and prime divisors
{D2,+7]}]:17 {DQa—»J}]:D we have D = Z;V 1a;D2, 15 — Zj:l bjDs,—; as the
difference of two effective R-divisors. Thus locally on Y\ (Supp(D1) U Supp(D2))
by definition there exists (2 nowhere zero local holomorphic section of Ky such that

Ny 2 N 2 2 _
— (P P+ 2y ajloglsa, 4 ;173051 bjlog sz, — ;] )i" QANQ

Hp*¢,, = €
where {s2 4 J}J 1, {s2,— ]} 2, are holomorphic sections cutting respectively {Da ¢ J}J b
{D2,—; }]:1. For simplicity of notations we define g 4 1= ;.V:l a;jlog|sz,+,;|* and

similarly for ¢z . Therefore locally on Y \ (Supp(D1) U Supp (D))

A log [s1]? (d>+% log \81\31¢+¢77+<P2,+—<P2,7)Z-n29 AQ =

" fip*

—(%-%% log|31|2+<p2,+—¢2,7)in29 AQ = s, -

In conclusion for any u € €'(X,w,?) and the measures e “ug, and e **py, are
related by lifting and by push-forward through p.. Hence the Proposition follows
since the same correspondence holds for M A, (u) and M A, (@) as seen during the

proof of Lemma O

We can prove the following regularity result on (D, [¢)])-log semi-KE metrics in this
case, which is the first part of Theorem H.]

Theorem 5.4.9. Let w, be a (D,[y])-log KE metric where D is a R-diwisor and
W = P,lp] € M for ¢ with analytic singularities formally encoded in (J,c). Then
uwe C™(X\ A) where A=V (J)U Supp(D).

Proof. By Proposition and @ := (u — @) o p is a solution of

Ap(@) = ey,
uEE (Y, )

where 7 is semi-Kéhler form. Moreover writing g, = "' "2dV where vi,v2 €
PSH(Y,w') for w' Kéhler form and dV volume form on Y, by the Monge-Ampére
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equation and the resolution of the openness conjecture ([GZ15])| we immediately
obtain e U172 ¢ IP for p > 1 (see also Corollary E Now the proof is
standard.

Indeed by Theorem C in [EGZ11] we get that @ is bounded on X and continuous
on Amp ({n}) (see also [Kol98]), where the latter is the ample locus of n ([Bou04]).
Then, assuming first A > 0, let C' > 0 big enough such that supyvi < C, Cw’ +
dd®vi > 0,Cw’ +dd®(vi + Aii) > 0 and ||e™**7¥2||rr < C. Thus by Theorem 10.1 in
[BBEGZ19] for any relatively compact open set U € Amp({n}) there exists A > 0
depending on C,n,p, U such that

0<n+dda< Ae "2y

Similarly if A < 0, letting C > 0 big enough such that supy(vi — Au) < C, Cw’ +
dd®(vi — M) > 0,Cw’ + ddve > 0 and ||e”"2||» < C, we obtain

0 < n+4dd°a < Ae” 20’

for any relatively compact open set U € Amp({n}).
Moreover by construction vi,ve are smooth outside the union of the supports of the
divisors D1, D> (with the notations used in Proposition So, since 1 is globally

bounded it immediately follows that A, is locally bounded over Amp ({n})N (Y\
(Supp(D1) U Supp (Dg))) By the Evans-Krylov Theorem and a classical bootstrap
argument this also implies that @ is smooth over Amp ({n}) N (Y\ (Supp(D1) U

Supp(Dz))). Then the ample locus is a not-empty Zariski open set ( {n} is big, see

[Bou04]) and it includes Y \ (Supp(D1) U Supp(D2)) since {w} is Kéhler and the
support of the exceptional locus of p : ¥ — X is contained in the union of the
supports of D1, D2. Hence since 4 = (u — ) o p, we get that u € C°(X \ B) where
B = p.(Supp(D1) USupp (D)) C V(J) USupp (D) which concludes the proof. O

Remark 5.4.10. In Theorem if there exists a resolution of J such that 7 is
Kéhler and A := AcD1 + D3 is effective, then the solution @ has conic singularities
along A as proved in [GP16].

5.4.2 Theorem [El

In the subsection we conclude the proof of Theorem H. |

As shown in the previous subsection if ¢ € M™ has amalytic singularities type,
ie. ¢ = P,[y] for ¢ with analytic singularities formally encoded in (J,¢) where J
is a integrally closed coherent ideal sheaf and ¢ € R, then taking p : ¥ — X
a resolution of J there exists a semi-Kihler form 7 on Y such that p*(w,) =
n + ¢[D] where p*J = Ox(—D) and D is an effective divisor. Thus, we first set
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MS, = { € M" with analytic singularities type } and we fix for any ¥ € M,
an element ¢ with analytic singularities such that supy ¢ = 0 and ¥ = PB,[y]
(ie. ¥ — ¢ globally bounded). Then setting K{x .y = {(Y;n) : w —p.y =
[D] for an effective R-divisor D where 7is semi-Kéhler and p : Y — X is given by a
sequence of blow-ups } the construction described above leads to a natural map

ML, — Kixwy/ ~

where (Y,n) ~ (Y',7) on K{x ,, if there exists (Z,7) € K{(x ) such that Z domi-
nates Y, Y’ through morphism ¢: Z =Y, ¢ : Z = Y' and 7j = ¢"n = ¢*n’. Note
that for a different choice of the elements ¢ with analytic singularities, the forms 7
in the representatives in X x ) may change but their cohomology classes {7} would
remain unchanged.

We also claim that ® is injective. Indeed letting 1,12 € M, and letting (Y, n1), (Y, 72)
be representatives on the same manifold Y (taking a common resolution), if ®(¢1) =
@(wz) then 771 = 72. Thus, denoting with 1,2 the fixed functions with analytic
singularities, 71 = 12 and cohomological reasons imply that (p1 — ¢2) o p is pluri-
harmonic, hence 1 = @2 + C which clearly gives 1 = 2.

We can now define

K(xw) = Im(P).

It is worth to underline that for any small perturbation {uyw — a1[E1] — a2[E2] +
-+ —an[En])} where puny : Y — X is the blow-up of X at N distinct points, E;
the exceptional divisors and a; > 0 small enough, there exists a smooth semi-Ké&hler

form 7 such that [(Y,7n)] € K(x w)-

As an immediate consequence of the construction the set X x,.) inherits a partial
order and a notion of convergence given by the set MJ,. In particular for any
a,a’ € K(x,,) with associated model type envelopes ¢, € M, we will say that
a is smaller (resp. bigger) than o if ¢ < ¥’ (vesp. 9 = ¥'). Note that if «
is smaller than o then taken representatives (Z,7),(Z,n') on the same compact
Kihler manifold Z we have 1/ — 7 = [F] for an effective R-divisor F. The notion
of volume Vol () is also well-defined for o € K(x,.) since for any (Y,n) ~ (Y', 1),
Jyn™ = [, n'™, and in particular Vol (o) = Vi where ®(¢)) = « (see also Lemma
(10).

Next, it is possible to talk about log-KE currents for a class in X (x ) thanks to
Proposition since for two different representatives (Y,n),(Y’,n’) of a same
class in XK(x,.) the sets of log-KE currents are in bijection. Indeed the bijection

is a level of quasi-psh functions, i.e. we identify two log-KE currents 17 + dd°a,
n' + dd°a’ respectively on (Y,n),(Y’,n') representative of the same class in K (x .,
if 4 = (u—@)op, @ = (u—¢)op for the same function u € &'(X,w,). Thus a
log-KE current for a class in X(x ., is a family of log-KE currents which are related

through the bijection just described. We can then define a strong convergence on
sequences of log-KE currents for totally ordered sequences in  X(x . after a suitable
normalization. Namely when X = 0, in accord with Theorem B} for any log-KE
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current 1) + dd°% on (Y, 7n) representative of a class in K(x ) the function @ will be
normalized so that the corresponding w-psh function  through Lemma [.4.6 patisfies
supy v = 0. When instead \ # 0, we will normalize @ so that M A, (u) = e g,
where we fix ¢, metric on —(Kx + D) with curvature Aw once and for all (see
again Proposition . In conclusion, given a totally ordered sequence {a }ren C
K(x,w) converging to o € K(x ), we will say that a sequence of log-KE currents
Nk +dd Uy converges strongly to alog-KE current n+dd“a if up — u strongly. When
there exists a common compact Kéhler manifold Z such that (Yz,nx) ~ (Z,6x) and
(Y,n) ~ (Z,0), the strong convergence implies in particular that the associated
sequence of log-KE currents 6 + ddvi converges weakly to the log-KE current
6 + ddv.

We can now prove the second part of Theorem ED

Theorem 5.4.11. Let w be a Kihler form such that c1(X) — {[D]} = Mw} holds
for A€ R,A <0 and let D be a klt R-divisor. Then any class in K x ) admits an
unique log-KE current and such log-KE currents are stable with respect to the strong
convergence, i.e. if {artren C Kix,w) s a totally ordered sequence converging to
a € K(x,w), then the sequence of log-KE currents converges strongly to the log-KE
current on «.

Proof. By Proposition nd by definition to find a log-KE metric on a € K(x .,
is equivalent to solve

(5.31)

MAu(u) = e g,
u € EHX,w,v)

where 1) € M* is the model type envelope with analytic singularities associated to
«. Moreover by the resolution of the openness conjecture ([GZ15])|since D is klt we
have pg, = fdV for f € L? for p > 1. Therefore the theorem follows from Theorems

[Al B] O

Next it remains to treat the case A > 0.
We first note that in the case of (D, [¢)])-log KE currents the density fp € L'\ {0}
of the corresponding Monge-Ampére equation M A, (u) = e fpw™ is given as

fo=e T g los ‘Sjlij +o (5.32)
where ¢ is a smooth function, and as usual we fixed {s; }?;1 holomorphic sections
cutting the prime divisors D; and metrics ¢; on the associated line bundle where
D=3, a;D;.

We then observe that in Theorem e used the assumption «(¢) > p)‘% only
on the first part of the proof to prove that the d-coercivity of F, . implies the
existence of a maximizer. Such hypothesis will not be necessary for the study of
log-KE currents in X(x ) as consequence of the following result.
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Lemma 5.4.12. Let w be a Kdihler form such that c1(X) —{[D]} = Mw} holds for
A > 0 and let D be an R-divisor. Let also ¢ € MJ, and assume that (D, [¢]) is
klt. Then the d-coercivity of Fyp p.a over &L orm (X, w, ) implies the existence of a
MazTimizer.

Proof. Fix (Y,n) representative of a = ®(¢¥) € K(x..)-

Then using the same notation of Proposition 5.4.8, |for any v € &(X,w,) by
construction the lift of e Y fpw™ = e gy, to Y is efmu% where v = (v—p)op.
Therefore using also Proposition $.4.7 Jt follows that

- V. 2B -
Fipa(0) = Bolo) = B@) + S log [ e Vg, = Dy(5)  (539)
X

for any v € £'(X,w, ). Observe that, up to rescaling the class w, since Vy, = Sx ™,
the functional D, coincides with the (opposite of the) log-Ding functional in the
class {n} as described in [BBEGZ19]l Hence since again by Proposition 5[4.7 the
map (El(X,w,w),d) Su—> a € (81(Y7 n),d) is an isometry and by assumption
Fy, . is d-coercive, we obtain that D, is d-coercive over &},.,(Y;n). Thus let
{kren C ELorm (Y, n) be a maximizing sequence, which without loss of generality
by the compactness of {0 € PSH(Y,n) : supy 0 = 0} we may assume to be weakly
convergent to ¥ € &34 (Y, 7). Then writing Ue, = gdV where g € L? for p > 1 and
dV is a smooth volume form, by applying twice the Holder’s inequality we have

[ 1™ = o, < [ O tld, <
X X

< Me O a3 = ) f| o2 <
< Me T F Lol | fl]zol|Bx — Dllze (5.34)

where 1 < ¢ < oo is the Sobolev conjugate of p/2. Therefore since any element
in El(Y7 has vanishing Lelong numbers, by [Zmﬂthp first factor in the right
side in (p.34} is uniformly bounded, and we obtain e *"* — e ** in L'(uy,) as a
consequence of ¥, — © in LP. Hence by the upper semicontinuity of E(-) in &'(Y,7)
with respect to the weak topology ([BBEGZ19|) we obtain
sup D, = lim D, (0x) < Dy(9),
1 (Yom) hmroo

i.e. ¥ is a maximizer of D,. Hence from ( the corresponding function v €
EN(X,w, ) (Lemma is a maximizer of Fl, 4 x. O

Remark 5.4.13. As seen during the proof of Lemma §.4.12.|the d-coercivity of
Ffp 0, over &g (X, w, ) with respect to coefficients A > 0, B > 0 (i.e. Fy, p.x(u)
—Ad(4p,u) + B for any u € €L, (X, w, 1)) is equivalent to the d-coercivity of the
log-Ding functional D, over &, (Y,7) with respect coefficients A > 0, B, > 0 for
any (Y, n) representative of the class ®(¢) € K(x ). In particular Fy, 4 » and D,
have the same slope at infinity (i.e. the coefficient A of the d-coercivity).
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We can now state the third part of Theorem H.|

Theorem 5.4.14. Let w be a Kihler form such that c1(X) — {[D]} = Mw} holds
for X > 0 and let D be a kit R-divisor. If the log-Ding functional associated to a
representative (Y,n) of a € K(x,w) s d-coercive over &t orm (Y, 1) with slope 1 > A >
0, then any o € K(x ) bigger than a satisfying Vol(a') < Vol(a)/(1 — A) admits a
log-KE current.

Proof. 1t follows directly from Theorem € Jthanks to Lemma 5[4.12 4nd Remark
413l O

Finally to apply Theorem ﬂo the class X (x ), we fix a klt R-divisor D such that
c1(X) —{[D]} = Mw} for X > 0, with associated function fp asin (5.32). Then it is
a classical fact that fp € LP for any 1 < p <lct(X, D) :=sup{t >0 : (X,tD)is klt}

(the log canonical threshold ) and fp ¢ rletx.0) (see for instance Proposition 3.20
in [Kol96]). Therefore we define

Alet(X, D)
let(X,D) —1
Theorem 5.4.15. Let w be a Kihler form such that c1(X) — {[D]} = Mw} holds
for A >0 and let D be a kit R-divisor. Assume that

(i) {artren C K(x,w) is an increasing sequence converging to o € K(DX,“,);

K(DX,w) = {<I>(1/)) €KXixw) 1 ¥ E M, such that a(v)) >

(i) mik + dd°uy are representatives of a sequence of log-KE currents in  «ay, such
that sup y ur < C uniformly.
Then the sequence of log-KE currents of (i1) converges strongly to a log-KE current
mn o
Observe that by the definition of the normalization, the assumption (ii) in Theorem
is independent on the representatives 7 + dd“tx chosen.

We conclude the paper with the following example which shows that the assumption
(i) in Theorem P]is necessary.

Example 5.4.16. Let w be a Kahler form on a Fano manifold X representative
of the anticanonical class, and let D be a smooth divisor @Q-linearly equivalent to
—Kx,ie. D € | —rKx| for r € N. Next, letting pp € PSH(X,w) such that
w+dd°¢p = 2[D] and v := P, [tep] for any ¢ € [0,1), by Proposition he set
of all solutions of

{MAW(Ut) =e "y, (5.35)

ut € 81(X5w7 1/1t)7
is in bijection with the set of all fD—log KE currents in the cohomology class {(1 —
t)w}, i.e. with all solutions of

MAG_yo(vr) = €7 7790 g,
v € EN(X, (1 - t)w).
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where the correspondence is clearly given by wu; = v + %gap. Thus setting w; :=
=t—v, € PSH(X,w) we have

(1-1%)

MAu(w) = (1—t) e~ 0=0we=reny,,
Wt (S EI(X, w),

which is equivalent to the renowned path
t
Ric(wy,) = (1 — t)wa, + ;[D} (5.36)

considered in [CDS15]. Thus the set S := {t € [0,1) : (5.35] admits a solution }
is not empty (|BermI13],[IMRI6]) and open (by cthe implicit function theorem, see
[Aub84]). Moreover it is well-known that when X does not admit a KE metric (for
instance X = BIl,P?) then there exists to € (0,1) such that lim inf, s, supy w =
+00, which clearly implies liminf ., supy u¢ = +o0.

Hence since the assumption (i) in Theorem Elis satisfied for any ¢ € [0,1) and since

(i) follows from (f.33] in Lemma §.4.12,]it follows that (iii) in Theorem D]is a

necessary hypothesis.
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Chapter 6

Kahler-Einstein metrics with
prescribed singularities on
Fano manifolds.

Abstract

Given a Fano manifold (X,w) we characterize analytically the existence of
Kahler-Einstein metrics with prescribed singularities through a variational
approach when the singularities can be approximated algebraically and are
concentrated in a complete closed pluripolar set.

Moreover we define an increasing function «, on the set of all prescribed sin-
gularities which generalizes Tian’s a-invariant, showing that its upper contour
set {aw (") > 7} produces a subset of the Kéhler-Einstein locus, i.e. of the
locus given by all prescribed singularities which admits a Ké&hler-Einstein met-
ric. In particular we prove that many K-stable manifolds admits all possible
Kahler-Einstein metrics with prescribed singularities while vice versa lower
bounds of the a-invariant function at not trivial prescribed singularities im-
ply lower bounds on the classical a-invariant and consequently the existence
of genuine Kéhler-Einstein metrics.

Through a continuity method we also prove the strong continuity of Kéahler-
Einstein metrics on curves of totally ordered prescribed singularities when the
relative automorphism groups are discrete.
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6.1 Introduction

A Fano manifold X admits a Kéhler-Einstein (KE) metric if and only if (X, —Kx)
is K-stable (J[CDS13]). This is the famous solution to the Yau-Tian-Donaldson con-
jecture for the anticanonical polarization, and it connects a differential-geometric
notion to a GIT-like algebrico-geometric notion as predicted by S.T. Yau ([Yau93]).]
There are now two natural possible singular versions of this correspondence: when
X is singular or when the metric has some prescribed singularities . In this article
we will deal with the second problem.

Letting w be a Kihler form with cohomology class c¢1(—Kx), since any KE metric
corresponds to a function u € PSH(X,w) N €*(X) such that

Ric(w + dd“u) = w + dd°u (6.1)

where d° := ;-(0 — 8) so that dd° = 180, the most natural extension to the pre-
scribed singularities setting is to fix ¢ € PSH(X,w) and to look for v € PSH(X,w)
which satisfies ( in a singular sense and behaves as ¥. We refer to section §
for the precise definition of a Kdhler-Einstein metric with prescribed singularities [1)]
([¢]-KE metric), here we underline its characterization in terms of Monge-Ampére
equations: by abuse of language w + dd°u is a [¢)]-KE metric if and only if u solves

u € &YX, w,v). 62)

{MAw(u) =e Oy
for C € R. The measure p in is the usual smooth volume form on X given as
u = e Pw" for p Ricci potential, M A, (u) := ((w+ dd°u)™) is the Monge-Ampére
measure of u in terms of the non-pluripolar product (see [BEGZ10]) while €*(X,w, )
is the set of all u € PSH(X,w) more singular than ¢, i.e. u <+ C for C € R,
such that the i-relative energy FE,(u) is finite (see [DDNLI8B],[Trul9]] [Tru20al).
Note that the set €'(X,w,) contains all u such that u — 1 is globally bounded.
Recalling that PSH(X,w) is naturally endowed with a partial order u < v if u <
v + C, the following conditions on ) are necessary to solve (:

i) ¥ =P,y = (sup{u € PSH(X,w) : u g Y,u < O}) where the star is for
the upper semicontinuous regularization;
i) Vy = [y MA,(¢) > 0;
iii) J(¢») = Ox where I(¢) is the multiplier ideal sheaf attached to 1.

The first condition means that ) is a model type envelope , 1) € M (it is shown to be
necessary in [DDNLISD]), while we will say that (X,1)) is Kawamata Log Terminal
(klt) when (iii) holds. Note that this notion immediately extends to any quasi-psh

function. With obvious notations we denote respectively with M+7M2_lt the set of
all model type envelopes which satisfies (i), resp. (i3) and (iii). Thus M}, can be
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thought as the set of all admissible prescribed singularities and it is natural to define
the Kdhler-FEinstein locus as

Mig = {1h € M}, : there exists a [1)]-KE metric }.

Then, observing also that a [0]-KE metric is a genuine KE metric, it is natural to
wonder the following questions.

Question A. Let (X,w) be a Fano manifold. Is it possible to characterize Mgg?
When Mg = Mz“ ? Is there some not-trivial locus on Mz_lt whose intersection with
Mk E implies that 0 € Mgg?

To start addressing Question Ewe define a function M 3 ¢ — a.,(¥) € (0,4+00),
(1) = sup {a >0: sup / e “Mdu < oo} (6.3)
X

uxy,sup x u=0

which generalizes to the -relative setting the classical Tian’s a-invariant ([Tian87]),
and we prove the following result.

Theorem A. Let (X,w) be a Fano manifold. Then

n
n+1

{’l/J S Mth : CMW(’L/J) > } C Mkpg.

Moreover (i) = (ii) = (ii3) in the following conditions:
i) there erists ¥ € M, t € (0,1] such that

n

o () > m;

for e := Pu[(1 —t)¥];
i) au(0) > s

i) Mxp = M,

Furthermore if 1 € My, satisfies lct(X,0,) := sup {p >1: (X,py)is kit} > Z;fi
then ,
n°+1
w = 0 € Mkg. 6.4
aw (V) > I € MkE (6.4)

We refer to section §for a sharper estimate in (6which also holds for more
general 1) € M;‘lt.

Let us stress that the advantage of the relative setting is that we can  choose ¥ € M,
and that the computation of the 1i-relative a-invariant is easier than the computa-
tion of the usual o-invariant as immediately follows from the definition. See for
instance subsection §where, for ¢ € Mﬁlt having isolated singularities at N
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points, we produce lower bounds for the t-relative a-invariant in terms of multi-
point Seshadri constants and pseudoeffective thresholds .

The assumption (i7) in Theorem | |cannot be replaced with «.,(0) > 7 as X = P2
shows (Example , which suggests the following conjecture.

Conjecture A. Let (X,w) be a Fano manifold such that Aut (X)° = {Id}. Then
0 e Mg <= MgE = Mz—lr

With Aut(X)° we denoted the connected component of the identity map.

The upshot of Theorem [fis that the value of the function «,(-) at singular model
type envelopes may help to understand if X admits a genuine KE metric. Moreover

the implication (ii) = (iii) in Theorem [A](as Conjecture ) implies the existence of

many log-KE metrics for weak log Fano pairs (Y, A) given by resolutions of integrally
closed coherent analytic sheaves. Indeed among Mglt there are particular model type
associated to analytic singularities. Namely we say that 1 has analytic singularities
type if ¥ = P,[p] for ¢ € PSH(X,w) with analytic singularities formally encoded

in (J,¢). In this case, taking p : Y — X resolution of J, the set of [¢)]-KE metrics
is in correspondence with the set of log-KE metrics for the log pair (Y, A) where
A :=c¢D — Ky;x and p*J = Oy (—D) (see [Iru20b]). Furthermore note that if the

singularities are algebraic (i.e. ¢ € Q) then

aw (1) > min {17o¢(Y7 A)},

i.e. aw (1)) is a finer invariant than the usual log a-invariant a(Y, A) (see Proposition

6.4.13|and Example §.5.11).

In particular if D is a smooth divisor in | — rKx|, pp € PSH(X,w) such that
w4+ dd°pp = 1[D] and v := P,[tep] for any t € [0, 1], finding a [1);]-KE metric is
equivalent to find a KE metric w,, := w + dd°us with conic singularities along D of
angle 2m(1 —t)/r, i.e. ux € PSH(X,w) locally bounded such that

(=0,

Ric(wu,) = twy, +
r

This is the path considered in [CDS15[Ito solve the Yau-Tian-Donaldson Conjecture
and it is well-known that there exists to € (0,1] such that ¢ € Mgpg for any

t € (0,to) ([Berm13], [TMR16], see also Remark (4.4 for more details) and
{Yt}te0) CMrE <= 0€ MkE. (6.5)

Therefore condition (i) in Theorem [A]gives a valuative criterion to detect if the
curve {9t},e(0,1 is entirely contained in Mk g.
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Since Mﬁlt is a star domain with respect to 0 € M:lt (Lemma , it is then
natural to wonder if it is possible to perform a continuity method for the weakly
continuous curve {t}icp0,1] C M, given as ¢ = P,[(1 — t)], ¢ € M},

In the companion paper |Tru20b]lwe introduced a continuity method with  movable
singularities based on the strong topology of w-psh functions given as the coarsest
refinement of the weak topology such that the energy F.(-) becomes continuous
(Truld], [Tru20al). Thus, denoting with Mp the subset of M of all model type
envelopes which are approximable by a decreasing sequence of model type envelopes
with algebraic singularities (see section we can state our next result.

Theorem B. Let (X,w) be a Fano manifold and let {1:}ici0,1) C M, be a weakly
continuous segment such that

1) Yo € MkE;

1) o has small unbounded locus;

i) {Yt}eepp,) C Mb;

i) Pr X Ps ift <s;

v) Aut(X, [¢¢])° = {Id} for any t € [0,1].
Then the set

S:={tel0,1] : Y+ € Mg}

s open, the unique family of [U]-KE currents {wu, }res 1s weakly continuous and

the family of potentials {ui}ies can be chosen so that the curve S > t — us €
EY(X,w, ;) is strongly continuous.

In Theorem Blhaving small unbounded locus is a technical assumption which means
locally boundedness on the complement of a closed complete pluripolar set, while
Aut (X, [¢])° := Aut(X)° N Aut (X, [¢]) where Aut (X, [¢]) is the set of all automor-
phisms F : X — X such that F*¢ — v is globally bounded and Aut (X)° is the
connected component of the identity map. (v) is a necessary hypothesis for the
uniqueness of [1)]-KE metrics as explained below in Theorem (D

The set Mp contains plenty of model type envelopes, but in general Mp C M (see
Example . Anyway it is worth to underline that if 1 € M} := Mp NM™ then
Pr = (1 —t)sh € M}, for any ¢ € [0, 1] (Proposition , thus Theorem @ncludes
these particular paths discussed above.

To prove Theorems E Ewe develop a variational approach to study the existence
of [¢)]-KE metrics for a fixed @ € M, similar to [BBGZ13], [DR17]] Namely
we define two translation invariant functionals Dy, My, called respectively the 1)-
relative Ding and Mabuchi functional, which generalize the well-known functionals
to the i-relative setting as our next result shows.

Theorem C. Let ¢ € Mg,klt = M:“ N Mp with small unbounded locus and let
ue &YX, w, ). Then the following statements are equivalent:
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i) wy = w + ddu is a []-KE metric;
l’L) Dw(u) = infsl(x,ump) Dw;
’1,7/7,) M¢(U) = infgl(X7W7w) M'LP

Moreover if wy is a [¢]-KE metric then u has -relative minimal singularities (i.e.
u — 1 globally bounded) and if wy is another [¢]-KE metric then there erists F €
Aut(X, [])° such that F*w, = w,.

Next when Aut (X, [¢])° = {Id}, it is natural to wonder if the existence of the unique
[¢]-KE metric is equivalent to the coercivity of the -relative Ding and Mabuchi
functionals similarly to the absolute setting. We recall that the strong topology on
et (X, w, ) is a metric topology given by a complete distance d which generalizes to
the t)-relative setting the distance introduced by T. Darvas ([DarI5])] as proved in

our previous works [Trul9]}[Tru20a]l

Theorem D. Let € M‘E’Mt with small unbounded locus. Assume also Aut (X, [¢])° =
{Id}. Then the following conditions are equivalent:

i) the 1-relative Ding functional is d-coercive over &norm(X,w,¥) = {u €
SI(XWJM/)) ¢ Supx u = 0}’

i) the t-relative Mabuchi functional is d-coercive over E}Lorm(X,w,w),'

iii) there exists an unique []-KE metric.

6.1.1 About the assumptions.

Proving the linearity of the t-relative energy along weak geodesic segment for
1 € MT, ie. extends Theorem would remove the assumption on Mp in
Theorems B] Cland D]

Similarly, if the Berndtsson’s convexity result (Theorem 6olds for o€ M;lt
then the hypothesis on the small unbounded locus in Theorems B[ {{and D[would
become unnecessary.

In Theorem BJif we replace (v) with Aut (X, [¢])° = {Id} for any ¢ € [0,1), which
may be useful when Aut (X) is not discrete, then the openness and the strong con-
tinuity result hold in [0,1). Anyway in this situation is unclear if it may happen
that S = [0, 1] but the family of KE metrics {wu, }1c[o,1) does not converge to a [t)1]-
KE metric. Indeed the closedness of the continuity method depends on an uniform
bounds on the supremum of the potentials appropriately chosen (as in other more
classical continuity methods), and in the proof of Theorem e bound is basically

a consequence of an uniform coercivity.

Finally note that on Theorem ,Dthere are no assumptions on Mp and/or on small
unbounded loci. Indeed this follows from the fact that the arrow (i) = (4i4) in
Theorem Eholds even when 1 € M.
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6.1.2 Related Works

During the last period of the preparation of this article, T. Darvas and M. Xia in
(IDX20]) defined the same set Mp, exploring deeply its properties and its relations
with the algebraic approximations of geodesic rays in (81(X,w),d) where {w} =
c1(L) for L ample line bundle.

6.1.3 Structure of the paper

In the next two sections we work with a general compact Kdhler manifold (X,w), i.e.
w is not necessarily integral. In Section §4.2 jve collect some preliminaries on model
type envelopes and on the strong topologies, while in Section §6[3 e define the set
Mp, characterizing it through a version of the Demailly’s regularization Theorem
(Theorem . Moreover in the same section we prove the linearity of the Monge-
Ampére energy Ey(-) along weak geodesic segments for 1 € M}, showing also that
(EI(X,w,w), d) is a geodesic metric space.

In Section §b.4|we assume {w} = c1(X) and we develop the variational approach to
study Kéhler-Einsten metrics with prescribed singularities. We prove Theorems C[ ]
and Furthermore, since the 1)-relative a-invariant is an important tool to show
these two theorems, Subsection §:4.1 {s dedicated to define and explore some of the
properties of the function M 3 ¢ — aw ().

Finally Section §f.5 Jincludes the proof of Theorems A, JH. |

6.1.4 Acknowledgments

I would like to thank my advisors Stefano Trapani and David Witt Nystrom for
their comments.

6.2 Preliminaries

Letting (X,w) be a compact Kihler manifold endowed with a Kahler form w, we
denote with PSH(X,w) the set of all w-plurisubharmonic ( w-psh) functions u, i.e.
all upper semicontinuous function u € L' such that w 4 dd°u > 0 in the sense of
(1,1)-currents. Here d°:= 5=(d — 0) so that dd® = £00.

The maximum of two w-psh functions wu, v still belongs to PSH (X, w) but min(u,v)
may not be w-psh. This is one reason to introduce the function

P, (u,v) := (sup{w € PSH(X,w) : w < min(u, U)})*

(the star is for the upper semicontinuous regularization), which is  w-psh. It is clearly
the largest w-psh function which is smaller than wu,v. But sometimes we may want to

find the largest function w € PSH(X,w) which is bounded above by v € PSH(X,w)
and that is more singular than w € PSH(X,w), where w is more singular than w if
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w < u+ C for a constant C' € R (we denote such partial order with <). Thus we
recall the following envelope ([RWN14]):

P,lu](v) := (CEIEOO P,(u+C,v))".

If now we take v = 0 we obtain a projection map P[] := P,[-](0) : PSH(X,w) —
PSH(X,w). The image of this map is denoted with M ([Trul9]) and its elements are
called model type envelopes . It is an easy exercise to check that on M the two partial
orders <, < coincides. The definition of the set M is essential when one tries to solve
complex Monge-Ampére equations with prescribed singularities ([DDNLI18b])/ i.e.
equations as

(6.6)

[u] = [¢]
where we set [u] for the equivalence class of uw € PSH(X,w) under the partial order
<, ie. [u] = [¢] for ¥ € PSH(X,w) is equivalent to say u — v uniformly bounded,
v is a measure on X and

{MAw(u) =v

MA,(u) := ((w+ dd“u)™)

is n-times the non-pluripolar product of the closed and positive current w + dd‘u
(see [BEGZ10]). We also need to recall that the total mass of the Monge-Ampére
operator well-behaves with respect to the partial order < by [WN19], i.e.

u<v:>/XMAw(u)g/XMAw(u).

Given ¢ € PSH(X,w), &(X,w,¥) :={u<v : [, MA,(u) = [y MA,(¢)} is the
set of all w-psh functions with -relative full mass .

Finally we underline that PSH(X,w) is naturally endowed with a weak topology
given by the inclusion PSH(X,w) C L* (i.e. the L'-topology), and that M is weakly
closed. Moreover, setting M* := {¢) € M : V;, > 0} and given a totally ordered fam-
ily A := {4 }ier C MT, the Monge-Ampére operator produces an homeomorphism
between A and its image endowed with the weak topology of measures (Lemma 3.12
in [Tru20al).

6.2.1 Strong topologies

The Monge-Ampére operator may not be continuous with respect to the weak topol-
ogy on PSH(X,w). Here we recall briefly a strengthened of the weak topology for
some particular subsets of PSH(X,w) which is more efficient when one wants to
study complex Monge-Ampére equations. See our previous works [Ttul9], |Ttu20a]
and references therein.
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Given ¢ € M, the sets &'(X,w,9) C PSH(X,w) and M'(X,w,v) C P(X) :=
{probability measures on X} are defined respectively as

E1(X,w, ) 1= {u € E(X,w,4) : By(u) > —oo},
M (X, w,9) := {Vyr : v € P(X) satisfies Ej, () < +oo}

where Ey, I, are the v-relative energies. More precisely

Bo(u) = ——3 /X(u — ) {(w + dd°u) A (w + dd°g)" )

n—4+ 14
J=

if u has ¥-relative minimal singularities ,i.e. [u] = [¢], and as Ey(u) := lim_,00 By (max(u,—
k)) otherwise. See [DDNLISD| [Trul9[lfor many of its properties, here we recall the

following upper semicontinuity.

Proposition 6.2.1 ([Tru20al, Lemma 3.13, Propositions 3.14, 3.15). Let {1 }ren C
M™T be a totally ordered sequence of model type envelopes, and let {up}ren C
PSH(X,w) such that ux € E(X,w,r) for any k € N. If ux, — u weakly. Then

limsup Ey, (ur) < Ep ) (w).
k— o0

Moreover if Ey, (ur) > —C uniformly, then r — Pu[u] weakly. In particular for
any C € N, € M7 the set

é’,lc(X,w,w) ={u e El(X,w,i/J) : supu < Cand Ey(u) > —C}
X

is weakly compact.

The t-relative energy Ej, ([Tru20al) is instead defined as

EL(v) = sup (Ew(u) - vaV(u)) € [0, +00]
u€E(X,w,y)
where L, (u) := limg—oo [ (max{u,v — k} —4)dv if v does not charge {¢) = —oo}
and as L, = —oco otherwise. We refer to [Tru20a[lfor its properties.
It is then natural to endow these sets with strong topologies given as the coarsest
refinements of the weak topologies such that the t-relative energies become contin-
uous. Then we have the following summarized result.

Theorem 6.2.2 ([Im—LQ], [m . Let ¢ € M*. Then:

i) the strong topology on 81(X7w,1/)) is a metric topology given by the complete
distance d(u,v) := Ey(u) + Ey(v) — 2By (Pu(u,v));
i1) the Monge-Ampére operator M A, (-) produces an homeomorphism

MAy : (Enorm (X, w,9),d) = (M (X, w,9), strong) (6.7)
where we set &y orm (X, w, ) := {u € (X, w,v) : supy u = 0};
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iti) for any Vyv = M Ay, (u) € M (X,w, ) the equality Ej,(v) = Ey(u) — [ (u—
)M A, (u) holds.

Furthermore it is possible to extend the strong topology of &'(X,w,1)) considering
different model type envelopes. For {wx}ren C M7 totally ordered set, we say that a
sequence {ux}ren such that ux € E'(X,w,¥r) converges strongly to u € € (X, w, )
for 1 € Mt weak limit of wy, if up — u weakly and Ey, (ur) — Ey(u).

Proposition 6.2.3 ([Tru20a]). Let {¢x}ken C M™T be a totally ordered sequence
converging weakly to ¥ € MY, and let u, € E(X,w, 1) be a sequence converging
strongly to uw € €'(X,w,v). Then there ewists a subsequence {ux, yhen and two
sequences Vn > U, > Wn of w-psh functions such that vn \y u, wn / u almost
everywhere, and in particular up — u in capacity.

6.2.2 Case with analytical singularities.

In this subsection we assume 1 := P, [¢] € M" where ¢ € PSH(X,w) has analytical
singularities, i.e. locally ¢y = g+ clog (|f1|2 +- 4 \fk|2) where ¢ € R>o, g € C™,
and {f; };“ are local holomorphic functions. The coherent ideal sheaf J generated by
these functions has integral closure globally defined, hence the singularities of ¢ are
formally encoded in (J,c). We also recall that ¢ has t)-relative minimal singularities
(see Proposition 4.36 in [DDNL18b]).

It is well-known in this case that there exists a smooth resolution p:Y — X given
by a sequence of blow-ups of smooth centers such that p*J = Oy (—D) for an effective
divisor D. Moreover the Siu Decomposition ([Siu74]) of p*(w + dd°y) is given by

P (w+dd°p) =n+ c[D]

where 7 is a big and semipositive smooth (1,1)-form on Y. We also recall that it
is possible to define the sets E(Y,7) and &'(Y,n) similarly to the Kihler case (see
[BEGZ10]) and that the latter becomes a complete metric space where endowed with
the distance

d(u,v) := E(u) + E(v) — 2E(Py(u,v)).

The quantities P,(-,-), E(-) are defined in the same way as in the Kéhler case.

Proposition 6.2.4 (Lemma 4.6, Proposition 4.7 in [Tru20b]). The metric spaces
(EMX,w,¥),d), (E'(Y,n),d) are isometric through the map f : u — @ = (u —
©) o p, and the the two energies Ey(-) and E(-) respectively on &' (X,w,v) and on
EY(Y,n) satisfy Ey(u) — Ey(p) = E(). Moreover f extends to a bijection f: {u €
PSH(X,w) : ux ¢} — PSH(Y,n).
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6.3 Some particular model type envelopes.

In this section v(u,z) will indicate the Lelong number of u € PSH(X,w) at z € X,
i.e., fixing an holomorphic chart z € U C X,

v(u,z) :==sup{y >0 : u(z) < vlog||z — z||* + O(1) on U }.

We also recall that the multiplier ideal sheaf I(tu), t > 0, of u € PSH(X,w) is the
analytic coherent and integrally closed ideal sheaf whose germs are given by

I(tu, x) := {f € Ox o such that / |f|?e™ " M A, (0) < oo forsomeopensetz € V C X}.
%

From now on, we call singularity data associated to a function w the data given by
all the Lelong numbers and all the germs of the multiplier ideal sheaves tu for ¢t > 0.

Proposition 6.3.1 ([Tru20b], Proposition 3.9) . Let u € PSH(X,w). Then u and
Y := P,[u] have the same singularity data, i.e.

v(u,z) = v(¢,z) and I(tu, z) = I(ty), z) forany t > 0, z € X.

By Theorem 1.2. in [DDNL18b] if P, [u] = % then u € (X, w, ). The reverse arrow
also holds when % € M™ by Theorem 1.3 in [DDNLI8b].

Definition 6.3.2. We define the subset Mp C M of all model type envelopes 1 € M
such that 1 = ' for any ' € M with the same singularity data of 1.

Observe that by definition Mp includes any ¥ € M with analytical singularities
type, i.e. 1 = P,[u] for u with analytical singularities. Indeed any other )’ € M
with the same singularity data of 1 corresponds to a 7-psh function for 7 as in
subsection §p.2.2]and Proposition §:2.4 fives the claim.

In the next subsection we will prove that for any 1 € M there exists an unique
1’ € Mp with the same singularity data of 1 (see Corollary .

6.3.1 A regularization process

The following key result is a consequence of the well-known Demailly’s regularization
Theorem ([Dem92]).

Theorem 6.3.3. Let 1) € M. Then there exists a decreasing sequence {gtren CM
such that to any uw € PSH(X,w) having the same singularity data of 1 can be
associated a sequence {uy}ren with the following properties:

1) for any k € N, uy, € &(X,w,¥r), ur has algebraic singularities and wuy has
Py -relative minimal singularities;

1) uk converges to u in capacity.
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If |u1 — uz| is bounded over X then |u1k — uzk| is uniformly bounded over X.
Moreover ¥y \ ¥ € Mp where 1 has the same singularity data of .

A function v € PSH(X,w) with analytic singularities formally encoded in (J,¢) is
said to have algebraic singularities when ¢ € Q.

Proof. Step 1: a Demailly’s regularization.

As described in [Dem92], for {W, }.ea fixed finite covering of open coordinate sets,
it is possible to choose a finite open covering {§2;},cs of coordinate balls of radius 24
(if ¢ is small enough) such that any €2; is contained in at least one W, and such that
the set of all coordinate balls of radius ¢ produces another open covering {Q’};cs.
Then, letting €(d) be a continuous function such that €(d) — 0 for § — 0 and such
that wy —ws < €(0)wy/2 for all z,z" € Q;, it follows that 0 < —w—777v; < 2¢(§)w on
Q; where «; is a (1, 1)-form with constant coefficients on 7;(€2;) = Bas(a;) such that
—w—e(é)w =777 at 7 ~1(a;). We denote by 7; the homogeneous quadratic function
in z — a; such that dd ; = ;. Thus for any j € J, m € N and ¢ € PSH(X,w) we

define locally on ;
1 2
P = ! ( m )
Pi,m m 0og §l |0 m. i

where {0 m,i}ien is an orthonormal base of the Hilbert space Hq, (m@;) := {f €
OQ ( ) ||f||m<pj, Qj fQj |f|2 —mej <OO} for LpJ —d) ’YJ O Tj.
Moreover as proved in Theorem 2.2.1.(Step3) in [DPS01] we also get

A mi m2

Pjmitma < + pimi + ————¢j,
Pj,m1+ma M1+ s m1+m280] my ml—l—mg% ma

for any mi,m2 € N where A; depends only on n. Therefore in the gluing process
described in [Dem92] (in particular Lemma 3.5), considering ¢;r := @;or + oF
instead of @, o1 we get (if 0 = o1 goes to 0 very slowly) a decreasing sequence of
almost psh function ¢ such that w+ dd pr > —erw for e, \ 0. Next we claim that
@ has logarithmic poles along (J(2%¢), 2%), i.e. locally @pu = 2% log (|f1|2 4+
|fnI?) + g where {f; }., are local holomorphic functions which locally generates

J(2*p) and where g is a bounded function. Indeed by the gluing process and Lemma

3.6 in [Dem92] for any k,j

or = gik+ o " log Zlazml

over Q; where g; , are bounded functions. Thus the claim now follows from [Nad89] |
(see also Proposition 5.7 in [Dem12]). Then by a regularization argument of Richberg
(JRic68], see also Lemma 2.15 in [Dem92]) we approximate ) with a smooth almost-
psh function ¢x on X\ V (J(2"9)) such that |¢r — x| < 1/k and such that it extends
to a almost-psh function on X with

w + ddc(bk > —2€rw.

242 6.3. SOME PARTICULAR MODEL TYPE ENVELOPES.



CHAPTER 6. KAHLER-EINSTEIN METRICS WITH PRESCRIBED
SINGULARITIES ON FANO MANIFOLDS. 243

Thus, since ¢y has the same singularity of i, we get that ¢, has analytical singu-
larities.

Step 2: the regularization for elements with fixed singularity data.

Next assuming w such that ¢ = P, [u], we apply the regularization just described to
the w-psh function % :=u —supy v — 1, obtaining a sequence uj. Then we define

Uk :

= U 1.
1T 2e, o +s1)1(pu+

By construction ur € PSH(X,w), ui has algebraic singularities assuming without

loss of generality that {ex}ren € @ and, as a consequence of Proposition
the singularity type [uk] is constant varying w which satisfies P, [u] = 1. Therefore
defining vy, := P, [ux] the first point follows.

About the convergence in capacity, clearly we may assume supy v = —1. Then we
denote with vx € &(X,w, ) the decreasing sequence of almost-psh function with

logarithmic poles converging to w obtained by the process described above (i.e. the

wr’s of before). By Hartogs’ Lemma (see Proposition 8.4 in [GZ17]) supy vk — —1
and it is immediate to check that Hv#k becomes a decreasing sequence converging

to u when supy vy < 0. Thus we get that 1:75% — wu in capacity. Next we note that
for any 6 > 0

R e e ik LR (e

since |ix — vk| < 1/k by construction. Hence taking k = ks >> 0 big enough we get

that 5
{luw == 0} e {Is5 w2 5}

which implies that ur — w in capacity.

Assuming |u1 —uz| < C, to prove that wui i — us, is uniformly bounded it is clearly
enough to check that |vik — vz, | is uniformly bounded, where as before we denote
with v; i the sequence of almost-psh function with logarithmic poles which decreases
to u; for ¢ = 1,2 (i.e. in the process described above we replace @, ©i, Pj,m, Pj, ik
respectively with s, vi i, Ui, j,m, Ui j, Vi, j,k). Thus if u1 < ug 4+ C and assuming with-
out loss of generality that supy u1 = supy u2 = —1 then ¥; ;o6 < 5 ;o6 + C for
any j € J and any k € N since

2
2710g|f|

vl,j,Zk = Ssup
feB

€]

where B(1) is the unit ball in Hgq, (2%%1 ;) and similarly for up. Hence we get that
|v1,j,6 — v2,5,k| is uniformly bounded in j, k and by the gluing process described in
[Dem92] it follows that also |vy x — v2,k| is uniformly bounded in k.

Step 3: the singularity data of 1/;

For this last step, we first observe that clearly ¥k > ©¥r4+1 which is equivalent to
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e > Ypg1. Thus ¢ = limg_oo ¥x € M and ¢ > ¢ by construction since v, >
for any k € N. Moreover, letting u € &(X,w, 1)) fixed, by the estimates in [Dem92]

V(wkax) = v(uk,z) = v(u,z) = v(Y, 7)

for any = € X, which implies 1/(1[;,1:)~2 limg oo v(¢i, ) = v(¢,z) > V(QZ),I) since

Y < < 9y for any k € N. Hence v(¢), z) = v(3, x) for any x € X.

Next fix ¢ > 0, and set u := 1) — 1. Since ¢ > 1) we immediately have J(t)) C I(t1)).
Viceversa we claim that

I(tp) D I((1 + 7i)tan) = I((1 + 7) (1 + 2ex)tur) (6.8)

for 7, = ﬁ if k> 1 such that 2* > ¢ where iy = (1 + 2¢x)uy, is the almost psh
function with analytic singularities formally encoded in  (J(2*%), &) constructed in

Step 1. The inclusion in (§.8) would imply
I(t) D I((1+ ) (1 + 2¢x)t0)

since ug = ¥ for any k € N. Thus since by the resolution of the strong openness
conjecture (see [GZI5]) I((1+ €)te)) = I(tr)) if 0 < € < 1 small enough, we would
get

I(ty) D I(te))

letting k — oo. Hence J(ty)) = I(t1)).
To prove the inclusion in ( we first note that for any U C X open set and any
holomorphic function f over U, we have

/ |f|2€—tuwn —
U

_ 2 —tu n 2 2k (ap—u) (2F—t)u—2Fa, n
= [fI7e™ " + |f|%e e w" <
Un{u>(1+7y)ty} Un{u<(l+7k )i}
- ko~
S/ |f‘267(1+‘r;€)tukwn+/ 62 (ukfu)wn
U U

t

ok _i* Moreover

since (2% —t)u—2%4y, < 0 over {u < (14-7%)dx } by the choice of 7 =
2" (=) ¢ L}, since @iy has analytic singularities formally encoded in (J(Qku), 2%)
Therefore the inclusion in (§.8)| follows.

Finally since by construction ¢ > 1/): for any ¢’ € M with the same singularity data
of 1 (simply switching 1) with "), 1 is a maximal element in M for fixed singularity

data, i.e. ¥ € Mp which concludes the proof. O

We say that ) € M has analytic (resp. algebraic) singularities type if ¥ = P,[p] for
¢ € PSH(X,w) with analytic (resp. algebraic) singularities.
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Corollary 6.3.4. For any v € M there exists an unique ' € Mp having the same
singularity data of . Moreover if 1,92 € Mp and the singularity data of 1
are worse than the singularity data of 2 (i.e. v(¢¥1,x) > v(v2,x) and I(t1,x) C
I(th2, x) for any x € X, t > 0), then Y1 < 2.

Proof. The first statement is a trivial consequence of Theorem 6

Next if 91k, ¥%2,x € Mp are the sequences with algebraic singularities type converg-
ing respectively to 91, 12 given by Theorem §.3.3 Jwith respect to the same Demailly’s
regularization, then we have 1 5 < )2 if the singularity data of 1)1 are worse than
the singularity data of 12, which concludes the proof. O

Theorem p.3.3|implies that the elementsin Mp can be approximated by a decreasing
sequence of model type envelopes with algebraic singularities type. This property
defines the set Mp as immediate consequence of the following result.

Proposition 6.3.5. Let {¢x}rexn C Mp be a decreasing sequence converging to 1.
Then ¥ € Mp.

Proof. Let 1’ € Mp having the same singularity data of . Then by Corollary
Yy 3= 1’ for any k € N, which is equivalent to 5 > 1’ since we are considering
model type envelopes. Hence 1 > 1), which implies 1 = 1)’ and concludes the
proof. O

The following example shows that Mp is a proper subset of M.

Example 6.3.6. Let K C P! be a polar Cantor set, w = wprs be the Fubini-
Study metric on P!, and px be the measure on C associated to K. Then the
potential u(z) := [ log|z — w|dur (w) is a subharmonic function on €, harmonic
on C\ Supp(ux) = C\ K and u(z) = px(C)log|z| + O(|z|™*) as z — oo (see
Theorem 3.1.2 in [Rans]). Thus, up to rescaling the Fubini-Study metric, u extends
to an wrs-psh function, i.e. u € PSH(PP',wrs). Moreover since jx has no atoms,
v(u,z) = 0 for any z € P!, which by Skoda’s Integrability Theorem ([ko72[]see

also Theorem [.4.10 [below) implies that wu has trivial singularity data. Therefore by

Proposition family of model type envelopes {1 := P, [tu]}icf0,1) C M has
constant singularity data, but Vi, = [, MA,(tu) = (1 —t) [y w+t [ MA,(u) =
(1 —t) [y w since MA,(u) is concentrated on K which is polar. Hence clearly
{®¥t}te0,1) C M\ Mp.

Finally it is remarkable to observe that M}, is a star domain with respect to 0 € M},
as our next result shows.

Proposition 6.3.7. Let ¢ € M}, and t € [0,1]. Then t € MF.

Proof. Define 1, := P, [ty)] € MT for any t € [0,1]. We want to prove that 1, € Mp
and that ¢ = t.
Since 1) € Mp by Theorem here exists a decreasing sequence {r = P [pr]}tren C
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M} of model type envelopes with algebraic singularity type converging to . We
indicated with @) the w-psh functions with algebraic singularities. Then, for any t &
[0,1) the sequence {9+ := Pu[tpr]} is clearly a decreasing sequence with analytic

singularity type, which implies that 1, := limg 00 tx: € Mp by Proposition
Moreover since @y, has ¥-relative minimal singularities we have i = P,[t1)x], and
by construction

Vi =/XMAw(twk) =Zt"‘j<1—t)jA<ij(w+ddcwk)”—j>.

Jj=0

Observe also that Vi, \, Vi, by what said in section §ince 1 are model type
envelopes decreasing to 1. More generally we have

/(wj/\(w+ddcwk)n_j> —>/<wj/\(w+ddcw)n_j>
X X

for any 7 =0,...,n by Proposition 4.8 in [DDNL19] since we are assuming Vi > 0.
Hence Vy, , — Vy = Vi, > 0, which implies that 1 = 1 by Theorem 1.3. in
[DDNLI8b] since by construction 1); is more singular than 3, i.e. ¥, € M$ for any
t e [0,1].

Next since for any k € N, tyy has 9y ¢-relative minimal singularities, we get that
Ykt + (1 — t)1x is more singular than )y, i.e.

Vit < g

Letting & — oo we obtain v¢; < ti, which implies @, = ti) and concludes the
proof. O

6.3.2 Geodesic segments.

Definition 6.3.8. Let S:={t € C : 0 < Ret < 1} be the open strip and let ug,u; €
PSH(X,w). The elements U' € PSH(X x S, mxw) such that limsup, o+ U'(-,t) <
uo and limsup,_,,- U'(-,t) < u1 are called weak subgeodesics of wuo,u1, and if there
exists at least one of these subgeodesics then the wxw-psh function

ue(p) := U(p,t) := (sup{U/ € PSH(X x S,nxw) : U’ subgeodesic of uo,ul})*

1s called weak geodesic joining o, u1.

The next Proposition explores the properties of weak geodesics segments joining
potentials in €'(X,w, ) for p € M. We denote with 3, := {u € PSH(X,w) :
w + dd°uis Kihler } the set of all Kihler potentials.

Proposition 6.3.9. Let ug,u1 € &' (X,w,v) for v € M*. Then the followings
holds:
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i) there exists the weak geodesic u.(p) = U(t,p) € PSH(X x S,mxw) and it only
depends on Ret in the t-variable;

i) ur € EY(X,w, ) for any t € [0,1];

i) letting {uf}ren, {uf}ren C Ho be decreasing sequences such that uf \ uo, uf \,
w1 and letting u¥ the weak geodesic joining uf, u¥, the convergence uf \, u;
holds.

Moreover if uo,u1 have -relative minimal singularities, then
W) U — Ug, U — UL N capacity;
v) uy has Y-relative minimal singularities for any t € S;

vi) |ug — us| < C|Ret — Res| for any t,s € S where C := ||u1 — uol|co-

The existence of the approximations of point (ii7) is contained in [BKO7]| while the
existence of the weak geodesics joining elements in  H,, is shown in [Chen00].

Proof. By Proposition 2.10 in [Trul9] P, (uo,u1) € &'(X,w, ), thus (i) and (i)
follows directly from Theorem 5.(7) in [Darl7]. Then by the Re t¢-convexity we obtain
P, (uo,u1) < ur < (Ret)ur + (1 — Ret)uo, hence (i) is given by the monotonicity
of E¢.

Next, assuming o, u1 with 1-relative minimal singularities, (iv) is a consequence of
the second part of Theorem 5 in [Darl7| since by definition it is immediate to check

that P,[uo](u1) = u1 and similarly by simmetry. Then, letting C := ||uo — u1||ree,
from

max {uo — CRet,u1 + C(Ret — 1)} < u; < (Ret)us + (1 — Re t)uo

we obtain that ||ug — u¢||zee < C, which implies that u; has uniformly bounded in
1)-relative minimal singularities and in particular (v) follows. Moreover (i) and the
Re t-convexity of u: yield that the t-derivative of u: is increasing. On the other hand
the inequality

max{ — CRet,u1 —uo+ C(Ret — 1)} < up — ug

implies that the one-side derivative at 0 of u; lie between —C' and C. Similarly
for the one-side derivative at 1 of u;. Hence it follows that all the ¢-derivatives are
bounded between —C,C, which gives (vi) concluding the proof. O

Since the weak geodesic joining two elements wuo,u1 € &'(X,w, 1) depends only on
Ret in the t-variable, with weak geodesic segment we will mean the path [0,1] >
t— Ut.

When ¢ € M' has algebraic singularities type it is possible to relate the weak
geodesics in &' (X, w, ) in terms of the weak geodesics in &'(Y,n), keeping the same
notation of subsection §.2.2.]
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Proposition 6.3.10. Let uo,u1 € &'(X,w,v) and let 4o = (uo — ) o p,iy =
(u1 —p)op e Sl(Y, n). Then the weak geodesic U joining uo,u1 is given by

U=(pxId).U+®

where U is the weak geodesic joining to,%1 and ® € PSH(X x S,m%w) is the
constant weak geodesic at o, i.e. ®(-,t) = ¢(-) for any t € S

Proof. By Proposition f.3.0|there exists the geodesic U joining uo,u1 and u; €
&'(X,w,v) for any t. Then by Proposition he function

U:=U-9)o(pxId)

satisfies @, € &'(Y,w) for any t € S. Moreover it depends only on Re t on the t-
variable, and it is not difficult to check that it is upper semicontinuous and regular

enough to consider the (1,1)-current my-n + ddg, ,U, which satisfies
(p x Id)" (mxw + dd5 ,U) = myn + ddfuytﬁ + cmy (D] (6.9)

where we are using the same notations of subsection 6Theref0re since  wyn +
dd, +U is positive on each fiber and since U € PSH(X x S, m%w) from ( we get
that 731 + ddw7tU >0, i.e. U is a weak subgeodesic joining g, 1.
On the other hand letting V € PSH(Y xS, mn) be the weak geodesic joining o, @1,
we obtain that

V= (px Id).V + &

is a weak subgeodesic joining wuo, u1 from the equality ( for V,V. Moreover V > U
by construction since V' is the weak geodesic, which implies that V = U. Hence
V =U, i.e. U is the weak geodesic joining g, %1 and the proof is concluded. O

The reason of considering 1 € M’}{, in Theorems @ Eis because we can prove that
the space (81 (X, w, 1), d) is geodesic showing also that any weak geodesic is a metric
geodesic. Moreover along these geodesics the t-relative energy becomes linear.

Theorem 6.3.11. Let o € M} and let U be the weak geodesic joining wo,ui €
ENX,w, ). Then Ey is linear along [0,1] 3 t — uz := U(t,-) € EY(X,w, ) which
s also a geodesic segment in (EI(X,w,w),d), i.e.

d(ue,us) = [t — s|d(uo, u1).

Proof. We set ug := max(uo,®¥ — k), u1,, := max(u1,®¥ — k) observing that by
construction the sequence of weak geodesic segments Uy, joining ug,x, u1,, decreases
to U (see Proposition . In particular since the t)-relative energy Ey and the
distance d are continuous along decreasing sequences in  €'(X, w, 1)) we may assume
that wo,u1 have i-relative minimal singularities.

Moreover if ¢ = P, [¢] for ¢ with analytical singularities, then the results required

follow combining Proposition §.2.4 with Proposition 6[3.10. | Indeed, keeping the
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same notation of subsection §.2.2,]by Theorem 3.12 in [DDNLI8a] the energy E(-)
for €'(Y,n) is linear along weak geodesic segments, which are metric geodesic in
(€'(X,n),d) by Proposition 3.13 in [DDNLI8c].

For general ¢ € M}, by Theorem there exist {1y} € M}, decreasing sequence
converging to 1 of model type envelopes with algebraic singularity type, and %, uf €
EY(X,w,¢r) two sequences decreasing respectively to uo,u1. Observe that |[|uf —
u'f|| Leo is uniformly bounded since we are assuming wo,u1 with t-relative minimal
singularities. Moreover by the first part of the proof the weak geodesic segment
[0,1] 3t — uf € &'(X,w, ¥x) joining uf, uf is a metric geodesic in (El(X,w,z/}k), d)
and Ey, is linear along it. Futhermore for any ¢,s € [0,1], |[uf —u¥||L~ < C for an
uniform constant C' and uf decreases to u: by Proposition ‘as k — oo. Hence
the results required follow from the convergences

d(uf7 u?) - d(Ut, u3)7

By, (uf) = By ()

as k — oo, given by Lemma 4.3 in [Trul9]. O

6.4 [¢]-KE metrics with prescribed singularities.

From now on we will assume {w} = ¢1(X), i.e. X is a Fano manifold and w is a
Ké&hler form in the anticanonical class.

With My we denote the set of all the model type envelopes ¢ such that (X, )
is klt, i.e. as said in the Introduction J(v)) = Ox. Note that by the resolution of
the openness conjecture (|GZ15]) 1 € My if and only if there exists p > 1 such
tha e=% € LP. Moreover for a pair (X,) being klt is independent on the Kihler
form chosen, i.e. it holds for quasi-psh functions. We will also use the notation
let := My "M and similarly for MBM.

Proposition 6.4.1. M and M;rlt are star domains with respect to 0 as subset of
PSH(X,w).

Proof. It is clearly enough to prove the result for M™. Letting ¢ € M, we define
[0,1] 3 t — ¢ := P,[tY], and we want to prove its weakly continuity. Thus, letting

ty St €0,1] (resp. tr \(t € [0,1]), we observe that the sequence 1, converges
weakly and monotonically to a model type envelope 1; which is more singular (resp.
less singular) than ;. But by construction it follows that

Vi, :/th_j(l—tk)jwj Awl) = Vi,

which by Theorem 1.3 in [DDNLI8b] implies that 1; = 17 since we are assuming
Vw > 0. O
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Recall that a positive measure p on X is said to have well-defined Ricci curvature if
it corresponds to a singular metric on Kx, i.e. locally

— —f"fLZQ Q
nw=e "1 A

where f € L}, and Q is a nowhere zero local holomorphic section of Kx, and in
such case Ric(p) := dd°f (see [Berml6], [BBJ15]). We also set Ric(w + ddu) :=
Ric(M A, (u)) for any u € PSH(X,w) so that it coincides with the usual definition
of the Ricci curvature when u € C*.

Definition 6.4.2 ([Ttu20b|). Let u € PSH(X,w). Then wy := w + dd°u is said
to be o Kiahler-Einstein metric with prescribed singularities [¢] ([¢/]-KE metric) if it
has well-defined Ricci curvature,

Ric(wy) = wy (6.10)
and u € EY(X,w,1).

The abuse of language comes from the fact that actually w, is the curvature of a

(class of) singular metric on —Kx which is Kéhler-Einstein metric in the weak sense

of .

Similarly to the absolute case ¥ = 0, wy is a [¢]-KE metric if and only wu solves the

complex Monge-Ampére equation

— ,—utC

{MAWEU) =e I 6.11)
ue & (X,w,)

for C € R where p is a suitable volume form on X such that Ric(p) = w (Lemma
4.3 in [Tru20b)), i.e. p = e fw™ for f Ricci potential. Note that combining the reso-

lution of the openness conjecture, Proposition nd Theorem A in [DDNL18&d],
any solution u of has -relative minimal singularities.

Definition 6.4.3. We define the Kihler-Einstein (KE) locus of M as
Mip = {th € M : there exists a [1)]-KE metric }.

Clearly Mxg C M}, since the assumption (X,) klt is necessary to the existence

of a solution of (

Remark 6.4.4. Mxgkg is not empty. Indeed letting D smooth divisor in | — rKx]|
for r € N, and letting pp € PSH(X,w) such that w + dd°pp = 1[D], then finding

T

a [1¢]-KE metric for ¢, := P,[typ] and t € [0, 1) is equivalent to solve

Ric(.) = 10 + (D)
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where 17 = (1 — ¢t)w. Thus rescaling we get the renowned path
t
Ric(ww) = (1 — H)ww + ;[D] (6.12)

used for instance in [CDS15] It is then well-known ([EermI3[/[JMRI6])Ithat (6.[2) |
admits a solution for 0 < ¢ < 1 close to 1. Hence there exists a [¢);]-KE metric for
0 <t < 1close to 1.

The set of all [¢]-KE metrics varying ¢ € M}, includes all possible log KE metrics
with respect to (X, D) where D varies among all effective klt IR-divisors such that
—(Kx + D) is ample. But clearly the set of all 1 € M}, with analytic singularities
type is much bigger than the one associated to pairs (X, D) as above. However,
considering a resolution of the ideal J associated to 1, it is still possible to describe
the set of all [¢)]-KE metrics in a more classical way.

Proposition 6.4.5 ([Tru20b], Proposition 4.8 and Theorem 4.9). Let 1) = P,[¢] €
M}, with analytic singularities type formally encoded in (J,c). Then any []-KE
metric is smooth outside V(J). Morever, letting p : Y — X be a resolution of the
ideal J and letting 1 be the big and semipositive (1,1)-form such that p*(w+dd°p) =
n+c[D], the set of all [1)]-KE metrics is in bijection with the set of all log-KE metrics

in the class {n} with respect to the weak log Fano pair (Y,A) for A :=cD — Ky/x.

In Proposition §.4.5|with Ky, x we indicate the relative canonical divisor of p :
Y = X, ie Ky/x = Ky —p"Kx. Note that the divisor A = ¢D — Ky,x is
neither necessarily effective nor necessarily antieffective. Indeed when p = Id as
described above A is clearly effective, while considering 1 = P, [¢] for ¢ with analytic
singularities along one point z € X such that § := v(p,z) < n — 1 it follows that,
forp=Bl,X:Y - X, A=—(n—1—0)E where E is the exceptional divisor.
Observe that when 7 is Kahler and A is effective then any log KE metric in the class
{n} has conic singularities along D on its simple normal crossing locus by Theorem
6.2 in [GP16).

6.4.1 1-relative alpha invariant.

We introduce the key concept of t-relative a-invariant which generalizes to the
relative setting the renowned Tian’s a-invariant ([[[1an87[).

Definition 6.4.6. Let ¢ € M. We define the -relative a-invariant aw,(¢) as

() := sup {oz >0: sup / e Mdu < oo},
X

{uxv :supx u=0}

It is often more useful to use the following equivalent form of v, (?) in terms of the
complez singularity exponents (see also [DKO1]).
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Lemma 6.4.7. Let ¢ € M and define, for any v € PSH(X,w), c¢(u) := sup{a >
0: [ye *“du < oo}. Then

au(®) = inf c(w)
In the absolute setting 1 = 0 this characterization of the «-invariant was proved by

Demailly (see for instance Proposition 8.1 in [Tosl2]). The proof for the )-relative
setting is similar but we report it here for the courtesy of the reader.

Proof. By definition clearly aw,(¥) < c(u) for any u < v with supy u = 0. So the
first inequality immediately follows observing that c¢(u) = c¢(u — supy u) for any
u =< Y.

Next assume by contradiction that there exists « > 0 such that o, (¢¥) < a <
inf,<y c(u). Then we can find a sequence {u;}jen C PSHporm(X,w,?) = {u <
1 : supy u = 0} such that

/ e *Midu>j (6.13)
b

for any j € N. Moreover by weak compactness of {u € PSH(X,w) : supyu =

0} we may also assume that u; — u € PSHuorm(X,w, ) weakly. In particular

fx e ““du < oo since a < c(u). Hence by Theorem 6.4.8 quoted below e~ %7 —
..

—av

e in L', which contradicts (§.13) and concludes the proof. 0

Theorem 6.4.8 ([DK01]). Let (X,w) be a compact Kihler manifold. Then PSH(X,w) 3
u — c(u) is lower semicontinuous with respect to the weak topology. Moreover if
{ur}tren C PSH(X,w) converges weakly to uw € PSH(X,w), then

e—auk N e—au
in L' for any a < c(u).
We can now study more in detail the function

M3 Y — aw().

Proposition 6.4.9. The following properties hold:
i) (M, < ) 3¢ = aw(®¥) € (0,+00) is decreasing and right-continuous;

i1) letting ¥r := P,[tvo + (1 —t)i1] € M for t € [0, 1] where o, 101 € M such that
o = Y1, then for any t,s € [0,1],t > s

ta, (¢t) > S (ws )s

ie. [0,1] 3t — taw (wt) is increasing.
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Proof. As immediate consequence of Lemma §.4.7 | . (+) is clearly decreasing, i.e. it
decreases when the singularities decreases, and ., (0) > 0 by the uniform version
of the Skoda’s Integrability Theorem recalled below (Theorem 6 Then letting
{r}ren C M decreasing to ¢ € M we want to prove that . (¢¥r) — aw(¥) as
k — oco. By monotonicity, we may assume by contradiction that there exists a >0
such that aw () < o < @ (?) for any k € N. This implies that for any k € N there
exists an element ur € PSHporm (X, w,¥y) :={u € PSH(X,w) : u < ¢, supy u =
0} such that

/ e “hdy > k. (6.14)
b

By weak compactness we may also suppose ur — u € PSH(X,w) weakly. Thus
since ur < 15 by construction and ¥y \ ¥, we obtain u € PSHporm(X,w,?). In

particular
/ e du < oo
X

since by assumption a < . (%). Finally Theorem mplies that e %%k — e™
in L' which contradicts (§.14) and concludes the proof of ().
Next suppose {t:}tecjo,1) C M as in (i4) and let s, € (0,1] such that ¢ > s. Then
for any u € PSH(X,w, ;) we claim that the w-function

s t—s

Uzzzu—&— :

1 (6.15)

belongs to PSH(X,w,%s). Indeed v is clearly more singular than 2 + t—s4)y, and

t

for any C' > 0 the function ¢¢,c := P, (two +(1—-t)1+C, 0) is more singular than
to + (1 — )y, Le.

;wt,c + thswl < %(td}o + (1 —t)yr) + thswl = stpo + (1 — s)9,

which implies that $:c + “Tswl < 9, since Yi,c, Yo, 1 < 0. Thus letting C' — oo

and taking the upper semicontinuity regularization we get v + tzswl < s which

concludes the claim. Then for any 0 < a < @y, (¥s), letting v € PSH(X,w, ) and
v € PSH(X,w,s) as in ( the inequality

—%aud _ —av 7a(t:5) wld < —av g
e nw= [ e e n< [ e n
X X X

implies tc(u) > sa. Hence Lemma [§.4.7|concludes the proof. O

Theorem 6.4.10 ([Zer01]). Let K C PSH(X,w) be a weakly compact set such that
SUP,cx SUPLex Y(u, x) < 2. Then

sup/ e "w" < +oo.
X

ue K
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Since when 1 has algebraic singularities type, finding a [¢]-KE metric is equivalent
to find a log-KE metric on a resolution (Proposition 6 it is natural to wonder if
it is possible to express a., (1) algebraically and what is the connection between this
new invariant and the usual log a-invariant. Letting (Y, A) be a weak log Fano pair,
i.e. Y be a projective variety (which for our purpose we can assume smooth) and A
be a Q-divisor such that (Y, A) is klt and —(Ky + A) =: L is big and semipositive,
the log a-invariant of the pair (Y, A) is defined as

a(Y,A) :=sup{a € Q>0 : (Y,A+ «aF) is kit for any F > 0 Q-divisor

such that F ~q L} = qu;:lszzolCt(Y’ A,F) (6.16)
where ~q is the linear equivalence extended under rescaling, i.e. there exists r &€ N
such that rF € |rL|, and where lct(Y, A, F) := sup{a € Q>0 : (Y,A+ aF)is klt}
is the log canonical threshold of F with respect to (Y,A). We refer to [Koll3]
and [Kol96] for the theory of singularities of pairs (X, D), here we just need to
recall the following analytical description (see Proposition 3.20 in [Kol96]): a pair
(Y,A + aF) is klt over a projective manifold Y if and only if e “"Fy(y,a) € L'
where if F'= 37" a;F; for prime divisors Fj then vp = 377", a; log|sj\ij for s;
are holomophic sections cutting F; and h; are smooth metrics on Oy (F}). Here
Viy,ay is an adapted measure associated to the pair (Y,A), in particular letting
D; prime divisors such that A = 22:1 bi Dy, ti holomorphic sections cutting the

~ _ l7 bl 2
divisors Dj, and hy smooth metric on Oy (Dy), then v(y,a) = e T Pk lo8 oDy 5y gy

for a suitable volume form dV on Y (see [BB.J15]).

Remark 6.4.11. Considering the example in Remark §4.4;]with the same nota-

tions, it is easy to see from the definitions that, letting 1 := I/(X AD)’ we have
0w (1) = sup {oz >0 : sup / e (1= )¥¢D gy, oo},
u€EPSH(X,w),supx u=0J X
t _
a(X,fD) :sup{a>0 : sup / e a“dl/t<oo}.
r u€EPSH(X,w),supy u=0J X

Hence in particular o, (¢:) > min{l,o(X, £D)}, ie. aw(¥) is a finer invariant
than a(X, %D) since what matter is understanding when these quantities are larger
than n/(n+ 1) (by the general theory for the log setting, i.e. to get the existence of
log KE metrics).

Lemma 6.4.12. Let (Y,A) be a weak Fano pair and n be a smooth (1,1)-form
representative of c1(L) where L :== —(Ky + A). Let also D be an effective Q-divisor
on'Y, and 6 smooth (1,1)-form on {[D]}. Then

inf  let(Y,A,F+ D)= inf  let(Y,A,v+ D) (6.17)
FrgL F>0 vePSH(Y,n)
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where we set lct(Y, A, v+ D) :=sup{a € Q>0 : [, 67Q(U+UD>dl/(y’A> < oo} for vp
quasi-psh function such that 6 + dd°vp = [D].

Proof. One inequality in (§.17) follows immediately from the fact that to any effec-
tive Q-divisor F' ~¢ L it is associated a function vy € PSH(Y,n) such that n +
dd°vr = [F] (obviously vr is defined up to an additive constant), and lct(Y, A, F +
D) =lct(Y,A,vr + D) by what said above.

For the reverse inequality, letting w’ be a fixed Kéhler form, we first assume v €
PSH(X,n) such that n + dd°v > ew’ (i.e. a Kihler current). Then fix 7 € N
such that rL is a line bundle and denote with h the singular hermitian metric
on rL associated to rn + dd°rv. It is then well-known that for any k € N the set
H°(Y, L*" ®I(krv)) of holomorphic sections o € H°(Y, L*") such that [, |o]7,w'™ <
o0 is a not-empty finite-dimensional Hilbert space. Choose for any k& € IN an element
ok € H°(Y, L*" ® J(krv)) of norm 1 and define

€

. log|o|}x € PSH(Y,n).

W = v+

Then since (Y, A) is klt there exists f € L¥ for p' > 1 such that Viy,ay = fw'™.
We denote with ¢’ the Sobolev conjugate exponent of p’. For k € N and a <
let(Y, A, wi + D) fixed, we also set ¢ := O‘Tq,, p:=1+ % and ¢ := 1+ . Clearly
p,q are Sobolev conjugate exponents. Then by construction and using Holder’s
inequality twice, we obtain

_ Tk (y4o Ik (wy —v) —LE (wy 4o
/e D) gy :/ (epqw V) ey (i D>)dV(Y,A) <
Y Y

Tk (1w, —v 5 — kG (o
< (/ o o (i >fw’")”(/ o o (wit D)dl«y,m) <
Y Y

L _rkq .,
< ||f||1L/P;?(w/”)(/ e*Tk(wkfv)w/n) P (/ e vd’ (w k+vD)dV(Y,A)) <
X Y

—ow v l/q
<11 (/Ye o)y 5)) 7 < oo, (6.18)

Q=

Lp’ (w'™)

Thus lct(Y,A,v+ D) >

rk .
— L., L.e.
kYo
q'(1+¢)

rk
let(Y, A D) > let(Y, A D
C( AV )_rk—f—q’lct(Y,A,wk—kD) C( , A, we + )

by the arbitrariness of a < lct(Y, A, wi + D). Therefore since 1+ dd°wy = [Fj] for
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a Q-effective divisor Fj by construction, it follows that

rk
> limi >
let(Y,A,v+ D) > hkrgggf (rk gAY A Fy £ D) let(Y, A, Fy, + D)) >

rk
> inf let(Y, A, F + D) liminf =
- FNQI%,FZO ot(Y, A, F + D) e rk+ ¢'lct(Y, A, F, + D)

= inf Olct(Y,A,F+D) (6.19)

FrqL,F>

using also lct(Y, A, Fy, + D) < lct(Y, A, D) < +o0.

Since L is big, we can now fix v € PSH(Y,n) such that n + ddv > ew’ (i.e.
a Kihler current) and note that for any w € PSH(Y,n) and for any ¢ € [0,1),
wy :=tw+ (1—t)v € PSH(Y,n) is a Kihler current since 7., > (1—t)ew’. Moreover

let(Y, A, we + D) = sup {oc € Q>0 : /

efa(ther)dV(Y,A) < +oo} <
Y

1
< sup {a € Q>0 : / efat(wH’D)dl/(y’A) < +oo} = Elct(Y, A,w+ D) (6.20)
Y

since w¢ + vp is more singular than t(w+vp) for ¢ € [0,1). Hence combining (§.19)
and ( the conclusion follows letting ¢ — 1. O

Proposition 6.4.13. Assume ¥ = P,[p] € My with algebraic singularities type
formally encoded in (J,¢). Let p: Y — X, n, D and A as in Proposition and
let L be the Q-line bundle on Y such that c1(L) = {n}. Then

i < < i . .
min{l,a(Y,A)} < au () <1+ FNerLlfF>Olct(Y, A,F +c¢D) (6.21)

A Z

Proof. Since p*(w) = n+ 6 for 6 smooth (1,1)-form and p*(w + dd°p) = n + ¢[D],
letting vp such that 6 4+ dd°vp = ¢[D], it follows from pluriharmonicity that pop =
vp + a for a constant a, which we may assume to be equal to 0 up to replace vp.
Moreover as proved in Proposition 4.8 in [Tru20b] it is not difficult to check that

over the open Zariski set {2 where p is an isomorphism we have

pat (e_“au) = V(y,a) (6.22)

where 1(y,a) is an adapted measure of the pair (Y,A). Thus since p is an isomor-
phism outside a pluripolar set, we can extend to 0 the measure v(y,a) and (
means that the lift of ™% is equal to v(y,a). Therefore for any o > 0 and for any
u < 1 we obtain that e~ *“y lifts to e~ *@~ (@~ Hvp V(y,n) using also Proposition
(and its notations). It follows that

ow(¥) = inf c(u) = aepér}ff(y,m b {a 20 /X e e Py < +°°}'
(6.23)
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and assuming o, (¢) < 1 the left inequality in ($.21) is an easy consequence of
Lemma [.4.7]since clearly vp < C. Similarly from Lemma §.4.7 and the fact that
c(u) = ¢(u — sup x u) we obtain, supposing « > 1,

o)< inf  let(Y,A,@i+cD) + 1
a(w)_ﬁePg}-I(Y,n)C( Lt )+

and Lemma p.4.12|concludes the proof. O
Remark 6.4.14. Set fu,(¢) = sup{8 > 0 : SUP{, <y supy ueot J5 e e Vdu <

+oo} for any ¥ € My, and observe that the analog of Lemma €.4.7 holds for this
new invariant. Then by Holder’s inequality it is not hard to check that

Bu(¥) < o () (6.24)

where ¢ is the Sobolev conjugate exponent of lct(X,0,1). Moreover if 1 has algebraic
singularities, with the usual notations, Lemma 6[4.12 Yields

Bu(¥) = FN&_;IEFZO let(Y, A, F + ¢cD)

proceeding as in Proposition §.4.13.] In particular (6[24)Joften produces a better
algebraic upper bound for (7)) than the right inequality in (§.21)|

6.4.2 Ding functional and uniqueness.
Similarly to the companion paper [Tru20b]] we define for 1 € M}, the functional
Dy 8Y(X,w,%) — R as
Dy = VyL, — Ey
where L,(u) := —log [, e""“du. It is translation invariant and it assumes finite

values by Proposition ince we are assuming 1 € M:lt. We call it t-relative
Ding functional since it coincides with the renewed Ding functional in the case ¥ = 0.

Remark 6.4.15. When ¢ = P,[p] has analytic singularities type, then with the
same notations of Propositions

Dy(u)+ By(p) = =V log | ¢ dv = (@) =: Dy (a)

where v is a suitable non-pluripolar measure associated to the log-setting. Indeed
D, (@) is the usual log-Ding functional associated to the pair (Y, A).

Proposition 6.4.16. Let 1 € M{,,. Then Dy is continuous on (EI(X,w,d)),d)
and it is lower semicontinuous with respect to the weak topology.
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Proof. The continuity of &(X,w, %) > u — L, (u) with respect to the weak topology
is given by Theorem Therefore the result follows observing that FE, is upper
semicontinuous in &'(X, w, ) with respect to the weak topology (Proposition
while it is strongly continuous by definition. O

In the absolute setting, a key property of Ding functional is its convexity along
weak geodesic segments, which is the starting point to study the uniqueness of KE
metrics. The analog holds in the relative setting if 1 belongs to MZS x¢ and it has
small unbounded locus, i.e. it is locally bounded on the complemenjc of a closed
complete pluripolar set.

Theorem 6.4.17 ([Bern09], [Bern1i], [Berni5]) . Assume that ¢ € My has small

unbounded locus. Let uo,u1 € EI(X,w,z/)) with Y-relative minimal singularities and
let uy be the weak geodesic joining them. Then F(t) := L,(ut) is subharmonic on S.
Moreover if F is affine over the real segment, then there is an holomorphic vector

field V with flow Fs such that F} (w + dd°us) = w + dd®uo for any s € [0, 1].

Note that F can be thought as a function on [0, 1] since u; does not depend on Im ¢.

Proof. With the same notations and terminology of the references quoted, we first
observe that replacing the potentials 1, u: with the corresponding metrics, the func-

tional L, becomes —log fX e~ ". Therefore the subharmonicity of F(¢) is a conse-

quence of [Bern09], [BernIi]l

Next writing u: := 1 + (us — 9), we are in the situation described in section § 6.1 of
thanks to Proposition §.3.9.] Thus Theorem 6.1 in concludes the
proof. O

Since by Theorem §.3.11 |the 1)-relative energy FEy is linear along weak geodesic
segments if ¢ € M}, Theorem gives the convexity of D, requested.

Corollary 6.4.18. Assume ) € MJJS,klt with small unbounded locus. Then the -
relative Ding functional Dy is convez along any weak geodesic segment [0,1] 5t —
g € EY(X,w, ) joining two potentials wo,ur € E'(X,w, ) with Y-relative minimal
singularities.

Next, to prove the first part of Theorem ( ve need to introduce the set
Aut(X, []) == {F € Aut(X) : [F"y] = [¢]}

of all automorphisms which preserve the singularity type [¢], where we recall that
[u] = [v] is equivalent to ||u — v||cc < o00. Observe that Aut (X,[¢]) is a linear
algebraic group since it is a subgroup of Aut (X). We denote with Aut (X, [¢])° :=
Aut(X, [¥]) N Aut(X)°® where Aut (X)° is the connected component of the identity
map.

Theorem 6.4.19. Assume ¢ € M‘Eﬂk“ with small unbounded locus and let u €
EY(X,w,v). Then the following statement are equivalent:
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i) wy :=w + ddu is a []-KE metric;
Z’L) Dw(u) = inf81(x7w’w) Dw

Furthermore if wy,w, are []-KE metrics, then there exists F € Aut(X, [])° such
that F* (wy) = wy.

Proof. The implication (ii) = (i) follows from Theorem 4.22 in [DDNLI8b].

Vice versa the proof of (i) = (i%) is the 1)-relative version of that of Theorem 6.6 in
[BBCZ13].

We want to prove that Dy(u) < Dy(v) for any v € &'(X,w, ) and by the conti-
nuity of D, along decreasing sequences in El(X,w,w) we may suppose v to have
1-relative minimal singularities. Moreover without loss of generality we can assume
fx e “du = Vy, i.e. C =0 in the Monge-Ampére equation ( Recall also that
any solution of the same equation has t-relative minimal singularities. Then, letting
u¢ be the weak geodesic joining uo := v and u; := v, Corollary implies that
t — Dy (ut) is a convex function. Therefore it will be enough to prove that

& (D) s 2 0. (6.25)

By Proposition §.3.9]the function w; := (u¢ — u)/t is uniformly bounded and con-
verges almost everywhere to a bounded function w. Moreover by the concavity of

the v-relative energy ([DDNLIS8b])

MS/ thAw(u):/ ’U}te_ud/.ll,
13 X X

%(Ew(ut))‘t:m S/Xwefud,u. (6.26)

which implies

On the other hand

fX (67% B eiu)du
t

= 7/ we f(ur —u)e” “dp
x

where f(z) := (1 — e™®)/x is a continuous function. Thus f(u; — ) is uniformly
bounded since ||us — u|loc < C for any ¢ € [0,1], and by Dominated Convergence
Theorem it follows that

d —ug _ —u
a(/xe du)lt:0+— /Xwe dp (6.27)

since f(u: —u) — 1 as t — 0" again by Proposition Therefore the inequality
in follows combining (§.26)] (€.27)]and using the chain rule of derivation. O

Remark 6.4.20. The implication (i¢) = (i) in Theorem [.4.19|holds as soon as
¥ € Mj,,. When 1 = 0, Theorem B.4.19|was proved in [BBGZ13][]
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6.4.3 Mabuchi functional and Theorem

In this subsection we keep assuming 1) € let.

Before defining the -relative Mabuchi functional we need to recall the -relative
1, J-functionals:

Ty (u) = /X (1 — $)MAL(W) — By (u),
Ly(u) = /X (u — ) (MAu () — MAu ()

for any v € €'(X,w, ). These functionals are translation invariant and strongly
continuous, i.e. in (81 (X, w, ), d), as a consequence of Corollary 3.5 and Proposition
3.6 in [Tru20a]. Moreover they satisfy the following important properties.

Proposition 6.4.21 ([Tru20a], [Tru20b]) . Let v € £'(X,w,v). Then
i) oLy (u) < Jp(u) < Ay (u);
i1) there exists a constant C > 0 depending uniquely on (X,w) such that
A, u) — C < Jy(w) < d(w, ) (6.29)
for any u € &} o (X, w, ).

We recall that with &0y, (X, w, %) we denote all elements v € &' (X,w, ) such that
supy u = 0.
Next it is also necessary to retrieve the definition of the entropy.

Definition 6.4.22. Let v1,v2 € P(X), i.e. two probability measures on X. The

relative entropy H,, (v2) € [0,+00] of vo with respect to vi is defined as follows.

If vy is absolutely continuous with respect to 11 with density f = % satisfying

flog f € L*(v1) then

Hy,, (1) = /Xflogfdul = /Xlogfdyg.

Otherwise we set H,, (v2) := +00.

Then we set ¢’ := 1 + a where a := log fx e %du, so that e_WM is a probability
measure.

Definition 6.4.23. The t)-relative Mabuchi functional M, : £'(X,w,9) — R U
{+o0} is defined as

My(u) = Ve H, .y, (MAL(w)/Vy) + Ty (u) = Ly (u).
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Observe that it is clearly a translation invariant functional and that in the absolute
setting 1) = 0 it coincides with the usual Mabuchi functional (see [Mab86| land
the Tian’s formula in [Chen00] [Tian|lfor the Fano case). Moreover it is lower
semicontinuous with respect to the strong topology since Jy, I, are continuous and
the entropy is lower semicontinuous with respect to the weak topology. Furthermore
by definition and Theorem §.2.2 fve have

My(u) = (VoH,_y, — E}) (MAy,(u)/Vy).

See subsection §f.2.1 [for the definition of the energy E*. The Mabuchi functional
dominates the Ding functional as the next result shows.

Proposition 6.4.24. Let a :=log [, e ¥du. Then Dy(u) + aVy < My(u) for any
u € EN(X,w, ) with the equality if and only if w.y is a [Y]-KE metric.

Proof. We may assume He,u,/u(MAw(u)/V¢) < 4o00. Observe that this implies

Hy,(MA,(u)/Vy) < 400 where p, := fe " since u < 9. Moreover by an
X

e— Uy

immediate calculation

MA,(u)/V,
(M = Do)w) = [ tog (FEEE ) M) + [ (= )M Aw) = Vil (w)
Thus, since py, = e “TeW we get

(tog (-2 ) 4 (u— ') ) M A (),

Vi) = [ LuMAc) = [ (105 (e

e
which implies

(My — Dy)(u) = /x log <W)MALU(U) +aVy.

Therefore Proposition 2.10.(i¢) in [BBEGZ19]| concludes the proof. O

We can now finish to prove Theorem ( jising the following two Lemmas.

Lemma 6.4.25 ([BBEGZ19|, Lemma 2.11.). For any lower semicontinuous func-
tion g on X and any 11 € P(X),

log/ eldvy = sup (/ gdve — Hy, (1/2)).
X voeP(X) N x

Lemma 6.4.26. For any u € £'(X,w,),

Vi Lu(u) = et (VwHe—w',t (M A (v)/ Vi) + /X(u - ¢/)MAw(v)),
By(w= it (E;; (M AL (v)/Vy) + /X (u— w)MAw(v)).
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Proof. The second equality follows easily from the concavity of FE, ([DDNLI18b])
since

Eo(u) < By(v) + /

(u — )M Ay (v) = B (MAuw)/Vy) + / (4 — $)M A (v)
X X

with the equality when v = w.
For the first equality we can clearly restrict to consider v € &'(X,w, %) such that
He_q/,/M(MAw (v)/Vy) < +o00. Then, setting b := —log u(X), we observe that

—oo< /X(w’ —u)MA, ) = VyH, _yr ,(MAL(v)/Vy) =

= (—u—log (M))MAM(U)—M@ <Vylog | e “du—bVy = —VyL,(u)
X ebdp X

where the last inequality is a consequence of Lemma 6[4.25. [Hence

VoL < inf VoH _y (MA V.
vLu(u) *Uesll(ri(,w,w( wH o, ( ()/Ve) +/x

(u =) MALW)).

To prove the equality we set p, :=e “u/ fX e~ " and we claim that He_q/,fu(,uu) <
+00. Indeed by the resolution of the openness conjecture there exists p > 1 such
that e™* € LP, thus by Theorem 1.4.(7) in [DDNLIS8b] there exists v € &' (X, w, )
with t)-relative minimal singularities such that MA,(v) = Vipwu. Therefore since
Lo 18 clearly absolutely continuous with respect to e~ %y with density equal to
fi=euty /fX e “u, the claim follows by definition since

[ f1oa(ne au= [ @' < wdn = [ @0 = wMAL) < o

X

Next, since M A, (v)/Vy = py = e LW by an easy calculation we obtain

VoLutw) = [ Lutnracw) = [ (tog (MY b - v))aaco) =
= Vo, (MALEV) + [ (w= )M A ()
which concludes the proof. O

Theorem Assume ¢ € M‘E’k“ with small unbounded locus and let v € E(X,w, ).
Then the following statements are equivalent:

i) wy =w ~+ dd°u is a []-KE metric;
i) Dy(u) = infer(x o) Dy;
m) Mw(u) = infﬁl(X,w,w) M¢.
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Moreover if wy is a [¢]-KE metric then u has i-relative minimal singularities and if
wy is another [1)]-KE metric then there exists F € Aut(X, [¢])° such that F*wy, = wy.

Proof. As said in the beginning of this section if w4 ddu is a [1)]-KE metric then by
the complex Monge-Ampére equation (it follows that w has i-relative minimal
singularities. Moreover the uniqueness modulo Aut (X, [¢])° was already stated in
Theorem [.4.19where we also proved the equivalence between (i) and (ii). Further-
more if (i7) holds, then (7i7) is given by (¢) and Proposition Thus it remains
to prove that (i44) implies (7).

Set m := My (u). Then for any v € &'(X,w,1) by Lemma p.4.26 |we obtain

Vol -, (MAL)/Vo) + [ (u=0)MA(w) = Bolw) >

b's

Z V¢He_w///4 (MAw (’U)/Vw) — E:; (MAw (U)/Vw) — an = Mw (U) — aV¢ Z m — an
Hence taking the infimum among all v € £'(X,w, 1)) again by Lemma e get

inf Dy >m—aVy.
(X, w, ) V= v

So to conclude the proof it is enough to observe that by Proposition 6 Dy (u) =
O

m — aVy.

6.4.4 Proof of Theorem D!

In this subsection we assume ¥ € M,
We first prove that the w-relative a-invariant controls the level sets of the entropy
in terms of the t-relative energy FE,, and hence in the metric space (Sl(X7 w, ), d)

thanks to Theorem In particular probability measures with t-relative finite
entropy are in the range of the Monge-Ampére operator restricted to  €'(X, w, ).

Proposition 6.4.27. Let 0 < o < a,(¥). Then there exists C > 0 such that

H, ()2 2Ej(v)-C (6.20)

for any v probability measure. In particular if He_wxu(u) < 400 then there exists
U € &t orm (X, w, ) such that Vyv = M A, (u) and

He_w/u(MAw(u)/Vw) > %Lp(u) -C

for an uniform constant C > 0.
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Proof. By definition there exists A > 0 such that
log/ e “du < —asupu + A
X X

for any u € PSH(X,w) such that u < ¢. Then since sup y u = supy (u—1) (Lemma
3.7. in [Trul9] quoted in Lemma §.5.6 pelow) and clearly Ey(u) < Vi supy(u — )

we obtain
- log/ e *"du > ng(u) —A. (6.30)
X Vw

Next we fix a positive probability measure v and we define 1) := max(y, —k) and

Yy, = Y + ax where ar € R such that efw;ﬂp is a probability measure. Obviously
Py, — " = 1+ a where as usual v’ = 1) +a for a = log fX e~ ¥du. Combining (
with Lemma for any k € N fixed, it follows that

H .y () = / wkdu> & Ew /(u—wk deu) —A>

> (Ew( ) — /X(u—d})deu) —A+arVy. (6.31)

Then supposing v such that H__, (v) < +oo, there exists f € Ll(eﬂﬁ/p) such that
v= feﬂz’/u and we define for any j € N

vj = cymin(fe” ", j)u = ¢; f;p
where ¢; > 1 such that v; € P(X). Thus by definition H _,, (v;) < +oc and from
e kp
(6.31) we get

/X (log(c; fi) + i) c; fidu > %(Ew(u)—/x(u—zb)wcj-fjdu) —A+arVy, (6.32)

and letting k& — oo the left side hand converges to [y (log(c;f;) +¢')c; fidu since
|supy 95| < C by construction. Then moving j — oo we obtain [, log(f)dv =

H__y,(v) by Monotone Convergence Theorem since ¢; ™\, 1 while f; * fe=¥
On the other hand the right side in ( is invariant under translation on w,
thus assuming u < 1, again by Monotone Convergence Theorem it converges to

‘% (Ew (u) = [y (u— z/z)deu) — A+ aVy. Summarizing, letting k,j — oo in this
order in (.32}, it follows that

Heo, ) 2 5 (Eutu) - | w=vvuar) —c

setting C' := max(A — aVy,0). Taking the supremum over all u € &'(X,w,),
we obtain (5.29]. We also deduce that Vyv € MY(X,w,v) for any v € P(X)
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such that He,q,,/#(u) < +oco. Hence by Theorem there exists an unique
u € &L orm (X, w,1b) such that M A, (u) = Vyv and similarly to before we get

H,_y,(v) > asup(u—¢) — a/ udv — A >
X X

> ([ - onanw - [ - oVedr) ~ A= 1w - A
P X X
which concludes the proof. O

We recall the definition of d-coercivity.

Definition 6.4.28. Let F': El(X,UJ,’L/)) — R be a translation invariant functional.
Then F' is said to be d—coercive over SLOTM(X,w,@!)) if there exist A > 0,B > 0
such that

F(u) > Ad(u,¥) - B

for a'ny u e ELOTW(X7 w? w)'
Note that, for any translation invariant functional F', as an easy consequence of

Proposition p.4.21|the d-coercivity over &L,mm(X,w,?) is equivalent to the Jy-
coercivity over & (X, w, ), i.e.

F(u) > AJy(u) — B

for any u € €*(X,w, ) where A >0, B > 0.

The d-coercivity of the -relative Ding functional and of the t-relative Mabuchi
functional are both equivalent to a t-relative version of a Mose-Trudinger type
inequality as our next result shows.

Proposition 6.4.29. The followings are equivalent:
i) the t-relative Ding functional is d-coercive over €L, (X, w,1);
ii) the t-relative Mabuchi functional is d-coercive over €. (X, w,);

ii1) there exist p > 1,C > 0 such that
||€¢7u||Lp(e*¢’u) < Ce Bv)/Vy (6.33)
for any u € EM(X,w, ).

Proof. The implication (7) = (i) follows from Proposition §.4.24.| Then let assume
(44) to hold, i.e. there exists A > 0, B > 0 such that

My (u) > Ad(u,¥) — B
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for any u € &pgrm (X, w, ). Since d(u — supy u, ) > Jy(u — supy u) = Jy(u) for

any u € €'(X,w, ) (Proposition and since My, is translation invariant, we

get

1 A

Jo(w) = ~Ju(w)) = B = S B (MAL(u)/Vy) - B
(6.34)

for any u € €*(X,w, ), where we used again Proposition or the last inequal-

ity. The equation ( is equivalent to

My(u) > AJy() — B = A("

VoH, o, (MAL(0)/Vy) > pE)(MAu(u)/V,) — B

where p =1+ A/n > 1, which implies Vy,H__,/ (v) > pEj,(v) — B for any v € P(X)
by Proposition Next we observe that considering the approximants wux :=
max(u, ¥ —k) by Monotone Convergence Theorem and by the continuity of E,; along
decreasing sequences it is enough to prove (€.33)for w € £'(X,w,v) with t-relative
minimal singularities. Thus by Lemma letting b:= —log fx e(pflwdp, we
have

log/ efpue(p—1)w+bduz sup {/(fpu)dl/fHe(pq)wﬂ,u(u)}.
X veP(X) X

So for any € > 0 fixed there exists vy, € P(X) such that H -1y, (Vu,e) < 400
and

log/ e_pue(p_lerbdM <e— / (pu)dvu,e — He<p—1)w+bu(l/u,s)-
X X

Then since He,wru(yu@) = He(pfl),/,erM(z/u,c) —l—pr Pdvy e + a + b (where as usual
¢’ = +afor a=log [, e"¥dp), by an easy calculation we get

Vi log/ e PPVt < Vwe—i—/ P =) Vypdvu,e+aVy+bVy—VyH, _yr  (Vu,e) <
X X

<Vy(e+a+b)+B +p(/ (Y — u)Vypdvy,e — E;L(Vue)) <

X

< Vy(e+a+b)+B—p eigr)l(f){) {E‘fj,(u)—i—/ (u—w)V¢du} = Vy(eta+b)+B—pEy(u)
v X

where in the equality we used Lemma .4.26.| Hence by the arbitrariness of ¢ we
obtain

Vi log/ epw*")e*w/du < —pEy(u) + B,
X

B
for any u € €'(X,w,v) which is equivalent to ( setting C :=e?"v .
Finally supposing (¢ii) to hold it remains to prove the d-coercivity of Dy. Fix
e € (0,1) small enough such that p := 1+ e satisfies (§.33]. Then for any u €
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&t orm (X, w, %) combining the equality (u — ) = (14 €)(1 — €)(u — ) + €*(u — )
with the convexity of f — log fx e fdv for any v € P(X) we get

1og/ 67("7w>efw/du < (1—e¢) log/ ef(lJre)("*w)e*w/du—i—elog/ cafe("ﬂb)efwldu7
X X X

and the first term in the right side is dominated by (1 —¢€)( — <1J;> Ey(u) + D) for

a constant D. For the second term,

/ e—e(u—w)e—;b’dug/ e—eue—w/du7
X X

where the right hand side is uniformly bounded if € < 1 small enough combining
Holder’s inequality with the klt assumption and Theorem 6}4.10 (indeed it is enough
that € < B (), see Remark p.4.14). Therefore it follows that

Vi log/ e Ydpy=a+Vy, log/ ef(“fw)efw/du <—(1-Ey(u)+ B
X X
for an constant B. Hence
Dy(u) > (1 — €)Ey(u) + B — By(u) = €d(¢,u) — B,
for any u € €%,,,,,(X,w, 1), which concludes the proof. O

We can now prove our second main result which partly generalizes to the relative
setting Theorem 2.4 in [DRIT7].

Theorem Let i € M, ., with small unbounded locus. Assume also Aut (X, [¢])° =
{Id}. Then the following conditions are equivalent:
i) the t-relative Ding functional is d-coercive over €L, (X, w,1);
ii) the -relative Mabuchi functional is d-coercive over &}y (X, w,);
ii1) there erists an unique [Y]-KE metric.

Proof. The equivalence between (i) and (i2) is part of the content in Proposition

and the implication (i) = (iii) follows from Theorem C' in [Tru20b] but we
recall briefly here the proof for the courtesy to the reader. Let A > 0, B > 0 such that
Dy (u) > Ad(y),u)— B for any u € &5 g (X, w,v) and let {urtren C ELorm (X, w, 1)
such that Dy (ur) N\ infe1(x o, 4y Dy > —B. Then from the coercivity there exists
C > 0 such that

{up}ren C EC(X,w,9) == {u € ' (X,w,¢) : Ey(u) > —C,Sl)l(pu < C},

which is weakly compact by Proposition §.2.1.| Therefore up to considering a sub-
sequence we may suppose up — u € EIC'(X7UJ7¢) weakly. Moreover by Hartogs’
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Lemma u € &}, (X,w, ). Finally by the lower semicontinuity of D, (Proposition
6.4.16) it follows that
D < liminf D = inf Dy,
v(w) <lminf Dy(ue) = inf Dy
ie. w+ dd°u is the unique KE metric with prescribed singularities [¢)] by Theorem
6.4.19]
Finally we want to prove that (i7i) = (i). Letting u € &popm (X, w, %) such that w,
is the unique KE metric with prescribed singularities [¢], we define
D - D
A = inf {W v E Srlme(X,w7 1)) with ¢-relative minimal singularities
U, v

such that d(u,v) > 1},

and we claim that it is enough to prove A > 0. Indeed setting B’ := Asup{d(v, ) :
d(v,u) <1} — Dy(u) < A+ Ad(u, 1)) — Dy(u) we clearly have

Do(v) > Ad(v, ) — B
for any v € &porm (X, w,v) such that d(u,v) < 1. Thus
Dy (v) > Ad(v,v) — max { B, =Dy (u) } (6.35)

for any v € €L opm (X, w, ) with t)-relative minimal singularities. And by the strong

continuity of D, (Proposition the inequality (§.35)] would extend to any
¥ € Ehorm (X, w, 1) considering the sequence vy := max(v,¢ — k).

Therefore it remains to prove that A > 0. Assume by contradiction A = 0. Then
there exists a sequence {v*}ren C Ehorm (X, w, ) of potentials with t-relative min-
imal singularities such that d(v",u) > 1 and

Dy (v*) — Dy (u)

d(vk, u) —0

as k — oo. Thus letting [0,d(v",u)] 3 t — vf be the unit speed weak geodesic
segment joining u and v”, the function ¢ — Dy (vf) is convex by Corollary
Hence defining wy := v® we have d(wg,u) =1 and

Dy (v*) = Dy (u)

0 < Dy(wr) — Dy(u) < d(u, vF)

—0 (6.36)
as k — 0o. Moreover since by the triangle inequality

{wk}kG]N - 81+d(u,w)(X7w71/)) = {w € 81(X7w71/]) : Edl(w) >—-1- d(uad))a
supw < 1+ d(u, )}
X
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which is weakly compact by the upper semicontinuity of Ey, up to considering a
subsequence we may assume that wi — w weakly for w € S}LOTm(X7w,1/J). But
from ( and the lower-semicontinuity of Dy with respect to the weak topology
(Proposition we get Dy (w) < Dy (u) which by Theorem §.4.19 Jmplies w = u.
In particular liminfy_,o Dy(wr) = Dy(w) which implies that Ey(wi) — Ey(w)
because L, is continuous with respect to the weak topology (Theorem 6 Hence
wg — U in (El(X,w,i/)),d) as k — oo by Theorem and letting k,j — +o00, in
this order, in the inequality

d(”r ’LUj) > d(u7 ’U)k) - d(wkij) =1- d(wkij)
we find out the contradiction 0 > 1, which concludes the proof. O

Remark 6.4.30. As seen during the proof ot Theorem ]Ehe d-coercivity of the -
relative Ding functional implies the existence of a [¢)]-KE metric as soon as ¢ € M:lt.

6.5 Why the prescribed singularities setting?

As stated in the Introduction, there are two main reasons to study these KE metrics
with prescribed singularities: it is natural to look for canonical metrics which have
prescribed singularities, and the following questions.

Question E Let (X,w) be a Fano manifold. Is it possible to characterize the KE
locus Mg ? When Mgeg = let? Is there some not-trivial locus on M:lt whose
intersection with My g 1mplies that 0 € Mkg?

Theorem E which gives a first answer to Question Amwill be a consequence of the
following two results and of Proposition

Theorem 6.5.1 ([Tru20b], Theorem C). Let ¢ € M{,,. If Dy is d-coercive over
&L orm (X, w, ) with slope 1 > A >0, i.e. such that Dy(u) > Ad(y,u) — B for any
U € & orm (X, w, ) where B > 0, then for any ' € M, =

Vs ’
(1 - A))du) - C

Dy (u) 2 ( - 7

for any u € & opm(X,w,¥’") where C = C(B,Vy, X,w). In particular Dy is d-
coercive over € orm(X,w, ") for any ' = 1 such that Vyr < Vi /(1 — A).

Proposition 6.5.2. Let ¢ € M{,. If aw () > 41 then Dy, My are d-coercive
over & orm (X, w, ). More precisely

My (u) > ("Zla - l)d(u,w) — Ba,
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for any a € (niﬂ,ocw(w)), while

P e ) du,w) - B (6.37)

n? n

for any u € Ehorm (X, w,¥) and any o < @ < min aw(w),%W}
where B, Bl, > 0 and B, (¢) was defined in Remark

Moreover when aw () > 1 the slopes of the coercivity can be improved respectively

Dy (u) > (

to "'Ha - = for any o € (1 aw(l/})) and to ("T'Eloc — %)2 for any 1 < a <
min {aw(¢) n’ mm{fi(fb) 1}+1}

Proof. By Proposition here exists C > 0 such that
My(u) > (a— 1) Iy(u) + Jy(u) — C (6.38)

for any u € &'(X,w,®) and for any o < (). Then by Proposition if
o€ (n+1 , (1)) we easily obtain

My (u) > (a71+%+1)1¢(u)702n+1(a7 i

n—|—1)Jw(u) -¢

n
for any u € €'(X,w, ), which is equivalent to the requested d-coercivity on &3 g, (X, w, 1).
Furthermore if o > 1 then from (f.38) and again by Proposition §.4.21 jt follows

that

n+1 n+1

n+1
n

My(u) > ( i) g - 0= (e - L)),

n

which concludes the statements about the -relative Mabuchi functlonal

Next letting A := (%tHa — 1) for -5 < a < min {aw(qp) n mm{ii(ld’) 1}+n} we
want to prove the d-coercivity of the 1)-relative Ding functional. We observe that by
the proof of Proposition §.4.29 fhe estimate (6.33)|holds for p = 1+ A/n. Therefore

in the implication (iii) = (i) the functional Dy, is coercive with slope € for any

0<e< min{%,ﬁw(w), 1}.

But the assumption on « leads to A < nmin {f.(¢),1} and ( follows. The
case (1) > 1 is similar. O

Theorem [A] Let (X,w) be a Fano manifold. Then

{l/} € My : aw(®)

Moreover (i) = (i) = (4i1) in the following conditions:
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i) there exists ¢ € M, t € (0,1] such that
Ay (1/Jt) >

n .
(n+1)t’
for hy := Pu[(1 = t)¥];

i) aw(0) > i

iii) Mxp = M.
Furthermore 0 € Mk g if there exists ¥ € M:zz such that

let(X,0,) n? Vo— V172 1

lct(X,O,d))fl’nJrl(( Vo ) +n2)} (6.39)
where lct(X,0,1) = sup{p > 0 : (X, py)) is kit}.

Proof. Suppose ¥ € My, such that o, (¥) > 41 Then the t-relative Ding func-
tional is d-coercive over E}LDTm(X,w,w) as immediate consequence of Proposition
6.5.2] Therefore by its lower-semicontinuity with respect to the weak topology
(Proposition [.4.16) there exists a minimizer, which produces a [¢]-KE metric (see
Theorem D]and Remark §.4.30)] In particular the implication (ii) = (iii) follows
from the monotonicity of ().
Next if the assumption (i) holds then by Proposition ¢.4.9 | ., (0) > 2.
For the last statement we suppose 1 € let and we give a more precise estimate
than ( in terms of the following quantity:
2 .
o n mm{ﬁw(d)),l}Jrn}
Yo (1) := min {aw(w), I
where [.,(1) is defined in Remark Indeed by an easy computation from
Proposition p.5.2|we obtain that
2

o> (B ) o

implies that the i-relative Ding functional is d-coercive with slope
n+1 12
(25-2)
n n
for any v < 7w (). Thus by Theorem §.5.1fif (¢-40)] holds and ~ is close to 7. ()

then we deduce that the usual Ding functional is d-coercive over &'(X,w), hence
there exists a KE metric. Note also that when «., (1)) > 1 we can replace ($.40) with

Yoo () > n’f : ((VO%OV*”)I/Q + %) (6.41)

Next if aw () > % then Remark leads to
min{f., (), 1} = 1
and (6.39) follows easily from (6.41). O

() > max{
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Corollary 6.5.3. Let X be a Fano manifold and denote with let’st”ct ={y €
2
M, : let(X,0,¢) > 2L} Then

2
1
sup  aw(¥) > 7:14—:1 = 0€ Mxe.
wEM;&t,strict

3

Proof. It is an immediate consequence of Theorem ﬂince let(X,0,¢) > n”+1

nZ_
implies that the maximum on the right side in (is smaller than %

The monotonicity of . (-) and Theorem A|may suggest that
0 € Mrxp = Mxr =M, (6.42)

but when Aut (X) is not finite, this is false as the following easy example shows. It

also proves that (ii) cannot be replaced with . (0) > 77 and that a.(-) may be

constant on some no trivial segment v, = ty) for ¢ € let, t€[0,1].

Example 6.5.4. Let X = P? w = wrs and let Z := {p1,p2} € X be two distinct
points. Then it is well-known that there exists a function ¢ € PSH(X,w) with
analytic singularities formally encoded in (Jz,1). So, letting ¢ := P.[p] € M,
by Proposition §.4.5|and with the same notations, the set of [¢]-KE metrics is in
bijection with the set of log KE metrics in the class {n} for the weak log Fano pair
(Y,A) where Y = BlzX. But {n} = —Ky and A = 0, so since Y does not have
any KE metric we necessarily have v ¢ Mgg. Therefore by Theorem Eland the
monotonicity of a,(-), we necessarily have o, (ty)) = 2 for any t € [0, 1].

Note that ., (¢) could also easily been computed explicitly since given p3 € X not
collinear to p1,p2, there exists a function ¢ € PSH(X,w) such that v(p,p3) = 3
which implies o, () < 2, while the lower bound () > 2 follows from Theorem

6.4.10| (see also subsection ¢.5.2)|

However we think that the existence of no trivial holomorphic vector fields is the
unique obstruction to (§.42)|, i.e. we pose the following conjecture.

Conjecture [A] Let (X,w) be a Fano manifold such that Aut (X)° = {Id}. Then

0 € Mrgr = Mrr = M{,.

6.5.1 Strong continuity in Mgg.

Here we prove our Theorem B]

Theorem E Let X be a Fano manifold and let {tt}ic[0,1] C let be a weakly
continuous segment such that

i) Yo € MkE;
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1) o has small unbounded locus;
iii) Aut(X, [¢])® = {Id} for any t € [0,1];
i) Yy S Ys ift < s;
v) {Y¥i}ieio,1) C Mbp.
Then the set
S:={te0,1] : Y € MxE}
s open, the unique family of [¢]-KE metrics {wu, }tes 15 weakly continuous and

the family of potentials {Ut}tES can be chosen so that the curve S D2t — wuy €
EY(X,w, ) is strongly continuous.

Observe that by Proposition ¢.3.7 fhe assumptions (iv), (v) are automatically sat-
isfied for the segment ; := (1 —t)yY if Y € Mg,klt' We also recall that the strong
convergence means that u; — u weakly and Ey, (ur) — Ey(u) (section §f.2).

The strategy to prove Theorem ]Es to use the new continuity method introduced in
the companion paper [Tru20b[lwhere one moves the prescribed singularities instead
of the density of the Monge-Ampére equation (see [Tru20b] for a mixed continuity
method). Theorem represents an openness result, which combined with the
following closedness result will give the tools to prove Theorem B[ |

Theorem 6.5.5 ([Tru20b], Theorem D). Let {¢x}ren C M}, be a increasing
sequence of model type envelopes converging weakly to 1 € M;rlt. Assume that

1) wu, 1S a sequence of [Y]-KE metrics where uy € &YX, w, ) minimizes Dy,
and it is normalized so that satisfies M A, (ur) = e~ “ku for any k € N;

11) the sequence {uy}ren is uniformly bounded from above, i.e. there exists C € R
such that supy ur < C for any k € N.

Then there exists a subsequence wug, which converges strongly to u € 81(X7w,w)
solution of M Ay, (u) =e “u.

If Yr € Maklt with small unbounded locus then by Theorem he potential of
any [¢x]-KE metric maximizes Dy, , so in this case (¢) is part of the setting, and
as noted in subsection §6.1.1 [Theorem @xtends to more general ) € M}, as soon
as one proves the linearity of the Monge-Ampére energy Ey(-) along weak geodesic
segments (i.e. Theorem §.3.11)] Instead the assumption (i) is the real obstruction
to the closedness and it is also a necessary hypothesis as the curve considered in
Remark B.4.4]shows.

To prove Theorem Ewe will also use the following properties of the distances d and
of the operator P,[](-).

Lemma 6.5.6 ([Trul9], Lemmas 3.7, 4.4 and Proposition 4.5). Let t1,12 € M"
such that Y2 < ¥1. Then
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i) for any u,v € EY(X,w, 1) such that u — v is globally bounded, ||P.[w2](u) —
Bu[po](0)l[zoe < fJu = vl|zoe;

”) fO?” any u,v € 81(X7w7¢1)} d(Pw[¢2](u)7Pw[¢2](U)) < d(”v ’U),'
111) there are two constants A > 1, B > 0 depending uniquely on n, X,w such that

—d(u, 1) < Vi, supu = Vi, sup(u —¢n) < Ad(u, ¢1) + B
X X

for any u € EM(X,w, ).

Proof. of Theorem [B]

Step 1: Openness with respect to 7T := {[a,b)}a<s.

We first note that since [0,1] 3t — 1; € M}, is weakly continuous and v < 1 if
t < s then

0,1]5 ¢ Vi, = / MAL ()
X

is continuous by what said in Section §¢.2 {it follows from Lemma 3.12 in [Tru20al).
Thus combining Theorem P Jand Theorem €[5.1 {t immediately follows that S is
open with respect to the induced topology given by the generating open sets [a, b).
Step 2: Conclusion of the openness.
As a consequence of Step 1 to prove that S is open it is sufficient to show that given
to € S, to > 0 there exists 0 < € < 1 small enough such that (to — €,t0] C S.
By Theorem Elthe 11,-Ding functional is coercive and there exists an unique [¢)¢]-
KE metric. We denote with u, € £'(X,w, 1, ) its potential given as solution of the
Monge-Ampére equation

MA,(ugy) = e Mop

gy € EN(X, W, Wr,)-
Then we assume by contradiction that there exists a sequence tr ' to such that
tx ¢ S for any k € N. By Theorem (|this means that Dy, does not admit a
minimizer for any k € N. Recalling that Dy, is translation invariant and lower-
semicontinuous with respect to the weak topology (Proposition 6we get that
any minimizer sequence {u.n}ren C Eporm (X, w,s,), for k € N fixed, necessarily
satisfies d(ug,n, Pt ) = +00 as h — co. Indeed if d(vr, ,ur,n) < C then

{uk,h}h@N c SIC(X7w7¢tk) = {u € 81(X7w7wtk) : supu < C| Ell)tk (u) > _k}
X ;
which is weakly compact (Proposition €.2.1)] Hence, up to considering a subse-
quence, uk,p — ur € E&(X,w, ¥y, ) and

Do, () < nint Doy, () =, Jof Do

which would lead to tx € S by Theorem @
Therefore we can fix a sequence {uy }ren such that uy € €'(X,w, v, ) for any k € N,

274 6.5. WHY THE PRESCRIBED SINGULARITIES SETTING?



CHAPTER 6. KAHLER-EINSTEIN METRICS WITH PRESCRIBED
SINGULARITIES ON FANO MANIFOLDS. 275

d(uk7 1/1tk) — o0, Eq‘bf’k (uk) =0 and
Dy, (ur) < Dy, (vk)

where we set v, 1= P [y, ](us,) — ek for cx = Vy,, Ey,, (Pu[the,](uty)). By continu-
ity of the t-relative Ding functional with respect to decreasing sequences we may
also assume without loss of generality that wux has iy, -relative minimal singularities.
We now claim that vy — ui\é = Uty — Vi By (ut,) strongly, noting that by defi-
nition it is enough to prove that ¥ := P, [t ](ut,) converges strongly to u,. But
ut, has 1y, -relative minimal singularities, thus ||0x — ¥r||zee < |Jugy — Yo ||oee < C
by Lemma Therefore Ey, (0k) — Ey,, (ut,) as consequence of Lemma 4.3 in
[Trul9], and the claim follows.

In particular since fX e "Fdu — fx e—ui\{) dp by Theorem we also have
Ddftk. (vk) - Dwto (uto)

as k — oo. Next for C' = d(v4,,ufy)+ 1 fixed and k > 1 big enough we denote with
wy € &YX, w, )¢, ) the element on the weak geodesic segment joining vy and ug such
that d(¢1, ,wi) = C. Note that such sequence wy, exists since d(¢r,, vi) < d(¥eg, uiy)
by Lemma Moreover Ewtk (wg) = 0 by linearity of the Monge-Ampére energy

along weak geodesic segments (Theorem Then by convexity of the )¢, -Ding
functional it follows that

Dy,, (wr) < Dy, (vk)

for any £ € N. Furthermore by Lemma |supy wir| < A uniformly since
d(¢r,,,wg) = C and Vi, = Vi, > 0. Hence by compactness, up to considering

a subsequence, wy — w weakly where w € £'(X,w,,) by Proposition hich

also yields Ey, (w) > 0. Thus since by Theorem Jx e ¥rdp — [ e Vdp we
obtain

Dyyy (w) < liminf Dy, (wie) < Hm Dy, (0r) = Doy, (utg) = Dy,, < Dy, (w).

in
E1(X\w eg)
Therefore Dy,, (wx) — Dy, (w) which reads as wy — w strongly. Moreover since
Ey,, (w) = Ey,, (ufy) = 0 the uniqueness of solutions (Theorem implies W= Uty
Finally the contradiction is given by

Ay, wi) — d(We,,, i) < d(vg, wi).

since, as k — 400, the left hand side converges to 1 (v — ui\é strongly) while the
right hand side goes to 0.

Step 3: Strong Continuity.

Suppose {tr}ren C S be a converging sequence to to € S and denote with uy €
&Y(X,w, 1, ) the unique potential of the corresponding KE metric such that

MA,(uk) = e “kdu
Uk € EI(X,w,wtk),
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and similarly for u € &' (X, w,v¢,) potential for the [i:,]-KE metric. Then to prove
that up — u strongly, since {1 }:c[0,1) is totally ordered, it is enough to consider the
two monotonically cases tr 7 to,tr \, to and prove the result for a subsequence.

In the case tr \( to, Theorem implies that there exist uniform coefficients for

the coercivity if k> 1 big enough, i.e. there exists A > 0, B > 0 such that

Dwtk (v) = Ad(d)tkav) - B

for any v € &}ypm(X,w, v, ). Thus since clearly Dy, (ur) < Dy, (¢r,) < C1
uniformly, we obtain d(ug,:,) < C2 uniformly. Hence by Lemma §.5.6 [we also

have |supy ux| < Cs uniformly and Theorem §.5.5 foncludes this case.

If instead ¢, * to we first replace uy,u respectively with up := ug, — Vi, By, (Ur),
ul = — Vipro By (1) so that they have null relative energies. Then proceeding

as in Step 2 we necessarily have d(3:,,us ) < Cy uniformly, which again by Lemma

[6:5-6]implies

supuy < Cs. (6.43)
X

Therefore by weak compactness and Proposition 6[2.1, Jup to considering a subse-
quence, it follows that ul — @ € €'(X,w,®s,). On the other hand the Monge-
Ampére equations yields

_uN
Vipe, By, (u) =log Vi, — 10g/X e "k dpu,

and by Theorem §.4.8]we deduce Ey,, (ur) < Co uniformly. Hence ( implies
supy ux < C7 and Theorem [.5.5 [concludes the proof. O

Remark 6.5.7. Observe that when v € Mgpg does not belong to Mp but its -
relative Ding functional is coercive with slope A > 0, then a natural way to connect
it with other 12) S JV[D,dN) > 9 as in Theorem Eis to pass through the model type

envelope 1’ € Mp having the same singularity data of ). Indeed if

Vi <Vy/(1—A)

then by Theorem §.5.1 |the coefficients of the d-coercivity of D, for ¢ := sy’ +
(1 — s)v are uniformly bounded. Thus, proceeding as in the proof of Theorem BD
appropriate potentials for the KE metrics are uniformly bounded from above and
the strong continuity of Theorem IB holds for this path as a consequence of Theorem
0.0.0

6.5.2 0-dimensional equisingularities

As an consequence of Theorem { Jn estimate on 1)-relative a-invariants gives an
estimate on the a-invariant in the absolute setting, which is often useful to detect if
a Fano manifold admits a KE metric (see also Question @nd Conjecture AD
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Moreover by definition it is easier to produce lower bounds for ., (¢) with respect
to finding lower bounds for the usual a-invariant (i.e. . (0)).

Moreover Remark §.4.4Jand Corollary €.5.3 puggest that the most natural case to
consider is when the model type envelope has isolated singularities at N points with
the same weight (i.e. with the same Lelong numbers at these points). Indeed in
this way the singularities can have weight arbitrarily small (which clearly implies
lct(X,0,1) arbitrarily big), the locus of the singularities is always 0-dimensional and
the total mass V,, may basically be chosen arbitrary and independent on the weight
of the singularities. In particular, roughly speaking, the set {v’ € M : ¢’ < ¥} have
few elements if V;, is small enough and this makes the computation of ¢, (1)) easier
as underlined before.

Furthermore intuitively we expect that, assuming Aut (X)° = {Id}, if there exists a
KE metric then it should be recovered by these KE metrics with 0-dimensional equi-
singularities when N moves to +o00, and vice versa we expect that if the sequence of
these KE metrics diverges then X should not admit a KE metric. This point process
will be subject of study in future works.

To be more precise we first recall that given an nef line bundle L and R := {p1,...,pn}
a set of NV distinct points on Y compact K&hler manifold, the multipoint Seshadri
constant at p1,...,pnN is defined as

e(L;p1,...,pN) :=sup{a >0 : fNL — aEy is nef }

where fy : Z — Y is the blow-up along R and Ex := Z;V:l E; the sum of the
exceptional divisors (see [Dem90[] [lLaz04[] [BDRH_"09|). The definition extends to
@-line bundle by rescaling and to R-line bundle by continuity. Moreover €(L;-)
is lower-semicontinuous and its supremum is reached outside a countable union of
proper subvarieties, i.e. when the points are in very general position . In this case
will indicate €(L; N) for simplicity.

The characterization of multipoint Seshadri constants in terms of jets implies that
given N € N,§ > 0 there exists a w-psh function ¢y, with analytic singularities
formally encoded in (Jz,0) if and only if § < e(L; N). In particular, letting ¢y :=
P,[pn,s] and 1 5 the big and semipositive form given by f*w,y s = 1,6 + §[EN],

VwN,E = VOlZ ({771\775}) = VOly(L) — N(Sn
where we indicated with Voly (L) = [ w", Volz({nn.s}) = [, ni,s. Observe also
that ¥n,s € M}, if and only if § < n and that § = v(¢N,5) = sup, cy Y(¥n.5,Y)-
Then letting © € Hl’l(Y7 R) be a pseudoeffective cohomology class on a compact
manifold Y, we call the quantity
0(0,y) :=sup{a >0 : f"O© — aEis pseudoeffective }

the pseudoeffective threshold of © at y, where we denoted with f : Z — Y the
blow-up at y and with F the exceptional divisor. When © is associated to a R-line
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bundle L, we will also replace © with L in the definitions since they are clearly
coholomogical.

Lemma 6.5.8. Let © € H"'(Y,R) be a pseudoeffective cohomology class on a
compact manifold Y and let  be a smooth closed (1,1)-form representative of ©.
Then

sup  v(u,y) =0(0,y) for any y €Y,
w€EPSH(Y,n)

Proof. For any w € PSH(Y,n) and any y €Y,

g () — v(u,y)E

is a closed and positive (1,1)-current, where g : Z — Y is the blow-up at y and F
the exceptional divisor. Thus

sup  v(u,y) < o(O;y).
w€PSH(Y,n)

Vice versa if ¢"O — aF is pseudoeffective there exists a positive and closed (1, 1)-
current T representative of ¢g*® — aFE. Therefore the current 7 + aF is closed and
positive with cohomology class ¢*©. But this implies that there exists a closed and
positive current S such that f*S = T + aF (see for instance Proposition 1.2.7.(i7)
in [BouTh]). Thus by the 99-Lemma S = 5 + dd°u for v € PSH(Y,n), and by
construction v(u,y) = inf.egv(T + aFE,z) > a where we recall that the Lelong
number of a closed and positive (1,1)-current is defined as the Lelong number of its
potential once that a smooth form is fixed. Hence sup,cpgm(y,,) ¥(u,y) > 0(0;y)
which concludes the proof. O

We can now state the following final estimate for the 1 s-relative a-invariant.

Proposition 6.5.9. Let 0 < § < e(—Kx;N) and let v € M1 the model type
envelopes with analytic singularity types formally encoded in (Js,d) where S =
{p1,...,pn} is the set of points. We also set L := f*(—Kx) — 0E for the cor-
responding ample R-line bundle, where with obvious notations f :Y — X is the
blow-up at S and E := Z;V:l E; the sum of the exceptional divisors. Then letting

Ue:r:c(L) ‘= sup O(L7 y)a
yeb

0—95"([’) ‘= Ssup U(Lvy)y
yeY\E

Eezc(L) = ;2]% €(L, y)7

Ege"(L) = yégﬁE E(La y)7
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we have
2
o) 2 max {8 + 0eze(L), 0gen (L)}’ (6-44)
2 2€gen (L)1

(1) > min { T (6.45)

V—6"N V _ 5nN

eezc(L)n_l
where we set V := Volx(—Kx) = (—Kx)"

Proof. Proposition ields a bijection between PSH(X,w,v) :={u € PSH(X,w) :
u < ¥} and PSH(Y,n) where 7 is a smooth closed (1,1)-form with cohomology
class ¢1(L). Moreover denoting with @ € PSH(X,n) the function corresponding to
uw € PSH(X,w,), it follows by construction that

v(up;) =0+ inf v(isy),
J

while v(u,z) = v(@, f'x) if © ¢ S. Thus we get

0 + sup sup  v(4,y) > sup sup v(u,x), (6.46)
yEE G€PSH(Y,n) zEeS uxap

sup sup v(t,y) = sup supv(u,z). (6.47)
yeY\E aw€ PSH(Y,n) z€X\S uxy

Then by Lemma .5.8 bhe left hand sides in (6/46)]and in (6[47) hre equal respectively
%0 8 4 Oexc(L) and ogen(L). Therefore

2 2
< b
max{d + Gexe(L), 0gen(L)} ~ SUDP, e x SUD, <y ¥ (U, T)

which implies (f.44]. Indeed combining Theorem 6{4.10 gnd Lemma 6 [£.7 | o, (1) > «

for any o > 0 such that

2

SUD,c x SUD,, <y V(U T) '
Next ( is a consequence of (§.44)|since
o(L;y)e(L;y)" " < Volx(L).

a <

holds for any y € Y. One easy way to check this last inequality is through the
convexity of the Okounkov body of L at y with respect to an infinitesimal flag (see

[LMO09), [KLIT)). O

Remark 6.5.10. As seen during the proof of Proposition 5.9 the lower bound in
terms of the pseudoeffective thresholds is sharper than the one given by the Seshadri
constants. Anyway giving upper bounds for the pseudoeffective threshold is usually
harder than finding lower bounds for the Seshadri constant. Moreover the latter is
much more studied in the literature since it is related to different famous problems
in Algebraic Geometry (see [B
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We conclude the article with the following easy example of a K -unstable Fano man-
ifold which admits a [¢]-KE metric with isolated singularities at N points of weight
§ using Proposition

Example 6.5.11. Let S1 = Bl,P? endowed with a Kiihler form w. Since ¢(—Ksg, ;6) >
1, we consider ¢ € MT with isolated singularities respectively at 6 points in very
general position of weight § = 1. Thus letting f : S7 — S1 the blow-up at these
points, the line bundle L = f§(—Kg,) — Eg coincides with the anticanonical bundle
—Ks,.

Then one way to produce a [¢]-KE current is through Proposition @Fince S
admits a KE metric. Anyway here we want to show that there exists a  [¢)]-KE cur-
rent producing a lower bound for «,(¢) by Proposition nd using Theorem }E
Indeed, since e(—Ks,;y) = 4/3 if y € S7 is general and e(—Kg,;y) = 1 otherwise

(IBro06]), from Proposition §.5.9 Jve easily have

4
() 2 5. (6.43)

and Theorem Egives 1 € MkE since (X, ) is klt. Observe also that the estimate

in is better than o, (¥) > 2, which seems to be the known lower bound for

the usual a-invariant «(S7,0) (see [Chel08]).

Moreover considering ) := (1 — t)3 for ¢ € [0,1], by the right continuity of a.(-)
(Proposition .4.9: it follows that o, () > % for any 0 < ¢t < 1 small enough.
Hence Theorem A [produces the existence of a [¢]-KE current for any 0 < ¢ < 1 big
enough. Note that using Proposition (n), which has not restriction on My, it
is possible to produce good estimate on the largest ¢ € (0,1] such that a.(¢r) > 2,
ie. on S:={t €[0,1] : ¥ € Mkg}. Obviously S # [0,1] since X does not admit
a KE metric.
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