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Multipoint Okounkov bodies, strong topology of
ω-plurisubharmonic functions and

Kähler-Einstein metrics with prescribed
singularities

Antonio Trusiani

Abstract

The most classical topic in Kähler Geometry is the study of Kähler-Einstein metrics
as solution of complex Monge-Ampère equations. This thesis principally regards the
investigation of a strong topology for ω-plurisubharmonic functions on a �xed com-
pact Kähler manifold (X,ω), its connection with complex Monge-Ampère equations
with prescribed singularities and the consequent study of singular Kähler-Einstein
metrics. However the �rst part of the thesis, Paper I, provides a generalization of
Okounkov bodies starting from a big line bundle over a projective manifold and a
bunch of distints points. These bodies encode renowned global and local invariants
as the volume and the multipoint Seshadri constant.
In Paper II the set of all ω-psh functions slightly more singular than a �xed singular-
ity type are endowed with a complete metric topology whose distance represents the
analog of the L1 Finsler distance on the space of Kähler potentials. These spaces
can be also glued together to form a bigger complete metric space when the sin-
gularity types are totally ordered. Then Paper III shows that the corresponding
metric topology is actually a strong topology given as coarsest re�nement of the
usual topology for ω-psh functions such that the relative Monge-Ampère energy be-
comes continuous. Moreover the main result of Paper III proves that the extended
Monge-Ampère operator produces homeomorphisms between these complete metric
spaces and natural sets of singular volume forms endowed their strong topologies.
Such homeomorphisms extend Yau's famous solution to the Calabi's conjecture and
the strong topology becomes a signi�cant tool to study the stability of solutions of
complex Monge-Ampère equations with prescribed singularities. Indeed Paper IV
introduces a new continuity method with movable singularities for classical families
of complex Monge-Ampère equations typically attached to the search of log Kähler-
Einstein metrics. The idea is to perturb the prescribed singularities together with
the Lebesgue densities and asking for the strong continuity of the solutions. The
results heavily depend on the sign of the so-called cosmological constant and the
most di�cult and interesting case is related to the search of Kähler-Einstein metrics
on a Fano manifold. Thus Paper V contains a �rst analytic characterization of the
existence of Kähler-Einstein metrics with prescribed singularities on a Fano man-
ifold in terms of the relative Ding and Mabuchi functionals. Then extending the
Tian's α-invariant into a function on the set of all singularity types, a �rst study
of the relationships between the existence of singular Kähler-Einstein metrics and
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genuine Kähler-Einstein metrics is provided, giving a further motivation to study
these singular special metrics since the existence of a genuine Kähler-Einstein metric
is equivalent to an algebrico-geometric stability notion called K-stability which in
the last decade turned out to be very important in Algebraic Geometry.

Keywords: Kähler Geometry, Complex Monge-Ampère equations, Pluripotential
theory, Kähler-Einstein metrics, Canonical metrics, Fano manifolds, Okounkov bod-
ies, Seshadri constant, Kähler packing.
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Chapter 1

Introduction

In these my �rst years in the mathematical world, I pictured Mathematics as an
in�nite dimensional puzzle where the pieces are given by theorems, conjectures and
theories. This thesis regards Kähler Geometry, an area in Pure Mathematics which
includes some of the most connected pieces.

Part of this work has a very classical �avor.
There are three names of scientists in the title, and one of them is maybe the most
famous scientist in the history: A. Einstein. Through his general relativity theory in
1915, he revolutionized our vision of the universe, linking space and time in a precise
geometrical way. In the vacuum the Einstein �eld equation simply asks that the Ricci
curvature is a multiple of the metric, condition that afterward was called Einstein
condition. The notion of metric and of its Ricci curvature come from Riemannian
Geometry. A Riemannian manifold is indeed the data of a geometrical object which
locally looks like the Euclidean space (i.e. a manifold), and of a metric which is,
roughly speaking, a way to measure distances, angles, volumes and in the general to
transfer the usual di�erential analysis of the Euclidean space to the manifold. Then
the Ricci curvature of a metric intuitively measures how much computing volumes
on the Riemannian manifold di�ers from the analog on the Euclidean space.
The amount of the proportionality between the Ricci curvature and the metric in
the Einstein �eld equation depends on the so-called cosmological constant, which
plays a determinate role to estimate the age, to describe the motion and to predict
the future of our universe (i.e. it is the core of Cosmology). For the purposes of the
thesis it is also important to underline that the cosmological constant in�uences the
shape of the universe in the sense of its global geometry.

Theoretical Physics was reformed since Einstein's work as can be easily imagined,
but it may appear surprising to �nd out that also Complex Geometry were strongly
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4 CHAPTER 1. INTRODUCTION

inspired. The latter is the study of complex manifolds, which can be thought as
manifolds provided with some rigidity.
Indeed in 1933 E. Kähler introduced the concept of special metrics (now called
Kähler metrics) for a complex manifold to study the Einstein condition. His work
gave the birth to Kähler Geometry which is a huge very active area in Pure Math-
ematics. A Kähler-Einstein metric is a Kähler metric which satis�es the Einstein
condition.
In the compact case there is a topological obstruction (i.e. given directly from the
geometry of the manifold) to the existence of Kähler-Einstein metric, which splits
the problem to three very di�erent cases based on the sign of the cosmological con-
stant. When the latter is negative the existence and uniqueness of a Kähler-Einstein
metric was completely solved by T. Aubin and S.T. Yau in 1976. S.T. Yau also
showed the existence and the uniqueness when the cosmological constant is null
(Ricci-�at) as special case of his solution to the famous Calabi's conjecture posed by
E. Calabi in 1954 during the International Congress of Mathematicians in Amster-
dam. The complex compact manifolds admitting a Kähler-Einstein metric with null
cosmological constant are now called Calabi-Yau's manifold and in the last decades
they come back to be relevant in Theoretical Physics for String Theory.
By what said above a Kähler metric induces a way to measure volumes on the
complex manifold. In fact to any Kähler metric on a compact complex manifold is
associated a volume form, and this correspondence is given through the so-called
Monge-Ampère operator. S.T. Yau proved that the Monge-Ampère operator pro-
duces a bijection, 1-1 correspondence, between the set of all Kähler metrics which
are similar to a �xed Kähler metric (namely, for those who knows, in the same co-
homology class) and the set of all volume forms with the right total mass.
The third paper in this thesis extends Yau's bijection considering also some sin-
gular metrics in the sense of J.P. Demailly ( 1990) and some singular volume forms.
Actually these two sets can also be endowed with natural geometrical structures
(topologies) and the bijection in the third paper respects these structures. Let me
stress to say that these topologies are related to another classical problem: the con-
tinuity of the Monge-Ampère operator.

The remaining case of positive cosmological constant (Fano manifolds) is more chal-
lenging since there are obstructions to the existence of Kähler-Einstein metrics as
�rst proved by Y. Matsushima in 1957. Moreover the uniqueness holds modulo
the identity connected component of the automorphism group as S. Bando and T.
Mabuchi showed in 1987. However in 2015 X. Chen, S. Donaldson and S. Sun com-
pleted the characterization of the existence of Kähler-Einstein metrics in terms of an
algebrico-geometric stability notion called K-(poly)stability. As predicted by S.T.
Yau in 1993, their result links Riemannian and Algebraic Geometry, underlying the
strength and the beauty of Kähler Geometry.
Recall that Algebraic Geometry studies projective manifolds, i.e. manifolds given
as common zero sets of some polynomial equations. Thus, roughly speaking, a man-
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ifold can be equipped with its projective structure given by its algebraic de�nition
and with a Riemannian structure induced by the choice of a metric. This basically
corresponds to studying the manifold using Algebra or using Analysis and Kähler
Geometry can be thought as the meeting point of Algebraic Geometry and Rieman-
nian Geometry as explained better in the sequel.
The �fth article consists of an analytic characterization of the existence of singu-
lar Kähler-Einstein metric with positive cosmological constants. A �rst comparison
changing the singularities type is also provided. This gives a further motivation to
study these singular Kähler-Einstein metrics. Indeed in the last decade K-stability
turned out to be a very important notion in Algebraic Geometry since it is strongly
related to other classical problems like the classi�cation of projective varieties, but
it is still hard to detect if a projective manifold is K-stable.

The work of S.T. Yau mentioned above and a di�erent proof due to V. Datar and G.
Székelyhidi of the characterization of Kähler-Einstein metrics on Fano manifolds in
terms of K-stability are based on continuity methods. Namely they constructed a
continuous family of complex Monge-Ampère equations varying a parameter t ∈ [0, 1]
such that at time t = 0 the equation is easier while the solutions at t = 1 give the
Kähler-Einstein metrics. In this way they basically reduced the problem to the con-
vergence of solutions, i.e. if a given family of solutions ut converges for t → t0 to
a solution ut0 . The fourth article suggests new continuity methods where one
also requires some prescribed singular behavior of the solutions, i.e. some further
constraints. One advantage of this method is that one can choose to move the sin-
gularities without modifying the complex Monge-Ampère equation and a natural
application is the stability of Kähler-Einstein metrics with di�erent prescribed sin-
gularities.

Any PhD student deals with di�erent di�culties during his/her research. The sec-

ond article is the conclusion of mine most challenging period. Its �nal version, as
often happens, does not keep track of all fails attempts and of all studies. It contains
the metric structure on the space of singular metrics which was essential for all the
sequel of my thesis, and it will be the starting point of some projects I have in mind
for my immediate future.

The other name on the title of this title is A. Okounkov. He won the �eld medal
recently in 2006 for his works and in particular because he found a way to construct
a simpli�ed image in an Euclidean space of an abstract geometric object. More
precisely he associated to a n-dimensional projective manifold X endowed with an
ample line bundle L (i.e. a manifold embedded in PN for some N) a convex bounded
set ∆(L) ⊂ Rn with interior not-empty. This object is now called Okounkov body,
and it provides a way to study important algebrico-geometrical invariants of (X,L),
like the volume of L (a global measure of the positivity of L), through convex
geometry. His construction comes back to the well-known correspondence between
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6 CHAPTER 1. INTRODUCTION

toric polarized manifolds and their polytopes in toric geometry. ∆(L) depends on
the choice of a point x ∈ X and it is possible to study the local positivity of L at x
recovering the Seshadri constant of L at x directly from the shape of ∆(L).
The �rst article of this thesis regards the construction of N ≥ 1 Okounkov bodies
∆1(L), . . . ,∆N (L) associated to the choice of an ample line bundle L → X and
of N di�erent points x1, . . . , xN ∈ X. These multipoint Okounkov bodies contain
global and local positivity properties of (L → X;x1, . . . , xN ), for instance in terms
of the volume of L and of the multipoint Seshadri constant of L at x1, . . . , xN . It is
worth to recall that the latter is related to several renewed conjectures in Algebraic
Geometry and in particular to the Nagata's Conjecture which was introduced by M.
Nagata in 1959 after he found a counterexample to the 14th Hibert's problem.

1.1 Kähler geometry

Among all complex manifolds, Kähler manifolds have rich geometry and represent
the transcendental variants of the more classical Projective manifolds.
All the thesis regards compact Kähler manifolds. Compactness is a key property
that forces the global geometry of a complex manifold to have some further rigidity,
gaining many global beautiful properties which can be investigated using analytic
and algebraic tools.
The following exposition is necessarily sketchy. Good references are [GH], [Har]
for classical results about Kähler and Algebraic Geometry, while [GZ17] for the
pluripotential description of complex Monge-Ampère equations.

1.1.1 Projective manifolds

Algebraic Geometry is the study of algebraic varieties. The most classical of them
are the projective varieties over C.
Let Pn denote the n-dimensional projective space de�ned as Cn+1\{0}/ ∼ where the
equivalence relation ∼ is given as (z0, . . . , zn) ∼ (w0, . . . , wn) if there exists λ ∈ C∗
such that (z0, . . . , zn) = λ(w0, . . . , wn). Namely, any point in Pn is represented
by a complex line in Cn+1, and in homogeneous coordinates this is expressed as
[Z0 : · · · : Zn]. Pn is an example of a n-dimensional complex manifold which is
compact. Indeed it is the compacti�cation of Cn adding all the points at in�nity,
i.e. a copy of Pn−1.
The zero set of any homogeneous polynomial in z0, . . . , zn descends to the quotient
and de�nes a locus in Pn. A projective algebraic set in Pn is then the common
zero set of a family of homogeneous polynomials in n+ 1 variables, and a projective
variety is a projective algebraic set which is not the union of two distinct proper
projective algebraic sets (i.e. it is irreducible). All projective varieties presented in
this thesis are smooth, i.e. they are projective manifolds .
There is a natural topology for projective manifolds, called Zariski topology, which
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CHAPTER 1. INTRODUCTION 7

arises by their algebraic de�nition and which is advantageous to explore all the
algebrico-geometrical properties. However we are more interested in the topology
induced by holomorphic coordinates, i.e. in the structure as complex manifolds.
Note that this analytic structure is intrinsic, i.e. it does not depend on the particular
embedding into the projective space. It is also signi�cant to emphasize that there is a
nice correspondence between the algebrico-geometrical and the analytic-geometrical
point of view as the renowned Serre's GAGA Theorem explains.

1.1.2 Divisors

Many of the geometrical features of a projective manifold X can be described inves-
tigating the geometry of all its subvarieties of codimension 1, i.e. of all its divisors .
An homogeneous polynomial f on Cn+1 cuts out a projective variety in Pn of
dimension n − 1, i.e. D := {f = 0} ⊂ Pn is a projective subvariety of dimen-
sion n − 1. For instance f = z0 de�nes, in homogeneous coordinates, the locus
D = {[0 : Z1 : · · · : Zn]} ' Pn−1. Observe that the zero set of f2 coincides with D,
but the homogeneous polynomials are di�erent. In the �rst case the polynomial is
irreducible while in the second case the multiplicity of f = 0 is double. It is then
convenient to keep track of the multiplicity saying that in the second case f2 de�nes
2D.
More generally a prime divisor of a projective manifold X of dimension n is a pro-
jective subvariety D ⊂ X of dimension n − 1. In particular by the notation of the
previous subsection any prime divisor is irreducible. Note that if dimX = 1, then
any point is a prime divisor, if dimX = 2 then the prime divisors consists of all the
irreducible projective curves. A divisor D is then given by a �nite formal Z-linear
combination of prime divisors.
The additive group Div (X) of all divisors is naturally endowed with a equivalence
relation ∼lin called the linear equivalence. Recall �rst that to any rational function
f := g1/g2 : X 99K C, i.e. the ratio of two homogeneous polynomial g1, g2 of the
same degree where g2|X 6≡ 0, is associated a divisor (f) := div g1−div g2 where sim-
ilarly as before div gi is the divisor attached to gi considering its zero locus counted
with multiplicity. Then D1 ∼lin D2 if there exists a not trivial rational function
f : X 99K C such that D1 = D2 + (f).
The de�nition of divisors and their linear equivalence transfer to compact complex
manifolds replacing projective subvariety with irreducible analytic subvariety and
rational functions with global meromorphic functions. The latter are locally given
by the ratio of holomorphic functions. It is also useful to recall that any divisor
D can be described by the data {(Uj , fj)}j∈J where Uj form an open cover of X
induced by holomorphic coordinates and fj are meromorphic functions on Uj such
that gj,k := fj − fk is holomorphic with no zeros on Uj ∩ Uk for any j 6= k. Indeed
(fj) de�ne local divisors which glue together into the divisor D. For those who
know, this description has a precise interpretation in the language of sheaves. In
fact denoting with OX (respectively with MX) the sheaf on X of holomorphic (resp.
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meromorphic) functions and with O∗X (resp. M∗X) the subsheaf of the multiplicative
elements, the space of global sections H0(X,M∗X/O

∗
X) represents Div(X) as follows

from the short exact sequence of sheaves

0→ O
∗
X →M∗X →M∗X/O

∗
X → 0. (1.1)

A generic compact complex manifold may have very few divisors. For instance there
are some complex tori with no divisors. However this is not the case when the
manifold is projective since the intersection with hyperplanes on PN produce a lot
of divisors on X ⊂ Pn. Indeed we will see in the sequel that projective manifolds
are characterized by the property of having many divisors.

1.1.3 Line bundles and sections

A line bundle L over a compact complex manifold X is a complex manifold of
dimension dimX + 1 with an holomorphic surjective map p : L → X such that
Lx ' C for any x ∈ X where Lx := p−1(x) is the �ber over x, and such that locally
L looks like the product of the base X times C. In other words, there exists a open
cover {Uj}j∈J of X such that L|p−1(Uj)

' Uj × C for any j ∈ J . Obviously by
compactness of X the open cover can be assumed to be �nite.
As immediate consequence of the maximum principle, all holomorphic functions on
X are necessarily constant, but there may be many (global) holomorphic sections
of a line bundle, i.e. s : X → L holomorphic map such that p ◦ s = IdX . The set
of all holomorphic sections for a line bundle L is denoted with H0(X,L) and it is a
�nite-dimensional vector space over C. Obviously any line bundle has a lot of local
sections, but the existence of global section is a delicate matter which it is connected
to the positivity of the line bundle as it will be more clear in the sequel.
When L twists, i.e. it is not given as L = X×C, any holomorphic section s : X → L
has not-empty zero locus, i.e. s is associated to an e�ective divisor D. In this case
L is isomorphic to the twisted line bundle OX(D), whose holomorphic sections are
given by all meromorphic functions which have poles at most D, i.e.

H0(X,OX(D)
)

= {f meromorphic on X : (f) +D ≥ 0}

where (f) +D ≥ 0 means that (f) +D is e�ective. In particular if D′ ∼lin D then
the associated line bundles (i.e the twisted line bundles) OX(D) and OX(D′) have
the same space of global sections. Indeed it is possible to prove that two twisted line
bundles are isomorphic if and only if the divisors are linearly equivalent, i.e. there
is a well-de�ned injective map

Div(X)/ ∼lin−→ Pic(X) (1.2)

where Pic(X) is set of all line bundles over X modulo isomorphisms. The latter
is a group, the Picard group, since line bundles are endowed with a multiplicative
operation given by the tensor product whose inverse is obtained by considering the
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dual. Indeed (1.2) is a monomorphism, i.e. it respect the group structures, and if
X is projective then (1.2) is an isomorphism.
Recall also that the local trivializations of a line bundle are given by the choice of
nowhere zero holomorphic local sections sj . In fact a line bundle L can be expressed
as an element in H1(X,O∗X) from the data {(Uj , sj)}j∈J , and more generally Pic (X)
is actually isomorphic to H1

(
X,O∗X

)
.

As example, the projective space Pn has a natural line bundle OPn(1) whose �ber
over [Z0 : · · · : Zn] is given by the dual of the complex line passing through
(z0, . . . , zn). This line bundle coincides with OPn(H) where H is the hyperplane
divisor cut by an homogeneous polynomial of degree 1 in n+ 1 variables.

1.1.4 Kähler metrics

An hermitian metric h on a compact complex manifold X is a smooth family of inner
products (positive-de�nite Hermitian forms) on the holomorphic tangent spaces TxX
for x ∈ X locally generated by

{
∂
∂z1

, . . . , ∂
∂zn

}
. Locally

h =

n∑
j,k=1

hj,kdzj ⊗ dz̄k

where hj,k are smooth functions and n = dimX. The real part of a hermitian
metric induces a Riemannian metric g on the underlying real manifold, while minus
its imaginary part is a real 2-form ω called the fundamental form. In coordinates

ω =
i

2

n∑
j,k=1

hj,kdzj ∧ dz̄k. (1.3)

The quantities h, g, ω preserve the complex structure J , i.e. h(Ju, Jv) = h(u, v) and
similarly for g, ω. We recall indeed that the underline 2n-real dimensional manifold
XR is naturally endowed with a family of endomorphisms Jx : TxX

R → TxX
R on

the real tangent space TXR, given in real coordinates as Jx
(
∂
∂xi

)
= ∂

∂yi
, Jx
(
∂
∂yi

)
=

− ∂
∂xi

. Clearly J2
x = −Id and by C-linear extension {Jx}x∈XR splits TCXR =

TXR ⊗R C into the holormorphic tangent bundle T 1,0X (simply denoted TX as
above) and the antiholomorphic tangent bundle T 0,1X where the almost complex
structure J = {Jx}x∈X corresponds respectively to the i-action and to minus the
i-action. Observe that for ω preserving the complex structure is the same as saying
that it is a (1, 1)-form, according to the natural decomposition of di�erential forms
induced by J as in (1.3). Moreover ω is strictly positive, since for a (1, 1)-form its
strictly positivity is equivalent to the positive de�niteness of the matrix (hj,k)nj,k=1

in the associated local expression (1.3).
The metric h is then said to be a Kähler metric if its fundamental form ω is closed.
Equivalently, if ω is locally ∂∂̄-exact, i.e. ω = i

2
∂∂̄u for a smooth function u called

Kähler potential. This was the de�nition E. Kähler gave. Note that if h is Kähler
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then ω is in particular a symplectic form.
Furthermore any strictly positive real closed (1, 1)-form ω is said to be a Kähler form .
Indeed any Kähler form is the fundamental form of a Kähler metric h = g − iω set-
ting g(u, v) := ω(u, Jv).
There are several other equivalent ways to introduce the Kähler condition. How-
ever a very brief upshot is that a Kähler manifold, namely a manifold admitting a
Kähler metric, is a manifold which is endowed with three compatible structures: a
Riemannian structure, a symplectic structure and a complex structure.
Moreover compact Kähler manifolds can be also thought as the transcendental ana-
log of projective manifolds, and many algebraic properties of projective manifolds
extend analytically to Kähler manifolds. In fact any projective manifold is a com-
pact Kähler manifold. To see this observe that PN is naturally endowed with a
Kähler metric called the Fubini-Study metric, whose Kähler form is expressed as

ωFS := ddc log ||z||2 =
i

π
∂∂̄ log ||z|| (1.4)

where ||z||2 =
∑N
j=0 |zj |

2 and dc := i
4π

(∂̄ − ∂). Then any projective manifold
X inherits a Kähler metric given as restriction of the Fubini-Study metric for an
embedding X ⊂ PN . However observe that di�erent embeddings into projective
spaces produce di�erent metrics on X.
Finally it is useful to underline that a positive multiple of a Kähler form is still a
Kähler form, as any convex linear combinations Kähler forms, i.e. the set of all
the cohomology classes in H2(X,R) admitting a Kähler form as representative is a
cone: the Kähler cone K. A complex compact manifold is then Kähler if and only
if K 6= ∅.

1.1.5 Positivity of line bundles

A hermitian metric h on a line bundle L → X is the choice of a smooth family
of inner products on the �bers Lx ' C varying x ∈ X. Locally h is determined
specifying the length of the nowhere zero local sections sj chosen for L, i.e. locally
||sj ||2h = e−φj for φj : Uj → C smooth functions usually called the weights of h.
An important global objects attached to a hermitian metric h is its curvature de�ned
locally as ddcφj . Indeed these local (1, 1)-forms glue together to produce a closed
smooth (1, 1)-form on X, which depends on h but does not depend on the choice of
the local sections sj . If now one �xes a hermitian metric h0 for L with curvature
ωh0 , then by de�nition it is easy to check that any other hermitian metric h for L is
given as h0e

−φ for a global smooth function φ on X. In particular its curvature is
given as ωh = ωh0 + ddcφ, which shows that the cohomology class of the curvature
of hermitian metrics for a �xed line bundle does not depend on the choice of the
metric. In fact the cohomology class of the curvature of any hermitian metric on L
coincides with the �rst Chern class of L, c1(L), which is given through the cobordism
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operator δ : H1(X,O∗X)→ H2(X,Z) obtained from the short exact sequence

0 −→ Z
ι−→ OX

exp−→ O
∗
X −→ 0.

The whole image of the cobordism operator, i.e. the set of all �rst Chern classes, has
a natural group structure and it is called Neron-Severi group, NS(X) ⊂ H2(X,Z).
A line bundle L is said to be positive if c1(L) ∈ K, i.e. if there exists an hermitian
metric on L whose curvature is a Kähler form. By a well-known Theorem of Kodaira
(1954) being positive is related to the fact that multiples L⊗k have enough global
sections to produce an embedding Φ : X ↪→ PN such that L = Φ∗OPN (1). At level
of curvatures, ωh = Φ∗ωFS|X , in fact ωFS is a smooth representative of c1

(
OPN (1)

)
.

In other words Kodaira's Theorem says that a complex compact manifold X is pro-
jective if and only if it admits an ample line bundle L, i.e. c1(L) ∈ NS(X)∩K 6= ∅.
The notion of ampleness can be also given in terms of divisors. In fact for a pro-
jective manifold X the Neron-Severi group can be expressed as Div(X)/ ≡num,
where ≡num is the numerical equivalence which grounds on Intersection Theory (see
[Ful1]). For instance if D1 ≡num D2 then D1 · C = D2 · C for any irreducible curve
C on X, where the quantity Di · C is equal to the number of points counted with
multiplicity if Di and C meet transversely. Obviously the linear equivalence implies
the numerical equivalence. Then on a projective manifold by the Seshadri's crite-
rion a divisor D is ample if and only if there exists a positive constant ε such that
D · C ≥ εmaxx∈C multxC for any irreducible curve C.
The de�nition of ampleness extends to Q, R-line bundles (resp. Q, R-divisors) tak-
ing �nite K-linear combinations for K = Q,R. With obvious notations NS(X)K =
NS(X) ⊗K K, which is a �nite-dimensional K-vector space. Then the ample cone
is naturally given as A := NS(X)R ∩K, and its closure is the algebraic part of the
nef cone N = K, i.e. NNS := N ∩NS(X)R. It immediately follows from said above
that on a projective manifold a R-divisor D is nef if and only if D · C ≥ 0 for any
irreducible curve C.

1.1.6 Quasi-plurisubharmonic functions

An important notion of convexity in several complex variables is given by plurisub-
harmonicity . Letting Ω ⊂ Cn a domain, a plurisubharmonic function u : Ω →
R ∪ {−∞} is an upper semicontinuous function, u 6≡ −∞ such that u|L∩Ω is sub-
harmonic for any complex line L ⊂ Cn.
The notion is local, and examples of plurisubharmonic functions are given by the
pluriharmonic functions, which locally represent the real part of holomorphic func-
tions and which in particular are analytic. Plurisubharmonic functions instead may
be singular, but they have good integrability properties since PSH(Ω) ⊂ Lploc for
any p ∈ [1,+∞) with gradients is Lq for any 1 ≤ q < 2.
When u ∈ C2(Ω) the plurisubharmonicity condition is equivalent to the positivity
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of the Levi form of u, namely

L(u) :=

n∑
j,k=1

∂2u

∂zj∂z̄k
dzj ⊗ dz̄k ≥ 0.

We recall that this positivity is equivalent to the semi-de�nite positiveness of the
matrix

(
∂2u

∂zj∂z̄k

)
j,k=1,...,n

. More generally any u locally integrable upper semicon-

tinuous function is plurisubharmonic if and only if L(u) ≥ 0 in the weak sense of
distributions (see also next subsection).
Another important feature of plurisubharmonicity is that it is preserved under
holomorphic maps with image not contained in the {−∞}-locus, i.e. given u ∈
PSH(X,Ω) and f : Ω′ → Ω holomorphic, u ◦ f ∈ PSH(X,Ω′) or u ≡ −∞. In par-
ticular it make sense to talk of plurisubharmonic functions on complex manifolds,
but as a consequence of the maximum principle all the global plurisubharmonic func-
tions on a compact complex manifold are constant. However when X is also Kähler
there are many quasi-plurisubharmonic (q-psh) functions, i.e. u : X → R ∪ {−∞}
such that locally u is given as the sum of a plurisubharmonic function and a smooth
function. The natural topology on these functions is the L1-topology which in
this thesis will be called weak topology. Note that for L1-topology we mean the
L1(X, dV )-topology where dV is any �xed volume form on X. Finally recall that on
the set of quasi-plurisubharmonic functions the weak topology is equivalent to the
Lp-topology for any p > 1.

1.1.7 Currents

A current can be thought as a di�erential form with distributional coe�cients. More
precisely, on a compact complex manifold, a current of bidegree (p, q) (also said
(p, q)-current) is a continuous linear functional on the space of smooth di�erential
forms of bidegree (n − p, n − q). The pairing is indicated with 〈T, u〉 or simply by∫
X
T ∧ u. Indeed locally

T =
∑

|I|=p,|J|=q

TI,JdzI ∧ dz̄J (1.5)

where TI,J are distributions (against smooth functions) and where with obvious
multi-index notation dzI = dzi1 ∧ · · · ∧ dzip and similarly for dz̄J .
The exterior derivative d naturally extends to currents, i.e. if T is a (p, q)-current
then 〈dT, u〉 := (−1)p+q+1〈T, du〉 for any u smooth di�erential form of the right
bidegree. The currents ∂T and ∂̄T are de�ned similarly and d = ∂ + ∂̄. A current
T is then said to be closed if dT = 0.
This thesis will principally regards (1, 1)-currents which are positive . A (1, 1)-current
T is said to be positive if locally T = ddcu for u local plurisubharmonic function,
where we recall that ddc = i

2π
∂∂̄. This is equivalent to ask that (Tj,k)j,k=1,...,n
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is semi-positive de�nite in the associated local description as in (1.5). Similarly a
(n, n)-currents T is positive if

∫
X
fT ≥ 0 for any f ∈ C∞(X), f ≥ 0. For a current of

bidegree (p, p) the de�nition of positivity is slightly more complicated. However we
underline that any positive current has order 0, i.e. it acts on continuous di�erential
forms.
Combining the ∂∂̄-lemma and the de-Rham's Theorem one also gets

H1,1(X,R) =
{T closed (1, 1)-current}
{T ddc-exact (1, 1)-current} .

As a consequence given a cohomology class α ∈ H1,1(X,R) which admits a closed
and positive (1, 1)-current T , i.e. α pseudoe�ective , and given a smooth (1, 1)-form
θ representative of α the set

PSH(X, θ) := {u q-psh, : θ + ddcu ≥ 0 }

is not-empty and it is called the set of all θ-psh functions. At level of topologies
PSH(X, θ) is homeomorphic to T{θ}X × R where the set T{θ}X of all closed and
positive (1, 1)-currents with cohomology class {θ} is naturally endowed with its weak
topology. When θ = ω is a Kähler form, the set of ω-psh functions will be one of
the principal character of the sequel.
Observe also that since T{θ}X is weakly compact, any set {u ∈ PSH(X, θ) :
| supX u| ≤ C} for C ∈ R is weakly compact. Moreover if uk → u weakly as
elements in PSH(X, θ) then supX uk → supX u (it is often called Hartogs' Lemma).
Important examples of closed (1, 1)-currents are given by currents of integration
along divisors. Letting D be a divisor, the current of integration [D] is given as

〈[D], u〉 :=

∫
D

u

for any smooth (n − 1, n − 1)-form u. Note that if s a holomorphic section of
L := OX(D) cutting the divisor D (i.e. (s) = D as mentioned in subsection 1.1.3),
and h is a hermitian metric on L with curvature θ, then

[D] = θ + ddc log |s|2h.

This follows from the Poincaré-Lelong equation: ddc log |f |2 = (f) for f holomorphic
function.

1.1.8 Non-pluripolar product and Monge-Ampère oper-
ator

The wedge product among currents is not always well-de�ned, but the authors in
[BEGZ10] found a way to de�ne the wedge product of closed and positive (1, 1)-
currents through the so-called non-pluripolar product . The term non-pluripolar
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means that such wedge product does not take mass on pluripolar sets, i.e. on Borel
sets locally contained in {u = −∞} for u local psh function.
The construction in [BEGZ10] relies on the work of Bedford, Taylor ([BT87]), where
the coarsest re�nement of the usual topology such that all plurisubharmonic func-
tions become continuous (pluri�ne topology) was introduced, and where the authors
de�ned the wedge product ddcu1∧· · ·∧ddcuk for u1, . . . , uk locally bounded psh func-
tions on a complex manifold. One main property of the Bedford-Taylor construction
is that it is local with respect to the pluri�ne topology, i.e.

1Udd
cu1 ∧ · · · ∧ ddcup = 1Udd

cv1 ∧ · · · ∧ ddcvp

if uj = vj on U pluri�ne open set. Imposing this property for unbounded psh
functions u1, . . . , up in [BEGZ10], the non-pluripolar product 〈ddcu1 ∧ · · · ∧ ddcup〉
is completely determined by

1⋂p
j=1{uj>−C}

〈 p∧
j=1

ddcuj
〉

= 1⋂p
j=1{uj>−C}

p∧
j=1

ddc max(uj ,−C)

for any C ∈ R since
⋂p
j=1{uj = −∞} is pluripolar. We recall that the maximum of

a �nite set of psh functions is psh.
The main problem for this construction is that the non-pluripolar product may not
have locally �nite mass as an example of Kiselman shows ([Kis84]), but on a com-
pact Kähler manifold X this cannot happen. More precisely given T1, . . . , Tp closed
and positive (1, 1)-currents, the non-pluripolar product 〈T1 . . . Tp〉 locally de�ned as
〈ddcu1∧· · ·∧ddcup〉 for local psh potentials u1, . . . , up has �nite mass over X, it does
not take mass over any pluripolar set, and it is a closed and positive (p, p)-current.
A principal role in this thesis is played by the Monge-Ampère operator. Assuming
ω Kähler, the Monge-Ampère operator is de�ned as MAω(u) := 〈(ω + ddcu)n〉 for
any u ∈ PSH(X,ω). When u ∈ C2 one has locally

MAω(u) =
n!

(2π)n
det
(∂2(ϕ+ u)

∂zj∂z̄k

)
in

2

dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n

where ω = ddcϕ. In particular this brief calculation explains the nomenclature
since MAω(·) represents the complex analog of the real Monge-Ampère operator
�rst studied by G. Monge in the 1780 and A. Ampère in the 1820.
It is also important to underline that

∫
X
MAω(u) =

∫
X
ωn for any u ∈ PSH(X,ω)∩

C2 as an immediate consequence of Stokes' Theorem, i.e. the Monge-Ampère mass
of smooth ω-psh functions is a cohomological quantity called volume (see also next
subsection). More generally one has

∫
X
MAω(u) ≤

∫
X
ωn since roughly speaking

the non-pluripolar product does not consider the mass contained in pluripolar sets.
Bedford and Taylor also proved that the Monge-Ampère operator is continuous
with respect to monotonic sequences, and this property keep holding for the non-
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pluripolar product if all elements in the sequence and the limit have full Monge-
Ampère mass, i.e. belong to

E(X,ω) :=
{
u ∈ PSH(X,ω) :

∫
X

MAω(u) =

∫
X

ωn
}
.

In the sequel we will omit the bracket notation for the non-pluripolar product to be
coherent with the notations used in the papers.

1.1.9 Singular metrics and volume

In this thesis particular importance is given to the notion of singular metrics of a
line bundle L introduced by J.P. Demailly in [Dem90]. Letting h∞ be a hermitian
metric on L with curvature θ, a singular metric on L is given as h = h∞e

−ϕ for
ϕ ∈ L1. When ϕ belongs to PSH(X, θ) the singular metric h is said positive and
its curvature θ + ddcϕ is a closed positive (1, 1)-current. Indeed there is a one-
one correspondence between positive singular metrics for L and PSH(X, θ), and all
closed and positive (1, 1)-currents representatives of c1(L) are given as curvatures of
positive singular metrics for L.
Thus the algebraic part of the pseudoe�ective cone E ⊂ H1,1(X,R) of all cohomology
classes which admits a closed and positive (1, 1)-currents is given by E ∩ NS(X)R
and coincides with the closure of the cone of all (numerical equivalence class of)
e�ective R-divisors. In fact any e�ective R-divisor D induces a singular metric with
curvature [D] on the associated R-line bundle L.
The interior of the pseudoe�ective cone is the big cone B whose cohomology classes
are characterized to admit a Kähler current as representative, i.e. a closed and
positive (1, 1)-current T such that T ≥ εω for ε > 0 small enough and ω �xed
Kähler form on X. Then the cone B ∩NS(X)R coincides with the cone generated
by all numerical equivalence classes of big divisors/line bundles, and an analog of
Kodaira's embedding theorem holds: X admits a big line bundle if and only if X is
birational to a projective manifold (i.e. X is Mosheizon). Indeed for any L→ X big
line bundle the space of global sections H0(X, kL) (using the additive notations for
the tensor product) has maximal growth, i.e. its dimension as vector space grows as
kn where n = dimX, and the quantity

VolX(L) = lim sup
k→∞

dimCH
0(X, kL)

kn/n!
∈ R>0

is called the volume of L→ X.
The normalization is chosen so that Vol Pn

(
OX(1)

)
= 1 since the space of all global

sections of OPn(k) := kOX(1) is isomorphic to the space of all homogeneous poly-
nomial of degree k in n + 1 variables. Note that in this case the volume coincides
with the top self-intersection

(
OPn(1)n

)
analytically described as

∫
X
θn when θ is

a smooth (1, 1)-form representative of c1
(
OPn(1)

)
. More generally if L is an ample

line bundle then Vol X(L) = (Ln) by asymptotic Riemann-Roch Theorem.
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To give a pluripotential description of Vol X(L) and to extend the notion of volume
to big/pseudoe�ective cohomology class, we �rst observe that, for θ smooth (1, 1)-
form, PSH(X, θ) has a natural partial order 4 given as u 4 v if u ≤ v + C for a
constant C ∈ R, i.e. the partial order is given comparing the singularities. The
function

Vθ := sup{u ∈ PSH(X, θ) : u ≤ 0}

is θ-psh function and the associated closed and positive (1, 1)-current Tmin := θ +
ddcVθ is said to have minimal singularities for clear reasons. If {θ} = c1(L) ∈
E ∩NS(X) for a pseudoe�ective line bundle L then

VolX(L) =

∫
X

Tnmin (1.6)

where the top wedge product on the right side of (1.6) is in the sense of the non-
pluripolar product. Thus the volume of a pseudoe�ective class α not necessarily
integral can be naturally de�ned as Vol X(α) :=

∫
X
Tnmin and one gets that Vol X(α) >

0 if and only if α is big.

1.1.10 Canonical divisor and volume forms

The canonical divisor KX possesses many clues about the geometry of X. Local
trivializations of the associated line bundle det(T ∗X), always denoted by KX , are
holomorphic (n, 0)-forms. In particular a positive metric h on ±KX naturally de-
termines a volume form µh given locally as

µh = in
2

e±φjdz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n

where φj = − log ||sj ||2h are the local weights de�ning h, i.e. sj are nowhere zero
holomorphic local sections of ±KX . For instance when KX is trivial there is a

nowhere zero global section s and this leads to a volume form dV = in
2

s ∧ s̄.
The �rst Chern class of the anticanonical bundle −KX is denoted with c1(X) and
it is said the �rst Chern class of X.

1.1.11 Kähler-Einstein metrics

A Kähler-Einstein metric h is a Kähler metric on X with associated Riemannian
metric g and fundamental form ω (see subsection 1.1.4) such that

Ric(g) = λω (1.7)

where Ric(g) is the Ricci curvature of g and λ ∈ R.
The Ricci curvature is given by taking the trace of the Riemannian curvature which
contains the information about how the manifold is curved. The Ricci curvature
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measures how much the volume form dVg on the manifolds di�ers from the standard
Euclidean volume form dVEucl. Indeed

dVg =
(

1− 1

6
Rjkx

jxk +O(||x||3)
)
dVEucl,

where Ric(g) =
∑2n
j,k=1 Rj,kdxj ∧ dxk in real coordinates. We also underline that

classical theorems in Riemannian geometry connect the global geometry of the man-
ifold to lower bounds of the Ricci curvature.
In Kähler geometry the Ricci form Ric (g) is a closed (1, 1)-form with cohomology
class c1(X). In fact

Ric(g) = −ddc log det(g)

which can be seen as the curvature of an hermitian metric on −KX . This important
remark has key consequences. First, the �rst Chern class must have a sign to give
a sense to (1.7), i.e. the search of Kähler-Einstein metrics can only be performed in
the three following cases:

i) KX trivial;

ii) KX ample;

iii) −KX ample.

The �rst case corresponds to λ = 0 and the problem reduces to �nd Ricci-�at
metrics. In the remaining cases the cohomology class of the Kähler form ω must be
proportional to c1(X), so up to rescaling the Kähler form we may suppose λ = ±1,
i.e. ±ω ∈ c1(X). In particular ω coincides with the curvature of a positive hermitian
metric on ∓KX . So for ω0 �xed Kähler form in ∓KX the problem to �nd a Kähler-
Einstein metric in (ii), (iii) is equivalent to �nd an element in

Hω0 := {u ∈ PSH(X,ω0) ∩ C∞(X) : ω0 + ddcu > 0},

i.e. a Kähler form ω = ω0 + ddcu in ±c1(X), such that

Ric(ω) = ±ω

where with obvious notation Ric (ω) := Ric(gω) for gω Riemannian metric associated
to ω.
As said in the prelude, in the case (i) the problem was completely solved by Yau
([Yau78]) as particular consequence of the resolution of Calabi's Conjecture. Namely
he proved that for any α ∈ K and for any ρ closed (1, 1)-form with cohomology class
c1(X) there exists an unique Kähler form ω in α such that Ric (ω) = ρ. In the last
�ve decades, manifolds with KX trivial have been denominated Calabi-Yau mani-
folds. If KX is ample then X is a manifold of general type, and there exists an unique
Kähler-Einstein metric ([Yau78], [Aub78]), i.e. there exists an unique ω Kähler form
in the cohomology class of KX such that Ric (ω) = −ω.
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Instead, in the Fano case the uniqueness is modulo the identity component of the au-
tomorphism group ([BM87]) while there are obstructions on the existence of Kähler-
Einstein metrics. For instance Matsushima in [Mat57] showed that a necessary
condition to the existence of Kähler-Einstein metrics is the reductiveness of the
automorphism group. Recently Chen, Donaldson, Sun ([CDS15]) proved that the
existence of Kähler-Einstein metrics for a Fano manifold is equivalent to an algebrico-
geometrical notion called K-(poly)stability (see next subsection).
As consequence of the classical Uniformization Theorem, any Riemann Surface (i.e.
a complex compact manifold of dimension 1) has a Kähler-Einstein metric. For
Kähler surfaces the obstruction found by Matsushima is also su�cient for the ex-
istence of Kähler-Einstein metric as proved by Tian ([Tian90]). For instance P2

admits a Kähler-Einstein metric, the Fubini-Study metric, while the blow-up at one
or at two distinct points of P2 does not.
In higher dimension the situation is much more complicated and already in dimen-
sion 3 there are Fano manifolds whose K-stability properties are unknown. In fact
detecting K-stability is very hard (see again next subsection), which is one of the
main motivation of the last two papers of this thesis and of future works.

1.1.12 Yau-Tian-Donaldson Conjecture

Given a polarization (X,L), i.e. an ample line bundle L over a projective variety X
(which might have some singularities), the Yau-Tian-Donaldson Conjecture states
that (X,L) is K-stable if and only if L → X admits a hermitian metric h whose
curvature ω determines a constant scalar curvature Kähler metric on X. The scalar
curvature of a metric is obtained as trace of the Ricci curvature. In particular any
Kähler-Einstein metric has constant scalar curvature, and when c1(X) has a sign
and c1(L) is proportional to c1(X) then it is not di�cult to prove that any constant
scalar curvature Kähler metric is Kähler-Einstein.
It took several years to give the actual notion of K-stability which was completed by
Tian in [Tian97] and Donaldson in [Don02]. It was inspired by Geometric Invariant
Theory, and involves the positivity of all the weights, called Donaldson-Futaki in-
variants, associated to test con�gurations (see below). The right de�nition is quite
technical and it is beyond the purpose of this Introduction, so we just give a sketchy
presentation.
Given an ample line bundle L→ X where X is just a projective variety, a test con-
�guration (X,L) for the pair (X,L) is an equivariant C∗-degeneration of the pair.
More precisely it is the data of a family p : X → C such that p−1(t) is isomorphic
to X for any t 6= 0 through the natural C∗-action, and of a C∗-equivariant line
bundle L → X such that (Xt,LXt) ' (X,L) for any t 6= 0 through the C∗-action
where we set Xt := p−1(t). Then the central �ber X0, which may be singular even
if X is smooth, is endowed with a C∗-action and the Donaldson-Futaki invariant of
(X,L), usually denoted DF (X,L), basically represents the Hilbert-Mumford weight
of the C∗-action. Then (X,L) is said K-semistable if DF (X,L) ≥ 0 for any test
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con�guration (X,L), while (X,L) is said to be K-stable if it is K-semistable and
the Donaldson-Futaki invariant vanishes only when the test con�guration is almost
trivial (i.e. the test con�guration is close to be the trivial product).
It is worth to underline that any test con�guration can be realized as an actual
C∗-degeneration of (X,L) into a �xed projective space PN , but the dimension N
can be arbitrarily big which suggests the di�culties in detecting which pairs (X,L)
are K-stable.
Although the de�nition of K-stability came from the problem to �nd special metrics
for line bundles L→ X, in the last decade it gains a great importance in Algebraic
Geometry because of its connection with the Minimal Model Program and with the
construction of moduli spaces.

1.1.13 Complex Monge-Ampère equations

Monge-Ampère equations arise in di�erent areas of Mathematics and in particular
in Optimal Transport Theory. This thesis principally concerns the study of complex
Monge-Ampère equations of the type{

MAω(u) = µ

u ∈ PSH(X,ω)
(1.8)

for µ positive Borel measure, where ω is a �xed Kähler form on a compact manifold
X and MAω(u) = (ω+ddcu)n is the Monge-Ampère operator (see subsection 1.1.8).
When the measure µ is smooth with total mass equal to

∫
X
ωn it makes sense to look

for a smooth solution, but in general weak solutions are requested to solve (1.8).
These equations, allowing also some twisting term on the right hand side, are
strongly related to the search of Kähler-Einstein metrics. In fact, assuming X
to be Calabi-Yau and ω Kähler, there exists f ∈ C∞ smooth function such that
Ric(ω) = ddcf while by de�nition

Ric(ω + ddcu) = Ric(ω)− ddc log
( (ω + ddcu)n

ωn

)
.

Thus since on a compact manifold any pluriharmonic function is constant, the search
of a Kähler Ricci-�at (1, 1)-form ω+ddcu is equivalent to solve the complex Monge-
Ampère equation {

MAω(u) = ef+aωn

u ∈ Hω

(1.9)

where a is a numerical constant given imposing the right total mass, i.e. a =
log
∫
X
ωn − log

∫
X
fωn. Yau showed the existence of an unique Kähler-Einstein

metric solving (1.9). Indeed replacing ef with any arbitrary smooth positive func-
tion, one obtains the pluripotential description of the Calabi's conjecture.
In the case ∓KX ample and ω with cohomology class ±c1(X), let f ∈ C∞ such that
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Ric(ω) = ±(ω + ddcf), i.e. f Ricci potential of ω. Then �nding a Kähler-Einstein
metric is equivalent to solve the complex Monge-Ampère equation{

MAω(u) = e±(f−u)ωn

u ∈ Hω.
(1.10)

Analytically the sign on the right hand side in (1.10) yields the possibility to use
the maximum principle to get a C0-estimate. It is in fact worth to underline that
the solution provided by Yau and by Aubin to the Kähler-Einstein problem in the
ample canonical line bundle used a continuity method (see subsection 1.4.2) with a
priori estimates, while in the Fano case the same method does not apply since the
C0-estimate does not always hold.

1.2 Paper I

Paper I regards the data of a big line bundle L over a projective manifold X and of
a choice of N distinct points on X.

1.2.1 Multipoint Seshadri constant

J.P. Demailly in [Dem90] introduced a way to measure the positivity of a nef line
bundle L at a point x of a projective manifold X, the Seshadri constant of L at x:

εS(L;x) := inf
L · C

multxC

where the in�mum is over all irreducible curves passing through x. Equivalently
εS(L;x) = sup{t > 0 : p∗L − tE is nef}, where p : BlxX → X is the blow-up at x
while E is the exceptional divisor. Note in particular that the Seshadri constant is
a cohomological invariant and that necessarily εS(L;x) ≤ n

√
(Ln) for any ample line

bundle. Moreover it is clear that εS(L;x) ≥ 0 and that the inequality is strict if L
is ample (see also subsection 1.1.5). In fact the Seshadri criterion can be phrased as
infx∈X εS(L;x) > 0 if and only if L is ample.
The Seshadri constant can be also described as the biggest asymptotic order at x
which can be completely prescribed by the ring R(X,L) :=

⊕
k∈NH

0(X, kL), i.e.
in terms of jets. Namely, for any k ∈ N let sk(x) ∈ N be the biggest natural number
such that all jets of order less or equal to sk(x) can be prescribed by global sections
in H0(X, kL). Then εS(L;x) = limk→∞ sk(x)/k.
This last interpretation easily generalizes to big line bundles. In fact Nakamaye in
[Nak03] de�ned the moving Seshadri constants for big line bundles, which can be
compute in terms of jets as in the nef case.
Considering more (distinct) points x1, . . . , xN , the analog of the Seshadri constant

20 1.2. PAPER I



CHAPTER 1. INTRODUCTION 21

is the multipoint Seshadri constant

εS(L;x1, . . . , xN ) := inf
L · C∑N

j=1 multxjC

where the in�mum is over all irreducible curves passing at least one point among
x1, . . . , xN . Similarly to the one point case, it describes the positivity of the nef line
bundle L at the points chosen and εS(L;x1, . . . , xN ) = sup{t ≥ 0 : p∗L− E is nef}
where p : Bl{x1,...,xN}X → X is the blow-up at {x1, . . . , xN} while E :=

∑N
j=1 Ej is

the sum of the exceptional divisors. This yields εS(L;x1, . . . , xN ) ≤ n
√

(Ln)/N . As
before the multipoint Seshadri constant also coincides with the biggest asymptotic
order at x1, . . . , xN which can be prescribed by R(X,L), and this jets interpretation
gives an equivalent version of the moving multipoint Seshadri constant for big line
bundles.
Try to compute and/or to estimate the multipoint Seshadri constants is of consider-
able importance in Algebraic Geometry since there are several renowned conjectures
and theories attached to this invariant. A classical example is given by the Nagata's
Conjecture, stated by M. Nagata in 1958 ([Nag58]). It is equivalent to prove that the
multipoint Seshadri constant of OP2(1) at N ≥ 9 points in very general position is
maximal, i.e. εS

(
OP2(1);N

)
= 1/

√
N . Recall that εS(L; ·) is lower-semicontinuous

for any nef line bundle L and its supremum is reached outside a countable union
of proper subvarieties, i.e. when the points are in very general position. It is then
reasonable to set εS(L;N) where the N points are in very general position.

1.2.2 Toric manifolds

A toric manifold of dimension n is a complex manifold which has an action (C∗) y X
with a dense open orbit where (C∗)n represents the n-dimensional complex torus.
When X ⊂ PN is also projective, it is given as compacti�cation of the (C∗)n-
action which lifts to the line bundle L := OPN (1)|X , and many of the geometrical
properties of (X,L) are encoded in a Delzant polytope PL ⊂ Rn, i.e. in a convex
hull of a �nite number of points in Zn such that any vertex has exactly n edges
starting from it. Indeed there is a 1-1 correspondence between Delzant polytopes
and polarized toric manifolds (X,L), namely X toric manifolds and L torus-invariant
line bundles. More precisely given a Delzant polytope P , for any k ∈ N de�ne the
map fkP : (C∗)n −→ PNk−1 as fkP (z) := [zα1 : · · · : zαNk ] where α1, . . . , αNk is an
enumeration of all points in kP ∩Zn and where zαj :=

∏n
k=1 z

αj,k
k . Then for k � 1

big enough, fkP produces an embedding and a polarized toric manifold (XP , LP ) by
compacti�cation where clearly LP = O

PNk−1(1)|XP . Observe also that

H0(XP , kLP ) '
⊕

α∈kP∩Zn
〈zα〉,
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namely there exists a basis {sα}α∈kP∩Zn such that sα/sβ = zα−β on the torus Cn.
In particular

n!VolRn(P ) = VolXP (LP ). (1.11)

as a consequence of a result of Khovanskii on semigroups ([Kho93]) and of the
de�nition of the volume of a line bundle (subsection 1.1.9). See [Ful2] and [Cox] to
know more about toric varieties.

1.2.3 Okounkov bodies

Passing from a polarized toric manifold (XP , LP ) to its Delzant polytope P transfers
many abstract geometric questions to convex geometric problems. A. Okounkov in
[Oko96], [Oko03] found a natural way to mimic this nice correspondence to general
polarized projective manifold (X,L). Namely to any (X,L) is associated a convex
body ∆(L) ⊂ Rn, now called Okounkov body , where n is the dimension of X, which
is basically a simpli�ed image of (X,L).
The construction starts �xing a point x ∈ X and an admissible �ag centered at
x or, equivalently, holomorphic coordinated on a trivializing open set U centered
at x. Letting t : U → L be a nowhere zero local section of L, then any section
s ∈ H0(X, kL) locally writes as s|U = ftk for f ∈ OX(U). The Okounkov body
∆(L) is then de�ned as

∆(L) :=
⋃
k≥1

{ν(s)

k
: s ∈ H0(X, kL) \ {0}

}
where ν(s) := minlex{α ∈ Nn : aα 6= 0where f =

∑
α∈Nn aαz

α}, i.e. ν is a
valuation which associates to any section its leading term exponent at x with respect
to the lexicographical order. Note that ∆(L) does not depend on the local section
t chosen, but it depends on the choice of x and of the holomorphic coordinates.
However

n!VolRn
(
∆(L)

)
= VolX(L), (1.12)

which extends (1.11). Indeed the Okounkov body essentially comes back to the
polytope when (X,L) is a toric polarized manifold if the point chosen is a �xed
point with respect to the torus action.
The Okounkov bodies' construction works in the more general setting of big line
bundles as pointed out in [LM09], [KKh12]. Moreover ∆(L) is a cohomological
invariant and (1.12) together with the variation of Okounkov bodies on the big
cone gives the log-concavity of the volume as consequence of the Brunn-Minkoswki
inequality which was the main reason of A. Okounkov to introduce these invariants.
The volume of a line bundle is clearly a global invariant, but the local aspect of the
construction leads to the natural question if ∆(L) encodes also local properties of
(L→ X,x). Firstable observe that changing order by an unitary trasformation, the
volume of the Okounkov body remains constant although the shape of ∆(L) may
mutate. Küronya-Lozovanu proved in [KL15] and in [KL17] that, considering the
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degree-lexicographic order, the Okounkov body is a �ner invariant that the Seshadri
constant of L at x since

εS(L;x) = sup{t ≥ 0 : tΣn ⊂ ∆(L)}

where Σn is the unit n-simplex.
Finally recall that Witt Nyström in [WN15] showed how a torus-invariant domain
D(L) ⊂ Cn, constructed from ∆(L), equipped with the standard Euclidean metric,
approximates (X,L) in the sense that for any relatively compact open set U ⊂ D(L)
there exists an holomorphic embedding f : U → X centered at x such that the
pushforward of the standard Euclidean metric extends to a metric on L and such
that the volume of D(L) is equal to the volume of L (a similar result holds in the
big case). His result should be compared to the well-known characterization of the
Seshadri constant εS(L;x) as the supremum of all radii r such that there exists an
holomorphic embedding f : Br(0)→ X centered at x of the Euclidean complex ball
of radius r into X with the properties that the standard Euclidean metric extends
to a hermitian metric on L.

1.2.4 Main results

Given N di�erent points x1, . . . , xN on a projective manifold X and a big line
bundle L, it is natural to wonder if it possible to construct N Okounkov bodies
∆1(L), . . . ,∆N (L) which encodes global invariant as the volume and local invariant
as the multipoint Seshadri constant εS(L;x1, . . . , xN ). This is part of the content of
Paper I.
More precisely given (L→ X;x1, . . . , xN ) as above, the multipoint Okounkov bodies
are de�ned as

∆j(L) :=
⋃
k≥1

{νxj (s)
k

: s ∈ Vk,j
}
⊂ Rn

where Vk,j := {s ∈ H0(X, kL) : νxj (s) < νxi(s) for any i 6= j}, and νx1 , . . . , νxN are
valuations de�ned as in the one-point case considering the leading term exponents
at x1, . . . , xN and > is the lexicographic order (the valuations may also be more
general).
Note that there may be sections which are not associated to any multipoint Okounkov
body since ∆j(L) is obtained considering all sections whose leading term exponent
at xj is strictly smaller than the leading term exponent at the other points. This is
the main technical problem in proving the following result.

Theorem A (Theorem A of Paper I). Let L be a big line bundle. Then

n!

N∑
j=1

VolRn
(
∆j(L)

)
= VolX(L).
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Di�erently from the one-point case, it may happen that some of the multipoint
Okounkov bodies has interior not-empty or it is empty. However they are numerical
invariants and they well-behave under variations of the big cohomology class.
Moreover these multipoint Okounkov bodies connect the geometry of (X,L) to the
notion of Kähler packing .

Theorem B (Theorem C of Paper I) . Let L be a big line bundle and let x1, . . . , xN be
N distinct points. Then there exist N torus-invariant domains D1(L), . . . , DN (L) ⊂
Cn such that {

(
Dj(L), ωst

)}
j=1,...,N

packs perfectly into (X,L). Namely for any
family of relatively compact open sets Uj b Dj(L) there exists an holomorphic embed-
ding f :

⊔N
j=1 Uj → X and a Kähler form ω lying in c1(L) such that f∗ωst = ω|f(Uj)

for any j = 1, . . . , N . Moreover
∑N
j=1 VolCn

(
Dj
)

= VolX(L).

A similar result holds for big line bundles.
As a consequence, the multipoint Seshadri constant εS(L;x1, . . . , xN ) can be de-
scribed as the supremum of all radii r such that there exists an holomorphic em-
bedding f :

⊔N
j=1 Br(0) → X centered at x1, . . . , xN with the properties that the

standard Euclidean metric extends to a hermitian metric on L. In fact the domains
Dj(L) in Theorem B are de�ned as Dj(L) := µ−1

(
∆j(L)ess

)
where µ : Cn → Rn,

µ(z1, . . . , zn) := (|z1|2, . . . , |zn|2) and where ∆j(L)ess is the essential part of ∆j(L)
([WN15]) which coincides with the interior of ∆j(L) as subset of Rn≥0 with its in-
duced topology when L is ample. While it is possible to read the multipoint Seshadri
constants directly from the shape of the multipoint Okounkov bodies ∆j(L) when
the latter are constructed considering the degree-lexicographic order as the next
result recalls.

Theorem C (Theorem B of Paper I) . Let L be an ample line bundle and let
x1, . . . , xN be N distinct points. Let also ∆1(L), . . . ,∆N (L) be the multipoint Okounkov
bodies constructed considering the degree-lexicographic order. Then

εS(L;x1, . . . , xN ) = sup{t ≥ 0 : tΣn ⊂ ∆j(L)ess for any j = 1, . . . , N}

where Σn is the unit n-simplex.

As said previously, the multipoint Seshadri constant is connected to several conjec-
tures like the Nagata's conjecture. For surfaces a more precise description of the
shape of the multipoint Okounkov bodies is provided. Finally in the toric case, in
many di�erent situations, the multipoint Okounkov bodies can be directly recovered
subdividing the polytope.

1.3 Paper II - III

In these two papers (X,ω) is a compact Kähler manifold.
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1.3.1 Variational approach

A useful way to deal with complex Monge-Ampère equations is through variational
approaches. More precisely to study equations of the type{

MAω(u) = µ

u ∈ E(X,ω),
(1.13)

for µ such that µ(X) =
∫
X
ωn, recalling that E(X,ω) is the set of all ω-psh functions

with full Monge-Ampère mass, one de�nes a functional Fµ whose the critical points
of Fµ are solutions of (1.13). Obviously Fµ depends on µ, but it would be natural
to split it as sum of two functionals whose di�erentials coincide respectively with
the right and with the left hand in (1.13). Indeed the Monge-Ampère measure of a
smooth ω-psh function can be described as di�erential of a well-known functional E
called Monge-Ampère energy, which was �rst introduced in [Aub84], [Mab86]. It is
de�ned as

E(u) :=
1

n+ 1

n∑
j=0

∫
X

u(ω + ddcu)j ∧ ωn−j .

Thanks to Bedford-Taylor theory, it is possible to extend it to locally bounded ω-psh
functions, i.e. to elements in PSH(X,ω) with minimal singularities. Thus since E
is non decreasing, it is natural to set

E(u) := inf{E(v) : v ∈ PSH(X,ω)with minimal singularities, v ≥ u}.

One problem with this variational approach is that the set

E
1(X,ω) := {u ∈ E(X,ω) : E(u) > −∞}

is properly contained in E(X,ω). Therefore we are actually restricting the set of
solution in (1.13) from E(X,ω) to E1(X,ω). Then if u ∈ E1(X,ω) one gets

d

dt
E
(
Pω(u+ tf)

)
|t=0

=

∫
X

fMAω(u) (1.14)

for any f ∈ C0(X), where

Pω(u+ tf) :=
(

sup{v ∈ PSH(X,ω) : v ≤ u+ tf}
)∗

is a Perron-Bremermann envelope. Here the star is for the upper semicontinuous
regularization.
Then, de�ning the action Lµ(u) :=

∫
X
udµ and V :=

∫
X
ωn, the critical points, when

exist, of the translation invariant functional Fµ = E − V Lµ solve (1.13) as showed
in [BBGZ13]. More precisely, setting E1

norm(X,ω) := {u ∈ E1(X,ω) : supX u = 0},{
MAω(u) = µ

u ∈ E1
norm(X,ω)

(1.15)
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admits an unique solution if and only if µ ∈ M1(X,ω) := {V µ : µ is a probability
measure with E∗(µ) < +∞} where

E∗(µ) := sup
u∈E1(X,ω)

Fµ(u) < +∞

is basically the Legendre transform of the Monge-Ampère energy. There are some
key points in their proof. First the continuity of Lµ with respect the weak topology,
which yields the upper-semicontinuity of Fµ since the Monge-Ampère energy was
known to be upper-semicontinuity. Second the fact that the boundedness of Fµ
from above is equivalent to the coercivity of Fµ with respect to the J-functional
J(u) := −E(u) +

∫
X
uωn ([Aub84]), namely the existence of A > 0, B ≥ 0 such that

Fµ(u) ≤ −AJ(u) +B.

Note that to prove this last property the authors used the convexity of Lµ, i.e. the
concavity of Fµ (E is concave).
The sets E1(X,ω) and M1(X,ω) are then endowed with two natural strong topologies
given as the coarsest re�nements of the weak topologies such that the energies E, E∗

become continuous. In fact as showed in [BBEGZ19] the Monge-Ampère operator
produces an homeomorphism

MAω :
(
E

1
norm(X,ω), strong

)
→
(
M

1(X,ω), strong
)
. (1.16)

Recall that the Monge-Ampère operator is not continuous with respect to the weak
topology even on E1(X,ω).
Finally it is remarkable to observe that a variational approach to solve complex
Monge-Ampère equations was already settled in [Käh33].

1.3.2 L1-metric geometry

The space of Kähler metrics Hω possesses an in�nite dimensional Riemannian struc-
ture as showed in the pioneering works of Semmes ([Sem92]) and Donaldson ([Don99]).
It is given by

(f, g)ϕ :=
(∫

X

fg(ω + ddcϕ)n
)1/2

for any ϕ ∈ Hω and any f, g ∈ TϕHω ' C∞(X). It is important to underline
that the geodesics are given as solutions of homogeneous complex Monge-Ampère
equations (see [Chen00a]). More precisely given ϕ1, ϕ2 ∈ Hω the weak geodesic
joining ϕ1, ϕ2 is the function

Φ(z, t) :=
(

sup
{
U ∈ PSH(X × S, π∗Xω) : lim sup

t→0+

U(·, t) ≤ ϕ1 and

lim sup
t→1−

U(·, t) ≤ ϕ2

})∗
(1.17)
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where S := {t ∈ C : 0 < Re t < 1} and where πX : X × S → X is the usual
projection. These geodesics solve homogeneous Monge-Ampère equations on X ×
S, but, although they always exist, they may be just C1,1. Moreover Hω is not
complete. Therefore in [Dar17] Darvas described the completion of Hω endowed with
the Riemannian structure as the second energy class E2(X,ω), which in particular
becomes a geodesic metric space.
Anyway in this thesis the main interest is on the metric structure on Hω given by
the Finsler metric

|f |1,ϕ :=

∫
X

|f |(ω + ddcϕ)n

for any ϕ ∈ Hω and f ∈ TϕHω. This structure was introduced in [Dar15] where
the author showed that its metric completion coincides with E1(X,ω) and that the
associated distance can be described as

d(u1, u2) = E(u1) + E(u2)− 2E
(
Pω(u1, u2)

)
. (1.18)

for any u1, u2 ∈ E1(X,ω). Here Pω(u1, u2) :=
(

sup{v ∈ PSH(X,ω) : v ≤
min(u1, u2)}

)∗
is the largest ω-psh which is smaller than u1, u2 (recall that gen-

erally the minimum between two ω-psh is not ω-psh). The closed formula (1.18) is
very useful to study

(
E1(X,ω), d

)
through pluripotential theory exploring the prop-

erties of the Monge-Ampère energy. Moreover the weak geodesics (1.17) are metric
geodesics in

(
E1(X,ω), d

)
, i.e. for any two potentials u1, u2 ∈ E1(X,ω) there is a

unique weak geodesic joining u1, u2. However
(
E1(X,ω), d

)
is not a CAT (0)-space

since by (1.18) it immediately follows that

d(u1, u2) = d
(
u1, Pω(u1, u2)

)
+ d
(
Pω(u1, u2), u2

)
.

A great advantage to work with
(
E1(X,ω), d

)
is that its metric topology (usually

called L1-metric topology for obvious reasons) coincides with the strong topology
of [BBEGZ19] described in the previous subsection. In particular the coercivity
measured through the J-functional can be replaced by the d-coercivity after an
suitable normalization. In fact there is a constant C ∈ R such that

d(u, 0)− C ≤ J(u) ≤ d(u, 0)

for any u ∈ E1
norm(X,ω).

1.3.3 Convergence of metric spaces

The main reference for this subsection is [BBI].
Given two subset A,B of a metric space (X, d) there is a well-known natural distance
between A,B given as

dH(A,B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
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and it is called the Hausdor� distance. Note that d(A,A) = 0, indeed all closed sets
of X endowed with the Hausdor� distance produces a metric space.
This distance suggests a way to measure how much two metric spaces di�ers from
being isometric, i.e. the Gromov-Hausdor� distance between metric spaces. The
idea is to embed (X, dX), (Y, dY ) isometrically into a third metric space (Z, dZ) and
compute the Hausdor� distance between the images of X and of Y . Obviously this
distance depends on the metric space (Z, dZ) and on the embeddings chosen, so one
de�nes the Gromov-Hausdor� as in�mum among all possible choices, i.e.

dGH(X,Y ) := inf{ddZH (X,Y ) : (X, dX), (Y, dY ) ⊂ (Z, dZ)}

where ddZH denotes the Hausdor� distance on (Z, dZ). It is then an easy exercise to
prove that one can restrict to consider Z := X

⊔
Y endowed with a distance dZ such

that dZ|X = dX , dZ|Y = dY . Moreover dGH descends to a distance on the set of all
isometry classes of compact metric spaces, and a sequence of compact metric spaces
{(Xk, dXk )}k∈N is said to converge in the Gromov-Hausdor� sense to a metric space
(X, dX) if dGH(Xk, X)→ 0 as k →∞. Note that although this convergence is useful
for compact metric spaces, it becomes too strong for non-compact metric spaces. For
instance considering Xk = Bk(0) ⊂ Rn with the Euclidean distance, it easily follows
that dGH(Xk, Xk+1) = 1 for any k ∈ N while intuitively (Xk, dEucl) converges
to (R, dEucl). Therefore for non-compact metric spaces it is more convenient to
consider the pointed Gromov-Hausdor� convergence . For sequences of pointed length
metric spaces this notion of convergence requires the convergence of balls centered
at the points for any �xed radius. Namely a sequence of pointed length metric
spaces {(Xk, pk, dXk )}k∈N converges in the Gromov-Hausdor� sense to a pointed
length metric space (X, p, dX) if for any r > 0, dGH

(
Br(pk), Br(p)

)
→ 0 as k →∞.

Alternatively, when the metric spaces considered are locally compact, one can de�ne
a pointed Gromov-Hausdor� distance for pointed compact metric spaces as

dGH
(
(X, p, dX), (Y, q, dY )

)
:= inf

{
ddZH (X,Y )+dZ(p, q) : (X, dX), (Y, dY ) ⊂ (Z, dZ)

}
,

and then a sequence (Xk, pk, dXk ) converges in the pointed Gromov-Hausdor� sense
to (X, p, dX) if and only if

(
Br(pk), pk

)
converges in the pointed Gromov-Hausdor�

sense to
(
Br(p), p

)
for any r > 0 �xed.

Observe that the pointed Gromov-Hausdor� convergence is a re�nement of the
Gromov-Hausdor� convergence in the sense that if (Xk, dXk ), (X, dX) are compact

sets then (Xk, pk, dXk )
p−GH−→ (X, p, dX) implies (Xk, dXk )

GH−→ (X, dX) while vice

versa if (Xk, dXk )
GH−→ (X, dX) and p ∈ X then there exists a sequence pk ∈ Xk such

that (Xk, pk, dXk )
p−GH−→ (X, p, dX).

Finally recall that the morphisms in the category of metric spaces are given by short
maps, i.e. 1-Lipschitz maps.

28 1.3. PAPER II - III



CHAPTER 1. INTRODUCTION 29

1.3.4 Relative setting

Some constraints may be requested on the behavior of canonical metrics. Often this
reduces to solve complex Monge-Ampère equations with prescribed singularities , i.e.{

MAω(u) = µ

u ∈ E(X,ω, ψ)
(1.19)

where µ is a positive non-pluripolar measure, ψ ∈ PSH(X,ω) represents the pre-
scribed singularities and similarly to the absolute setting

E(X,ω, ψ) :=
{
u ∈ PSH(X,ω) : u 4 ψ,

∫
X

MAω(u) =

∫
X

MAω(ψ) =: Vψ
}

is the set of all ω-psh functions more singular than ψ with relative full Monge-Ampère
mass. These spaces were introduced in [DDNL18] where the authors extended to
the ψ-relative setting many known results of the absolute setting (see in particular
[BEGZ10]). A key point in their theory is the fact that the Monge-Ampère mass
respect the partial order 4 given by the singularities, i.e.

u 4 v =⇒
∫
X

MAω(u) ≤
∫
X

MAω(v)

as fully showed in [WN17]. In [DDNL18] a deep investigation of (1.19) were pre-
sented and the authors found out that a necessary assumption to make (1.19) always
solvable, under the hypothesis µ(X) = Vψ, is that ψ must be a model type envelope
(as called in Paper II), i.e.

ψ =
(

lim
C→∞

Pω(ψ + C, 0)
)∗
. (1.20)

The right hand in (1.20) is brie�y denoted as Pω[ψ]. More generally for a couple of
ω-psh functions u, v, the function

Pω[u](v) :=
(

lim
C→∞

Pω(u+ C, v)
)∗

is the largest ω-psh function which is smaller that v and more singular than u, and
Pω[u] := Pω[u](0).
The authors in [DDNL18] also de�ned the ψ-relative Monge-Ampère energy on the
set PSH(X,ω, ψ) := {u ∈ PSH(X,ω) : u 4 ψ} as

Eψ(u) :=
1

n+ 1

n∑
j=0

∫
X

(u− ψ)(ω + ddcu)j ∧ (ω + ddcψ)n−j

if u−ψ is globally bounded, i.e. if u has ψ-relative minimal singularities, and, using
the monotonicity property, as

Eψ(u) := inf{Eψ(v) : v ∈ PSH(X,ω, ψ)with ψ-relative minimal singularites , v ≥ u}
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otherwise. It is then naturally de�ned the set

E
1(X,ω, ψ) :=

{
u ∈ E(X,ω, ψ) : Eψ(u) > −∞

}
,

and Eψ : E1(X,ω, ψ)→ R keeps having the Monge-Ampère measure as di�erential,
i.e. the ψ-relative analog of (1.14) holds.

1.3.5 Main results

In Papers II, III letting ψ be a �xed model type envelope with non-zero total mass
Vψ the set E1(X,ω, ψ) is endowed with a complete metric structure and the home-
omorphism (1.16) is extended to the relative setting. More precisely, de�ning the
ψ-relative energy E∗ψ on the set of all probability measures as

E∗ψ(µ) := sup
u∈E1(X,ω,ψ)

Fµ,ψ(u)

where Fµ,ψ := Eψ −VψLµ and the action Lµ is extended to PSH(X,ω) basically as
Lµ(u) :=

∫
X

(u− Pω[u])dµ, the set

M
1(X,ω, ψ) := {Vψµ : µ is a probability measure with E∗ψ(µ) < +∞}

has a natural strong topology given as the coarsest re�nement of the weak topology
such that E∗ψ becomes continuous.

Theorem D (Theorem A of Paper II, Theorem A of Paper III) . Let ψ ∈ PSH(X,ω)
be a model type envelope with Vψ > 0 and let

d(u, v) := Eψ(u) + Eψ(v)− 2Eψ
(
Pω(u, v)

)
.

Then
(
E1(X,ω, ψ), d

)
is a complete metric space and the Monge-Ampère operator

produces an homeomorphism

MAω :
(
E

1
norm(X,ω, ψ), d

)
→
(
M

1(X,ω, ψ), strong
)

(1.21)

where E1
norm(X,ω, ψ) := {u ∈ E1(X,ω, ψ) : supX u = 0}.

As proved in Paper III the metric topology on
(
E1(X,ω, ψ), d

)
is a strong topol-

ogy in the sense of subsection 1.3.1. Indeed it coincides with the coarsest re-
�nement of the weak topology such that the energy Eψ becomes continuous and
the set Pω[ψ](Hω) is strongly dense. The main di�culties in Theorem D is on
showing the homeomorphism (1.21). The bijectivity is an adaptation of the vari-
ational approach to the relative setting since a critical point of Fµ,ψ solves (1.19),
while to prove the bicontinuity there are some deeper di�erences with respect to
the absolute setting. Technically a key point in the absolute setting is that any
potential v ∈ E1(X,ω) can be approximated with a decreasing sequence of ω-
psh continuous functions vj inside the class E1(X,ω), and this leads to the con-
tinuity of the action M1(X,ω) 3 MAω(u) →

∫
X
vMAω(u) when restricted to
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M1
C(X,ω) := {V µ ∈M1(X,ω) : E∗(µ) ≤ C} for any C ∈ R �xed. Indeed such map

turns out to be the uniform limit of the maps M1
C(X,ω) 3MAω(u)→

∫
X
vjMAω(u)

which are continuous by duality. This property does not a priori hold anymore
in the relative setting, obviously considering

∫
X

(v − ψ)MAω(u). In fact although
Pω[ψ](·) : E1(X,ω)→ E1(X,ω, ψ) is a projection with many nice properties it is still
not clear if Pω[ψ](u)− ψ is continuous for any u ∈ PSH(X,ω) ∩ C0(X).

It is then natural to wonder if it is possible to glue together di�erent spaces
(
E1(X,ω, ψ), d

)
into an unique metric space, whose topology is a strong topology connected to the
Monge-Ampère operator and hence to the stability of solutions of complex Monge-
Ampère equations. Indicating with M the set of all model type envelopes, and with
M+ its subset of all elements with non-zero total Monge-Ampère mass, one has
E1(X,ω, ψ1) ∩ E1(X,ω, ψ2) = ∅ for any ψ1, ψ2 ∈ M+ but they may have same total
mass Vψ1 = Vψ2 . Thus, according to the homeomorphism (1.21) it is natural to
consider totally ordered sets A ⊂M+.

Theorem E (Theorem B of Paper II) . Let A ⊂M+ be totally ordered. Then

XA :=
⊔
ψ∈A

E
1(X,ω, ψ)

is endowed with a complete distance dA which restricts to d on E1(X,ω, ψ) for any
ψ ∈ A.

Observe that M ⊂ {u ∈ PSH(X,ω) : supu = 0} is weakly closed, so A ⊂ M,
but the minimum element ψmin of A may have zero mass. In this case the set
E1(X,ω, ψmin) = PSH(X,ω, ψmin) is identi�ed with a singleton Pψmin since Eψmin ≡
0 by de�nition. The construction of the distance dA of Theorem E then relies on
the properties of the projection Pω[·](·). Indeed if ψ1 4 ψ2 4 ψ3 then

1. Pω[ψ1]
(
Pω[ψ2](u)

)
= Pω[ψ1](u) ∈ E1(X,ω, ψ1) for any u ∈ E1(X,ω, ψ3);

2. ||Pω[ψ1](u) − Pω[ψ1](v)||L∞ ≤ ||u − v||L∞ for any u, v ∈ E1(X,ω, ψ2) such
that u− v is globally bounded;

3. d
(
Pω[ψ1](u), Pω[ψ1](v)

)
≤ d(u, v) for any u, v ∈ E1(X,ω, ψ2).

It seems then natural to de�ne a distance dA whose value at two potentials u ∈
E1(X,ω, ψ1), v ∈ E1(X,ω, ψ2) is bigger than d

(
u, Pω[ψ1](v)

)
and of d

(
w, v

)
if Pω[ψ1](w) =

u. So, using the fact that Vψ1 < Vψ2 if ψ1, ψ2 ∈ M+, ψ1 4 ψ2, a natural de�nition
of dA(u, v) would be

d
(
u, Pω[ψ1](v)

)
+ sup
{w∈E1(X,ω,ψ2) :Pω [ψ1](w)=u}

{
d(w, v)−d

(
u, Pω[ψ1](v)

)}
+Vψ2−Vψ1 ,

(1.22)
but there are some problem in this de�nition. First, not any element in E1(X,ω, ψ1)
is necessarily given as projection of elements in E1(X,ω, ψ2), thus one �rst need
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to de�ne the distance dA on a smaller dense subset and then to recover XA as
completion. Second, the supremum in (1.22) is not a priori �nite and one may
try to pick an element w at minimum distance with respect to ψ2 but even in this
case such supremum is very unstable since the space

(
E1(X,ω, ψ2), d

)
is not locally

compact. Therefore the idea is to adapt (1.22) using strongly compact sets given by
the entropy . More precisely for any C ∈ R the set

KC :=
{
ϕ ∈ E

1(X,ω) : max
(
| sup
X
ϕ|, Hωn/V (MAω(ϕ)/V )

)
≤ C

}
is strongly compact in E1(X,ω) as proved in [BBEGZ19] where for any couple of
probability measure µ, ν the entropy of ν with respect to µ is given as

Hµ(ν) :=

∫
X

f log fdµ

if ν is absolutely continuous with respect to µ with density f such that f log f ∈
L1(µ), and as Hµ(ν) := +∞ otherwise. By the Lipschitz property 3 od the distance
d stated above, for any ψ ∈ M the set PC(X,ω, ψ) := Pω[ψ](KC) is compact in(
E1(X,ω, ψ), d

)
and

P(X,ω, ψ) :=
⋃
C∈R

PC(X,ω, ψ)

includes Pω[ψ](Hω). Thus for u ∈ P(X,ω, ψ1), v ∈ P(X,ω, ψ2), ψ1 4 ψ2, one de�nes

d̃A(u, v) := d
(
u, Pω[ψ1](v)

)
+ sup

{
d(a, b)− d

(
Pω[ψ1](a), Pω[ψ1](b)

)}
+ Vψ2 − Vψ1

where the supremum is over a, b ∈ Pmax(C1,C2)(X,ω, ψ2) where C1, C2 are respec-
tively the minimum positive values such that u ∈ PC1(X,ω, ψ1), v ∈ PC2(X,ω, ψ2).
Anyway d̃A barely satis�es the triangle inequality, so with the usual trick dA will be
given on

⊔
ψ∈A P(X,ω, ψ)×

⊔
ψ∈A P(X,ω, ψ) as in�mum of the sum of the value d̃A

over all chains, i.e.

dA(u, v) := inf
{u=w0,...,wm=v}

m−1∑
j=0

d̃A(wj , wj+1).

Then to conclude the proof of Theorem E it remains to prove that dA is a distance
which restrict to d over P(X,ω, ψ) for any ψ ∈ A and then to check that its comple-
tion coincides with XA.

As consequence of Theorem E, given a decreasing sequence {ψk}k∈N ⊂ M+ con-
verging to ψ ∈ M+, the sequence of metric spaces

(
E1(X,ω, ψk), d

)
approximates(

E1(X,ω, ψ), d
)
. Indeed Theorem C in Paper II shows that the convergence holds

in a compact pointed Gromov-Hausdor� sense. This new type of convergence mim-
ics the characterization of the pointed Gromov-Hausdor� convergence described in
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subsection 1.3.3 replacing the sequence of balls with the compact sets given as pro-
jection of element with bounded entropy. In fact since

(
E1(X,ω, ψ), d

)
is not locally

compact the pointed Gromov-Hausdor� still seems a too strong convergence. Fur-
thermore the projection maps Pi,j : Pω[ψj ](·) :

(
E1(X,ω, ψi), d

)
→
(
E1(X,ω, ψj), d

)
for i ≤ j produce a direct system in the category of metric space as immediate con-
sequence of the contraction property of d, and the space

(
E1(X,ω, ψ), d

)
basically

coincides with the direct limit of such direct system (Theorem D in Paper II).
In Paper III it is then shown that the metric topology is a strong topology since it
coincides with the coarsest re�nement of the weak topology such that E·(·) becomes
continuous. Namely {uk}k∈N ⊂ XA converges to u ∈ XA in

(
XA, dA

)
if and only

if uk → u weakly and EPω [uk](uk) → EPω [u](u). In this case we say that uk → u
strongly, and we refer to the paper for the natural de�nition of the weak conver-
gence to the point Pψmin in the case Vψmin = 0. Note in particular that the strong
convergence does not depend on the set A chosen. In fact endowing the set

YA :=
⊔
ψ∈A

M
1(X,ω, ψ)

with its natural strong topology given as the coarsest re�nement of the weak topology
such that E∗ψ becomes continuous, the main theorem of Paper III is the following.

Theorem F (Theorem B, Paper III) . Let A ⊂ M+ be a totally ordered set. Then
the Monge-Ampère operator

MAω :
(
XA,norm, dA

)
→
(
YA, strong

)
is an homeomorphism where with obvious notations XA,norm :=

⊔
ψ∈A E1

norm(X,ω, ψ).

The proof of this Theorem is obviously a bit more involved with respect to that of
(1.21), but the idea is basically the same. Indeed the bijectivity is clear, while for
the continuity the proof uses uniform estimates on the ψ-relative functional Iψ, Jψ
(and in particular the analog of the so-called convergence in energy) and the upper-
semicontinuity of E·(·) with respect to the weak convergence. Note that this last
property is quite the core of the proof, and the upper-semicontinuity of Eψ(·) for
any ψ seems to not be enough to conclude.
Finally it is worth to underline that the strong convergence implies the convergence
in capacity (and in ψ-relative capacity for any ψ ∈M+). In fact if uk → u strongly
for VPω [u] > 0 then there exists a subsequence {ukh}h∈N such that vh :=

(
sup{ukj :

j ≥ h}
)∗
, wh := Pω(ukh , ukh+1 , . . . ) converges to u monotonically.

1.4 Paper IV - V

As in the previous section (X,ω) is assumed to be a Kähler compact manifold though
in Paper V ω will also be the curvature of a hermitian metric on the anticanonical
bundle, i.e. {ω} = c1(X) (in particular X will be Fano).
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1.4.1 Ding & Mabuchi functionals

As stated in subsection 1.1.13, the study of Kähler-Einstein metrics in the curved
cases reduces to solve {

MAω(u) = e−λu+Cµ

u ∈ Hω

(1.23)

for λ = −1, 1 according to c1(X) = λω, i.e. if X is canonically polarized or if X is
anticanonically polarized, where µ is a volume form depending on λ. (1.23) can be
split in two problems. First �nding a weak solution, i.e. a solution of{

MAω(u) = e−λu+Cµ

u ∈ E1(X,ω),
(1.24)

and then exploring its regularity.
The second problem classically consists in obtaining a C0-regularity and a Laplacian
estimate C−1ω ≤ ω + ddcu ≤ Cω for C ∈ R. Indeed thanks to the Evans-Krylov
theory u would then be C2,α which is enough regularity to apply Shauder's theorem
and a bootstrap argument to get the smoothness. For the C0-regularity see the
proof of Kolodziej ([Kol98]) where any solution of MAω(u) = fωn is continuous if
f ∈ Lp for p > 1. Observe that in (1.24) the density in the right hand side belongs
to Lp for p > 1 as a consequence of the resolution of the strong openess conjecture
(see [GZ15]). Instead, a proof of the Laplacian estimate can be found for instance in
Theorem 10.1 in [BBEGZ19]. As conclusion any weak Kähler-Einstein metric (i.e.
a solution of (1.24)) is a Kähler-Einstein metric.
Thus through a variational approach similar to (1.3.1) one de�nes the functional
Lµ,λ : E1(X,ω)→ R

Lµ,λ(u) :=
−1

λ
log

∫
X

e−λuµ

so that the di�erential of the translation invariant functional Dµ,λ := V Lµ,λ−E co-
incides with the equation (1.24). This functional is called Ding functional ([Ding88])
and its minimizers solve (1.24). Moreover any weak Kähler-Einstein metric mini-
mizes Dµ,λ. In fact in the canonically polarized case this follows from the convex-
ity of Dµ,−1 similarly as in subsection 1.3.1 for Fµ thanks to Hölder's inequality.
Moreover Dµ,−1 is also lower-semicontinuous and J-coercive in the usual sense (or
equivalently d-coercive over E1

norm(X,ω)). In the Fano case instead the fact that
weak Kähler-Einstein metrics minimize D := Dµ,1 is a consequence of a deep re-
sult of Berndtsson on the positivity of direct image bundles ([Bern15]). Indeed an
application of his results yields the weak geodesic convexity of D in

(
E1(X,ω), d

)
,

i.e. the convexity along weak geodesic given as solutions of homogeneous complex
Monge-Ampère equations (i.e. geodesics as in (1.17)), and the uniqueness of Kähler-
Einstein metrics modulo the action of Aut (X)0 (retrieving a result proved by Bando
and Mabuchi, [BM87]). Here Aut (X)0 is the connected component of the identity
of the automorphism group. Note that key points in the proof are also given by
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the linearity of the Monge-Ampère energy along weak geodesics and, as in subsec-
tion 1.3.1 and in the canonically polarized case, by the lower-semicontinuity of D
with respect to the weak topology which follows from the continuity of Lµ,1 and the
upper-semicontinuity of E.
Weak Kähler-Einstein metrics can also be expressed as critical points of the Mabuchi
functional M , �rst introduced in [Mab86]. Indeed M can be de�ned in a general
setting of (X,ω) compact Kähler manifold and its critical points are constant scalar
curvature Kähler metrics. Recall that this functional is weak geodesically convex as
proved in [BDL15], and in the Fano case the Mabuchi functional can be described
as

M(u) :=
(
Hωn/V − E∗

)(
MAω(u)/V

)
for any u ∈ E1(X,ω) thanks to the Chen-Tian formula ([Chen00b], [Tian]). Moreover
the following statements are equivalent:

i) u ∈ E1(X,ω) solves (1.24);

ii) D(u) = infE1(X,ω) D;

iii) M(u) = infE1(X,ω) M ,

as summarized in [BBEGZ19]. Furthermore in the case Aut (X)0 the existence of
weak Kähler-Einstein metrics are equivalent to the J-coercivity of D,M or equiva-
lently to the d-coercivity over E1

norm(X,ω), i.e. the following conditions are equiva-
lent:

i) there exists an (unique) solution u to (1.24) with supX u = 0;

ii) there exist A > 0, B ≥ 0 such that D(u) ≥ Ad(u, 0)−B over E1
norm(X,ω);

iii) there exist A > 0, B ≥ 0 such that M(u) ≥ Ad(u, 0)−B over E1
norm(X,ω).

This result is part of what proved in [DR15], although there already were a lot of
progresses in this direction (see for instance [Tian97], [DT92]).
Observe that the J-coercivity of the Mabuchi functionals is related to K-stability.
Indeed to any test con�gurations is associated a geodesic ray in

(
E1(X,ω), d

)
, i.e.

an algebraic geodesic ray, and the slope at in�nity of the Mabuchi functional along
algebraic geodesic rays is strongly connected to the Donaldson-Futaki invariants of
test con�gurations ([BHJ19]). Moreover it is remarkable to say that a big di�erence
between the Kähler-Einstein case with respect to the cscK case relies on the existence
of the Ding functional, which thanks to the uniform Ding stability (i.e. the uniform
positivity of the slope at in�nity of the Ding functional along algebraic geodesic
rays) connects the uniform Mabuchi stability (i.e. the uniform K-stability) to the
existence of Kähler-Einstein metrics as proved in [BBJ18]. Namely a pluripotential
proof of a slightly di�erent version of the Yau-Tian-Donaldson conjecture in the
Fano case, independent on the proof given in [CDS15].
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1.4.2 Continuity method

One classical technique to solve complex Monge-Ampère equations as (1.23) is
through the continuity method. Namely one de�nes a family of complex Monge-
Ampère equations {

MAω(u) = gt(u)ωn

u ∈ E1(X,ω)
(1.25)

where {gt(·)}t∈[0,1] are the densities and where MAω(u) = g1(u)ωn is the requested
Monge-Ampère equation to study. The basic idea is to show that the subset S ⊂ I
of all t ∈ I such that (1.25) admits a solution is not-empty, closed and open so that
S = I. Therefore the equation MAω(u) = g0(u)ωn is usually the one which easilly
admits a solution, while the openness result often follows from the implicit function
Theorem if the family {gt}t∈[0,1] has enough regularity. It is important to underline
that sometimes more regularity on the solutions is requested, which also leads to a
stronger continuity of the family of solutions {ut}t∈S .
There are several natural continuity methods for di�erent complex Monge-Ampère
equations. Anyway, since their wide geometrical applications, the class of complex
Monge-Ampère equations {

MAω(u) = e−atuftω
n

u ∈ E1(X,ω)
(1.26)

is general enough. Here we assume {ft}t∈[0,1] ⊂ L1 \{0} to be a continuous family of
non-negative L1-functions, while {at}t∈[0,1] is a continuous family of real numbers.
Observe for instance that in the case X Fano, {ω} = c1(X), taking at = t and

ft = ge−
(1−t)
m

log ||s||hm where s ∈ H0(X,−mKX) is a holomorphic section cutting
a smooth divisor D and g is a suitable smooth positive function, the solutions of
(1.26) correspond to the search of (weak) log Kähler-Einstein metrics. More precisely
ωut := ω + ddcut for ut solution of (1.26) satis�es

Ric(ωut) = tωut + (1− t)[D], (1.27)

see also subsection 1.1.13. Indeed recall that it is possible to extend the Ricci form to
currents as in [BBJ18], i.e. Ric (ωut) := Ric

(
MAω(ut)

)
where we set Ric (µ) := ddcf

for any µ positive measure such that locally µ = e−f in
2

Ω ∧ Ω̄ for Ω nowhere zero
local holomorphic section of KX .
The path (1.27) was considered in the proof of the Yau-Tian-Donaldson conjecture
for Fano manifold in [CDS15], although they did not use uniquely the continuity
method. While if [D] is replaced by a smooth Kähler form, (1.27) becomes the
continuity path used by Datar and Székelyhidi ([DS18]) to give a proof of the Yau-
Tian-Donaldson conjecture directly using the continuity method. The main point in
their proof, and the unique obstacle to prove that S = I, relies on the so-called C0-
partial estimate, which basically produces an uniform upper bound on the solutions
ut.
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1.4.3 Analytic singularities

In Paper IV and Paper V particular importance will be given to model type envelopes
ψ ∈ M with analytic singularities type , i.e. ψ = Pω[u] where u ∈ PSH(X,ω) is
locally given as

u = g + c log
(
|f1|2 + · · ·+ |fk|2

)
for g smooth, c ∈ R>0 and {fj}kj=1 local holomorphic functions, which are local
generators of a coherent ideal sheaf I. In this case given a resolution of the ideal I,
i.e. a map p : Y → X given by a sequence of blow-ups of smooth centers such that
p−1I = OY (−D) for an e�ective divisor D over Y , we have

p∗(ω + ddcu) = η + c[D] (1.28)

for a semipositive smooth (1, 1)-form η on Y . The analytic singularities of u are then
formally encoded in (I, c). Recall also that when {η} is a big class, i.e.

∫
Y
ηn > 0,

it is also possible to de�ne the space
(
E1(Y, η), d

)
similarly to the Kähler case.

We will say that ψ ∈M has algebraic singularities type if it has analytic singulaties
and c ∈ Q>0.

1.4.4 Tian's α-invariant

As said in subsection 1.1.11, in dimension 2 the unique obstacle to the existence of
Kähler-Einstein metrics for Fano manifolds is the reductiveness of the automorphism
group, i.e. the obstruction found by Matsushima, as proved by Tian in [Tian90].
His proof was based on a global invariant of (X,ω) he introduced in [Tian87], the
so-called α-invariant :

αω(0) := sup
{
α > 0 : sup

u∈PSH(X,ω),supX u=0

∫
X

e−αuωn < +∞
}
.

A version of the α-invariant to the prescribed singularities setting will be the key
object in Paper V.
The main interests for the α-invariant is when {ω} = c1(X). In fact as proved by
Tian,

αω(0) >
n

n+ 1
=⇒ there exists a Kähler-Einstein metric .

Observe also that, as showed by Demailly, this invariant can be expressed alge-
braically through the log canonical threshold . Namely, assuming for instance {ω} =
c1(X),

αω(0) = α(X, 0) := inf
F∼lin,Q−KX ,F≥0

lct(X, 0, F )

where lct(X, 0, F ) := sup{α > 0 : (X,αF ) is klt} is the log canonical thresh-
old and where the Q-linear equivalence means that there exists r ∈ N such that
rF ∼lin −rKX . Recall that being klt (i.e. Kawamata log terminal ) for a pair
(X,F ) is a notion coming from Birational Geometry which analytically means that
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e
−

∑m
j=1 aj log |sj |2hj ∈ L1 where F =

∑m
j=1 ajFj for Fj prime divisors cut by sj and

where hj are hermitian metrics on OX(Fj).

1.4.5 Main Results of Paper IV

In the Paper IV a continuity method with movable singularities is provided for (X,ω)
compact Kähler manifold. Namely, for t ∈ [0, 1] we set{

MAω(u) = e−λuftω
n

u ∈ E1(X,ω, ψt)
(1.29)

where λ ∈ R, ft ∈ L1 \ {0} continuous family of non-negative functions, and
{ψt}t∈[0,1] ⊂M+ totally ordered set of model type envelopes.
The idea is to generalize many classical continuity methods using a variational ap-
proach and the strong topology introduced in Paper II and Paper III. Obviously the
sign of λ determines three very di�erent cases.
If λ < 0 then the existence of a unique solution of (1.29) is proved in [DDNL18], so
the study of the continuity method with movable singularities reduces to a stability
problem. In this case there are no obstruction to the strong convergence of solutions
(see Theorem G below).
In the case λ = 0 the existence of a unique solution of (1.29) is related to the
belongness to M1(X,ω, ψt) as recalled in Theorem D. Paper IV then provides a
characterization of the closure of the continuity method with movable singularities.

Theorem G (Theorems A and B of Paper IV) . Given the complex Monge-Ampère
equations {

MAω(uk) = e−λukfkω
n

uk ∈ E1(X,ω, ψk),
(1.30)

for k ∈ N and λ ≤ 0, assume that

i) fk, f ∈ L1 \ {0} non-negative such that fk → f in L1;

ii) {ψk}k∈N ⊂M+ totally ordered such that ψk → ψ ∈M+ weakly;

iii) fkω
n ∈M1(X,ω, ψk) for any k ∈ N if λ = 0;

iv) uk ∈ E1(X,ω, ψk) be the unique solutions of (1.30), normalized in the case
λ = 0 so that uk ∈ E1

norm(X,ω, ψk), i.e. supX uk = 0.

If λ < 0 then uk → u strongly where u ∈ E1(X,ω, ψ) is the unique solution of{
MAω(u) = e−λufωn

u ∈ E1(X,ω, ψ).
(1.31)

While if λ = 0 then, letting u be a weak accumulation point of {uk}k∈N, u ∈
E1
norm(X,ω, ψ), uk → u strongly and u solves (1.31) if and only if Eψk (uk) ≥ −C

uniformly and

lim sup
k→∞

∫
X

(ψk − uk)fkω
n ≤

∫
X

(ψ − u)fωn. (1.32)
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While the uniform boundedness of the energies in Theorem G for the case λ = 0 is
obviously necessary, we believe that the condition (1.32) might not be, but in this
generality the situation is quite tricky. However there are some interesting cases
where (1.32) is shown to be unnecessary as, for instance, when fk ∈ Lp for p > 1
with ||fk||Lp ≤ C uniformly.
The case λ > 0, �nally, is much more complicated. However when {ψt}t∈[0,1] is
increasing, i.e. the singularities decrease, Paper IV contains an openness result as-
suming ft ≡ f ∈ Lp for p > 1 and a closure result depending on a boundedness
from above of the solutions which should be compared with the classical C0-partial
estimate as said in subsection 1.4.2.
To state the results, it is necessary to introduce the functional Ff,ψ,λ := Eψ−VψLf,λ
where Lf,λ(u) := −1

λ
log
∫
X
e−λufωn for u ∈ E1(X,ω, ψ), which generalizes the Ding

functional to the relative setting and to di�erent densities. Indeed it is a transla-
tion invariant functional whose critical points solve the Monge-Ampère equation
MAω(u) = e−λufωn. Observe that, already at this point, there is an obvious nec-
essary condition to add on ψ to solve MAω(u) = e−λufωn in E1(X,ω, ψ). Namely
the singularities type of ψ must not be too nasty in relation with the singularities of
f . For instance when f ≡ 1, the condition becomes e−λψ ∈ L1, i.e. c(ψ) > λ where
c(·) is the complex singularity exponent de�ned as

c(u) := sup
{
c > 0 :

∫
X

e−cuωn <∞
}

(see [DK01]). Another problem of the variational approach is that a priori there
may be solutions of the Monge-Ampère equations which are not global maximizers
of Ff,ψ,λ. Since the principal focus in on Kähler-Einstein metrics with prescribed
singularities on Fano manifolds (see also Paper V), Paper IV does not include a
further study about when solutions are maximizers of Ff,ψ,λ and it often assumes
the d-coercivity of Ff,ψ,λ over E1

norm(X,ω, ψ).

Theorem H (Theorem C of Paper IV) . Let ψ ∈ M+, λ > 0 and f ∈ Lp for
p ∈ (1,+∞]. Assume also that c(ψ) > λp

p−1
where λp

p−1
= λ if p = +∞. If the

functional Ff,ψ,λ is d-coercive over E1
norm(X,ω, ψ), then there exists A > 1 such

that the complex Monge-Ampère equation{
MAω(u) = e−λufωn

u ∈ E1(X,ω, ψ′)

admits a solution for any ψ′ < ψ such that Vψ′ < AVψ.

The bound for the complex singularity exponent is sharp in the case p = +∞ as said
above, while in general it allows to prove the continuity of Lf,λ over E1(X,ω, ψ), and
hence the upper-semicontinuity of Ff,ψ,λ which implies the existence of maximizers
given its d-coercivity. Let us stress that the coe�cient A > 1 of Theorem H only
depends on the slope at in�nity of Ff,ψ,λ.
The closedness result is instead the following.
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Theorem I (Theorem D of Paper IV) . Let λ > 0, {ψk}k∈N ⊂ M+ totally ordered
set such that ψk 4 ψk+1 for any k ∈ N, and fk, f ≥ 0 such that fk → f in Lp for
p ∈ (1,∞]. Assume also the following conditions:

i) c(ψ) > λp
p−1

;

ii) the complex Monge-Ampère equations{
MAω(uk) = e−λukfkω

n

uk ∈ E1(X,ω, ψk)

admit solutions uk given as maximizers of Ffk,ψk,λ;

iii) supX uk ≤ C uniformly.

Then there exists a subsequence {ukh}h∈N which converges strongly to u ∈ E1(X,ω, ψ)
solution of {

MAω(u) = e−λufωn

u ∈ E1(X,ω, ψ).

It is important to remark that the (basically unique) obstacle given by the uniform
bound in (iii) is necessary. Indeed if {ω} = c1(X) and ψt = Pω[(1 − t)ϕD] for
ϕD ∈ PSH(X,ω) such that ω+ddcϕD = 1

r
[D] for a smooth e�ective divisor D ∼lin

−rKX , then solving MAω(ut) = e−ufωn for f smooth in the class E1(X,ω, ψt) is
equivalent to solve {

MAω(wt) = t−ne−twt−(1−t)ϕDfωn

wt ∈ E1(X,ω).
(1.33)

The correspondence is given by wt := 1
t
vt where ut = vt + (1 − t)ϕD. For suitable

f > 0 the path (1.33) coincides with (1.27), which is well-known to admit solutions
for t small enough while supt∈S supX wt = +∞ when (X,−KX) is not K-stable.
Here S ⊂ (0, 1] is the set of parameters such that (1.33) admits a solution.
Basically what happened in this case is that we removed the �xed part given by the
divisor 1−t

r
D to any element u 4 ψt to get an equivalent Monge-Ampère equation in

a di�erent cohomology class (which in this speci�c case it is just a multiple of {ω}).
This is a more general fact about model type envelopes with analytic singularities
type. Indeed in Paper IV it is shown that studying Monge-Ampère equations over
(X,ω) in the class E1(X,ω, ψ) is the same as studying equivalent Monge-Ampère
equations over (Y, η) in the class E1(Y, η) where (Y, η) are given by the resolution
of the ideal de�ning the analytic singularities (see subsection 1.4.3). This yields
to a natural applications of the study of complex Monge-Ampère equations with
prescribed singularities.
First, recall that given a divisor D such that c1(X) − {[D]} = λ{ω} for λ ∈ Q,
it makes sense to look at (weak) D-log Kähler-Einstein metrics, i.e. to �nd u ∈
E1(X,ω) such that

Ric(ω + ddcu)− [D] = λ(ω + ddcu). (1.34)
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In pluripotential sense this corresponds to solve a Monge-Ampère equation of the
type {

MAω(u) = e−λu+CfDω
n

u ∈ E1(X,ω).

for C ∈ R where fD > 0 encodes the singularities of the divisor D. It is then
convenient to say that ω + ddcu is a (D, [ψ])-log Kähler-Einstein metric if u ∈
E1(X,ω, ψ) and MAω(u) = e−λu+CfDω

n for C ∈ R. Indeed ω + ddcu is actually
the curvature of singular hermitian metrics which di�er each other by translation
constants and which are D-log Kähler-Einstein metrics in the sense of (1.34).
Then as said above, in the case ψ ∈M+ with analytic singularities type, i.e. brie�y
ψ ∈ M+

an, a (D, [ψ])-log Kähler-Einstein metric in the class {ω} over X is basically
the same as a D′-log semiKähler-Einstein metric in the class {η} over Y . Here we
use the word semiKähler to denote a big and semipositive smooth form. Namely
there exists a map

Φ : M+
an → {(Y, η) : η semiKähler with ω ≥ p∗ηwhere p : Y → X is a resolution }/ ∼

where (Y, η) ∼ (Y ′, η′) if there exists a third element (Z, η̃) dominating (Y, η), (Y ′, η′)
in the usual sense. Denoting with K(X,ω) the image of Φ, the study of the existence
of (D, [ψ])-log Kähler-Einstein metrics varying ψ ∈ M+ then includes the study of
all log semiKähler-Einstein metrics in pairs (Y, η). Note in particular that (the class
of) all small pertubations of the class {ω} in the direction of exceptional divisors
are contained in K(X,ω). Moreover K(X,ω) inherits a natural partial order, a notion
of strong convergence, and Theorems G, H, I can be naturally translating in this
particular setting (see Theorem E in Paper IV).

1.4.6 Main Results of Paper V

The last Paper of this thesis concerns the study of Kähler-Einstein metrics with
prescribed singularities on a Fano manifold (X,ω), i.e. solutions of{

MAω(u) = e−uµ

u ∈ E1(X,ω, ψ)
(1.35)

where µ is a suitable volume form (namely µ = efωn for f Ricci potential so that
Ric(µ) = ω). A necessary condition on ψ ∈M+ is that e−ψ ∈ L1, i.e. c(ψ) > 1. For
obvious reasons it is said that (X,ψ) is klt when this happens and M+

klt represents
the set of all model type envelopes with non-zero total Monge-Ampère mass such
that (X,ψ) is klt. In other words M+

klt is the admissible set of model type envelopes
for the search of Kähler-Einstein metrics with prescribed singularities.
After having de�ned a ψ-relative version of the Ding and of the Mabuchi functional,
i.e. Dψ,Mψ, one goal of Paper V is to generalize the characterizations of the ex-
istence of the Kähler-Einstein metrics to the relative setting. Unfortunately two
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more assumptions on ψ are added before proving these results. First ψ is given
as decreasing limit of model type envelopes with algebraic singularities types. MD

brie�y denotes this set. Note that M+
D,klt seems to be the biggest subset of M+

where it may make sense wondering if a relative analog of the Yau-Tian-Donaldson
conjecture holds. However the assumption ψ ∈ MD is necessary to easily deduce
the linearity of Eψ along weak geodesic segments in

(
E1(X,ω, ψ), d

)
thanks to De-

mailly's Theorem of Regularization and previous known results in the big absolute
setting.
The second assumption is instead more involved. Indeed ψ is supposed to have small
unbounded locus , i.e. locally bounded outside a complete closed pluripolar set. This
hypothesis is necessary to apply a particular case of Berndtsson's convexity result.

Theorem J (Theorems C and D of Paper V) . Let ψ ∈M+
D,klt with small unbounded

locus and let u ∈ E1(X,ω, ψ). Then the following statements are equivalent:

i) ω + ddcu is a Kähler-Einstein metrics with prescribed singularities [ψ];

ii) Dψ(u) = infE1(X,ω,ψ) Dψ;

iii) Mψ(u) = infE1(X,ω,ψ) Mψ.

Moreover the uniqueness of Kähler-Einstein metrics with prescribed singularities [ψ]
is modulo the action of Aut (X, [ψ])◦ := Aut(X, [ψ])∩Aut(X)◦, where Aut (X, [ψ]) is
the subgroup of all automorphisms F such that F ∗ψ − ψ is globally bounded.
Furthermore when Aut (X, [ψ])◦ = {Id} then the following conditions are equivalent:

i) there exists an unique Kähler-Einstein metric with prescribed singularities [ψ];

ii) Dψ is d-coercive over E1
norm(X,ω, ψ);

iii) Mψ is d-coercive over E1
norm(X,ω, ψ).

This Theorem together with the continuity method with movable singularities de-
veloped in Paper IV gives the strong continuity of Kähler-Einstein metrics with
prescribed singularities [ψt] where {ψt}t∈[0,1] ⊂M+

klt,D is an increasing segment (i.e.
the singularities of ψt decrease). Indeed this is the content of Theorem B in Paper
V. The advantage is that one can choose ψ ∈ M+

klt and consider for instance the
natural path ψt := (1 − t)ψ. It is then clear the importance to understand which
prescribed singularities ψ ∈ M+

klt admits a Kähler-Einstein metrics with prescribed
singularities [ψ]. Therefore in Paper V the Kähler-Einstein locus

MKE := {ψ ∈M
+
klt : there exists a Kähler-Einstein metrics

with prescribed singularities [ψ]},

is introduced and a �rst study of its structure using the relative version of the α-
invariant is provided. More precisely setting M 3 ψ → αω(ψ) ∈ (0,+∞),

αω(ψ) := sup
{
α > 0 : sup

{u4ψ,supX u=0}

∫
X

e−αudµ < +∞
}

as the natural generalization of the α-invariant, the following result holds.
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Theorem K (Theorem A of Paper V) . Let (X,ω) be a Fano manifold. Then{
ψ ∈M

+
klt : αω(ψ) >

n

n+ 1

}
⊂MKE .

Moreover (i)⇒ (ii)⇒ (iii) in the following conditions:

i) there exists ψ ∈M, t ∈ (0, 1] such that

αω(ψt) >
n

(n+ 1)t

for ψt := Pω[tψ];

ii) αω(0) > n
n+1

;

iii) MKE = M+
klt.

Furthermore if ψ ∈M+
klt satis�es lct(X, 0, ψ) := sup{p > 1 : (X, pψ) is klt} ≥ n2+1

n2−n
then

αω(ψ) >
n2 + 1

n+ 1
=⇒ 0 ∈MKE . (1.36)

The main upshot of this Theorem is that MKE seems to be a very rigid locus, and
therefore the study of Kähler-Einstein metrics with prescribed singularities may
help to understand if there exists a genuine Kähler-Einstein metric (and hence to
detect if (X,−KX) is K-stable). Note for instance that the implication (i) ⇒ (ii)
and (1.36) (look at the paper for its sharpest version) give a direct result on the
existence of genuine Kähler-Einstein metric estimating the α-invariant at singular
elements ψ ∈ M+

klt. It is important to stress that, roughly speaking, the more ψ
is singular the easier is the computation of αω(ψ) as it follows from the de�nition.
For instance in Paper V some rough estimates of αω(ψ) for ψ with 0-dimensional
equisingularities are presented, i.e. when ψ has analytic singularities at N points
of the same weight. These estimates are given in terms of multipoint Seshadri
constants and of pseudoe�ective thresholds. Note that this kind of computations
may be improved with the idea to produce new K-stable Fano manifolds.
On the other hand the implication (ii) ⇒ (iii) implies that all Fano manifolds
with αω(0) > n

n+1
have many canonical metrics, i.e. for any admissible prescribed

singularities there exists a Kähler-Einstein metrics with such prescribed singularities.
In particular for these manifolds there are many log Kähler-Einstein metrics for weak
Fano pairs (Y, η) given by resolution of integrally closed coherent analytic sheaves.
However (ii) cannot be replaced with αω(0) ≥ n

n+1
as a counterexample with X = P2

shows. This leads to the following conjecture.

Conjecture A (Conjecture A). Let (X,ω) be a Fano manifold with Aut (X)◦ =
{Id}. Then

0 ∈MKE ⇐⇒MKE = M
+
klt.

Conjecture A would yield that showing the non-existence of Kähler-Einstein metrics
with prescribed singularities implies in many cases the non-existence of genuine
Kähler-Einstein metrics.
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Chapter 2

Multipoint Okounkov bodies

Abstract

Starting from the data of a big line bundle L on a projective manifold X

with a choice of N ≥ 1 di�erent points on X we give a new construction

of N Okounkov bodies which encodes important geometric features of (L →
X; p1, . . . , pN ) such as the volume of L, the (moving) multipoint Seshadri

constant of L at p1, . . . , pN , and the possibility to construct Kähler packings

centered at p1, . . . , pN . Toric manifolds and surfaces are examined in detail.

Keywords: Okounkov body, Seshadri constant, packings problem, projective man-
ifold, ample line bundle.
2010 Mathematics subject classi�cation: 14C20 (primary); 32Q15, 57R17 (sec-
ondary).

2.1 Introduction

Okounkov in [Oko96] and [Oko03] found a way to associate a convex body ∆(L) ⊂
Rn to a polarized manifold (X,L) where n = dimCX. Namely,

∆(L) :=
⋃
k≥1

{νp(s)
k

: s ∈ H0(X, kL) \ {0}
}

where νp(s) is the leading term exponent at p with respect to a total additive order
on Zn and holomorphic coordinates centered at p ∈ X (see subsection 2.2.4). This
convex body is now called Okounkov body .
Okounkov's construction was inspired by toric geometry, indeed in the toric case, if
LP is a torus-invariant ample line bundle, ∆(LP ) is essentially equal to the polytope
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P .
The same construction works even if L is a big line bundle, i.e. a line bundle such
that VolX(L) := lim supk→∞

n!
kn

dimCH
0(X, kL) > 0, as proved in [LM09], [KKh12]

(see also [Bou14]) and the Okounkov body captures the volume of L since

VolX(L) = n!VolRn
(
∆(L)

)
.

Moreover if > is the lexicographical order then the (n−1)−volume of any not trivial
slice of the Okounkov body is related to the restricted volume of L − tY along Y
where Y is a smooth irreducible divisor such that Y|Up = {z1 = 0}.
Another invariant which can be encoded by the Okounkov body is the (moving)
Seshadri constant εS(||L||; p) (see [Dem90] in the ample case, or [Nak03] for the
extension to the big case). Indeed, as Küronya-Lozovanu showed in [KL15a], [KL17],
if the Okounkov body is de�ned using the deglex order 1, then

εS(||L||; p) = max
{

0, sup{t ≥ 0 : tΣn ⊂ ∆(L)}
}

where Σn is the unit n−simplex.
As showed by Witt Nyström in [WN15], we can restrict to consider the essential
Okounkov body ∆(L)ess to get the same characterization of the moving Seshadri
constant.
Recall that ∆(L)ess :=

⋃
k≥1 ∆k(L)ess, where ∆k(L) = Conv({ ν(s)

k
: s ∈ H0(X, kL)\

{0}}) and the essential part of ∆k(L) consists of its interior as subset of Rn≥0 with
its natural induced topology.

Seshadri constants are also de�ned for a collection of di�erent points. For a nef line
bundle L, the multipoint Seshadri constant of L at p1, . . . , pN is given as

εS(L; p1, . . . , pN ) := inf
C

L · C∑N
j=1 multpjC

.

In this paper we introduce a multipoint version of the Okounkov body. More pre-
cisely, for a �xed big line bundle L on a projective manifold X of dimension n and
p1, . . . , pN ∈ X di�erent points, we construct N Okounkov bodies ∆j(L) ⊂ Rn for
j = 1, . . . , N .

De�nition 2.1.1. Let L be a big line bundle and let > be a �xed total additive order
on Zn.

∆j(L) :=
⋃
k≥1

{νpj (s)
k

: s ∈ Vk,j
}
⊂ Rn

is called multipoint Okounkov body of L at pj , where Vk,j := {s ∈ H0(X, kL) \ {0} :
νpj (s) < νpi(s) for any i 6= j} for any k ≥ 0.

1α <deglex β i� |α| :=
∑n
j=1 αj < |β| or |α| = |β| and α <lex β, where <lex is the

lexicographical order
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We observe that the multipoint Okounkov body of L at pj is obtained by considering
all sections whose leading term in pj is strictly smaller than those at the other points.
They are convex compact sets in Rn but, unlike the one-point case, for N ≥ 2 it can
happen that some ∆j(L) is empty (Remark 2.3.8). The de�nition does not depend
on the order of the points.
Our �rst theorem concerns the relationship between the multipoint Okounkov bodies
and the volume of the line bundle:

Theorem A. 2 Let L be a big line bundle. Then

n!

N∑
j=1

VolRn
(
∆j(L)

)
= VolX(L).

Furthermore, similar to section � 4 in [LM09], we show that ∆j(·) is a numer-
ical invariant and that there exists of a open subset of the big cone containing
B+(pj)

C = {α ∈ N1(X)R : pj /∈ B+(α)} over which ∆j(·) can be extended contin-
uously (see section � 2.3.2). Recall that the points, and more in general the valuations
νpj , are �xed.
Moreover when > is the lexicographical order and Y1, . . . , YN are smooth irreducible
divisors such that Yj|Upj = {zj,1 = 0}, the �bers of ∆j(L) are related to the re-

stricted volumes of L− t
∑N
i=1 Yi along Yj (see section�2.3.3).

The multipoint Okounkov bodies can be �ner invariants than the moving multipoint
Seshadri constant (a natural generalization of the multipoint Seshadri constant to
big line bundles, see section § 2.5) as our next Theorem shows.

Theorem B. Let L be a big line bundle and let > be the deglex order. Then

εS(||L||; p1, . . . , pN ) = max
{

0, ξ(L; p1, . . . , pN )
}

where ξ(L; p1, . . . , pN ) := sup{t ≥ 0 : tΣn ⊂ ∆j(L)ess for any j = 1, . . . , N}

Next we recall another interpretation of the one point Seshadri constant: εS(L; p)
is equal to the supremum of r such that there exists an holomorphic embedding
f : (Br(0), ωst) → (X,L) with the property that f∗ωst extends to a Kähler form ω
with cohomology class c1(L) (see Theorem 5.1.22 and Proposition 5.3.17. in [Laz04]).
This result is a consequence of a deep analysis in symplectic geometry by McDu�-
Polterovich ([MP94]), where they dealt with the symplectic packings problem (in
the same spirit, Biran in [Bir97] proved the symplectic analogoues of the Nagata's
conjecture).
Successively Kaveh in [Kav16] showed how the one-point Okounkov body can be
used to construct a sympletic packing. On the same line Witt Nyström in [WN15]

2The theorem holds in the more general setting of a family of faithful valuations νpj :
OX,pj \ {0} → (Zn, >) respect to a �xed total additive order > on Zn.
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introduced the torus-invariant domain D(L) := µ−1
(
∆(L)ess

)
(called Okounkov do-

main ) for µ : Cn → Rn, µ(z1, . . . , zn) := (|z1|2, . . . , |zn|2), and showed how it
approximates the manifold.

To get a similar characterization of the multipoint Seshadri constant, we give the
following de�nition of Kähler packing .

De�nition 2.1.2. We say that a �nite family of n−dimensional Kähler manifolds
{(Mj , ηj)}j=1,...,N packs into (X,L) for L ample line bundle on a n-dimensional
projective manifold X if for any family of relatively compact open set Uj bMj there
is a holomorphic embedding f :

⊔N
j=1 Uj → X and a Kähler form ω lying in c1(L)

such that f∗ηj = ω|f(Uj). If, in addition,

N∑
j=1

∫
Mj

ηnj =

∫
X

c1(L)n

then we say that {(Mj , ηj)}j=1,...,N packs perfectly into (X,L).

Following [WN15] we de�ne the multipoint Okounkov domains as the torus-invariant
domains of Cn given by Dj(L) := µ−1

(
∆j(L)ess

)
.

Theorem C. 3 Let L be an ample line bundle. Then {(Dj(L), ωst)}j=1,...,N packs
perfectly into (X,L).

Note that for big line bundles a similar theorem holds, given a slightly di�erent
de�nition of packings (see section 2.4.2).
As a consequence (Corollary 2.5.17), if > is the deglex order then

εS(||L||; p1, . . . , pN ) = max
{

0, sup{r > 0 : Br(0) ⊂ Dj(L) ∀j = 1, . . . , N}
}
.

This result was known in dimension 2 by the work of Eckl ([Eckl17]).

Moving to particular cases, for toric manifolds we prove that, chosen torus-�xed
points and the deglex order, the multipoint Okounkov bodies can be obtained sub-
diving the polytope (Theorem 2.6.4). If we consider all torus-invariant points the
subdivision is barycentric (Corollary 2.6.6). As a consequence we get that the mul-
tipoint Seshadri constant of N torus-�xed points is in 1

2
N (Corollary 2.6.7).

Finally in the surface case, we extend the result in [KLM12] showing, for the lexico-
graphical order, the polyhedrality of ∆j(L) (Theorem 2.6.9). Moreover for OP2(1)
over P2 we completely characterize ∆j(OP2(1)) in function of εS(OP2(1);N) obtain-
ing an explicit formula for the restricted volume of µ∗OP2(1)− tE for t ∈ Q where
µ : X̃ → X is the blow-up at N very general points and E :=

∑N
j=1 Ej is the sum

of the exceptional divisors (Theorem 2.6.14). As a consequence we independently
get a result present in [DKMS15]: the ray µ∗OP2(1)− tE meets at most two Zariski
chambers .

3the theorem holds even if νpj is a family of faithful quasi-monomial valuations respect
to the same linearly independent vectors ~λ1, . . . , ~λn ∈ Nn.
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2.1.1 Organization

Section 2.2 contains some preliminary facts on singular metrics, base loci of divisors
and Okounkov bodies.
In section 2.3 we develop the theory of multipoint Okounkov bodies: the goal is to
generalize some results in [LM09] for N ≥ 1. We prove here Theorem A.
Section 2.4 is dedicated to show Theorem C.
In section 2.5 we introduce the notion of moving multipoint Seshadri constants.
Moreover we prove Theorem B, connecting the moving multipoint Seshadri constant
in a more analytical language in the spirit of [Dem90], and deduce the connection
between the moving multipoint Seshadri constant and Kähler packings.
The last section 2.6 deals with the two aforementioned particular cases: toric man-
ifolds and surfaces.

2.1.2 Related works

In addition to the already mentioned papers of Witt Nyström ([WN15]), Eckl
([Eckl17]), and Kürona-Lozovanu ([KL15a], [KL17]), during the �nal revision of this
paper the work of Shin [Sh17] appeared as a preprint. Starting from the same data
of a big divisor over a projective manifold of dimension n and the choice of r di�erent
points, he gave a construction of an extended Okounkov Body ∆Y 1

· ,...,Y
r
·

(D) ⊂ Rrn

from a valuation associated to a family of admissible or in�nitesimal �ags Y 1
· , . . . , Y

r
· .

In the ample case thanks to the Serre's vanishing Theorem, the multipoint Okounkov
bodies can be recovered from the extended Okounkov body as projections after suit-
able subdivisions. Precisely, with the notation given in [Sh17], we get

F (∆j(D)) = πj
(

∆Y 1
· ,...,Y

r
·

(D) ∩H1,j ∩ · · · ∩Hj−1,j ∩Hj+1,j ∩ · · · ∩Hr,j
)

where πj : Rrn → Rn, πj(~x1, . . . , ~xr) := ~xj , Hi,j := {(~x1, . . . , ~xr)∈ Rrn : xi,1 ≥
xj,1} and F : Rn → Rn, F (y1, . . . , yn) := (|y|, y1, . . . , yn−1). Note that xi,1 means
the �rst component of the vector ~xi while |y| = y1 + · · · + yn. The same equality
holds if L := OX(D) is big and c1(L) ∈ Supp(Γj(X))◦ (see section 2.3.2).
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2.2 Preliminaries

2.2.1 Singular metrics and (currents of) curvature

Let L be an holomorphic line bundle over a projective manifold X. A smooth
(hermitian) metric ϕ is the collection of an open cover Ujj∈J of X and of smooth
functions ϕj ∈ C∞(Uj) such that on each not-empty intersection Ui ∩ Uj we have
ϕi = ϕj + ln |gi,j |2 where gi,j are the transition function de�ning the line bundle L.
Note that if sj are nowhere zero local sections with respect to which the transition
function are calculated then |sj | = e−ϕj . The curvature of a smooth metric ϕ is
given on each open Uj by ddcϕj where dc = 1

4π
(∂ − ∂̄) so that ddc = i

2π
∂∂̄. We

observe that it is a global (1, 1)−form on X, so for convenience we use the notation
ddcϕ. The metric is called positive if the (1, 1)−form ddcϕ is a Kähler form, i.e. if
the functions ϕj are strictly plurisubharmonic. By the well-known Kodaira Embed-
ding Theorem, a line bundle admits a positive metric i� it is ample.
Demailly in [Dem90] introduced a weaker notion of metric: a (hermitian) singular
metric ϕ is given by a collection of data as before but wuth the weaker condition
that ϕj ∈ L1

loc(Uj). If the functions ϕj are also plurisubharmonic, then we say that
ϕ is a singula positive metric. Note that ddcϕ exists in the weak sense, indeed it is a
closed positive (1, 1)−current (we will call it the current of curvature of the metric
ϕ). We say that ddcϕ is a Kähler current if it dominates some Kähler form ω. By
Proposition 4.2. in [Dem90] a line bundle is big i� it admits a singular positive metric
whose current of curvature is a Kähler current.
In this paper we will often work with R−line bundles, i.e. with formal linear com-
binations of line bundles. Moreover since we will work exclusively with projective
manifolds, we will often consider an R−line bundle as a class of R−divisors modulo
linear equivalence and its �rst Chern class as a class of R−divisors modulo numerical
equivalence.

2.2.2 Base loci

We recall here the construction of the base loci (see [ELMNP06]).
Given a Q−divisor D, let B(D) :=

⋂
k≥1 Bs(kD) be the stable base locus of D

where Bs(kD) is the base locus of the linear system |kD|. The base loci B+(D) :=⋂
AB(D − A) and B−(D) :=

⋃
AB(D + A), where A varies among all ample

Q−divisors, are called respectively augmented and restricted base locus of D. They
are invariant under rescaling and B−(D) ⊂ B(D) ⊂ B+(D). Moreover as described
in the work of Nakamaye, [Nak03], the restricted and the augmented base loci are
numerical invariants and can be considered as de�ned in the Neron-Severi space (for
a real class it is enough to consider only ample R−divisors A such that D ± A is a
Q−divisor). The stable base loci do not, see Example 1.1. in [ELMNP06], although
by Proposition 1.2.6. in [ELMNP06] the subset where the augmented and restricted
base loci are equal is open and dense in the Neron-Severi space N1(X)R.
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Thanks to the numerical invariance of the restricted and augmented base loci, we
will often talk of restricted and/or augmented base loci of a R−line bundle L. More-
over the restricted base locus can be thought as a measure of the nefness since D is
nef i� B−(D) = ∅, while the augmented base locus can be thought as a measure of
the ampleness since D is ample i� B+(D) = ∅. Moreover B−(D) = X i� D is not
pseudoe�ective while B+(D) = X i� D is not big.

2.2.3 Additive Semigroups and their Okounkov bodies

We brie�y recall some notions about the theory of the Okounkov bodies constructed
from additive semigroups (the main references are [KKh12] and [Bou14], see also
[Kho93]).
Let S ⊂ Zn+1 be an additive subsemigroup not necessarily �nitely generated. We
denote by C(S) the closed cone in Rn+1 generated by S, i.e. the closure of the set
of all linear combinations

∑
i λisi with λi ∈ R≥0 and si ∈ S. In this paper we will

work exclusively with semigroups S such that the pair (S,Rn ×R≥0) is admissible ,
i.e. S ⊂ Rn ×R≥0, or strongly admissible , i.e. it is admissible and C(S) intersects
the hyperplane Rn × {0} only in the origin (see section §1.2 in [KKh12]). We recall
that a closed convex cone C with apex the origin is called strictly convex i� the
biggest linear subspace contained in C is the origin, so if (S,Rn ×R≥0) is strongly
admissible then C(S) is strictly convex.

De�nition 2.2.1. Let (S,Rn ×R≥0) be an admissible pair. Then

∆(S) := π
(
C(S) ∩ {Rn × {1}}

)
is called Okounkov convex set of (S,Rn × R≥0), where π : Rn+1 → Rn is the
projection to the �rst n coordinates. If (S,Rn ×R≥0) is strongly admissible, ∆(S)
is also called Okounkov body of (S,Rn ×R≥0).

Remark 2.2.2. The convexity of ∆(S) is immediate, while it is not hard to check
that it is compact i� the pair is strongly admissible. Moreover S generates a sub-
group of Zn+1 of maximal rank i� ∆(S) has interior not-empty.

De�ning Sk := {α : (kα, k) ∈ S} ⊂ Rn for k ∈ N, we get

Proposition 2.2.3 ([WN15]) . Let (S,Rn ×R≥0) be an admissible pair. Then

∆(S) =
⋃
k≥1

Sk.

Moreover if K ⊂ ∆(S)◦ ⊂ Rn compact subset then K ⊂ Conv(Sk) for k ≥ 1 divisible
enough, where Conv denotes the closed convex hull. In particular

∆(S)◦ =
⋃
k≥1

Conv(Sk)◦ =
⋃
k≥1

Conv(Sk!)◦

with Conv(Sk!) non-decreasing in k.

2.2. PRELIMINARIES 59



60 CHAPTER 2. MULTIPOINT OKOUNKOV BODIES

Proof. It is clear that ∆(S) ⊃
⋃
k≥1 S

k. The reverse implication follows from The-
orem 1.4. in [KKh12] if S is �nitely generated, while in general we can approximate
∆(S) by Okounkov bodies of �nitely generated subsemigroups of S. The second
statement is the content of Lemma 2.3 in [WN14] when S is �nitely generated,
while the general case follows observing that Conv(Sk!) is non-decreasing in k by
de�nition.

When a strong admissible pair (S,Rn×R≥0) satis�es the further hypothesis ∆(S) ⊂
Rn≥0 then we denote with

∆(S)ess :=
⋃
k≥1

Conv(Sk)ess

the essential Okounkov body where Conv(Sk)ess represents the interior of Conv(Sk)
as subset of Rn≥0 with its induced topology ([WN15]). Note that if S is �nitely
generated then ∆(S)ess coincides with the interior of ∆(S) as subset of Rn≥0, but
in general they may be di�erent since points in the hyperplanes {xi = 0} may be
contained in ∆(S)ess but not in ∆(S)◦.

Proposition 2.2.4. Let (S,Rn × R≥0) be a strongly admissible pair such that
∆(S) ⊂ Rn≥0, and let K ⊂ ∆(S)ess be a compact set. Then there exists k � 1

divisible enough such that K ⊂ Conv(Sk)ess. In particular

∆(S)ess =
⋃
k≥1

Conv(Sk!)ess

with Conv(Sk!)ess non-decreasing in k, and ∆(S)ess is an open convex set of Rn≥0.

Proof. We may assume that ∆(S)ess 6= 0 otherwise it is trivial. Therefore the
subgroup of Zn+1 generated by S has maximal rank. Then as in Proposition 2.2.3 it
is enough to prove the Proposition assuming S �nitely generated. Thus we conclude
exactly as in Lemma 2.3 in [WN14] using Theorem 1.4. in [KKh12].

We also recall the following key Theorem:

Theorem 2.2.5 ([Bou14], Théorème 1.12.; [KKh12], Theorem 1.14.) . Let (S,Rn×
R≥0) be a strongly admissible pair, let G(S) ⊂ Zn+1 be the group generated by
S and let ind1 and ind2 be respectively the index of the subgroups π1

(
G(S)

)
and

π2

(
G(S)

)
in Zn and in Z where π1 and π2 are respectively the projection to the �rst

n-coordinates and to the last coordinate. Then

VolRn
(
∆(S)

)
ind1indn2

= lim
m→∞,m∈N(S)

#Sm

mn

where N(S) := {m ∈ N : Sm 6= ∅} and the volume is respect to the Lebesgue
measure.
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Finally we need to introduce the valuations :

De�nition 2.2.6. Let V be an algebra over C. A valuation from V to Zn equipped
with a total additive order > is a map ν : V \ {0} → (Zn, >) such that

i) ν(f + g) ≥ min{ν(f), ν(g)} for any f, g ∈ V \ {0} such that f + g 6= 0;

ii) ν(λf) = ν(f) for any f ∈ V \ {0} and any C 3 λ 6= 0;

iii) ν(fg) = ν(f) + ν(g) for any f, g ∈ V \ {0}.

Often ν is de�ned on the whole V adding +∞ to the group Zn and imposing ν(0) :=
+∞.
For any α ∈ Zn the α−leaf of the valuation is de�ned as the quotient of vector
spaces

V̂α :=
{f ∈ V \ {0} : ν(f) ≥ α} ∪ {0}
{f ∈ V \ {0} : ν(f) > α} ∪ {0} .

A valuation is said to have one-dimensional leaves if the dimension of any leaf is at
most 1.

Proposition 2.2.7 ([KKh12], Proposition 2.6.) . Let V be an algebra over C, and
let ν : V \ {0} → (Zn, >) be a valuation with one-dimensional leaves. Then for any
no trivial subspaces W ⊂ V ,

#ν(W \ {}) = dimCW.

We will say that a valuation ν : V \ {0} → (Zn, >) is faithful if the �eld of fractions
K of V has transcendental degree n and the extension ν : K \{0} → (Zn, >) de�ned
as ν(f/g) := ν(f) − ν(g) (see Lemme 2.3 in [Bou14]) has the whole Zn as image.
Note that any faithful valuation has one-dimensional leaves (see Remark 2.26. in
[Bou14]).

2.2.4 The Okounkov body associated to a line bundle

In this section we recall the construction and some known results of the Okounkov
body associated to a line bundle L around a point p ∈ X (see [LM09],[KKh12] and
[Bou14]).
Consider the abelian group Zn equipped with a total additive order >, let ν :
C(X) \ {0} → (Zn, >) be a faithful valuation with center p ∈ X (see the previous
subsection). We recall that p ∈ X is the (unique) center of ν if OX,p ⊂ {f ∈ C(X) :
ν(f) ≥ 0} and mX,p ⊂ {f ∈ C(X) : ν(f) > 0}, and that the semigroup ν(OX,p\{0})
is well-ordered by the induced order (see §2 in [Bou14]).
Assume that L|U is trivialized by a non�zero local section t- Then any section s ∈
H0(X, kL) can be written locally as s = ftk with f ∈ OX(U). Thus we de�ne
ν(s) := ν(f), where we identify C(X) with the meromorphic function �eld and OX,p
with the stalk of OX at p. We observe that ν(s) does not depend on the trivialization
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t chosen since any other trivialization t′ of L|V di�ers from t on U ∩ V by an unit
u ∈ OX(U ∩ V ). We de�ne an additive semigroup associated to the valuation by

Γ := {(ν(s), k) : s ∈ H0(X, kL) \ {0}, k ≥ 0} ⊂ Zn × Z.

We call the Okounkov body , ∆(L), the Okounkov convex set of (Γ,Rn × R≥0)
(see De�nition 2.2.1), i.e.

∆(L) := π
(
C(Γ) ∩ {Rn × {1}}

)
where π : Rn×R → Rn is the projection to the �rst n coordinated. By Proposition
2.2.3 we have

∆(L) =
⋃
k≥1

{ν(s)

k
: s ∈ H0(X, kL) \ {0}

}
=

= Conv
({ν(s)

k
: s ∈ H0(X, kL) \ {0}, k ≥ 1

})
,

and we note that it is a convex set of Rn but it has interior not-empty i� Γ generates a
subgroup of Zn+1 of maximal rank (Remark 2.2.2). Furthermore for a prime divisor
D ∈ Div(X) we will denote ν(D) = ν(f) for f any local equation for D near p, and
the map ν : Div(X)→ Zn extends to a R−linear map from Div(X)R.

Theorem 2.2.8 ([LM09],[KKh12]) . The following statements hold:

i) ∆(L) is a compact convex set lying in Rn;

ii) n!VolRn
(
∆(L)

)
= VolX(L), and in particular L is big i� ∆(L)◦ 6= ∅, i.e ∆(L)

is a convex body;

iii) if L is big then ∆(L) = {D ∈ Div≥0(X)R : D ≡num L} and, in particular,
the Okounkov body depends only on the numerical class of the big line bundle.

Quasi-monomial valuation Equip Zn of a total additive order >, �x ~λ1, . . . , ~λn ∈
Zn linearly independent and �x local holomorphic coordinates {z1, . . . , zn} around a
�xed point p. Then we can de�ne the quasi-monomial valuation ν : OX,p \{0} → Zn

by

ν(f) := min{
n∑
i=1

αi~λi : aα 6= 0 where locally around p, f =U

∑
α∈Nn

aαz
α}

where the minimum is taken respect to the > order �xed on Zn. Note that it is
faithful i� det(~λ1, . . . , ~λn) = ±1.
For instance if we equip Zn of the lexicographical order and we take ~λj = ~ej (j−th
vector of the canonical base of Rn) we get

ν(f) := min
lex
{α : aα 6= 0 where locally around p, f =U

∑
α∈Nn

aαz
α}.
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This is the valuation associated to an admissible �ag X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yn = {p},
in the sense of [LM09] 4, such that locally Yi := {z1 = · · · = zi = 0} (see also
[WN15]).
A change of coordinates with the same local �ag produces the same valuation, i.e.
the valuation depends uniquely on the local �ag.
Note: In the paper a valuation associated to an admissible �ag Y· will be the valu-
ation constructed by the local procedure starting from local holomorphic coordinates
as just described.
On the other hand if we equip Zn of the deglex order and we take ~λi = ~ei, we get
the valuation ν : OX,p \ {0} → Zn,

ν(f) := min
deglex

{α : aα 6= 0 where locally around p, f =U

∑
α∈Nn

aαz
α}.

This is the valuation associated to an in�nitesimal �ag Y· in p: given a �ag of
subspaces TpX =: V0 ⊃ V1 ⊃ · · · ⊃ Vn = {0} such that dimC Vi = n− i, consider on
X̃ := BlpX the �ag

X̃ =: Y0 ⊃ P(TpX) = P(V0) =: Y1 ⊃ · · · ⊃ P(Vn−1) =: Yn =: {p̃}.

Note that Y· is an admissible �ag around p̃ on the blow-up X̃. Indeed we re-
cover the valuation on X̃ associated to this admissible �ag considering F ◦ ν where
the function F : (Zn, >deglex) → (Zn, >lex) is the order-preserving isomorphism
F (α) := (|α|, α1, . . . , αn−1), i.e. considering the quasi-monomial valuation given by
the lexicographical order and ~λi := ~e1 + ~ei.
Note: In the paper a valuation associated to an in�nitesimal �ag Y· will be the valu-
ation ν constructed by the local procedure starting from local holomorphic coordinates
as just described, and in particular the total additive order on Zn will be the deglex
order in this case.

2.2.5 A moment map associated to an (S1)n−action on a
particular manifold

In this brief subsection we recall some fact regarding a moment map for an (S1)n−action
on a symplectic manifold (X,ω) cosntructed from a convex hull of a �nite set A ⊂ Nn
(see section §3 in [WN15]).
Let A ⊂ Nn be a �nite set, let µ : Cn → Rn be the map µ(z1, . . . , zn) :=
(|z1|2, . . . , |zn|2).
Then if Conv(A)ess 6= ∅, we de�ne

DA := µ−1(Conv(A)ess) = µ−1(Conv(A)
)◦

4Yi smooth irreducible subvariety of X of codimension i such that Yi is a Cartier divisor
in Yi−1 for any i = 1, . . . , n.
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where with Conv(A)ess we have indicated the interior of Conv(A) respect to the
induced topology on Rn≥0. Next we de�ne XA as the manifold we get removing from
Cn all submanifolds given by {zi1 = · · · = zir = 0} which do not intersect DA. We
equip the manifold with the form ωA := ddcφA where

φA(z) := ln
(∑
α∈A

|zα|2
)
.

Here z = {z1, . . . , zn} and zα = zα1
1 · · · zαnn . Clearly, by construction, ωA is an

(S1)n−invariant Kähler form on XA, so in particular (XA, ωA) can be thought as
a symplectic manifold. Moreover de�ning f(w1, . . . , wn) := (ew1/2, . . . , ewn/2), the
function uA(w) := φA ◦ f(w) is plurisubharmonic and independent of the imaginary
part yi, and f∗ωA = ddcuA. Thus an easy calculation shows that

ddcuA =
1

4π

n∑
j,k=1

∂2uA

∂xk∂xj
dyk ∧ dxj

which implies

d
∂

∂xk
uA = ddcuA

(
(4π)

∂

∂yk
, ·
)
.

Therefore, setting Hk := ∂uA

∂xk
◦ f−1, since (f−1)∗

(
2π ∂

∂θk

)
= 4π ∂

∂yk
, we get

dHk = ωA(2π
∂

∂θk
, ·).

Hence µA = (H1, . . . , Hn) = ∇uA ◦ f−1 is a moment map for the (S1)n−action
on the symplectic manifold (XA, ωA). Furthermore it is not hard to check that
µA

(
(C∗)n

)
= Conv(A)◦, that µA(XA) = Conv(A)ess and that for any U ⊂ XA,

setting f−1(U) = V × (iRn),∫
U

ωnA =

∫
V×(i[0,4π])n

(ddcuA)n = n!

∫
V

det(Hess(uA)) =

= n!

∫
∇uA(V )

dx = n!Vol(µA(U)).

Finally we quote here an useful result:

Lemma 2.2.9 ([WN15], Lemma 3.1.). Let U be a relatively compact open subset of
DA. Then there exists a smooth function g : XA → R with compact support such
that ω = ωA + ddcg is Kähler and ω = ωst over U .

2.3 Multipoint Okounkov bodies

We �x an additive total order > on Zn and a family of faithful valuations νpj :
C(X) \ {0} → (Zn, >) centered at pj , where recall that p1, . . . , pN are di�erent
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points chosen on the n−dimensional projective manifold X and L is a line bundle
on X.

De�nition 2.3.1. We de�ne V·,j ⊂ R(X,L) as

Vk,j = {s ∈ H0(X, kL) \ {0} : νpj (s) < νpi(s) for any i 6= j}.

Remark 2.3.2. They are disjoint graded subsemigroups with respect to the multi-
plicative action since νpj (s1 ⊗ s2) = νpj (s1) + νpj (s2), but they are not necessarily
closed under addition and ∪Nj=1Vk,j is typically strictly contained in H0(X, kL)\{0}
for some k ≥ 1. Note that Vk,j contains sections whose leading term at pj with
respect to νpj is strictly smaller than the leading term at pi with respect to νpi for
any i 6= j.

Clearly the properties of the valuations νpj assure that

i) νpj (s) = +∞ i� s = 0 (by extension νpj (0) := +∞);

ii) for any s ∈ V·,j and for any 0 6= a ∈ C, νpj (as) = νpj (s).

Thus we can de�ne

Γj := {(νpj (s), k) : s ∈ Vk,j , k ≥ 0} ⊂ Zn × Z.

Lemma 2.3.3. Γj is an additive subsemigroup of Zn+1 and (Γj ,R
n × R) is a

strongly admissible pair.

Proof. The �rst part is an immediate consequence of the de�nition, while the last
part follows from the inclusion Γj ⊂ Γpj := {(νpj (s), k) : s ∈ H0(X, kL) \ {0}, k ≥
0} (see subsection 2.2.4).

De�nition 2.3.4. We call ∆j(L) := ∆(Γj) the multipoint Okounkov body of L

at pj , i.e. ∆j(L) =
⋃
k≥1

ν
pj (Vk,j)

k
by Proposition 2.2.3.

The multipoint Okounkov bodies depend on the choice of the faithful valuations
νp1 , . . . , νpN , but we will omit the dependence to simplify the notations.

Remark 2.3.5. If we �x local holomorphic coordinates {zj,1, . . . , zj,n} around pj , we
can consider any family of faithful quasi-monomial valuations with center p1, . . . , pN
(see paragraph §2.2.4), where any νpj is given by the same choice of a total ad-
ditive order on Zn and the choice of a family of Z−linearly independent vectors
~λ1,j , . . . , ~λn,j ∈ Zn (they may be di�erent). For instance we can choose those as-
sociated to the family of admissible �ags Yj,i := {zj,1 = · · · = zj,i = 0} (with Zn
equipped of the lexicographical order) or those associated to the family of in�nites-
imal �ags Y· (with in this case Zn equipped pf the deglex order).

Lemma 2.3.6. The following statements hold:

i) ∆j(L) is a compact convex set contained in Rn;
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ii) if pj /∈ B+(L) then Γj(L) generates Zn+1 as a group. In particular ∆j(L)◦ 6=
∅;

iii) if Γj(L) is not empty then it generates Zn+1 as a group. In particular ∆j(L)◦ 6=
∅ i� ∆j(L) 6= ∅.

Proof. The �rst point follows by construction (see De�nition 2.2.1 and Remark
2.2.2).
For the second point, proceeding similarly to Lemma 2.2 in [LM09], let D be a big
divisor such that L = OX(D) and let A,B be two �xed ample divisors such that
D = A − B. Since D is big there exists N 3 k � 1 such that kD − B is linearly
equivalent to an e�ective divisor F .
Moreover, since by hypothesis pj /∈ B+(L), by taking k � 1 big enough, we may
assume that pj /∈ Supp(F ) (see Corollary 1.6. in [ELMNP06]), thus F is described
by a global section f that is an unity in OX,pj . Then, possibly adding a very ample
divisor to A and B we may suppose that there exists sections s0, . . . , sn ∈ V1,j(B)

such that νpj (s0) = ~0 and νpj (sl) = ~λl for any l = 1, . . . , n where ~λ1, . . . , ~λn are
linearly independent vectors in Zn which generate all Zn as a group (remember that
the valuations νpj are faithful). Thus, since si ⊗ f ∈ V1,j(kL) for any i = 0, . . . , n
and νpj (f) = ~0, we get

(~0, k), (~λ1, k), . . . , (~λn, k) ∈ Γj(L).

And, since (k+1)D−F is linearly equivalent to A we may also assume that (~0, k+1) ∈
Γj(L), which concludes the proof of (ii).
Finally to prove (iii), let s ∈ Vk,j(L) such that (νpj (s), k) ∈ Γj(L) and set ~w :=
νpj (s). Then by Lemma 2.2 in [LM09] there exists m ∈ N big enough and a vector
~v ∈ Zn such that

(~v,m), (~v + ~λ1,m), . . . , (~v + ~λn, k), (~v,m+ 1) ∈ Γ(L) (2.1)

where with Γ(L) we denote the semigroup associated to νpj for the one-point
Okounkov body (see subsection 2.2.4) and where ~λ1, . . . , ~λn are linearly indepen-
dent vectors in Zn as in (ii). The points in (2.1) correspond to sections t0, . . . , tn ∈
H0(X,mL) \ {0}, tn+1 ∈ H0(X, (m + 1)L). Next by de�nition of V·,j(L) there ex-
ists N � 1 big enough such that sN ⊗ tj ∈ VNk+m,j(L) for any j = 0, . . . , n and
sN ⊗ tn+1 ∈ VNk+m+1(L). Therefore

(N ~w + ~v,m), (N ~w + ~v + ~λ1,m), . . . , (N ~w + ~v + ~λn, k), (N ~w + ~v,m+ 1) ∈ Γj(L),

which concludes the proof.

Remark 2.3.7. Let X be a curve, L a line bundle of degree degL = c, and
p1, . . . , pN are di�erent points on X. Then by the proof of Lemma 2.3.6, ∆j(L)
are intervals in R containing the origin. Moreover if the points are very general and
the faithful valuations νpj are associated to admissible or to in�nitesimal �ags, then
∆j(L) = [0, c/N ] for any j = 1, . . . , N as a consequence of Theorem A.
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Remark 2.3.8. In higher dimension, however, the situation is more complicated.
Indeed it may happen that ∆j(L) = ∅ for some j as the following simple example
shows.
Consider on X = BlqP

2 two points p1 /∈ Supp(E) and p2 ∈ Supp(E) (E exceptional
divisor), and consider the big line bundle L := H + aE for a > 1. Clearly, if we
consider the family of admissible �ags given by any �xed holomorphic coordinates
centered at p1 and holomorphic coordinates {z1,2, z2,2} centered at p2 where locally
E = {z1,2 = 0}, then ∆2(L) = ∅. Indeed by the theory of one-point Okounkov
bodies for surfaces (see section 6.2 in [LM09]) ∆1(L) ⊂ ∆p1(L) = Σ (where Σ is
the standard 2−simplex and ∆p1(L) the one-point Okounkov body) while ∆2(L) ⊂
∆p2(L) = (a, 0) + Σ−1 (Σ−1 = Conv(~0, ~e1, ~e1 + ~e2) inverted simplex), and the
conclusion follows by construction. Actually, from Theorem A we get ∆1(L) = Σ.
We refer to subsection 2.6.2 for a detailed analysis on the multipoint Okounkov
bodies on surfaces, and to subsection 2.6.1 for the toric case.

2.3.1 Proof of Theorem A

The goal of this section is to prove Theorem A.

Theorem A. Let L be a big line bundle. Then

n!

N∑
j=1

VolRn(∆j(L)) = VolX(L)

We �rst introduce W·,j ⊂ R(X,L) de�ned as

Wk,j := {s ∈ H0(X, kL) \ {0} : νpj (s) ≤ νpi(s) if 1 ≤ i ≤ j and

νpj (s) < νpi(s) if j < i ≤ N}

and we set ΓW,j := {(νpj (s), k) : s ∈ Wk,j , k ≥ 0}. It is clear W·,j are graded
subsemigroups of R(X,L) and that Lemma 2.3.3 holds for ΓW,j . Moreover they are
closely related to V·,j and

⊔N
j=1 Wk,j = H0(X, kL) \ {0} for any k ≥ 0, but they

depend on the order chosen on the points.

Lemma 2.3.9. For every k ≥ 1 we have that

N∑
j=1

#ΓkW,j = h0(X, kL),

where we recall that ΓkW,j := {α ∈ Rn : (kα, k) ∈ ΓW,j}.

Proof. We de�ne a new valuation ν : C(X) \ {0} → Zn × · · · × Zn ' ZNn given by
ν(f) := (νp1(f), . . . , νpN (f)), where we put on ZNn the lexicographical order on the
product of N total ordered abelian groups Zn, i.e.

(λ1, . . . , λN ) < (µ1, . . . , µN ) if there exists j ∈ {1, . . . , N} s.t. λi = µi ∀i < j andλj < µj .
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Fix k ∈ N. For every j = 1, . . . , N , let ΓkW,j = {αj,1, . . . , αj,rj} and sj,1, . . . , sj,rj ∈
Wk,j be a set of sections such that νpj (sj,l) = αj,l for any l = 1, . . . , rj .
We claim that {s1,1, . . . , sN,rN } is a base of H0(X, kL).
Let

∑r
i=1 µisi = 0 be a linear relation in which µi 6= 0, si ∈ {s1,1, . . . , sN,rN } for

all i = 1, . . . , r and si 6= sj if i 6= j. By construction we know that ν(s1), . . . , ν(sr)
are di�erent points in ZNn. Thus without loss of generality we can assume that
ν(s1) < · · · < ν(sr), but the relation

s1 = − 1

µ1

N∑
i=2

µisi

implies that ν(s1) ≥ min{ν(sj) : j = 2, . . . , r} which is the contradiction. Hence
{s1,1, . . . , sN,rN } is a system of linearly independent vectors, thus to conclude the
proof it is enough to show that it generates all H0(X, kL).
Let t0 ∈ H0(X, kL) \ {0} be a section and set λ0 := (λ0,1, . . . , λ0,N ) := ν(t0). By
de�nition of W·,j there exists an unique j0 ∈ 1, . . . , N such that t0 ∈ Wk,j0 , which
means that λ0,i ≥ λ0,j0 if 1 ≤ i ≤ j0, and that λ0,i > λ0,j0 if j0 < i ≤ N . Therefore
by construction there exists l ∈ {1, . . . , rj0} such that λ0,j0 = νpj0 (sj0,l), so we set
s0 := sj0,l. But

dim

(
{s ∈ H0(X, kL) \ {0} : νpj0 (s) ≥ λ0,j0} ∪ {0}
{s ∈ H0(X, kL) \ {0} : νpj0 (s) > λ0,j0} ∪ {0}

)
≤ 1,

since νpj0 has one-dimensional leaves, so there exists a coe�cient a0 ∈ C such that
νpj0 (t0−a0s0) > λ0,j0 . Thus if t0 = a0s0 we can conclude the proof, otherwise we set
t1 := t0−a0s0 and we want to iterate the process setting λ1 := (λ1,1, . . . , λ1,N ) := ν(t1)
and observing that minj λ1,j ≥ minj λ0,j = λ0,j0 and that the inequality is strict if
t1 ∈Wk,j0 .
Thus we get t0, t1, . . . , tl ∈ H0(X, kL) \ {0} such that tl := tl−1 − al−1sl−1 ∈
Wk,jl for an unique jl ∈ {1, . . . , N} where sl−1 ∈ {sjl−1,1, . . . , sjl−1,rl−1} satis�es
ν
pjl−1 (tl−1) = ν

pjl−1 (sl−1), and minj λl,j ≥ minj λl−1,j for ν(tl) =: λl. Therefore
we get a sequence of valuative points λl such that minj λl,j ≥ minj λl−1,j ≥ · · · ≥
minj λ0,j where by construction there is at least one strict inequality if l > N . Hence
we deduce that the iterative process have a conclusion since that the set of all val-
uative points of ν is �nite as easy consequence of the �nitess of the cardinality of
ΓkW,j for each j = 1, . . . , N .

Proposition 2.3.10. Let L be a big line bundle. Then ∆j(mL) = m∆j(L) and
∆W
j (mL) = m∆W

j (L) for any m ∈ N and for any j = 1, . . . , N where ∆W
j (L) is the

Okounkov body associated to the additive semigroup ΓW,j(L).

Proof. The proof proceeds similarly as the proof of Proposition 4.1.ii in [LM09],
exploiting again the property of the total order on Zn.
We may assume ∆j(L) 6= ∅, otherwise it would be trivial, and we can choose r, t ∈ N
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such that Vr,j , Vtm−r,j 6= ∅, i.e. there exist sections e ∈ Vr,j and f ∈ Vtm−r,j . Thus
we get the inclusions

kΓj(mL)k + νpj (e) + νpj (f) ⊂ (km+ r)Γj(L)km+r + νpj (f) ⊂ (k + t)Γj(mL)k+t.

Letting k →∞, we �nd ∆j(mL) ⊂ m∆j(L) ⊂ ∆j(mL).
The same proof works for ∆W

j (L).

Proposition 2.3.10 extends naturally the de�nition of the multipoint Okounkov bod-
ies to Q-line bundles.
We are now ready to prove Theorem A.

Proof of Theorem A. By Lemma 2.3.9 and Theorem 2.2.5 we get

n!

N∑
j=1

VolRn(∆W
j (L))

ind1,j(L)ind2,j(L)n
= lim
k∈N(L),k→∞

n!
∑N
j=1 #ΓkW,j

kn
=

= lim
k∈N(L),k→∞

h0(X, kL)

kn/n!
= VolX(L). (2.2)

where we keep the same notations of Theorem 2.2.5 for the indexes ind1,j(L), ind2,j(L)
adding the j subscript to keep track of the points and the dependence on the line
bundle because we want to perturb it.
Then we claim that

∆W
j (L)◦ = ∆j(L)◦, (2.3)

for any j = 1, . . . , N . Note that since ΓV,j ⊂ ΓW,j we only need to prove that
∆W
j (L)◦ ⊂ ∆j(L)◦.

Let A be a �xed ample line bundle A such that there exist s1, . . . , sN ∈ H0(X,A)
with si ∈ V1,i(A) and νpi(si) = 0. Thus we get ∆W

j (mL−A) ⊂ ∆j(mL) for each
m ∈ N and for any j = 1, . . . , N since s⊗ skj ∈ Vk,j(mL) for any s ∈Wk,j(mL−A).
Hence

∆W
j (L− 1

m
A) ⊂ ∆j(L) (2.4)

by Proposition 2.3.10.
Moreover since m → ind1,j(L − 1

m
A) and m → ind1,j(L − 1

m
A) are decreasing

functions, (2.2) implies

lim sup
m→∞

n!

N∑
j=1

VolRn
(
∆W
j (L− 1

m
A)
)

ind1,j(L)ind2,j(L)n
≥

≥ lim sup
m→∞

n!

N∑
j=1

VolRn
(
∆W
j (L− 1

m
A)
)

ind1,j(L− 1
m
A)ind2,j(L− 1

m
A)n

= lim sup
m→∞

VolX(L− 1

m
A) =

= VolX(L) = n!

N∑
j=1

VolRn
(
∆W
j (L)

)
ind1,j(L)ind2,j(L)n

(2.5)
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where we used the continuity of the volume function on line bundles. Thus since
∆W
j (L− 1

m
A) ⊂ ∆W

j (L− 1
l
A) if l > m for any j = 1, . . . , N , from (2.5) we deduce

that m → VolRn(∆W
j (L − 1

m
A)) is a continuous increasing function converging to

VolRn(∆W
j (L)) for any j = 1, . . . , N . Hence (2.3) follows from 2.4.

Finally combining (2.3) and Lemma 2.3.6 .(iii) we �nd out that ind1,j(L) = ind2,j(L) =
1 if VolRn

(
∆W
j (L)

)
6= 0. Thus using again (2.2) we obtain

n!

N∑
j=1

VolRn
(
∆j(L)

)
= n!

N∑
j=1

VolRn
(
∆W
j (L)

)
ind1,j(L)ind2,j(L)n

= VolX(L),

which concludes the proof.

2.3.2 Variation of multipoint Okounkov bodies

Similarly to the section §4 in [LM09], we prove that for �xed faithful valuations νpj

centered a N di�erent points the construction of the multipoint Okounkov Bodies is
cohomological, i.e. ∆j(L) depends only from the �rst Chern class c1(L) ∈ N1(X) of
the big line bundle L, where we have indicated with N1(X) the Neron-Severi group.
Recall that ρ(X) := dim N1(X)R <∞ where N1(X)R := N1(X)⊗Z R.

Proposition 2.3.11. Let L be a big line bundle. Then ∆j(L) depends uniquely on
the numerical class of the big line bundle L.

Proof. Assume ∆j(L)◦ 6= ∅, which by Lemma 2.3.6 is equivalent to ∆j(L) 6= ∅, and
let L′ such that L′ = L+P for P numerically trivial. Fix also an ample line bundle
A. Then for any m ∈ N there exists km ∈ N and sm ∈ H0(X, kmm(P + 1

m
A)) such

that sm(pi) 6= 0 for any i = 1, . . . , N since P + 1
m
A is a ample Q−line bundle.

Hence we get ∆j(L) ⊂ ∆j(L
′ + 1

m
A) by homogeneity (Proposition 2.3.10) because

s⊗ skm ∈ Vk,j(kmmL′ + kmA) for any section s ∈ Vk,j(kmmL). Therefore similarly
to the proof of Theorem A, letting m→∞, we obtain ∆j(L) ⊂ ∆j(L

′). Replacing
L by L+ P and P by −P , Lemma 2.3.6 concludes the proof.

Setting r := ρ(X) for simplicity, �x L1, . . . , Lr line bundle such that {c1(L1), . . . , c1(Lr)}
is a Z−basis of N1(X): this lead to natural identi�cations N1(X) ' Zr, N1(X)R '
Rr. Moreover by Lemma 4.6. in [LM09] we may choose L1, . . . , Lr such that the
pseudoe�ective cone is contained in in the positive orthant of Rr.

De�nition 2.3.12. Letting

Γj(X) := Γj(X;L1, . . . , Lr) := {(νpj (s), ~m) : s ∈ V~m,j(L1, . . . , Lr)) \ {0}, ~m ∈ Nr}

be the global multipoint semigroup of X at pj with p1, . . . p̂j , . . . , pN �xed (it is
an addittive subsemigroup of Zn+r) where V~m,j(L1, . . . , Lr) := {s ∈ H0(X, ~m ·
(L1, . . . , Lr)) \ {0} : νpj (s) < νpi(s) for any i 6= j}, we de�ne

∆j(X) := C(Γj(X))
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as the closed convex cone in Rn+r generated by Γj(X), and call it the global mul-

tipoint Okounkov body at pj .

Lemma 2.3.13. The semigroup Γj(X) generates a subgroup of Zn+r of maximal
rank.

Proof. Since the cone Amp(X) is open non-empty set in N1(X)R (we have indicated
with Amp(X) the ample cone, see [Laz04]), we can �x F1, . . . , Fr ample line bundles
that generate N1(X) as free Z−module. Moreover, by the assumptions done for
L1, . . . , Lr we know that for every i = 1, . . . , r there exists ~ai such that Fi = ~ai ·
(L1, . . . , Lr). Thus, for any i = 1, . . . , r, the graded semigroup Γj(Fi) sits in Γj(X)
in a natural way and it generates a subgroup of Zn×Z ·~ai of maximal rank by point
ii) in Lemma 2.3.6 since B+(Fi) = ∅. We conclude observing that ~a1, . . . ,~ar span
Zr.

Next we need a further fact about additive semigroups and their cones. Let Γ ⊂
Zn ×Nr be an additive semigroup, and let C(Γ) ⊂ Rn ×Rr be the closed convex
cone generated by Γ. We call the support of Γ respect to the last r coordinates,
Supp(Γ), the closed convex cone C(π(Γ)) ⊂ Rr where π : Rn × Rr → Rr is the
usual projection. Then, given ~a ∈ Nr, we set ΓN~a := Γ ∩ (Zn ×N~a) and denote by
C(ΓN~a) ⊂ Rn × R~a the closed convex cone generated by ΓN~a when we consider it
as an additive semigroup of Zn × Z~a ' Zn+1.

Proposition 2.3.14 ([LM09], Proposition 4.9.). Assume that Γ generates a sub-
group of �nite index in Zn × Zr, and let ~a ∈ Nr be a vector lying in the interior of
Supp(Γ). Then

C(ΓN~a) = C(Γ) ∩ (Rn ×R~a)

Now we are ready to prove the main theorem of this section:

Theorem 2.3.15. The global multipoint Okounkov body ∆j(X) is characterized by
the property that in the following diagram

∆j(X) ⊂ Rn ×Rr ' Rn ×N1(X)R

Rr ' N1(X)R

pr2

the �ber of ∆j(X) over any cohomology class c1(L) of a big Q−line bundle L such
that c1(L) ∈ Supp(Γj(X))◦ is the multipoint Okounkov body associated to L at pj ,
i.e ∆j(X) ∩ pr−1

2 (c1(L)) = ∆j(L). Moreover Supp
(
Γj(X)

)◦ ∩ N1(X)Q = {c1(L) :
∆j(L) 6= ∅, LQ−line bundle}.
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Remark 2.3.16. It seems a bit unclear what Supp(Γj(X))◦ is. By second point
in Lemma 2.3.6, it contains the open convex set B+(pj)

C where B+(pj) := {α ∈
N1(X)R : p ∈ B+(α)} is closed respect to the metric topology on N1(X)R by
Proposition 1.2. in [KL15a] and its complement is convex as easy consequence of
Proposition 1.5. in [ELMNP06]. But in general Supp(Γj(X))◦ may be bigger: for
instance if N = 1 Supp(Γj(X))◦ coincides with the big cone, and we can easily
construct an example with p1, p2 ∈ B−(L) and ∆j(L)◦ 6= ∅ for j = 1, 2. For
instance consider X = BlqP

2, L := H + E where E is the exceptional divisor
and p1, p2 ∈ Supp(E) di�erent points. Then given two valuations associated to
admissible �ags Y·,j for j = 1, 2 centered at p1, p2 such that Y1,j = E for any
j = 1, 2, it is easy to check that ∆j(L)◦ 6= ∅ for j = 1, 2 since by Lemma 2.3.6 this
is equivalent to ∆j(L) 6= ∅.

Proof. For any vector ~a ∈ Nr such that L := ~a · (L1, . . . , Lr) is a big line bundle in
Supp(Γj(X))◦, we get Γj(X)N~a = Γj(L), and so the base of the cone C(Γj(X)N~a) =
C(Γj(L)) ⊂ Rn ×R~a is the multipoint Okounkov body ∆j(L), i.e.

∆j(L) = π
(
C(Γj(X)N~a) ∩

(
R
n × {1}

))
.

Then Proposition 2.3.14 implies that the right side of the last equality coincides with
the �ber ∆j(X) over c1(L). Both sides rescale linearly, so the equality extends to
Q-line bundles.
Next by Lemma 2.3.6 it follows that c1(L) ∈ Supp

(
Γj(X)

)
for any Q-line bundle L

such that ∆j(L) 6= ∅. On the other hand, by the �rst part of the proof we get

Supp
(
Γj(X)

)◦ ∩N1(X)Q ⊂ {c1(L) : ∆j(L) 6= ∅, LQ−line bundle}. (2.6)

Thus it remains to prove that the right hand in (2.6) is open in N1(X)Q, which
is equivalent to show that ∆j(L − 1

k
A) 6= ∅ for k � 1 big enough if A is a �xed

very ample line bundle since the ample cone is open and not empty in N1(X)R
and N1(X)R is a �nite dimensional vector space. Considering the multiplication
by a section s ∈ H0(X,A) such that s(pi) 6= 0 for any i = 1, . . . , N , we obtain
∆i(L− 1

k
A) ⊂ ∆i(L) for any i = 1, . . . , N . Therefore by Theorem A and Lemma 2.3.6

we necessarily have ∆j(L− 1
k
A)◦ 6= ∅ for k � 1 big enough since VolX(L− 1

k
A)↗

VolX(L) and ∆j(L)◦ 6= ∅. This concludes the proof.

As a consequence of Theorem 2.3.15, we can de�ne multipoint Okounkov bodies for
R-line bundles. Indeed it is natural to set ∆j(L) as the limit (in the Hausdor� sense)

of ∆j(Lk) if c1(L) ∈ Supp(Γj(X))◦ = {c1(L) : ∆j(L) 6= ∅, LQ−line bundle}
◦
where

{Lk}k∈N is any sequence of Q-line bundles such that c1(Lk)→ c1(L), and ∆j(L) = ∅
otherwise. This extension is well-de�ned and coherent with Lemma 2.3.6, since we
obtain ∆j(L)◦ 6= ∅ i� ∆j(L) 6= ∅.

Corollary 2.3.17. The function VolRn : Supp(Γj(X))◦ → R>0, c1(L)→ VolRn(∆j(L))
is well-de�ned, continuous, homogeneous of degree n and log-concave, i.e.

VolRn(∆j(L+ L′))1/n ≥ VolRn(∆j(L))1/n + VolRn(∆j(L
′))1/n
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Proof. The fact that it is well-de�ned and its homogeneity follow directly from
Propositions 2.3.10 and 2.3.11, while the other statements are standard in convex
geometry, using the Brunn-Minkowski Theorem and Theorem 2.3.15.

Finally we note that the Theorem 2.3.15 allows us to describe the multipoint Okounkov
bodies similarly to Proposition 4.1. in [Bou14]:

Corollary 2.3.18. If L = OX(D) is a big line bundle such that c1(L) ∈ Supp(Γj(X))◦,
then

∆j(L) = νpj{D′ ∈ Div≥0(X)R : D′ ≡num D and νpj (D′) < νpi(D′) ∀i 6= j}

where we have indicated with ≡num the numerical equivalence. In particular ev-
ery rational point in ∆j(L)◦ is valuative and if it contains a small n-symplex with
valuative vertices then any rational point in the n-symplex is valuative.

Proof. The �rst part follows directly from Theorem 2.3.15 since D′ ≡num D i�
c1(L) = c1(OX(D′)) by de�nition (considering the R−line bundle OX(D′)). The
statement about ∆j(L)◦ is a consequence of Proposition 3 in [Kho93] .§3 and of
Lemma 2.3.6 .(iii) while the valuative property for the n-symplex is a consequence
of the multiplicative rule of νpj .

2.3.3 Geometry of multipoint Okounkov bodies

To investigate the geometry of the multipoint Okounkov bodies we need to introduce
the following important invariant:

De�nition 2.3.19. Let L be a line bundle, V ⊂ X a subvariety of dimension d and

H0(X|V, kL) := Im
(
H0(X, kL)→ H0(V, kL|V )

)
. Then the quantity

VolX|V (L) := lim sup
k→∞

dimH0(X|V, kL)

kd/d!

is called the restricted volume of L along V .

We refer to [ELMNP09] and reference therein for the theory about this new object.
In the repeatedly quoted paper [LM09], given a valuation νp(s) = (νp(s)1, . . . , ν

p(s)n)
associated to an admissible �ag Y· = (Y1, . . . , Yn) such that Y1 = D and a line bun-
dle L such that D 6⊂ B+(L), the authors also de�ned the one-point Okounkov body
of the graded linear sistem H0(X|D, kL) ⊂ H0(D, kL|D) by

∆X|D(L) := ∆(ΓX|D)

with ΓX|D := {(νp(s)2, . . . , ν
p(s)n, k) ∈ Nn−1 ×N : s ∈ H0(X|D, kL) \ {0}, k ≥ 1}

and they proved the following
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Theorem 2.3.20 ([LM09], Theorem 4.24, Corollary 4.25). Let D 6⊂ B+(L) be a
prime divisor with L big R−line bundle and let Y. be an admissible �ag such that
Y1 =: D. Let Cmax := sup{λ ≥ 0 : L− λD is big}. Then for any 0 ≤ t < Cmax

∆(L)x1≥t = ∆(L− tD) + t~e1

∆(L)x1=t = ∆X|D(L− tD)

Moreover

i) VolRn−1(∆(L)x1=t) = 1
(n−1)!

VolX|D(L− tD);

ii) VolX(L)−VolX(L− tD) = n
∫ t

0
VolX|D(L− λD)dλ;

In this section we suppose to have �xed a family of valuations νpj associated to a
family of admissible �ags Y. = (Y·,1, . . . , Y·,N ) on a projective manifold X, centered
respectively in p1, . . . , pN (see paragraph 2.2.4 and Remark 2.3.5). Given a big line
bundle L, and prime divisors D1, . . . , DN where Dj = Y1,j for any j = 1, . . . , N , we
set

µ(L;D) := sup{t ≥ 0 : L− tD is big}
where D :=

∑N
i=1 Di, and

µ(L;Dj) := sup{t ≥ 0 : ∆j(L− tD)◦ 6= ∅}.

Theorem 2.3.21. Let L a big R−line bundle, νpj a family of valuations associated
to a family of admissible �ags Y. centered at p1, . . . , pN . Then, letting (x1, . . . , xn) be
�xed coordinates on Rn, for any j ∈ {1, . . . , N} such that ∆j(L)◦ 6= ∅ the followings
hold:

i) ∆j(L)x1≥t = ∆j(L−tD)+t~e1 for any 0 ≤ t < µ(L;Dj), for any j = 1, . . . , N ;

ii) ∆j(L)x1=t = ∆X|Dj (L − tD) for any 0 ≤ t < µ(L;D), t 6= µ(L;Dj) and for
any j = 1, . . . , N ;

iii) VolRn−1(∆j(L)xj=t) = 1
(n−1)!

VolX|Dj (L − tD) for any 0 ≤ t < µ(L;D), for
any j = 1, . . . , N , and in particular µ(L;Dj) = sup{t ≥ 0 : Dj 6⊂ B+(L −
tD)}.

Moreover

iv) VolX(L) − VolX(L − tD) = n
∫ t

0

∑N
i=1 VolX|Di

(
L − λD

)
dλ for any 0 ≤ t <

µ(L;D).

Proof. The �rst point follows as in Proposition 4.1. in [LM09], noting that if L is
a big line bundle and 0 ≤ t < µ(L;Dj) integer then {s ∈ Vk,j(L) : νpj (s)1 ≥
kt} ' Vk,j(L − tD) for any k ≥ 1. Therefore Γj(L)x1≥t = ϕt(Γj(L − tD)) where
ϕt : Nn ×N → Nn ×N is given by ϕt(~x, k) := (~x + tk~e1, k). Passing to the cones
we get C(Γj(L)x1≥t) = ϕt,R

(
C(Γj(L− tD))

)
where ϕt,R is the linear map between

vector spaces associated to ϕt. Hence, taking the base of the cones, the equality
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∆j(L)x1≥t = ∆j(L− tD)+ t~e1 follows. Finally, since both sides in i) rescale linearly
by Proposition 2.3.10, the equality holds for any L Q−line bundle and t ∈ Q. Both
sides in (i) are clearly continuous in t if 0 ≤ t < µ(L;Dj) so it remains to extends
it to R-line bundles. We �x a decreasing sequence of Q-line bundles {Lk}k∈N such
that Lk ↘ L, where for decreasing we mean Lk − Lk+1 is an pseudoe�ective line
bundle and where the convergence is in the Neron-Severi space N1(X)R. Then, as
a consequence of Theorem 2.3.15 0 ≤ t < µ(Lk, Dj) for any k ∈ N big enough
where t is �xed as in (i), and {∆j(Lk)}k∈N continuously approximates ∆j(L) in the
Hausdor� sense. Hence we obtain (i) letting k →∞.
Let us show point ii), assuming �rst LQ−line bundle and 0 ≤ t < µ(L;Dj) rational.
We consider the additive semigroups

Γj,t(L) = {(νpj (s), k) ∈ Nn ×N : s ∈ Vk,j(L) and νpj (s)1 = kt}

ΓX|Dj (L− tD) := {(νpj (s)2, . . . , ν
pj (s)n, k) ∈ Nn−1 ×N :

s ∈ H0(X|Dj , k(L− tD)) \ {0}, k ≥ 1}

and, setting ψt : Nn−1 × N → Nn × N as ψt(~x, k) := (kt, ~x, k), we easily get
Γj,t(L) ⊂ ψt

(
ΓX|Dj (L− tD)

)
. Thus passing to the cones we have

C(Γj(L))x1=t = C
(
Γj,t(L)

)
⊂ ψt,R

(
C
(
ΓX|Dj (L− tD)

))
where the equality follows from Proposition A.1 in [LM09]. Hence ∆j(L)x1=t ⊂
∆X|Dj (L − tD) for any 0 ≤ t < µ(L;Dj) rational. Moreover it is trivial that the
same inclusion holds for any µ(L;Dj) < t < µ(L;D).
Next let 0 ≤ t < µ(L;D) �xed and let A be a �xed ample line bundle such that there
exists sj ∈ V1,j(A) with νpj (sj) = ~0 and νpi(sj)1 > 0 for any i 6= j. Thus since to
any section s ∈ H0(X|Dj , k(L− tD)) \ {0} we can associate a section s̃ ∈ H0(X, kL)
with νpj (s̃) = (kt, νpj (s)2, . . . , ν

pj (s)n) and νpi(s̃)1 ≥ kt for any i 6= j, we get that
s̃m ⊗ skj ∈ Vk,j(mL+A) for any m ∈ N. By homogeneity this implies

νpj (s̃m ⊗ skj )

mk
=
νpj (s̃)

k
=
(
t,
νpj (s)

k

)
=: x ∈ ∆j

(
L+

1

m
A
)
x1=t

for any m ∈ N. Hence since ∆j(L)◦ 6= ∅ we get 0 ≤ t ≤ µ(L;Dj) and x ∈ ∆j(L)x1=t

by the continuity of m→ ∆j(L+ 1
m
A) (Theorem 2.3.15).

Summarizing we have showed that both sides of ii) are empty if µ(L;Dj) < t <
µ(L;D) and that they coincides for any rational 0 ≤ t < µ(L;Dj). Moreover since
by Theorem 2.3.20

∆X|Dj (L− tD) = ∆
(
L− t

N∑
i=1,i 6=j

Di
)
x1=t

with respect to the valuation νpj , we can proceed similarly as in (i) to extend the
equality in (ii) �rst to t real and then to R-line bundles using the continuity derived
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from Theorem 2.3.15 and Theorem 4.5 in [LM09].
The point iii) is an immediate consequence of ii) using Theorem 2.3.20.i) and The-
orem A and C in [ELMNP09], while last the point follows by integration using our
Theorem A.

We observe that Theorem 2.3.21 may be helpful when one �xes a big line bundle L
and a family of valuations associated to a family of in�nitesimal �ags centered at
p1, . . . , pN /∈ B+(L). Indeed, similarly as stated in the paragraph § 2.2.4, componing
with F : Rn → Rn, F (x) = (|x|, x1, . . . , xn−1), the Theorem holds and in particular,
for any j = 1, . . . , N , we get

i) F
(
∆j(L)

)
xj,1≥t

= ∆j

(
f∗L− tE

)
+ t~e1 for any 0 ≤ t < µ(f∗L;Ej);

ii) F
(
∆j(L)

)
xj,1=t

= ∆X̃|Ej (f
∗L− tE) for any 0 ≤ t < µ(f∗L;E);

iii) VolRn−1

(
F (∆j(L))xj,1=t

)
= 1

(n−1)!
VolX̃|Ej (f

∗L−tE) for any 0 ≤ t < µ(f∗L;E);

where we have set f : X̃ → X for the blow-up at Z = {p1, . . . , pN} and we have
denoted with Ej the exceptional divisors. Note that E =

∑N
j=1 Ej and that the

multipoint Okounkov body on the right side in i) is calculated from the family of
valutions {ν̃ p̃j}Nj=1 (it is associated to the family of admissible �ags on X̃ given by
the family of in�nitesimal �ags on X).
This yields a new tool to study the multipoint Seshadri constant as stated in the
Introduction (see Theorem B). And as application in the surfaces case we refer to
subsection 2.6.2.

2.4 Kähler Packings

Recalling the notation of the subsection § 2.2.3, the essential multipoint Okounkov
body is de�ned as

∆j(L)ess :=
⋃
k≥1

∆k
j (L)ess =

⋃
k≥1

∆k!
j (L)ess

where ∆k
j (L)ess := Conv(Γkj )ess = 1

k
Conv(νpj (Vk,j))

ess is the interior of ∆k
j (L) :=

Conv(Γkj ) as subset of Rn≥0 with its induced topology.
Fix a family of local holomorphic coordinates {zj,1, . . . , zj,n} for j = 1, . . . , N respec-
tively centered at p1, . . . , pN and assume that the faithful valuations νp1 , . . . , νpN are
quasi-monomial respect to the same additive total order > on Zn and respect to the
same vectors ~λ1, . . . , ~λn ∈ N (see Remark 2.3.5). Thus similarly to the De�nition
2.7. in [WN15], we give the following

De�nition 2.4.1. For every j = 1, . . . , N we de�ne Dj(L) := µ−1(∆j(L)ess) and
call it the multipoint Okounkov domains , where µ(w1, . . . , wn) := (|w1|2, . . . , |wn|2).
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Note that, as stated in the subsection 2.2.5, we get n!VolRn(∆j(L)) = VolCn(Dj(L))
for any j = 1, . . . , N .
We will construct Kähler packings (see De�nition 2.4.2 and 2.4.6) of the multipoint
Okounkov domains with the standard metric into (X,L) for L big line bundle. We
will �rst address the ample case and then we will generalize to the big case in
subsection § 2.4.2.

2.4.1 Ample case

De�nition 2.4.2. We say that a �nite family of n−dimensional Kähler manifolds
{(Mj , ηj)}j=1,...,N packs into (X,L) for L ample if for every family of relatively
compact open set Uj b Mj there is a holomorphic embedding f :

⊔N
j=1 Uj → X and

a Kähler form ω lying in c1(L) such that f∗ηj = ω|f(Uj). If, in addition,

N∑
j=1

∫
Mj

ηnj =

∫
X

c1(L)n

then we say that {(Mj , ηj)}j=1,...,N packs perfectly into (X,L).

Letting µ : Cn → Rn be the map µ(zj) := (|zj,1|2, . . . , |zj,n|2) where zj = {zj,1, . . . , zj,n}
are usual coordinates on Cn and letting

Dk,j := µ−1(k∆k
j (L))◦ = µ−1(k∆k

j (L)ess),

we de�ne Mk,j like the manifold we get by removing from Cn all the submanifolds
of the form {zj,i1 = · · · = zj,im = 0} which do not intersect Dk,j .
Thus

φk,j := ln
( ∑
αj∈ν

pj (Vk,j)

|zjαj |2
)

is a strictly plurisubharmonic function on Mk,j and we denote by ωk,j := ddcφk,j

the Kähler form associated (recall that ddc = i
2π
∂∂̄, see subsection 2.2.1).

Lemma 2.4.3 ([And13], Lemma 5.2.) . For any �nite set A ⊂ Nm with a �xed
additive total order >, there exists a γ ∈ (N>0)m such that

α < β iff α · γ < β · γ

for any α, β ∈ A.

Theorem 2.4.4. If L is ample then for k > 0 big enough {(Mk,j , ωk,j)}Nj=1 packs
into (X, kL).

Using the idea of the Theorem A in [WN15] we want to construct a Kähler met-
ric on kL such that locally around the points p1, . . . , pN approximates the met-
rics φk,j after a suitable zoom. We observe that for any γ ∈ Nn and any sec-
tion s ∈ H0(X, kL) with leading term α ∈ Nn around a point p ∈ X we have
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s(τγ1z1, . . . , τ
γnzn)/τγ·α ∼ zα1

1 · · · zαnn for R>0 3 τ converging to zero. Therefore

locally around pj we have ln
(∑

αj∈ν
pj (Vk,j)

|
sαj (τγzj)

τ
γ·αj |

2
)
∼ φk,j where sαj are sec-

tions in Vk,j with leading terms of their expansion at pj equal to αj ∈ Nn. Thus the
idea is to consider the metric on kL given by ln(

∑N
i=1

∑
αi∈νpi (Vk,i)

| sαi
τγ·αi |

2)) and

de�ne an opportune factor γ such that this metric approximates the local plurisub-
harmonic functions around the points p1, . . . , pN after the uniform zoom τγ for τ
small enough. This will be possible thanks to Lemma 2.4.3 and the de�nition of
Vk,j . Finally a standard regularization argument will conclude the proof.

Proof. We assume that the local holomorphic coordinates zj = {zj,1, . . . , zj,n} cen-
tered a pj contains the unit ball B1 ⊂ Cn for every j = 1, . . . , n.
Set Aj := νpj (Vk,j) and B

j
i := νpi(Vk,j) for i 6= j to simplify the notation, let k be

large enough so that ∆k
j (L)ess 6= ∅ for any j = 1, . . . , N (by Lemma 2.3.6 and Propo-

sition 2.2.4) and let {Uj}Nj=1 be a family of relatively compact open set (respectively)
in {Mk,j}Nj=1. Pick γ ∈ Nn as in Lemma 2.4.3 for S =

⋃N
j=1

(
Aj ∪

⋃
i 6=j B

j
i

)
ordering

with the total additive order > induced by the family of quasi-monomial valuations,
i.e. α > β i� α · γ > β · γ.
Next, for any j = 1, . . . , N , by construction we can choice a family of sections sαj

in Vk,j , parametrized by Aj , such that locally

sαj(zj) = zj
αj +

∑
ηj>αj

aj,ηjzj
ηj

sαj(zi) = ai,jzi
β
j
i +

∑
ηi>β

j
i

ai,ηizi
ηi

with ai,j 6= 0 and αj < βj
i for any i 6= j.

Thus if we de�ne, τγzj := (τγ1zj,1 . . . , τ
γnzj,n) for τ ∈ R≥0, then we get for any

αj ∈ Aj

sαj(τ
γzj) = τγ·αj(zj

αj +O(|τ |)) ∀ τγzj ∈ B1 (2.7)

sαj(τ
γzi) = τγ·β

j
i (ai,jzj

β
j
i +O(|τ |)) ∀ τγzi ∈ B1 (2.8)

Let, for any j = 1, . . . , N , gj : Mk,j → [0, 1] be a smooth function such that gj ≡ 0
on Uj and gj ≡ 1 on KC

j for some smoothly bounded compact set Kj such that
Uj b Kj ⊂Mk,j . Furthermore let U ′j be a relatively compact open set in Mk,j such
that Kj ⊂ U ′j .
Then pick 0 < δ � 1 such that φj := φk,j − 4δgj is still strictly plurisubharmonic
for any j = 1, . . . , N .
Now we claim that for any j there is a real positive number 0 < τj = τj(δ)� 1 such
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that for every 0 < τ ≤ τj the following statements hold:

τγzj ∈ B1 ∀ zj ∈ U ′j ,

φj > ln
( N∑
i=1

∑
αi∈Ai

|sαi(τ
γzj)

τγ·αi
|2
)
− δ on Uj ,

φj < ln
( N∑
i=1

∑
αi∈Ai

|sαi(τ
γzj)

τγ·αi
|2
)
− 3δ near ∂Kj .

Indeed it is su�cient that each request is true for τ ∈ (0, a) with a positive real
number. For the �rst request this is obvious, while the others follow from the
equations (2.7) and (2.8) since gj ≡ 0 on Uj and gj ≡ 1 on KC

j (recall that gj is
smooth and that γ · αi < γ · βj

i if αi ∈ Ai for any j 6= i).
So, since p1, . . . , pN are distinct points on X, we can choose 0 < τk � 1 such that
the requests above hold for every j = 1, . . . , N and Wj ∩Wi for j 6= i where Wj :=
ϕ−1
j (τγkU

′
j), where ϕj is the coordinate map giving the local holomorphic coordinates

centered at pj .
Next we de�ne, for any j = 1, . . . , N ,

φ′j := max
reg

(
φj , ln

( N∑
i=1

∑
αi∈Ai

|sαi(τ
γzj)

τγ·αi
|2
)
− 2δ

)

where maxreg(x, y) is a smooth convex function such that maxreg(x, y) = max(x, y)
whenever |x− y|> δ. Therefore, by construction, we observe that φ′j is smooth and

strictly plurisubharmonic on Mk,j , identically equal to ln
(∑N

i=1

∑
αi∈Ai

| sαi
(τγzj)

τγ·αi
|2
)
−

2δ near ∂Kj and identically equal to φk,j on Uj . So

ωj := ddcφ′j

is equal to ωk,j on Uj . Thus since for k � 1 big enough ln
(∑N

i=1

∑
αi∈Ai

| sαi
τγ·αi

|2
)
−

2δ extends as a positive hermitian metric of kL, with abuse of notation and unless
restrict further τ , we get that {ωj}Nj=1 extend to a Kähler form ω such that

ωf(Uj) = f∗(ωj|Uj ) = f∗ωk,j

where we are set f :
⊔N
j=1 Uj → X, f|Uj := ϕ−1

j ◦ τ
γ , the uniform rescaling for the

embedding.
Since {Uj}Nj=1 are arbitrary, this shows that {(Mk,j , ωk,j)}Nj=1 packs into (X, kL).

Theorem C (Ample Case) . Let L be an ample line bundle. We have that {(Dj(L), ωst)}Nj=1

packs perfectly into (X,L).
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Proof. If U1, . . . , UN are relatively compact open sets, respectively, in Dj(L) then
by Proposition 2.2.4 there exists k > 0 divisible enough such that Uj is compactly
contained in µ−1(Conv(∆k

j (L))◦ for any j = 1, . . . , N , i.e.
√
kUj b Dk,j b Mk,j for

any j = 1, . . . , N .
By Lemma 2.2.9 there exist smooth functions gj : Xk,j → R with support on
relatively compact open sets U ′j ⊃

√
kUj such that ω̃j := ωk,j + ddcgj is Kähler and

ω̃j = ωst holds on
√
kUj .

Furthermore, �xing relatively compact open sets Vj ⊂ Mk,j such that U ′j b Vj
for any j = 1, . . . , N , by Theorem 2.4.4 we can �nd a holomorphic embedding
f ′ :

⊔N
j=1 Vj → X and a Kähler form ω′ in c1(kL) such that ω′|f ′(V ) = f ′∗ωk,j for any

j = 1, . . . , N .
Next, let χj be smooth cut-o� functions on X such that χj ≡ 1 on f ′(U ′j) and χj ≡ 0

outside f ′(Vj). Thus, since f ′(Vj)∩f ′(Vi) = for every j 6= i and since gj ◦f ′−1
|f ′(Vj)

has

compact support in f ′(U ′j), the function g =
∑N
j=1 χjgj ◦ f

′−1, extends to 0 outside⋃N
j=1 f

′(Vj) and g|f ′(Vj) = gj ◦ f−1
|f ′(Vj)

.

Finally de�ning f :
⊔N
j=1 Uj → X by f|Uj (zj) := f ′|

√
kUj

(
√
kzj), we get

(ω′ + ddcg)|f(Uj) = f ′∗(ωk,j + ddcgj)|
√
kUj

= kf∗ωst|Uj

by construction. Hence ω := 1
k

(ω′ + ddcg) is a Kähler form with class c1(L) that
satis�es the requests since by Theorem A

N∑
j=1

∫
Dj(L)

ωnst = n!

N∑
j=1

VolRn(∆j(L)) = VolX(L) =

∫
X

ωn.

Remark 2.4.5. If the family of valuations �xed is associated to a family of ad-
missible �ags Yj,i = {zj,1 = · · · = zj,i = 0} then each associated embedding
f :
⊔N
j=1 Uj → X can be chosen so that

f−1
|f(Uj)

(Yj,i) = {zj,1 = · · · = zj,i = 0}

In particular if N = 1 we recover the Theorem A in [WN15].

2.4.2 The big case

De�nition 2.4.6. If L is big, we say that a �nite family of n−dimensional Kähler
manifolds {(Mj , ηj)}j=1,...,N packs into (X,L) if for every family of relatively com-
pact open set Uj b Mj there is a holomorphic embedding f :

⊔N
j=1 Uj → X and
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there exist a kähler current with analytical singularities T lying in c1(L) such that
f∗ηj = T|f(Uj). If, in addition,

N∑
j=1

∫
Mj

ηnj =

∫
X

c1(L)n

then we say that {(Mj , ηj)}j=1,...,N packs perfectly into (X,L).

Reasoning as in the previous section we prove the following

Theorem C (Big Case) . Let L be a big line bundle. We have that {(Dj(L), ωst)}Nj=1

packs perfectly into (X,L).

Proof. By Lemma 2.3.6, Dj(L) = ∅ for any j such that ∆j(L)◦ = ∅. So, unless
removing some of the points we may assume that ∆j(L)◦ 6= ∅ for any j = 1, . . . , N .
Thus letting k � 0 big enough such that ∆k

j (L)ess 6= ∅ for any j (Proposition
2.2.4) we can proceed similarly to the Theorem 2.4.4 with the unique di�erence that

ln
(∑N

i=1

∑
αi∈Ai

| sαi
τγ·αi

|2
)
extends to a positive singular hermitian metric, hence we

get a (current of) curvature T that is a Kähler current with analytical singularities.
Next, as in the ample case, we can show that {(Dj(L), ωst)}Nj=1 packs perfectly into
(X,L).

Remark 2.4.7. If the family of valuations �xed is associated to a family of ad-
missible �ags Yj,i = {zj,1 = · · · = zj,i = 0} then each associated embedding
f :
⊔N
j=1 Uj → X can be chosen so that

f−1
|f(Uj)

(Yj,i) = {zj,1 = · · · = zj,i = 0}

In particular if N = 1 we recover the Theorem C in [WN15].

2.5 Local Positivity

2.5.1 Moving Multipoint Seshadri Constant

De�nition 2.5.1. Let L be a nef line bundle on X. The quantity

εS(L; p1, . . . , pN ) := inf
L · C∑N

i=1 multpiC

where the in�mum is on all irreducible curve C ⊂ X passing through at least one of
the points p1, . . . , pN is called the multipoint Seshadri constant at p1, . . . ,pN

of L.
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This constant has played an important role in the last three decades and it is the
natural extension of the Seshadri constant introduced by Demailly in [Dem90].
The following Lemma is well-known and its proof can be found for instance in
[Laz04], [BDRH +09]:

Lemma 2.5.2. Let L be a nef line bundle on X. Then

εS(L; p1, . . . , pN ) = sup{t ≥ 0 : µ∗L− t
N∑
i=1

Ei is nef} = inf
( LdimV · V∑N

j=1 multpjV

) 1
dimV

where µ : X̃ → X is the blow-up at Z = {p1, . . . , pN}, Ei is the exceptional divisor
above pi and where the in�mum on the right side is on all positive dimensional
irreducible subvariety V containing at least one point among p1, . . . , pN .

The characterization of Lemma 2.5.2 allows to extend the de�nition to nef Q−line
bundles by homogeneity and to nef R−line bundles by continuity.
Here we describe a possible generalization of the multipoint Seshadri constant for
big line bundles:

De�nition 2.5.3. Let L be a big R−line bundle, we de�ne the moving multipoint

Seshadri constant at p1, . . . ,pN of L as

εS(||L||; p1, . . . , pN ) := sup
f∗L=A+E

εS(A; f−1(p1), . . . , f−1(pN ))

if p1, . . . , pN /∈ B+(L) and εS(||L||; p1, . . . , pN ) := 0 otherwise, where the supremum
is taken over all modi�cations f : Y → X with Y smooth such that f is an isomor-
phism around p1, . . . , pN and over all decomposition f∗L = A + E where A is an
ample Q−divisor and E is e�ective with f−1(pj) /∈ Supp(E) for any j = 1, . . . , N .

For N = 1, we retrieve the de�nition given in [ELMNP09].
The following properties can be showed exactly as for the one-point case and they
are left to the reader:

Proposition 2.5.4. Let L,L′ be big R−line bundles. Then

i) εS(||L||; p1, . . . , pN ) ≤
(VolX (L)

N

)1/n
;

ii) if c1(L) = c1(L′) then εS(||L||; p1, . . . , pN ) = εS(||L′||; p1, . . . , pN );

iii) εS(||λL||; p1, . . . , pN ) = λεS(||L||; p1, . . . , pN ) for any λ ∈ R>0;

iv) if p1, . . . , pN /∈ B+(L) ∪B+(L′) then εS(||L+ L′||; p1, . . . , pN ) ≥
εS(||L||; p1, . . . , pN ) + εS(||L′||; p1, . . . , pN ).

We check that the moving multipoint Seshadri constant is an e�ective generalization
of the multipoint Seshadri constant:
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Proposition 2.5.5. Let L be a big and nef Q−line bundle. Then

εS(||L||; p1, . . . , pN ) = εS(L; p1, . . . , pN )

Proof. By homogeneity we can assume L line bundle and p1, . . . , pN /∈ B+(L) since
if pj ∈ B+(L) for some j then by Proposition 1.1. and Corollary 5.6. in [ELMNP09]
there exist an irreducible positive dimensional component V ⊂ B+(L), pj ∈ V such
that LdimV · V = 0 and Lemma 2.5.2 gives the equality.
Thus, �xed a modi�cation f : Y → X as in the de�nition, we get

L · C∑N
i=1 multpiC

=
f∗L · C̃∑N

i=1 multf−1(pi)
C̃
≥ A · C̃∑N

i=1 multf−1(pi)
C̃

since f−1(p1), . . . , f−1(pN ) /∈ Supp(E) and εS(||L||; p1, . . . , pN ) ≤ εS(L; p1, . . . , pN )
follows.
For the reverse inequality, we can write L = A + E with A ample Q−line bundle
and E e�ective such that p1, . . . , pN /∈ Supp(E), and we note that L = Am + 1

m
E

for any m ∈ N for the ample Q−line bundle Am := 1
m
A + (1 − 1

m
)L. Thus

εS(||L||; p1, . . . , pN ) ≥ εS(Am; p1, . . . , pN ) and letting m → ∞ the inequality re-
quested follows from the continuity of εS(·; p1, . . . , pN ) in the nef cone.

The following Proposition justi�es the name given as generalization of the de�nition
in [Nak03]:

Proposition 2.5.6. If L is a big Q−line bundle such that p1, . . . , pN /∈ B(L) then

εS(||L||; p1, . . . , pN ) = lim
k→∞

εS(Mk;µ−1
k (p1), . . . , µ−1

k (pN ))

k
=

= sup
k→∞

εS(Mk;µ−1
k (p1), . . . , µ−1

k (pN ))

k

where Mk := µ∗k(kL) − Ek is the moving part of |mL| given by a resolution of the
base ideal bk := b(|kL|) (or set Mk = 0 if H0(X, kL) = {0}).

Note that εS(Mk;µ−1
k (p1), . . . , µ−1

k (pN ))) does not depend on the resolution chosen
and given k1, k2 divisible enough we may choose resolutions such that Mk1+k2 =
Mk1 + Mk2 + E where E is an e�ective divisor with p1, . . . , pN /∈ Supp(E), so the
existence of the limit in the de�nition follows from Proposition 2.5.4.iv).

Proof of Proposition 2.5.6. By homogeneity we can assume L big line bundle, B(L) =
Bs(|L|) and that the rational map ϕ : X \ Bs(|L|)→ PN associated to the linear sys-
tem |L| has image of dimension n.
Suppose �rst that there exist j ∈ {1, . . . , N} and an integer k0 ≥ 1 such that
µ−1
k0

(pj) ∈ B+(Mk0). Thus for any N 3 k ≥ k0 we get µ−1
k (pj) ∈ B+(Mk). Then,

since Mk is big and nef, there exists a subvariety V of dimension d ≥ 1 such that
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Md
k · V = 0 and V 3 µ−1

k (pj) (Corollary 5.6. in [ELMNP09]), thus by Lemma 2.5.2
εS(Mk;µ−1

k (p1), . . . , µ−1
k (pN )) = 0 and the equality follows.

Therefore we may assume µ−1
k (p1), . . . , µ−1

k (pN ) /∈ B+(Mk) for any k ≥ 1 and we
can write Mk = A + E with A ample and E e�ective with µ−1

k (p1), . . . , µ−1
k (pN ) /∈

Supp(E). Clearly for any m ∈ N, setting Am := 1
m
A + (1 − 1

m
)Mk, the equal-

ity Mk = Am + 1
m
E holds. Hence, since by de�nition εS(||L||; p1, . . . , pN ) ≥

1
k
εS(Am;µ−1

k (p1), . . . , µ−1
k (pN )) for any m ∈ N, we �nally obtain εS(||L||; p1, . . . , pN ) ≥

1
k
εS(Mk;µ−1

k (p1), . . . , µ−1
k (pN )) letting m→∞.

For the reverse inequality, let f : Y → X be a modi�cation as in the de�nition of the
moving multipoint Seshadri constant, i.e. f∗L = A+ E with A ample Q−divisor
and E e�ective divisor with p1, . . . , pN /∈ Supp(E), and let k � 1 big enough such
that kA is very ample. Thus, unless taking a log resolution of the base locus
of f∗(kL) that is an isomorphism around f−1(p1), . . . , f−1(pN ), we can suppose
f∗(kL) = Mk + Ek with p1, . . . , pN /∈ Supp(Ek) for Ek e�ective and Mk nef and big.
Then, since kA is very ample, Mk = kA+E′k with E

′
k e�ective and E′k ≤ kE. Hence

we get f−1(p1), . . . , f−1(pN ) /∈ Supp(E′k) and 1
k
εS(Mk; f−1(p1), . . . , f−1(pN )) ≥

εS(A; f−1(p1), . . . , f−1(pN )) by homogeneity, which concludes the proof.

Proposition 2.5.7. Let L be a big Q−line bundle. Then

εS(||L||; p1, . . . , pN ) = inf

(
VolX|V (L)∑N
j=1 multpjV

)1/ dimV

where the in�mum is over all positive dimensional irreducible subvarities V contain-
ing at least one of the points p1, . . . , pN .

Proof. We may assume p1, . . . , pN /∈ B+(L) since otherwise the equality is a conse-
quence of Corollary 5.9. in [ELMNP09]. Thus V 6⊂ B+(L) for any positive dimen-
sional irreducible subvariety that pass through at least one of the points p1, . . . , pN ,
hence by Theorem 2.13. in [ELMNP09] it is su�cient to show that

εS(||L||; p1, . . . , pN ) = inf

(
‖ LdimV · V ‖∑N
j=1 multpjV

)1/ dimV

where the in�mum is over all positive dimensional irreducible subvarities V that con-
tain at least one of the points p1, . . . , pN . We recall that the asymptotic intersection
number is de�ned as

‖ LdimV · V ‖:= lim
k→∞

MdimV
k · Ṽk
kdimV

= sup
k

MdimV
k · Ṽk
kdimV

where Mk is the moving part of µ∗k(kL) as in Proposition 2.5.6 and Ṽk is the
proper trasform of V through µk (the last equality follows from Remark 2.9. in
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[ELMNP09]).
Lemma 2.5.2 and Proposition 2.5.6 ( Mk is nef) imply

εS(||L||; p1, . . . , pN ) = sup
k

εS(Mk;µ−1
k (p1), . . . , µ−1

k (pN ))

k
=

= sup
k

inf
V

1

k

( (
MdimV
k · Ṽk

)∑N
j=1 multpjV

)1/ dimV

≤ inf
V

(
‖ LdimV · V ‖∑N
j=1 multpjV

)1/ dimV

.

Vice versa by the approximate Zariski decomposition showed in [Tak06] (Theorem
3.1.) for any 0 < ε < 1 there exists a modi�cation f : Yε → X that is an isomor-
phism around p1, . . . , pN , f∗L = Aε + Eε where Aε ample and Eε e�ective with
f−1(p1), . . . , f−1(pN ) /∈ Supp(Eε), and

AdimV
ε · Ṽ ≥ (1− ε)dimV ‖ LdimV · V ‖

for any V 6⊂ B+(L) positive dimensional irreducible subvariety ( Ṽ proper trasform
of V through f). Therefore, passing to the in�mum over all positive dimensional
irreducible subvariety that pass through at least one of the points p1, . . . , pN we get

εS(||L||; p1, . . . , pN ) ≥ εS(Aε; f
−1(p1), . . . , f−1(pN )) ≥

≥ (1− ε) inf

(
‖ LdimV · V ‖∑N
j=1 multpjV

)1/ dimV

which concludes the proof.

Theorem 2.5.8. For any choice of di�erent points p1, . . . , pN ∈ X, the function
N1(X)R 3 L→ εS(||L||; p1, . . . , pN ) ∈ R is continuous.

Proof. The homogeneity and the concavity described in Proposition 2.5.4 implies
the locally uniform continuity of εS(||L||; p1, . . . , pN ) on the open convex subset(⋃N

j=1 B+(pj)
)C

(see Remark 2.3.16). Therefore it is su�cient to check that

limL′→L εS(||L′||; p1, . . . , pN ) = 0 if c1(L) ∈
⋃N
j=1 B+(pj). But this is a consequence

of Proposition 2.5.7 using the continuity of the restricted volume described in The-
orem 5.2. in [ELMNP09].

To conclude the section we recall that for a line bundle L and for a integer s ∈ Z≥0,
we say that L generates s−jets at p1, . . . , pN if the map

H0(X,L)�
N⊕
j=1

H0(X,L⊗ OX,pj/m
s+1
pj )

is surjective where we have set mpj for the maximal ideal in OX,pj . And we report
the following last characterization of the moving multipoint Seshadri constant:
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Proposition 2.5.9 ([Ito13], Lemma 3.10.). Let L be a big line bundle. Then

εS(||L||; p1, . . . , pN ) = sup
k>0

s(kL; p1, . . . , pN )

k
= lim
k→∞

s(kL; p1, . . . , pN )

k

where s(kL; p1, . . . , pN ) is 0 if kL does not generate s−jets at p1, . . . , pN for any
s ∈ Z≥0, otherwise it is the biggest non-negative integer such that kL generates the
s(kL; p1, . . . , pN )−jets at p1, . . . , pN .

2.5.2 Proof of Theorem B

In the spirit of the aforementioned work of Demailly [Dem90], we want to describe
the moving multipoint Seshadri constant ε(||L||; p1, . . . , pN ) in a more analytical
language.

De�nition 2.5.10. We say that a singular metric ϕ of a line bundle L has isolated
logarithmic poles at p1, . . . , pN of coe�cient γ if min{ν(ϕ, p1), . . . , ν(ϕ, pN )} = γ
and ϕ is �nite and continuous in a small punctured neighborhood Vj \ {pj} for every
j = 1, . . . , N . We have indicated with ν(ϕ, pj) the Lelong number of ϕ at pj ,

ν(ϕ, pj) := lim inf
z→x

ϕj(z)

ln|z − x|2

where ϕj is the local plurisubharmonic function de�ning ϕ around pj = x.
We set γ(L; p1, . . . , pN ) := sup{γ ∈ R : L has a positive singular metric with
isolated logarithmic poles at p1, . . . , pN of coe�cient γ}

Note that for N = 1 we recover the de�nition given in [Dem90].

Proposition 2.5.11. Let L be a big Q−line bundle. Then

γ(L; p1, . . . , pN ) = εS(||L||; p1, . . . , pN )

Proof. By homogeneity we can assume L to be a line bundle, and we �x a family of
local holomorphic coordinates {zj,1, . . . , zj,n} in open coordinated sets U1, . . . , UN
centered respectively at p1, . . . , pN .
Setting zj := (zj,1, . . . , zj,N ) and s := s(kL; p1, . . . , pN ) for k ≥ 1 natural number,
we can �nd holomorphic section fα, parametrized by all α = (α1, . . . , αN ) ∈ NNn
such that |αj | = s and fα|Uj = z

αj
j for any j = 1, . . . , N . In other words, we

can �nd holomorphic sections of kL whose jets at p1, . . . , pN generates all possible
combination of monomials of degree s around the points chosen. Thus the positive
singular metric ϕ on L given by

ϕ :=
1

k
log
(∑

α

|fα|2
)
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has isolated logarithmic poles at p1, . . . , pN of coe�cient s/k. Hence γ(L; p1, . . . , pN ) ≥
s(kL; p1, . . . , pN )/k, and letting k →∞ Proposition 2.5.9 implies γ(L; p1, . . . , pN ) ≥
εS(||L||; p1, . . . , pN ).
Vice versa, assuming γ(L; p1, . . . , pN ) > 0, let {γt}t∈N ⊂ Q be an increasing se-
quence of rational numbers converging to γ(L; p1, . . . , pN ) and let {kt}t∈N be an
increasing sequence of natural numbers such that {ktγt}t∈N converges to +∞. More-
over let A be an ample line bundle such that A−KX is ample, and let ω = ddcφ be
a Kähler form in the class c1(A−KX).
Thus for any positive singular metric ϕt of L with isolated logarithmic poles at
p1, . . . , pN of coe�cient ≥ γt, ktϕt +φ is a positive singular metric of ktL+A−KX

with Kähler current ddc(ktϕt) + ω as curvature and with isolated logarithmic poles
at p1, . . . , pN of coe�cient ≥ ktγt. Therefore, for t � 1 big enough, ktLt + A gen-
erates all (ktγt − n)−jets at p1, . . . , pN by Corollary 3.3. in [Dem90], and thanks to
Proposition 2.5.9 we obtain

εS(||L+
1

kt
A||; p1, . . . , pN ) ≥ ktγt − n

kt
= γt −

n

kt
.

Letting t → ∞ we get εS(||L||; p1, . . . , pN ) ≥ γ(L; p1, . . . , pN ) using the continuity
of Theorem 2.5.8.

Remark 2.5.12. We observe that the same result cannot be true if we restrict to
consider metric with logarithmic poles at p1, . . . , pN not necessarily isolated. Indeed
Demailly in [Dem93] showed that for any nef and big Q−line bundle L over a pro-
jective manifold, for any di�erent points p1, . . . , pN , and for any τ1, . . . , τN positive
real numbers with

∑N
j=1 τ

n
j < (Ln) there exist a positive singular metric ϕ with

logarithmic poles at any pj of coe�cient, respectively, τj . We thus conclude that
the result in Proposition 2.5.11 holds considering metrics with logarithmic poles at
p1, . . . , pN not necessarily isolated if and only if the multipoint Seshadri constant is
maximal, i.e. εS(||L||, p1, . . . , pN ) = (VolX(L)/N)1/n.

From now until the end of the section we �x a family of valuations νpj associated to
a family of in�nitesimal �ags centered at p1, . . . , pN and the multipoint Okounkov
bodies ∆j(L) constructed from νpj (see paragraph 2.2.4 and 2.3.5).

De�nition 2.5.13. Let L be a big line bundle. We de�ne

ξ(L; p1, . . . , pN ) := sup{ξ ≥ 0 s.t. ξΣn ⊂ ∆j(L)ess for every j = 1, . . . , N}.

Remark 2.5.14. By de�nition, we note that ξ(L; p1, . . . , pN ) = sup{r > 0 : Br(0) ⊂
Dj(L) for any j = 1, . . . , N}.

If N = 1 then ∆1(L) = ∆(L), and it is well-known that the maximum δ such that
δΣn �ts into the Okounkov body, coincides with εS(||L||; p) (Theorem C in [KL17]).
The next theorem recover and generalize this result for any N :
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Theorem B. Let L be a big R−line bundle, then

max
{
ξ(L; p1, . . . , pN ), 0

}
= εS(||L||; p1, . . . , pN )

Proof. By the continuity given by Theorem 2.3.15 and Theorem 2.5.8 and by the
homogeneity of both sides we can assume L big line bundle. Moreover we may also
assume ∆j(L)◦ 6= ∅ for any j = 1, . . . , N since otherwise it is a consequence of point
ii) in Lemma 2.3.6.
Let {λm}m∈N ⊂ Q be an increasing sequence convergent to ξ(L; p1, . . . , pN ) (as-
suming that the latter is > 0). By Proposition 2.2.4, for any m ∈ N there exist
km � 1 such that λmΣn ⊂ ∆km

j (L)ess for any j = 1, . . . , N . Therefore, chosen a set
of section {sj,α}j,α ⊂ H0(X, kmL) parametrized in a natural way by all valuative
points in ∆km

j (L)ess \ λmΣess
n for any j = 1, . . . , N (i.e. sj,α ∈ Vkm,j , νpj (sj,α) = α

and α /∈ λmΣess
n ) the metric

ϕkm :=
1

km
ln
( N∑
j=1

∑
α

|sj,α|2
)

is a positive singular metric on L such that ν(ϕkm , pj) ≥ λm while ϕkm is continuos
and �nite on a punctured neighborhood Vj \ {pj} for any j = 1, . . . , N by Corollary
2.3.18. Hence letting m → ∞, we get εS(||L||; p1, . . . , pN ) = γ(L; p1, . . . , pN ) ≥
ξ(L; p1, . . . , pN ), where the equality is the content of Proposition 2.5.11.
On the other hand, letting {λm}m∈N ⊂ Q be a increasing sequence converging to
εS(||L||; p1, . . . , pN ) > 0, Proposition 2.5.9 implies that for any m ∈ N there exists
km � 0 divisible enough such that s(tkmL; p1, . . . , pN ) ≥ tkmλm for any t ≥ 1.
Thus, since the family of valuation is associated to a family of in�nitesimal �ags, we
get

dtkmλme
tkm

Σn ⊂ ∆km
j (L)ess ⊂ ∆j(L)ess ∀ j = 1, . . . , N and ∀ t ≥ 1.

Hence λmΣn ⊂ ∆j(L)ess for any j = 1, . . . , N , which concludes the proof.

Remark 2.5.15. In the case L is an ample line bundle, to prove the inequality
εS(L; p1, . . . , pN ) ≥ ξ(L; p1, . . . , pN ) we could have used Theorem C. In fact it im-
plies that {(Bξ(L;p1,...,pN )(0), ωst)}Nj=1 �ts into (X,L), and so by symplectic blow-up
procedure for Kähler manifold (see section �5.3. in [MP94], or Lemma 5.3.17. in
[Laz04]) we deduce ξ(L; p1, . . . , pN ) ≤ εS(L; p1, . . . , pN ).

Remark 2.5.16. The proof of the Theorem shows that ξ(L; p1, . . . , pN ) is indepen-
dent from the choice of the family of valuations given by a family of in�nitesimal
�ags.

The following corollary extends Theorem 0.5 in [Eckl17] to all dimension (as Eckl
claimed in his paper) and to big line bundles.
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Corollary 2.5.17. Let L be a big line bundle. Then

εS(||L||; p1, . . . , pN ) = max
{

0, sup{r > 0 : Br(0) ⊂ Dj(L) ∀ j = 1, . . . , N}
}

For N = 1 it is the content of Theorem 1.3. in [WN15].

2.6 Some particular cases

2.6.1 Projective toric manifolds

In this section X = X∆ is a smooth projective toric variety associated to a fan ∆ in
NR ' Rn, so that the torus TN := N ⊗Z C∗ ' (C∗)n acts on X (N ' Zn denote a
lattice of rank n with dual M := HomZ(N,Z), see [Ful93], [Cox11] for notation and
basic fact about toric varieties).
It is well-known that there is a correspondence between toric manifolds X polarized
by TN−invariant ample divisors D and lattice polytopes P ⊂MR of dimension n. In-
deed to any such divisor D =

∑
ρ∈∆(1) aρDρ (where we indicate with ∆(k) the cones

of dimension k) the polytope PD is given by PD :=
⋂
ρ∈∆(1){m ∈ MR : 〈m, vρ〉 ≥

−aρ} where vρ indicates the generator of ρ ∩ N . Vice versa any such polytope P
can be described as P :=

⋂
F facet{m ∈ MR : 〈m,nF 〉 ≥ −aF } where a facet is a

1−codimensional face of P and nF ∈ N is the unique primitive element that is nor-
mal to F and that point toward the interior of P . Thus the normal fan associated to
P is ∆P := {σF : F face of P} where σF is the cone in NR generated by all normal
elements nF as above for any facet containing the face F. In particular vertices of P
correspond to TN−invariant points on the toric manifold XP associated to ∆P while
facets of P correspond to TN−invariant divisor on XP . Finally the polarization is
given by DP :=

∑
F facet aFDF .

Thus, given an ample toric line bundle L = OX(D) on a projective toric manifold
X we can �x local holomorphic coordinates around a TN−invariant point p ∈ X
(corresponding to a vertex xσ ∈ P ) such that {zi = 0} = Di|Uσ for Di TN−invariant
divisor and we can assume D|Uσ = 0.

Proposition 2.6.1 ([LM09], Proposition 6.1.(i)) . In the setting as above, the equal-
ity

φRn(PD) = ∆(L)

holds, where φR is the linear map associated to φ : M → Zn, φ(m) := (〈m, v1〉, . . . , 〈m, vn〉),
for vi ∈ ∆PD (1) generators of the ray associated to Di, and ∆(L) is the one-point
Okounkov body associated to the admissible �ag given by the local holomorphic coor-
dinates chosen.

Moreover we recall that it is possible to describe the positivity of the toric line
bundle at a TN−invariant point xσ corresponding to a vertex in P directly from the
polytope:
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Lemma 2.6.2. (Lemma 4.2.1, [BDRH +09]) Let (X,L) be a toric polarized manifold,
and let P be the associated polytope with vertices xσ1 , . . . , xσl . Then L generates
k−jets at xσj i� the length |ej,i| is bigger than k for any i = 1, . . . , n where ej,i is
the edge connecting xσj to another vertex xστ(i)

.

Remark 2.6.3. By assumption, we know that P is a Delzant polypote, i.e. there
are exactly n edges originating from each vertex, and the �rst integer points on such
edges form a lattice basis (for integer we mean a point belonging in M). Moreover if
one �xes the �rst integer points on the edges starting from a vertex xσ (i.e. a basis
for M 'Zn), then we the length of an edge starting from xσ is de�ned as the usual
length in Rn. Observe that it is always an integer since the polytope is a lattice
polytope.

Similarly to Proposition 2.6.1, chosen R TN−invariants points corresponding to R
vertices of the polytope P , we retrieve the multipoint Okounkov bodies of the cor-
responding R TN−invariant points on X directly from the polytope:

Theorem 2.6.4. Let (X,L) be a toric polarized manifold, and let P be the associ-
ated polytope with vertices xσ1 , . . . , xσl corresponding, respectively, to the TN−points
p1, . . . , pl. Then for any choice of R di�erent points (R ≤ l) pi1 , . . . , piR among
p1, . . . , pl, there exist a subdivision of P into R polytopes (a priori not lattice poly-
topes) P1, . . . , PR such that φRn,j(Pj) = ∆j(L) for a suitable choice of a family
of valuations associated to in�nitesimal (toric) �ags centered at pi1 , . . . , piR , where
φRn,j is the map given in the Proposition 2.6.1 for the point xσj .

Proof. Unless reordering, we can assume that the TN−invariants points p1, . . . , pR
correspond to the vertices xσ1 , . . . , xσR .
Next for any j = 1, . . . , R, after the identi�cation M ' Zn given by the choice of a
lattice basis mj,1, . . . ,mj,n as explained in Remark 2.6.3, we retrieve the Okounkov
Body ∆(L) at pj associated to an in�nitesimal �ag given by the holomorphic co-
ordinates {z1,j , . . . , zn,j} as explained in Proposition 2.6.1 composing with the map
φRn,j . Thus, by construction, we know that any valuative point lying in the diagonal
face of the n−symplex δΣn for δ ∈ Q correspond to a section s ∈ H0(X, kL) such
that ordpj (s) = kδ. Working directly on the polytope P , the diagonal face of the
n−symplex δΣn corresponds to the intersection of the polytope P with the hyper-
plane Hδ,j parallel to the hyperplane passing for m1,j , . . . ,mn,j and whose distance
from the point xσj is equal to δ (the distance is calculated from the identi�cation
M ' Zn).
Therefore de�ning

Pj :=
⋃

(δ1,...,δn)∈Qn≥0
,δj<δi ∀i6=j

Hδ1,1 ∩ · · · ∩HδR,R ∩ P =

=
⋃

(δ1,...,δn)∈Qn≥0
,δj≤δi ∀i6=j

Hδ1,1 ∩ · · · ∩HδR,R ∩ P
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we get by Proposition 2.2.3 φRn,j(Pj) = ∆j(L) since any valuative point in Hδ1,1 ∩
· · · ∩HδR,R ∩ P belongs to ∆j(L) if δj < δi for any i 6= j, while on the other hand
any valuative point in ∆j(L) belongs to Hδ1,1 ∩ · · · ∩HδR,R ∩ P for certain rational
numbers δ1, . . . , δR such that δj ≤ δi.

Remark 2.6.5. As easy consequence, we get that for any polarized toric manifold
(X,L) and for any choice of R TN−invariants points p1, . . . , pR, the multipoint
Okounkov bodies constructed from the in�nitesimal �ags as in Theorem 2.6.4 are
polyhedral.

Corollary 2.6.6. In the same setting of the Theorem 2.6.4, if R = l, then the
subdivision is barycenteric . Namely, for any �xed vertex xσj , if F1, . . . , Fn are the
facets containing xσj and b1, . . . , bn are their respective barycenters, then the polytope
Pj is the convex body de�ned by the intersection of P with the n hyperplanes HO,j
passing through the baricenter O of P and the barycenters b1, . . . , bj−1, bj+1, . . . , bn.

Finally we retrieve and extend Corollary 2.3. in [Eckl17] as consequence of Theorem
2.6.4 and Theorem B:

Corollary 2.6.7. In the same setting of the Theorem 2.6.4, for any j = 1, . . . , R, let
εS,j := mini=1,...,n{δj,i} be the minimum among all the reparametrized length |ej,i|
of the edges ej,i for i = 1, . . . , n, i.e. δj,i := |ej,i| if ej,i connect xσj to another point
xσi corresponding to a point p /∈ {p1, . . . , pR}, while δj,i := 1

2
|ej,i| if ej,i connect to

a point xσi corresponding to a point p ∈ {p1, . . . , pR}. Then

εS(L; p1, . . . , pR) = min{εS,j : j = 1, . . . , R}

In particular εS(L; p1, . . . , pR) ∈ 1
2
N.

2.6.2 Surfaces

When X has dimension 2, the following famous decomposition holds:

Theorem 2.6.8 (Zariski decomposition) . Let L be a pseudoe�ective Q−line bundle
on a surface X. Then there exist Q−line bundles P,N such that

i) L = P +N ;

ii) P is nef;

iii) N is e�ective;

iv) H0(X, kP ) ' H0(X, kL) for any k ≥ 1;

v) P · E = 0 for any E irreducible curves contained in Supp(N).

Moreover we recall that by the main theorem of [BKS04] there exists a locally �nite
decomposition of the big cone into rational polyhedral subcones ( Zariski chambers )
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such that in each interior of these subcones the negative part of the Zariski decom-
position has constant support and the restricted and augmented base loci are equal
(i.e. the divisors with cohomology classes in a interior of some Zariski chambers are
stable, see [ELMNP06]).
Similarly to Theorem 6.4. in [LM09] and the �rst part of Theorem B in [KLM12]
we describe the multipoint Okounkov bodies as follows:

Theorem 2.6.9. Let L be a big line bundle over a surface X, let p1, . . . , pN ∈
X, and let νpj a family of valuations associated to admissible �ags centered at
p1, . . . , pN with Y1,i = Ci|Upi for irreducible curves Ci for i = 1, . . . , N . Then
for any j = 1, . . . , N such that ∆j(L)◦ 6= ∅ there exist piecewise linear functions
αj , βj : [tj,−, tj,+]→ R≥0 for

0 ≤ tj,− := inf{t ≥ 0 : Cj 6⊂ B+(L− tG)} <
< tj,+ := sup{t ≥ 0 : Cj 6⊂ B+(L−tG)} ≤ µ(L;G) := sup{t ≥ 0 : L−tG is big}

where G =
∑N
j=1 Cj , with αj convex and βj concave, αj ≤ βj , such that

∆j(L) = {(t, y) ∈ R2 : tj,− ≤ t ≤ tj,+ andαj(t) ≤ y ≤ βj(t)}

In particular ∆j(L) is polyhedral for any j = 1, . . . , N .

Proof. By Lemma 2.3.6 and Theorem A we may assume ∆j(L)◦ 6= ∅ for any
j = 1, . . . , N unless removing some of the points. Then by Theorem A and C in
[ELMNP09] it follows that 0 ≤ tj,− < tj,+ ≤ µ(L;G) and that [tj,−, tj,+]×R≥0 is the
smallest vertical strip containing ∆j(L). Thus by Theorem 2.3.21 and Lemma 6.3. in
[LM09] we easily get ∆j(L) = {(t, y) ∈ R2 : tj,− ≤ t ≤ tj,+ andαj(t) ≤ y ≤ βj(t)}
de�ning αj(t) := ordpj (Nt|Cj ) and βj(t) := ordpj (Nt|Cj )+(Pt ·Cj) for Pt+Nt Zariski
decomposition of L−tG (Nt can be restricted to Cj since Supp(Nt) = B−(L−tG)).
Next we proceed similarly to [KLM12] to show the polyhedrality of ∆j(L), i.e.
we set L′ := L − tj,+G, s = tj,+ − t and consider L′s := L′ + sG = L− tG for
s ∈ [0, tj,+− tj,−]. Thus the function s→ N ′s is decreasing, i.e. N

′
s′ −N ′s is e�ective

for any 0 ≤ s′ < s ≤ tj,+ − tj,−, where L′s = P ′s +N ′s is the Zariski decomposition of
L′s. Moreover, letting F1, . . . , Fr be the irreducible (negative) curves composing N ′0,
we may assume (unless rearraging the Fi's) that the support of N ′tj,+−tj,− consists
of Fk+1, . . . , Fr and that 0 =: s0 < s1 ≤ · · · ≤ sk ≤ tj,+ − tj,− =: sk+1 where
si := sup{s ≥ 0 : Fi ⊂ B−(L′s) = Supp(N ′s)} for any i = 1, . . . , k.
So, by the continuity of the Zariski decomposition in the big cone, it is enough to
show that N ′s is linear in any not-empty open interval (si, si+1) for i ∈ {0, . . . , k}.
But the Zariski algorithm implies that N ′s is determined by N ′s · Fl = (L′ + sG) · Fl
for any l = i+ 1, . . . , r, and, since the intersection matrix of the curves Fi+1, . . . , Fr
is non-degenerate, we know that there exist unique divisors Ai and Bi supported
on ∪rl=i+1Fl such that Ai · Fl = L′ · Fl and Bi · Fl = G · Fl for any l = i+ 1, . . . , r.
Hence N ′s = Ai + sBi for any s ∈ (si, si+1), which concludes the proof.
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Remark 2.6.10. We observe that ∆j(L)∩[0, µ(L;G)−ε]×R is rational polyhedral
for any 0 < ε < µ(L;G) thanks to the proof and to the main theorem in [BKS04].

A particular case is when p1, . . . , pN /∈ B+(L) and νpj is a family of valuations
associated to in�nitesimal �ags centered respectively at p1, . . . , pN . Indeed in this
case on the blow-up X̃ = Bl{p1,...,pN}X we can consider the family of valuations
ν̃ p̃j associated to the admissible �ags centered respectively at points p̃1, . . . , p̃N ∈ X̃
(see paragraph §2.2.4). Observe that Ỹ1,j = Ej are the exceptional divisors over the
points.

Lemma 2.6.11. In the setting just mentioned, we have tj,− = 0 and tj,+ =
µ(f∗L;E) where E =

∑N
i=1 Ei and f : X̃ → X is the blow-up map.

Proof. Theorem B easily implies tj,− = 0 for any j = 1, . . . , N since p1, . . . , pN /∈
B+(L) and F (∆j(L)) = ∆j(f

∗L) for F (x1, x2) = (x1 + x2, x1).
Next assume by contradiction there exists j ∈ {1, . . . , N} such that tj,+ < µ(f∗L;E).
Then by Theorem 2.3.21 and Theorem A and C in [ELMNP09] we obtain t̄ :=
sup{t ≥ 0 : Ej 6⊂ B+(f∗L − tE)} = sup{t ≥ 0 : Ej 6⊂ B−(f∗L − tE)} <
µ(f∗L;E). Therefore setting Lt := f∗L− tE and letting Lt = Pt +Nt be its Zariski
decomposition, we get that Ej ∈ Supp(Nt) i� t > t̄ (see Proposition 1.2. in [KL15a]).
But for any t̄ < t < µ(f∗L;E) we �nd out

0 = (Lt + tE) · Ej = Lt · Ej + tE2
j < −t

where the �rst equality is justi�ed by Pt +Nt + tE = f∗L while the inequality is a
consequence of Lt · Ej < 0 (since Ej ∈ Supp(Nt)) and of Ei · Ej = δi,j . Hence we
obtain a contradiction.

About the Nagata's Conjecture: One of the version of the Nagata's con-
jecture says that for a choice of very general points p1, . . . , pN ∈ P2, for N ≥ 9, the
ample line bundle OP2(1) has maximal multipoint Seshadri constant at p1, . . . , pN ,
i.e. εS(OP2(1);N) = 1/

√
N where to simplify the notation we did not indicate the

points since they are very general. We can read it in the following way:

Conjecture 2.6.12 ([Nag58], Nagata's Conjecture) . For N ≥ 9 very general points
in P2, let {∆j(OP2(1))}Nj=1 be the multipoint Okounkov bodies calculated from a fam-
ily of valuations νpj associated to a family of in�nitesimal �ags centered respectively
at p1, . . . , pN . Then the following equivalent statements hold:

i) εS(OP2(1);N) = 1/
√
N ;

ii) ∆j(OP2(1)) = 1√
N

Σ2, where Σ2 is the standard 2−symplex;

iii) Dj(OP2(1)) = B 1√
N

(0);

Remark 2.6.13. It is well know that the conjecture holds if N ≥ 9 is a per-
fect square. And a similar conjecture (called Biran-Nagata-Szemberg's conjecture)
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claims that for any ample line bundle L on a projective manifold of dimension n

there exist N0 = N0(X,L) big enough such that εS(L;N) = n

√
Ln

N
for any N ≥ N0

very general points, i.e. it is maximal. This conjecture can be read through the

multipoint Okounkov bodies as ∆j(L) = n

√
Ln

N
Σn for any N ≥ N0 very general

points at X.

Theorem 2.6.14. For N ≥ 9 very general points in P2, there exists a family of
valuations νpj associated to a family of in�nitesimal �ags centered respectively at
p1, . . . , pN such that

∆j

(
OP2(1)

)
=

{
(x, y) ∈ R2 : 0 ≤ x ≤ ε and 0 ≤ y ≤ 1

Nε

(
1− x

ε

)}
=

= Conv
(
~0, ε~e1,

1

Nε
~e2

)
where ε := εS(OP2(1);N). In particular µ(L,E) = 1

Nε
and

VolX|Ej (f
∗
OP2(1)− tE)) =

t if 0 ≤ t ≤ ε
ε

1
Nε
−ε

(
1
Nε
− t
)

if ε ≤ t ≤ 1
Nε

where f : X = Bl{p1,...,pN}P
2 → X is the blow-up at Z = {p1, . . . , pN}, E1, . . . , EN

the exceptional divisors and E =
∑N
j=1 Ej .

Proof. If εS(OP2(1);N) = 1/
√
N , i.e. maximal, then ∆j(OP2(1)) = 1√

N
Σ2 as conse-

quence of Theorem A and Theorem B. Thus we may assume εS(OP2(1);N) < 1/
√
N ,

and we know that there exists C = γH −
∑N
j=1 mjEj sub-maximal curve, i.e. an

irreducible curve such that εS(OP2(1);N) = γ
M

where M :=
∑N
j=1 mj . Moreover,

since the points are very general, for any cycle σ of lenght N there exists a curve
Cσ = γH −

∑N
j=1 mσ(j)Ej , which implies µ(f∗OP2(1);E) ≥ M

Nγ
= 1

Nε
since there

exists a section s ∈ H0(P2, Nγ) such that ordpj (s) = M for any j. Recall that
µ(f∗OP2(1);E) = sup{t ≥ 0 : f∗OP2(1)− tE is big}. Next for any j = 1, . . . , N we
can easily �x holomorphic coordinates (z1,j , z2,j) such that νpj (s) = (0,M) with re-
spect to the deglex order. So considering an ample line bundle A such that there exist
sections s1, . . . , sN ∈ H0(X,A) with νpj (sj) = (0, 0) and νpi(sj) > 0 for any i 6= j
and for any j = 1, . . . , N , we get sl⊗sNγj ∈ VNγ,j(lL+A), i.e. (0, M

Nγ
) ∈ ∆j(L+ 1

l
A)

by homogeneity (Proposition 2.3.10) for any l ∈ N and any j = 1, . . . , N . Hence by
Theorem 2.3.15 we get (0, M

Nγ
) ∈ ∆j(L) for any j = 1, . . . , N .

Finally since by Theorem B we know that εS(OP2(1);N)Σ2 ⊂ ∆j(L) for any j =
1 . . . , N , Theorem A and the convexity imply that the multipoint Okounkov bodies
have necessarily the shape requested.

Corollary 2.6.15. The ray f∗OP2(1)− tE meet at most two Zariski chambers.
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This result was already showed in Proposition 2.5. of [DKMS15].

Remark 2.6.16. We recall that Biran in [Bir97] gave an homological criterion to
check if a 4−dimensional symplectic manifold admits a full symplectic packings by
N equal balls for large N , showing that (P2, ωFS) admits a full symplectic packings
for N ≥ 9. Moreover it is well-known that for any N ≤ 9 the supremum r such
that {(Br(0), ωst)}Nj=1 packs into (P2,OP2(1)) coincides with the supremum r such
that (P2, ωFS) admits a symplectic packings of N balls of radius r (called Gromov
width ), therefore by Theorem C and Corollary 2.5.17 the Nagata's conjecture is true
i� the Gromov width of N balls on (P2, ωFS) coincides with the multipoint Seshadri
constant of OP2(1) at N very general points.
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Chapter 3

L1 metric geometry of

potentials with prescribed

singularities

on compact Kähler manifolds

Abstract

Given (X,ω) compact Kähler manifold and ψ ∈ M+ ⊂ PSH(X,ω) a model

type envelope with non-zero mass, i.e. a �xed potential determing some sin-

gularities such that
∫
X(ω + ddcψ)n > 0, we prove that the ψ−relative �nite

energy class E1(X,ω, ψ) becomes a complete metric space if endowed of a dis-

tance d which generalizes the well-known d1 distance on the space of Kähler

potentials.

Moreover, for A ⊂ M+ total ordered, we equip the set XA :=⊔
ψ∈A E1(X,ω, ψ) of a natural distance dA which coincides with the distance

d on E1(X,ω, ψ) for any ψ ∈ A. We show that
(
XA, dA

)
is a complete metric

space.

As a consequence, assuming ψk ↘ ψ and ψk, ψ ∈ M+, we also prove that(
E1(X,ω, ψk), d

)
converges in a Gromov-Hausdor� sense to

(
E1(X,ω, ψ), d

)
and that there exists a direct system

〈(
E1(X,ω, ψk), d

)
, Pk,j

〉
in the category

of metric spaces whose direct limit is dense into
(
E1(X,ω, ψ), d

)
.
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3.1 Introduction

In the last forty years it has become important to understand the space of Mabuchi
H, i.e. the space of Kähler potentials in a �xed Kähler cohomology class {ω} ∈
H2(X,R) ∩H1,1(X) for (X,ω) compact Kähler manifold of dimension n:

H := {ϕ ∈ C∞ : ω + ddcϕ is a Kahler form},

where dc := i
2π

(∂ − ∂̄), so that ddc = i
π
∂∂̄. By the pioneering papers [Mab86],

[Sem92] and [Don99] H can be endowed with a Riemannian structure given by the
metric

(f, g)ϕ :=
(∫

X

fg(ω + ddcϕ)n
)1/2

where ϕ ∈ H, f, g ∈ TϕH ' C∞(X) and the metric geodesic segments are solutions
of homogeneous complex Monge-Ampère equations (see also [Chen00]). Later Dar-
vas introduced in [Dar15] the Finsler metric |f |1,ϕ :=

∫
X
|f |(ω + ddcϕ)n on H with

associated distance d1, that we will simply denote by d. The metric completion of
(H, d) has a pluripotential description ([Dar15]) since it coincides with

E
1(X,ω) :=

{
u ∈ PSH(X,ω) : E(u) > −∞

}
where E(·) is the Aubin-Mabuchi energy de�ned as

E(u) :=
1

n+ 1

n∑
j=0

∫
X

uωj ∧ (ω + ddcu)n−j

if u is locally bounded and as E(u) := limj→∞E
(

max(u,−j)
)
otherwise (see

[Mab86], [Aub84], [BB10] and [BEGZ10]). Here for the wedge product among
(1, 1)-currents we mean the non-pluripolar product (see [BEGZ10]). Moreover the
d-distance can be expressed as

d(u, v) := E(u) + E(v)− 2E
(
Pω(u, v)

)
,

where Pω(u, v) := sup{w ∈ PSH(X,ω) : w ≤ min(u, v)} is the rooftop envelope
operator introduced in [RWN14]. The complete geodesic metric space

(
E1(X,ω), d

)
turned out to be very useful to formulate in analytic terms and in some cases to solve
important conjectures regarding the search of special metrics (see [BBGZ13], [DR17],
[BBEGZ19], [BDL16], [BBJ15], [DH17], [CC17], [CC18a], [CC18b]). Furthermore
the metric topology is related to the continuity of the Monge-Ampère operator since
it coincides with the so-called strong topology ([BBEGZ19]).

The space E1(X,ω) contains only potentials which are at most slightly singular (see
[DDNL18a]). Thus Darvas, Di Nezza are Lu introduced in [DDNL18b] the analogous
set E1(X,ω, ψ) with respect to a �xed ω-psh function ψ. More precisely,

E
1(X,ω, ψ) :=

{
u ∈ PSH(X,ω) : u ≤ ψ + C forC ∈ R and Eψ(u) > −∞

}
,

104 3.1. INTRODUCTION
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where

Eψ(u) :=
1

n+ 1

n∑
j=0

∫
X

(u− ψ)(ω + ddcψ)j ∧ (ω + ddcu)n−j

if |u − ψ| is globally bounded and Eψ(u) := limj→∞Eψ
(

max(u, ψ − j)
)
otherwise.

One of the reasons that leads them to investigate and develop the pluripotential
theory of these sets was the search of solution with prescribed singularities [ψ] for
the complex Monge-Ampère equation (ω+ ddcu)n = µ (see also [DDNL18d]). They
found out that there is a necessary condition to assume on ψ: ψ − Pω[ψ](0) must
be globally bounded where Pω[ψ](0) :=

(
limC→∞ Pω(ψj + C, 0)

)∗
, ([RWN14], the

star is for the upper semicontinuous regularization). So, without loss of generality,
one may assume that ψ is a model type envelope , i.e. ψ = Pω[ψ](0) (see section 3.2).
In this setting they were able to show the existence of Kähler-Einstein metric with
prescribed singularities [ψ] in the case of X manifold with ample canonical bundle
and in the case X Calabi-Yau manifold.

Therefore one of the main motivations for this paper is to endow the set E1(X,ω, ψ)
of a metric structure to address in a future work the problem of characterize ana-
lytically the existence of Kähler-Einstein metrics with prescribed singularities in the
Fano case.
Thus, assuming ψ to be a model type envelope and de�ning

d(u, v) := Eψ(u) + Eψ(v)− 2Eψ
(
Pω(u, v)

)
on E1(X,ω, ψ)× E1(X,ω, ψ), we prove the following theorem.

Theorem A. 1 Let ψ ∈ PSH(X,ω) be a model type envelope with non-zero mass
Vψ =

∫
X

(ω + ddcψ)n > 0. Then
(
E1(X,ω, ψ), d

)
is a complete metric space.

The non-zero total mass Vψ > 0 condition is a necessary hypothesis because other-
wise d ≡ 0 (Remark 3.3.10).

The second main motivation of the paper is to set up a new way to compare and to
study the solutions of a complex Monge-Ampère equation (ω+ddcu)n = µ associated
to di�erent spaces E1(X,ω, ψ) (see [Tru20]). This leads to wonder, �rst of all, how
a sequence of spaces E1(X,ω, ψk) converges to E1(X,ω, ψ) if ψk → ψ. The most
interesting case seems to be when {ψk}k∈N is totally ordered with respect to the
natural partial order 4 on PSH(X,ω) given by u 4 v if u ≤ v + C for a constant
C ∈ R.
Thus in the second part of the paper, denoting with M the set of all model type
envelopes and with M+ its elements with non-zero mass, we assume to have a totally

1The assumption on ω to be Kähler is unnecessary, i.e. this Theorem easily extends to
the big case.
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ordered subset A ⊂M+ and we de�ne

XA :=
⊔
ψ∈A

E
1(X,ω, ψ)

where A ⊂M is the closure of the set A as subset of PSH(X,ω) with its L1-topology.
Our next result regards the existence of a natural metric topology on XA induced
by a distance dA which extends the distance d over E1(X,ω, ψ) for any ψ ∈ A (see
section 3.4). Here for ψ ∈ M \M+ we identify the set E1(X,ω, ψ) with a singleton
Pψ.

Theorem B. Let A ⊂M+ total ordered. Then (XA, dA) is a complete metric space
and dA restricts to d on E1(X,ω, ψ)× E1(X,ω, ψ) for any ψ ∈ A.

The distance dA is a natural generalization of the distances d, indeed in the compan-
ion paper [Tru20] we show how its metric topology de�nes a strong topology which
is connected to the continuity of the Monge-Ampère operator.

As a consequence of Theorem B, considering a decreasing sequence {ψk}k∈N ⊂M+

converging to ψ ∈M+, one immediately thinks that the metric spaces
(
E1(X,ω, ψk), d

)
essentially converges to

(
E1(X,ω, ψ), d

)
. The problem here is that these metric

spaces are not locally compact, therefore it is not clear what kind of convergence one
should look at. In section 3.4 we introduce the compact pointed Gromov-Hausdor�
convergence (cp-GH) which basically mimic the pointed Gromov-Hausdor� conver-
gence (see [BH99] and [BBI01]) replacing, for any space, the family of balls centered
at the point with an increasing family with dense union of compact sets containing
the point chosen (see De�nition 3.4.19).

Theorem C. Let {ψk}k∈N ⊂ M+ be a decreasing sequence converging to ψ ∈ M+.
Then (

E
1(X,ω, ψk), ψk, d

)
cp−GH−−−−−→

(
E

1(X,ω, ψ), ψ, d
)
.

Furthermore we show that the maps

Pi,j := Pω[ψj ](·) :
(
E

1(X,ω, ψi, d)
)
→
(
E

1(X,ω, ψj), d
)

for i ≤ j are short maps (i.e. 1-Lipschitz). Hence
〈(
E1(X,ω, ψi), d

)
, Pi,j

〉
is a direct

system in the category of metric spaces. We denote with m− lim−→ the direct limit
in this category.

Theorem D. Let {ψk}k∈N ⊂M+ be a decreasing sequence converging to ψ ∈M+.
Then there is an isometric embedding

m− lim
−→

〈(
E

1(X,ω, ψi), d
)
, Pi,j

〉
↪→
(
E

1(X,ω, ψ), d
)

with dense image equal to
⋃
k∈N Pω[ψ]

(
E1(X,ω, ψk)

)
.
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3.1.1 Related Works

During the last period of the preparation of this paper, Xia in [X19b] independently
showed Theorem A as particular case of his main Theorem.

3.1.2 Structure of the paper

After recalling some preliminaries in section 3.2, the third section is dedicated to
prove Theorem A. In this section many of the proofs are just easily adapted to our
setting from the absolute setting in the Kähler and in the big case (in particular
[DDNL18c]).
Section 3.4 is the core of the paper, where we show Theorems B, C, and D.

3.1.3 Acknowledgments

The author is grateful to his two advisors S. Trapani and D. Witt Nyström for their
comments and suggestions. He would also like to thank M. Xia for inspiring talks.

3.2 Preliminaries

Let (X,ω) be a compact Kähler manifold ( ω �xed Kähler form on X). We denote
with PSH(X,ω) the set of all ω-psh (ω−plurisubharmonic) functions on X, i.e.
the set of all functions u given locally as sum of a plurisubharmonic function and
a smooth function such that ω + ddcu ≥ 0 as (1, 1)-current. Here dc := i

2π
(∂ −

∂̄) so that ddc = i
π
∂∂̄. We say that u is more singular than v if there exists a

constant C ∈ R such that u ≤ v + C. Being more/less singular is a partial order
on PSH(X,ω). We use 4 to denote such order, and we indicate with [u] the class
of equivalence with respect to this order. Moreover, according to the notations in
[DDNL18b ], PSH(X,ω, ψ) is the set of all u ∈ PSH(X,ω) such that u 4 ψ, and
u ∈ PSH(X,ω, ψ) is said to have ψ-relative minimal singularities if u ∈ [ψ]. To
start the investigation of these functions we recall the construction of the envelopes
introduced in [RWN14]: for any couple of ω−psh functions u, v, the function

Pω[u](v) :=
(

lim
C→+∞

Pω(u+ C, v)
)∗

is ω−psh, where Pω(u, v) := sup{w ∈ PSH(X,ω) : w ≤ min(u, v)} is the rooftop
envelope (the star is for the upper semicontinuous regularization). Roughly speaking
if u 4 v then Pω[u](v) is the largest ω−psh function that is bounded from above by
v and that preserves the singularities type [u]. We say that an ω-psh function ψ is
a model type envelope if Pω[ψ] := Pω[ψ](0) = ψ. There are plenty of these functions
and Pω[Pω[ψ]] = Pω[ψ]. Hence ψ → Pω[ψ] may be thought as a projection from
the set of ω-psh functions to the set of model type envelopes. We refer to Remark
1.6 in [DDNL18b] for some tangible examples of these functions. Denoting with M
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the set of model type envelopes, it is easy to see that if ψ1, ψ2 ∈ PSH(X,ω) satisfy
ψ1 4 ψ2 then ψ1 ≤ ψ2. Hence the partial orders ≤,4 coincide on M.

Given T1, · · · , Tp closed and positive (1, 1)-currents, with T1 ∧ · · · ∧ Tp we will mean
the non-pluripolar product (see [BEGZ10]). It is always well-de�ned on a compact
Kähler manifold (Proposition 1.6 in [BEGZ10]) and it is local in the pluri�ne topol-
ogy, i.e. in the coarsest topology with respect to which all psh functions on all open
subsets of X become continuous (see also [BT87]). Moreover, setting ωϕ := ω+ddcϕ
if ϕ ∈ PSH(X,ω), the map

PSH(X,ω) 3 ϕ→ Vϕ :=

∫
X

ωnϕ ∈ R

respects the partial order de�ned before by the main theorem in [WN19], i.e. if
u 4 v then Vu ≤ Vv. Such monotonicity still holds considering the mixed product,
i.e.

∫
X
ωu1 ∧ · · · ∧ωun ≤

∫
X
ωv1 ∧ · · · ∧ωvn if uj 4 vj for any j = 1, . . . , n (Theorem

2.4 in [DDNL18b]). Generally we have the following principle:

Proposition 3.2.1. (Comparison Principle). Let u, v ∈ PSH(X,ω) such that u 4
v, and w1, . . . , wn−p ∈ PSH(X,ω) for 1 ≤ p ≤ n integer. Then∫

{v<u}
ωpu ∧ ωw1 ∧ · · · ∧ ωwn−p ≤

∫
{v<u}

ωpv ∧ ωw1 ∧ · · · ∧ ωwn−p .

Proof. The proof proceeds as that of Corollary 1.4 in [WN19]. For any ε > 0, set
vε := max(v, u− ε). Thus∫

X

ωpv ∧ ωw1 ∧ · · · ∧ ωwn−p =

∫
X

ωpvε ∧ ωw1 ∧ · · · ∧ ωwn−p ≥

≥
∫
{v>u−ε}

ωpv ∧ ωw1 ∧ · · · ∧ ωwn−p +

∫
{v<u−ε}

ωpu ∧ ωw1 ∧ · · · ∧ ωwn−p ,

which implies∫
{v<u−ε}

ωpu ∧ ωw1 ∧ · · · ∧ ωwn−p ≤
∫
{v<u}

ωpv ∧ ωw1 ∧ · · · ∧ ωwn−p .

The result follows from letting ε→ 0.

We also recall some results of [DDNL18b ] which will be very useful in the sequel:

Lemma 3.2.2 (Lemma 3.7, [DDNL18b]) . Let u, v ∈ PSH(X,ω). If Pω(u, v) 6=
−∞, then

ωnPω(u,v) ≤ 1{Pω(u,v)=u}ω
n
u + 1{Pω(u,v)=v}ω

n
v .

108 3.2. PRELIMINARIES
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Theorem 3.2.3 (Theorem 3.8, [DDNL18b]) . Let u, ψ ∈ PSH(X,ω) such that u is
less singular than ψ. Then

MAω
(
Pω[ψ](u)

)
≤ 1{Pω [ψ](u)=u}MAω(u).

In particular if ψ is a model type envelope then MAω(ψ) ≤ 1{ψ=0}MAω(0).

Theorem 3.2.4 (Theorem 2.3, [DDNL18b]) . Let {uj , ukj }j=1,...,n ∈ PSH(X,ω)
such that ukj → uj in capacity as k → ∞ for j = 1, . . . , n. Then for all bounded
quasi-continuous function χ,

lim inf
k→∞

∫
X

χωuk1
∧ · · · ∧ ωukn ≥

∫
X

χωu1 ∧ · · · ∧ ωun .

If additionally, ∫
X

ωu1 ∧ · · · ∧ ωun ≥ lim sup
k→∞

∫
X

ωuk1
∧ · · · ∧ ωukn

then ωuk1
∧ · · · ∧ ωukn → ωu1 ∧ · · · ∧ ωun in the weak sense of measures on X.

It is also useful to recall that if PSH(X,ω) 3 uj ↘ u ∈ PSH(X,ω) decreasing, then
uj → u in capacity, and that the convergence in capacity implies the L1-convergence
(see [GZ17]).

3.2.1 Potentials with ψ-relative full mass.

If u, v belongs to the same class [ψ] then Vu = Vv, but there are also examples of
ω-psh functions u, v such that u ≺ v and Vu = Vv. Thus u ∈ PSH(X,ω, ψ) is
said to have ψ-relative full mass if Vu = Vψ, and the set of all ω-psh functions with
ψ-relative full mass is denoted with E(X,ω, ψ) (see [DDNL18b]).

Theorem 3.2.5. (Theorem 1.3, [DDNL18b]). Suppose ψ ∈ PSH(X,ω) such that
Vψ > 0, and u ∈ PSH(X,ω, ψ). The followings are equivalent:

(i) u ∈ E(X,ω, ψ);

(ii) Pω[u](ψ) = ψ;

(iii) Pω[u] = Pω[ψ].

This result suggests that any function in the class E(X,ω, ψ) is at most mildly more
singular than ψ. Moreover this also implies that E(X,ω, ψ1) ∩ E(X,ω, ψ2) = ∅ if
ψ1, ψ2 are two di�erent model type envelopes with non zero total masses Vψ1 > 0,
Vψ2 > 0.

For any u1, . . . , up ∈ PSH(X,ω), and for any j1, . . . , jp ∈ N such that j1 + · · ·+jp =
n we introduce the notation

MAω(uj11 , . . . , u
jp
p ) := ωj1u1

∧ · · · ∧ ωjpup

3.2. PRELIMINARIES 109
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for the (mixed) non-pluripolar complex Monge-Ampére measure associated (it is a
positive Borel measure) and we set MAω(u) := MAω(un). Note that if Vψ > 0 then
the map

E(X,ω, ψ) 3 u→MAω(u)/Vψ

has image contained in the set of non-pluripolar probability measures M(X). More-
over if ψ is also a model type envelope then this map is surjective and it descends to
a bijection on the space of all closed and positive (1, 1)-currents with ψ-relative full
mass, i.e. on E(X,ω, ψ)/R (see Theorem A in [BEGZ10] when ψ = 0, Theorem 4.28
in [DDNL18b] when ψ has small unbounded locus, and Theorem 4.7 in [DDNL18d]
for the general case). See the companion paper [Tru20] and references therein for a
further analysis of the Monge-Ampère operator.

3.2.2 The ψ-relative �nite energy class E1(X,ω, ψ).

From now until section 3.4 we will assume ψ model type envelope and Vψ > 0, i.e.
ψ ∈M+ with the notations of the Introduction.

De�nition 3.2.6. [DDNL18b] The ψ-relative energy functional Eψ : PSH(X,ω, ψ)→
R ∪ {−∞} is de�ned as

Eψ(u) :=
1

(n+ 1)

n∑
j=0

∫
X

(u− ψ)MAω(uj , ψn−j)

if u has ψ-relative minimal singularities, and as

Eψ(u) := inf{Eψ(v) : v ∈ E(X,ω, ψ) withψ− relative minimal singularities, v ≥ u}

otherwise.

When ψ = 0 this functional is, up to a multiplicative constant, the Aubin-Mabuchi
energy functional , also called Monge-Ampére energy (see [Aub84], [Mab86]).

Remark 3.2.7. The authors in [DDNL18b] introduced this functional assuming ψ
with small unbounded locus, but the integration by parts formula showed by Xia in
[X19a] allows to work in the more general setting and all properties of Eψ recalled
below easily extend.

By Lemma 4.12 in [DDNL18b] Eψ(u) = limj→∞Eψ(uj) for arbitrary u ∈ PSH(X,ω, ψ)
where uj := max(u, ψ− j) are the ψ-relative canonical approximants . Moreover, fol-
lowing the notations in [DDNL18b], we recall that

E
1(X,ω, ψ) := {u ∈ E(X,ω, ψ) : Eψ(u) > −∞}

and that Eψ(u) > −∞ is equivalent to Vu = Vψ and
∫
X

(u − ψ)MAω(u) > −∞
(compare also Proposition 2.11 in [BEGZ10]).
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Proposition 3.2.8. [DDNL18b] The ψ-relative energy functional is non-decreasing,
concave along a�ne curves and continuous along decreasing sequences.

Moreover we also have the following properties:

Proposition 3.2.9. Suppose u, v ∈ E1(X,ω, ψ). Then:

i) Eψ(u)− Eψ(v) = 1
(n+1)

∑n
j=0

∫
X

(u− v)MAω(uj , vn−j);

ii) if u ≤ v then
∫
X

(u− v)MAω(u) ≤ Eψ(u)− Eψ(v) ≤ 1
n+1

∫
X

(u− v)MAω(u);

iii)
∫
X

(u− v)MAω(u) ≤ Eψ(u)− Eψ(v) ≤
∫
X

(u− v)MAω(v).

Proof. If u, v have ψ-relative minimal singularities then it is the content of Theo-
rem 4.10 in [DDNL18b], while in the general case the proof is the same to that of
Proposition 2.2 in [DDNL18c] replacing Vθ with ψ, using the Comparison Principle
of Proposition 3.2.1 and the fact that for any w ∈ E1(X,ω, ψ)

lim
j→∞

j

∫
{w≤ψ−j}

MAω(max(w,ψ − j)) = lim
j→∞

j

∫
{w≤ψ−j}

MAω(w) ≤

≤ lim
j→∞

∫
{w≤ψ−j}

(ψ − w)MAω(w) = 0

since
∫
X

(w − ψ)MAω(w) > −∞.

We conclude the subsection showing that the envelope operator Pω(·, ·) is an operator
of the class E1(X,ω, ψ) (in the absolute setting, this problem was addressed by
Darvas, see Corollary 3.5 in [Dar15]).

Proposition 3.2.10. Assume u, v ∈ E1(X,ω, ψ). Then Pω(u, v) ∈ E1(X,ω, ψ).
Moreover if {uj , vj}j∈N ⊂ E1(X,ω, ψ) decreasing respectively to u, v ∈ E1(X,ω, ψ),
then Eψ

(
Pω(uj , vj)

)
↘ Eψ

(
Pω(u, v)

)
.

Proof. Up to rescaling we may assume u, v ≤ 0. For any j ∈ N let uj := max(u, ψ−
j), vj := max(v, ψ − j) be the ψ-relative canonical approximants of u, v. Then
wj := Pω(uj , vj) is a decreasing sequence of potentials with ψ-relative minimal
singularities. Moreover it is easy to check that wj ↘ Pω(u, v). Thus by Proposition
3.2.8 it is su�cient to �nd an uniform bound for Eψ(wj), and by Proposition 3.2.9
this is equivalent to �nd C > 0 independent of j such that

∫
X

(ψ−wj)MAω(wj) ≤ C.
But Lemma 3.2.2 implies∫

X

(ψ − wj)MAω(wj) ≤
∫
{wj=uj}

(ψ − uj)MAω(uj)+

+

∫
{wj=vj}

(ψ−vj)MAω(vj) ≤ (n+1)|Eψ(uj)+Eψ(vj)| ≤ (n+1)|Eψ(u)+Eψ(v)|.

The second statement is now an easy consequence of the monotonicity of Eψ since
Pω(uj , vj)↘ Pω(u, v) for any couple of decreasing sequences uj ↘ u, vj ↘ v.
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3.3 A metric geometry on E1(X,ω, ψ).

Recall that we are assuming ψ ∈M+, i.e. ψ model type envelope with Vψ > 0.

3.3.1 E1(X,ω, ψ) as metric space.

In this subsection we prove that (E1(X,ω, ψ), d) is a metric space where d : E1(X,ω, ψ)×
E1(X,ω, ψ)→ R≥0 is de�ned as

d(u1, u2) := Eψ(u1) + Eψ(u2)− 2Eψ(Pω(u1, u2)).

It follows from section 3.2 that d assumes �nite non-negative values, and that d is
continuous along decreasing sequences converging to elements in E1(X,ω, ψ).

Lemma 3.3.1. Assume u, v, w ∈ E1(X,ω, ψ). Then the followings hold:

i) d(u, v) = d(v, u);

ii) if u ≤ v then d(u, v) = Eψ(v)− Eψ(u);

iii) if u ≤ v ≤ w then d(u,w) = d(u, v) + d(v, w);

iv) d(u, v) = d(u, Pω(u, v)) + d(v, Pω(u, v));

v) d(u, v) = 0 i� u = v.

Proof. All points are straightforward except one implication in (v). Thus assume
d(u, v) = 0. Then by (ii) and (iv) we get Eψ(u) = Eψ(Pω(u, v)), which implies
Pω(u, v) = u a.e. with respect to MAω(Pω(u, v)) (Proposition 3.2.9). Hence by the
domination principle (Proposition 3.11 in [DDNL18b]) we obtain Pω(u, v) ≥ u, i.e.
Pω(u, v) = u. The conclusion follows by symmetry.

To prove that E1(X,ω, ψ) is a metric space, it remains to prove the triangle inequal-
ity. We proceed as in section 3.1 in [DDNL18c], but for the courtesy of the reader
we will report here many of their proofs adapted to our setting.

Proposition 3.3.2. Let u, v ∈ E1(X,ω, ψ) be potentials with ψ-relative minimal
singularities. For t ∈ [0, 1] set ϕt := Pω

(
(1− t)u+ tv, v

)
. Then for any t ∈ [0, 1]

d

dt
Eψ(ϕt) =

∫
X

(
v −min(u, v)

)
MAω(ϕt).

Proof. Let us prove the formula for the right derivative. The same argument easily
works for the left derivative. Thus �x t ∈ [0, 1), let s > 0 small and ft := min

(
(1−

t)u+ tv, v
)
. Using Proposition 3.2.9 .(iii) and Lemma 3.2.2 it is easy to check that∫

X

(ft+s − ft)MAω(ϕt+s) ≤ Eψ(ϕt+s)− Eψ(ϕt) ≤
∫
X

(ft+s − ft)MAω(ϕt).
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Moreover ϕt+s → ϕt uniformly as s → 0+ since ||u − v||L∞ ≤ C, thus MAω(ϕt+s)
converges weakly to MAω(ϕt). Therefore since ft+s − ft = s

(
v − min(u, v)

)
and

since and again ||u− v||L∞ ≤ C, Theorem 3.2.4 yields

lim
s→0+

Eψ(ϕt+s)− Eψ(ϕt)

s
=

∫
X

(
v −min(u, v)

)
MAω(ϕt).

Proposition 3.3.3. Let u, v ∈ E1(X,ω, ψ). Then d
(

max(u, v), u
)
≥ d
(
v, Pω(u, v)

)
.

Proof. Setting ϕ := max(u, v) and φ := Pω(u, v), the inequality to prove is equiva-
lent to Eψ(v)−Eψ(φ) ≤ Eψ(ϕ)−Eψ(u). By Proposition 3.2.8 we may assume u, v
having ψ-relative minimal singularities.
Next Proposition 3.3.2 implies

Eψ(ϕ)− Eψ(u) =

∫ 1

0

∫
X

(ϕ− u)MAω
(
(1− t)u+ tϕ

)
dt =

=

∫ 1

0

∫
X

(ϕ− u)MAω
(

max(wt, u)
)

=

∫ 1

0

∫
{v>u}

(v − u)MAω(wt)

for wt := (1 − t)u + tv for t ∈ [0, 1], and where the last equality follows from the
locality of the Monge-Ampère operator with respect to the pluri�ne topology.
On the other hand combining Proposition 3.3.2 with Lemma 3.2.2 and {wt ≤ v} =
{u ≤ v} we get

Eψ(v)− Eψ(φ) =

∫ 1

0

∫
X

(
v −min(u, v)

)
MAω

(
Pω(wt, v)

)
≤

≤
∫ 1

0

∫
{v>u}

(v − u)MAω(wt),

which concludes the proof.

Corollary 3.3.4. Let u, v, w ∈ E1(X,ω, ψ). Then d(u, v) ≥ d
(
Pω(u,w), Pω(v, w)

)
.

Proof. It follows from Lemma 3.3.1 .(iii) and Proposition 3.3.3 by an easy calculation
(see Corollary 3.5 in [DDNL18c] for the details).

We are now ready to prove the main theorem of this subsection:

Theorem 3.3.5. (E1(X,ω, ψ), d) is a metric space.

Proof. As said before, it remains only to prove the triangle inequality (see Lemma
3.3.1).
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Let u, v, w ∈ E1(X,ω, ψ) and observe that the inequality d(u, v) ≤ d(u,w) + d(w, v)
is equivalent to

Eψ
(
Pω(u,w)

)
− Eψ

(
Pω(u, v)

)
≤ Eψ(w)− Eψ

(
Pω(w, v)

)
.

By Corollary 3.3.4 and using the monotonicity of the ψ-relative energy functional
(Proposition 3.2.8) we get

Eψ(w)− Eψ
(
Pω(w, v)

)
= d
(
w,Pω(w, v)

)
≥ d
(
Pω(w, u), Pω(w, v, u)

)
=

= Eψ
(
Pω(w, u)

)
− Eψ

(
Pω(w, v, u)

)
≥ Eψ

(
Pω(w, u)

)
− Eψ

(
Pω(u, v)

)
,

which implies the Theorem.

3.3.2 Completeness of (E1(X,ω, ψ), d).

To show the completeness we �rst need to extend some results known in the absolute
setting (i.e. if ψ = 0, see [BEGZ10], [DDNL18c]).

Proposition 3.3.6. Assume u, v ∈ E1(X,ω, ψ). Then

1

3 · 2n+2(n+ 1)

(∫
X

|u− v|
(
MAω(u) +MAω(v)

))
≤ d(u, v) ≤

≤
∫
X

|u− v|
(
MAω(u) +MAω(v)

)
.

Proof. The proof is the same as that of Theorem 3.7 in [DDNL18c] replacing their
Theorem 2.1 and Lemma 3.1 by our Proposition 3.2.9 and Lemma 3.3.1.

Lemma 3.3.7. There exist positive constants A > 1, B > 0 such that for any
u ∈ E1(X,ω, ψ)

−d(ψ, u) ≤ Vψ sup
X

(u− ψ) = Vψ sup
X
u ≤ Ad(ψ, u) +B.

Proof. The equality follows from u− supX u ≤ Pω[ψ] = ψ ≤ 0.
Next, if supX u ≤ 0 then the right inequality is trivial for any A,B > 0 while the left
inequality is a consequence of d(ψ, u) = −Eψ(u) ≥ −Vψ supX(u − ψ) (Proposition
3.2.9).
Therefore, let us assume supX u ≥ 0. By Proposition 2.7 in [GZ05] there exists an
uniform bound C > 0 such that∫

X

|v − sup
X
v|MAω(0) ≤ C

for any v ∈ PSH(X,ω). Hence, since Theorem 4.2.2 gives MAω(ψ) ≤ 1{ψ=0}MAω(0),
we also have ∫

X

|u− sup
X
u− ψ|MAω(ψ) ≤

∫
X

|u− sup
X
u|MAω(0) ≤ C
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for any u ∈ E1(X,ω, ψ). So, by Proposition 3.3.6,

d(u, ψ) ≥ D
∫
X

|u− ψ|MAω(ψ) ≥

≥ DVψ sup
X
u−D

∫
X

|u− sup
X
u− ψ|MAω(ψ) ≥ DVψ sup

X
u−DC.

Take A := 1/D and B := C to conclude the proof.

Proposition 3.3.8. Let {uj}j∈N ⊂ E1(X,ω, ψ) be an increasing sequence uniformly
bounded by above, and let u :=

(
limj→∞ uj

)∗ ∈ PSH(X,ω). Then u ∈ E1(X,ω, ψ)
and Eψ(uj)→ Eψ(u) as j →∞.

Proof. Since supX uj = supX(uj − ψ) is uniformly bounded, we immediately get
that u ≤ ψ + C for a certain constant C ∈ R, i.e. u ∈ PSH(X,ω, ψ). Furthermore
since u ≥ uj for any j ∈ N by construction, we also obtain u ∈ E1(X,ω, ψ) by
[WN19] and the monotonicity of Eψ. Thus since Eψ(u) = limk→∞Eψ(uk), Eψ(uj) =
limk→∞Eψ(ukj ) where uk := max(u, ψ− k), ukj := max(uj , ψ− k) are the ψ-relative
canonical approximants, it is enough to check that Eψ(ukj ) ↘ Eψ(uj) as k → ∞
uniformly in j. Indeed this would imply

Eψ(u)−Eψ(uj) ≤ |Eψ(u)−Eψ(uk)|+ |Eψ(uk)−Eψ(ukj )|+ |Eψ(ukj )−Eψ(uj)| → 0

letting �rst j → ∞ and then k → ∞, since |Eψ(uk) − Eψ(ukj )| → 0 as j → ∞ as a
consequence of Lemma 4.1 in [DDNL18b] (see also Lemma 3.4.3 below).
Assume without loss of generality that u ≤ 0. By Proposition 3.2.9 we have

0 ≤ Eψ(ukj )− Eψ(uj) ≤
∫
X

(ukj − uj)MAω(uj) =

∫ +∞

k

MAω(uj)
(
{uj ≤ ψ − t}

)
dt.

(3.1)

Next we set vj,t :=
uj+ψ−t

2
and we note that the following inclusions hold:

{uj ≤ ψ − t} ⊂ {u1 ≤ vj,t} ⊂ {u1 ≤ ψ − t/2}.

Indeed the �rst inclusion follows from u1 ≤ uj while the last is a consequence
supX u = supX(u − ψ) (Lemma 3.3.7). Thus, by the comparison principle (Propo-
sition 3.2.1) we have

MAω(uj)
(
{uj ≤ ψ−t}

)
≤MAω(uj)

(
{u1 ≤ vj,t}

)
≤ 2nMAω(vj,t)

(
{u1 ≤ vj,t}

)
≤

≤ 2nMAω(u1)
(
{u1 ≤ vj,t}

)
≤ 2nMAω(u1)

(
{u1 ≤ ψ − t/2}

)
.

Therefore, continuing the estimates in (3.1),

0 ≤ Eψ(ukj )− Eψ(uj) ≤ 2n+1

∫ +∞

k/2

MAω(u1)
(
{u1 ≤ ψ − t}

)
dt =

= 2n+1

∫
X

(u
k/2
1 − u1)MAω(u1),
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which concludes the proof since the right hand goes to 0 as k → +∞ (recall that
u1 ∈ E1(X,ω, ψ)).

Theorem 3.3.9. (E1(X,ω, ψ), d) is complete.

Proof. Let {uj}j∈N ⊂ (E1(X,ω, ψ), d) be a Cauchy sequence. Up to extract a sub-
sequence we may assume that d(uj , uj+1) ≤ 2−j for any j ∈ N. De�ne vj,k :=
Pω(uj , . . . , uk) for j, k ∈ N, k ≥ j, i.e.

vj,k = sup{v ∈ PSH(X,ω) : v ≤ min(uj , . . . , uk)}∗.

Clearly vj,k = Pω(uj , vj+1,k) ≤ vj+1,k if k ≥ j + 1 and vj,k ∈ E1(X,ω, ψ) as con-
sequence of Proposition 3.2.10 since Pω(Pω(u, v), w) = Pω(u, v, w) for any u, v, w ∈
PSH(X,ω). Thus for any k ≥ j + 1

d(uj , vj,k) = d(uj , Pω(uj , vj+1,k)) ≤ d(uj , vj+1,k) ≤ d(uj , uj+1) + d(uj+1, vj+1,k)

using Lemma 3.3.1. Iterating the argument we get

d(uj , vj,k) ≤
k−j∑
s=1

d(uj+s−1, uj+s) ≤
k−j∑
s=1

1

2j+s−1
≤
∞∑
s=j

1

2s
=

1

2j−1
.

Moreover, since vj,k is decreasing in k, there exists a constant Cj ∈ R such that
vj,k ≤ ψ + Cj for any k ≥ j. So

Cj−Eψ(vj,k) = d(ψ+Cj , vj,k) ≤ d(ψ+Cj , uj)+d(uj , vj,k) ≤ d(ψ+Cj , uj)+2−j+1,

which implies that vj := limk→∞ vj,k ∈ E1(X,ω, ψ) by Proposition 3.2.8, and
d(vj , uj) ≤ 2−j+1 by continuity of the distance along decreasing sequences.
Next we observe that vj is increasing in j and that

Vψ sup
X

(vj − ψ) = Vψ sup
X
vj ≤ Ad(ψ, vj) +B ≤

≤ A
(
d(ψ, u1) +

j−1∑
s=1

d(us, us+1) + d(uj , vj)
)

+B ≤ Ad(ψ, u1) + 3A+B

where the �rst inequality is the content of Lemma 3.3.7. Hence Proposition 3.3.8
leads to u :=

(
limj→∞ vj

)∗ ∈ E1(X,ω, ψ) and to

d(uj , u) ≤ d(uj , vj) + d(vj , u) ≤ 2−j+1 + d(vj , u)→ 0

for j →∞.
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Remark 3.3.10. In the case ψ ∈ M \M+, i.e. if ψ is a model type envelope with
zero mass Vψ = 0, then

PSH(X,ω, ψ) = E(X,ω, ψ) = E
1(X,ω, ψ).

Indeed any function u ∈ PSH(X,ω, ψ) has zero mass Vu = 0 ([WN19]) and Eψ(u) =
0 since for any φ with ψ-minimal singularities |Eψ(φ)| ≤ Vψ supX |φ − ψ| = 0. In
particular d(u, v) := Eψ(u) +Eψ(v)− 2Eψ

(
Pω(u, v)

)
= 0 for any u, v ∈ E1(X,ω, ψ).

Moreover if Pω
(
ψ1, ψ2

)
6≡ −∞ for ψ1, ψ2 model type envelopes with zero masses

Vψ1 = Vψ2 = 0 then E1(X,ω, ψ1) ∩ E1(X,ω, ψ2) = E1(X,ω, Pω[Pω(ψ1, ψ2)]) is not
empty.

3.4 The metric space (XA, dA) and consequences.

In this section we will prove the main Theorem B, i.e. assuming A ⊂ M+ total
ordered subset (recall the the partial order 4 coincides with the order ≤ on M),
we will endow the space XA :=

⊔
ψ∈A E1(X,ω, ψ) with a metric topology. Here A

denotes the closure of A as subset of PSH(X,ω) with its L1-topology.
We will show that A ⊂ M and we will de�ne a natural distance dA on XA which
extends the distance d (Theorem A) on E1(X,ω, ψ) for any ψ ∈ A where if ψ =
inf A ∈ M \M+ we identify the space E1(X,ω, ψ) with a point since in this case
necessarily dA = d̃ ≡ 0 (Remark 3.3.10).
We recall that the distance d on E1(X,ω, ψ) for ψ ∈M+ is de�ned as

d(u, v) = Eψ(u) + Eψ(v)− 2Eψ
(
Pω(u, v)

)
.

De�nition 3.4.1. Given ψ ∈M+, the strong topology on E1(X,ω, ψ) is de�ned as
the metric topology given by the distance d.

In the case ψ = 0 the strong topology was introduced in [BBEGZ19] (De�nition
2.1.), see also Proposition 5.9 and Theorem 5.5. in [Dar15].

The following Lemmas regarding the weak convergence of Monge-Ampére measures
for functions belonging in di�erent E1-spaces will be essential in the sequel.

Lemma 3.4.2. Let {ψk}k∈N ⊂ M be a monotone sequence converging a.e. to
ψ ∈ PSH(X,ω). Then ψ ∈M and MAω(ψk)→MAω(ψ) weakly.

Proof. Assume �rst ψk ↘ ψ.
Since supX ψk = 0 for any k ∈ N we immediately obtain ψ ≤ Pω[ψ] =: ψ̃ which
implies ψ = Pω[ψ] since clearly ψ̃ ≤ Pω[ψk] for any k ∈ N. For the second statement,
we �rst observe that ∫

X

MAω(ψ) ≥ lim sup
k→∞

∫
{ψ≥−C}

MAω(ψk) (3.2)

3.4. THE METRIC SPACE (XA, DA) AND CONSEQUENCES. 117



118

CHAPTER 3. L1 METRIC GEOMETRY OF POTENTIALS WITH
PRESCRIBED SINGULARITIES

ON COMPACT KÄHLER MANIFOLDS

for any C ∈ R �xed since MAω(ψj) → MAω(ψ) weakly in the pluri�ne topology
over {ψ > −∞} and {ψ ≥ −C} is a pluri�ne closed set (see [BT82] and [BT87]).
On the other hand, by Theorem 4.2.2 MAω(ψk) ≤ 1{ψk=0}MAω(0) for any k ∈ N.
Thus for any C ≥ 0

lim sup
k→∞

∫
{ψ<−C}

MAω(ψk) ≤ lim sup
k→∞

∫
{ψ<−C}∩{ψk=0}

MAω(0) = 0, (3.3)

where the last equality follows from
⋂
k∈N{ψk = 0} = {ψ = 0} since ψk ↘ ψ and

ψ,ψk ≤ 0. Hence combining (3.2) and (3.3) we obtain∫
X

MAω(ψ) ≥ lim sup
k→∞

∫
X

MAω(ψk),

and Theorem 3.2.4 implies MAω(ψk)→MAω(ψ) weakly.
Assume now ψk ↗ ψ almost everywhere.
Again by Theorem 3.2.4 we immediately get MAω(ψk) → MAω(ψ) weakly since
ψk → ψ in capacity. Moreover, similarly as before, ψ ≤ Pω[ψ]. Thus to conclude
the proof it remains to prove that ψ ≥ Pω[ψ].
We note that MAω(ψ) ≤ 1{ψ=0}MAω(0) since MAω(ψk) ≤ 1{ψk=0}MAω(0) for
any k ∈ N (Theorem 4.2.2). Therefore

0 ≤
∫
X

(
Pω[ψ]− ψ

)
MAω(ψ) ≤

∫
{ψ=0}

(Pω[ψ]− ψ)MAω(0) = 0

where the last equality follows from ψ ≤ Pω[ψ] ≤ 0. Hence by the domination
principle (Proposition 3.11 in [DDNL18b]) we conclude that Pω[ψ] ≤ ψ, i.e. ψ ∈
M.

As a consequence of Lemma 3.4.2 we get that A ⊂ M. Indeed since A is totally
ordered, any Cauchy sequence {ψk}k∈N admits a subsequence monotonically con-
verging a.e. to

(
limk→∞ ψk

)∗
. We also note that A remains totally ordered.

Lemma 3.4.3. Let {ψk}k∈N ⊂ M total ordered such that ψk → ψ ∈ M mono-
tonically almost everywhere. Let also u1, u2 ∈ E1(X,ω, ψ), and let {u1,k, u2,k}k∈N
be two sequences converging in capacity respectively to u1, u2 such that u1,k, u2,k ∈
E1(X,ω, ψk). Then for any j = 0, . . . , n,

MAω(uj1,k, u
n−j
2,k )→MAω(uj1, u

n−j
2 )

weakly. Moreover if u1,k − u2,k is uniformly bounded then, for any j = 0, . . . , n,

(u1,k − u2,k)MAω(uj1,k, u
n−j
2,k )→ (u1 − u2)MAω(uj1, u

n−j
2 ) (3.4)

weakly. In particular if either u1,k ↘ u1, u2,k ↘ u2 a.e. or u1,k ↗ u1, u2,k ↗ u2

a.e. and u1,k − u2,k uniformly bounded, then

d(u1,k, u2,k)→ d(u1, u2).
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Proof. MAω(uj1,k, u
n−j
2,k ) → MAω(uj1, u

n−j
2 ) weakly as a consequence of Theorem

3.2.4 and Lemma 3.4.2. Thus the proof of the weak convergence in (3.4) is an
adaptation of the proof of Lemma 4.1 in [DDNL18b] (and it is a particular case of
Theorem 2.2. in [X19a]).
Next assume that u1,k, u2,k converge monotonically almost everywhere to u1, u2

as in the statement. Thus to prove that d(u1,k, u2,k) → d(u1, u2) we only need
to show that Pω(u1,k, u2,k) → Pω(u1, u2) almost everywhere since clearly ui,k −
Pω(u1,k, u2,k) is uniformly bounded. From Pω(u1,k, u1,k) ≤ u1,k, u2,k we immedi-
ately have

(
limk→∞ Pω(u1,k, u2,k)

)∗ ≤ Pω(u1, u2). Therefore if the convergence is
decreasing then Pω(u1, u2) ≤ Pω(u1,k, u2,k) and we get the convergence of the d dis-
tances. If instead the convergence is increasing then, setting φ :=

(
limk→∞ Pω(u1,k, u2,k)

)∗
,

we observe that φ ∈ E(X,ω, ψ) and that MAω
(
Pω(u1,k, u2,k)

)
→ MAω(φ) weakly

as a consequence of Theorem 3.2.4 and Lemma 3.4.2. Moreover since by Lemma
3.2.2

MAω
(
Pω(u1,k, u2,k)

)
≤ 1{φ≥u1,k}MAω(u1,k) + 1{φ≥u2,k}MAω(u2,k) ≤

≤ 1{φ≥u1,j}MAω(u1,k) + 1{φ≥u2,j}MAω(u2,k)

for any j ≤ k, and MAω(ui,k)→MAω(ui) weakly for i = 1, 2, we get

MAω(φ) ≤ 1{φ≥u1,j}MAω(u1) + 1{φ≥u2,j}MAω(u2).

Therefore letting j →∞ we obtain

0 ≤
∫
X

(
Pω(u1, u2)− φ

)
MAω(φ) ≤

∫
{φ≥u1}

(
Pω(u1, u2)− u1

)
MAω(u1)+

+

∫
{φ≥u2}

(
Pω(u1, u2)− u2

)
MAω(u2) ≤ 0,

which by the domination principle of Proposition 3.11. in [DDNL18b] implies Pω(u1, u2) ≤
φ. Hence Pω(u1, u2) = φ which as said above concludes the proof.

3.4.1 The contraction property of d.

Lemma 3.4.4. Let ψ,ψ1, ψ2 ∈M such that ψ2 4 ψ1 4 ψ. Then:

i) Pω[ψ2](Pω[ψ1](u)) = Pω[ψ2](u) for any u ∈ E1(X,ω, ψ);

ii) Pω[ψ1](E1(X,ω, ψ)) ⊂ E1(X,ω, ψ1);

iii) for any u, v ∈ E1(X,ω, ψ) such that u − v is globally bounded, ||Pω[ψ1](u) −
Pω[ψ2](v)||L∞ ≤ ||u− v||L∞ and in particular Pω[ψ1](u) has ψ1-relative mini-
mal singularities for any u ∈ E1(X,ω, ψ) with ψ-relative minimal singularities.

Proof. The inequality Pω[ψ1](u) ≤ u immediately implies Pω[ψ2](Pω[ψ1](u)) ≤
Pω[ψ2](u). Vice versa Pω[ψ2](u) ≤ Pω[ψ1](u) since ψ2 4 ψ1. Thus the �rst point
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follows applying Pω[ψ2](·) to both sides.
For the third statement, letting C := ||u − v||L∞ , it is an easy consequence of the
de�nition that

Pω[ψ1](u) ≥ Pω[ψ1](v − C) = Pω[ψ1](v)− C.
By symmetry, we also have Pω[ψ1](u) ≤ Pω[ψ1](v) + C which gives (iii). This
immediately yields (ii) if ψ1 ∈M \M+. Therefore it remains to prove (ii) assuming
ψ1 ∈ M+. Letting uj := max(u, ψ − j) be the ψ-relative canonical approximants of
a generic u ∈ E1(X,ω, ψ), we get that v := Pω[ψ1](u) belongs to E1(X,ω, ψ1) if and
only if

∫
X

(ψ1 − vj)MAω(vj) is uniformly bounded in j where vj := Pω[ψ1](uj) (see
Proposition 3.2.8). But taking D := supX u > 0 and using Theorem 4.2.2 we get

DVψ1 +

∫
X

(ψ1 − vj)MAω(vj) ≤
∫
{vj=uj}

(ψ +D − uj)MAω(uj) ≤

≤ DVψ +

∫
X

(ψ − uj)MAω(uj) < E ∈ R

for an uniform E ∈ R since u ∈ E1(X,ω, ψ) and uj ↘ u.

We are now ready to prove the following key property of the distance d.

Proposition 3.4.5. Let ψ,ψ′ ∈M such that ψ′ 4 ψ. Then the map

Pω[ψ′](·) :
(
E

1(X,ω, ψ), d
)
→
(
E

1(X,ω, ψ′), d
)

is a Lipschitz map of Lipschitz constant equal to 1, i.e.

d(u, v) ≥ d(Pω[ψ′](u), Pω[ψ′](v))

for any u, v ∈ E1(X,ω, ψ).

Proof. Let u, v ∈ E1(X,ω, ψ). Set

ρ(u, v) :=

∫
X

(u− v)MAω(v).

if u ≥ v and ρ(u, v) := ρ(v, u) if v ≥ u. Proposition 3.2.9 implies d(u, v) ≤ ρ(u, v).
Moreover assuming ψ′ ∈M+ such that ψ′ 4 ψ as in the statement of the Proposition,

ρ(Pω[ψ′](u), Pω[ψ′](v)) =

∫
X

(
Pω[ψ′](u)− Pω[ψ′](v)

)
MAω

(
Pω[ψ′](v)

)
≤

≤
∫
{Pω [ψ′](v)=v}

(u− v)MAω(v) ≤ ρ(u, v)

by Theorem 4.2.2. Therefore we de�ne for any u, v ∈ E1(X,ω, ψ)

d̃(u, v) := inf
(
ρ(u,w1) +

m−1∑
j=1

ρ(wj , wj+1) + ρ(wm, v)
)
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where the in�mum is over all chain C = {u = w0, w1, . . . , wm, wm+1 = v} for any
m ∈ N such that any pair of consecutive elements in the chain wj , wj+1 satis�es
wj ≥ wj+1 or wj ≤ wj+1.
Clearly d̃(u, v) ≥ d(u, v) and it is straightforward to check that d̃ is symmetric and
that it satis�es the triangle inequality. Moreover by construction and Lemma 3.4.4
we also have d̃

(
Pω[ψ′](u), Pω[ψ′](v)

)
≤ d̃(u, v) since ρ has the same property and

Pω[ψ′](u) ≤ Pω[ψ′](v) if u ≤ v. Thus to conclude the proof it remains to prove that
d̃ ≤ d, which would imply d̃ = d.
We �rst observe that it is enough to show that d̃(u, v) ≤ d(u, v) assuming u ≥ v
since it would lead to

d̃(w1, w2) ≤ d̃
(
w1, Pω(w1, w2)

)
+ d̃
(
w2, Pω(w1, w2)

)
≤

≤ d
(
w1, Pω(w1, w2)

)
+ d
(
w2, Pω(w1, w2)

)
= d(w1, w2)

by Lemma 3.3.1 .(iv). Therefore let u ≥ v, �x N ∈ N and set wj,N := j
N
u+ N−j

N
v for

j = 0, . . . , N . Then CN := {w0,N , . . . , wN,N} is an admissible chain for the de�nition
of d̃(u, v). So

d̃(u, v) ≤
N−1∑
j=0

ρ(wj,N , wj+1,N ) =

N−1∑
j=0

1

N

∫
X

(u− v)MAω(wj,N ) =

=

n∑
s=0

(
n

s

)(
1

N

N−1∑
j=0

( j
N

)s(N − j
N

)n−s)∫
X

(u− v)MAω(us, vn−s).

Next by Lemma 3.4.6 below for any s = 0, . . . , n,

1

N

N−1∑
j=0

( j
N

)s(N − j
N

)n−s
−→ 1(

n
s

)
(n+ 1)

,

as N →∞. Hence we get

d̃(u, v) ≤ 1

n+ 1

n∑
s=0

∫
X

(u− v)MAω(us, vn−s) = d(u, v),

which concludes the proof.

Lemma 3.4.6. Let n,N ∈ N and let s be a non negative integer such that s ≤ n.
Then

lim
N→∞

1

N

N−1∑
j=0

( j
N

)s(N − j
N

)n−s
=

1(
n
s

)
(n+ 1)

(3.5)
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Proof. Consider the function f : [0, 1] → R, x → xn−s(1 − x)s, it is immediate to
see that the sequence in (3.5) is the upper Darboux sum of f with respect to the
partition 0 < 1

N
< · · · < j

N
< · · · < 1. Thus

lim
N→∞

1

N

N−1∑
j=0

( j
N

)s(N − j
N

)n−s
=

∫ 1

0

xn−s(1− x)sdx.

A brief calculation shows that
∫ 1

0
xn−s(1− x)sdx = 1

(ns)(n+1)
.

The contraction property showed above implies an uniform convergence on some
compact sets.

Proposition 3.4.7. Let {ψk}k∈N ⊂ M be a sequence monotonically converging to
ψ ∈ M almost everywhere. Then for any ψ′ ∈ M such that ψ′ < ψk for any k ≥ k0

big enough and for any compact set K̃ ⊂ E1(X,ω, ψ′) with respect the strong topology
on E1(X,ω, ψ′), the sets K := Pω[ψ](K̃) ⊂

(
E1(X,ω, ψ), d

)
, Kk := Pω[ψk](K̃) ⊂(

E1(X,ω, ψk), d
)
are compact in their respective strong topologies for any k ≥ k0,

and
d
(
Pω[ψk](ϕ1), Pω[ψk](ϕ2)

)
→ d

(
Pω[ψ](ϕ1), Pω[ψ](ϕ2)

)
uniformly on K̃ × K̃, i.e. varying (ϕ1, ϕ2) ∈ K̃ × K̃.

Proof. It follows from Lemma 3.4.4 and Proposition 3.4.5 that Pω[ψk](K̃) is compact
in
(
E1(X,ω, ψk), d

)
for any k ∈ N, and similarly for K.

Next, we de�ne fk : K̃ × K̃ → R≥0 for k ∈ N and f : K̃ × K̃ → R≥0 respectively as

fk(ϕ1, ϕ2) := d
(
Pω[ψk](ϕ1), Pω[ψk](ϕ2)

)
f(ϕ1, ϕ2) := d

(
Pω[ψ](ϕ1), Pω[ψ](ϕ2)

)
.

We observe that fk, f are Lipschitz continuous with respect the strong topology on
K̃ × K̃ (Proposition 3.4.5). Moreover by Lemma 3.4.3 fk → f pointwise on a dense
subset of K̃×K̃ and {fk}k∈N is a monotone sequence. Hence Dini's Theorem implies
that fk → f uniformly on K̃ × K̃.

3.4.2 The metric space
(⊔

ψ∈A P(X,ω, ψ), dA
)
.

De�nition 3.4.8. Let ψ ∈M. We introduce the set

PH(X,ω, ψ) := {Pω[ψ](ϕ) : ϕ ∈ H}

where H := {ϕ ∈ PSH(X,ω) : ω + ddcϕ Kähler form }.

Observe that by Lemma 3.4.4 any u ∈ PH(X,ω, ψ) has ψ-relative minimal singular-
ities. This smaller set is dense in

(
E1(X,ω, ψ), d

)
as the next result shows:
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Lemma 3.4.9. Let ψ ∈ M. Then PH(X,ω, ψ) is dense in E1(X,ω, ψ) with respect
to the strong topology.

Proof. We can assume ψ ∈M+, otherwise it is trivial. Let u ∈ E1(X,ω, ψ).
We �rst observe that vj := Pω[ψ](max(u,−j)) belongs to E1(X,ω, ψ) and it has
ψ-relative minimal singularities by Lemma 3.4.4. Moreover since

u = Pω[ψ](u) ≤ vj ≤ max(u,−j)

we also get that vj ↘ u. Therefore d(u, vj) → 0 for j → ∞ since d is continuous
along decreasing sequences. Next, by density of H into E1(X,ω) := E1(X,ω, 0), for
any j ∈ N there exists ϕj ∈ H such that d(ϕj ,max(u,−j)) ≤ 1/j. Therefore, letting
wj := Pω[ψ](ϕj) ∈ PH(X,ω, ψ), by Proposition 3.4.5 it follows that

d(wj , u) ≤ d(wj , vj) + d(vj , u) ≤ d(u, vj) +
1

j
→ 0

as j →∞, which concludes the proof.

Remark 3.4.10. By the main Theorem in [Mc18], if the singularities of ψ are
analytic, i.e. ψ = Pω[u] for u with analytic singularities of type ac for an analytic
coherent ideal sheaf a ⊂ OX , c ∈ R>0, then any function v ∈ PH(X,ω, ψ) is C1,1

loc

(
X\

V (a)
)
.

We need now to recall the de�nition of the entropy .

De�nition 3.4.11. [De�nition 2.9., [BBEGZ19]] Let µ, ν two probability measures
on X. The relative entropy Hµ(ν) ∈ [0,+∞] of ν with respect to µ is de�ned
as follows. If ν is absolutely continuous with respect to µ and f := dν

dµ
satis�es

f log f ∈ L1(µ) then

Hµ(ν) :=

∫
X

f log fdµ =

∫
X

log
(dν
dµ

)
dν.

Otherwise Hµ(ν) := +∞.

The relative entropy provides compact sets in E1(X,ω) endowed with the strong
topology (De�nition 3.4.1).

Theorem 3.4.12. [Theorem 2.17., [BBEGZ19]] Let C be a positive constant. Then
the set

KC :=
{
ϕ ∈ E

1(X,ω) : max
(
| sup
X
ϕ|, HMAω(0)/V0

(
MAω(ϕ)/V0

))
≤ C

}
is compact in E1(X,ω) with respect to the strong topology.
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De�nition 3.4.13. Given ψ ∈ A, we de�ne for any C ≥ 0

PC(X,ω, ψ) := Pω[ψ](KC) =

=
{
Pω[ψ](ϕ) ∈ E

1(X,ω, ψ) : max
(
| sup
X
ϕ|, HMAω(0)(MAω(ϕ))

)
≤ C

}
,

and
P(X,ω, ψ) :=

⋃
C∈R≥0

PC(X,ω, ψ).

As a consequence of Theorem 3.4.12 and Proposition 3.4.5 PC(X,ω, ψ) is compact
in (E1(X,ω, ψ), d) and PC1(X,ω, ψ) ⊂ PC2(X,ω, ψ) if C1 ≤ C2. Moreover since
HMAω(0)(MAω(ϕ)) < ∞ for any ϕ ∈ H, PH(X,ω, ψ) =

⋃
C∈R≥0

Pω[ψ](KC ∩H) ⊂
P(X,ω, ψ). It is also clear that for any u ∈ P(X,ω, ψ) there exists C ∈ R≥0 minimal
such that u ∈ PC(X,ω, ψ). We set P(X,ω) := P(X,ω, 0) and we call ϕ ∈ P(X,ω)
a minimal entropy function for u ∈ P(X,ω, ψ) if ϕ ∈ KC and Pω[ψ](ϕ) = u for C
minimal.

De�nition 3.4.14. Let u ∈ PC1(X,ω, ψ1), v ∈ PC2(X,ω, ψ2) for ψ1, ψ2 ∈ A such
that ψ2 4 ψ1. Assume also that C1 (respectively C2) is minimal such that u ∈
PC1(X,ω, ψ1) (resp. v ∈ PC2(X,ω, ψ2)). We de�ne

d̃A(u, v) := d(v, Pω[ψ2](u)) + sup
{
d(a, b)− d(Pω[ψ2](a), Pω[ψ2](b))

}
+ Vu − Vv

where the supremum is over all a, b ∈ Pmax(C1,C2)(X,ω, ψ1).

We observe that d̃A takes �nite values since the supremum in the de�nition is actually
equal to

max
(ϕ1,ϕ2)∈Kmax(C1,C2)×Kmax(C1,C2)

{
d
(
Pω[ψ1](ϕ1), Pω[ψ1](ϕ2)

)
−d
(
Pω[ψ2](ϕ1), Pω[ψ2](ϕ2)

)}
.

Proposition 3.4.15. Let u ∈ P(X,ω, ψ1), v ∈ P(X,ω, ψ2) for ψ1, ψ2 ∈ A such that
ψ2 4 ψ1. Then the followings hold:

i) d̃A(u, v) = d̃A(v, u);

ii) d̃A(u, v) ∈ R≥0 and d̃A(u, v) = 0 if and only if u = v;

iii) if ψ1 = ψ2 then d̃A(u, v) = d(u, v);

iv) d̃A(u, v) ≥ d(v, Pω[ψ2](u)) and d̃A(u, v) ≥ d(u, Pω[ψ1](ϕ)) where ϕ ∈ P(X,ω)
is a minimal entropy function for v.

Proof. The �rst point is trivial. By Proposition 3.4.5 and the main Theorem in
[WN19] d̃A ∈ R≥0, and if ψ1 = ψ2 then d̃A(u, v) = d(u, v). For (iv), instead,
the �rst inequality is immediate, while the second inequality follows considering
a = u, b = Pω[ψ1](ϕ) in the supremum.
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Therefore it remains to prove that d̃A(u, v) = 0 implies u = v. But if d̃A(u, v) = 0
then in particular Vψ1 = Vψ2 , and Theorem 3.2.5 implies ψ1 = ψ2. Hence the third
point and Theorem A conclude the proof.

The map d̃A does not seem to be a distance on
⊔
ψ∈A P(X,ω, ψ), since it hardly

satis�es the triangle inequality. Indeed it is composed of three parts, and clearly two
parts behaves well for the triangle inequality, but the part given by the supremum
seem to be very unstable since the set of the supremum depends on the functions
u, v taken. Therefore we want to modify d̃A to get a distance dA which still coincides
with the d-distance on P(X,ω, ψ) for any ψ ∈ A. The next Lemma is the key point
to proceed.

Lemma 3.4.16. Let u, v ∈ P(X,ω, ψ) for ψ ∈ A. Then for any m ∈ N and any
w1, . . . , wm ∈

⊔
ψ′∈A P(X,ω, ψ′),

d(u, v) ≤ d̃A(u,w1) +

m−1∑
j=1

d̃A(wj , wj+1) + d̃A(wm, v).

The proof of this Lemma is quite laborious and it will be presented in the subsection
3.4.3.

Next we de�ne dA :
⊔
ψ∈A P(X,ω, ψ)×

⊔
ψ∈A P(X,ω, ψ)→ R≥0 as

dA(u, v) := inf
{
d̃A(u,w1) +

m−1∑
j=1

d̃A(wj , wj+1) + d̃A(wm, v)
}

where the in�mum is over all possible chains in
⊔
ψ∈A P(X,ω, ψ).

We can now prove Theorem B:

Theorem B.
(⊔

ψ∈A P(X,ω, ψ), dA
)
is a metric space, and denoting with XA its

metric completion, we have

XA =
⊔
ψ∈A

E
1(X,ω, ψ)

where A ⊂ M is the closure of A as subset of PSH(X,ω) with its L1-topology and
where we identify E1(X,ω, ψ′) with a singleton Pψ′ if ψ

′ := inf A ∈M \M+.
In particular the complete metric space (XA, dA) restricts to

(
E1(X,ω, ψ), d

)
on

E1(X,ω, ψ) for any ψ ∈ A.

Proof. Step 1:
(⊔

ψ∈A P(X,ω, ψ), dA
)
is a metric space .

As a consequence of Lemma 3.4.16 we immediately get

dA|P(X,ω,ψ)×P(X,ω,ψ) = d
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for any ψ ∈ A. Therefore to prove that dA is a distance on
⊔
ψ∈A P(X,ω, ψ) it

remains to prove that dA(u, v) = 0 implies u = v since the triangle inequality easily
follows from the construction (see also Proposition 3.4.15). But given w1, . . . , wm ∈⊔
ψ∈A P(X,ω, ψ), the uniform bound

d̃A(u,w1) + d̃A(w1, w2) + · · ·+ d̃A(wm, v) ≥ |Vu − Vv|

holds. Therefore dA(u, v) = 0 leads to Vu = Vv, and since A is totally ordered,
by Theorem 3.2.5, we obtain that u, v ∈ E1(X,ω, ψ) for a common ψ ∈ A. Hence
0 = dA(u, v) = d(u, v), which implies u = v and concludes the �rst step.

Step 2:
(⊔

ψ∈A
(
E1(X,ω, ψ), d

))
⊂ (XA, dA).

For any ψ ∈ (A \ A) there exists a monotone sequence {ψk}k∈N such that ψ =(
limk→∞ ψk

)∗
. Thus, letting PC(X,ω, ψ) 3 u = Pω[ψ](ϕ) for ϕ ∈ KC minimal

entropy function for u and letting uk := Pω[ψk](ϕ), we claim that {uk}k∈N is a
Cauchy sequence with respect the distance dA.
Indeed if {ψk}k∈N is increasing, then for any j, k such that j ≥ k we have

dA(uk, uj) ≤ d̃A(uk, uj) ≤

≤ sup
a,b∈PC(X,ω,ψj)

{
d(a, b)− d

(
Pω[ψk](a), Pω[ψk](b)

)}
+ Vuj − Vuk ≤

≤ sup
a,b∈PC(X,ω,ψ)

{
d(a, b)− d

(
Pω[ψk](a), Pω[ψk](b)

)}
+ Vψ − Vψk

by the de�nition of dA and Proposition 3.4.5 since ψ < ψk for any k ∈ N. There-
fore by Proposition 3.4.7 (see also Lemma 3.4.2) {uk}k∈N is a Cauchy sequence in(⊔

ψ∈A P(X,ω, ψ), dA
)
.

If instead ψk ↘ ψ, we �rst denote with C1 ∈ R≥0 the minimal constant such that
u1 = Pω[ψ1](φ) for φ ∈ KC1 . Thus for any j, k such that j ≥ k we have

dA(uk, uj) ≤ d̃A(uk, uj) ≤

≤ sup
a,b∈PC1

(X,ω,ψk)

{
d(a, b)− d

(
Pω[ψj ](a), Pω[ψj ](b)

)}
+ Vuk − Vuj ≤

≤ sup
a,b∈PC1

(X,ω,ψk)

{
d(a, b)− d

(
Pω[ψ](a), Pω[ψ](b)

)}
+ Vψk − Vψ,

and as before Proposition 3.4.7 and Lemma 3.4.2 imply that {uk}k∈N is a Cauchy
sequence.
Hence we de�ne the map

Φ̃ :
( ⊔
ψ∈A

(
P(X,ω, ψ), d

))
→ (XA, dA)
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as Φ̃(u) := [uk] where we recall that (XA, dA) is by de�nition the metric completion
of
⊔
ψ∈A

(
P(X,ω, ψ), d

)
. We need to check that it is well-de�ned.

Let assume u = Pω[ψ](ϕ) = Pω[ψ](ϕ′) for ϕ,ϕ′ ∈ KC minimal entropy functions.
De�ne also uk := Pω[ψk](ϕ), u′k := Pω[ψk](ϕ′) where ψ =

(
limk→∞ ψk

)∗
monotoni-

cally. Then by Proposition 3.4.7

lim sup
k→∞

dA(uk, u
′
k) = lim

k→∞
d(uk, u

′
k) = d(u, u) = 0.

Next assume that u = Pω[ψ](ϕ), uk := Pω[ψk](ϕ), u′k := Pω[ψ′k](ϕ) for {ψk}k∈N, {ψ′k}k∈N ⊂
A monotone sequence converging to ψ almost everywhere. We need to check that
dA(uk, u

′
k) → 0 as k → ∞. Let C1, C

′
1 ∈ R be minimal constants such that u1 =

Pω[ψ1](φ), u1 = Pω[ψ′1](φ′) for φ ∈ KC1 , φ
′ ∈ KC′1

, and set C2 := max(C,C1, C
′
1).

Then for any k ∈ N such that ψ′k 4 ψk,

dA(uk, u
′
k) ≤ d̃A(uk, u

′
k) ≤

≤ sup
(a,b)∈PC2

(X,ω,ψk)

{
d(a, b)− d

(
Pω[ψ′k](a), Pω[ψ′k](b)

)}
+ Vψk − Vψ′k

and similarly if ψ′k < ψk. Therefore, proceeding similarly as before, it is not di�cult
to check that dA(uk, u

′
k) → 0 as k → ∞ using again Proposition 3.4.7. Hence Φ̃

is well-de�ned, P(X,ω, ψ) ⊂ (XA, dA) and if u := Pω[ψ](ϕ1), v := Pω[ψ](ϕ2) for
minimal entropy functions ϕ1, ϕ2 then

dA(u, v) := lim
k→∞

dA(uk, vk) = lim
k→∞

d(uk, vk)

where uk := Pω[ψk](ϕ1), vk := Pω[ψk](ϕ2) for {ψk}k∈N ⊂ A monotonically converg-
ing a.e. to ψ. Therefore dA(u, v) = d(u, v) by Proposition 3.4.7 and it easily follows
from Lemma 3.4.9 that there is an unique continuous extension

Φ̃ :
( ⊔
ψ∈A

(
E

1(X,ω, ψ), d
))
→ (XA, dA)

which restricts to an isometric embedding on any metric space
(
E1(X,ω, ψ), d

)
.

Step 3: set up the �nal strategy.

It remains to prove that
⊔
ψ∈A

(
E1(X,ω, ψ), dA

)
is complete. Thus let {uj}j∈N ⊂⊔

ψ∈A P(X,ω, ψ) be a Cauchy sequence. Up to extract a subsequence, we may

assume dA(uj , uj+1) ≤ 1
2j
. For any j ∈ N let also ϕj ∈ P(X,ω) a minimal entropy

function for uj and ψj ∈ A such that uj ∈ P(X,ω, ψj). Since A is totally ordered, up
to consider a subsequence, we may assume that {ψj}j∈N converges monotonically
a.e. to ψ ∈ A.
Step 4: {ψj}j∈N increasing.

Let for any k ≥ j, vj,k := Pω
(
Pω[ψj ](ϕj), · · · , Pω[ψj ](ϕk)

)
and let for any k ≥ j,
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i ∈ N, vij,k := Pω
(
Pω[ψi](ϕj), · · · , Pω[ψi](ϕk)

)
. Note that vjj,k = vj,k and that

vj,k = Pω(uj , v
j
j+1,k). Moreover we claim that Pω[ψj ](v

i
j,k) = vj,k if i ≥ j. Indeed

Pω[ψj ](v
i
j,k) ≤ vj,k since vij,k ≤ Pω[ψi](ϕj), . . . , Pω[ψi](ϕk) implies Pω[ψj ](v

i
j,k) ≤

Pω[ψj ](ϕj), . . . , Pω[ψj ](ϕk) by Lemma 3.4.4. While the reverse inequality follows
applying Pω[ψj ](·) to the trivial inequality vj,k ≤ vij,k. As a consequence we get that

d(uj , vj,k) = d
(
uj , Pω(uj , v

j
j+1,k)

)
≤ d(uj , v

j
j+1,k) ≤ dA(uj , vj+1,k)

where the last inequality follows from Proposition 3.4.15. (iv). Iterating, by the
triangle inequality we have

d(uj , vj,k) ≤
k−j−1∑
l=0

d(uj+l, uj+l+1) ≤
k−j−l∑
l=0

1

2j+l
≤ 1

2j−1
.

Clearly vj,k is decreasing in k, thus, letting Cj ∈ N such that vj,k ≤ ψj +Cj for any
k ∈ N, we get

Cj−Eψj (vj,k) = Eψj (ψj+Cj)−Eψj (vj,k) = d(ψj+Cj , vj,k) ≤ d(ψj+Cj , uj)+
1

2j−1
,

which implies that vj := limk→∞ vj,k ∈ E1(X,ω, ψj) by Proposition 3.2.8. Moreover
d(uj , vj) ≤ 2−j+1 by continuity along decreasing sequence. Observe also that vj ≤
vj+1 by construction since vj ≤ vj,k ≤ vj+1

j,k ≤ vj+1,k for any k ≥ j + 1.
Then by Lemma 3.3.7 there exists two uniform constants A > 1, B > 0 such that

sup
X

(vj − ψj) = sup
X
vj ≤

1

Vψj

(
Ad(ψj , vj) +B

)
which implies that u :=

(
limj→∞ vj

)∗ ∈ PSH(X,ω, ψ). Therefore, assuming
supX u = 0 up to add a constant, by Theorem 3.2.4 we also have MAω(vj) →
MAω(u) weakly, which implies Vu = Vψ and, for any m ∈ N �xed,∫

X

(
ψ −max(u, ψ −m)

)
MAω

(
max(u, ψ −m)

)
=

= lim
j→∞

∫
X

(
ψj −max(vj , ψj −m)

)
MAω

(
max(vj , ψj −m)

)
≤

≤ lim
j→∞

(n+ 1)d
(
ψj ,max(vj , ψj −m)

)
≤ lim
j→∞

(n+ 1)d(ψj , vj)

using also that max(vj , ψj − m) ↗ max(u, ψ − m) almost everywhere. Therefore
u ∈ E1(X,ω, ψ) as a consequence of

d(ψj , vj) ≤ dA(ψj , ψ1)+d(ψ1, u1)+dA(u1, uj)+d(uj , vj) ≤ Vψ−Vψ1 +d(ψ1, u1)+2.

Thus to �nish this step it remains to check that dA(u, uj) → 0 as j → ∞, or
equivalently that dA(u, vj)→ 0.
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Set for any k ≥ j, vjk := Pω[ψj ](vk). Then by construction {vjk}k≥j is an increasing
sequence converging strongly in E1(X,ω, ψj) to Pω[ψj ](u). For ε > 0 �xed, let also
φε ∈ H such that d

(
u, Pω[ψ](φε)

)
≤ ε. Next, for any j �xed let s ∈ N depending on

j, ε such that d
(
vjj+s, Pω[ψj ](u)

)
≤ ε. Thus by the triangle inequality and Proposition

3.4.5 we have

dA(vj , u) ≤
s−1∑
l=0

d(vjj+l, v
j
j+l+1) + d

(
vjj+s, Pω[ψj ](u)

)
+

d
(
Pω[ψj ](u), Pω[ψj ](φε)

)
+ dA

(
Pω[ψj ](φε), Pω[ψ](φε)

)
+ d
(
Pω[ψ](φε), u

)
≤

≤ 1

2j−2
+ 3ε+ dA

(
Pω[ψj ](φε), Pω[ψ](φε)

)
,

which by Proposition 3.4.7 implies lim supj→∞ dA(vj , u) ≤ 3ε since

dA
(
Pω[ψj ](φε), Pω[ψ](φε)

)
≤ d̃A

(
Pω[ψj ](φε), Pω[ψ](φε)

)
≤

≤ sup
ϕ1,ϕ2∈PCε (X,ω,ψ)

{d(ϕ1, ϕ2)− d
(
Pω[ψj ](ϕ1), Pω[ψj ](ϕ2)

)
}+ Vψ − Vψj → 0

for a certain constant Cε ∈ R.
Step 4: {ψj}j∈N decreasing.

We de�ne for any j ∈ N, wj := Pω[ψ](uj). Clearly {wj}j∈N ⊂ E1(X,ω, ψ) is a
Cauchy sequence since for any j ≥ k

d(wj , wk) ≤ d
(
uj , Pω[ψj ](uk)

)
≤ dA(uj , uk) ≤ 1

2k−1

by Proposition 3.4.5 and Proposition 3.4.15. Thus wj converges strongly to a func-
tion u in E1(X,ω, ψ) and to conclude the proof it remains to prove that dA(uj , u)→ 0
as j →∞. Therefore, letting for any k ∈ N, φk ∈ H such that d

(
uk, Pω[ψk](φk)

)
≤

1/k, we get for any k ≤ j

dA(uj , u) ≤ d
(
uj , Pω[ψj ](uk)

)
+ d
(
Pω[ψj ](uk), Pω[ψj ](φk)

)
+

+ dA
(
Pω[ψj ](φk), Pω[ψ](φk)

)
+ d
(
Pω[ψ](φk), u

)
≤ dA(uj , uk)+

+ d
(
uk, Pω[ψk](φk)

)
+ dA

(
Pω[ψj ](φk), Pω[ψ](φk)

)
+ d
(
Pω[ψ](φk), u

)
≤

≤ 1

2k−1
+

1

k
+ dA

(
Pω[ψj ](φk), Pω[ψ](φk)

)
+ d
(
Pω[ψ](φk), u

)
(3.6)

combining Proposition 3.4.5 and Proposition 3.4.15. Therefore since clearly Pω[ψ](φk)
converges strongly to u in E1(X,ω, ψ) and since, similarly to before, we have that
lim supj→∞ dA

(
Pω[ψj ](φk), Pω[ψ](φk)

)
= 0, it follows from the inequality (3.6) that

lim supj→∞ dA(uj , u) = 0 letting j →∞ and then k →∞.
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3.4.3 Proof of Lemma 3.4.16.

The proof of Lemma 3.4.16 proceeds by induction on m ∈ N length of the chain.
Step 1 (m = 1): Assume w ∈ P(X,ω, ψ′) for ψ′ ∈ A. Then by Proposition
3.4.15.(iv) we get that

d̃A(u,w) + d̃A(w, v) ≥ d(u, Pω[ψ](ϕ)) + d(Pω[ψ](ϕ), v) ≥ d(u, v)

where ϕ ∈ P(X,ω) is a minimal entropy function for w.
Step 2 (m→m + 1): reduce to an easier case 1. Assume now that the Lemma
holds for any chain of length n ≤ m ∈ N, and let w1, . . . , wm+1 ∈

⊔
ψ′∈A P(X,ω, ψ′).

To �x the notations assume wj ∈ P(X,ω, ψj) and that, for any j = 0, . . . , n, ϕj ∈
KCj is a choice of minimal entropy functions for wj .

Next, using the de�nition of d̃A and Proposition 3.4.15, if ψj+1 4 ψj−1 4 ψj then

d̃A(wj−1, wj) + d̃A(wj , wj+1) ≥ d̃A(wj−1, Pω[ψj−1](ϕj)) + d̃A(Pω[ψj−1](ϕj), wj+1).

Therefore we may assume there exists j0 ∈ {1, . . . ,m+ 1} such that ψ < ψ1 < · · · <
ψj0 and ψj0 4 ψj0+1 4 · · · 4 ψ.
Step 3 (m→m + 1): reduce to an easier case 2. We claim that if there
exists j ∈ {1, . . . ,m + 1} such that Cj ≥ max(Cj−1, Cj+1) (where we set w0 := u,
wm+2 := v) then

d̃A(wj−1, wj) + d̃A(wj , wj+1) ≥ d̃A(wj−1, wj+1). (3.7)

Indeed, if j 6= j0, assuming by symmetry j < j0, then by Lemma 3.4.4 and Propo-
sition 3.4.5 the inequality (3.7) is an easy consequence of

d
(
Pω[ψj ](wj−1), wj

)
+ d
(
Pω[ψj+1](wj), wj+1

)
≥

≥ d
(
Pω[ψj+1](wj−1), Pω[ψj+1](wj)

)
+ d
(
Pω[ψj+1](wj), wj+1

)
≥

≥ d
(
Pω[ψj+1](wj−1), wj+1

)
,

and of

sup
a,b∈PCj (X,ω,ψj−1)

{
d(a, b)− d

(
Pω[ψj ](a), Pω[ψj ](b)

)}
+

+ sup
a,b∈PCj (X,ω,ψj)

{
d(a, b)− d

(
Pω[ψj+1](a), Pω[ψj+1](b)

)}
≥

≥ sup
a,b∈Pmax(Cj−1,Cj+1)(X,ω,ψj−1)

{
d(a, b)− d

(
Pω[ψj+1](a), Pω[ψj+1](b)

)}
.
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In the case j = j0, instead, assuming ψj−1 4 ψj+1 the inequality (3.7) follows from

d
(
Pω[ψj ](wj−1), wj

)
+ d
(
Pω[ψj ](wj+1), wj

)
+

+ sup
a,b∈PCj (X,ω,ψj−1)

{
d(a, b)− d

(
Pω[ψj ](a), Pω[ψj ](b)

)}
≥

≥ d
(
Pω[ψj ](wj−1), Pω[ψj ](wj+1)

)
+ d
(
wj−1, Pω[ψj−1](wj+1)

)
−

− d
(
Pω[ψj ](wj−1), Pω[ψj ](wj+1)

)
= d
(
wj−1, Pω[ψj−1](wj+1)

)
.

Indeed it implies

d̃A(wj−1, wj) + d̃A(wj , wj+1) ≥ d
(
wj−1, Pω[ψj−1](wj+1)

)
+

+ sup
a,b∈PCj (X,ω,ψj+1)

{
d(a, b)− d

(
Pω[ψj ](a), Pω[ψj ](b)

)}
+ Vwj+1 − Vwj−1 ≥

≥ d̃A(wj−1, wj+1).

Therefore, using again the inductive hypothesis, we may assume there exists i0 ∈
{0, . . . ,m + 2} such that C0 > C1 > · · · > Ci0−1 ≥ Ci0 and Ci0 ≤ Ci0+1 < · · · <
Cm+1 < Cm+2, where moreover Ci0 < max(Ci0−1, Ci0+1) (in the extreme cases
i0 = 0,m + 2 the last inequality obviously restricts respectively to Ci0 = C0 < C1

and to Ci0 = Cm+2 < Cm+1).
Step 4 (m→m + 1): case |i0 − j0| > 1. By symmetry we may assume i0 < j0−1.
So Cj0−2 ≤ Cj0−1 < Cj0 < Cj0+1, which implies

d̃A(wj0−1, wj0) + d̃A(wj0 , wj0+1) ≥

≥ d̃A(wj0−1, Pω[ψj0 ](wj0−1)
)

+ d̃A
(
Pω[ψj0 ](wj0−1), wj0+1

)
using the de�nition. Letting w̃ := Pω[ψj0 ](wj0−1) and C̃ be the smallest non-
negative real number such that w̃ ∈ PC̃(X,ω, ψj0), we conclude this case by the ar-
gument exposed in the previous step since C̃ ≤ Cj0−1 by construction and Cj0−1 ≥
Cj0−2.
Step 5 (m→m + 1): case |i0 − j0| = 1 Let assume i0 = j0 − 1. Since Cj0−1 ≤
Cj0 < Cj0+1, as in Step 4, we can substitute wj0 by Pω[ψj0 ](wj0−1). Therefore, up
to replace i0 by i0 + 1, we have i0 = j0 that is the last case addressed in the �nal
step.
Step 6 (m→m + 1): case i0 = j0 Since C0 > C1 > · · · > Cj0−1 > Cj0 , al-
ternating several times Proposition 3.4.15 .(iv) and the triangle inequality for d on
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E1(X,ω, ψi) for i = 0, . . . , j0 − 1 we get

d̃A(w0, w1) + · · ·+ d̃A(wj0−1, wj0) ≥

≥ d̃A(w0, w1) + · · ·+ d̃A(wj0−2, wj0−1) + d
(
wj0−1, Pω[ψj0−1](ϕj0)

)
≥

≥ d̃A(w0, w1) + · · ·+ d̃A(wj0−3, wj0−2) + d
(
Pω[ψj0−1](ϕj0−2), Pω[ψj0−1](ϕj0)

)
+

+ sup
a,b∈PCj0−2

(X,ω,ψj0−2)

{
d(a, b)− d

(
Pω[ψj0−1](a), Pω[ψj0−1](b)

)}
≥

≥ d̃A(w0, w1) + · · ·+ d̃A(wj0−3, wj0−2) + d
(
wj0−2, Pω[ψj0−2](ϕj0)

)
≥

≥ · · · ≥ d̃A(w0, w1) + d
(
w1, Pω[ψ1](ϕj0)

)
≥ d
(
w0, Pω[ψ0](ϕj0)

)
.

Proceeding in the same way, by symmetry, we also get

d̃A(wj0 , wj0+1) + · · ·+ d̃A(wm+1, wm+2) ≥ d
(
Pω[ψ0](ϕj0), wm+2

)
.

Hence
d̃A(w0, w1) + · · ·+ d̃A(wm+1, wm+2) ≥ d(w0, wm+2) = d(u, v),

which concludes the proof.

3.4.4 Gromov-Hausdor� types of convergences & direct
limits: proof of Theorems C and D.

In this section we assume A = {ψk}k∈N ⊂ M+ to be a total ordered subset such
that ψk+1 4 ψk for any k ∈ N. Moreover we suppose that ψk ↘ ψ ∈M+.

De�nition 3.4.17. Let A and ψ ∈M+ as above. Then the elements of the family

KA :=
⋃
k∈N

{
K ⊂ E

1(X,ω, ψ) compact such thatK ⊂ Pω[ψ](K̃)

for K̃ ⊂ E
1(X,ω, ψk) compact

}
are called A-compact sets .

We recall that for a couple of compact metric spaces (X, dX), (Y, dY ), the Gromov-
Hausdor� distance between them is de�ned as

dGH(X,Y ) = inf{ddH(X,Y ) : d admissible distance onX t Y }

where a distance d on XtY is said to be admissible if d|X×X = dX and d|Y×Y = dY
and where ddH indicates the Hausdor� distance on the closed sets of (X t Y, d).
A sequence of compact metric spaces (Xn, dn) converges in the Gromov-Hausdor�
sense to a compact metric space (X, d) if dGH(Xn, X) → 0. We will use the nota-

tion (Xn, dn)
GH−−→ (X, d) and we refer to [BBI01] and to [BH99] for this notion of

convergence.
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Proposition 3.4.18. For any A-compact set K ⊂ KA there exists a sequence of
strongly compact sets (Kk, d) ⊂

(
E1(X,ω, ψk), d

)
for k � 1 big enough such that

(Kk, d)
GH−−→ (K, d).

Proof. Let k0 ∈ N such that K ⊂ Pω[ψ](K̃) for a strongly compact set K̃ ⊂(
E1(X,ω, ψk0), d

)
. Then we de�ne

Kk0 := K̃ ∩ Pω[ψ]−1(K),

noting that it is a compact set in E1(X,ω, ψk0). Therefore we de�ne for any k ≥ k0

Kk := Pω[ψk]
(
K̃
)
∩ Pω[ψ]−1(K) = Pω[ψk]

(
Kk0

)
and a correspondence Rk ⊂ Kk×K as (uk, u) ∈ Rk if u = Pω[ψ](uk). Thus to prove
that dGH(Kk,K)→ 0 with respect to the d-distances it is enough to check that

disRk := sup
{
|d(u, v)− d(uk, vk)| : (uk, u), (vk, v) ∈ Rk

}
→ 0

as k →∞ (see Theorem 7.3.25. in [BBI01]). Hence Proposition 3.4.7 concludes the
proof.

For non-compact metric spaces there is a weaker notion of convergence than the
Gromov-Hausdor� convergence, that is the pointed Gromov-Hausdor� convergence.
We recall that a sequence of pointed compact metric spaces (Kn, pn, dn) converges
in the pointed Gromov-Hausdor� sense to (K, p, d) if dGH

(
(Kn, pn), (K, p)

)
→ 0 as

n→∞ where

dGH
(
(Kn, pn), (K, p)

)
:= inf

{
ddH(Kn,K)+d(pn, p) : d admissible metric onXtY

}
.

Thus a sequence of non-compact pointed metric spaces (Xn, pn, dn) is said to con-
verge in the pointed Gromov-Hausdor� sense to a non-compact pointed metric space
(X, p, d) if for any r > 0

dGH
(
(Br(pn), pn), (Br(p), p)

)
→ 0

as n→∞2. We will use the notation (Xn, pn, dn)
p−GH−−−−→ (X, p, d).

If the pointed metric spaces are locally compact this convergence seems to be the
most natural kind of convergence to look at. But if the pointed metric spaces are
not locally compact, the pointed Gromov-Hausdor� convergence still seems a too
strong kind of convergence. Thus we give the following general de�nition:

2This is actually not the right de�nition of point Gromov-Hausdor� convergence, but it
is a characterization which holds when the sequence and the limit point are lenght spaces
([BBI01]).
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De�nition 3.4.19. A family of pointed metric spaces (Xn, pn, dn) converges in the
compact pointed Gromov-Hausdor� convergence to a pointed metric space (X, p, d)
if there exist a family of compact set {Kj}j∈N ⊂ X and, for any n ∈ N, a family of
compact sets {Kj,n}j∈N ⊂ Xn such that

i) pn ∈ Kj,n for any n ∈ N and for any j ∈ N;
ii) p ∈ Kj for any j ∈ N;
iii) for any n ∈ N �xed, Kj,n ⊂ Kj+1,n for any j ∈ N and

⋃
j∈NKj,n is dense in

Xn;

iv) Kj ⊂ Kj+1 for any j ∈ N and
⋃
j∈NKj is dense in X;

v) dGH
(
(Kj,n, pn), (Kj , p)

)
→ 0.

We will use the notation (Xn, pn, dn)
cp−GH−−−−−→ (X, p, d).

We can now prove Theorem C:

Theorem C. Let {ψk}k∈N ⊂M+ such that ψk ↘ ψ ∈M+. Then(
E

1(X,ω, ψk), d
)

cp−GH−−−−−→
(
E

1(X,ω, ψ), d
)
.

Proof. For any j ∈ N let Kj be the strongly compact set in E1(X,ω) containing all
ω-psh functions with bounded entropy by j (see Theorem 3.4.12). Thus, de�ning
for any j ∈ N and for any k ∈ N, Kj,k := Pω[ψk](Kj) and Kj := Pω[ψ](Kj), the
theorem immediately follows from Lemma 3.4.9 and Proposition 3.4.18.

The maps Pk,j : Pω[ψj ](·) :
(
E1(X,ω, ψk), d

)
→
(
E1(X,ω, ψj), d

)
for k ≤ j are

morphisms in the category of metric spaces (see Lemma 3.4.4 and Proposition
3.4.5). Moreover {Pk,j}j≤k,(k,j)∈N produces a direct system again by Lemma 3.4.4,
and

〈(
E1(X,ω, ψ), d

)
, Pk
〉
is a target of this direct system where Pk := Pω[ψ](·) :(

E1(X,ω, ψk), d
)
→
(
E1(X,ω, ψ), d

)
.

We recall that a target
〈
(X, dX), fX,n

〉
of a direct system of metric spaces

〈
(Xn, dn), fn,m

〉
is a metric space (X, dX) with 1-Lipschitz maps fX,n : (Xn, dn)→ (X, dX) such that
fX,n = fX,m ◦ fm,n for any n ≤ m.
Therefore since by the universal property the direct limit is the initial target, we
immediately �nd out that the direct system

〈(
E1(X,ω, ψj), Pk,j

)
admits a direct

limit (recall that some direct systems in the category of metric spaces do not ad-
mit any not-trivial target like, for instance, the direct system

〈
(Xn, dn), fn,m

〉
:=〈

(R, 1
n
deucl), Id

〉
). We denote with m − lim−→ the direct limit in the category of

metric spaces.

Theorem D. There is an isometric embedding

m− lim
−→

〈(
(E1(X,ω, ψi), d), Pi,j

)〉
↪→
(
E

1(X,ω, ψ), d
)

with dense image. More precisely the direct limit in the category of metric spaces is

isometric to
(⋃

k∈N Pω[ψ]
(
E1(X,ω, ψk)

)
, d
)
.

134 3.4. THE METRIC SPACE (XA, DA) AND CONSEQUENCES.



CHAPTER 3. L1 METRIC GEOMETRY OF POTENTIALS WITH
PRESCRIBED SINGULARITIES

ON COMPACT KÄHLER MANIFOLDS 135

Proof. As a consequence of Lemma 3.4.9 the set T :=
⋃
k∈N Pω[ψ]

(
E1(X,ω, ψk)

)
is

dense in
(
E1(X,ω, ψ), d

)
. Then, since as stated before 〈(T, d), Pk) is a target of the

direct system considered, to conclude the proof it is enough to show that for any
other target 〈(Y, dY ), PY,k

〉
there exists a 1−Lipschitz map PY,T : T → Y such that

PY,T ◦ Pk = PY,k for any k ∈ N.
Therefore, letting

〈
(Y, dY ), PY,k

〉
a target, for any u ∈ T we denote with ku ∈ N the

minimum natural number k such that u ∈ Pω[ψ]
(
E1(X,ω, ψk)

)
and we �x a function

ϕu ∈ E1(X,ω, ψku) such that Pω[ψ](ϕu) = u. Next we de�ne PY,T : T → Y as

PY,T (u) := PY,ku(ϕu),

i.e. it is de�ned so that PY,T ◦ Pk = PY,k for any k ∈ N. Note that the def-
inition does not depend on representatives since PY,k1(ϕ1) = PY,k2(ϕ2) for ϕ1 ∈
E1(X,ω, ψk1), ϕ2 ∈ E1(X,ω, ψk2) if Pk1(ϕ1) = Pk2(ϕ2). Indeed

dY
(
PY,k1(ϕ1), PY,k2(ϕ2)

)
= dY

(
PY,j ◦ Pj,k1(ϕ1), PY,j ◦ Pj,k2(ϕ2)

)
≤

≤ d
(
Pj,k1(ϕ1), Pj,k2(ϕ2)

)
→ d(Pk1(ϕ1), Pk2(ϕ2)) = 0

as j →∞ by Proposition 3.4.7.
To �nish the proof it remains to check that PY,T is 1-Lipschitz. Fixed u, v ∈ T , we
have for any j ∈ N big enough

dY
(
PY,T (u), PY,T (v)

)
= dY

(
PY,j ◦ Pj,ku(ϕu), PY,j ◦ Pj,kv (ϕv)

)
≤

≤ d(Pj,ku(ϕu), Pj,kv (ϕv)),

where Pku(ϕu) = u, Pkv (ϕv) = v. Hence dY
(
PY,T (u), PY,T (v)

)
≤ d(u, v) letting

j → +∞.
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Chapter 4

The strong topology of

ω-plurisubharmonic functions

Abstract

On (X,ω) compact Kähler manifold, given a model type envelope ψ ∈
PSH(X,ω) (i.e. a singularity type) we prove that the Monge-Ampère opera-

tor is an homeomorphism between the set of ψ-relative �nite energy potentials

and the set of ψ-relative energy measures endowed with their strong topologies

given as the coarsest re�nements of the weak topologies such that the relative

energies become continuous. Moreover, given a totally ordered family A of

model type envelopes with positive total mass representing di�erent singular-

ities types, the sets XA, YA given respectively as the union of all ψ-relative

�nite energy potentials and of all ψ-relative �nite energy measures varying

ψ ∈ A have two natural strong topologies which extends the strong topologies

on each component of the unions. We show that the Monge-Ampère operator

produces an homeomorphism between XA and YA.

As an application we also prove the strong stability of a sequence of solu-

tions of complex Monge-Ampère equations when the measures have uniformly

Lp-bounded densities for p > 1 and the prescribed singularities are totally

ordered.

Keywords: Complex Monge-Ampère equations, compact Kähler manifolds, quasi-
psh functions.
2020 Mathematics subject classi�cation: 32W20 (primary); 32U05, 32Q15
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4.1 Introduction

Let (X,ω) be a compact Kähler manifold where ω is a �xed Kähler form, and let
Hω denote the set of all Kähler potentials, i.e. all ϕ ∈ C∞ such that ω + ddcϕ is a
Kähler form, the pioneering work of Yau ([Yau78]) shows that the Monge-Ampère
operator

MAω : Hω,norm −→
{
dV volume form :

∫
X

dV =

∫
X

ωn
}
, (4.1)

MAω(ϕ) := (ω + ddcϕ)n is a bijection, where for any subset A ⊂ PSH(X,ω) of all
ω-plurisubharmonic functions we use the notation Anorm := {u ∈ A : supX u = 0}.
Note that the assumption on the total mass of the volume forms in (4.1) is neces-
sary since Hω,norm represents all Kähler forms in the cohomology class {ω} and the
quantity

∫
X
ωn is cohomological.

In [BEGZ10] the authors extended the Monge-Ampère operator using the non-
pluripolar product and the bijection (4.1) to

MAω : Enorm(X,ω) −→
{
µ non-pluripolar positive measure : µ(X) =

∫
X

ωn
}
(4.2)

where E(X,ω) := {u ∈ PSH(X,ω) :
∫
X
MAω(u) =

∫
X
MAω(0)} is the set of all

ω-psh functions with full mass.
The set PSH(X,ω) is naturally endowed with the L1-topology which we will call
weak, but the Monge-Ampère operator in (4.2) is not continuous even if the set of
measures is endowed with the weak topology. Thus in [BBEGZ19], setting V0 :=∫
X
MAω(0), two strong topologies were respectively introduced for

E
1(X,ω) := {u ∈ E(X,ω) : E(u) > −∞}

M
1(X,ω) :=

{
V0µ : µ is a probability measure satisfying E∗(µ) < +∞

}
as the coarsest re�nements of the weak topologies such that respectively the Monge-
Ampère energy E(u) ([Aub84], [BB10], [BEGZ10]) and the energy for probability
measures E∗ ([BBGZ13], [BBEGZ19]) becomes continuous. The map

MAω :
(
E

1
norm(X,ω), strong

)
−→

(
M

1(X,ω), strong
)

(4.3)

is then an homeomorphism. Later Darvas ([Dar15]) showed that
(
E1(X,ω), strong

)
actually coincides with the metric closure of Hω endowed with the Finsler metric
|f |1,ϕ :=

∫
X
|f |MAω(ϕ), ϕ ∈ Hω, f ∈ TϕHω ' C∞(X) and associated distance

d(u, v) := E(u) + E(v)− E
(
Pω(u, v)

)
where Pω(u, v) is the rooftop envelope given basically as the largest ω-psh function
bounded above by min(u, v) ([RWN14]). This metric topology has played an impor-
tant role in the last decade to characterize the existence of special metrics ([DR15],
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[BDL16], [CC17], [CC18a], [CC18b]).

It is also important and natural to solve complex Monge-Ampère equations requiring
that the solutions have some prescribed behavior, for instance along a divisor.
We �rst need to recall that on PSH(X,ω) there is a natural partial order 4 given
as u 4 v if u ≤ v + O(1), and the total mass through the Monge-Ampère operator
respects such partial order, i.e. Vu :=

∫
X
MAω(u) ≤ Vv if u 4 v ([BEGZ10],

[WN17]). Thus in [DDNL17] the authors introduced the ψ-relative analogs of the
sets E(X,ω), E1(X,ω) for ψ ∈ PSH(X,ω) �xed as

E(X,ω, ψ) := {u ∈ PSH(X,ω) : u 4 ψ and Vu = Vv}

E
1(X,ω, ψ) := {u ∈ E(X,ω, ψ) : Eψ(u) > −∞}

where Eψ is the ψ-relative energy, and they proved that

MAω : Enorm(X,ω, ψ) −→
{
µ non-pluripolar positive measure : µ(X) = Vψ

}
(4.4)

is a bijection if and only if ψ, up to a bounded function, is a model type envelope ,
i.e. ψ = (limC→+∞ P (ψ + C, 0)

)∗
, satisfying Vψ > 0 (the star is for the upper

semicontinuous regularization). There are plenty of these functions, for instance to
any ω-psh function ψ with analytic singularities is associated an unique model type
envelope. We denote with M the set of all model type envelopes and with M+ those
elements ψ such that Vψ > 0.
Letting ψ ∈ M+, in [Tru19], we proved that E1(X,ω, ψ) can be endowed with a
natural metric topology given by the complete distance d(u, v) := Eψ(u) +Eψ(v)−
2Eψ

(
Pω(u, v)

)
.

Analogously to E∗ there is a natural ψ-relative energy for probability measures E∗ψ,
thus the set

M
1(X,ω, ψ) := {Vψµ : µ is a probability measure satisfying E∗ψ(µ) < +∞}

can be endowed with its strong topology given as the coarsest re�nement of the weak
topology such that E∗ψ becomes continuous.

Theorem A. Let ψ ∈M+. Then

MAω :
(
E

1
norm(X,ω, ψ), d

)
→
(
M

1(X,ω, ψ), strong
)

(4.5)

is an homeomorphism.

Then it is natural to wonder if one can extend the bijections (4.2), (4.4) to bigger
subsets of PSH(X,ω).
Given ψ1, ψ2 ∈ M+ such that ψ1 6= ψ2 the sets E(X,ω, ψ1), E(X,ω, ψ2) are disjoint
(Theorem 1.3 [DDNL17] quoted below as Theorem 4.2.1) but it may happen that
Vψ1 = Vψ2 . So in that case, as an easy consequence of (4.4) one cannot consider a
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set containing both E(X,ω, ψ1) and E(X,ω, ψ2). But given a totally ordered family
A ⊂ M+ of model type envelopes, the map A 3 ψ → Vψ is injective (again by
Theorem 1.3 [DDNL17]), i.e.

MAω :
⊔
ψ∈A

E(X,ω, ψ)/R −→
{
µ non-pluripolar positive measure :

µ(X) = Vψ for ψ ∈ A
}

is a bijection.
In [Tru19] we introduced a complete distance dA on

XA :=
⊔
ψ∈A

E
1(X,ω, ψ)

where A ⊂ M is the weak closure of A and where we set E1(X,ω, ψmin) = Pψmin

if ψ ∈ M \ M+ (since in such case Eψ ≡ 0). Here ψmin is given as the smallest
element in A, observing that the Monge-Ampère operator MAω : A → MAω(A)
is an homeomorphism when the range is endowed with the weak topology (Lemma
4.3.12). We call strong topology on XA the metric topology given by dA since
dA|E1(X,ω,ψ)×E1(X,ω,ψ) = d. The precise de�nition of dA is quite technical (in section
�5.2 we will recall many of its properties) but the strong topology is natural since it
is the coarsest re�nement of the weak topology such that E·(·) becomes continuous
as Theorem 4.6.2 shows. In particular the strong topology is independent on the set
A chosen.
Also the set

YA :=
⊔
ψ∈A

M
1(X,ω, ψ)

has a natural strong topology given as the coarsest re�nement of the weak topology
such that E∗· (·) becomes continuous.

Theorem B. The Monge-Ampère map

MAω :
(
XA,norm, dA

)
→ (YA, strong)

is an homeomorphism.

Obviously in Theorem B we de�ne MAω(Pψmin) := 0 if Vψmin = 0.
Note that by Hartogs' Lemma and Theorem 4.6.2 the metric subspace XA,norm

is complete and it represents the set of all closed and positive (1, 1)-currents T =
ω+ ddcu such that u ∈ XA, where Pψmin encases all currents whose potentials u are
more singular than ψmin if Vψmin = 0.

Finally, as an application of Theorem B we study an example of the stability of
solutions of complex Monge-Ampère equations. Other important situations will be
dealt in a future work.
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Theorem C. Let A := {ψk}k∈N ⊂ M+ be totally ordered, and let {fk}k∈N ⊂
L1 \ {0} a sequence of non-negative functions such that fk → f ∈ L1 \ {0} and such
that

∫
X
fkω

n = Vψk for any k ∈ N. Assume also that there exists p > 1 such that
||fk||Lp , ||f ||Lp are uniformly bounded. Then ψk → ψ ∈ M+ weakly, the sequence
{uk}k∈N of solutions of {

MAω(uk) = fkω
n

uk ∈ E1
norm(X,ω, ψk)

(4.6)

converges strongly to u ∈ XA (i.e. dA(uk, u)→ 0), which is the unique solution of{
MAω(u) = fωn

u ∈ E1
norm(X,ω, ψ).

In particular uk → u in capacity.

The existence of the solutions of (4.6) follows by Theorem A in [DDNL18], while the
fact that the strong convergence implies the convergence in capacity is our Theorem
4.6.3. Note also that the convergence in capacity of Theorem C was already obtained
in [DDNL19] (see Remark 4.7.1).

4.1.1 Structure of the paper

Section �5.2 is dedicated to introduce some preliminaries, and in particular all neces-
sary results presented in [Tru19]. In section �4.3 we extend some known uniform esti-
mates for E1(X,ω) to the relative setting, and we prove the key upper-semicontinuity
of the relative energy functional E·(·) in XA. Section �4.4 regards the properties
of the action of measures on PSH(X,ω) and in particular their continuity. Then
Section �4.5 is dedicated to prove Theorem A. We use a variational approach to
show the bijection, then we need some further important properties of the strong
topology on E1(X,ω, ψ) to conclude the proof. Section �4.6 is the heart of the article
where we extends the results proved in the previous section to XA and we present
our main Theorem B. Finally in the last Section �4.7 we show Theorem C.

4.1.2 Future developments

As said above, in a future work we will present some strong stability results of more
general solutions of complex Monge-Ampère equations with prescribed singulari-
ties than Theorem C, starting the study of a kind of continuity method when also
the singularities will vary. As an application we will study the existence of (log)
Kähler-Einstein metrics with prescribed singularities with a particular focus on the
relationships among them varying the singularities.
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4.2 Preliminaries

We recall that given (X,ω) a Kähler complex compact manifold, the set PSH(X,ω)
is the set of all ω-plurisubharmonic functions ( ω-psh), i.e. all u ∈ L1 given locally as
sum of a smooth function and of a plurisubharmonic function such that ω+ddcu ≥ 0
as (1, 1)-current. Here dc := i

2π
(∂̄ − ∂) so that ddc = i

π
∂∂̄. For any couple of ω-psh

functions u, v the function

Pω[u](v) :=
(

lim
C→∞

Pω(u+ C, v)
)∗

=
(

sup{w ∈ PSH(X,ω) : w 4 u,w ≤ v}
)∗

is ω-psh where the star is for the upper semicontinuous regularization and Pω(u, v) :=(
sup{w ∈ PSH(X,ω) : w ≤ min(u, v)}

)∗
. Then the set of all model type envelopes

is de�ned as
M := {ψ ∈ PSH(X,ω) : ψ = Pω[ψ](0)}.

We also recall that M+ denotes the elements ψ ∈M such that Vψ > 0 where, as said
in the Introduction, Vψ :=

∫
X
MAω(ψ).

The class of ψ-relative full mass functions E(X,ω, ψ) complies the following charac-
terization in terms of M.

Theorem 4.2.1 (Theorem 1.3, [DDNL17]) . Suppose v ∈ PSH(X,ω) such that
Vv > 0 and u ∈ PSH(X,ω) more singular than v. The followings are equivalent:

(i) u ∈ E(X,ω, v);

(ii) Pω[u](v) = v;

(iii) Pω[u](0) = Pω[v](0).

The clear inclusion E(X,ω, v) ⊂ E(X,ω, Pω[v](0)) may be strict, and it seems more
natural in many cases to consider only functions ψ ∈ M. For instance as showed
in [DDNL17] ψ being a model type envelope is a necessary assumption to make the
equation {

MAω(u) = µ

u ∈ E(X,ω, ψ)

always solvable where µ is a non-pluripolar measure such that µ(X) = Vψ. It is
also worth to recall that there are plenty of elements in M since Pω[Pω[ψ]] = Pω[ψ].
Indeed v → Pω[v] may be thought as a projection from the set of ω-psh functions
to M.
We also retrieve the following useful result.
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Theorem 4.2.2 (Theorem 3.8, [DDNL17]) . Let u, ψ ∈ PSH(X,ω) such that u < ψ.
Then

MAω
(
Pω[ψ](u)

)
≤ 1{Pω [ψ](u)=u}MAω(u).

In particular if ψ ∈M then MAω(ψ) ≤ 1{ψ=0}MAω(0).

Note also that in Theorem 4.2.2 the equality holds if u is continuous with bounded
distributional laplacian with respect to ω as a consequence of [DNT19]. In particular
MAω(ψ) = 1{ψ=0}MAω(0) for any ψ ∈M.

4.2.1 The metric space
(
E1(X,ω, ψ), d

)
.

In this subsection we assume ψ ∈M+ where M+ := {ψ ∈M : Vψ > 0}.
As in [DDNL17] we also denote with PSH(X,ω, ψ) the set of all ω-psh functions
which are more singular than ψ, and we recall that a function u ∈ PSH(X,ω, ψ)
has ψ-relative minimal singularities if |u − ψ| is globally bounded on X. We also
use the notation

MAω(uj11 , . . . , u
jl
l ) := (ω + ddcu1)j1 ∧ · · · ∧ (ω + ddcul)

jl

for u1, . . . , ul ∈ PSH(X,ω) where j1, . . . , jl ∈ N such that j1 + · · ·+ jl = n.

De�nition 4.2.3 ([DDNL17]) . The ψ-relative energy functional Eψ : PSH(X,ω, ψ)→
R ∪ {−∞} is de�ned as

Eψ(u) :=
1

n+ 1

n∑
j=0

∫
X

(u− ψ)MAω(uj , ψn−j)

if u has ψ-relative minimal singularities, and as

Eψ(u) := inf{Eψ(v) : v ∈ E(X,ω, ψ)with ψ-relative minimal singularities , v ≥ u}

otherwise. The subset E1(X,ω, ψ) ⊂ E(X,ω, ψ) is de�ned as

E
1(X,ω, ψ) := {u ∈ E(X,ω, ψ) : Eψ(u) > −∞}.

When ψ = 0 the ψ−relative energy functional is the Aubin-Mabuchi energy func-
tional, also called Monge-Ampére energy (see [Aub84],[Mab86]).

Proposition 4.2.4 ([DDNL17]) . The following properties hold:

(i) Eψ is non decreasing;

(ii) Eψ(u) = limj→∞Eψ
(

max(u, ψ − j)
)
;

(iii) Eψ is continuous along decreasing sequences;

(iv) Eψ is concave along a�ne curves;

(v) u ∈ E1(X,ω, ψ) if and only if u ∈ E(X,ω, ψ) and
∫
X

(u− ψ)MAω(u) > −∞;
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(vi) Eψ(u) ≥ lim supk→∞Eψ(uk) if uk, u ∈ E1(X,ω, ψ) and uk → u with respect
to the weak topology;

(vii) letting u ∈ E1(X,ω, ψ), χ ∈ C0(X) and ut := sup{v ∈ PSH(X,ω) v ≤ u+tχ}∗
for any t > 0, then t→ Eψ(ut) is di�erentiable and its derivative is given by

d

dt
Eψ(ut) =

∫
X

χMAω(ut);

(viii) if u, v ∈ E1(X,ω, ψ) then

Eψ(u)− Eψ(v) =

n+1∑
j=0

∫
X

(u− v)MAω(uj , vn−j)

and the function N 3 j →
∫
X

(u−v)MAω(uj , vn−j) is decreasing. In particular∫
X

(u− v)MAω(u) ≤ Eψ(u)− Eψ(v) ≤
∫
X

(u− v)MAω(v);

(ix) if u ≤ v then Eψ(u)− Eψ(v) ≤ 1
n+1

∫
X

(u− v)MAω(u).

Remark 4.2.5. All the properties in Proposition 4.2.4 are showed in [DDNL17]
when the authors worked assuming ψ having small unbounded locus , but the general
integration by parts formula proved in [X19a] allows to extend these properties to
the general case.

Recalling that for any u, v ∈ E1(X,ω, ψ) the function Pω(u, v) = sup{w ∈ PSH(X,ω) :
w ≤ min(u, v)}∗ belongs to E1(X,ω, ψ) (see Proposition 2.10. in [Tru19]), the func-
tion d : E1(X,ω, ψ)× E1(X,ω, ψ)→ R≥0 de�ned as

d(u, v) = Eψ(u) + Eψ(v)− 2Eψ
(
Pω(u, v)

)
assumes �nite values. Moreover it is a complete distance as the next result shows.

Theorem 4.2.6 (Theorem A, [Tru19]) .
(
E1(X,ω, ψ), d

)
is a complete metric space.

We call strong topology on E1(X,ω, ψ) the metric topology given by the distance d.
Note that by construction d(uk, u) → 0 as k → ∞ if uk ↘ u, and that d(u, v) =
d(u,w) + d(w, v) if u ≤ w ≤ v (see Lemma 3.1 in [Tru19]).
Moreover as a consequence of Proposition 4.2.4 it follows that for any C ∈ R>0 the
set

E
1
C(X,ω, ψ) := {u ∈ E

1(X,ω, ψ) : sup
X
u ≤ C andEψ(u) ≥ −C}

is a weakly compact convex set.

Remark 4.2.7. As described in [Tru19], if ψ ∈ M \ M+ then E1(X,ω, ψ) =
PSH(X,ω, ψ) since Eψ ≡ 0 by de�nition. In particular d ≡ 0 and it is natural
to identify

(
E1(X,ω, ψ), d

)
with a point Pψ. Moreover we recall that E1(X,ω, ψ1)∩

E1(X,ω, ψ2) = ∅ if ψ1, ψ2 ∈M, ψ1 6= ψ2 and Vψ2 > 0.
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4.2.2 The space (XA, dA).

From now on we assume A ⊂M+ to be a totally ordered set of model type envelopes,
and we denote with A its closure as subset of PSH(X,ω) endowed with the weak
topology. Note that A ⊂ PSH(X,ω) is compact by Lemma 4.2 in [Tru19]. Indeed we
will prove in Lemma 4.3.12 that actually A is homeomorphic to its image through
the Monge-Ampère operator MAω when the set of measure is endowed with the
weak topology, which yields that A is also homeomorphic to a closed set contained
in [0,

∫
X
ωn] through the map ψ → Vψ.

De�nition 4.2.8. We de�ne the set

XA :=
⊔
ψ∈A

E
1(X,ω, ψ)

if ψmin := inf A satis�es Vψmin > 0, and

XA := Pψmin t
⊔

ψ′∈A,ψ 6=ψmin

E
1(X,ω, ψ)

if Vψmin = 0, where Pψmin is a singleton.

XA can be endowed with a natural metric structure as section 4 in [Tru19] shows.

Theorem 4.2.9 (Theorem B, [Tru19]) . (XA, dA) is a complete metric space such
that dA|E1(X,ω,ψ)×E1(X,ω,ψ) = d for any ψ ∈ A ∩M+.

We call strong topology on XA the metric topology given by the distance dA. Note
that the denomination is coherent with that of subsection 5.2.1 since the induced
topology on E1(X,ω, ψ) ⊂ XA coincides with the strong topology given by d.
We will also need the following contraction property which is the starting point to
construct dA.

Proposition 4.2.10 (Lemma 4.4., Proposition 4.5., [Tru19]) . Let ψ1, ψ2, ψ3 ∈ M

such that ψ1 4 ψ2 4 ψ3. Then Pω[ψ1]
(
Pω[ψ2](u)

)
= Pω[ψ1](u) for any u ∈

E1(X,ω, ψ3) and |Pω[ψ1](u)− ψ1| ≤ C if |u− ψ3| ≤ C. Moreover the map

Pω[ψ1](·) : E1(X,ω, ψ2)→ PSH(X,ω, ψ1)

has image in E1(X,ω, ψ1) and it is a Lipschitz map of constant 1 when the sets
E1(X,ω, ψi), i = 1, 2, are endowed with the d distances, i.e.

d
(
Pω[ψ1](u), Pω[ψ1](v)

)
≤ d(u, v)

for any u, v ∈ E1(X,ω, ψ2).

Here we report some properties of the distance dA and some consequences which
will be useful in the sequel.
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Proposition 4.2.11 ([Tru19]) . The following properties hold:

i) if u ∈ E1(X,ω, ψ1), v ∈ E1(X,ω, ψ2) for ψ1, ψ2 ∈ A, ψ1 < ψ2 then

dA(u, v) ≥ d
(
Pω[ψ2](u), v

)
;

ii) if {ψk}k∈N, ψ ∈ M with ψk ↘ ψ (resp. ψk ↗ ψ a.e.), uk ↘ u, vk ↘ v (resp.
uk ↗ u a.e., vk ↗ v a.e.) for uk, vk ∈ E1(X,ω, ψk), u, v ∈ E1(X,ω, ψ) and
|uk − vk| is uniformly bounded, then

d(uk, vk)→ d(u, v);

iii) if ψk, ψ ∈M such that ψk → ψ monotonically a.e., then for any ψ′ ∈M such
that ψ′ < ψk for any k � 1 big enough, and for any strongly compact set
K ⊂

(
E1(X,ω, ψ′), d

)
,

d
(
Pω[ψk](ϕ1), Pω[ψk](ϕ2)

)
→ d

(
Pω[ψ](ϕ1), Pω[ψ](ϕ2)

)
uniformly on K×K, i.e. varying (ϕ1, ϕ2) ∈ K×K. In particular if ψk, ψ ∈ A

then

dA
(
Pω[ψ](u), Pω[ψk](u)

)
→ 0

d
(
Pω[ψk](u), Pω[ψk](v)

)
→ d

(
Pω[ψ](u), Pω[ψ](v)

)
monotonically for any (u, v) ∈ E1(X,ω, ψ′)× E1(X,ω, ψ′);

iv) dA(u1, u2) ≥ |Vψ1 − Vψ2 | if u1 ∈ E1(X,ω, ψ1), u2 ∈ E1(X,ω, ψ2) and the
equality holds if u1 = ψ1, u2 = ψ2.

The following Lemma is a special case of Theorem 2.2 in [X19a] (see also Lemma
4.1. in [DDNL17]).

Lemma 4.2.12 (Lemma 4.3, [Tru19]) . Let ψk, ψ ∈ M such that ψk → ψ mono-
tonically almost everywhere. Let also uk, vk ∈ E1(X,ω, ψk) converging in capacity
respectively to u, v ∈ E1(X,ω, ψ). Then for any j = 0, . . . , n

MAω(ujk, v
n−j
k )→MAω(uj , vn−j)

weakly. Moreover if |uk − vk| is uniformly bounded, then for any j = 0, . . . , n

(uk − vk)MAω(ujk, v
n−j
k )→ (u− v)MAω(uj , vn−j)

weakly.

It is well-known that the set of Kähler potentials Hω := {ϕ ∈ PSH(X,ω)∩C∞(X) :
ω + ddcϕ > 0} is dense into

(
E1(X,ω), d

)
. The same holds for Pω[ψ](Hω) into(

E1(X,ω, ψ), d
)
.

Lemma 4.2.13 (Lemma 4.9, [Tru19]) . The set PHω (X,ω, ψ) := Pω[ψ](H) ⊂ P(X,ω, ψ)
is dense in

(
E1(X,ω, ψ), d

)
.
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4.3 Tools.

In this section we collect some uniform estimates on E1(X,ω, ψ) for ψ ∈ M+, we
recall the ψ-relative capacity and we will prove the upper semicontinuity of E·(·) on
XA.

4.3.1 Uniform estimates.

Let ψ ∈M+.
We �rst de�ne in the ψ-relative setting the analogous of some well-known functionals
of the variational approach (see [BBGZ13] and reference therein).

We introduce respectively the ψ-relative I-functional and the ψ-realtive J-functional
(see also [Aub84]) Iψ, Jψ : E1(X,ω, ψ)× E1(X,ω, ψ)→ R where ψ ∈M+ as

Iψ(u, v) :=

∫
X

(u− v)
(
MAω(v)−MAω(u)

)
,

Jψ(u, v) := Jψu (v) := Eψ(u)− Eψ(v) +

∫
X

(v − u)MAω(u).

They assume non-negative values by Proposition 4.2.4, Iψ is clearly symmetric while
Jψ is convex again by Proposition 4.2.4. Moreover the ψ-relative I and J functionals
are related each other by the following result.

Lemma 4.3.1. Let u, v ∈ E1(X,ω, ψ). Then

(i) 1
n+1

Iψ(u, v) ≤ Jψu (v) ≤ n
n+1

Iψ(u, v);

(ii) 1
n
Jψu (v) ≤ Jψv (u) ≤ nJψu (v).

In particular
d(ψ, u) ≤ nJψu (ψ) +

(
||ψ||L1 + ||u||L1

)
for any u ∈ E1(X,ω, ψ) such that u ≤ ψ.

Proof. By Proposition 4.2.4 it follows that

n

∫
X

(u− v)MAω(u) +

∫
X

(u− v)MAω(v) ≤

≤ (n+ 1)
(
Eψ(u)− Eψ(v)

)
≤
∫
X

(u− v)MAω(u) + n

∫
X

(u− v)MAω(v)

for any u, v ∈ E1(X,ω, ψ), which yields (i) and (ii).
Next considering v = ψ and assuming u ≤ ψ from the second inequality in (ii) we
obtain

d(u, ψ) = −Eψ(u) ≤ nJψu (ψ) +

∫
X

(ψ − u)MAω(ψ),

which implies the assertion since MAω(ψ) ≤MAω(0) by Theorem 4.2.2.
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We can now proceed showing the uniform estimates, adapting some results in [BBGZ13].

Lemma 4.3.2 (Lemma 3.8, [Tru19]) . Let ψ ∈ M+. Then there exists positive
constants A > 1, B > 0 depending only on n, ω such that

−d(ψ, u) ≤ Vψ sup
X

(u− ψ) = Vψ sup
X
u ≤ Ad(ψ, u) +B

Remark 4.3.3. As a consequence of Lemma 4.3.2 if d(ψ, u) ≤ C then supX u ≤
(AC +B)/Vψ while −Eψ(u) = d(ψ + (AC +B)/Vψ, u)− (AC +B) ≤ d(ψ, u) ≤ C,
i.e. u ∈ E1

D(X,ω, ψ) where D := max
(
C, (AC + B)/Vψ

)
. Vice versa it is easy to

check that d(u, ψ) ≤ C(2Vψ + 1) for any u ∈ E1
C(X,ω, ψ) using the de�nitions and

the triangle inequality .

Proposition 4.3.4. Let C ∈ R>0. Then there exists a continuous increasing func-
tion fC : R≥0 → R≥0 depending only on C,ω, n with fC(0) = 0 such that∣∣∣ ∫

X

(u− v)
(
MAω(ϕ1)−MAω(ϕ2)

)∣∣∣ ≤ fC(d(u, v)
)

(4.7)

for any u, v, ϕ1, ϕ2 ∈ E1(X,ω, ψ) with d(u, ψ), d(v, ψ), d(ϕ1, ψ), d(ϕ2, ψ) ≤ C.

Proof. As said in Remark 4.3.3 if w ∈ E1(X,ω, ψ) with d(ψ,w) ≤ C then w̃ :=
w − (AC +B)/Vψ satis�es supX w̃ ≤ 0 and

−Eψ(w̃) = d(ψ, w̃) ≤ d(ψ,w) + d(w, w̃) ≤ C +AC +B =: D.

Therefore setting ũ := u − (AC + B)/Vψ, ṽ := v − (AC + B)/Vψ we can proceed
exactly as in Lemma 5.8 in [BBGZ13] using the integration by parts formula in
[X19a] (see also Theorem 1.14 in [BEGZ10]) to get∣∣∣ ∫

X

(ũ− ṽ)
(
MAω(ϕ1)−MAω(ϕ2)

)∣∣∣ ≤ Iψ(ũ, ṽ) + hD
(
Iψ(ũ, ṽ)

)
(4.8)

where hD : R≥0 → R≥0 is an increasing continuous function depending only on D
such that hD(0) = 0. Furthermore, by de�nition

d
(
ψ, Pω(ũ, ṽ)

)
≤ d(ψ, ũ) + d

(
ũ, Pω(ũ, ṽ)

)
≤ d(ψ, ũ) + d(ũ, ṽ) ≤ 3D,

so, by the triangle inequality and (4.8), we have∣∣∣ ∫
X

(u− v)
(
MAω(ϕ1)−MAω(ϕ2)

)∣∣∣ ≤ Iψ(ũ, Pω(ũ, ṽ)
)
+

+ Iψ
(
ṽ, Pω(ũ, ṽ)

)
+ h3D

(
Iψ(ũ, Pω(ũ, ṽ))

)
+ h3D

(
Iψ(ũ, Pω(ũ, ũ))

)
. (4.9)

On the other hand, if w1, w2 ∈ E1(X,ω, ψ) with w1 ≥ w2 then by Proposition 4.2.4

Iψ(w1, w2) ≤
∫
X

(w1 − w2)MAω(w2) ≤ (n+ 1)d(w1, w2).

Hence from (4.9) it is su�cient to set fC(x) := (n+1)x+2h3D

(
(n+1)x

)
to conclude

the proof since clearly d(ũ, ṽ) = d(u, v).
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Corollary 4.3.5. Let ψ ∈ M+ and let C ∈ R>0. Then there exists a continuous
increasing functions fC : R≥0 → R≥0 depending only on C,ω, n with fC(0) = 0
such that ∫

X

|u− v|MAω(ϕ) ≤ fC
(
d(u, v)

)
for any u, v, ϕ ∈ E1(X,ω, ψ) with d(ψ, u), d(ψ, v), d(ψ,ϕ) ≤ C.

Proof. Since d
(
ψ, Pω(u, v)

)
≤ 3C, letting g3C : R≥0 → R≥0 be the map (4.7) of

Proposition 4.3.4, it follows that∫
X

(
u− Pω(u, v)

)
MAω(ϕ) ≤

∫
X

(
u− Pω(u, v)

)
MAω

(
Pω(u, v)

)
+

+ g3C

(
d
(
u, Pω(u, v)

))
≤ (n+ 1)d

(
u, Pω(u, v)

)
+ g3C

(
d(u, v))

)
,

where in the last inequality we used Proposition 4.2.4. Hence by the triangle in-
equality we get∫

X

|u− v|MAω(ϕ) ≤ (n+ 1)d
(
u, Pω(u, v)

)
+ (n+ 1)d

(
v, Pω(u, v)

)
+

+ 2g3C

(
d(u, v)

)
= (n+ 1)d(u, v) + 2g3C

(
d(u, v)

)
.

De�ning fC(x) := (n+ 1)x+ 2g3C(x) concludes the proof.

As �rst important consequence we obtain that the strong convergence in E1(X,ω, ψ)
implies the weak convergence.

Proposition 4.3.6. Let ψ ∈M+ and let C ∈ R>0. Then there exists a continuous
increasing function fC,ψ : R≥0 → R≥0 depending on C,ω, n, ψ with fC,ψ(0) = 0
such that

||u− v||L1 ≤ fC,ψ
(
d(u, v)

)
for any u, v ∈ E1(X,ω, ψ) with d(ψ, u), d(ψ, v) ≤ C. In particular uk → u weakly if
uk → u strongly.

Proof. Theorem A in [DDNL18] (see also Theorem 1.4 in [DDNL17]) implies that
there exists φ ∈ E1(X,ω, ψ) with supX φ = 0 such that

MAω(φ) = cMAω(0)

where c := Vψ/V0 > 0. Therefore it follows that

||u− v||L1 ≤ 1

c
gĈ
(
d(u, v)

)
where Ĉ := max

(
d(ψ, φ), C

)
and gĈ is the continuous increasing function with

gĈ(0) = 0 given by Corollary 4.3.5. Setting fC,ψ := 1
c
gĈ concludes the proof.
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Finally we also get the following useful estimate.

Proposition 4.3.7. Let ψ ∈M+ and let C ∈ R>0. Then there exists a constant C̃
depending only on C,ω, n such that∣∣∣ ∫

X

(u− v)
(
MAω(ϕ1)−MAω(ϕ2)

)∣∣∣ ≤ C̃ Iψ(ϕ1, ϕ2)
1
2 (4.10)

for any u, v, ϕ1, ϕ2 ∈ E1(X,ω, ψ) with d(u, ψ), d(v, ψ), d(ϕ1, ψ), d(ϕ2, ψ) ≤ C.

Proof. As seen during the proof of Proposition 4.3.4 and with the same notations,
the function ũ := u − (AC + B)/Vψ satisfy supX u ≤ 0 (by Lemma 4.3.2) and
−Eψ(u) ≤ C +AC +B =: D (and similarly for v, ϕ1, ϕ2). Therefore by integration
by parts and using Lemma 4.3.8 below, it follows exactly as in Lemma 3.13 in
[BBGZ13] that there exists a constant C̃ depending only on D,n such that∣∣∣ ∫

X

(ũ− ṽ)
(
MAω(ϕ̃1)−MAω(ϕ̃2)

)∣∣∣ ≤ C̃ Iψ(ϕ̃1, ϕ̃2)
1
2 ,

which clearly implies (4.10).

Lemma 4.3.8. Let C ∈ R>0. Then there exists a constant C̃ depending only on
C,ω, n such that ∫

X

|u0 − ψ|(ω + ddcu1) ∧ · · · ∧ (ω + ddcun) ≤ C̃

for any u0, · · · , un ∈ E1(X,ω, ψ) with d(uj , ψ) ≤ C for any j = 0, . . . , n.

Proof. As in Proposition 4.3.4 and with the same notations vj := uj− (AC+B)/Vψ
satis�es supX vj ≤ 0, and setting v := 1

n+1
(v0 + · · · + vn) we obtain ψ − u0 ≤

(n+ 1)(ψ − v). Thus by Proposition 4.2.4 it follows that∫
X

(ψ − v0)MAω(v) ≤ (n+ 1)

∫
X

(ψ − v)MAω(v) ≤ (n+ 1)2|Eψ(v)| ≤

≤ (n+ 1)
n∑
j=0

|Eψ(vj)| ≤ (n+ 1)
n∑
j=0

(
d(ψ, uj) +D

)
≤ (n+ 1)2(C +D)

where D := AC +B. On the other hand MAω(v) ≥ E(ω+ ddcu1)∧ · · · (ω+ ddcun)
where the constant E depends only on n. Finally we get∫

X

|u0 − ψ|(ω + ddcu1) ∧ · · · ∧ (ω + ddcun) ≤

≤ D +
1

E

∫
X

(ψ − v0)MAω(v) ≤ D +
(n+ 1)2(C +D)

E
,

which concludes the proof.
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4.3.2 ψ-relative Monge-Ampère capacity.

De�nition 4.3.9 ([DDNL17], [DDNL18]) . Let B ⊂ X be a Borel set, and let ψ ∈
M+. Then its ψ-relative Monge-Ampère capacity is de�ned as

Capψ(B) := sup
{∫

B

MAω(u) : u ∈ PSH(X,ω), ψ − 1 ≤ u ≤ ψ
}
.

In the absolute setting the Monge-Ampère capacity is very useful to study the exis-
tence and the regularity of solutions of degenerate complex Monge-Ampère equation
([Kol98]), and analog holds in the relative setting ([DDNL17], [DDNL18]). We refer
to these articles just cited to many properties of the Monge-Ampère capacity.
Here, for any constant A we introduce the let CA,ψ be the set of all probability
measures µ on X such that

µ(B) ≤ ACapψ(B)

for any Borel set B ⊂ X ([DDNL17]).

Proposition 4.3.10. Let u ∈ E1(X,ω, ψ) with ψ-relative minimal singularities.
Then MAω(u)/Vψ ∈ CA,ψ for a constant A > 0.

Proof. Let j ∈ R such that u ≥ ψ − j and assume without loss of generality that
u ≤ ψ and that j ≥ 1. Then the function v := j−1u+(1−j−1)ψ is a candidate in the
de�nition of Capψ, which implies that MAω(v) ≤ Capψ. Hence, since MAω(u) ≤
jnMA(v) we get that MAω(u) ∈ CA,ψ for A = jn and the result follows.

We also need to quote the following result.

Lemma 4.3.11 (Lemma 4.18, [DDNL17]) . If µ ∈ CA,ψ then there is a constant
B > 0 depending only on A,n such that∫

X

(u− ψ)2µ ≤ B
(
|Eψ(u)|+ 1

)
for any u ∈ PSH(X,ω, ψ) such that supX u = 0.

Similarly to the case ψ = 0 (see [GZ17]), we say that a sequence uk ∈ PSH(X,ω)
converges to u ∈ PSH(X,ω) in ψ-relative capacity for ψ ∈M if

Capψ
(
{|uk − u| ≥ δ}

)
→ 0

as k →∞ for any δ > 0.
By Theorem 10.37 in [GZ17] (see also Theorem 5.7 in [BBGZ13]) the convergence in(
E1(X,ω), d

)
implies the convergence in capacity. The analogous holds for ψ ∈ M,

i.e. that the strong convergence in E1(X,ω, ψ) implies the convergence in ψ-relative
capacity. Indeed in Proposition 4.5.7 we will prove the the strong convergence implies
the convergence in ψ′-relative capacity for any ψ′ ∈M+.
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4.3.3 (Weak) Upper Semicontinuity of u→ EPω [u](u) over
XA.

One of the main feature of Eψ for ψ ∈ M is its upper semicontinuity with respect
to the weak topology. Here we prove the analogous for E·(·) over XA.

Lemma 4.3.12. The map MAω : A → MAω(A) ⊂ {µ positive measure on X} is
an homeomorphism considering the weak topologies. In particular A is homeomor-
phic to a closed set contained in [0,

∫
X
MAω(0)] through the map ψ → Vψ.

Proof. The map is well-de�ned and continuous by Lemma 4.2 in [Tru19]. Moreover
the injectivity follows from the fact that Vψ1 = Vψ2 for ψ1, ψ2 ∈ A implies ψ1 = ψ2

using Theorem 4.2.1 and the fact that A ⊂M+.
Finally to conclude the proof it is enough to prove that ψk → ψ weakly assuming
Vψk → Vψ and it is clearly su�cient to show that any subsequence of {ψk}k∈N admits
a subsequence weakly convergent to ψ. Moreover since A is totally ordered and <
coincides with ≥ on M, we may assume {ψk}k∈N monotonic sequence. Then, up to
considering a further subsequence, ψk converges almost everywhere to an element
ψ′ ∈ A by compactness, and Lemma 5.2.5 implies that Vψ′ = Vψ, i.e ψ = ψ′.

In the case A := {ψk}k∈N ⊂ M+, we say that uk ∈ E1(X,ω, ψk) converges weakly
to Pψmin where ψmin ∈ M \ M+ if | supX uk| ≤ C for any k ∈ N and any weak
accumulation point u of {uk}k∈N satis�es u 4 ψmin. This de�nition is the most
natural since PSH(X,ω, ψ) = E1(X,ω, ψmin).

Lemma 4.3.13. Let {uk}k∈N ⊂ XA be a sequence converging weakly to u ∈ XA. If
EPω [uk](uk) ≥ C uniformly, then Pω[uk]→ Pω[u] weakly.

Proof. By Lemma 4.3.12 the convergence requested is equivalent to Vψk → Vψ,
where we set ψk := Pω[uk], ψ := Pω[u].
Moreover by a simple contradiction argument it is enough to show that any subse-
quence {ψkh}h∈N admits a subsequence {ψkhj }j∈N such that Vψkhj

→ Vψ. Thus

up to considering a subsequence, by abuse of notations and by the lower semi-
continuity lim infk→∞ Vψk ≥ Vψ of Theorem 2.3. in [DDNL17], we may suppose
by contradiction that ψk ↘ ψ′ for ψ′ ∈ M such that Vψ′ > Vψ. In particular
Vψ′ > 0 and ψ′ < ψ. Then by Proposition 5.2.2 and Remark 4.3.3 the sequence
{Pω[ψ′](uk)}k∈N is bounded in

(
E1(X,ω, ψ′), d

)
and it belongs to E1

C′(X,ω, ψ
′) for

some C′ ∈ R. Therefore, up to considering a subsequence, we have that {uk}k∈N
converges weakly to an element v ∈ E1(X,ω, ψ) (which is the element u itself
when u 6= Pψmin) while the sequence Pω[ψ′](uk) converges weakly to an element
w ∈ E1(X,ω, ψ′). Thus the contradiction follows from w ≤ v since ψ′ < ψ, Vψ′ > 0
and E1(X,ω, ψ′) ∩ E1(X,ω, ψ) = ∅.

Proposition 4.3.14. Let {uk}k∈N ⊂ XA be a sequence converging weakly to u ∈
XA. Then

lim sup
k→∞

EPω [uk](uk) ≤ EPω [u](u). (4.11)
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Proof. Let ψk := Pω[uk], ψ := Pω[u] ∈ A. We may clearly assume ψk 6= ψmin for
any k ∈ N if ψ = ψmin and Vψmin = 0.
Moreover we can also suppose that Eψk (uk) is bounded from below, which implies
that uk ∈ E1

C(X,ω, ψk) for an uniform constant C and that ψk → ψ weakly by
Lemma 4.3.13. Thus since Eψk (uk) = Eψk (uk − C) + CVψk for any k ∈ N, Lemma
4.3.12 implies that we may assume that supX uk ≤ 0. Furthermore since A is totally
ordered, it is enough to show (4.11) when ψk → ψ a.e. monotonically.
If ψk ↘ ψ, setting vk :=

(
sup{uj : j ≥ k}

)∗ ∈ E1(X,ω, ψk), we easily have

lim sup
k→∞

Eψk (uk) ≤ lim sup
k→∞

Eψk (vk) ≤ lim sup
k→∞

Eψ
(
Pω[ψ](vk)

)
using the monotonicity of Eψk and Proposition 5.2.2. Hence if ψ = ψmin and Vψmin =
0 then Eψ

(
Pω[ψ](vk)

)
= 0 = Eψ(u), while otherwise the conclusion follows from

Proposition 4.2.4 since Pω[ψ](vk)↘ u by construction.
If instead ψk ↗ ψ, �x ε > 0 and for any k ∈ N let jk ≥ k such that

sup
j≥k

Eψj (uj) ≤ Eψjk (ujk ) + ε.

Thus again by Proposition 5.2.2, Eψjk (ujk ) ≤ Eψl
(
Pω[ψl](ujk )

)
for any l ≤ jk.

Moreover, assuming Eψjk (ujk ) bounded from below, −Eψl
(
Pω[ψl](ujk )

)
= d
(
ψl, Pω[ψl](ujk )

)
is uniformly bounded in l, k, which implies that supX Pω[ψl](ujk ) is uniformly bounded
by Remark 4.3.3 since Vψjk ≥ a > 0 for k � 0 big enough. By compactness,
up to considering a subsequence, we obtain Pω[ψl](ujk ) → vl weakly where vl ∈
E1(X,ω, ψl) by the upper semicontinuity of Eψl(·) on E1(X,ω, ψl). Hence

lim sup
k→∞

Eψk (uk) ≤ lim sup
k→∞

Eψl
(
Pω[ψl](ujk )

)
+ ε = Eψl(vl) + ε

for any l ∈ N. Moreover by construction vl ≤ Pω[ψl](u) since Pω[ψl](ujk ) ≤ ujk for
any k such that jk ≥ l and ujk → u weakly. Therefore by the monotonicity of Eψl(·)
and by Proposition 4.2.11 .(ii) we conclude that

lim sup
k→∞

Eψk (uk) ≤ lim
l→∞

Eψl
(
Pω[ψl](u)

)
+ ε = Eψ(u) + ε

letting l→∞.

As a consequence, de�ning

XA,C :=
⊔
ψ∈A

E
1
C(X,ω, ψ),

we get the following compactness result.
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Proposition 4.3.15. Let C, a ∈ R>0. The set

Xa
A,C := XA,C ∩

( ⊔
ψ∈A :Vψ≥a

E
1(X,ω, ψ)

)
is compact with respect to the weak topology.

Proof. It follows directly from the de�nition that

Xa
A,C ⊂

{
u ∈ PSH(X,ω) : | sup

X
u| ≤ C′

}
where C′ := max(C,C/a). Therefore by Theorem 8.5 in [GZ17], Xa

A,C is weakly
relatively compact. Finally Proposition 4.3.14 and Hartogs' Lemma imply that
Xa

A,C is also closed with respect to the weak topology, concluding the proof.

Remark 4.3.16. The whole set XA,C may not be weakly compact. Indeed assuming
Vψmin = 0 and letting ψk ∈ A such that ψk ↘ ψmin, the functions uk := ψk−1/

√
Vψk

belong to XA,V for V =
∫
X
MAω(0) since Eψk (uk) = −

√
Vψk but supX uk =

−1/
√
Vψk → −∞.

4.4 The action of measures on PSH(X,ω).

In this section we want to replace the action on PSH(X,ω) de�ned in [BBGZ13 ]
given by a probability measure µ with an action which assume �nite values on
elements u ∈ PSH(X,ω) with ψ-relative minimal singularities where ψ = Pω[u] for
almost all ψ ∈M. On the other hand for any ψ ∈M we want that there exists many
measures µ whose action over {u ∈ PSH(X,ω) : Pω[u] = ψ} is well-de�ned. The
problem is that µ varies among all probability measures while ψ among all model
type envelopes. So it may happen that µ takes mass on non-pluripolar sets and that
the unbounded locus of ψ ∈M is very nasty.

De�nition 4.4.1. Let µ be a probability measure on X. Then µ acts on PSH(X,ω)
through the functional Lµ : PSH(X,ω) → R ∪ {−∞} de�ned as Lµ(u) = −∞ if µ
charges {Pω[u] = −∞}, as

Lµ(u) :=

∫
X

(
u− Pω[u]

)
µ

if u has Pω[u]-relative minimal singularities and µ does not charge {Pω[u] = −∞}
and as

Lµ(u) := inf{Lµ(v) : v ∈ PSH(X,ω) with Pω[u]-relative minimal sing., v ≥ u}

otherwise.
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Proposition 4.4.2. The following properties hold:

(i) Lµ is a�ne, i.e. it satis�es the scaling property Lµ(u+ c) = Lµ(u)+ c for any
c ∈ R, u ∈ PSH(X,ω);

(ii) Lµ is non-decreasing on {u ∈ PSH(X,ω) : Pω[u] = ψ} for any ψ ∈M;

(iii) Lµ(u) = limj→∞ Lµ
(

max(u, Pω[u]− j)
)
for any u ∈ PSH(X,ω);

(iv) if µ is non-pluripolar then Lµ is convex;

(v) if µ is non-pluripolar and uk → u and Pω[uk]→ Pω[u] weakly as k →∞ then
Lµ(u) ≥ lim supk→∞ Lµ(uk);

(vi) if u ∈ E1(X,ω, ψ) for ψ ∈M+ then LMAω(u)/Vψ is �nite on E1(X,ω, ψ).

Proof. The �rst two points follow by de�nition.
For the third point, setting ψ := Pω[u], clearly Lµ(u) ≤ limj→∞ Lµ

(
max(u, ψ− j)

)
.

Vice versa for any v ≥ u with ψ-relative minimal singularities v ≥ max(u, ψ− j) for
j � 0 big enough, hence by (ii) it follows that Lµ(v) ≥ limj→∞ Lµ

(
max(u, ψ − j)

)
which implies (iii) by de�nition.
Next, we prove (iv). Let v =

∑m
l=1 alul be a convex combination of elements ul ∈

PSH(X,ω), and without loss of generality we may assume supX v, supX ul ≤ 0. In
particular we have Lµ(v), Lµ(ul) ≤ 0.
Suppose Lµ(v) > −∞ (otherwise it is trivial) and let ψ := Pω[v], ψl := Pω[ul]. Then
for any C ∈ R>0 it is easy to see that

m∑
l=1

alPω(ul + C, 0) ≤ Pω(v + C, 0) ≤ ψ,

which leads to
∑m
l=1 alψl ≤ ψ letting C →∞. Hence (iii) yields

−∞ < Lµ(v) =

∫
X

(v − ψ)µ ≤
n∑
l=1

al

∫
X

(ul − ψl)µ =

n∑
l=1

alLµ(ul).

The point (v) is an easy consequence of lim supk→∞max
(
uk, Pω[uk]−j

)
≤ max

(
u, Pω[u]−

j
)
and (iii), while the last point is a consequence of Lemma 4.3.8.

Next, since for any t ∈ [0, 1] and any u, v ∈ E1(X,ω, ψ)∫
X

(u− v)MAω
(
tu+ (1− t)v

)
=

= (1− t)n
∫
X

(u− v)MAω(v) +

n∑
j=1

(
n

j

)
tj(1− t)n−j

∫
X

(u− v)MAω(uj , vn−j) ≥

≥ (1− t)n
∫
X

(u− v)MAω(v) +
(
1− (1− t)n

) ∫
X

(u− v)MAω(u),

we can proceed exactly as in Proposition 3.4 in [BBGZ13] (see also Lemma 2.11. in
[GZ07]), replacing Vθ with ψ, to get the following result.
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Proposition 4.4.3. Let A ⊂ PSH(X,ω) and let L : A → R ∪ {−∞} be a convex
and non-decreasing function satisfying the scaling property L(u+ c) = L(u) + c for
any c ∈ R. Then
(i) if L is �nite valued on a weakly compact convex set K ⊂ A, then L(K) is

bounded;

(ii) if E1(X,ω, ψ) ⊂ A and L assumes �nite values on the set E1(X,ω, ψ) then
sup{u∈E1

C
(X,ω,ψ) : supX u≤0} |L| ∈ O(C1/2) as C →∞.

4.4.1 When is Lµ continuous?

The continuity of Lµ is an hard problem. However we can characterize its continuity
on some weakly compact sets as the next Theorem shows.

Theorem 4.4.4. Let µ be a non-pluripolar probability measure, and let K ⊂ PSH(X,ω)
be a compact convex set such that Lµ is �nite on K, the set {Pω[u] : u ∈ K} ⊂ M

is totally ordered and its closure in PSH(X,ω) has at most one element in M\M+.
Suppose also that there exists C ∈ R such that |EPω [u](u)| ≤ C for any u ∈ K. Then
the following properties are equivalent:

(i) Lµ is continuous on K;

(ii) the map τ : K → L1(µ), τ(u) := u− Pω[u] is continuous;

(iii) the set τ(K) ⊂ L1(µ) is uniformly integrable, i.e.∫ ∞
t=m

µ{u ≤ Pω[u]− t} → 0

as m→∞, uniformly for u ∈ K.

Proof. We �rst observe that if uk ∈ K converges to u ∈ K then by Lemma 4.3.13
ψk → ψ where we set ψk := Pω[uk], ψ := Pω[u].
Then we can proceed exactly as in Theorem 3.10 in [BBGZ13] to get the equivalence
between (i) and (ii), (ii) ⇒ (iii) and the fact that the graph of τ is closed. It is
important to underline that (iii) is equivalent to say that τ(K) is weakly relative
compact by Dunford-Pettis Theorem, i.e. with respect to the weak topology on
L1(µ) induced by L∞(µ) = L1(µ)∗.
Finally assuming that (iii) holds, it remains to prove (i). So, letting uk, u ∈ K such
that uk → u, we have to show that

∫
X
τ(uk)µ →

∫
X
τ(u)µ. Since τ(K) ⊂ L1(µ) is

bounded, unless considering a subsequence, we may suppose
∫
X
τ(uk)→ L ∈ R. By

Fatou's Lemma,

L = lim
k→∞

∫
X

τ(uk)µ ≤
∫
X

τ(u)µ. (4.12)

Then for any k ∈ N the closed convex envelope

Ck := Conv{τ(uj) : j ≥ k},
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is weakly closed in L1(µ) by Hahn-Banach Theorem, which implies that Ck is weakly
compact since it is contained in τ(K). Thus since Ck is a decreasing sequence of
non-empty weakly compact sets, there exists f ∈

⋂
k≥1 Ck and there exist elements

vk ∈ Conv(uj : j ≥ k) given as �nite convex combination such that τ(vk) → f
in L1(µ). Moreover by the closed graph property f = τ(u) since vk → u as a
consequence of uk → u. On the other hand by Proposition 4.4.2 .(iv) we get∫

X

τ(vk)µ ≤
mk∑
l=1

al,k

∫
X

τ(ukl)µ

if vk =
∑mk
l=1 al,kukl . Hence L ≥

∫
X
τ(u)µ, which together (4.12) implies L =∫

X
τ(u)µ and concludes the proof.

Corollary 4.4.5. Let ψ ∈M+ and µ ∈ CA,ψ. Then Lµ is continuous on E1
C(X,ω, ψ)

for any C ∈ R>0. In particular if µ = MAω(u)/Vψ for u ∈ E1(X,ω, ψ) with ψ-
relative minimal singularities then Lµ is continuous on E1

C(X,ω, ψ) for any C ∈
R>0.

Proof. With the notations of Theorem 4.4.4, τ
(
E1
C(X,ω, ψ)

)
is bounded in L2(µ) by

Lemma 4.3.11. Hence by Holder's inequality τ
(
E1
C(X,ω, ψ)

)
is uniformly integrable

and Theorem 4.4.4 yields the continuity of Lµ on E1
C(X,ω, ψ) for any C ∈ R>0.

The last assertion follows directly from Proposition 4.3.10.

The following Lemma will be essential to prove Theorem A, Theorem B.

Lemma 4.4.6. Let ϕ ∈ Hω and let A ⊂ M be a totally ordered subset. Set also
vψ := Pω[ψ](ϕ) for any ψ ∈ A. Then the actions {VψLMAω(vψ)/Vψ}ψ∈A take �nite
values and they are equicontinuous on any compact set K ⊂ PSH(X,ω) such that
{Pω[u] : u ∈ K} is a totally ordered set whose closure in PSH(X,ω) has at most
one element in M \M+ and such that |EPω [u](u)| ≤ C uniformly for any u ∈ K. If
ψ ∈M \M+, for the action VψLMAω(vψ)/Vψ we mean the null action. In particular
if ψk → ψ monotonically almost everywhere and {uk}k∈N ⊂ K converges weakly to
u ∈ K, then ∫

X

(
uk − Pω[uk]

)
MAω(vψk )→

∫
X

(
u− Pω[u]

)
MAω(vψ). (4.13)

Proof. By Theorem 4.2.2,
∣∣∣VψLMAω(vψ)/Vψ (u)

∣∣∣ ≤ ∫X |u − Pω[u]|MAω(ϕ) for any

u ∈ PSH(X,ω) and any ψ ∈ A, so the actions in the statement assume �nite values.
Then the equicontinuity on any weak compact set K ⊂ PSH(X,ω) satisfying the
assumptions of the Lemma follows from

Vψ

∣∣∣LMAω(vψ)/Vψ (w1)−LMAω(vψ)/Vψ (w2)
∣∣∣ ≤ ∫

X

∣∣w1−Pω[w1]−w2+Pω[w2]
∣∣MAω(ϕ)
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for any w1, w2 ∈ PSH(X,ω) since MAω(ϕ) is a volume form on X and Pω[wk] →
Pω[w] if {wk}k∈N ⊂ K converges to w ∈ K under our hypothesis by Lemma 4.3.13.
For the second assertion, if ψk ↘ ψ (resp. ψk ↗ ψ almost everywhere), letting
fk, f ∈ L∞ such that MAω(vψk ) = fkMAω(ϕ) and MAω(vψ) = fMAω(ϕ) (Theo-
rem 4.2.2), we have 0 ≤ fk ≤ 1, 0 ≤ f ≤ 1 and {fk}k∈N is a monotone sequence.
Therefore fk → f in Lp for any p > 1 as k →∞ which implies∫

X

(
u− Pω[u]

)
MAω(vψk )→

∫
X

(
u− Pω[u]

)
MAω(vψ)

as k → ∞ since MAω(ϕ) is a volume form. Hence (4.13) follows since by the �rst
part of the proof ∫

X

(
uk − Pω[uk]− u+ Pω[u]

)
MAω(vψk )→ 0.

4.5 Theorem A

In this section we �x ψ ∈ M+ and using a variational approach we �rst prove the
bijectivity of the Monge-Ampère operator between E1

norm(X,ω, ψ) and M1(X,ω, ψ),
and then we prove that it is actually an homeomorphism considering the strong
topologies.

4.5.1 Degenerate complex Monge-Ampère equations.

Letting µ be a probability measure and ψ ∈ M, we de�ne the functional Fµ,ψ :
E1(X,ω, ψ)→ R ∪ {−∞} as

Fµ,ψ(u) := (Eψ − VψLµ)(u)

where we recall that Lµ(u) = limj→∞ Lµ
(

max(u, ψ− j)
)

= limj→∞
∫
X

(
max(u, ψ−

j) − ψ
)
µ (see section 4.4). Fµ,ψ is clearly a translation invariant functional and

Fµ,ψ ≡ 0 for any µ if Vψ = 0.

Proposition 4.5.1. Let µ be a probability measure, ψ ∈ M+ and let F := Fµ,ψ. If
Lµ is continuous then F is upper semicontinuous on E1(X,ω, ψ). Moreover if Lµ is
�nite valued on E1(X,ω, ψ) then there exist A,B > 0 such that

F (v) ≤ −Ad(ψ, v) +B

for any v ∈ E1
norm(X,ω, ψ), i.e. F is d-coercive . In particular F is upper semi-

continuous on E1(X,ω, ψ) and d-coercive on E1
norm(X,ω, ψ) if µ = MAω(u)/Vψ for

u ∈ E1(X,ω, ψ).
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Proof. If Lµ is continuous then F is easily upper semicontinuous by Proposition
4.2.4.
Then, since d(ψ, v) = −Eψ(v) on E1

norm(X,ω, ψ), it is easy to check that the coer-
civity requested is equivalent to

sup
E1
C

(X,ω,ψ)∩E1
norm(X,ω,ψ)

|Lµ| ≤
(1−A)

Vψ
C +O(1),

which holds by Proposition 4.4.3.(ii).
Next assuming µ = MAω(u)/Vψ it is su�cient to check the continuity of Lµ since Lµ
is �nite valued on E1(X,ω, ψ) by Proposition 4.4.2. We may suppose without loss of
generality that u ≤ ψ. By Proposition 4.3.7 and Remark 4.3.3, for any C ∈ R>0, Lµ
restricted to E1

C(X,ω, ψ) is the uniform limit of Lµj , where µj := MAω
(

max(u, ψ−
j)
)
, since Iψ

(
max(u, ψ − j), u

)
→ 0 as j → ∞. Therefore Lµ is continuous on

E1
C(X,ω, ψ) since uniform limit of continuous functionals Lµj (Corollary 4.4.5).

As a consequence of the concavity of Eψ if µ = MAω(u)/Vψ for u ∈ E1(X,ω, ψ)
where Vψ > 0 then

Jψu (ψ) = Fµ,ψ(u) = sup
E1(X,ω,ψ)

Fµ,ψ,

i.e. u is a maximizer for Fµ,ψ. The vice versa also holds as the next result shows.

Proposition 4.5.2. Let ψ ∈M+ and let µ be a probability measure such that Lµ is
�nite valued on E1(X,ω, ψ). Then µ = MAω(u)/Vψ for u ∈ E1(X,ω, ψ) if and only
if u is a maximizer of Fµ,ψ.

Proof. As said before, it is clear that µ = MAω(u)/Vψ implies that u is a maximizer
for Fµ,ψ. Vice versa if u is a maximizer of Fµ,ψ then by Theorem 4.22 in [DDNL17]
µ = MAω(u)/Vψ.

Similarly to [BBGZ13] we, thus, de�ne the ψ-relative energy for ψ ∈M of a proba-
bility measure µ as

E∗ψ(µ) := sup
u∈E1(X,ω,ψ)

Fµ,ψ(u)

i.e. essentially as the Legendre trasform of Eψ. It takes non-negative values ( Fµ,ψ(ψ) =
0) and it is easy to check that E∗ψ is a convex function.
Moreover de�ning

M
1(X,ω, ψ) := {Vψµ : µ is a probability measure satisfying E∗ψ(µ) <∞},

we note that M1(X,ω, ψ) consists only of the null measure if Vψ = 0 while in Vψ > 0
any probability measure µ such that Vψµ ∈ M1(X,ω, ψ) is non-pluripolar as the
next Lemma shows.

Lemma 4.5.3. Let A ⊂ X be a (locally) pluripolar set. Then there exists u ∈
E1(X,ω, ψ) such that A ⊂ {u = −∞}. In particular if Vψµ ∈ M1(X,ω, ψ) for
ψ ∈M+ then µ is non-pluripolar.
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Proof. By Corollary 2.11 in [BBGZ13] there exists ϕ ∈ E1(X,ω) such that A ⊂ {ϕ =
−∞}. Therefore setting u := Pω[ψ](ϕ) proves the �rst part.
Next let Vψµ ∈ M1(X,ω, ψ) for ψ ∈ M+ and µ probability measure and assume
by contradiction that µ takes mass on a pluripolar set A. Then by the �rst part
of the proof there exists u ∈ E1(X,ω, ψ) such that A ⊂ {u = −∞}. On the other
hand, since Vψµ ∈ M1(X,ω, ψ) by de�nition µ does not charge {ψ = −∞}. Thus
by Proposition 4.4.2 .(iii) we obtain Lµ(u) = −∞, which is a contradiction.

We can now prove that the Monge-Ampère operation is a bijection between E1(X,ω, ψ)
and M1(X,ω, ψ).

Lemma 4.5.4. Let ψ ∈ M+ and let µ ∈ CA,ψ where A ∈ R. Then there exists
u ∈ E1

norm(X,ω, ψ) maximizing Fµ,ψ.

Proof. By Lemma 4.3.11 Lµ is �nite valued on E1(X,ω, ψ), and it is continuous on
E1
C(X,ω, ψ) for any C ∈ R thank to Corollary 4.4.5. Therefore it follows from Propo-

sition 4.5.1 that Fµ,ψ is upper semicontinuous and d-coercive on E1
norm(X,ω, ψ).

Hence Fµ,ψ admits a maximizer u ∈ E1
norm(X,ω, ψ) as easy consequence of the weak

compactness of E1
C(X,ω, ψ).

Proposition 4.5.5. Let ψ ∈M+. Then the Monge-Ampère map MA : E1
norm(X,ω, ψ)→

M1(X,ω, ψ), u→MA(u) is bijective. Furthermore if Vψµ = MAω(u) ∈M1(X,ω, ψ)
for u ∈ E1(X,ω, ψ) then any maximizing sequence uk ∈ E1

norm(X,ω, ψ) for Fµ,ψ nec-
essarily converges weakly to u.

Proof. The proof is inspired by Theorem 4.7 in [BBGZ13].
The map is well-de�ned as a consequence of Proposition 4.5.1, i.e. MAω(u) ∈
M1(X,ω, ψ) for any u ∈ E1(X,ω, ψ). Moreover the injectivity follows from Theorem
4.8 in [DDNL18].
Let uk ∈ E1

norm(X,ω, ψ) be a sequence such that Fµ,ψ(uk) ↗ supE1(X,ω,ψ) Fµ,ψ

where µ = MAω(u)/Vψ is a probability measure and u ∈ E1
norm(X,ω, ψ). Up to

considering a subsequence, we may also assume that uk → v ∈ PSH(X,ω). Then,
by the upper semicontinuity and the d-coercivity of Fµ,ψ (Proposition 4.5.1) it fol-
lows that v ∈ E1

norm(X,ω, ψ) and Fµ,ψ(v) = supE1(X,ω,ψ) Fµ,ψ. Thus by Proposition
4.5.2 we get µ = MAω(v)/Vψ. Hence v = u since supX v = supX u = 0.
Then let µ be a probability measure such that Vψµ ∈M1(X,ω, ψ). Again by Propo-
sition 4.5.2, to prove the existence of u ∈ E1

norm(X,ω, ψ) such that µ = MAω(u)/Vψ
it is su�cient to check that Fµ,ψ admits a maximum over E1

norm(X,ω, ψ). Moreover
by Proposition 4.5.1 we also know that Fµ,ψ is d-coercive on E1

norm(X,ω, ψ). Thus
if there exists a constant A > 0 such that µ ∈ CA,ψ then Corollary 4.4.5 leads to
the upper semicontinuity of Fµ,ψ which clearly implies that Vψµ = MAω(u) for
u ∈ E1(X,ω, ψ) since E1

C(X,ω, ψ) ⊂ PSH(X,ω) is compact for any C ∈ R>0.
In the general case by Lemma 4.26 in [DDNL17] (see also [Ceg98]) µ is absolutely
continuous with respect to ν ∈ C1,ψ using also that µ is a non-pluripolar measure
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(Lemma 4.5.3). Therefore letting f ∈ L1(ν) such that µ = fν, we de�ne for any
k ∈ N

µk := (1 + εk) min(f, k)ν

where εk > 0 are chosen so that µk is a probability measure, noting that (1 +
εk) min(f, k)→ f in L1(ν). Then by Lemma 4.5.4 it follows that µk = MAω(uk)/Vψ
for uk ∈ E1

norm(X,ω, ψ).
Moreover by weak compactness, without loss of generality, we may also assume that
uk → u ∈ PSH(X,ω). Note that u ≤ ψ since uk ≤ ψ for any k ∈ N. Then by
Lemma 2.8 in [DDNL18] we obtain

MAω(u) ≥ Vψfν = Vψµ,

which implies MAω(u) = Vψµ by [WN17] since u is more singular than ψ and µ is
a probability measure. It remains to prove that u ∈ E1(X,ω, ψ).
It is not di�cult to see that µk ≤ 2µ for k � 0, thus Proposition 4.4.3 implies that
there exists a constant B > 0 such that

sup
E1
C

(X,ω,ψ)

|Lµk | ≤ 2 sup
E1
C

(X,ω,ψ)

|Lµ| ≤ 2B(1 + C1/2)

for any C ∈ R>0. Therefore

Jψuk (ψ) = Eψ(uk) + Vψ|Lµk (uk)| ≤ sup
C>0

(
2VψB(1 + C1/2)− C

)
and Lemma 4.3.1 yields d(ψ, uk) ≤ D for an uniform constant D, i.e. uk ∈
E1
D′(X,ω, ψ) for any k ∈ N for an uniform constant D′ (Remark 4.3.3). Hence

since E1
D′(X,ω, ψ) is weakly compact we obtain u ∈ E1

D′(X,ω, ψ).

4.5.2 Proof of Theorem A.

We �rst need to explore further the properties of the strong topology on E1(X,ω, ψ).

By Proposition 4.3.6 the strong convergence implies the weak convergence. Moreover
the strong topology is the coarsest re�nement of the weak topology such that Eψ(·)
becomes continuous.

Proposition 4.5.6. Let ψ ∈M+ and uk, u ∈ E1(X,ω, ψ). Then uk → u strongly if
and only if uk → u weakly and Eψ(uk)→ Eψ(u).

Proof. Assume that uk → u weakly and that Eψ(uk) → Eψ(u). Then wk :=
(sup{uj : j ≥ k}

)∗ ∈ E1(X,ω, ψ) and it decreases to u. Thus by Proposition
4.2.4 Eψ(wk)→ Eψ(u) and

d(uk, u) ≤ d(uk, wk) + d(wk, u) = 2Eψ(wk)− Eψ(uk)− Eψ(u)→ 0.
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Vice versa, assuming that d(uk, u) → 0, we immediately get that uk → u weakly
as said above (Proposition 4.3.6). Moreover supX uk, supX u ≤ A uniformly for a
constant A ∈ R. Thus

|Eψ(uk)− Eψ(u)| = |d(ψ +A, uk)− d(ψ +A, u)| ≤ d(uk, u)→ 0,

which concludes the proof.

Then we also observe that the strong convergence implies the convergence in ψ′-
capacity for any ψ′ ∈M+.

Proposition 4.5.7. Let ψ ∈ M+ and uk, u ∈ E1(X,ω, ψ) such that d(uk, u) →
0. Then there exists a subsequence {ukj}j∈N such that wj :=

(
sup{ukh : h ≥

j}
)∗
, vj := Pω(ukj , ukj+1 , . . . ) belong to E1(X,ω, ψ) and converge monotonically

almost everywhere to u. In particular uk → u in ψ′-capacity for any ψ′ ∈ M+ and
MAω(ujk, ψ

n−j)→MAω(uj , ψn−j) weakly for any j = 0, . . . , n.

Proof. Since the strong convergence implies the weak convergence by Proposition
4.5.6 it is clear that wk ∈ E1(X,ω, ψ) and that it decreases to u. In particular up to
considering a subsequence we may assume that d(uk, wk) ≤ 1/2k for any k ∈ N.
Next for any j ≥ k we set vk,j := Pω(uk, . . . , uj) ∈ E1(X,ω, ψ) and vuk,j :=
Pω(vk,j , u) ∈ E1(X,ω, ψ). Then it follows from Proposition 4.2.4 and Lemma 3.7 in
[DDNL17] that

d(u, vuk,j) ≤
∫
X

(u− vuk,j)MAω(vuk,j) ≤
∫
{vu
k,j

=vk,j}
(u− vk,j)MAω(vk,j) ≤

≤
j∑
s=k

∫
X

(ws − us)MAω(us) ≤ (n+ 1)

j∑
s=k

d(ws, us) ≤
(n+ 1)

2k−1
.

Therefore by Proposition 4.3.15 vuk,j decreases (hence converges strongly) to a func-
tion φk ∈ E1(X,ω, ψ) as j →∞. Similarly we also observe that

d(vk,j , v
u
k,j) ≤

∫
{vu
k,j

=u}
(vk,j − u)MAω(u) ≤

∫
X

|vk,1 − u|MAω(u) ≤ C

uniformly in j by Corollary 4.3.5. Hence by de�nition d(u, vk,j) ≤ C+ (n+1)

2k−1 , i.e. vk,j
decreases and converges strongly as j →∞ to the function vk = Pω(uk, uk+1 . . . ) ∈
E1(X,ω, ψ) again by Proposition 4.3.15. Moreover by construction uk ≥ vk ≥ φk
since vk ≤ vk,j ≤ uk for any j ≥ k. Hence

d(u, vk) ≤ d(u, φk) ≤ (n+ 1)

2k−1
→ 0

as k →∞, i.e. vk ↗ u strongly.
The convergence in ψ′-capacity for ψ′ ∈ M+ in now clearly an immediate conse-
quence. Indeed by an easy contradiction argument it is enough to prove that any

168 4.5. THEOREM A



CHAPTER 4. THE STRONG TOPOLOGY OF
ω-PLURISUBHARMONIC FUNCTIONS 169

arbitrary subsequence, which we will keep denoting with {uk}k∈N for the sake of
simplicity, admits a further subsequence {ukj}j∈N converging in ψ′-capacity to u.
Thus taking the subsequence satisfying vj ≤ ukj ≤ wj where vj , wj are the mono-
tonic sequence of the �rst part of the Proposition, the convergence in ψ′-capacity
follows from the inclusions

{|u− ukj | > δ} = {u− ukj > δ} ∪ {uk − u > δ} ⊂ {u− vj > δ} ∪ {wj − u > δ}

for any δ > 0. Finally Lemma 5.2.5 gives the weak convergence of the measures.

We can now endow the set M1(X,ω, ψ) = {Vψµ : µ is a probability measure
satisfying E∗ψ(µ) < +∞} (subsection 4.5.1) with its natural strong topology given as
the coarsest re�nement of the weak topology such that E∗ψ(·) becomes continuous,
and prove our Theorem A.

Theorem A. Let ψ ∈M+. Then

MAω :
(
E

1
norm(X,ω, ψ), d

)
→
(
M

1(X,ω, ψ), strong
)

is an homeomorphism.

Proof. The map is bijective as immediate consequence of Proposition 4.5.5.
Next, letting uk ∈ E1

norm(X,ω, ψ) converging strongly to u ∈ E1
norm(X,ω, ψ), Propo-

sition 4.5.7 gives the weak convergence of MAω(uk) → MAω(u) as k → ∞. More-
over since E∗ψ

(
MAω(v)/Vψ

)
= Jψv (ψ) for any v ∈ E1(X,ω, ψ), we get∣∣∣E∗ψ(MAω(uk)/Vψ

)
− E∗ψ

(
MAω(u)/Vψ

)∣∣∣ ≤
≤
∣∣Eψ(uk)− Eψ(u)

∣∣+
∣∣∣ ∫
X

(ψk − uk)MAω(uk)−
∫
X

(ψk − uk)MAω(u)
∣∣∣ ≤

≤
∣∣Eψ(uk)−Eψ(u)

∣∣+∣∣∣ ∫
X

(ψk−uk)
(
MAω(uk)−MAω(u)

)∣∣∣+∫
X

|uk−u|MAω(u).

(4.14)

Hence MAω(uk) → MAω(u) strongly in M1(X,ω, ψ) since each term on the right
side hand of 4.14 goes to 0 as k → +∞ combining Proposition 4.5.6, Proposition
4.3.7 and Corollary 4.3.5 recalling that by Proposition 4.3.4 Iψ(uk, u)→ 0 as k →∞.
Vice versa suppose that MAω(uk)→MAω(u) strongly in M1(X,ω, ψ) where uk, u ∈
E1
norm(X,ω, ψ). Then, letting {ϕj}j∈N ⊂ Hω such that ϕj ↘ u ([BK07]) and setting
vj := Pω[ψ](ϕj), by Lemma 4.3.1

(n+ 1)Iψ(uk, vj) ≤ Eψ(uk)− Eψ(vj) +

∫
X

(vj − uk)MAω(uk) =

= E∗ψ
(
MAω(uk)/Vψ

)
−E∗ψ

(
MAω(vj)/Vψ

)
+

∫
X

(vj −ψ)
(
MAω(uk)−MAω(vj)

)
.

(4.15)
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By construction and the �rst part of the proof, it follows that E∗ψ
(
MAω(uk)/Vψ

)
−

E∗ψ
(
MAω(vj)/Vψ

)
→ 0 as k, j → ∞. While setting fj := vj − ψ we want to prove

that

lim sup
k→∞

∫
X

fjMAω(uk) =

∫
X

fjMAω(u),

which would imply lim supj→∞ lim supk→∞ Iψ(uk, vj) = 0 since
∫
X
fj
(
MAω(u) −

MAω(vj)
)
→ 0 as a consequence of Propositions 4.3.7 and 4.3.4.

We observe that ||fj ||L∞ ≤ ||ϕj ||L∞ by Proposition 5.2.2 and we denote with
{fsj }s∈N ⊂ C∞ a sequence of smooth functions converging in capacity to fj such
that ||fsj ||L∞ ≤ 2||fj ||L∞ . We recall here brie�y how to construct such sequence.
Let {gsj}s∈N be the sequence of bounded functions converging in capacity to fj de-
�ned as gsj := max(vj ,−s) − max(ψ,−s). We have that ||gsj ||L∞ ≤ ||fj ||L∞ and
that max(vj ,−s),max(ψ,−s) ∈ PSH(X,ω). Therefore by a regularization process
(see for instance [BK07]) and a diagonal argument we can now construct a sequence
{fsj }j∈N ⊂ C∞ converging in capacity to fj such that ||fsj ||L∞ ≤ 2||gsj || ≤ 2||fj ||L∞
where fsj = vsj −ψs with vsj , ψs quasi-psh functions decreasing respectively to vj , ψ.
Then letting δ > 0 we have∫

X

(fj − fsj )MAω(uk) ≤ δVψ + 3||ϕj ||L∞
∫
{fj−fsj>δ}

MAω(uk) ≤

≤ δVψ + 3||ϕj ||L∞
∫
{ψs−ψ>δ}

MAω(uk)

from the trivial inclusion {fj − fsj > δ} ⊂ {ψs − ψ > δ}. Therefore

lim sup
s→∞

lim sup
k→∞

∫
X

(fj − fsj )MAω(uk) ≤ δVψ+

+lim sup
s→∞

lim sup
k→∞

∫
{ψs−ψ≥δ}

MAω(uk) ≤ δVψ+lim sup
s→∞

∫
{ψs−ψ≥δ}

MAω(u) = δVψ,

where we used that {ψs − ψ ≥ δ} is a closed set in the pluri�ne topology. Hence
since fsj ∈ C∞ we obtain

lim sup
k→∞

∫
X

fjMAω(uk) =

= lim sup
s→∞

lim sup
k→∞

(∫
X

(fj − fsj )MAω(uk) +

∫
X

fsjMAω(uk)
)
≤

≤ lim sup
s→∞

∫
X

fsjMAω(u) =

∫
X

fjMAω(u),

which as said above implies Iψ(uk, vj)→ 0 letting k, j →∞ in this order.
Next, again by Lemma 4.3.1, we obtain uk ∈ E1

C(X,ω, ψ) for some C ∈ N big enough
since Jψuk (ψ) = E∗ψ

(
MAω(uk)/Vψ

)
. In particular, up to considering a subsequence,

170 4.5. THEOREM A



CHAPTER 4. THE STRONG TOPOLOGY OF
ω-PLURISUBHARMONIC FUNCTIONS 171

uk → w ∈ E1
norm(X,ω, ψ) weakly by Proposition 4.3.15. Observe also that by

Proposition 4.3.7 ∣∣∣ ∫
X

(ψ − uk)
(
MAω(vj)−MAω(uk)

)∣∣∣→ 0 (4.16)

as k, j →∞ in this order. Moreover by Proposition 4.3.14 and Lemma 4.4.6

lim sup
k→∞

(
E∗ψ
(
MAω(uk)/Vψ

)
+

∫
X

(ψ − uk)
(
MAω(vj)−MAω(uk)

))
=

= lim sup
k→∞

(
Eψ(uk) +

∫
X

(ψ − uk)MAω(vj)
)
≤ Eψ(w) +

∫
X

(ψ − w)MAω(vj).

(4.17)

Therefore combining (4.16) and (4.17) with the strong convergence of vj to u we
obtain

Eψ(u) +

∫
X

(ψ − u)MAω(u) = lim
k→∞

E∗ψ
(
MAω(uk)/Vψ

)
≤

≤ lim sup
j→∞

(
Eψ(w) +

∫
X

(ψ − w)MAω(vj)
)

= Eψ(w) +

∫
X

(ψ − w)MAω(u),

i.e. w is a maximizer of FMAω(u)/Vψ,ψ. Hence w = u (Proposition 4.5.5), i.e. uk → u
weakly. Furthermore again by Lemma 4.3.1 and Lemma 4.4.6

lim sup
k→∞

(
Eψ(vj)− Eψ(uk)

)
≤

≤ lim sup
k→∞

( n

n+ 1
Iψ(uk, vj) +

∣∣∣ ∫
X

(uk − vj)MAω(vj)
∣∣∣) ≤

≤
∣∣∣ ∫
X

(u− vj)MAω(vj)
∣∣∣+ lim sup

k→∞

n

n+ 1
Iψ(uk, vj). (4.18)

Finally letting j → ∞, since vj ↘ u strongly, we obtain lim infj→∞Eψ(uk) ≥
limj→∞Eψ(vj) = Eψ(u) which implies that Eψ(uk) → Eψ(u) and that uk → u
strongly by Proposition 4.5.6.

The main di�erence between the proof of Theorem A with respect to the same
result in the absolute setting, i.e. when ψ = 0, is that for �xed u ∈ E1(X,ω, ψ)
the action M1(X,ω, ψ) 3 MAω(v) →

∫
X

(u − ψ)MAω(v) is not a priori continuous
with respect to the weak topologies of measures even if we restrict the action on
M1
C(X,ω, ψ) := {Vψµ : E∗ψ(µ) ≤ C} for C ∈ R while in the absolute setting this

is given by Proposition 1.7. in [BBEGZ19] where the authors used the fact that
any u ∈ E1(X,ω) can be approximated inside the class E1(X,ω) by a sequence of
continuous functions.
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4.6 Strong Topologies.

In this section we investigate the strong topology on XA in detail, proving that it
is the coarsest re�nement of the weak topology such that E·(·) becomes continuous
(Theorem 4.6.2) and proving that the strong convergence implies the convergence in
ψ-capacity for any ψ ∈M+ (Theorem 4.6.3), i.e. we extend all the typical properties
of the L1-metric geometry to the bigger space XA, justifying further the construction
of the distance dA ([Tru19]) and its naturality. Moreover we de�ne the set YA, and
we prove Theorem B.

4.6.1 About
(
XA, dA

)
.

First we prove that the strong convergence in XA implies the weak convergence,
recalling that for weak convergence of uk ∈ E1(X,ω, ψk) to Pψmin where ψmin ∈ M

with Vψmin = 0 we mean that | supX uk| ≤ C and that any weak accumulation point
of {uk}k∈N is more singular than ψmin.

Proposition 4.6.1. Let uk, u ∈ XA such that uk → u strongly. If u 6= Pψmin then
uk → u weakly. If instead u = Pmin the following dichotomy holds:

(i) uk → Pmin weakly;

(ii) lim supk→∞ | supX uk| =∞.

Proof. The dichotomy for the case u = Pψmin follows by de�nition. Indeed if
| supX uk| ≤ C and dA(uk, u)→ 0 as k →∞, then Vψk → Vψmin = 0 by Proposition
4.2.11.(iv) which implies that ψk → ψmin by Lemma 4.3.12. Hence any weak accu-
mulation point u of {uk}k∈N satis�es u ≤ ψmin + C.
Thus, let ψk, ψ ∈ A such that uk ∈ E1(X,ω, ψk) and u ∈ E1(X,ω, ψ) where ψ ∈M+.
Observe that

d(uk, ψk) ≤ dA(uk, u) + d(u, ψ) + dA(ψ,ψk) ≤ A

for an uniform constant A > 0 by Proposition 4.2.11 .(iv)
On the other hand for any j ∈ N by [BK07] there exists hj ∈ Hω such that hj ≥ u,
||hj−u||L1 ≤ 1/j and d

(
u, Pω[ψ](hj)

)
≤ 1/j. In particular by the triangle inequality

and Proposition 4.2.11 we have

lim sup
k→∞

d
(
Pω[ψk](hj), ψk

)
≤

≤ lim sup
k→∞

(
dA
(
Pω[ψk](hj), Pω[ψ](hj)

)
+

1

j
+ d(u, ψ) + d(ψ,ψk)

)
≤ d(u, ψ) +

1

j
,

(4.19)
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Similarly again by the triangle inequality and Proposition 4.2.11

lim sup
k→∞

d
(
uk, Pω[ψk](hj)

)
≤

≤ lim sup
k→∞

(
dA
(
Pω[ψk](hj), Pω[ψ](hj)

)
+

1

j
+ dA(u, uk)

)
≤ 1

j
(4.20)

and

lim sup
k→∞

||uk − u||L1 ≤

lim sup
k→∞

(
||uk−Pω[ψk](hj)||L1 + ||Pω[ψk](hj)−Pω[ψ](hj)||L1 + ||Pω[ψ](hj)−u||L1

)
≤

≤ 1

j
+ lim sup

k→∞
||uk − Pω[ψk](hj)||L1 . (4.21)

In particular from (4.19) and (4.20) we deduce that d
(
ψk, Pω[ψk](hj)

)
, d(ψk, uk) ≤ C

for an uniform constant C ∈ R. Next let φk ∈ E1
norm(X,ω, ψ) the unique solution

of MAω(φk) =
Vψk
V0

MAω(0) and observe that by Proposition 4.2.4

d(ψk, φk) = −Eψk (φk) ≤
∫
X

(ψk − φk)MAω(φk) ≤

≤ Vψk
V0

∫
X

|φk|MAω(0) ≤ ||φk||L1 ≤ C′

since φk belongs to a compact (hence bounded) subset of PSH(X,ω) ⊂ L1. There-
fore, since Vψk ≥ a > 0 for k � 0 big enough, by Proposition 4.3.6 it follows that
there exists a continuous increasing function f : R≥0 → R≥0 with f(0) = 0 such
that

||uk − Pω[ψk](hj)||L1 ≤ f
(
d(uk, Pω[ψk](hj))

)
for any k, j big enough. Hence combining (4.20) and (4.21) the convergence requested
follows letting k, j → +∞ in this order.

We can now prove the important characterization of the strong convergence as the
coarsest re�nement of the weak topology such that E·(·) becomes continuous.

Theorem 4.6.2. Let uk ∈ E1(X,ω, ψk), u ∈ E1(X,ω, ψ) for {ψk}k∈N, ψ ∈ A. If
ψ 6= ψmin or Vψmin > 0 then the followings are equivalent:

i) uk → u strongly;

ii) uk → u weakly and Eψk (uk)→ Eψ(u).

In the case ψ = ψmin and Vψmin = 0, if uk → Pψmin weakly and Eψk (uk) → 0 then
uk → Pψmin strongly. Finally if dA(uk, Pψmin) → 0 as k → ∞, then the following
dichotomy holds:
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a) uk → Pψmin weakly and Eψk (uk)→ 0;

b) lim supk→∞ | supX uk| =∞.

Proof. Implication (ii)⇒ (i).
Assume that (ii) holds where we include the case u = Pψmin setting Eψ(Pψmin) := 0.
Clearly it is enough to prove that any subsequence of {uk}k∈N admits a subsequence
which is dA−convergent to u. For the sake of simplicity we denote with {uk}k∈N the
arbitrary initial subsequence, and since A is totally ordered by Lemma 4.3.13 we may
also assume either ψk ↘ ψ or ψk ↗ ψ almost everywhere. In particular even if u =
Pψmin we may suppose that uk converges weakly to a proper element v ∈ E1(X,ω, ψ)
up to considering a further subsequence by de�nition of weak convergence to the
point Pψmin . In this case by abuse of notation we denote the function v, which
depends on the subsequence chosen, with u. Note also that by Hartogs' Lemma we
have uk ≤ ψk+A, u ≤ ψ+A for an uniform constant A ∈ R≥0 since | supX uk| ≤ A.
In the case ψk ↘ ψ, vk :=

(
sup{uj : j ≥ k}

)∗ ∈ E1(X,ω, ψk) decreases to u. Thus
wk := Pω[ψ](vk) ∈ E1(X,ω, ψ) decreases to u, which implies d(u,wk)→ 0 as k →∞
(if u = Pψmin we immediately have wk = Pψmin).
Moreover by Propositions 4.2.4 and 5.2.2 it follows that

Eψ(u) = lim
k→∞

Eψ(wk) = AVψ − lim
k→∞

d(ψ +A,wk) ≥

≥ lim
k→∞

(
AVψk − d(ψk +A, vk)

)
= lim sup

k→∞
Eψk (vk) ≥ lim

k→∞
Eψk (uk) = Eψ(u)

since ψk+A = Pω[ψk](A). Hence lim supk→∞ d(vk, uk) = lim supk→∞ d(ψk+A, uk)−
d(vk, ψk +A) = limk→∞Eψk (vk)−Eψk (uk) = 0. Thus by the triangle inequality it
is su�cient to show that lim supk→∞ dA(u, vk) = 0.
Next for any C ∈ R we set vCk := max(vk, ψk − C), uC := max(u, ψ − C) and we
observe that d(ψk + A, vCk ) → d(ψ + A, uC) by Proposition 4.2.11 since vCk ↘ uC .
This implies that

d(vk, v
C
k ) = d(ψk +A, vk)− d(ψk +A, vCk ) = AVψk −Eψk (vk)− d(ψk +A, vCk ) −→

−→ AVψ − Eψ(u)− d(ψ +A, uC) = d(ψ +A, u)− d(ψ +A, uC) = d(u, uC).

Thus, since uC → u strongly, again by the triangle inequality it remains to estimate
dA(u, vCk ). Fix ε > 0 and φε ∈ PHω (X,ω, ψ) such that d(φε, u) ≤ ε (by Lemma
4.2.13). Then letting ϕ ∈ Hω such that φε = Pω[ψ](ϕ) and setting φε,k := Pω[ψk](ϕ)
by Proposition 4.2.11 we have

lim sup
k→∞

dA(u, vCk ) ≤ lim sup
k→∞

(
d(u, φε) + dA(φε, φε,k) + d(φε,k, v

C
k )
)
≤

≤ ε+ d(φε, u
C) ≤ 2ε+ d(u, uC),

which concludes the �rst case of (ii) ⇒ (i) by the arbitrariety of ε since uC → u
strongly in E1(X,ω, ψ).
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Next assume that ψk ↗ ψ almost everywhere. In this case we clearly may assume
Vψk > 0 for any k ∈ N. Then vk :=

(
sup{uj : j ≥ k}

)∗ ∈ E1(X,ω, ψ) decreases
to u. Moreover setting wk := Pω[ψk](vk) ∈ E1(X,ω, ψk) and combining the mono-
tonicity of Eψk (·), the upper semicontinuity of E·(·) (Proposition 4.3.14) and the
contraction property of Proposition 5.2.2 we obtain

Eψ(u) = lim
k→∞

Eψ(vk) = AVψ − lim
k→∞

d(vk, ψ +A) ≤

≤ lim inf
k→∞

(
AVψk −d(wk, ψk +A)

)
= lim inf

k→∞
Eψk (wk) ≤ lim sup

k→∞
Eψk (wk) ≤ Eψ(u),

i.e. Eψk (wk) → Eψ(u) as k → ∞. As a easy consequence we also get d(wk, uk) =
Eψk (wk)− Eψk (uk)→ 0, thus it is su�cient to prove that

lim sup
k→∞

dA(u,wk) = 0.

Similarly to the previous case, �x ε > 0 and let φε = Pω[ψ](ϕε) for ϕ ∈ Hω such
that d(u, φε) ≤ ε. Again Proposition 5.2.2 and Proposition 4.2.11 yield

lim sup
k→∞

dA(u,wk) ≤ ε+ lim sup
k→∞

(
dA
(
φε, Pω[ψk](φε)

)
+ d
(
Pω[ψk](φε), wk

))
≤

≤ ε+ lim sup
k→∞

(
dA
(
φε, Pω[ψk](φε)

)
+ d(φε, vk)

)
≤ 2ε,

which concludes the �rst part.
Implication (i)⇒ (ii) if u 6= Pψmin while (i) implies the dichotomy if u = Pψmin .

If u 6= Pψmin , Proposition 4.6.1 implies that uk → u weakly and in particular that
| supX uk| ≤ A. Thus it remains to prove that Eψk (uk)→ Eψ(u).
If u = Pψmin then again by Proposition 4.6.1 it remains to show that Eψk (uk) → 0
assuming ukh → Pψmin strongly and weakly. Note that we also have | supX uk| ≤ A
for an uniform constant A ∈ R by de�nition of weak convergence to Pψmin .
So, since by an easy contradiction argument it is enough to prove that any subse-
quence of {uk}k∈N admits a further subsequence such that the convergence of the
energies holds, without loss of generality we may assume that uk → u ∈ E1(X,ω, ψ)
weakly even in the case Vψ = 0 (i.e. when, with abuse of notation, u = Pψmin).
Therefore we want to show the existence of a further subsequence {ukh}h∈N such
that Eψkh (ukh) → Eψ(u) (note that if Vψ = 0 then Eψ(u) = 0). It easily follows
that

|Eψk (uk)− Eψ(u)| ≤ |d(ψk +A, uk)− d(ψ +A, u)|+A|Vψk − Vψ| ≤
≤ dA(u, uk) + d(ψk +A,ψ +A) +A|Vψk − Vψ|,

and this leads to limk→∞Eψk (uk) = Eψ(u) by Proposition 4.2.11 since ψk + A =
Pω[ψk](A) and ψ +A = Pω[ψ](A). Hence Eψk (uk)→ Eψ(u) as requested.
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Note that in Theorem 4.6.2 the case (b) may happen (Remark 5.4.13) but obviously
one can consider

XA,norm =
⊔
ψ∈A

E
1
norm(X,ω, ψ)

to exclude such pathology.
The strong convergence also implies the convergence in ψ′-capacity for any ψ′ ∈M+

as our next result shows.

Theorem 4.6.3. Let ψk, ψ ∈ A, and let uk ∈ E1(X,ω, ψk) strongly converg-
ing to u ∈ E1(X,ω, ψ). Assuming also that Vψ > 0. Then there exists a sub-
sequence {ukj}j∈N such that the sequences wj :=

(
sup{uks : s ≥ j}

)∗
, vj :=

Pω(ukj , ukj+1 , . . . ) belong to XA, satisfy vj ≤ ukj ≤ wj and converge strongly and
monotonically to u. In particular uk → u in ψ′-capacity for any ψ′ ∈ M+ and
MAω(ujk, ψ

n−j
k )→MAω(uk, ψn−j) weakly for any j ∈ {0, . . . , n}.

Proof. We �rst observe that by Theorem 4.6.2 uk → u weakly and Eψk (uk) →
Eψ(u). In particular supX uk is uniformly bounded and the sequence of ω-psh wk :=(

sup{uj : j ≥ k}
)∗

decreases to u.
Up to considering a subsequence we may assume either ψk ↘ ψ or ψk ↗ ψ almost
everywhere. We treat the two cases separately.
Assume �rst that ψk ↘ ψ. Since clearly wk ∈ E1(X,ω, ψk) and Eψk (wk) ≥ Eψk (uk),
Theorem 4.6.2 and Proposition 4.3.14 yields

Eψ(u) = lim
k→∞

Eψk (uk) ≤ lim sup
k→∞

Eψk (wk) ≤ Eψ(u),

i.e. wk → u strongly. Thus up to considering a further subsequence we can suppose
that d(uk, wk) ≤ 1/2k for any k ∈ N.
Next similarly as during the proof of Proposition 4.5.7 we de�ne vj,l := Pω(uj , . . . , uj+l)
for any j, l ∈ N, observing that vj,l ∈ E1(X,ω, ψj+l). Thus the function vuj,l :=
Pω(u, vj,l) ∈ E1(X,ω, ψ) satis�es

d(u, vuj,l) ≤
∫
X

(u− vuj,l)MAω(vuj,l) ≤
∫
{vu
j,l

=vj,l}
(u− vj,l)MAω(vj,l) ≤

≤
j+l∑
s=j

∫
X

(ws − us)MAω(us) ≤ (n+ 1)

j+l∑
s=j

d(ws, us) ≤
(n+ 1)

2j−1
, (4.22)

where we combined Proposition 4.2.4 and Lemma 3.7. in [DDNL17]. Therefore
by Proposition 4.3.15 vuj,l converges decreasingly and strongly in E1(X,ω, ψ) to a
function φj which satis�es φj ≤ u.
Similarly

∫
{Pω(u,vu

j,l
)=u}(v

u
j,l − u)MAω(u) ≤

∫
X
|vuj,1 − u|MAω(u) <∞ by Corollary

4.3.5, which implies that vj,l converges decreasingly to vj ∈ E1(X,ω, ψ) such that
u ≥ vj ≥ φj since vj ≤ us for any s ≥ j and vj,l ≥ vuj,l. Hence from (4.22) we obtain

d(u, vj) ≤ d(u, φj) = lim
l→∞

d(u, vuj,l) ≤
(n+ 1)

2j−1
,
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i.e. vj converges increasingly and strongly to u as j →∞.
Next assume ψk ↗ ψ almost everywhere. In this case wk ∈ E1(X,ω, ψ) for any
k ∈ N, and clearly wk converges strongly and decreasingly to u. On the other hand,
letting wk,k := Pω[ψk](wk) we observe that wk,k → u weakly since wk ≥ wk,k ≥ uk
and

Eψ(u) = lim
k→∞

Eψk (uk) ≤ lim sup
k→∞

Eψk (wk,k) ≤ Eψ(u)

by Theorem 4.6.2 and Proposition 4.3.14, i.e. wk,k → u strongly again by Theorem
4.6.2. Thus, similarly to the previous case, we may assume that d(uk, wk,k) ≤ 1/2k

up to considering a further subsequence. Therefore setting vj,l := Pω(uj , . . . , uj+l) ∈
E1(X,ω, ψj), uj := Pω[ψj ](u) and vu

j

j,l := Pω
(
vj,l, u

j
)
we obtain

d
(
uj , vu

j

j,l

)
≤
∫
X

(
uj − vu

j

j,l

)
MAω(vu

j

j,l ) ≤
j+l∑
s=j

∫
X

(ws,s − us)MAω(us) ≤
(n+ 1)

2j−1

(4.23)

proceeding similarly as before. This implies that vu
j

j,l and vj,l converge decreasingly
and strongly respectively to functions φj , vj ∈ E1(X,ω, ψj) as l→ +∞ which satisfy
φj ≤ vj ≤ uj . Therefore combining (4.23), Proposition 4.2.11 and the triangle
inequality we get

lim sup
j→∞

dA(u, vj) ≤ lim sup
j→∞

(
dA(u, uj) + d(uj , φj)

)
≤

≤ lim sup
j→∞

(
dA(u, uj) +

(n+ 1)

2j−1

)
= 0.

Hence vj converges strongly and increasingly to u, so vj ↗ u almost everywhere
(Propositon 4.6.1) and the �rst part of the proof is concluded.
The convergence in ψ′-capacity and the weak convergence of the mixed Monge-
Ampère measures follow exactly as seen during the proof of Proposition 4.5.7.

We observe that the assumption u 6= Pψmin if Vψmin = 0 in Theorem 4.6.3 is obviously
necessary as the counterexample of Remark 5.4.13 shows. On the other hand if
dA(uk, Pψmin) → 0 then trivially MAω(ujk, ψ

n−j
k ) → 0 weakly as k → ∞ for any

j ∈ {0, . . . , n} as a consequence of Vψk ↘ 0.

4.6.2 Proof of Theorem B

De�nition 4.6.4. We de�ne YA as

YA :=
⊔
ψ∈A

M
1(X,ω, ψ),
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and we endow it with its natural strong topology given as the coarsest re�nement of
the weak topology such that E∗· becomes continuous, i.e. Vψkµk converges strongly
to Vψµ if and only if Vψkµk → Vψµ weakly and E∗ψk (µk)→ E∗ψ(µ) as k →∞.

Observe that YA ⊂ {non-pluripolar measures of total mass belonging to
[Vψmin , Vψmax ]} where clearly ψmax := supA. As stated in the Introduction, the
denomination is coherent with [BBEGZ19] since if ψ = 0 ∈ A then the induced
topology on M1(X,ω) coincides with the strong topology as de�ned in [BBEGZ19].
We also recall that

XA,norm :=
⊔
ψ∈A

E
1
norm(X,ω, ψ)

where E1
norm(X,ω, ψ) := {u ∈ E1(X,ω, ψ) such that supX u = 0} (if Vψmin = 0 then

we clearly assume Pψmin ∈ XA,norm).

Theorem B. The Monge-Ampère map

MAω : (XA,norm, dA)→ (YA, strong)

is an homeomorphism.

Proof. The map is a bijection as a consequence of Lemma 4.3.12 and Proposition
4.5.5 de�ning clearly MAω(Pψmin) := 0, i.e. to be the null measure.
Step 1: Continuity. Assume �rst that Vψmin = 0 and that dA(uk, Pψmin) → 0 as
k → ∞. Then easily MAω(uk) → 0 weakly. Moreover, assuming uk 6= Pψmin for
any k, it follows from Proposition 4.2.4 that

E∗ψk
(
MAω(uk)/Vψk

)
= Eψk (uk) +

∫
X

(ψk − uk)MAω(uk) ≤

≤ n

n+ 1

∫
X

(ψk − uk)MAω(uk) ≤ −nEψk (uk)→ 0

as k → ∞ where the convergence is given by Theorem 4.6.2. Hence MAω(uk) → 0
strongly in YA.
We can now assume that u 6= Pψmin .
Theorem 4.6.3 immediately gives the weak convergence of MAω(uk) toMAω(u). Fix
ϕj ∈ Hω be a decreasing sequence converging to u such that d

(
u, Pω[ψ](ϕj)

)
≤ 1/j

for any j ∈ N ([BK07]) and set vk,j := Pω[ψk](ϕj) and vj := Pω[ψ](ϕj). Observe also
that as a consequence of Proposition 4.2.11 and Theorem 4.6.2, for any j ∈ N there
exists kj � 0 big enough such that d(ψk, vk,j) ≤ dA(ψk, ψ)+d(ψ, vj)+dA(vj , vk,j) ≤
d(ψ, vj) + 1 ≤ C for any k ≥ kj , where C is an uniform constant independent on
j ∈ N. Therefore combining again Theorem 4.6.2 with Lemma 4.4.6 and Proposition
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4.3.7 we obtain

lim sup
k→∞

∣∣∣E∗ψk(MAω(uk)/Vψk
)
− E∗ψk

(
MAω(vk,j)/Vψk

)∣∣∣ ≤
≤ lim sup

k→∞

(∣∣Eψk (uk)− Eψk (vk,j)
∣∣+
∣∣∣ ∫
X

(ψk − uk)
(
MAω(uk)−MAω(vk,j)

)∣∣∣+
+
∣∣∣ ∫
X

(vk,j − uk)MAω(vk,j)
∣∣∣) ≤ ∣∣Eψ(u)− Eψ(vj)

∣∣+
+ lim sup

k→∞
CIψk (uk, vk,j)

1/2 +

∫
X

(vj − u)MAω(vj) (4.24)

since clearly we may assume that either ψk ↘ ψ or ψk ↗ ψ almost everywhere,
up to considering a subsequence. On the other hand, if k ≥ kj , Proposition 4.3.4
implies Iψk (uk, vk,j) ≤ 2fC̃

(
d(uk, vk,j)

)
where C̃ is an uniform constant independent

of j, k and fC̃ : R≥0 → R≥0 is a continuous increasing function such that fC̃(0) = 0.
Hence continuing the estimates in (4.24) we get

(4.24) ≤
∣∣Eψ(u)− Eψ(vj)

∣∣+ 2CfC̃
(
d(u, vj)

)
+ d(vj , u) (4.25)

using also Propositions 4.2.4 and 4.2.11. Letting j →∞ in (4.25), it follows that

lim sup
j→∞

lim sup
k→∞

∣∣∣E∗ψk(MAω(uk)/Vψk
)
− E∗ψk

(
MAω(vk,j)/Vψk

)∣∣∣ = 0

since vj ↘ u. Furthermore it is easy to check that E∗ψk
(
MAω(vk,j)/Vψk

)
→

E∗ψ
(
MAω(vj)/Vψ

)
as k → ∞ for j �xed by Lemma 4.4.6 and Proposition 4.2.11.

Therefore the convergence

E∗ψ
(
MAω(vj)/Vψ

)
→ E∗ψ

(
MAω(u)/Vψ

)
(4.26)

as j →∞ given by Theorem A concludes this step.
Step 2: Continuity of the inverse. Assume uk ∈ E1

norm(X,ω, ψk), u ∈ E1
norm(X,ω, ψ)

such that MAω(uk)→MAω(u) strongly. Note that when ψ = ψmin and Vψmin = 0
the assumption does not depend on the function u chosen. Clearly this implies
Vψk → Vψ which leads to ψk → ψ as k →∞ by Lemma 4.3.12 since A ⊂M+ is to-
tally ordered. Hence, up to considering a subsequence, we may assume that ψk → ψ
monotonically almost everywhere. We keep the same notations of the previous step
for vk,j , vj . We may also suppose that Vψk > 0 for any k ∈ N big enough otherwise
it would be trivial.
The strategy is to proceed similarly as during the proof of Theorem A, i.e. we want
�rst to prove that Iψk (uk, vk,j)→ 0 as k, j →∞ in this order. Then we want to use
this to prove that the unique weak accumulation point of {uk}k∈N is u. Finally we
will deduce also the convergence of the ψk-relative energies to conclude that uk → u
strongly thanks to Theorem 4.6.2.
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By Lemma 4.3.1

(n+ 1)−1Iψk (uk, vk,j) ≤ Eψk (uk)− Eψk (vk,j) +

∫
X

(vk,j − uk)MAω(uk) =

= E∗ψk
(
MAω(uk)/Vψk

)
− E∗ψk

(
MAω(vk,j)/Vψk

)
+

+

∫
X

(vk,j − ψk)
(
MAω(uk)−MAω(vk,j)

)
(4.27)

for any j, k. Moreover by Step 1 and Proposition 4.2.11 E∗ψk
(
MAω(vk,j)/Vψk

)
con-

verges, as k → +∞, respectively to 0 if Vψ = 0 and to E∗ψ
(
MAω(vj)/Vψ

)
if Vψ > 0.

Next by Lemma 4.4.6∫
X

(vk,j − ψk)MAω(vk,j)→
∫
X

(vj − ψ)MAω(vj)

letting k →∞. So if Vψ = 0 then from limk→∞ supX(vk,j − ψk) = supX(vj − ψ) =
supX vj we easily get lim supk→∞ Iψk (uk, vk,j) = 0. Thus we may assume Vψ > 0
and it remains to estimate

∫
X

(vk,j − ψk)MAω(uk) from above.
We set fk,j := vk,j − ψk and analogously to the proof of Theorem A we construct a
sequence of smooth functions fsj := vsj − ψs converging in capacity to fj := vj − ψ
and satisfying ||fsj ||L∞ ≤ 2||fj ||L∞ ≤ 2||ϕj ||L∞ . Here vsj , ψ

s are sequences of ω-psh
functions decreasing respectively to vj , ψ. Then we write∫

X

fk,jMAω(uk) =

∫
X

(fk,j − fsj )MAω(uk) +

∫
X

fsjMAω(uk) (4.28)

and we observe that lim sups→∞ lim supk→∞
∫
X
fsjMAω(uk) =

∫
X
fjMAω(u) since

MAω(uk)→MAω(u) weakly, fsj ∈ C∞, fsj converges to fj in capacity and ||fsj ||L∞ ≤
2||fj ||L∞ . While we claim that the �rst term on the right hand side of (4.28) goes
to 0 letting k, s→∞ in this order. Indeed for any δ > 0∫

X

(fk,j − fj)MAω(uk) ≤ δVψk + 2||ϕj ||L∞
∫
{fk,j−fj>δ}

MAω(uk) ≤

≤ δVψk + 2||ϕj ||L∞
∫
{|hk,j−hj |>δ}

MAω(uk) (4.29)

where we set hk,j := vk,j , hj := vj if ψk ↘ ψ and hk,j := ψk, hj := ψ if instead
ψk ↗ ψ almost everywhere. Moreover since {|hk,j − hj | > δ} ⊂ {|hl,j − hj | > δ} for
any l ≤ k, from (4.29) we obtain

lim sup
k→∞

∫
X

(fk,j − fj)MAω(uk) ≤

≤ δVψ + lim sup
l→∞

lim sup
k→∞

2||ϕj ||L∞
∫
{|hl,j−hj |≥δ}

MAω(uk) ≤

≤ δVψ + lim sup
l→∞

2||ϕj ||L∞
∫
{|hl,j−hj |≥δ}

MAω(u) = δVψ

180 4.6. STRONG TOPOLOGIES.



CHAPTER 4. THE STRONG TOPOLOGY OF
ω-PLURISUBHARMONIC FUNCTIONS 181

where we also used that {|hl,j − hj | ≥ δ} is a closed set in the pluri�ne topology
since it is equal to {vl,j − vj ≥ δ} if ψl ↘ ψ and to {ψ − ψl ≥ δ} if ψl ↗ ψ almost
everywhere. Hence lim supk→∞

∫
X

(fk,j − fj)MAω(uk) ≤ 0. Similarly we also get
lim sups→∞ lim supk→∞

∫
X

(fj − fsj )MAω(uk) ≤ 0. (see also the proof of Theorem
A).
Summarizing from (4.27), we obtain

lim sup
k→∞

(n+ 1)−1Iψk (uk, vk,j) ≤ E∗ψ
(
MAω(u)/Vψ

)
− E∗ψ

(
MAω(vj)/Vψ

)
+

+

∫
X

(vj − ψ)MAω(u)−
∫
X

(vj − ψ)MAω(vj) =: Fj , (4.30)

and Fj → 0 as j →∞ by Step 1 and Proposition 4.3.7 since E1(X,ω, ψ) 3 vj ↘ u ∈
E1
norm(X,ω, ψ), hence strongly.

Next by Lemma 4.3.1 uk ∈ XA,C for C � 1 since E∗
(
MAω(uk)/Vψk

)
= Jψuk (ψ) and

supX uk = 0, thus up to considering a further subsequence uk → w ∈ E1
norm(X,ω, ψ)

weakly where d(w,ψ) ≤ C. Indeed if Vψ > 0 this follows from Proposition 4.3.15
while it is trivial if Vψ = 0. In particular by Lemma 4.4.6∫

X

(ψk − uk)MAω(vk,j)→
∫
X

(ψ − w)MAω(vj) (4.31)∫
X

(vk,j − uk)MAω(vk,j)→
∫
X

(vj − w)MAω(vj) (4.32)

as j → ∞. Therefore if Vψ = 0 then combining Iψk (uk, vk,j) → 0 as k → ∞ with
(4.32) and Lemma 4.3.1, we obtain

lim sup
k→∞

(
− Eψk (uk) + Eψk (vk,j)

)
≤

≤ lim sup
k→∞

( n

n+ 1
Iψk (uk, vk,j) +

∣∣∣ ∫
X

(vk,j − uk)MAω(vk,j)
∣∣∣) = 0.

This implies that d(ψk, uk) = −Eψk (uk)→ 0 as k →∞, i.e. that dA(Pψmin , uk)→ 0
using Theorem 4.6.2. Thus we may assume from now until the end of the proof that
Vψ > 0.
By (4.31) and Proposition 4.3.14 it follows that

lim sup
k→∞

(
E∗ψk

(
MAω(uk)/Vψk

)
+

∫
X

(ψk − uk)
(
MAω(vk,j)−MAω(uk)

))
=

= lim sup
k→∞

(
Eψk (uk) +

∫
X

(ψk − uk)MAω(vk,j)
)
≤ Eψ(w) +

∫
X

(ψ −w)MAω(vj).

(4.33)

On the other hand by Proposition 4.3.7 and (4.30),

lim sup
k→∞

∣∣∣ ∫
X

(ψk − uk)
(
MAω(vk,j)−MAω(uk)

)∣∣∣ ≤ CF 1/2
j . (4.34)
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In conclusion by the triangle inequality combining (4.33) and (4.34) we get

Eψ(u) +

∫
X

(ψ − u)MAω(u) = lim
k→∞

E∗
(
MAω/(uk)/Vψk

)
≤

≤ lim sup
j→∞

(
Eψ(w)+

∫
X

(ψ−w)MAω(vj)+CF
1/2
j

)
= Eω(w)+

∫
X

(ψ−w)MAω(u)

since Fj → 0, i.e. w ∈ E1
norm(X,ω, ψ) is a maximizer of FMAω(u)/Vψ,ψ. Hence w = u

(Proposition 4.5.5), i.e. uk → u weakly. Furthermore, similarly to the case Vψ = 0,
Lemma 4.3.1 and (4.32) imply

Eψ(vj)− lim inf
k→∞

Eψk (uk) = lim sup
k→∞

(
− Eψk (uk) + Eψk (vk,j)

)
≤

≤ lim sup
k→∞

( n

n+ 1
Iψk (uk, vk,j) +

∣∣∣ ∫
X

(uk − vj,k)MAω(vk,j)
∣∣∣) ≤

≤ n

n+ 1
Fj +

∣∣∣ ∫
X

(u− vj)MAω(vj)
∣∣∣

Finally letting j → ∞, since vj → u strongly, we obtain lim infk→∞Eψk (uk) ≥
limj→∞Eψ(vj) = Eψ(u). Hence Eψk (uk) → Eψ(u) by Proposition 4.3.14 which
implies dA(uk, u)→ 0 by Theorem 4.6.2 and concludes the proof.

4.7 Stability of Complex Monge-Ampère equa-

tions.

As stated in the Introduction, we want to use the homeomorphism of Theorem B to
deduce the strong stability of solutions of complex Monge-Ampère equations with
prescribed singularities when the measures have uniformly bounded Lp density for
p > 1.

Theorem C. Let A := {ψk}k∈N ⊂ M+ be totally ordered, and let {fk}k∈N ⊂ L1

a sequence of non-negative functions such that fk → f ∈ L1 \ {0} and such that∫
X
fkω

n = Vψk for any k ∈ N. Assume also that there exists p > 1 such that
||fk||Lp , ||f ||Lp are uniformly bounded. Then ψk → ψ ∈ A ⊂ M+, and the sequence
of solutions of {

MAω(uk) = fkω
n

uk ∈ E1
norm(X,ω, ψk)

(4.35)

converges strongly to u ∈ XA which is the unique solution of{
MAω(u) = fωn

u ∈ E1
norm(X,ω, ψ).

(4.36)

In particular uk → u in capacity.
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Proof. We �rst observe that the existence of the unique solutions of (4.35) follows
by Theorem A in [DDNL18].
Moreover letting u any weak accumulation point for {uk}k∈N (there exists at least
one by compactness), Lemma 2.8 in [DDNL18] yields MAω(u) ≥ fωn and by the
convergence of fk to f we also obtain

∫
X
fωn = limk→∞ Vψk . Moreover since

uk ≤ ψk for any k ∈ N, by [WN17] we obtain
∫
X
MAω(u) ≤ limk→∞ Vψk . Hence

MAω(u) = fωn which in particular means that there is an unique weak accumula-
tion point for {uk}k∈N and that ψk → ψ as k → ∞ since Vψk → Vψ (by Lemma
4.3.12). Then it easily follows combining Fatou's Lemma with Proposition 5.2.2 and
Lemma 5.2.5 that for any ϕ ∈ Hω

lim inf
k→∞

E∗ψk
(
MAω(uk)/Vψk

)
≥

≥ lim inf
k→∞

(
Eψk

(
Pω[ψk](ϕ)

)
+

∫
X

(
ψk − Pω[ψk](ϕ)

)
fkω

n
)
≥

≥ Eψ
(
Pω[ψ](ϕ)

)
+

∫
X

(
ψ − Pω[ψ](ϕ)

)
fωn (4.37)

since
(
ψk − Pω[ψk](ϕ)

)
fk →

(
ψ − Pω[ψ](ϕ)

)
f almost everywhere. Thus, for any

v ∈ E1(X,ω, ψ) letting ϕj ∈ Hω be a decreasing sequence converging to v ([BK07]),
from the inequality (5.12) we get

lim inf
k→∞

E∗ψk
(
MAω(uk)/Vψk

)
≥

≥ lim sup
j→∞

(
Eψ
(
Pω[ψ](ϕj)

)
+

∫
X

(
ψ − Pω[ψ](ϕj)

)
fωn

)
=

= Eψ(v) +

∫
X

(ψ − v)fωn

using Proposition 4.2.4 and the Monotone Converge Theorem. Hence by de�nition

lim inf
k→∞

E∗ψk
(
MAω(uk)/Vψt

)
≥ E∗ψ

(
fωn/Vψ

)
. (4.38)

On the other hand since ||fk||Lp , ||f ||Lp are uniformly bounded where p > 1 and
uk → u, ψk → ψ in Lq for any q ∈ [1,+∞) (see Theorem 1.48 in [GZ17]), we also
have ∫

X

(ψk − uk)fkω
n →

∫
X

(ψ − u)fωn < +∞,

which implies that
∫
X

(ψ − u)MAω(u) < +∞, i.e. u ∈ E1(X,ω, ψ) by Proposition
4.2.4. Moreover by Proposition 4.3.14 we also get

lim sup
k→∞

E∗ψk
(
MAω(uk)/Vψk

)
≤ E∗ψ

(
MAω(u)/Vψ

)
,

which together with (5.14) leads to MAω(uk) → MAω(u) strongly in YA. Hence
uk → u strongly by Theorem B while the convergence in capacity follows from
Theorem 4.6.3.
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Remark 4.7.1. As said in the Introduction, the convergence in capacity of Theorem
C was already obtained in Theorem 1.4 in [DDNL19]. Indeed under the hypothesis of
Theorem C it follows from Lemma 5.2.5 and Lemma 3.4 [DDNL19] that dS(ψk, ψ)→
0 where dS is the pseudometric on {[u] : u ∈ PSH(X,ω)} introduced in [DDNL19]
where the class [u] is given by the partial order 4.
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Chapter 5

Continuity method with

movable singularities for

classical complex

Monge-Ampére equations.

Abstract

On a compact Kähler manifold (X,ω), we study the strong continuity of solu-

tions with prescribed singularities of complex Monge-Ampère equations with

convergent integrable Lebesgue densities. Then we address the strong con-

tinuity of solutions when the right hand sides are modi�ed to includes all

(log-)Kähler Einstein metrics with prescribed singularities. This leads to the

closedness of a new continuity method when the densities are modi�ed to-

gether with the prescribed singularities setting. For Monge-Ampère equations

of Fano type, we also prove an openness result when the singularities decrease.

Finally we deduce a strong stability result for (log-)Kähler Einstein metrics

on semi-Kähler classes given as modi�cations of {ω}.
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EQUATIONS.

5.1 Introduction.

Let (X,ω) be a compact Kähler manifold endowed with a Kähler form. This article
concerns the study of (degenerate) complex Monge-Ampère equations of the type{

MAω(u) = e−λufωn

u ∈ PSH(X,ω)
(5.1)

where PSH(X,ω) denotes the set of all ω-plurisubharmonic functions on X,MAω(u) =
(ω + ddcu)n in the sense of the non-pluripolar product ([BEGZ10]), λ ∈ R and
f ∈ L1 \ {0}. Here dc := i

2π
(∂̄ − ∂) so that ddc = 1

π
∂∂̄.

The study of equations like (5.1) plays a principal role in several questions in Kähler
geometry, like the search of (log) Kähler-Einstein metrics ([Yau78], [Tian]). The
classical way to approach the existence of solutions of these equations is through a
continuity method . Namely approximating g1(v) := eλvf with a family {gt}t∈[0,1]

and proving that the set t ∈ [0, 1] such that MAω(u) = gt(u)ωn admits a solu-
tion is not-empty, open and closed. It is also important to underline that along
this continuity method one requires that the set of solutions ut have enough reg-
ularity , and in particular that they have �nite Monge-Ampère energy E(ut) :=

limk→∞
1

n+1

∑n
j=0

∫
X

max(u,−k)
(
ω + ddc max(u,−k)

)j ∧ ωn−j which means u ∈
E1(X,ω) ([BEGZ10]). Usually the hard part of the continuity method relies on the
closedness, i.e. if a sequence of solutions utk ∈ E1(X,ω) of MAω(u) = gtk (u)ωn

converges as tk → t0 to a solution ut0 of MAω(u) = gt0(u)ωn. The type of con-
vergence required depends on the family of equations considered and on the kind of
regularity one wants to achieve on the solutions.

In this paper we want to study the closedness of some new continuity methods with
movable singularities , i.e. we allow the solutions to have some prescribed singularities
and we require a certain strong convergence .
More precisely for λ ∈ R, letting {fk}k∈N be a sequence of non-negative L1 functions
converging to f in L1, we assume to have a family of solutions {uk}k∈N of{

MAω(u) = e−λufkω
n

u ∈ E1(X,ω, ψk)
(5.2)

and we want to give necessary conditions for a strong convergence of uk to a solution
u of {

MAω(u) = e−λufωn

u ∈ E1(X,ω, ψ).
(5.3)

Here ψk, ψ ∈ PSH(X,ω) represents the prescribed singularities. Indeed the set

E
1(X,ω, ψ) :=

{
u ∈ PSH(X,ω) : u ≤ ψ + C, Vu :=

∫
X

MAω(u) = Vψ and

Eψ(u) > −∞
}

190 5.1. INTRODUCTION.
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was introduced in [DDNL18b] as the ψ-relative version of the set E1(X,ω) where Eψ
is the natural generalization of the Monge-Ampère energy (see section �5.2). Note
that by [WN19] the total mass of the Monge-Ampère operator respects the partial
order 4 given as u 4 v if u ≤ v + C for a constant C ∈ R, i.e. Vu ≤ Vv if u 4 v.
Hence E1(X,ω, ψ) represents all functions more singular than ψ which have the same
ψ-relative full mass (i.e. Vu = Vv) and �nite ψ-relative energy Eψ. The set of all
ψ-relative full mass is denoted by E(X,ω, ψ).
In [DDNL18b] the authors also proved that there is a natural assumption to add on
ψ so that MAω(u) = µ is solvable in the class E(X,ω, ψ) for any µ non-pluripolar
measure with the right total mass, i.e. ψ must be a model type envelope (see section
�5.2). We denote with M+ the set of all model type envelopes ψ such that Vψ > 0.

The most interesting case to study is when the singularities are increasing or decreas-
ing, so we suppose to have a totally ordered sequence {ψk}k∈N ⊂ M+ converging
weakly (i.e. in L1) to an element ψ ∈M+. In this case we can work with the strong
convergence of solutions in the sense of [Tru19] and [Tru20a], i.e. uk → u strongly
if uk → u weakly (i.e. in the usual L1-toplogy) and Eψk (uk)→ Eψ(u). In fact this
convergence is equivalent to dA(uk, u) → 0 as k → ∞, where dA is the complete
distance on XA :=

⊔
ψ∈A E1(X,ω, ψ) introduced in [Tru19] for A := {ψk}k∈N. Note

that it is a very natural which implies the convergence in capacity ([Tru20a]).

To state the results, we need to distinguish three di�erent cases based on the di�erent
sign of λ.
If λ = 0, we obviously must add the necessary assumption

∫
X
fωn = Vψ on (5.3).

In this case by Proposition C in [Tru20a] the equation is solvable if and only if
fωn ∈M1(X,ω, ψ) (and a solution is unique modulo translation by constants).

Theorem A. Assume

(i) fk, f ∈ L1 \ {0} non-negative such that fk → f as k →∞;

(ii) {ψk}k∈N ⊂ M+ totally ordered such that Vψk =
∫
X
fkω

n for any k ∈ N and
such that ψk → ψ ∈M+ in L1;

(iii) fkω
n ∈ M1(X,ω, ψk) for any k ∈ N and denote with uk ∈ E1

norm(X,ω, ψk)
the unique solution of (5.2) with supX u = 0, for λ = 0.

Then, letting u be a weak accumulation point of {uk}k∈N, u ∈ E1
norm(X,ω, ψ),

uk → u strongly and MAω(u) = fωn if and only if Eψk (uk) ≥ −C for an uniform
constant C ≥ 0 and

lim sup
k→∞

∫
X

(ψk − uk)fkω
n ≤

∫
X

(ψ − u)fωn. (5.4)

With obvious notations, E1
norm(X,ω, ψ) := {u ∈ E1(X,ω, ψ) : supX u = 0}.

Note that by compactness in L1, there always exists a weak accumulation point
u for {uk}k∈N as in the statement (and it is actually unique, see subsection 5.3.1).

5.1. INTRODUCTION. 191
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Moreover the not-trivial condition (iii) is satis�ed if fk ∈ Lpk for pk > 1. Since (5.4)
and the uniform boundedness on the energies may be di�cult to detect, in Remark
5.3.2 we collect some particular easier cases. Finally we stress that if f ∈ L1 but
f /∈ Lp for any p > 1, it is often di�cult to �nd out if the unique u ∈ Enorm(X,ω, ψ)
satisfying MAω(u) = fωn belongs to E1

norm(X,ω, ψ), which is essentially a regular-
ity condition. Thus Theorem A gives a new tool to study the regularity of u.

If λ < 0 then (5.3) admits an unique solution by Theorem 4.23 in [DDNL18b] since
the latter can be generalized to the case ψ with not small unbounded locus thank
to [X19a]. In this case there are no obstruction to the strong convergence.

Theorem B. Assume

(i) λ < 0;

(ii) fk, f ∈ L1 \ {0} non-negative such that fk → f in L1;

(iii) {ψk}k∈N ⊂M+ totally ordered such that ψk → ψ weakly.

Let uk ∈ E1(X,ω, ψk), u ∈ E1(X,ω, ψ) be the unique solutions respectively of{
MAω(uk) = e−λukfkω

n

uk ∈ E1(X,ω, ψk),

{
MAω(u) = e−λufωn

u ∈ E1(X,ω, ψ).
(5.5)

Then uk → u strongly.

Finally the case λ > 0 is much more complicated. For instance, if ψ = 0, {ω} = −KX

and f = 0 then a solution of (5.3) corresponds to a Kähler-Einstein metrics on a
Fano manifold, whose existence is characterized by an algebrico-geometrical stability
(see [CDS15]) and the uniqueness depends on the identity component of the auto-
morphism group Aut (X)◦ (see [Bern15]).
However through a variational approach, our next Theorem corresponds to an open-
ness result on the continuity method when the singularities decrease and the densi-
ties are constant. Indeed we �rst introduce a functional Ff,ψ,λ which generalizes the
Ding functional (see [Ding88]) and whose maximizers solve MAω(u) = e−λufωn.
Then we prove that its coercivity on E1(X,ω, ψ) expressed in terms of a ψ-relative
J-functional (or in terms of the distance dA|E1

norm(X,ω,ψ)×E1
norm(X,ω,ψ)) implies the

coercivity for any ψ′ ∈M+ slightly less singular than ψ.

Theorem C. Let ψ ∈ M+, λ > 0 and f ∈ Lp for p ∈ (1,∞]. Assume also that
c(ψ) > λp

p−1
where λp

p−1
= λ if p = ∞. If the functional Ff,ψ,λ is coercive then the

complex Monge-Ampère equation{
MAω(u) = e−λufωn

u ∈ E1(X,ω, ψ′)
(5.6)

admits a solution for any ψ′ ∈M+, ψ′ < ψ such that Vψ′ < AVψ where A > 1.
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In Theorem C, the constant A > 1 depends uniquely on the coe�cient of the coer-
civity of Ff,ψ,λ, i.e. its slope at in�nity. Moreover with c(ψ) we indicate the classical
complex singularity exponent (see for instance [DK01]). In particular the more is
higher p and the more is lower λ, the more ψ can be singular. In the limit case
p =∞ the condition c(ψ) > λ becomes necessary to solve the Monge-Ampère equa-
tion as a consequence of the resolution of the strong openness conjecture ([GZ15]).
The reason of this bound on the complex singularity exponent is because it leads to
the upper-semicontinuity of Ff,ψ,λ, hence to the fact that the coercivity of Ff,ψ,λ
implies the existence of a maximizer.

About the continuity of solutions, i.e. the closedness of the continuity method in
the case λ > 0, we prove the following result.

Theorem D. Let λ > 0, {ψk}k∈N ⊂ M+ totally ordered sequence such that ψk 4
ψk+1 for any k ∈ N which converges to ψ ∈M+, and fk, f ≥ 0 such that fk → f in
Lp as k →∞ for p ∈ (1,∞]. Assume also the following conditions:

(i) c(ψ) > λp
p−1

;

(ii) the complex Monge-Ampère equations{
MAω(uk) = e−λukfkω

n

uk ∈ E1(X,ω, ψk);

admit solutions uk given as maximizers of Ffk,ψk,λ;

(iii) supX uk ≤ C for an uniform constant C.

Then there exists a subsequence {ukh}h∈N which converges strongly to u ∈ E1(X,ω, ψ)
solution of {

MAω(u) = e−λufωn

u ∈ E1(X,ω, ψ).

Since in many settings we expect that any solution of (5.2) maximizes Ff,ψ,λ (see
for instance [Tru20b] for the Fano case), and since the assumption (i) is satis�ed
for many ψ ∈M+ and as said before it becomes necessary when p =∞, the unique
real big obstacle is the uniform estimate in (iii) as in the other classical continuity
methods. This assumption is necessary even when fk ≡ f for any k ∈ N as Example
5.4.16 shows.

In the second part of the paper we give a de�nition of (D, [ψ])-log Kähler-Einstein
metrics , Namely given ω Kähler form, ψ ∈M+, D Q-divisor, we say that ω + ddcu
is a (D, [ψ])-log KE metric if

Ric(ω + ddcu)− [D] = λ(ω + ddcu)

for λ ∈ Q and u ∈ E1(X,ω, ψ). This abuse of language is due to the fact that the
current ω+ ddcu actually de�nes a (class of) singular log KE metric. The extension

5.1. INTRODUCTION. 193
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of the Ricci form to the singular setting ([BBJ15]) and a generalization of these
metrics when D is a R-divisor and λ ∈ R are provided in section �6.4.
We need also to recall that the de�nition of log KE metrics extends when ω is semi-
Kähler , i.e. ω is smooth semipositive and

∫
X
ωn > 0.

Then we introduce M+
an as the set of all model type envelopes ψ such that ψ − ϕ is

globally bounded for a ω-psh function ϕ with analytic singularities . The elements in
M+
an are said to have analytical singularities type . Using these model type envelopes

and the log-resolutions of their ideal sheaves we de�ne a map

Φ : M+
an →

{
(Y, η) : η semi-Kähler with ω ≥ p∗η, and p : Y → X

given by a sequence of blow-ups
}
/ ∼ (5.7)

where (Y, η) ∼ (Y ′, η′) if there exists an another element (Z, η̃) which dominates
(Y, η), (Y ′, η′) in the usual way. We denote with K(X,ω) the image of this map.
K(X,ω) inherits a partial order (we say smaller , bigger in correspondence of 4, <),
a notion of convergence, and it is possible to de�ne a log-KE metric in α ∈ K(X,ω)

as a class of log-KE metrics on any representative (Y, η) of α. Moreover, when
{αk}k∈N is a totally ordered sequence, there is a natural strong convergence for
a sequence of log-KE metrics in {αk}k∈N which obviously comes from the strong
convergence de�ned above on PSH(X,ω) through the map (5.7) (see section �6.4
for more details). When αk, α have representatives on the same compact Kähler
manifold Y , the strong convergence of log-KE metrics in αk implies in particular
the weak convergence of the log-KE metrics on Y .

Theorem E. Let ω be a Kähler form such that c1(X) − {[D]} = λ{ω} for λ ∈ R
and (X,D) klt where D is a R-divisor. If ψ ∈ M+

an and ω + ddcu is a (D, [ψ])-log
KE metric, then u ∈ C∞(X \ A) where A is a closed analytic set. Moreover the
followings holds.

(i) Suppose λ ≤ 0. Then any element in K(X,ω) admits an unique log-KE metric
and such log-KE metrics are stable with respect to the strong convergence, i.e.
if {αk}k∈N ⊂ K(X,ω) is a totally ordered sequence converging to α ∈ K(X,ω),
then the sequence of log-KE metrics converge strongly to the log-KE metric on
α.

(ii) Suppose λ > 0 and let α ∈ K(X,ω). If the log-Ding functional associated to
(Y, η), representative of α, is coercive, then any α′ ∈ K(X,ω) slightly bigger
than α admits a log-KE metric.

(iii) Suppose λ > 0. If {αk}k∈N ⊂ K(X,ω) is an increasing sequence converging
to α ∈ KD

(X,ω), and the sequence αk admits a subsequence of log-KE metrics
which is uniformly bounded from above , then there exists a subsequence which
converges strongly to a log-KE metric in α.

Some comments about Theorem E.
The topological assumption c1(X) − {[D]} = λ{ω} is a necessary hypothesis to
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the existence of log-KE metrics while the assumption on the singularity of D (i.e.
(X,D) klt ) is necessary when λ ≥ 0. In particular there are no obstruction to the
case λ = 0, while we do not investigate the case λ < 0 with (X,D) not necessarily
klt since it goes beyond the purpose of this paper. We have a precise estimate
about the openness result of the second point in terms of the volumes of α (which
is de�ned as

∫
Y
ηn for any (Y, η) representative), and of the slope at in�nity of the

log-Ding functional which is independent on the representative chosen. This point
is clearly a consequence of Theorem C, but it is worth to underline that there is
not assumptions on the class α (while in Theorem C we restricted to [ψ] satisfying
c(ψ) > λp

p−1
). Finally in the last point the restriction to KD

(X,ω) and the assumption
on the uniform boundedness correspond respectively to the assumptions (i) and (iii)
of Theorem D and we refer to section �6.4 for precise de�nitions.

5.1.1 Structure of the paper.

After recalling some preliminaries in section �5.2, section �5.3 is the core of the paper
where in three di�erent subsections based on the sign of λ we prove Theorems A, B,
C and D. Finally in section �6.4 we introduce the notion of (D, [ψ])-log KE metrics
and we prove Theorem E connecting these metrics to the more classical log-KE
metrics when ψ ∈M+

an.
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5.2 Preliminaries.

The set of all model type envelopes is de�ned as

M := {ψ ∈ PSH(X,ω) : ψ = Pω[ψ](0)}.

where for any couple of ω-psh functions u, v

Pω[u](v) :=
(

lim
C→∞

Pω(u+ C, v)
)∗

=

=
(

sup{w ∈ PSH(X,ω) : w 4 u,w ≤ v}
)∗
∈ PSH(X,ω).

Here the star is for the upper semicontinuous regularization and Pω(u, v) :=
(

sup{w ∈
PSH(X,ω) : w ≤ min(u, v)}

)∗
([RWN14]). We set Pω[ψ] := Pω[ψ](0) for simplic-

ity. As stated in the Introduction, |ψ − Pω[ψ]| bounded is a necessary assumption
to make the equation {

MAω(u) = µ

u ∈ E(X,ω, ψ)
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always solvable where µ is a non-pluripolar measure such that µ(X) = Vψ ([DDNL18b]).
So without loss of generality we may assume ψ be a model type envelope. It is also
worth to recall that there are plenty of elements in M since Pω[Pω[ψ]] = Pω[ψ], i.e.
v → Pω[v] may be thought as a projection from the set of ω-psh functions to M. We
denote with M+ the elements ψ ∈M such that Vψ :=

∫
X
MAω(ψ) > 0 ([Tru19]).

We also recall that if u ∈ E(X,ω, ψ) and ψ ∈ M+ then Pω[u] = ψ (Theorem 1.3 in
[DDNL18b]).

5.2.1 The metric space
(
XA, dA

)
.

A function u ∈ PSH(X,ω, ψ) := {v ∈ PSH(X,ω) : v 4 ψ} is said to have ψ-
relative minimal singularities if |u− ψ| is globally bounded on X.

De�nition 5.2.1 ([DDNL18b]) . The ψ-relative energy functional Eψ : PSH(X,ω, ψ)→
R ∪ {−∞} is de�ned as

Eψ(u) :=
1

n+ 1

n∑
j=0

∫
X

(u− ψ)(ω + ddcu)j ∧ (ω + ddcψ)n−j

if u has ψ-relative minimal singularities, and as

Eψ(u) := inf
{
Eψ(v) : v ∈ E(X,ω, ψ)with ψ-relative minimal singularities , v ≥ u

}
otherwise. The subset E1(X,ω, ψ) ⊂ E(X,ω, ψ) is de�ned as

E
1(X,ω, ψ) :=

{
u ∈ E(X,ω, ψ) : Eψ(u) > −∞

}
.

Note that the 0−relative energy functional is the Aubin-Mabuchi energy functional ,
also called Monge-Ampére energy (see [Aub84],[Mab86]). As shown in [DDNL18b],
Eψ is non-decreasing, continuous along decreasing sequences and the convergence
Eψ(u) = limk→∞Eψ

(
max(u, ψ−k)

)
holds. It is worth to underline that the authors

in [DDNL18b] assumed ψ to have small unbounded locus , but all these properties
extend to the general setting as an immediate consequence of the integration by
parts formula proved in [X19a] (see also [Lu20]).
We also recall that

(
E1(X,ω, ψ), d

)
for ψ ∈M+ is a complete metric space where

d(u, v) := Eψ(u) + Eψ(v)− 2Eψ
(
Pω(u, v)

)
by Theorem A in [Tru19]. A key feature of this distance, which is the starting point
to glue together spaces associated to di�erent model type envelopes, is the following
contraction property.

Proposition 5.2.2 (Lemma 4.4., Proposition 4.5., [Tru19]) . Let ψ1, ψ2, ψ3 ∈ M

such that ψ1 4 ψ2 4 ψ3. Then Pω[ψ1]
(
Pω[ψ2](u)

)
= Pω[ψ1](u) for any u ∈

E1(X,ω, ψ3) and |Pω[ψ1](u)− ψ1| ≤ C if |u− ψ3| ≤ C. Moreover the map

Pω[ψ1](·) : E1(X,ω, ψ2)→ PSH(X,ω, ψ1)
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has image in E1(X,ω, ψ1) and it is a Lipschitz map of constant 1 when the sets
E1(X,ω, ψi), i = 1, 2, are endowed with the d distances, i.e.

d
(
Pω[ψ1](u), Pω[ψ1](v)

)
≤ d(u, v)

for any u, v ∈ E1(X,ω, ψ2).

Next, assuming A ⊂ M+ to be a totally ordered set of model type envelopes, its
closure A as subset of PSH(X,ω) (i.e. the weak closure) belongs to M ([Tru19]).
Moreover by Lemma 3.14 the Monge-Ampère operator becomes an homeomorphism
when restricted to A and when one considers the weak topologies.
Assuming from now on that A ⊂ M+ (see [Tru19], [Tru20a] for the general case)
and observing that E1(X,ω, ψ1) ∩ E1(X,ω, ψ2) = ∅ if ψ1, ψ2 ∈ M+, ψ1 4 ψ2, we
have the following theorem.

Theorem 5.2.3 ([Tru19], Theorem B). The set XA :=
⊔
ψ∈A E1(X,ω, ψ) can be

endowed of a complete distance dA such that dA|E1(X,ω,ψ)×E1(X,ω,ψ) = d for any
ψ ∈ A.

We call strong topology the metric topology on XA given by the distance dA. This
topology is the most natural on XA as the next result shows (see also [BBEGZ19]).

Proposition 5.2.4 ([Tru20a], Theorems 6.2, 6.3). The strong topology on XA is
the coarsest re�nement of the weak topology such that E·(·) becomes continuous, i.e.
given {uk}k∈N, u ⊂ XA then the followings are equivalent:

i) uk → u strongly;

ii) uk → u weakly and EPω [uk](uk)→ EPω [u](u).

Moreover if uk → u strongly, then there exists a subsequence {ukj}j∈N such that
vj := (suph≥j ukh)∗, wj := Pω(ukj , ukj+1 , . . . ) converge monotonically almost every-
where to u. In particular the strong topology implies the convergence in capacity.

Here we obvious notations Pω(ukj , ukj+1 , . . . ) := sup{w ∈ PSH(X,ω) : w ≤
ukh for any h ≥ j}. We also recall that a sequence {uk}k∈N ⊂ PSH(X,ω) is said to
converge in capacity to u ∈ PSH(X,ω) if for any δ > 0

Cap
(
{|uk − u| ≥ δ}

)
→ 0

as k →∞ where for any B ⊂ X Borel set

Cap(B) := sup
{∫

B

MAω(u) : u ∈ PSH(X,ω),−1 ≤ u ≤ 0
}

(5.8)

(see [Kol98], [GZ17] and reference therein).
Note also that as an immediate consequence of Proposition 5.2.4 the strong conver-
gence does not depend on the choice of the set A.
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Next, since ω is Kähler, by [BK07] any element u ∈ PSH(X,ω) can be approxi-
mated by a decreasing sequence of Kähler potentials, i.e. elements in H := {ϕ ∈
PSH(X,ω) ∩ C∞(X) : ω + ddcϕ > 0}. Thus we will use several times that
Eψk

(
Pω[ψk](ϕ)

)
→ Eψ

(
Pω[ψ](ϕ)

)
if ψk, ψ ∈ M+, ψk → ψ weakly and ϕ ∈ H,

which is an easy consequence of Proposition 5.2.2 and the following result (see also
Theorem 2.2 in [X19a], and Lemma 4.1. in [DDNL18b]).

Lemma 5.2.5 (Lemma 4.3, [Tru19]) . Let ψk, ψ ∈ M such that ψk → ψ mono-
tonically almost everywhere. Let also uk, vk ∈ E1(X,ω, ψk) converging in capacity
respectively to u, v ∈ E1(X,ω, ψ). Then for any j = 0, . . . , n

(ω + ddcuk)j ∧ (ω + ddcvk)n−j → (ω + ddcu)j ∧ (ω + ddcv)n−j

weakly. Moreover if |uk − vk| is uniformly bounded, then for any j = 0, . . . , n

(uk − vk)(ω + ddcuk)j ∧ (ω + ddcvk)n−j → (u− v)(ω + ddcu)j ∧ (ω + ddcv)n−j

weakly.

Finally we need to recall the following essential property of the energy E·(·) in XA

and its consequent compactness result.

Proposition 5.2.6 ([Tru20a], Lemma 3.13, Propositions 3.14, 3.15). Let A ⊂ M+

be a totally ordered family such that A ⊂ M+, and let {uk}k∈N ⊂ XA converging
weakly to u ∈ XA. Then

lim sup
k→∞

EPω [uk](uk) ≤ EPω [u](u).

Moreover if EPω [uk](uk) ≥ −C uniformly, then Pω[uk]→ Pω[u] weakly. In particular
for any C ∈ N the set

XA,C := {u ∈ XA : sup
X
u ≤ C andEPω [u](u) ≥ −C}

is weakly compact.

5.2.2 The space
(
YA, strong).

On the set of all probability measures the counterpart of the ψ-relative energy Eψ(·)
and of the correspondent set E1(X,ω, ψ) for ψ ∈M+ are respectively the ψ-relative
energy E∗ψ and the set M1(X,ω, ψ).
For µ positive probability measure, the �rst one is de�ned as

E∗ψ(µ) := sup
E1(X,ω,ψ)

Fµ,ψ := sup
u∈E1(X,ω,ψ)

(
Eψ(u)− VψLµ(u)

)
∈ [0,∞]

where Vψ :=
∫
X
MAω(ψ) > 0 and where Lµ(u) := limk→∞

∫
X

(
max(u, ψ−k)−ψ

)
µ

if µ does not charge {ψ = −∞} and Lµ ≡ −∞ otherwise (see [Tru20a]). The
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maximizers of the translation invariant functional Fµ,ψ solve the Monge-Ampère
equation MAω(u) = Vψµ (Proposition 5.2 in [Tru20a]) and, de�ning

M
1(X,ω, ψ) := {Vψµ : µ probabilty measure such that E∗ψ(µ) <∞},

and E1
norm(X,ω, ψ) := {u ∈ E1(X,ω, ψ) : supX u = 0}, we have the following

correspondence.

Theorem 5.2.7 ([Tru20a], Theorem A). Endowing M1(X,ω, ψ) with its natural
strong topology de�ned as the coarsest re�nement of the weak topology such that
E∗ψ becomes continuous, the Monge-Ampère operator MAω :

(
E1
norm(X,ω, ψ), d

)
→(

M1(X,ω, ψ), strong
)
is an homeomorphism. Moreover E∗ψ(µ) = Fµ,ψ(u) for any

Vψµ = MAω(u) ∈M1(X,ω, ψ).

More generally, given A ⊂M+ totally ordered such that A ⊂M+ and endowing the
set

YA :=
⊔
ψ∈A

M
1(X,ω, ψ)

with the strong topology given as the coarsest re�nement of the weak topology of
measures such that E∗· (·) becomes continuous, we get the following Theorem.

Theorem 5.2.8 ([Tru20a], Theorem B). The Monge-Ampère map

MAω :
(
XA,norm, dA

)
→ (YA, strong)

is an homeomorphism where XA,norm :=
⊔
ψ∈A E1

norm(X,ω, ψ).

5.3 Strong continuity of solutions.

As stated in the Introduction given a totally ordered sequence ψk ∈M+ converging
weakly to ψ ∈ M+, and given fk ∈ L1 \ {0} non-negative functions L1-converging
to f ∈ L1 \ {0} we want to give necessary conditions so that a sequence of solutions
{uk}k∈N of {

MAω(uk) = e−λufkω
n

uk ∈ E1(X,ω, ψk)
(5.9)

converges strongly in XA for A := {ψk}k∈N to a solution u of{
MAω(u) = e−λufωn

u ∈ E1(X,ω, ψ).
(5.10)

We have three very di�erent cases based on the sign of λ ∈ R.
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5.3.1 Case λ = 0.

In this subsection λ = 0.
In addition to the setting described above, we must assume Vψk =

∫
X
fkω

n for
any k ∈ N. Moreover we normalize the solution uk of (5.9) to have supX uk = 0,
i.e. uk ∈ E1

norm(X,ω, ψk). Note that by Theorem 5.2.8 the existence of such uk is
equivalent to ask fkω

n ∈ M1(X,ω, ψk), which is a non trivial condition. However
if fk ∈ Lpk for pk > 1 then by Theorem A in [DDNL18d] there exists an unique
solution uk ∈ E1

norm(X,ω, ψk) for (5.9) and it has ψk-relative minimal singularities.
Then letting u ∈ PSH(X,ω) be a (weak) accumulation point for {uk}k∈N, Lemma
2.8 in [DDNL18d] gives MAω(u) ≥ fωn. Therefore since u ≤ ψ by Hartogs' Lemma,
we immediately get

MAω(u) = fωn

as a consequence of [WN19]. In particular there is exactly one weak accumulation
point for {uk}k∈N. But a priori u may not belong to E1(X,ω, ψ) which is essentially
a ψ-regularity condition. Moreover we want to characterize when u is actually the
strong limit of uk, which in particular would imply that the convergence is in capacity
(Proposition 5.2.4).

Theorem A. Let fk, f ∈ L1, ψk, ψ ∈M+, uk ∈ E1(X,ω, ψk), and u ∈ PSH(X,ω)
as in the setting described above. Then u ∈ E1

norm(X,ω, ψ) and uk → u strongly if
and only if Eψk (uk) ≥ −C for an uniform constant C ≥ 0 and

lim sup
k→∞

∫
X

(ψk − uk)fkω
n ≤

∫
X

(ψ − u)fωn. (5.11)

Proof. Set A := {ψk}k∈N.
As said before, by Lemma 2.8 in [DDNL18d] and [WN19], MAω(u) = fωn since
u ≤ ψ.
Then assuming u ∈ E1

norm(X,ω, ψ) and dA(uk, u)→ 0, we immediately obtain uk →
u weakly and Eψk (uk) → Eψ(u) as k → ∞ (Proposition 5.2.4). Thus d(ψk, uk) =
−Eψk (uk) is uniformly bounded. Moreover by Theorem 5.2.7 E∗ψk

(
MAω(uk)/Vψk

)
→

E∗ψ
(
MAω(u)/Vψ

)
, which implies that

∫
X

(ψk − uk)fkω
n →

∫
X

(ψ − u)fωn and con-
cludes one implication.
Vice versa suppose that d(ψk, uk) ≤ C for an uniform constant C ∈ R and that
lim supk→∞

∫
X

(ψk − uk)fkω
n ≤

∫
X

(ψ − u)fωn. Next, combining Fatou's Lemma
with Proposition 5.2.2, Lemma 5.2.5 and Theorem 5.2.7, it follows that for any
ϕ ∈ H

lim inf
k→∞

E∗ψk
(
MAω(uk)/Vψk

)
≥

≥ lim inf
k→∞

(
Eψk

(
Pω[ψk](ϕ)

)
+

∫
X

(
ψk − Pω[ψk](ϕ)

)
fkω

n
)
≥

≥ Eψ
(
Pω[ψ](ϕ)

)
+

∫
X

(
ψ − Pω[ψ](ϕ)

)
fωn (5.12)
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since
(
ψk − Pω[ψk](ϕ)

)
fk →

(
ψ − Pω[ψ](ϕ)

)
f almost everywhere. Thus, for any

v ∈ E1(X,ω, ψ) letting ϕj ∈ H be a decreasing sequence converging to v ([BK07]),
from the inequality (5.12) we get

lim inf
k→∞

E∗ψk
(
MAω(uk)/Vψk

)
≥

≥ lim sup
j→∞

(
Eψ
(
Pω[ψ](ϕj)

)
+

∫
X

(
ψ − Pω[ψ](ϕj)

)
fωn

)
=

= Eψ(v) +

∫
X

(ψ − v)fωn (5.13)

using also the continuity of Eψ(·) along decreasing sequences and the Monotone
Convergence Theorem. Therefore by de�nition

lim inf
k→∞

E∗ψk
(
MAω(uk)/Vψk

)
≥ E∗ψ

(
fωn/Vψ

)
= E∗ψ

(
MAω(u)/Vψ

)
, (5.14)

which together with
∫
X

(ψk−uk)fkω
n →

∫
X

(ψ−u)fωn (by Fatou's Lemma and the
assumption (5.11)) and the upper semicontinuity of E·(·) (Proposition 6.2.1) imply
Eψk (uk)→ Eψ(u). Hence uk → u strongly as consequence of Proposition 5.2.4.

Remark 5.3.1. It is clear from the proof of Theorem A that to prove that u ∈
E1
norm(X,ω, ψ) it is enough to show that Eψk (uk) ≥ −C. Moreover we observe

that the assumption (5.11) can be replaced with the uniform integrability of {(ψk −
uk)fk}k∈N in the measure-theoretical sense, i.e. for every ε > 0 there exists δ = δ(ε)
such that supk∈N

∫
E

(ψk−uk)fkω
n < ε for any measurable set E such that ωn(E) ≤

ε. Indeed since (ψk − uk)fk → (ψ − u)f almost everywhere and since all that we
need is that

∫
X

(ψk − uk)fkω
n →

∫
X

(ψ − u)fωn, the equivalence between this two
hypothesis follows from the Vitali Convergence Theorem and Fatou's Lemma.

Remark 5.3.2. In some cases the assumptions on the boundedness of the energy
and (5.11) in Theorem A are easily satis�ed.
For instance if there exists h ∈ L1 such that (ψk − uk)fk ≤ h almost everywhere
for any k ∈ N then (5.11) trivially holds, while by Theorem 4.10 in [DDNL18b]
−Eψk (uk) ≤

∫
X

(ψk − uk)fkω
n ≤ ||h||L1 .

Similarly if ||fk||Lp , ||f ||Lp are uniformly bounded for p > 1, then the boundedness of
the energy and (5.11) are consequences of ψk − uk → ψ− u in Lr for any r ∈ [1,∞)
(see Theorem 1.48 in [GZ17]). In particular Theorem A extends Theorem C in
[Tru20a].
Finally if fk = ckgk for gk ↘ f , then we claim that the assumption (5.11) can
be substituted with

∫
B
fωn ≤ ACapψk (B) for any Borel set B ⊂ X and for any

k � 1 big enough where A > 0 is a �xed constant. Here Cap ψ denotes the ψ-
relative Monge-Ampère capacity introduced in [DDNL18b] (see also [DDNL18d])
whose de�nition is similar to (5.8) asking ψ− 1 ≤ u ≤ ψ. Indeed combining Lemma
4.18 in [DDNL18b] and Theorem 4.4 in [Tru20a] we would easily have

lim sup
k→∞

∫
X

(ψk − uk)fkω
n ≤ lim sup

k→∞
ck

∫
X

(ψk − uk)fωn =

∫
X

(ψ − u)fωn.
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5.3.2 Case λ < 0.

Here we deal with the case λ < 0.
Letting f ∈ L1 \ {0} non negative, we �rst assume that λ ∈ R \ {0} to introduce the
functional Lf,λ : PSH(X,ω)→ R as

Lf,λ(u) :=
−1

λ
log

∫
X

e−λufωn.

Thus, for ψ ∈ M, we de�ne the functional Ff,ψ,λ : E1(X,ω, ψ)→ R as Ff,ψ,λ(u) :=(
Eψ − VψLf,λ

)
(u). We hope that this functional do not lead to confusion with the

functional Fµ,ψ de�ned in section 5.2. It is easy to see that Ff,ψ,λ is invariant by
translation, i.e. it descends to the space of currents. Moreover its maximizers solve
the complex Monge-Ampère equation (5.15) as the next result recalls.

Theorem 5.3.3 ([DDNL18b], Theorem 4.22). Let f ∈ L1 \ {0} non negative and
λ 6= 0. If u ∈ E1(X,ω, ψ) maximizes Ff,ψ,λ then u solves{

MAω(v) = e−λv+Cµ

v ∈ E1(X,ω, ψ)
(5.15)

for a constant C ∈ R.

From now on until the end of the subsection we will assume λ < 0.

Theorem 5.3.4 (Theorem 4.23 - Lemma 4.24., [DDNL18b]) . Let λ < 0 and f ∈
L1 \ {0} non negative. Then the complex Monge-Ampère equation (5.15) admits an
unique solution and it maximizes Ff,ψ,λ over E1(X,ω, ψ).

A key Lemma of the proof of the Theorem just recalled is the following Lemma.

Lemma 5.3.5. Let µ be a non-pluripolar measure, gk, g ∈ L1 non-negative functions
such that gk → g in L1, and let u, {uk}k∈N ⊂ PSH(X,ω′) such that uk → u weakly
where ω′ is a Kähler form on X. Then∫

X

eukgkω
n →

∫
X

eugωn

as k →∞

Proof. By an easy calculation we have∫
X

eukgkω
n ≤ esupX uk

∫
X

|gk − g|ωn +

∫
X

eukgωn

and the result follows from | supX uk| ≤ C and Lemma 11.5 in [GZ17].

We can now prove Theorem B.
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Theorem B. Assume

(i) λ < 0;

(ii) fk, f ∈ L1 \ {0} non-negative functions such that fk → f in L1;

(iii) {ψk}k∈N ⊂M+ totally ordered such that ψk converges weakly to ψ ∈M+.

Let uk ∈ E1(X,ω, ψk), u ∈ E1(X,ω, ψ) be the unique solutions respectively of{
MAω(uk) = e−λukfkω

n

uk ∈ E1(X,ω, ψk),

{
MAω(u) = e−λufωn

u ∈ E1(X,ω, ψ).
(5.16)

Then uk → u strongly.

Proof. We assume λ = −1 for simplicity and we observe that by an easy contradic-
tion argument it is enough to check that any subsequence {ukj}j∈N admits a further
subsequence {ukjh }h∈N converging strongly to u. So without loss of generality we
may assume ukj to be the whole sequence and we set Fk := Ffk,ψk,−1, F := Ff,ψ,−1.
Observe that by Theorem 5.3.4 uk maximizes Fk for any k ∈ N while u maximizes
F .
Therefore, letting ϕ ∈ H, it follows that

lim inf
k→∞

Fk(uk) ≥ lim inf
k→∞

Fk
(
Pω[ψk](ϕ)

)
= F

(
Pω[ψ](ϕ)

)
by Lemmas 5.2.5 and 5.3.5. Thus, passing to the supremum over H, combining
[BK07], the continuity of Eψ along decreasing sequences and Lemma 5.3.5 we get

lim inf
k→∞

Fk(uk) ≥ F (u). (5.17)

Moreover, up to considering a subsequence, the sequence vk := uk − supX uk con-
verges weakly to v ∈ PSH(X,ω), v ≤ ψ and

ak :=

∫
X

evkfkω
n →

∫
X

evfωn ∈
(
0, ||f ||L1

]
,

again by Lemma 5.3.5. Thus, using the complex Monge-Ampère equations,

sup
X
uk = log Vψk − log ak

is uniformly bounded and {uk}k∈N admits a subsequence {ukj}j∈N converging
weakly to ũ ∈ PSH(X,ω), ũ 4 ψ. Without loss of generality we will assume
{ukj}j∈N to be the whole sequence {uk}k∈N. On the other hand from (5.17) and
the triangle inequality, since supX uk is uniformly bounded and fk → f , we have

lim sup
k→∞

d(ψk, uk) ≤

≤ 2AVψ− lim inf
k→∞

Eψk (uk) ≤ 2AVψ−F (u)− lim sup
k→∞

Vψk

∫
X

eukfkω
n ≤ −F (u)+C
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if A ≥ supX uk for any k ∈ N. Therefore ũ ∈ E1
norm(X,ω, ψ) by Proposition 6.2.1

since {uk}k∈N ⊂ XA,C′ for an uniform constant C′. Furthermore by Proposition
6.2.1 and Lemma 5.3.5 we obtain

lim sup
k→∞

Fk(uk) ≤ F (ũ),

which implies necessarily that ũ = u + B for a constant B ∈ R by (5.17) and
Theorem 5.3.4. But from the Monge-Ampère equations it follows that

eB
∫
X

eufωn =

∫
X

eũfωn = lim
k→∞

∫
X

eukfkω
n = lim

k→∞
Vψk = Vψ =

∫
X

eufωn,

i.e. B = 0. In conclusion we have proved that uk → u weakly, that Fk(uk)→ F (u)
and

∫
X
eukfkω

n →
∫
X
eufωn. Hence Eψk (uk)→ Eψ(u), which by Propositon 5.2.4

implies dA(uk, u)→ 0 and concludes the proof.

Remark 5.3.6. It is easy to observe that Theorem B generalizes to the case when
ωn is replaced by a non-pluripolar measure µ and fk → f ∈ L1(µ) since analogs of
Theorem 5.3.4 and of Lemma 5.3.5 hold in this setting.

5.3.3 Case λ > 0.

If λ > 0 then the study of (5.10) is much more complicated that the case λ ≤ 0
even in the absolute setting ψ = 0. As stated in the Introduction, for instance, if
{ω} = −KX , i.e. X is a Fano manifold , and f ≡ 1, the existence of a solution
for (5.10) is characterized by an algebrico-geometric notion called K-stability (see
[CDS15]). The uniqueness of solutions of (5.10) is an hard problem as well (see
[Bern15]). Note that in this case F1,0,1 coincides with the Ding functional ([Ding88])
where we recall that Ff,ψ,λ := Eψ − VψLf,λ for f ∈ L1, λ ∈ R \ {0}, ψ ∈ M is the
functional introduced in the previous subsection. We refer to the companion paper
[Tru20b] where we analyze the case when {ω} = −KX more in detail.
To prove Theorems C and D we need �rst to set

Jψ(u) := −Eψ(u) +

∫
X

(u− ψ)MAω(ψ)

for any u ∈ E1(X,ω, ψ) where ψ ∈ M+ (see [Tru20a] where the notation is slightly
di�erent). It is immediate to check that Jψ is non-negative and translation invariant.
Indeed it represents the translation invariant version of the distance d as the following
key lemma shows.

Lemma 5.3.7. Let ψ ∈M+. Then there exists C ∈ R≥0 depending only on (X,ω)
such that

d(u, ψ)− C ≤ Jψ(u) ≤ d(u, ψ)

for any u ∈ E1
norm(X,ω, ψ).

204 5.3. STRONG CONTINUITY OF SOLUTIONS.



CHAPTER 5. CONTINUITY METHOD WITH MOVABLE
SINGULARITIES FOR CLASSICAL COMPLEX MONGE-AMPÉRE

EQUATIONS. 205

Proof. From the de�nitions it immediately follows that Jψ(u) ≤ d(ψ, u) for any
u ∈ E1

norm(X,ω, ψ). Vice versa it is enough to observe that on E1
norm(X,ω, ψ) we

have ∫
X

(ψ − u)MAω(ψ) ≤
∫
X

|u|MAω(0) = ||u||L1 ≤ C

as immediate consequence of Theorem 3.8. in [DDNL18b] and of the weak compact-
ness of {u ∈ PSH(X,ω) : supX = 0}.

Similarly to the case λ < 0, since the ψ-relative energy is upper semicontinuous
with respect to the weak topology (Proposition 6.2.1), the continuity properties of
Lf,λ varying also f play a key role to the variational approach, and hence to prove
Theorems C, D. This is the reason to recall the following well-known and important
quantity (see [DK01]).

De�nition 5.3.8. Let u ∈ PSH(X,ω). The quantity

c(u) := sup{p ≥ 0 :

∫
X

e−puωn <∞}

is called the complex singularity exponent of u.

By the resolution of the strong openness conjecture the supremum in the de�nition
is never achieved, i.e. e−c(u)u /∈ L1. Clearly c(·) increases when the singularities
decreases and it is a lower semicontinuous function with respect to the weak topology
as the Main Theorem in [DK01] shows. Moreover the next result proves that c(·) is
constant on any set E(X,ω, ψ), ψ ∈M+.
We �rst need to recall the de�nition of the Lelong numbers and of the multiplier
ideal sheaves .
Given u ∈ PSH(X,ω) and x ∈ X the Lelong number ν(u, x) of u at x is given as

ν(u, x) := sup{γ ≥ 0 : u(z) ≤ γ log ||z − x||2 +O(1) onU}

where x ∈ U ⊂ X is an holomorphic chart. It does not depend on the chart chosen.
The Lelong number measures the logarithmic singularity of an ω-psh function at a
point x.
The multiplier ideal sheaf I(tu), t ≥ 0, of u ∈ PSH(X,ω) is the analytic coherent
sheaf whose germs are given by

I(tu, x) :=
{
f ∈ OX,x :

∫
V

|f |2e−tuωn <∞ for some open set x ∈ V ⊂ X
}
.

Proposition 5.3.9. Let u ∈ PSH(X,ω) and ψ := Pω[u]. Then

ν(u, x) = ν(ψ, x) and I(tu, x) = I(tψ, x) for any t > 0, x ∈ X. (5.18)

In particular c(u) = c(ψ) and α(·) is constant on any E(X,ω, ψ) for ψ ∈M+.
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Proof. We �rst observe that c(u) := sup
{
p ≥ 0 : I(pu) = OX

}
, thus (5.18) implies

immediately c(u) = c(ψ). Moreover by Theorems 1.2, 1.3 in [DDNL18b] if ψ ∈ M+

then Pω[u] = ψ if and only if u ∈ E(X,ω, ψ) and the last assertion follows.
Next, we claim that Pω[u](ψ) = ψ. Indeed clearly Pω[u](ψ) ≤ ψ, while vice versa
for any C ∈ R≥0,

Pω[u](ψ) ≥ Pω
(
u+ C,Pω[u]

)
≥ Pω

(
u+ C,Pω(u+ C, 0)

)
= Pω(u+ C, 0),

which implies Pω[u](ψ) ≥ Pω[u] = ψ since Pω(u+ C, 0)↗ Pω[u].
Then the proof of (5.18) is similar to that of Theorem 1.1.(i) in [DDNL18a], but we
write the details for the courtesy of the reader.
Trivially γ := ν(u, x) ≥ ν(ψ, x). Assume by contradiction that γ > ν(ψ, x) for
x ∈ X, and �x holomorphic coordinates centered at x such that the unit ball B ⊂ Cn
is contained in the chart. By de�nition u(z) ≤ γ log |z|2 + O(1) locally in such
coordinates. Let also g be a smooth potential of ω such that u+ g, ψ + g ≤ 0 in B.
Thus, locally

g + ψ = g + Pω[u](ψ) ≤ sup{v ∈ PSH(B) : v ≤ 0, v ≤ γ log |z|2 +O(1)}

where the inequality follows considering Pω(u + C,ψ) for C → +∞ instead of
Pω[u](ψ) and noting that the right hand is upper semicontinuous since it coincides
with the pluricomplex Grenn function GB(z, 0) of B with a logarithmic pole at 0 of
order γ. Hence, by Proposition 6.1 in [Kli91] we get the contradiction ν(ψ, x) ≥ γ
since GB(z, 0) ∼ γ log |z|2 +O(1).
For the second equality, letting x ∈ X �xed, we observe that I(tψ, x) = I

(
tPω(u +

C,ψ), x
)
for C � 0 big enough as a consequence of the resolution of the strong open-

ness conjecture ([GZ15], see also Theorem 1.1 in [Lemp17]) since Pω(u+C,ψ)↗ ψ
for C → +∞. Therefore to conclude the proof it is su�cient to note that I(tu, x) =
I
(
tPω(u+ C,ψ), x

)
for any t, C > 0, x ∈ X since ψ is less singular than u.

It is also possible to estimate the complex singularity exponent of ψ in terms of the
Lelong numbers by the following classical result.

Proposition 5.3.10 ([Sko72]) . Let ψ ∈M and set ν(ψ) := supx∈X ν(ψ, x). Then

2

ν(ψ)
≤ c(ψ) ≤ 2n

ν(ψ)
.

We can now introduce an integrability condition which will be su�cient for the
purposes of this paper.

De�nition 5.3.11. Given ψ ∈ M, λ > 0 and p ∈ (1,∞]. We say that [ψ] satis�es
the Strong Integrability Condition (SIC) with respect to λ, p if

c(ψ) >
λp

p− 1
,

where we mean c(ψ) > λ if p =∞.
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Observe that when p = ∞ the SIC α(ψ) > λ is a necessary condition to solve the
Monge-Ampère equation MAω(u) = e−λufωn in the class E(X,ω, ψ). In general if
ψ ∈ M+ then as a consequence of Proposition 6.3.1 the SIC gives e−λuf ∈ L1 for
any u ∈ E(X,ω, ψ) through a clear Hölder's pairing.

Proposition 5.3.12. Let uk, u ∈ PSH(X,ω) such that uk → u weakly, λ > 0 and
let fk, f ∈ Lp for p ∈ (1,∞] non-negative functions such that fk → f in Lp. Letting
ψ := Pω[u] and ψk := Pω[uk], assume also that c(ψ), c(ψk) > λp

p−1
for any k � 1,

where λp
p−1

= λ if p =∞. Then

e−λukfk → e−λuf

in L1 as k →∞.

Proof. We set gk := e−λukfk, g := e−λuf and q := p/(p − 1) for the Sobolev
conjugate of p. Note also that by Hartogs' Lemma we may suppose supX uk ≤ 0 for
any k ∈ N. By the triangle inequality

||gk − g||L1 ≤ ||e−λuk (fk − f)||L1 + ||(e−λuk − e−λu)f ||L1 (5.19)

and the strategy is to prove that both terms in the right hand goes to 0 as k →∞.
As immediate consequence of the Hölder's inequality we obtain

||e−λuk (fk − f)||L1 ≤ ||e−uk ||λLλq ||fk − f ||p

which converges to 0 since fk → f in Lp by assumption and ||e−uk ||Lq is uniformly
bounded by Lemma 5.3.13. In fact c(uk) = c(ψk) > λq, c(u) = c(ψ) > λq (see also
Proposition 6.3.1).
For the second term in (5.19) again by Hölder's inequality it follows that it is enough
to prove that

e−λquk → e−λqu (5.20)

in L1. But since c(u) > λq, (5.20) is a consequence of the Main Theorem in [DK01].

Lemma 5.3.13. Let K ⊂ PSH(X,ω) and p > 0 such that c(u) > p for any u ∈ K.
Then there exists a constant C = CK,p such that

sup
u∈K

∫
X

e−puωn ≤ C.

Proof. Let us assume by contradiction that there exists a sequence {uj}j∈N ⊂ K
such that ∫

X

e−pujωn ≥ j (5.21)

for any j ∈ N. Up to considering a subsequence we may also assume that uj → u ∈
K weakly. In particular

∫
X
e−puωn < ∞. Thus by the Main Theorem in [DK01]

e−puk → e−pu in L1, which contradicts (5.35).
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We can now prove Theorem C, which as said in the Introduction represents an
openness result for a new continuity method where the singularities are movable
(see also [Tru20b]).

Theorem C. Let ψ ∈M+, λ > 0 and let 0 ≤ f ∈ Lp \ {0} for p ∈ (1,∞]. Assume
also that c(ψ) > λp

p−1
. If there exist A > 0, B ≥ 0 such that

Fψ(u) := Ff,ψ,λ ≤ −Ad(u, ψ) +B

for any u ∈ E1
norm(X,ω, ψ), then there exists an uniform constant C = C(Vψ, B,X, ω) ≥

0 such that for any ψ′ ∈M+, ψ′ < ψ

Fψ′(v) ≤ −
(

1− Vψ′

Vψ′
(1−A)

)
d(v, ψ′) + C

for any v ∈ E1
norm(X,ω, ψ′). In particular for any ψ′ < ψ such that Vψ′ < Vψ/(1−

A), Fψ′ is d-coercive over E1
norm(X,ω, ψ′) and the complex Monge-Ampère equation{

MAω(u) = e−λufωn

u ∈ E1(X,ω, ψ′)
(5.22)

admits a solution.

Remark 5.3.14. It is easy to check that the constant A > 0 in the d-coercivity
of Fψ cannot be larger than 1. Indeed it easily follows from (A − 1)Eψ(u) + B ≥
Vψ
λ

log
∫
X
e−λufωn ≥ Vψ

λ
log ||f ||L1 for any u ∈ E1

norm(X,ω, ψ) and the fact that
supu∈E1

norm(X,ω,ψ) |Eψ(u)| = +∞ for any ψ ∈M+.

Proof. We divide the proof in two parts. We �rst prove that the d-coercivity of
Fψ′ implies the existence of a solution of (5.22) for a �xed ψ′ < ψ, then we show
that the d-coercivity of Fψ implies the d-coercivity of Fψ′ for any ψ

′ < ψ such that
Vψ′ < Vψ/(1−A).
Let ψ′ < ψ and assume that Fψ′ is d-coercive over E1

norm(X,ω, ψ) with respect
to constants A > 0, B ≥ 0. Then letting {uk}k∈N ⊂ E1

norm(X,ω, ψ′) be a maxi-
mizing sequence for Fψ′ , i.e. Fψ′(uk) ↗ supE1

norm(X,ω,ψ′) Fψ′ , by the coercivity we
immediately have

d(ψ′, uk) ≤ D
for a constant D ∈ R≥0. Therefore by Proposition 6.2.1, up to considering a subse-
quence, uk → u ∈ E1

norm(X,ω, ψ′) weakly. Thus Lemma 5.3.12 and again Proposi-
tion 6.2.1 give

sup
E1
norm(X,ω,ψ)

Fψ′ = lim
k→∞

Fψ′(uk) ≤ Fψ′(u),

i.e. u is a maximizer of Fψ′ over E1
norm(X,ω, ψ′). Hence since Fψ′ is translation

invariant, by Theorem 5.3.3 there exists a constant A such that u+A solves (5.22)
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which �nishes the �rst part of the proof.
Next the d-coercivity of Fψ implies that for any u ∈ E1(X,ω, ψ)

Fψ(u) = Fψ(u− sup
X
u) ≤ −Ad(ψ, u− sup

X
u) +B ≤

≤ −AJψ(u− sup
X
u) +B = −AJψ(u) +B

by Lemma 5.3.7, which is equivalent to

Vψ
λ

log

∫
X

e−λufωn ≤ (1−A)Jψ(u) +B +

∫
X

(ψ − u)MAω(ψ) (5.23)

for any u ∈ E1(X,ω, ψ). In particular letting ϕ ∈ H such that supX Pω[ψ′](ϕ) = 0
where ψ′ < ψ and setting v := Pω[ψ](ϕ), v′ := Pω[ψ′](ϕ), we have

Fψ′(v
′) ≤ Eψ′(v′) +

Vψ′

λ
log

∫
X

e−λvfωn ≤

≤ Eψ′(v′) +
Vψ′

Vψ

(
(1−A)Jψ(v) +B +

∫
X

(ψ − v)MAω(ψ)
)

(5.24)

combining the inequality v′ ≥ v with (5.23). Next by [DNT19] MAω(ψ) = 1{ψ=0}MAω(0)
and similarly for ψ′. Thus∫

X

(v − ψ)MAω(ψ) ≤
∫
X

(v′ − ψ′)MAω(ψ′) +

∫
{ψ′=0}\{ψ=0}

(−v′)MAω(u) ≤

≤
∫
X

(v′ − ψ′)MAω(ψ′) + C′

for an uniform constant C′ = C′(X,ω) > 0 since supX v
′ = 0. Hence as a conse-

quence of Proposition 5.2.2 we get

Jψ(v) ≤ Jψ′(v′) + C′,

which together with (5.24) and again [DNT19] (by Remark 5.3.14 A ≤ 1), implies

Fψ′(v
′) ≤

(Vψ′(1−A)

Vψ
− 1
)
Jψ′(v

′) +
Vψ′

Vψ
(B + C′) +

∫
X

(v′ − ψ′)MAω(ψ′)+

+
Vψ′

Vψ

∫
X

(ψ − v)MAω(ψ) ≤
(Vψ′(1−A)

Vψ
− 1
)
Jψ′(v

′) +
V0

Vψ
(B + 2C′).

Therefore since Jψ′(·) and of Fψ′(·) are translation invariant and continuous along
decreasing sequences in E1(X,ω, ψ), combining [BK07] and Lemma 5.3.7 we �nally
obtain

Fψ′(u) ≤
(Vψ′(1−A)

Vψ
− 1
)
Jψ′(u) +

V0

Vψ
(B + 2C′) ≤

(Vψ′(1−A)

Vψ
− 1
)
d(ψ′, u) +C

for any u ∈ E1
norm(X,ω, ψ′), which concludes the proof.
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Finally we can give necessary conditions to have the strong continuity of a sequence
of solutions of MAω(uk) = e−λukfkω

n with prescribed singularities, i.e. Theorem
D.

Theorem D. Let λ > 0, {ψk}k∈N ⊂ M+ totally ordered sequence such that ψk 4
ψk+1 for any k ∈ N which converges to ψ ∈M+, and fk, f ≥ 0 not trivial such that
fk → f in Lp as k →∞ for p ∈ (1,∞]. Assume also the following conditions:

(i) c(ψ) > λp
p−1

;

(ii) the complex Monge-Ampère equations{
MAω(uk) = e−λukfkω

n

uk ∈ E1(X,ω, ψk);

admit solutions uk given as maximizers of Ffk,ψk,λ;

(iii) supX uk ≤ C for an uniform constant C.

Then there exists a subsequence {ukh}h∈N which converges strongly to u ∈ E1(X,ω, ψ)
solution of {

MAω(u) = e−λufωn

u ∈ E1(X,ω, ψ).

Proof. We �rst observe that c(ψk) > λp
p−1

if k � 1 big enough since ψk ↗ ψ a.e.
and c(·) is lower semicontinuous with respect to the weak topology as said before (it
is the Main Theorem in [DK01]).
Then we set Fk := Ffk,ψk,λ for any k ∈ N, F := Ff,ψ,λ and vk := uk − supX uk ∈
E1
norm(X,ω, ψk). In particular MAω(vk) = e−λ(vk+supX uk)fkω

n for any k ∈ N
and up to considering a subsequence we may assume that vk converges weakly to a
function v ∈ PSH(X,ω). Then by an easy calculation we obtain

C1 ≤
Vψk
λ

log ||fk||L1 ≤
Vψk
λ

log

∫
X

e−λψkfkω
n = Fk(ψk) ≤

≤ Fk(vk) = Eψ(vk) +
Vψk
λ

log Vψk + Vψk sup
X
uk ≤ Eψ(vk) + C2.

for two uniform constants C1, C2. Therefore by Proposition 6.2.1 we obtain v ∈
E1(X,ω, ψ) and lim supk→∞Eψk (uk) ≤ Eψ(u). Thus since Lemma 5.3.12 gives∫
X
e−λvkfkω

n →
∫
X
e−λvfωn, it follows that

lim sup
k→∞

Fk(vk) ≤ F (v).

On the other hand similarly to the proof of Theorem B, letting ϕ ∈ H we obtain

lim inf
k→∞

Fk(vk) ≥ lim inf
k→∞

Fk
(
Pω[ψk](ϕ)

)
= F

(
Pω[ψ](ϕ)

)
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combining Lemma 5.2.5 and Lemma 5.3.12, which together with [BK07] and the
continuity of F along decreasing sequences implies

lim inf
k→∞

Fk(vk) ≥ sup
E1(X,ω,ψ)

F.

Hence v is a maximizer of F over E1(X,ω, ψ) and Fk(vk) → F (v). In particular
there exists a constant C ∈ R such that MAω(v) = e−λ(v+C)fωn (Theorem 5.3.3)
and Eψk (vk)→ Eψ(v) which leads to vk → v strongly by Proposition 5.2.4.
Next setting Ck := supX uk we observe that

Vψk =

∫
X

e−λukfkω
n = e−λCk

∫
X

e−λvkfkω
n,

i.e. Ck → 1
λ

(
log
∫
X
e−λvfωn − log Vψ

)
= C. Hence uk = vk + Ck converges weakly

to u = v + C and MAω(u) = e−λufωn. Finally thanks to Proposition 5.2.4, to
conclude the proof it is enough to observe that

Eψk (uk) = Eψk (vk) + CkVψk → Eψ(v) + CVψ = Eψ(u).

Remark 5.3.15. Observe that the assumption (i) in Theorem D is satis�ed if
all the Lelong numbers of ψk are small enough (Proposition 6.4.27), while (ii) is a
natural hypothesis when all the solutions are given as maximizers (see also [Tru20b]).
As stated in the Introduction the real big obstacle is the bound in (iii), which
is necessary even when fk ≡ f (Example 5.4.16, see also [Tru20b] for a deeper
discussion regarding (iii) in the Fano case).

5.4 Log semi-Kähler Einstein metrics with

prescribed singularities.

We recall that on a line bundle L → X any (smooth) hermitian metric h can be
described by its weight φ = {φα}α∈I de�ned locally for a trivializing local section
sα of L on a open set Uα as φα := − log |sα|2h. Observe that the current ddcφ is
globally well-de�ned and represents the curvature of h. In this section we identify
the hermitian metrics with their weights, and we say for simplicity just metric.
Given a Q-divisor D on X we have the following key de�nition.

De�nition 5.4.1 (De�nition 3.1, [BBEGZ19]) . Let φ be a metric on −r(KX +D)
where r ∈ N such that rD is a divisor. The adapted measure µφ is locally de�ned
by choosing a nowhere zero section σ of r(KX + D) over a small open set U and
setting

µφ := (irn
2

σ ∧ σ̄)1/r/|σ|2/rφ .

5.4. LOG SEMI-KÄHLER EINSTEIN METRICS WITH
PRESCRIBED SINGULARITIES.
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We observe that µφ is globally de�ned since the de�nition does not depend on the
choice of σ. Moreover µφ1 = µφ2 if φi are metric on −ri(KX + D) such that
r2φ1 = r1φ2. This property allows to enlarge the de�nition of adapted measures
to metrics of the Q-line bundle −(KX + D) where we say that φ is a metric on
−(KX + D) if there exists r ∈ N divisible enough such that rφ is a metric on
−r(KX +D).
Note that if D = 0 and φ is a metric on −KX , then locally

µφ = e−φin
2

dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n.

More generally by the natural identi�cation of −(KX +D) with −KX on the com-
plement of the support of the divisor D, if φ is a metric on −(KX +D) then locally
on X \ Supp(D)

µφ = e
−(φ+ 1

r
log |srD+

|2− 1
r

log |srD− |
2)
in

2

Ω ∧ Ω̄

for srD+ , srD− holomorphic sections cutting respectively the e�ective divisors rD+, rD−
where D = D+−D−, and Ω is a nowhere zero local holomorphic section of KX (see
also [Berm16], [BBJ15]). Furthermore the adapted measures are compatible under
blow-ups of smooth centers. Indeed if p : Y → X is a morphism given by a sequence
of blow-ups of smooth centers, letting D′ such that p∗(KX + D) = KY + D′, µp∗φ
coincides with the lift of µφ (usually denoted by µ̃φ), i.e. with the trivial extension of
the push-forward by p−1 of µφ over the Zariski open set where p is an isomorphism.
Vice versa p∗µp∗φ = µφ.

Next, it is well-known that smooth positive volume forms µ are in one-one corre-
spondence with metrics on the canonical line bundle KX and the relationship is
given by

µ = e−f in
2

Ω ∧ Ω̄ (5.25)

where f := log |Ω|2φ for any nowhere zero local holomorphic section Ω of KX . Thus,
as in [BBJ15], being aware that our de�nition of dc di�ers from theirs of a multi-
plicative factor equal to 2, we say that a positive measure µ on X is said to have
well-de�ned Ricci curvature if it corresponds to a singular metric on KX in the sense
of Demailly ([Dem90]), i.e. if locally it is of the form (6.1) with f ∈ L2

loc, and in this
case Ric(µ) := ddcf . Observe that if µφ is the adapted measure of De�nition 5.4.1
then Ric(µφ) = ω + [D] where ω is the curvature form of φ.
Then, letting η be a semi-Kähler form, i.e. a closed smooth semipositive (1, 1)-form
such that ηn > 0 (see [EGZ09]), we set, for u ∈ PSH(X, η), Ric(η + ddcu) :=
Ric
(
MAη(u)

)
so that Ric(η) := Ric(ηn) is the usual Ricci curvature when η is

actually Kähler.

De�nition 5.4.2. Let D be a Q-divisor and η a (semi-)Kähler form. A D-log
(semi-)Kähler Einstein metric on X in the cohomology class {η} is a positive current
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ηu := η + ddcu with well-de�ned Ricci curvature such that

Ric(ηu)− [D] = ληu

for λ ∈ R where [D] is the current of integration along the divisor D. Furthermore,
when η is Kähler, if ηu is a D-log (semi-)KE metric and u ∈ E1(X, η, ψ) for ψ ∈M,
then we say that ηu is (D, [ψ])-log (semi-)KE metric .

Note that when η is Kähler a (D, [0])-log KE metric in [BBJ15] is called [D]-twisted
KE, and that the abuse of language is due to the fact that (D, [ψ])-log KE metrics
de�ne (class of) singular D-log KE metrics.
When D = 0 one obtains the de�nition of Kähler-Einstein metrics (which coincides
with the usual de�nition of Kähler-Einstein metrics under the additional request on
the regularity).
It is immediate to see that there is the topological obstruction

c1(X)− {[D]} = λ{η} (5.26)

to the existence of D-log semi-KE metrics. However under the assumption (5.26),
we recall the following pluripotential description of D-log semi-KE currents.

Lemma 5.4.3. Let D be a Q-divisor such that (5.26) holds for λ ∈ Q and η semi-
Kähler form. Let φ be a metric on λ{η} with curvature λη, and let u ∈ PSH(X, η).
Then ηu is a D-log semi-KE metric if and only if

MAη(u) = e−λu+Cµφ (5.27)

for a constant C ∈ R where µφ is the adapted measure associated to φ.

Proof. The proof is similar to that in Lemma 2.2 in [BBJ15], but for the courtesy
of the reader we report it here.
If u ∈ PSH(X,ω) solves (5.27) then ηu has well-de�ned Ricci curvature and

Ric(ηu) = λddcu+Ric(µφ) = λddcu+ λη + [D] = ληu + [D].

Vice versa assume that ηu has well-de�ned Ricci curvature and Ric(ηu)− [D] = ληu.
Then, letting D =

∑N
j=1 ajDj for Dj prime divisors, {sj}Nj=1 holomorphic sections

cutting the divisors {Dj}Nj=1 and letting {φj}Nj=1 metrics on the associated line
bundles, we obtain locally on X \ Supp(D)

µφ = e
−

∑N
j=1 aj log |sj |2φj e−φ̃in

2

Ω ∧ Ω̄

where φ̃ := φ +
∑N
j=1 ajφj is a metric on −KX . In particular we have µφ =

e
−

∑N
j=1 aj log |sj |2φj dV for a volume form dV . Therefore by de�nition there exists

f ∈ L1 such that MAη(u) = e−fdV , which implies

Ric(ηu) = ddcf +Ric(dV ) = ddcf + λη + [D]−
N∑
j=1

ajdd
c log |sj |2φj .
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Next since Ric(ηu) = ληu + [D], the function f −λu−
∑N
j=1 aj log |sj |2φj is plurihar-

monic. Hence there exists a constant C ∈ R such that

MAη(u) = e−λu+Ce
−

∑n
j=1 aj log |sj |2φj dV = e−λu+Cµφ,

which concludes the proof.

Remark 5.4.4. If (5.26) holds for λ ∈ R and a R-divisor D then it is possible
to enlarge the de�nition of D-log (semi-)KE metrics to the class {η} thanks to the
pluripotential description of Lemma 5.4.3. Indeed in this case λη can be thought as
the curvature of a metric φ on a R-line bundle, i.e. on a formal real combination
of line bundles. More precisely if {λη} = {

∑m
k=1 bkLk} where bk ∈ R and Lk line

bundles, then there exist metrics φ′k on Lk such that φ :=
∑m
k=1 bkφ

′
k satis�es dd

cφ =

λη. Next if D =
∑N
j=1 ajDj for Dj prime divisors, we �x {sj}Nj=1 holomorphic

sections cutting the divisors Dj and metrics φj on the associated line bundle. Thus

setting φ̃ := φ +
∑N
j=1 ajφj the local volume forms e−φ̃in

2

Ω ∧ Ω̄ glue together to

give a global volume form dV . Set µφ := e
−

∑N
j=1 aj log |sj |2φj dV , where we mean the

trivial extension to 0 of the measure of the right hand side restricted to X \Supp(D).
We say that η + ddcu is a D-log (semi-)KE metric if MAη(u) = e−λu+Cµφ for a
constant C ∈ R, and if η is Kähler we say that η+ ddcu is a (D, [ψ])-log KE metric
if we further have u ∈ E1(X, η, ψ). Note that this de�nition of D-log KE metrics
does not depend on the choice done on the metrics. Moreover if p : Y → X is given
by a sequence of blow-ups of smooth centers µ̃φ = µp∗φ and p∗µp∗φ = µφ.

It is not di�cult to check that the adapted measure µφ has �nite total mass if and
only if D is klt (see [Kol13]), which reads as aj < 1 if D =

∑N
j=1 ajDj for prime

divisors Dj when D is assumed to have simple normal crossing. A similar condition
holds when one considers (D, [ψ])-log KE currents. Indeed letting {sj}Nj=1, {φj}Nj=1

and dV as in proof of Lemma 5.4.3, i.e.

µφ = e
−

∑N
j=1 aj log |sj |2φj dV,

we obtain the following necessary condition to the existence of (D, [ψ])-log semi-KE
metrics in terms of multiplier ideal sheaves.

Corollary 5.4.5. Let η be a Kähler form such that (5.26) holds for D R-divisor
and λ ∈ R. If ηu is a (D, [ψ])-log semi-KE current, then

I
(
λψ +

∑
{j:aj>0}

aj log |sj |2φj
)

= OX if λ > 0, (5.28)

I
( ∑
{j:aj>0}

aj log |sj |2φj
)

= OX if λ ≤ 0. (5.29)

If λ > 0 (resp. λ ≤ 0) we will say that (D, [ψ]) (resp. D) is klt when (5.28) (resp.
(5.29)) holds. The de�nition does not depends on the metrics φj chosen and it is
coherent with the usual de�nition (see for instance Proposition 8.2 in [Kol96]).
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5.4.1 Analytical Singularities.

In this subsection ω Kähler and ψ := Pω[ϕ] ∈ M+ where ϕ ∈ PSH(X,ω) has
analytical singularities , i.e. locally ϕ|U := g + c log

(
|f1|2 + · · · + |fk|2

)
where c ∈

R≥0, g ∈ C∞, and {fj}kj are local holomorphic functions. The coherent ideal
sheaf I generated by these functions has integral closure globally de�ned, hence the
singularities of ϕ are formally encoded in (I, c). It is well-known in this case that
there exists a smooth resolution p : Y → X given by a sequence of blow-ups of
smooth centers such that p∗I = OY (−D) for an e�ective divisor D. Moreover the
Siu Decomposition ([Siu74]) of p∗(ωϕ) is given by

p∗(ωϕ) = η + c[D]

where η is a smooth semipositive (1, 1)-form on Y , which becomes semi-Kähler if∫
X
ηn > 0. In such case it is possible to de�ne the sets E(Y, η) and E1(Y, η) similarly

to the Kähler case (see [BEGZ10]).

Lemma 5.4.6. In the setting just described
∫
X
ηn =

∫
X
MAω(ϕ) and there is a

bijective map f : PSH(X,ω, ψ) → PSH(X, η) such that f
(
E(X,ω, ψ)

)
) = E(Y, η)

and f
(
E1(X,ω, ψ)

)
= E1(Y, η).

Proof. By Remark 4.6 in [RWN14] ψ − ϕ is globally bounded, so for any u ∈
PSH(X,ω, ψ) we have u 4 ϕ which implies that p∗(ωu) − c[D] is a closed and
positive current on Y with cohomology class {η}. Therefore there exists an unique
ũ ∈ PSH(Y, η) such that supY ũ = supX(u− ϕ) and

p∗(ωu) = ηũ + c[D].

Thus we de�ne f : PSH(X,ω, ψ) → PSH(Y, η) as f(u) := ũ. By Proposition
1.2.7.(ii) in [BouTh] f is a bijection. It is also easy to check that ũ− (u− ϕ) ◦ p is
pluriharmonic on Y , which leads to f(u) = ũ = (u− ϕ) ◦ p.
Next, since p is an isomorphism over Y \p−1V (I) and [D] has support in a pluripolar
set, it is not di�cult to check that

p∗MAη(ũ) = MAω(u) (5.30)

using the de�nition of non-pluripolar product. Then (5.30) gives f
(
E(X,ω, ψ)

)
=

E(Y, η). Hence to conclude the proof it is enough to observe that the equalities∫
Y

ũMAη(ũ) =

∫
Y

p∗p∗
(
(u− ϕ) ◦ pMAη(ũ)

)
=

=

∫
Y

p∗
(
(u− ϕ)MAω(u)

)
=

∫
X

(u− ψ)MAω(u) +

∫
X

(ϕ− ψ)MAω(u)

imply f
(
E1(X,ω, ψ)

)
= E1(Y, η) thanks to Theorem 4.10 in [DDNL18b], Proposition

2.11 in [BEGZ10] and the fact that
∣∣∣ ∫X(ϕ − ψ)MAω(u)

∣∣∣ ≤ C uniformly for any

u ∈ PSH(X,ω, ψ).
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For completeness we also prove that in this setting the metric space
(
E1(X,ω, ψ), d

)
is isometric to the metric space

(
E1(Y, η), d

)
studied in [DDNL18c] where

d(u, v) = E(u) + E(v)− 2E
(
Pη(u, v)

)
for any u, v ∈ E1(Y, η) recalling that Pη(·, ·), E(·) are de�ned in the same way as in
the Kähler case, i.e. for instance E(u) = 1

n+1

∑n
j=0

∫
X
u(η + ddcu)j ∧ ηn−j if u has

minimal singularities (remember that η is semipositive).

Proposition 5.4.7. The metric space
(
E1(X,ω, ψ), d

)
is isometric to

(
E1(Y, η), d

)
through the map of Lemma 5.4.6

Proof. With the same notation of Lemma 5.4.6 we have ũ := f(u) = (u− ϕ) ◦ p for
any u ∈ E1(X,ω, ψ). Moreover similarly as in the proof on Lemma 5.4.6 we can show
that p∗

(
ηkũ1
∧ ηn−kũ2

)
= ωku1

∧ ωn−ku2
for any k = 0, . . . , n, and that these equalities

lead to E(ũ) = Eψ(u)−Eψ(ϕ) for any u ∈ E1(X,ω, ψ). Hence to conclude the proof
it is enough to prove that f

(
Pω(u1, u2)

)
= Pω(ũ1, ũ2). By construction we easily

have ũ1 ≤ ũ2 if and only if u1 ≤ u2. Therefore we get f
(
Pω(u1, u2)

)
≤ Pω(ũ1, ũ2)

from Pω(u1, u2) ≤ u1, u2, while letting φ ∈ E1(X,ω, ψ) such that φ̃ = Pω(ũ1, ũ2) we
have φ ≤ u1, u2, i.e. φ ≤ Pω(u1, u2) which conclude the proof by composing with
f .

We can now relate the (D, [ψ])-log KE metrics on X with the D′-log semi-KE metrics
on Y . More precisely, let D be a klt R-divisor on X such that

c1(X)− {[D]} = λ{ω}

for λ ∈ R and ω Kähler form. Let ψ ∈ M+ given as Pω[ϕ] for a function ϕ ∈
PSH(X,ω) with analytic singularities encoded in (I, c), and let p : Y → X be
a smooth resolution of I. Then p∗I = OY (−D1) for an e�ective divisor D1 and
p∗(KX +D) = KY +D2 for a R-divisor D2. We denote with η the semi-Kähler part
of the Siu Decomposition p∗(ωϕ) = η + c[D1].

Proposition 5.4.8. In the setting described above, there is a bijection beetwen
the set of all (D, [ψ])-log KE metrics on X in the cohomology class {ω} and the
set of all D′-log semi-KE metrics on Y in the cohomology class {η} where D′ :=
λc[D1]+[D2]. More precisely letting φω and φη be metrics respectively on the R-line
bundles −(KX + D),−(KY + D2 + λcD1) with curvatures λω and λη, a function
u ∈ E1(X,ω, ψ) solves MAω(u) = e−λuµφω if and only if ũ = (u− ϕ) ◦ p ∈ E1(Y, η)
solves MAη(ũ) = e−λũµφη .

Proof. Let φω, φη as in the statement. Set also φ := p∗φω − φη metric on λcD1

with curvature θ := ddcφ. Then for r1 = 1
λc
∈ R>0, r1λcD1 = D1 is an e�ective

divisor and there exists an holomorphic section s1 on the associate line bundle such
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that r1θ + ddc log |s1|2r1φ = r1λc[D1]. Thus, since by construction λη + θ = p∗λω, it
follows that

ddc
1

r1
log |s1|2r1φ = ddcλϕ ◦ p,

i.e. λϕ◦p = 1
r1

log |s1|2r1φ+C for a constant C ∈ R which without loss of generality

we may suppose to be equal to 0. Therefore the lift of the measure e−λuµφω =
e−λ(u−ϕ)e−λϕµφω becomes

e
−λũ− 1

r1
log |s1|2r1φµp∗φω

where ũ = (u − ϕ) ◦ p. Next for {aj}N1
j=1, {bj}

N2
j=1 ⊂ R>0 and prime divisors

{D2,+,j}N1
j=1, {D2,−,j}N2

j=1, we have D2 =
∑N1
j=1 ajD2,+,j −

∑N2
j=1 bjD2,−,j as the

di�erence of two e�ective R-divisors. Thus locally on Y \
(
Supp(D1) ∪ Supp(D2)

)
by de�nition there exists Ω nowhere zero local holomorphic section of KY such that

µp∗φω = e−(p∗φω+
∑N1
j=1 aj log |s2,+,j |2−

∑N
j=1 bj log |s2,−,j |2)in

2

Ω ∧ Ω̄

where {s2,+,j}N1
j=1, {s2,−,j}N2

j=1 are holomorphic sections cutting respectively {D2,+,j}N1
j=1,

{D2,−,j}N2
j=1. For simplicity of notations we de�ne ϕ2,+ :=

∑N1
j=1 aj log |s2,+,j |2 and

similarly for ϕ2,−. Therefore locally on Y \
(
Supp(D1) ∪ Supp(D2)

)
e
− 1
r1

log |s1|2r1φµp∗φω = e
−
(
φ+ 1

r1
log |s1|2r1φ+φη+ϕ2,+−ϕ2,−

)
in

2

Ω ∧ Ω̄ =

= e
−
(
φη+ 1

r1
log |s1|2+ϕ2,+−ϕ2,−

)
in

2

Ω ∧ Ω̄ = µφη .

In conclusion for any u ∈ E1(X,ω, ψ) and the measures e−λuµφω and e−λũµφη are
related by lifting and by push-forward through p∗. Hence the Proposition follows
since the same correspondence holds for MAω(u) and MAη(ũ) as seen during the
proof of Lemma 5.4.6.

We can prove the following regularity result on (D, [ψ])-log semi-KE metrics in this
case, which is the �rst part of Theorem E.

Theorem 5.4.9. Let ωu be a (D, [ψ])-log KE metric where D is a R-divisor and
ψ = Pω[ϕ] ∈ M+ for ϕ with analytic singularities formally encoded in (I, c). Then
u ∈ C∞

(
X \A

)
where A = V (I) ∪ Supp(D).

Proof. By Proposition 5.4.8 and ũ := (u− ϕ) ◦ p is a solution of{
MAη(ũ) = e−λũµφη
ũ ∈ E1(Y, η)

where η is semi-Kähler form. Moreover writing µφη = ev1−v2dV where v1, v2 ∈
PSH(Y, ω′) for ω′ Kähler form and dV volume form on Y , by the Monge-Ampère
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equation and the resolution of the openness conjecture ([GZ15]) we immediately
obtain e−λũ+v1−v2 ∈ Lp for p > 1 (see also Corollary 5.4.5). Now the proof is
standard.
Indeed by Theorem C in [EGZ11] we get that ũ is bounded on X and continuous
on Amp({η}) (see also [Kol98]), where the latter is the ample locus of η ([Bou04]).
Then, assuming �rst λ > 0, let C > 0 big enough such that supX v1 ≤ C, Cω′ +
ddcv1 ≥ 0, Cω′+ddc(v1 +λũ) ≥ 0 and ||e−λũ−v2 ||Lp ≤ C. Thus by Theorem 10.1 in
[BBEGZ19] for any relatively compact open set U b Amp({η}) there exists A > 0
depending on C, η, p, U such that

0 ≤ η + ddcũ ≤ Ae−λũ−v2ω′.

Similarly if λ ≤ 0, letting C > 0 big enough such that supX(v1 − λũ) ≤ C, Cω′ +
ddc(v1 − λũ) ≥ 0, Cω′ + ddcv2 ≥ 0 and ||e−v2 ||Lp ≤ C, we obtain

0 ≤ η + ddcũ ≤ Ae−v2ω′

for any relatively compact open set U b Amp({η}).
Moreover by construction v1, v2 are smooth outside the union of the supports of the
divisors D1, D2 (with the notations used in Proposition 5.4.8). So, since ũ is globally

bounded it immediately follows that ∆ω′ ũ is locally bounded over Amp ({η})∩
(
Y \(

Supp(D1) ∪ Supp(D2)
))

. By the Evans-Krylov Theorem and a classical bootstrap

argument this also implies that ũ is smooth over Amp ({η}) ∩
(
Y \

(
Supp(D1) ∪

Supp(D2)
))

. Then the ample locus is a not-empty Zariski open set ( {η} is big, see
[Bou04]) and it includes Y \

(
Supp(D1) ∪ Supp(D2)

)
since {ω} is Kähler and the

support of the exceptional locus of p : Y → X is contained in the union of the
supports of D1, D2. Hence since ũ = (u− ϕ) ◦ p, we get that u ∈ C∞(X \B) where
B = p∗

(
Supp(D1) ∪ Supp(D2)

)
⊂ V (I) ∪ Supp(D) which concludes the proof.

Remark 5.4.10. In Theorem 5.4.9, if there exists a resolution of I such that η is
Kähler and ∆ := λcD1 +D2 is e�ective, then the solution ũ has conic singularities
along ∆ as proved in [GP16].

5.4.2 Theorem E.

In the subsection we conclude the proof of Theorem E.

As shown in the previous subsection if ψ ∈ M+ has analytic singularities type,
i.e. ψ = Pω[ϕ] for ϕ with analytic singularities formally encoded in (I, c) where I

is a integrally closed coherent ideal sheaf and c ∈ R>0, then taking p : Y → X
a resolution of I there exists a semi-Kähler form η on Y such that p∗(ωϕ) =
η + c[D] where p∗I = OX(−D) and D is an e�ective divisor. Thus, we �rst set
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M+
an := {ψ ∈ M+ with analytic singularities type } and we �x for any ψ ∈ M+

an

an element ϕ with analytic singularities such that supX ϕ = 0 and ψ = Pω[ϕ]
(i.e. ψ − ϕ globally bounded). Then setting Kt

(X,ω) := {(Y, η) : ω − p∗η =
[D] for an e�ective R-divisor Dwhere η is semi-Kähler and p : Y → X is given by a
sequence of blow-ups } the construction described above leads to a natural map

Φ : M+
an −→ K

t
(X,ω)/ ∼

where (Y, η) ∼ (Y ′, η′) on Kt
(X,ω) if there exists (Z, η̃) ∈ Kt

(X,ω) such that Z domi-
nates Y, Y ′ through morphism q : Z → Y , q′ : Z → Y ′ and η̃ = q∗η = q′∗η′. Note
that for a di�erent choice of the elements ϕ with analytic singularities, the forms η
in the representatives in K(X,ω) may change but their cohomology classes {η} would
remain unchanged.
We also claim that Φ is injective. Indeed letting ψ1, ψ2 ∈M+

an and letting (Y, η1), (Y, η2)
be representatives on the same manifold Y (taking a common resolution), if Φ(ψ1) =
Φ(ψ2) then η1 = η2. Thus, denoting with ϕ1, ϕ2 the �xed functions with analytic
singularities, η1 = η2 and cohomological reasons imply that (ϕ1 − ϕ2) ◦ p is pluri-
harmonic, hence ϕ1 = ϕ2 + C which clearly gives ψ1 = ψ2.
We can now de�ne

K(X,ω) := Im(Φ).

It is worth to underline that for any small perturbation {µ∗Nω − a1[E1] − a2[E2] +
· · · − aN [EN ])} where µN : Y → X is the blow-up of X at N distinct points, Ei
the exceptional divisors and ai > 0 small enough, there exists a smooth semi-Kähler
form η such that [(Y, η)] ∈ K(X,ω).
As an immediate consequence of the construction the set K(X,ω) inherits a partial
order and a notion of convergence given by the set M+

an. In particular for any
α, α′ ∈ K(X,ω) with associated model type envelopes ψ,ψ′ ∈ M+

an, we will say that
α is smaller (resp. bigger ) than α′ if ψ 4 ψ′ (resp. ψ < ψ′). Note that if α
is smaller than α′ then taken representatives (Z, η̃), (Z, η̃′) on the same compact
Kähler manifold Z we have η̃′ − η̃ = [F ] for an e�ective R-divisor F . The notion
of volume Vol (α) is also well-de�ned for α ∈ K(X,ω) since for any (Y, η) ∼ (Y ′, η′),∫
Y
ηn =

∫
Y ′ η

′n, and in particular Vol (α) = Vψ where Φ(ψ) = α (see also Lemma
5.4.6).
Next, it is possible to talk about log-KE currents for a class in K(X,ω) thanks to
Proposition 5.4.8 since for two di�erent representatives (Y, η), (Y ′, η′) of a same
class in K(X,ω) the sets of log-KE currents are in bijection. Indeed the bijection
is a level of quasi-psh functions, i.e. we identify two log-KE currents η + ddcũ,
η′ + ddcũ′ respectively on (Y, η), (Y ′, η′) representative of the same class in K(X,ω)

if ũ = (u − ϕ) ◦ p, ũ′ = (u − ϕ) ◦ p′ for the same function u ∈ E1(X,ω, ψ). Thus a
log-KE current for a class in K(X,ω) is a family of log-KE currents which are related
through the bijection just described. We can then de�ne a strong convergence on
sequences of log-KE currents for totally ordered sequences in K(X,ω) after a suitable
normalization. Namely when λ = 0, in accord with Theorem B, for any log-KE
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current η + ddcũ on (Y, η) representative of a class in K(X,ω) the function ũ will be
normalized so that the corresponding ω-psh function u through Lemma 5.4.6 satis�es
supX u = 0. When instead λ 6= 0, we will normalize ũ so that MAω(u) = e−λuµφω
where we �x φω metric on −(KX + D) with curvature λω once and for all (see
again Proposition 5.4.8). In conclusion, given a totally ordered sequence {αk}k∈N ⊂
K(X,ω) converging to α ∈ K(X,ω), we will say that a sequence of log-KE currents
ηk+ddcũk converges strongly to a log-KE current η+ddcũ if uk → u strongly. When
there exists a common compact Kähler manifold Z such that (Yk, ηk) ∼ (Z, θk) and
(Y, η) ∼ (Z, θ), the strong convergence implies in particular that the associated
sequence of log-KE currents θk + ddcvk converges weakly to the log-KE current
θ + ddcv.
We can now prove the second part of Theorem E.

Theorem 5.4.11. Let ω be a Kähler form such that c1(X) − {[D]} = λ{ω} holds
for λ ∈ R, λ ≤ 0 and let D be a klt R-divisor. Then any class in K(X,ω) admits an
unique log-KE current and such log-KE currents are stable with respect to the strong
convergence, i.e. if {αk}k∈N ⊂ K(X,ω) is a totally ordered sequence converging to
α ∈ K(X,ω), then the sequence of log-KE currents converges strongly to the log-KE
current on α.

Proof. By Proposition 5.4.8 and by de�nition to �nd a log-KE metric on α ∈ K(X,ω)

is equivalent to solve {
MAω(u) = e−λuµφω ,

u ∈ E1(X,ω, ψ)
(5.31)

where ψ ∈ M+ is the model type envelope with analytic singularities associated to
α. Moreover by the resolution of the openness conjecture ([GZ15]) since D is klt we
have µφω = fdV for f ∈ Lp for p > 1. Therefore the theorem follows from Theorems
A, B.

Next it remains to treat the case λ > 0.
We �rst note that in the case of (D, [ψ])-log KE currents the density fD ∈ L1 \ {0}
of the corresponding Monge-Ampère equation MAω(u) = e−λufDω

n is given as

fD = e
−

∑N
j=1 aj log |sj |2φj+g

(5.32)

where g is a smooth function, and as usual we �xed {sj}Nj=1 holomorphic sections
cutting the prime divisors Dj and metrics φj on the associated line bundle where
D =

∑N
j=1 ajDj .

We then observe that in Theorem C we used the assumption α(ψ) > λp
p−1

only
on the �rst part of the proof to prove that the d-coercivity of FfD,ψ,λ implies the
existence of a maximizer. Such hypothesis will not be necessary for the study of
log-KE currents in K(X,ω) as consequence of the following result.
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Lemma 5.4.12. Let ω be a Kähler form such that c1(X)−{[D]} = λ{ω} holds for
λ > 0 and let D be an R-divisor. Let also ψ ∈ M+

an and assume that (D, [ψ]) is
klt. Then the d-coercivity of FfD,ψ,λ over E1

norm(X,ω, ψ) implies the existence of a
maximizer.

Proof. Fix (Y, η) representative of α = Φ(ψ) ∈ K(X,ω).
Then using the same notation of Proposition 5.4.8, for any v ∈ E1(X,ω, ψ) by
construction the lift of e−λvfDωn = e−λvµφω to Y is e−λṽµφη where ṽ = (v−ϕ)◦p.
Therefore using also Proposition 5.4.7 it follows that

FfD,ψ,λ(v)− Eψ(ϕ) = E(ṽ) +
Vψ
λ

log

∫
X

e−λṽµφη =: Dη(ṽ) (5.33)

for any v ∈ E1(X,ω, ψ). Observe that, up to rescaling the class ω, since Vψ =
∫
X
ηn,

the functional Dη coincides with the (opposite of the) log-Ding functional in the
class {η} as described in [BBEGZ19]. Hence since again by Proposition 5.4.7 the
map

(
E1(X,ω, ψ), d

)
3 u → ũ ∈

(
E1(Y, η), d

)
is an isometry and by assumption

FfD,ψ,λ is d-coercive, we obtain that Dη is d-coercive over E1
norm(Y, η). Thus let

{ṽk}k∈N ⊂ E1
norm(Y, η) be a maximizing sequence, which without loss of generality

by the compactness of {ṽ ∈ PSH(Y, η) : supY ṽ = 0} we may assume to be weakly
convergent to ṽ ∈ E1

norm(Y, η). Then writing µφη = gdV where g ∈ Lp for p > 1 and
dV is a smooth volume form, by applying twice the Holder's inequality we have∫

X

|e−λṽk − e−λṽ|dµφη ≤ λ
∫
X

e−λ(ṽk+ṽ)|ṽk − ṽ|dµφη ≤

≤ λ||e−λ(ṽk+ṽ)||Lq ||(ṽk − ṽ)f ||Lp/2 ≤

≤ λ||e−λ(ṽk+ṽ)||Lq ||f ||Lp ||ṽk − ṽ||Lp (5.34)

where 1 < q < ∞ is the Sobolev conjugate of p/2. Therefore since any element
in E1(Y, η) has vanishing Lelong numbers, by [Zer01] the �rst factor in the right
side in (5.34) is uniformly bounded, and we obtain e−λṽk → e−λṽ in L1(µφη ) as a
consequence of ṽk → ṽ in Lp. Hence by the upper semicontinuity of E(·) in E1(Y, η)
with respect to the weak topology ([BBEGZ19]) we obtain

sup
E1(Y,η)

Dη = lim
k→∞

Dη(ṽk) ≤ Dη(ṽ),

i.e. ṽ is a maximizer of Dη. Hence from (5.33) the corresponding function v ∈
E1(X,ω, ψ) (Lemma 5.4.6) is a maximizer of FfD,ψ,λ.

Remark 5.4.13. As seen during the proof of Lemma 5.4.12, the d-coercivity of
FfD,ψ,λ over E

1
norm(X,ω, ψ) with respect to coe�cients A > 0, B ≥ 0 (i.e. FfD,ψ,λ(u) ≤

−Ad(ψ, u) + B for any u ∈ E1
norm(X,ω, ψ)) is equivalent to the d-coercivity of the

log-Ding functional Dη over E1
norm(Y, η) with respect coe�cients A > 0, Bη ≥ 0 for

any (Y, η) representative of the class Φ(ψ) ∈ K(X,ω). In particular FfD,ψ,λ and Dη
have the same slope at in�nity (i.e. the coe�cient A of the d-coercivity).
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We can now state the third part of Theorem E.

Theorem 5.4.14. Let ω be a Kähler form such that c1(X) − {[D]} = λ{ω} holds
for λ > 0 and let D be a klt R-divisor. If the log-Ding functional associated to a
representative (Y, η) of α ∈ K(X,ω) is d-coercive over E1

norm(Y, η) with slope 1 > A >
0, then any α′ ∈ K(X,ω) bigger than α satisfying Vol (α′) < Vol(α)/(1−A) admits a
log-KE current.

Proof. It follows directly from Theorem C thanks to Lemma 5.4.12 and Remark
5.4.13.

Finally to apply Theorem D to the class K(X,ω), we �x a klt R-divisor D such that
c1(X)−{[D]} = λ{ω} for λ > 0, with associated function fD as in (5.32). Then it is
a classical fact that fD ∈ Lp for any 1 < p < lct(X,D) := sup{t > 0 : (X, tD) is klt}
(the log canonical threshold ) and fD /∈ Llct(X,D) (see for instance Proposition 3.20
in [Kol96]). Therefore we de�ne

K
D
(X,ω) :=

{
Φ(ψ) ∈ K(X,ω) : ψ ∈M

+
an such that α(ψ) >

λ lct(X,D)

lct(X,D)− 1

}
.

Theorem 5.4.15. Let ω be a Kähler form such that c1(X) − {[D]} = λ{ω} holds
for λ > 0 and let D be a klt R-divisor. Assume that

(i) {αk}k∈N ⊂ K(X,ω) is an increasing sequence converging to α ∈ KD
(X,ω);

(ii) ηk + ddcũk are representatives of a sequence of log-KE currents in αk such
that supX uk ≤ C uniformly.

Then the sequence of log-KE currents of (ii) converges strongly to a log-KE current
in α.

Observe that by the de�nition of the normalization, the assumption (ii) in Theorem
5.4.15 is independent on the representatives ηk + ddcũk chosen.

We conclude the paper with the following example which shows that the assumption
(iii) in Theorem D is necessary.

Example 5.4.16. Let ω be a Kähler form on a Fano manifold X representative
of the anticanonical class, and let D be a smooth divisor Q-linearly equivalent to
−KX , i.e. D ∈ | − rKX | for r ∈ N. Next, letting ϕD ∈ PSH(X,ω) such that
ω+ ddcϕD = 1

r
[D] and ψt := Pω[tϕD] for any t ∈ [0, 1), by Proposition 5.4.8 the set

of all solutions of {
MAω(ut) = e−utµφω
ut ∈ E1(X,ω, ψt),

(5.35)

is in bijection with the set of all t
r
D-log KE currents in the cohomology class {(1−

t)ω}, i.e. with all solutions of{
MA(1−t)ω(vt) = e−vt−

t
r
ϕDµφω

vt ∈ E1(X, (1− t)ω).
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where the correspondence is clearly given by ut = vt + t
r
ϕD. Thus setting wt :=

1
(1−t)vt ∈ PSH(X,ω) we have{

MAω(wt) = (1− t)−ne−(1−t)wt− trϕDµφω
wt ∈ E1(X,ω),

which is equivalent to the renowned path

Ric(ωvt) = (1− t)ωvt +
t

r
[D]. (5.36)

considered in [CDS15]. Thus the set S := {t ∈ [0, 1) : (5.35) admits a solution }
is not empty ([Berm13],[JMR16]) and open (by cthe implicit function theorem, see
[Aub84]). Moreover it is well-known that when X does not admit a KE metric (for
instance X = BlpP

2) then there exists t0 ∈ (0, 1) such that lim inft↘t0 supX wt =
+∞, which clearly implies lim inft↘t0 supX ut = +∞.
Hence since the assumption (i) in Theorem D is satis�ed for any t ∈ [0, 1) and since
(ii) follows from (5.33) in Lemma 5.4.12, it follows that (iii) in Theorem D is a
necessary hypothesis.
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Chapter 6

Kähler-Einstein metrics with

prescribed singularities on

Fano manifolds.

Abstract

Given a Fano manifold (X,ω) we characterize analytically the existence of

Kähler-Einstein metrics with prescribed singularities through a variational

approach when the singularities can be approximated algebraically and are

concentrated in a complete closed pluripolar set.

Moreover we de�ne an increasing function αω on the set of all prescribed sin-

gularities which generalizes Tian's α-invariant, showing that its upper contour

set {αω(·) > n
n+1
} produces a subset of the Kähler-Einstein locus, i.e. of the

locus given by all prescribed singularities which admits a Kähler-Einstein met-

ric. In particular we prove that many K-stable manifolds admits all possible

Kähler-Einstein metrics with prescribed singularities while vice versa lower

bounds of the α-invariant function at not trivial prescribed singularities im-

ply lower bounds on the classical α-invariant and consequently the existence

of genuine Kähler-Einstein metrics.

Through a continuity method we also prove the strong continuity of Kähler-

Einstein metrics on curves of totally ordered prescribed singularities when the

relative automorphism groups are discrete.
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CHAPTER 6. KÄHLER-EINSTEIN METRICS WITH PRESCRIBED

SINGULARITIES ON FANO MANIFOLDS.

6.1 Introduction

A Fano manifold X admits a Kähler-Einstein (KE) metric if and only if (X,−KX)
is K-stable ([CDS15]). This is the famous solution to the Yau-Tian-Donaldson con-
jecture for the anticanonical polarization, and it connects a di�erential-geometric
notion to a GIT-like algebrico-geometric notion as predicted by S.T. Yau ([Yau93]).
There are now two natural possible singular versions of this correspondence: when
X is singular or when the metric has some prescribed singularities . In this article
we will deal with the second problem.

Letting ω be a Kähler form with cohomology class c1(−KX), since any KE metric
corresponds to a function u ∈ PSH(X,ω) ∩ C∞(X) such that

Ric(ω + ddcu) = ω + ddcu (6.1)

where dc := i
2π

(∂̄ − ∂) so that ddc = 1
π
∂∂̄, the most natural extension to the pre-

scribed singularities setting is to �x ψ ∈ PSH(X,ω) and to look for u ∈ PSH(X,ω)
which satis�es (6.1) in a singular sense and behaves as ψ. We refer to section �6.4
for the precise de�nition of a Kähler-Einstein metric with prescribed singularities [ψ]
([ψ]-KE metric) , here we underline its characterization in terms of Monge-Ampère
equations: by abuse of language ω + ddcu is a [ψ]-KE metric if and only if u solves{

MAω(u) = e−u+Cµ

u ∈ E1(X,ω, ψ).
(6.2)

for C ∈ R. The measure µ in (6.2) is the usual smooth volume form on X given as
µ = e−ρωn for ρ Ricci potential, MAω(u) := 〈(ω + ddcu)n〉 is the Monge-Ampère
measure of u in terms of the non-pluripolar product (see [BEGZ10]) while E1(X,ω, ψ)
is the set of all u ∈ PSH(X,ω) more singular than ψ, i.e. u ≤ ψ + C for C ∈ R,
such that the ψ-relative energy Eψ(u) is �nite (see [DDNL18b],[Tru19], [Tru20a]).
Note that the set E1(X,ω, ψ) contains all u such that u− ψ is globally bounded.
Recalling that PSH(X,ω) is naturally endowed with a partial order u 4 v if u ≤
v + C, the following conditions on ψ are necessary to solve (6.2):

i) ψ = Pω[ψ] :=
(

sup{u ∈ PSH(X,ω) : u 4 ψ, u ≤ 0}
)∗

where the star is for

the upper semicontinuous regularization;

ii) Vψ :=
∫
X
MAω(ψ) > 0;

iii) I(ψ) = OX where I(ψ) is the multiplier ideal sheaf attached to ψ.

The �rst condition means that ψ is a model type envelope , ψ ∈M (it is shown to be
necessary in [DDNL18b]), while we will say that (X,ψ) is Kawamata Log Terminal
(klt) when (iii) holds. Note that this notion immediately extends to any quasi-psh
function. With obvious notations we denote respectively with M+,M+

klt the set of
all model type envelopes which satis�es (ii), resp. (ii) and (iii). Thus M+

klt can be
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thought as the set of all admissible prescribed singularities and it is natural to de�ne
the Kähler-Einstein locus as

MKE := {ψ ∈M
+
klt : there exists a [ψ]-KE metric}.

Then, observing also that a [0]-KE metric is a genuine KE metric, it is natural to
wonder the following questions.

Question A. Let (X,ω) be a Fano manifold. Is it possible to characterize MKE?
When MKE = M+

klt? Is there some not-trivial locus on M+
klt whose intersection with

MKE implies that 0 ∈MKE?

To start addressing Question A, we de�ne a function M 3 ψ → αω(ψ) ∈ (0,+∞),

αω(ψ) := sup
{
α ≥ 0 : sup

u4ψ,supX u=0

∫
X

e−αudµ <∞
}
. (6.3)

which generalizes to the ψ-relative setting the classical Tian's α-invariant ([Tian87]),
and we prove the following result.

Theorem A. Let (X,ω) be a Fano manifold. Then{
ψ ∈M

+
klt : αω(ψ) >

n

n+ 1

}
⊂MKE .

Moreover (i)⇒ (ii)⇒ (iii) in the following conditions:

i) there exists ψ ∈M, t ∈ (0, 1] such that

αω(ψt) >
n

(n+ 1)t
;

for ψt := Pω[(1− t)ψ];

ii) αω(0) > n
n+1

;

iii) MKE = M+
klt.

Furthermore if ψ ∈M+
klt satis�es lct(X, 0, ψ) := sup

{
p > 1 : (X, pψ) is klt} ≥ n2+1

n2−n
then

αω(ψ) >
n2 + 1

n+ 1
=⇒ 0 ∈MKE . (6.4)

We refer to section �6.5 for a sharper estimate in (6.4) which also holds for more
general ψ ∈M+

klt.
Let us stress that the advantage of the relative setting is that we can choose ψ ∈M+

klt

and that the computation of the ψ-relative α-invariant is easier than the computa-
tion of the usual α-invariant as immediately follows from the de�nition. See for
instance subsection �6.5.2 where, for ψ ∈ M+

klt having isolated singularities at N
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points, we produce lower bounds for the ψ-relative α-invariant in terms of multi-
point Seshadri constants and pseudoe�ective thresholds .

The assumption (ii) in Theorem A cannot be replaced with αω(0) ≥ n
n+1

as X = P2

shows (Example 6.5.4), which suggests the following conjecture.

Conjecture A. Let (X,ω) be a Fano manifold such that Aut (X)◦ = {Id}. Then

0 ∈MKE ⇐⇒MKE = M
+
klt.

With Aut(X)◦ we denoted the connected component of the identity map.

The upshot of Theorem A is that the value of the function αω(·) at singular model
type envelopes may help to understand if X admits a genuine KE metric. Moreover
the implication (ii)⇒ (iii) in Theorem A (as Conjecture A) implies the existence of
many log-KE metrics for weak log Fano pairs (Y,∆) given by resolutions of integrally
closed coherent analytic sheaves. Indeed among M+

klt there are particular model type
associated to analytic singularities. Namely we say that ψ has analytic singularities
type if ψ = Pω[ϕ] for ϕ ∈ PSH(X,ω) with analytic singularities formally encoded
in (I, c). In this case, taking p : Y → X resolution of I, the set of [ψ]-KE metrics
is in correspondence with the set of log-KE metrics for the log pair (Y,∆) where
∆ := cD −KY/X and p∗I = OY (−D) (see [Tru20b]). Furthermore note that if the
singularities are algebraic (i.e. c ∈ Q) then

αω(ψ) ≥ min
{

1, α(Y,∆)
}
,

i.e. αω(ψ) is a �ner invariant than the usual log α-invariant α(Y,∆) (see Proposition
6.4.13 and Example 6.5.11).

In particular if D is a smooth divisor in | − rKX |, ϕD ∈ PSH(X,ω) such that
ω + ddcϕD = 1

r
[D] and ψt := Pω[tϕD] for any t ∈ [0, 1], �nding a [ψt]-KE metric is

equivalent to �nd a KE metric ωut := ω + ddcut with conic singularities along D of
angle 2π(1− t)/r, i.e. ut ∈ PSH(X,ω) locally bounded such that

Ric(ωut) = tωut +
(1− t)
r

[D].

This is the path considered in [CDS15] to solve the Yau-Tian-Donaldson Conjecture
and it is well-known that there exists t0 ∈ (0, 1] such that ψt ∈ MKE for any
t ∈ (0, t0) ([Berm13], [JMR16], see also Remark 6.4.4 for more details) and

{ψt}t∈(0,1] ⊂MKE ⇐⇒ 0 ∈MKE . (6.5)

Therefore condition (i) in Theorem A gives a valuative criterion to detect if the
curve {ψt}t∈(0,1] is entirely contained in MKE .

234 6.1. INTRODUCTION



CHAPTER 6. KÄHLER-EINSTEIN METRICS WITH PRESCRIBED
SINGULARITIES ON FANO MANIFOLDS. 235

Since M+
klt is a star domain with respect to 0 ∈ M+

klt (Lemma 6.4.1), it is then
natural to wonder if it is possible to perform a continuity method for the weakly
continuous curve {ψt}t∈[0,1] ⊂M+

klt given as ψt = Pω[(1− t)ψ], ψ ∈M+
klt.

In the companion paper [Tru20b] we introduced a continuity method with movable
singularities based on the strong topology of ω-psh functions given as the coarsest
re�nement of the weak topology such that the energy E·(·) becomes continuous
([Tru19], [Tru20a]). Thus, denoting with MD the subset of M of all model type
envelopes which are approximable by a decreasing sequence of model type envelopes
with algebraic singularities (see section 6.2), we can state our next result.

Theorem B. Let (X,ω) be a Fano manifold and let {ψt}t∈[0,1] ⊂M+
klt be a weakly

continuous segment such that

i) ψ0 ∈MKE;

ii) ψ0 has small unbounded locus;

iii) {ψt}t∈[0,1] ⊂MD;

iv) ψt 4 ψs if t ≤ s;
v) Aut(X, [ψt])◦ = {Id} for any t ∈ [0, 1].

Then the set
S := {t ∈ [0, 1] : ψt ∈MKE}

is open, the unique family of [ψt]-KE currents {ωut}t∈S is weakly continuous and
the family of potentials {ut}t∈S can be chosen so that the curve S 3 t → ut ∈
E1(X,ω, ψt) is strongly continuous.

In Theorem B having small unbounded locus is a technical assumption which means
locally boundedness on the complement of a closed complete pluripolar set, while
Aut(X, [ψ])◦ := Aut(X)◦ ∩Aut(X, [ψ]) where Aut (X, [ψ]) is the set of all automor-
phisms F : X → X such that F ∗ψ − ψ is globally bounded and Aut (X)◦ is the
connected component of the identity map. (v) is a necessary hypothesis for the
uniqueness of [ψ]-KE metrics as explained below in Theorem C.
The set MD contains plenty of model type envelopes, but in general MD ( M (see
Example 6.3.6). Anyway it is worth to underline that if ψ ∈M+

D := MD ∩M+ then
ψt = (1− t)ψ ∈ M+

D for any t ∈ [0, 1] (Proposition 6.3.7), thus Theorem B includes
these particular paths discussed above.

To prove Theorems A, B we develop a variational approach to study the existence
of [ψ]-KE metrics for a �xed ψ ∈ M+

klt similar to [BBGZ13], [DR17]. Namely
we de�ne two translation invariant functionals Dψ, Mψ, called respectively the ψ-
relative Ding and Mabuchi functional, which generalize the well-known functionals
to the ψ-relative setting as our next result shows.

Theorem C. Let ψ ∈ M+
D,klt := M+

klt ∩MD with small unbounded locus and let
u ∈ E1(X,ω, ψ). Then the following statements are equivalent:
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i) ωu := ω + ddcu is a [ψ]-KE metric;

ii) Dψ(u) = infE1(X,ω,ψ) Dψ;

iii) Mψ(u) = infE1(X,ω,ψ) Mψ.

Moreover if ωu is a [ψ]-KE metric then u has ψ-relative minimal singularities (i.e.
u − ψ globally bounded) and if ωv is another [ψ]-KE metric then there exists F ∈
Aut(X, [ψ])◦ such that F ∗ωv = ωu.

Next when Aut (X, [ψ])◦ = {Id}, it is natural to wonder if the existence of the unique
[ψ]-KE metric is equivalent to the coercivity of the ψ-relative Ding and Mabuchi
functionals similarly to the absolute setting. We recall that the strong topology on
E1(X,ω, ψ) is a metric topology given by a complete distance d which generalizes to
the ψ-relative setting the distance introduced by T. Darvas ([Dar15]) as proved in
our previous works [Tru19],[Tru20a].

Theorem D. Let ψ ∈M+
D,klt with small unbounded locus. Assume also Aut (X, [ψ])◦ =

{Id}. Then the following conditions are equivalent:

i) the ψ-relative Ding functional is d-coercive over E1
norm(X,ω, ψ) := {u ∈

E1(X,ω, ψ) : supX u = 0};

ii) the ψ-relative Mabuchi functional is d-coercive over E1
norm(X,ω, ψ);

iii) there exists an unique [ψ]-KE metric.

6.1.1 About the assumptions.

Proving the linearity of the ψ-relative energy along weak geodesic segment for
ψ ∈ M+, i.e. extends Theorem 6.3.11, would remove the assumption on MD in
Theorems B, C and D.
Similarly, if the Berndtsson's convexity result (Theorem 6.4.17) holds for ψ ∈ M+

klt

then the hypothesis on the small unbounded locus in Theorems B, C and D would
become unnecessary.
In Theorem B if we replace (v) with Aut(X, [ψt])

◦ = {Id} for any t ∈ [0, 1), which
may be useful when Aut (X) is not discrete, then the openness and the strong con-
tinuity result hold in [0, 1). Anyway in this situation is unclear if it may happen
that S = [0, 1] but the family of KE metrics {ωut}t∈[0,1) does not converge to a [ψ1]-
KE metric. Indeed the closedness of the continuity method depends on an uniform
bounds on the supremum of the potentials appropriately chosen (as in other more
classical continuity methods), and in the proof of Theorem B the bound is basically
a consequence of an uniform coercivity.
Finally note that on Theorem A there are no assumptions on MD and/or on small
unbounded loci. Indeed this follows from the fact that the arrow (i) ⇒ (iii) in
Theorem D holds even when ψ ∈M+

klt.
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6.1.2 Related Works

During the last period of the preparation of this article, T. Darvas and M. Xia in
([DX20]) de�ned the same set MD, exploring deeply its properties and its relations
with the algebraic approximations of geodesic rays in

(
E1(X,ω), d

)
where {ω} =

c1(L) for L ample line bundle.

6.1.3 Structure of the paper

In the next two sections we work with a general compact Kähler manifold (X,ω), i.e.
ω is not necessarily integral. In Section �6.2 we collect some preliminaries on model
type envelopes and on the strong topologies, while in Section �6.3 we de�ne the set
MD, characterizing it through a version of the Demailly's regularization Theorem
(Theorem 6.3.3). Moreover in the same section we prove the linearity of the Monge-
Ampère energy Eψ(·) along weak geodesic segments for ψ ∈M+

D, showing also that(
E1(X,ω, ψ), d

)
is a geodesic metric space.

In Section �6.4 we assume {ω} = c1(X) and we develop the variational approach to
study Kähler-Einsten metrics with prescribed singularities. We prove Theorems C
and D. Furthermore, since the ψ-relative α-invariant is an important tool to show
these two theorems, Subsection �6.4.1 is dedicated to de�ne and explore some of the
properties of the function M 3 ψ → αω(ψ).
Finally Section �6.5 includes the proof of Theorems A, B.

6.1.4 Acknowledgments

I would like to thank my advisors Stefano Trapani and David Witt Nyström for
their comments.

6.2 Preliminaries

Letting (X,ω) be a compact Kähler manifold endowed with a Kähler form ω, we
denote with PSH(X,ω) the set of all ω-plurisubharmonic ( ω-psh) functions u, i.e.
all upper semicontinuous function u ∈ L1 such that ω + ddcu ≥ 0 in the sense of
(1, 1)-currents. Here dc := i

2π
(∂ − ∂̄) so that ddc = i

π
∂∂̄.

The maximum of two ω-psh functions u, v still belongs to PSH(X,ω) but min(u, v)
may not be ω-psh. This is one reason to introduce the function

Pω(u, v) :=
(

sup{w ∈ PSH(X,ω) : w ≤ min(u, v)}
)∗

(the star is for the upper semicontinuous regularization), which is ω-psh. It is clearly
the largest ω-psh function which is smaller than u, v. But sometimes we may want to
�nd the largest function w ∈ PSH(X,ω) which is bounded above by v ∈ PSH(X,ω)
and that is more singular than u ∈ PSH(X,ω), where w is more singular than u if
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w ≤ u + C for a constant C ∈ R (we denote such partial order with 4). Thus we
recall the following envelope ([RWN14]):

Pω[u](v) :=
(

lim
C→+∞

Pω(u+ C, v)
)∗
.

If now we take v = 0 we obtain a projection map Pω[·] := Pω[·](0) : PSH(X,ω) →
PSH(X,ω). The image of this map is denoted with M ([Tru19]) and its elements are
called model type envelopes . It is an easy exercise to check that on M the two partial
orders ≤,4 coincides. The de�nition of the set M is essential when one tries to solve
complex Monge-Ampère equations with prescribed singularities ([DDNL18b]), i.e.
equations as {

MAω(u) = ν

[u] = [ψ]
(6.6)

where we set [u] for the equivalence class of u ∈ PSH(X,ω) under the partial order
4, i.e. [u] = [ψ] for ψ ∈ PSH(X,ω) is equivalent to say u− ψ uniformly bounded,
ν is a measure on X and

MAω(u) := 〈(ω + ddcu)n〉

is n-times the non-pluripolar product of the closed and positive current ω + ddcu
(see [BEGZ10]). We also need to recall that the total mass of the Monge-Ampère
operator well-behaves with respect to the partial order 4 by [WN19], i.e.

u 4 v =⇒
∫
X

MAω(u) ≤
∫
X

MAω(v).

Given ψ ∈ PSH(X,ω), E(X,ω, ψ) := {u 4 ψ :
∫
X
MAω(u) =

∫
X
MAω(ψ)} is the

set of all ω-psh functions with ψ-relative full mass .
Finally we underline that PSH(X,ω) is naturally endowed with a weak topology
given by the inclusion PSH(X,ω) ⊂ L1 (i.e. the L1-topology), and that M is weakly
closed. Moreover, setting M+ := {ψ ∈M : Vψ > 0} and given a totally ordered fam-
ily A := {ψi}i∈I ⊂ M+, the Monge-Ampère operator produces an homeomorphism
between A and its image endowed with the weak topology of measures (Lemma 3.12
in [Tru20a]).

6.2.1 Strong topologies

The Monge-Ampère operator may not be continuous with respect to the weak topol-
ogy on PSH(X,ω). Here we recall brie�y a strengthened of the weak topology for
some particular subsets of PSH(X,ω) which is more e�cient when one wants to
study complex Monge-Ampère equations. See our previous works [Tru19], [Tru20a]
and references therein.
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Given ψ ∈ M, the sets E1(X,ω, ψ) ⊂ PSH(X,ω) and M1(X,ω, ψ) ⊂ P(X) :=
{probability measures on X} are de�ned respectively as

E
1(X,ω, ψ) := {u ∈ E(X,ω, ψ) : Eψ(u) > −∞},

M
1(X,ω, ψ) := {Vψν : ν ∈ P(X) satis�es E∗ψ(µ) < +∞}

where Eψ, E∗ψ are the ψ-relative energies . More precisely

Eψ(u) :=
1

n+ 1

n∑
j=0

∫
X

(u− ψ)〈(ω + ddcu)j ∧ (ω + ddcψ)n−j〉

if u has ψ-relative minimal singularities , i.e. [u] = [ψ], and as Eψ(u) := limk→∞Eψ
(

max(u, ψ−
k)
)
otherwise. See [DDNL18b], [Tru19] for many of its properties, here we recall the

following upper semicontinuity.

Proposition 6.2.1 ([Tru20a], Lemma 3.13, Propositions 3.14, 3.15). Let {ψk}k∈N ⊂
M+ be a totally ordered sequence of model type envelopes, and let {uk}k∈N ⊂
PSH(X,ω) such that uk ∈ E1(X,ω, ψk) for any k ∈ N. If uk → u weakly. Then

lim sup
k→∞

Eψk (uk) ≤ EPω [u](u).

Moreover if Eψk (uk) ≥ −C uniformly, then ψk → Pω[u] weakly. In particular for
any C ∈ N, ψ ∈M+ the set

E
1
C(X,ω, ψ) := {u ∈ E

1(X,ω, ψ) : sup
X
u ≤ C andEψ(u) ≥ −C}

is weakly compact.

The ψ-relative energy E∗ψ ([Tru20a]) is instead de�ned as

E∗ψ(ν) := sup
u∈E1(X,ω,ψ)

(
Eψ(u)− VψLν(u)

)
∈ [0,+∞]

where Lν(u) := limk→∞
∫
X

(
max{u, ψ− k} − ψ

)
dν if ν does not charge {ψ = −∞}

and as Lν ≡ −∞ otherwise. We refer to [Tru20a] for its properties.
It is then natural to endow these sets with strong topologies given as the coarsest
re�nements of the weak topologies such that the ψ-relative energies become contin-
uous. Then we have the following summarized result.

Theorem 6.2.2 ([Tru19], [Tru20a]) . Let ψ ∈M+. Then:

i) the strong topology on E1(X,ω, ψ) is a metric topology given by the complete
distance d(u, v) := Eψ(u) + Eψ(v)− 2Eψ

(
Pω(u, v)

)
;

ii) the Monge-Ampère operator MAω(·) produces an homeomorphism

MAω :
(
E

1
norm(X,ω, ψ), d

)
→
(
M

1(X,ω, ψ), strong
)

(6.7)

where we set E1
norm(X,ω, ψ) := {u ∈ E1(X,ω, ψ) : supX u = 0};
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iii) for any Vψν = MAω(u) ∈M1(X,ω, ψ) the equality E∗ψ(ν) = Eψ(u)−
∫
X

(u−
ψ)MAω(u) holds.

Furthermore it is possible to extend the strong topology of E1(X,ω, ψ) considering
di�erent model type envelopes. For {ψk}k∈N ⊂M+ totally ordered set, we say that a
sequence {uk}k∈N such that uk ∈ E1(X,ω, ψk) converges strongly to u ∈ E1(X,ω, ψ)
for ψ ∈M+ weak limit of ψk if uk → u weakly and Eψk (uk)→ Eψ(u).

Proposition 6.2.3 ([Tru20a]) . Let {ψk}k∈N ⊂ M+ be a totally ordered sequence
converging weakly to ψ ∈ M+, and let uk ∈ E1(X,ω, ψk) be a sequence converging
strongly to u ∈ E1(X,ω, ψ). Then there exists a subsequence {ukh}h∈N and two
sequences vh ≥ ukh ≥ wh of ω-psh functions such that vh ↘ u, wh ↗ u almost
everywhere, and in particular uk → u in capacity.

6.2.2 Case with analytical singularities.

In this subsection we assume ψ := Pω[ϕ] ∈M+ where ϕ ∈ PSH(X,ω) has analytical
singularities , i.e. locally ϕ|U = g+ c log

(
|f1|2 + · · ·+ |fk|2

)
where c ∈ R≥0, g ∈ C∞,

and {fj}kj are local holomorphic functions. The coherent ideal sheaf I generated by
these functions has integral closure globally de�ned, hence the singularities of ϕ are
formally encoded in (I, c). We also recall that ϕ has ψ-relative minimal singularities
(see Proposition 4.36 in [DDNL18b]).
It is well-known in this case that there exists a smooth resolution p : Y → X given
by a sequence of blow-ups of smooth centers such that p∗I = OY (−D) for an e�ective
divisor D. Moreover the Siu Decomposition ([Siu74]) of p∗(ω + ddcϕ) is given by

p∗(ω + ddcϕ) = η + c[D]

where η is a big and semipositive smooth (1, 1)-form on Y . We also recall that it
is possible to de�ne the sets E(Y, η) and E1(Y, η) similarly to the Kähler case (see
[BEGZ10]) and that the latter becomes a complete metric space where endowed with
the distance

d(u, v) := E(u) + E(v)− 2E
(
Pη(u, v)

)
.

The quantities Pη(·, ·), E(·) are de�ned in the same way as in the Kähler case.

Proposition 6.2.4 (Lemma 4.6, Proposition 4.7 in [Tru20b]) . The metric spaces(
E1(X,ω, ψ), d

)
,
(
E1(Y, η), d

)
are isometric through the map f : u → ũ := (u −

ϕ) ◦ p, and the the two energies Eψ(·) and E(·) respectively on E1(X,ω, ψ) and on
E1(Y, η) satisfy Eψ(u)− Eψ(ϕ) = E(ũ). Moreover f extends to a bijection f : {u ∈
PSH(X,ω) : u 4 ψ} → PSH(Y, η).
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6.3 Some particular model type envelopes.

In this section ν(u, x) will indicate the Lelong number of u ∈ PSH(X,ω) at x ∈ X,
i.e., �xing an holomorphic chart x ∈ U ⊂ X,

ν(u, x) := sup{γ ≥ 0 : u(z) ≤ γ log ||z − x||2 +O(1) on U }.

We also recall that the multiplier ideal sheaf I(tu), t ≥ 0, of u ∈ PSH(X,ω) is the
analytic coherent and integrally closed ideal sheaf whose germs are given by

I(tu, x) :=
{
f ∈ OX,x such that

∫
V

|f |2e−tuMAω(0) <∞ for some open setx ∈ V ⊂ X
}
.

From now on, we call singularity data associated to a function u the data given by
all the Lelong numbers and all the germs of the multiplier ideal sheaves tu for t > 0.

Proposition 6.3.1 ([Tru20b], Proposition 3.9) . Let u ∈ PSH(X,ω). Then u and
ψ := Pω[u] have the same singularity data, i.e.

ν(u, x) = ν(ψ, x) and I(tu, x) = I(tψ, x) for any t > 0, x ∈ X.

By Theorem 1.2. in [DDNL18b] if Pω[u] = ψ then u ∈ E(X,ω, ψ). The reverse arrow
also holds when ψ ∈M+ by Theorem 1.3 in [DDNL18b].

De�nition 6.3.2. We de�ne the subset MD ⊂M of all model type envelopes ψ ∈M

such that ψ < ψ′ for any ψ′ ∈M with the same singularity data of ψ.

Observe that by de�nition MD includes any ψ ∈ M with analytical singularities
type, i.e. ψ = Pω[u] for u with analytical singularities. Indeed any other ψ′ ∈ M

with the same singularity data of ψ corresponds to a η-psh function for η as in
subsection �6.2.2 and Proposition 6.2.4 gives the claim.
In the next subsection we will prove that for any ψ ∈ M there exists an unique
ψ′ ∈MD with the same singularity data of ψ (see Corollary 6.3.4).

6.3.1 A regularization process

The following key result is a consequence of the well-known Demailly's regularization
Theorem ([Dem92]).

Theorem 6.3.3. Let ψ ∈M. Then there exists a decreasing sequence {ψk}k∈N ⊂M

such that to any u ∈ PSH(X,ω) having the same singularity data of ψ can be
associated a sequence {uk}k∈N with the following properties:

i) for any k ∈ N, uk ∈ E(X,ω, ψk), uk has algebraic singularities and uk has
ψk-relative minimal singularities;

ii) uk converges to u in capacity.
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If |u1 − u2| is bounded over X then |u1,k − u2,k| is uniformly bounded over X.
Moreover ψk ↘ ψ̃ ∈MD where ψ̃ has the same singularity data of ψ.

A function u ∈ PSH(X,ω) with analytic singularities formally encoded in (I, c) is
said to have algebraic singularities when c ∈ Q.

Proof. Step 1: a Demailly's regularization.

As described in [Dem92], for {Wν}ν∈Λ �xed �nite covering of open coordinate sets,
it is possible to choose a �nite open covering {Ωj}j∈J of coordinate balls of radius 2δ
(if δ is small enough) such that any Ωj is contained in at least one Wν and such that
the set of all coordinate balls of radius δ produces another open covering {Ω′j}j∈J .
Then, letting ε(δ) be a continuous function such that ε(δ) → 0 for δ → 0 and such
that ωx′−ωx ≤ ε(δ)ωx/2 for all x, x′ ∈ Ωj , it follows that 0 ≤ −ω−τ∗j γj ≤ 2ε(δ)ω on
Ωj where γj is a (1, 1)-form with constant coe�cients on τj(Ωj) = B2δ(aj) such that
−ω−ε(δ)ω = τ∗j γj at τ

−1
j (aj). We denote by γ̃j the homogeneous quadratic function

in z − aj such that ddcγ̃j = γj . Thus for any j ∈ J , m ∈ N and φ ∈ PSH(X,ω) we
de�ne locally on Ωj

ϕ̂j,m :=
1

m
log
(∑

l

|σj,m,l|2
)

where {σj,m,l}l∈N is an orthonormal base of the Hilbert space HΩj (mϕ̃j) := {f ∈
OΩj (Ωj) : ||f ||2mϕ̃j ,Ωj :=

∫
Ωj
|f |2e−mϕ̃j <∞} for ϕ̃j := φ− γ̃j ◦ τj .

Moreover as proved in Theorem 2.2.1.(Step 3) in [DPS01] we also get

ϕ̂j,m1+m2 ≤
A1

m1 +m2
+

m1

m1 +m2
ϕ̂j,m1 +

m2

m1 +m2
ϕ̂j,m2

for any m1,m2 ∈ N where A1 depends only on n. Therefore in the gluing process
described in [Dem92] (in particular Lemma 3.5), considering ϕj,k := ϕ̂j,2k + A1

2k

instead of ϕ̂j,2k we get (if δ = δ2k goes to 0 very slowly) a decreasing sequence of
almost psh function ϕk such that ω+ddcϕk ≥ −εkω for εk ↘ 0. Next we claim that
ϕk has logarithmic poles along (I(2kϕ), 1

2k
), i.e. locally ϕk|U = 1

2k
log
(
|f1|2 + · · ·+

|fN |2
)

+ g where {fj}Nj=1 are local holomorphic functions which locally generates
I(2kϕ) and where g is a bounded function. Indeed by the gluing process and Lemma
3.6 in [Dem92] for any k, j

ϕk = gj,k +
1

2k
log
(∑

l

|σj,2k,l|
2)

over Ω′j where gj,k are bounded functions. Thus the claim now follows from [Nad89]
(see also Proposition 5.7 in [Dem12]). Then by a regularization argument of Richberg
([Ric68], see also Lemma 2.15 in [Dem92]) we approximate ϕk with a smooth almost-
psh function φk on X \V

(
I(2kφ)

)
such that |φk−ϕk| ≤ 1/k and such that it extends

to a almost-psh function on X with

ω + ddcφk ≥ −2εkω.
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Thus, since φk has the same singularity of ϕk, we get that φk has analytical singu-
larities.
Step 2: the regularization for elements with �xed singularity data.

Next assuming u such that ψ = Pω[u], we apply the regularization just described to
the ω-psh function ũ := u− supX u− 1, obtaining a sequence ũk. Then we de�ne

uk :=
1

1 + 2εk
ũk + sup

X
u+ 1.

By construction uk ∈ PSH(X,ω), uk has algebraic singularities assuming without
loss of generality that {εk}k∈N ∈ Q and, as a consequence of Proposition 6.3.1,
the singularity type [uk] is constant varying u which satis�es Pω[u] = ψ. Therefore
de�ning ψk := Pω[uk] the �rst point follows.
About the convergence in capacity, clearly we may assume supX u = −1. Then we
denote with vk ∈ E(X,ω, ψ) the decreasing sequence of almost-psh function with
logarithmic poles converging to u obtained by the process described above (i.e. the
ϕk's of before). By Hartogs' Lemma (see Proposition 8.4 in [GZ17]) supX vk → −1
and it is immediate to check that vk

1+2εk
becomes a decreasing sequence converging

to u when supX vk ≤ 0. Thus we get that vk
1+2εk

→ u in capacity. Next we note that
for any δ > 0 {

|uk − u| ≥ δ
}
⊂
{∣∣∣ vk

1 + 2εk
− u
∣∣∣ ≥ δ − 1

k(1 + 2εk)

}
since |ũk − vk| ≤ 1/k by construction. Hence taking k = kδ � 0 big enough we get
that {

|uk − u| ≥ δ
}
⊂
{
| vk
1 + 2εk

− u| ≥ δ

2

}
,

which implies that uk → u in capacity.
Assuming |u1 − u2| ≤ C, to prove that u1,k − u2,k is uniformly bounded it is clearly
enough to check that |v1,k − v2,k| is uniformly bounded, where as before we denote
with vi,k the sequence of almost-psh function with logarithmic poles which decreases
to ui for i = 1, 2 (i.e. in the process described above we replace φ, ϕk, ϕ̂j,m, ϕ̃j , ϕj,k
respectively with ui, vi,k, v̂i,j,m, ṽi,j , vi,j,k). Thus if u1 ≤ u2 +C and assuming with-
out loss of generality that supX u1 = supX u2 = −1 then v̂1,j,2k ≤ v̂2,j,2k + C for
any j ∈ J and any k ∈ N since

v̂1,j,2k = sup
f∈B(1)

2

2k
log |f |

where B(1) is the unit ball in HΩj (2
kṽ1,j) and similarly for u2. Hence we get that

|v1,j,k − v2,j,k| is uniformly bounded in j, k and by the gluing process described in
[Dem92] it follows that also |v1,k − v2,k| is uniformly bounded in k.
Step 3: the singularity data of ψ̃.
For this last step, we �rst observe that clearly ψk < ψk+1 which is equivalent to
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ψk ≥ ψk+1. Thus ψ̃ := limk→∞ ψk ∈ M and ψ̃ ≥ ψ by construction since ψk ≥ ψ
for any k ∈ N. Moreover, letting u ∈ E(X,ω, ψ) �xed, by the estimates in [Dem92]

ν(ψk, x) = ν(uk, x)→ ν(u, x) = ν(ψ, x)

for any x ∈ X, which implies ν(ψ̃, x) ≥ limk→∞ ν(ψk, x) = ν(ψ, x) ≥ ν(ψ̃, x) since
ψ 4 ψ̃ 4 ψk for any k ∈ N. Hence ν(ψ̃, x) = ν(ψ, x) for any x ∈ X.
Next �x t > 0, and set u := ψ− 1. Since ψ̃ ≥ ψ we immediately have I(tψ) ⊂ I(tψ̃).
Viceversa we claim that

I(tψ) ⊃ I
(
(1 + τk)tũk

)
= I
(
(1 + τk)(1 + 2εk)tuk

)
(6.8)

for τk = t
2k−t if k � 1 such that 2k > t where ũk = (1 + 2εk)uk is the almost psh

function with analytic singularities formally encoded in (I(2kψ), 1
2k

) constructed in
Step 1. The inclusion in (6.8) would imply

I(tψ) ⊃ I
(
(1 + τk)(1 + 2εk)tψ̃

)
since uk < ψ̃ for any k ∈ N. Thus since by the resolution of the strong openness
conjecture (see [GZ15]) I

(
(1 + ε)tψ̃

)
= I(tψ̃) if 0 < ε � 1 small enough, we would

get
I(tψ) ⊃ I

(
tψ̃
)

letting k →∞. Hence I(tψ) = I(tψ̃).
To prove the inclusion in (6.8) we �rst note that for any U ⊂ X open set and any
holomorphic function f over U , we have∫

U

|f |2e−tuωn =

=

∫
U∩{u≥(1+τk)ũk}

|f |2e−tuωn +

∫
U∩{u<(1+τk)ũk}

|f |2e2k(ũk−u)e(2k−t)u−2kũkωn ≤

≤
∫
U

|f |2e−(1+τk)tũkωn +

∫
U

e2k(ũk−u)ωn

since (2k−t)u−2kũk < 0 over {u < (1+τk)ũk} by the choice of τk = t
2k−t . Moreover

e2k(ũk−u) ∈ L1
loc since ũk has analytic singularities formally encoded in

(
I(2ku), 1

2k

)
.

Therefore the inclusion in (6.8) follows.
Finally since by construction ψ̃ ≥ ψ′ for any ψ′ ∈M with the same singularity data
of ψ (simply switching ψ with ψ′), ψ̃ is a maximal element in M for �xed singularity
data, i.e. ψ̃ ∈MD which concludes the proof.

We say that ψ ∈M has analytic (resp. algebraic) singularities type if ψ = Pω[ϕ] for
ϕ ∈ PSH(X,ω) with analytic (resp. algebraic) singularities.
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Corollary 6.3.4. For any ψ ∈M there exists an unique ψ′ ∈MD having the same
singularity data of ψ. Moreover if ψ1, ψ2 ∈ MD and the singularity data of ψ1

are worse than the singularity data of ψ2 (i.e. ν(ψ1, x) ≥ ν(ψ2, x) and I(tψ1, x) ⊂
I(tψ2, x) for any x ∈ X, t > 0), then ψ1 4 ψ2.

Proof. The �rst statement is a trivial consequence of Theorem 6.3.3.
Next if ψ1,k, ψ2,k ∈MD are the sequences with algebraic singularities type converg-
ing respectively to ψ1, ψ2 given by Theorem 6.3.3 with respect to the same Demailly's
regularization, then we have ψ1,k ≤ ψ2,k if the singularity data of ψ1 are worse than
the singularity data of ψ2, which concludes the proof.

Theorem 6.3.3 implies that the elements in MD can be approximated by a decreasing
sequence of model type envelopes with algebraic singularities type. This property
de�nes the set MD as immediate consequence of the following result.

Proposition 6.3.5. Let {ψk}k∈N ⊂MD be a decreasing sequence converging to ψ.
Then ψ ∈MD.

Proof. Let ψ′ ∈MD having the same singularity data of ψ. Then by Corollary 6.3.4
ψk < ψ′ for any k ∈ N, which is equivalent to ψk ≥ ψ′ since we are considering
model type envelopes. Hence ψ ≥ ψ′, which implies ψ = ψ′ and concludes the
proof.

The following example shows that MD is a proper subset of M.

Example 6.3.6. Let K ⊂ P1 be a polar Cantor set, ω = ωFS be the Fubini-
Study metric on P1, and µK be the measure on C associated to K. Then the
potential u(z) :=

∫
C

log |z − w|dµK(w) is a subharmonic function on C, harmonic
on C \ Supp(µK) = C \ K and u(z) = µK(C) log |z| + O(|z|−1) as z → ∞ (see
Theorem 3.1.2 in [Rans]). Thus, up to rescaling the Fubini-Study metric, u extends
to an ωFS-psh function, i.e. u ∈ PSH(P1, ωFS). Moreover since µK has no atoms,
ν(u, z) = 0 for any z ∈ P1, which by Skoda's Integrability Theorem ([Sko72], see
also Theorem 6.4.10 below) implies that u has trivial singularity data. Therefore by
Proposition 6.3.1, the family of model type envelopes {ψt := Pω[tu]}t∈[0,1] ⊂M has
constant singularity data, but Vψt =

∫
X
MAω(tu) = (1 − t)

∫
X
ω + t

∫
X
MAω(u) =

(1 − t)
∫
X
ω since MAω(u) is concentrated on K which is polar. Hence clearly

{ψt}t∈(0,1] ⊂M \MD.

Finally it is remarkable to observe that M+
D is a star domain with respect to 0 ∈M+

D

as our next result shows.

Proposition 6.3.7. Let ψ ∈M+
D and t ∈ [0, 1]. Then tψ ∈M+

D.

Proof. De�ne ψt := Pω[tψ] ∈M+ for any t ∈ [0, 1]. We want to prove that ψt ∈MD

and that ψt = tψ.
Since ψ ∈MD by Theorem 6.3.3 there exists a decreasing sequence {ψk = Pω[ϕk]}k∈N ⊂
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M+
D of model type envelopes with algebraic singularity type converging to ψ. We

indicated with ϕk the ω-psh functions with algebraic singularities. Then, for any t ∈
[0, 1) the sequence {ψk,t := Pω[tϕk]} is clearly a decreasing sequence with analytic
singularity type, which implies that ψ′t := limk→∞ ψk,t ∈ MD by Proposition 6.3.5.
Moreover since ϕk has ψk-relative minimal singularities we have ψk,t = Pω[tψk], and
by construction

Vψk,t =

∫
X

MAω
(
tψk
)

=

n∑
j=0

tn−j(1− t)j
∫
X

〈ωj ∧ (ω + ddcψk)n−j〉.

Observe also that Vψk ↘ Vψ by what said in section �6.2 since ψk are model type
envelopes decreasing to ψ. More generally we have∫

X

〈ωj ∧ (ω + ddcψk)n−j〉 →
∫
X

〈ωj ∧ (ω + ddcψ)n−j〉

for any j = 0, . . . , n by Proposition 4.8 in [DDNL19] since we are assuming Vψ > 0.
Hence Vψk,t → Vψ′t = Vψt > 0, which implies that ψt = ψ′t by Theorem 1.3. in

[DDNL18b] since by construction ψt is more singular than ψ′t, i.e. ψt ∈M+
D for any

t ∈ [0, 1].
Next since for any k ∈ N, tϕk has ψk,t-relative minimal singularities, we get that
ψk,t + (1− t)ψk is more singular than ψk, i.e.

ψk,t ≤ tψk.

Letting k → ∞ we obtain ψt ≤ tψ, which implies ψt = tψ and concludes the
proof.

6.3.2 Geodesic segments.

De�nition 6.3.8. Let S := {t ∈ C : 0 < Re t < 1} be the open strip and let u0, u1 ∈
PSH(X,ω). The elements U ′ ∈ PSH(X ×S, π∗Xω) such that lim supt→0+ U ′(·, t) ≤
u0 and lim supt→1− U

′(·, t) ≤ u1 are called weak subgeodesics of u0, u1, and if there
exists at least one of these subgeodesics then the π∗Xω-psh function

ut(p) := U(p, t) :=
(

sup{U ′ ∈ PSH(X × S, π∗Xω) : U ′ subgeodesic of u0, u1}
)∗

is called weak geodesic joining u0, u1.

The next Proposition explores the properties of weak geodesics segments joining
potentials in E1(X,ω, ψ) for ψ ∈ M. We denote with Hω := {u ∈ PSH(X,ω) :
ω + ddcu is Kähler} the set of all Kähler potentials.

Proposition 6.3.9. Let u0, u1 ∈ E1(X,ω, ψ) for ψ ∈ M+. Then the followings
holds:
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i) there exists the weak geodesic ut(p) = U(t, p) ∈ PSH(X×S, π∗Xω) and it only
depends on Re t in the t-variable;

ii) ut ∈ E1(X,ω, ψ) for any t ∈ [0, 1];

iii) letting {uk0}k∈N, {uk1}k∈N ⊂ Hω be decreasing sequences such that uk0 ↘ u0, u
k
1 ↘

u1 and letting ukt the weak geodesic joining uk0 , u
k
1 , the convergence ukt ↘ ut

holds.

Moreover if u0, u1 have ψ-relative minimal singularities, then

iv) ut → u0, ut → u1 in capacity;

v) ut has ψ-relative minimal singularities for any t ∈ S;

vi) |ut − us| ≤ C|Re t− Re s| for any t, s ∈ S where C := ||u1 − u0||∞.

The existence of the approximations of point (iii) is contained in [BK07] while the
existence of the weak geodesics joining elements in Hω is shown in [Chen00].

Proof. By Proposition 2.10 in [Tru19] Pω(u0, u1) ∈ E1(X,ω, ψ), thus (i) and (iii)
follows directly from Theorem 5.(i) in [Dar17]. Then by the Re t-convexity we obtain
Pω(u0, u1) ≤ ut ≤ (Re t)u1 + (1 − Re t)u0, hence (ii) is given by the monotonicity
of Eψ.
Next, assuming u0, u1 with ψ-relative minimal singularities, (iv) is a consequence of
the second part of Theorem 5 in [Dar17] since by de�nition it is immediate to check
that Pω[u0](u1) = u1 and similarly by simmetry. Then, letting C := ||u0 − u1||L∞ ,
from

max
{
u0 − CRe t, u1 + C(Re t− 1)

}
≤ ut ≤ (Re t)u1 + (1− Re t)u0

we obtain that ||u0 − ut||L∞ ≤ C, which implies that ut has uniformly bounded in
ψ-relative minimal singularities and in particular (v) follows. Moreover (i) and the
Re t-convexity of ut yield that the t-derivative of ut is increasing. On the other hand
the inequality

max
{
− CRe t, u1 − u0 + C(Re t− 1)

}
≤ ut − u0

implies that the one-side derivative at 0 of ut lie between −C and C. Similarly
for the one-side derivative at 1 of ut. Hence it follows that all the t-derivatives are
bounded between −C,C, which gives (vi) concluding the proof.

Since the weak geodesic joining two elements u0, u1 ∈ E1(X,ω, ψ) depends only on
Re t in the t-variable, with weak geodesic segment we will mean the path [0, 1] 3
t→ ut.
When ψ ∈ M+ has algebraic singularities type it is possible to relate the weak
geodesics in E1(X,ω, ψ) in terms of the weak geodesics in E1(Y, η), keeping the same
notation of subsection 6.2.2.
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Proposition 6.3.10. Let u0, u1 ∈ E1(X,ω, ψ) and let ũ0 = (u0 − ϕ) ◦ p, ũ1 =
(u1 − ϕ) ◦ p ∈ E1(Y, η). Then the weak geodesic U joining u0, u1 is given by

U = (p× Id)∗Ũ + Φ

where Ũ is the weak geodesic joining ũ0, ũ1 and Φ ∈ PSH(X × S, π∗Xω) is the
constant weak geodesic at ϕ, i.e. Φ(·, t) = ϕ(·) for any t ∈ S

Proof. By Proposition 6.3.9 there exists the geodesic U joining u0, u1 and ut ∈
E1(X,ω, ψ) for any t. Then by Proposition 6.2.4 the function

Ũ := (U − Φ) ◦ (p× Id)

satis�es ũt ∈ E1(Y, ω) for any t ∈ S. Moreover it depends only on Re t on the t-
variable, and it is not di�cult to check that it is upper semicontinuous and regular
enough to consider the (1, 1)-current π∗Y η + ddcw,tŨ , which satis�es

(p× Id)∗
(
π∗Xω + ddcz,tU

)
= π∗Y η + ddcw,tŨ + cπ∗Y [D] (6.9)

where we are using the same notations of subsection 6.2.2. Therefore since π∗Y η +
ddw,tŨ is positive on each �ber and since U ∈ PSH(X × S, π∗Xω) from (6.9) we get
that π∗Y η + ddw,tŨ ≥ 0, i.e. Ũ is a weak subgeodesic joining ũ0, ũ1.
On the other hand letting Ṽ ∈ PSH(Y ×S, π∗Y η) be the weak geodesic joining ũ0, ũ1,
we obtain that

V := (p× Id)∗Ṽ + Φ

is a weak subgeodesic joining u0, u1 from the equality (6.9) for V, Ṽ . Moreover V ≥ U
by construction since Ṽ is the weak geodesic, which implies that V = U . Hence
Ṽ = Ũ , i.e. Ũ is the weak geodesic joining ũ0, ũ1 and the proof is concluded.

The reason of considering ψ ∈ M+
D in Theorems C, D is because we can prove that

the space
(
E1(X,ω, ψ), d

)
is geodesic showing also that any weak geodesic is a metric

geodesic. Moreover along these geodesics the ψ-relative energy becomes linear.

Theorem 6.3.11. Let ψ ∈ M+
D and let U be the weak geodesic joining u0, u1 ∈

E1(X,ω, ψ). Then Eψ is linear along [0, 1] 3 t → ut := U(t, ·) ∈ E1(X,ω, ψ) which
is also a geodesic segment in

(
E1(X,ω, ψ), d

)
, i.e.

d(ut, us) = |t− s|d(u0, u1).

Proof. We set u0,k := max(u0, ψ − k), u1,k := max(u1, ψ − k) observing that by
construction the sequence of weak geodesic segments Uk joining u0,k, u1,k decreases
to U (see Proposition 6.3.9). In particular since the ψ-relative energy Eψ and the
distance d are continuous along decreasing sequences in E1(X,ω, ψ) we may assume
that u0, u1 have ψ-relative minimal singularities.
Moreover if ψ = Pω[ϕ] for ϕ with analytical singularities, then the results required
follow combining Proposition 6.2.4 with Proposition 6.3.10. Indeed, keeping the
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same notation of subsection 6.2.2, by Theorem 3.12 in [DDNL18a] the energy E(·)
for E1(Y, η) is linear along weak geodesic segments, which are metric geodesic in(
E1(X, η), d

)
by Proposition 3.13 in [DDNL18c].

For general ψ ∈M+
D, by Theorem 6.3.3 there exist {ψk} ∈M+

D, decreasing sequence
converging to ψ of model type envelopes with algebraic singularity type, and uk0 , u

k
1 ∈

E1(X,ω, ψk) two sequences decreasing respectively to u0, u1. Observe that ||uk0 −
uk1 ||L∞ is uniformly bounded since we are assuming u0, u1 with ψ-relative minimal
singularities. Moreover by the �rst part of the proof the weak geodesic segment
[0, 1] 3 t→ ukt ∈ E1(X,ω, ψk) joining uk0 , u

k
1 is a metric geodesic in

(
E1(X,ω, ψk), d

)
and Eψk is linear along it. Futhermore for any t, s ∈ [0, 1], ||ukt − uks ||L∞ ≤ C for an
uniform constant C and ukt decreases to ut by Proposition 6.3.9 as k → ∞. Hence
the results required follow from the convergences

d(ukt , u
k
s )→ d(ut, us),

Eψk (ukt )→ Eψ(ut)

as k →∞, given by Lemma 4.3 in [Tru19].

6.4 [ψ]-KE metrics with prescribed singularities.

From now on we will assume {ω} = c1(X), i.e. X is a Fano manifold and ω is a
Kähler form in the anticanonical class.
With Mklt we denote the set of all the model type envelopes ψ such that (X,ψ)
is klt, i.e. as said in the Introduction I(ψ) = OX . Note that by the resolution of
the openness conjecture ([GZ15]) ψ ∈ Mklt if and only if there exists p > 1 such
tha e−ψ ∈ Lp. Moreover for a pair (X,ψ) being klt is independent on the Kähler
form chosen, i.e. it holds for quasi-psh functions. We will also use the notation
M+
klt := Mklt ∩M+ and similarly for M+

D,klt.

Proposition 6.4.1. M+ and M+
klt are star domains with respect to 0 as subset of

PSH(X,ω).

Proof. It is clearly enough to prove the result for M+. Letting ψ ∈ M+, we de�ne
[0, 1] 3 t→ ψt := Pω[tψ], and we want to prove its weakly continuity. Thus, letting
tk ↗ t̄ ∈ [0, 1] (resp. tk ↘ t̄ ∈ [0, 1]), we observe that the sequence ψtk converges
weakly and monotonically to a model type envelope ψ′t̄ which is more singular (resp.
less singular) than ψt̄. But by construction it follows that

Vψtk =

∫
X

tn−jk (1− tk)j〈ωj ∧ ωjψ〉 → Vψt̄ ,

which by Theorem 1.3 in [DDNL18b] implies that ψ′t̄ = ψt̄ since we are assuming
Vψ > 0.
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Recall that a positive measure µ on X is said to have well-de�ned Ricci curvature if
it corresponds to a singular metric on KX , i.e. locally

µ = e−f in
2

Ω ∧ Ω̄

where f ∈ L2
loc and Ω is a nowhere zero local holomorphic section of KX , and in

such case Ric(µ) := ddcf (see [Berm16], [BBJ15]). We also set Ric(ω + ddcu) :=
Ric
(
MAω(u)

)
for any u ∈ PSH(X,ω) so that it coincides with the usual de�nition

of the Ricci curvature when u ∈ C∞.

De�nition 6.4.2 ([Tru20b]) . Let u ∈ PSH(X,ω). Then ωu := ω + ddcu is said
to be a Kähler-Einstein metric with prescribed singularities [ψ] ([ψ]-KE metric) if it
has well-de�ned Ricci curvature,

Ric(ωu) = ωu (6.10)

and u ∈ E1(X,ω, ψ).

The abuse of language comes from the fact that actually ωu is the curvature of a
(class of) singular metric on −KX which is Kähler-Einstein metric in the weak sense
of (6.10).
Similarly to the absolute case ψ = 0, ωu is a [ψ]-KE metric if and only u solves the
complex Monge-Ampère equation{

MAω(u) = e−u+Cµ

u ∈ E1(X,ω, ψ)
(6.11)

for C ∈ R where µ is a suitable volume form on X such that Ric(µ) = ω (Lemma
4.3 in [Tru20b]), i.e. µ = e−fωn for f Ricci potential. Note that combining the reso-
lution of the openness conjecture, Proposition 6.3.1 and Theorem A in [DDNL18d],
any solution u of (6.11) has ψ-relative minimal singularities.

De�nition 6.4.3. We de�ne the Kähler-Einstein (KE) locus of M as

MKE := {ψ ∈M
+ : there exists a [ψ]-KE metric}.

Clearly MKE ⊂ M+
klt since the assumption (X,ψ) klt is necessary to the existence

of a solution of (6.11).

Remark 6.4.4. MKE is not empty. Indeed letting D smooth divisor in | − rKX |
for r ∈ N, and letting ϕD ∈ PSH(X,ω) such that ω + ddcϕD = 1

r
[D], then �nding

a [ψt]-KE metric for ψt := Pω[tϕD] and t ∈ [0, 1) is equivalent to solve

Ric(ηv) = ηv +
t

r
[D]
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where η = (1− t)ω. Thus rescaling we get the renowned path

Ric(ωw) = (1− t)ωw +
t

r
[D] (6.12)

used for instance in [CDS15]. It is then well-known ([Berm13], [JMR16]) that (6.12)
admits a solution for 0 � t < 1 close to 1. Hence there exists a [ψt]-KE metric for
0� t < 1 close to 1.

The set of all [ψ]-KE metrics varying ψ ∈M+
klt includes all possible log KE metrics

with respect to (X,D) where D varies among all e�ective klt R-divisors such that
−(KX +D) is ample. But clearly the set of all ψ ∈M+

klt with analytic singularities
type is much bigger than the one associated to pairs (X,D) as above. However,
considering a resolution of the ideal I associated to ψ, it is still possible to describe
the set of all [ψ]-KE metrics in a more classical way.

Proposition 6.4.5 ([Tru20b], Proposition 4.8 and Theorem 4.9). Let ψ = Pω[ϕ] ∈
M+
klt with analytic singularities type formally encoded in (I, c). Then any [ψ]-KE

metric is smooth outside V (I). Morever, letting p : Y → X be a resolution of the
ideal I and letting η be the big and semipositive (1, 1)-form such that p∗(ω+ddcϕ) =
η+c[D], the set of all [ψ]-KE metrics is in bijection with the set of all log-KE metrics
in the class {η} with respect to the weak log Fano pair (Y,∆) for ∆ := cD −KY/X .

In Proposition 6.4.5 with KY/X we indicate the relative canonical divisor of p :
Y → X, i.e. KY/X = KY − p∗KX . Note that the divisor ∆ = cD − KY/X is
neither necessarily e�ective nor necessarily antie�ective. Indeed when p = Id as
described above ∆ is clearly e�ective, while considering ψ = Pω[ϕ] for ϕ with analytic
singularities along one point x ∈ X such that δ := ν(ϕ, x) < n − 1 it follows that,
for p = BlxX : Y → X, ∆ = −(n− 1− δ)E where E is the exceptional divisor.
Observe that when η is Kähler and ∆ is e�ective then any log KE metric in the class
{η} has conic singularities along D on its simple normal crossing locus by Theorem
6.2 in [GP16].

6.4.1 ψ-relative alpha invariant.

We introduce the key concept of ψ-relative α-invariant which generalizes to the
relative setting the renowned Tian's α-invariant ([Tian87]).

De�nition 6.4.6. Let ψ ∈M. We de�ne the ψ-relative α-invariant αω(ψ) as

αω(ψ) := sup
{
α ≥ 0 : sup

{u4ψ : supX u=0}

∫
X

e−αudµ <∞
}
,

It is often more useful to use the following equivalent form of αω(ψ) in terms of the
complex singularity exponents (see also [DK01]).
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Lemma 6.4.7. Let ψ ∈ M and de�ne, for any u ∈ PSH(X,ω), c(u) := sup{α ≥
0 :

∫
X
e−αudµ <∞}. Then

αω(ψ) = inf
u4ψ

c(u).

In the absolute setting ψ = 0 this characterization of the α-invariant was proved by
Demailly (see for instance Proposition 8.1 in [Tos12]). The proof for the ψ-relative
setting is similar but we report it here for the courtesy of the reader.

Proof. By de�nition clearly αω(ψ) ≤ c(u) for any u 4 ψ with supX u = 0. So the
�rst inequality immediately follows observing that c(u) = c(u − supX u) for any
u 4 ψ.
Next assume by contradiction that there exists α > 0 such that αω(ψ) < α <
infu4ψ c(u). Then we can �nd a sequence {uj}j∈N ⊂ PSHnorm(X,ω, ψ) := {u 4
ψ : supX u = 0} such that ∫

X

e−αujdµ ≥ j (6.13)

for any j ∈ N. Moreover by weak compactness of {u ∈ PSH(X,ω) : supX u =
0} we may also assume that uj → u ∈ PSHnorm(X,ω, ψ) weakly. In particular∫
X
e−αudµ < ∞ since α < c(u). Hence by Theorem 6.4.8 quoted below e−αvj →

e−αv in L1, which contradicts (6.13) and concludes the proof.

Theorem 6.4.8 ([DK01]) . Let (X,ω) be a compact Kähler manifold. Then PSH(X,ω) 3
u → c(u) is lower semicontinuous with respect to the weak topology. Moreover if
{uk}k∈N ⊂ PSH(X,ω) converges weakly to u ∈ PSH(X,ω), then

e−αuk → e−αu

in L1 for any α < c(u).

We can now study more in detail the function

M 3 ψ → αω(ψ).

Proposition 6.4.9. The following properties hold:

i)
(
M,4

)
3 ψ → αω(ψ) ∈ (0,+∞) is decreasing and right-continuous;

ii) letting ψt := Pω[tψ0 + (1− t)ψ1] ∈M for t ∈ [0, 1] where ψ0, ψ1 ∈M such that
ψ0 < ψ1, then for any t, s ∈ [0, 1], t ≥ s

tαω(ψt) ≥ sαω(ψs),

i.e. [0, 1] 3 t→ tαω
(
ψt
)
is increasing.
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Proof. As immediate consequence of Lemma 6.4.7 αω(·) is clearly decreasing, i.e. it
decreases when the singularities decreases, and αω(0) > 0 by the uniform version
of the Skoda's Integrability Theorem recalled below (Theorem 6.4.10). Then letting
{ψk}k∈N ⊂ M decreasing to ψ ∈ M we want to prove that αω(ψk) → αω(ψ) as
k →∞. By monotonicity, we may assume by contradiction that there exists α > 0
such that αω(ψk) < α < αω(ψ) for any k ∈ N. This implies that for any k ∈ N there
exists an element uk ∈ PSHnorm(X,ω, ψk) := {u ∈ PSH(X,ω) : u 4 ψk, supX u =
0} such that ∫

X

e−αukdµ ≥ k. (6.14)

By weak compactness we may also suppose uk → u ∈ PSH(X,ω) weakly. Thus
since uk ≤ ψk by construction and ψk ↘ ψ, we obtain u ∈ PSHnorm(X,ω, ψ). In
particular ∫

X

e−αudµ <∞

since by assumption α < αω(ψ). Finally Theorem 6.4.8 implies that e−αuk → e−αu

in L1 which contradicts (6.14) and concludes the proof of (i).
Next suppose {ψt}t∈[0,1] ⊂ M as in (ii) and let s, t ∈ (0, 1] such that t ≥ s. Then
for any u ∈ PSH(X,ω, ψt) we claim that the ω-function

v :=
s

t
u+

t− s
t

ψ1 (6.15)

belongs to PSH(X,ω, ψs). Indeed v is clearly more singular than s
t
ψt + t−s

t
ψ1, and

for any C > 0 the function ψt,C := Pω
(
tψ0 + (1− t)ψ1 +C, 0

)
is more singular than

tψ0 + (1− t)ψ1, i.e.

s

t
ψt,C +

t− s
t

ψ1 4
s

t

(
tψ0 + (1− t)ψ1

)
+
t− s
t

ψ1 = sψ0 + (1− s)ψ1,

which implies that s
t
ψt,C + t−s

t
ψ1 ≤ ψs since ψt,C , ψ0, ψ1 ≤ 0. Thus letting C →∞

and taking the upper semicontinuity regularization we get s
t
ψt + t−s

t
ψ1 ≤ ψs which

concludes the claim. Then for any 0 < α < αω(ψs), letting u ∈ PSH(X,ω, ψt) and
v ∈ PSH(X,ω, ψs) as in (6.15) the inequality∫

X

e−
s
t
αudµ =

∫
X

e−αve
α(t−s)

t
ψ1dµ ≤

∫
X

e−αvdµ

implies tc(u) ≥ sα. Hence Lemma 6.4.7 concludes the proof.

Theorem 6.4.10 ([Zer01]) . Let K ⊂ PSH(X,ω) be a weakly compact set such that
supx∈X supu∈K ν(u, x) < 2. Then

sup
u∈K

∫
X

e−uωn < +∞.
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Since when ψ has algebraic singularities type, �nding a [ψ]-KE metric is equivalent
to �nd a log-KE metric on a resolution (Proposition 6.4.5), it is natural to wonder if
it is possible to express αω(ψ) algebraically and what is the connection between this
new invariant and the usual log α-invariant . Letting (Y,∆) be a weak log Fano pair,
i.e. Y be a projective variety (which for our purpose we can assume smooth) and ∆
be a Q-divisor such that (Y,∆) is klt and −(KY + ∆) =: L is big and semipositive,
the log α-invariant of the pair (Y,∆) is de�ned as

α(Y,∆) := sup{α ∈ Q≥0 : (Y,∆ + αF ) is klt for any F ≥ 0 Q-divisor

such that F ∼Q L} = inf
F∼QL,F≥0

lct(Y,∆, F ) (6.16)

where ∼Q is the linear equivalence extended under rescaling, i.e. there exists r ∈ N
such that rF ∈ |rL|, and where lct(Y,∆, F ) := sup{α ∈ Q≥0 : (Y,∆ + αF ) is klt}
is the log canonical threshold of F with respect to (Y,∆). We refer to [Kol13]
and [Kol96] for the theory of singularities of pairs (X,D), here we just need to
recall the following analytical description (see Proposition 3.20 in [Kol96]): a pair
(Y,∆ + αF ) is klt over a projective manifold Y if and only if e−αvF ν(Y,∆) ∈ L1

where if F =
∑m
j=1 ajFj for prime divisors Fj then vF =

∑m
j=1 aj log |sj |2hj for sj

are holomophic sections cutting Fj and hj are smooth metrics on OY (Fj). Here
ν(Y,∆) is an adapted measure associated to the pair (Y,∆), in particular letting

Dj prime divisors such that ∆ =
∑l
k=1 bkDk, tk holomorphic sections cutting the

divisors Dk and h̃k smooth metric on OY (Dk), then ν(Y,∆) = e
−

∑l
k=1 bk log |sDk |

2
h̃k dV

for a suitable volume form dV on Y (see [BBJ15]).

Remark 6.4.11. Considering the example in Remark 6.4.4, with the same nota-
tions, it is easy to see from the de�nitions that, letting νt := ν(

X, t
r
D
), we have

αω(ψt) = sup
{
α > 0 : sup

u∈PSH(X,ω),supX u=0

∫
X

e−αue(1−α)ϕDdνt <∞
}
,

α
(
X,

t

r
D
)

= sup
{
α > 0 : sup

u∈PSH(X,ω),supX u=0

∫
X

e−αudνt <∞
}
.

Hence in particular αω(ψt) ≥ min{1, α
(
X, t

r
D
)
}, i.e. αω(ψt) is a �ner invariant

than α
(
X, t

r
D
)
since what matter is understanding when these quantities are larger

than n/(n+ 1) (by the general theory for the log setting, i.e. to get the existence of
log KE metrics).

Lemma 6.4.12. Let (Y,∆) be a weak Fano pair and η be a smooth (1, 1)-form
representative of c1(L) where L := −(KY + ∆). Let also D be an e�ective Q-divisor
on Y , and θ smooth (1, 1)-form on {[D]}. Then

inf
F∼QL,F≥0

lct(Y,∆, F +D) = inf
v∈PSH(Y,η)

lct(Y,∆, v +D) (6.17)
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where we set lct(Y,∆, v +D) := sup{α ∈ Q≥0 :
∫
Y
e−α(v+vD)dν(Y,∆) < ∞} for vD

quasi-psh function such that θ + ddcvD = [D].

Proof. One inequality in (6.17) follows immediately from the fact that to any e�ec-
tive Q-divisor F ∼Q L it is associated a function vF ∈ PSH(Y, η) such that η +
ddcvF = [F ] (obviously vF is de�ned up to an additive constant), and lct(Y,∆, F +
D) = lct(Y,∆, vF +D) by what said above.
For the reverse inequality, letting ω′ be a �xed Kähler form, we �rst assume v ∈
PSH(X, η) such that η + ddcv ≥ εω′ (i.e. a Kähler current). Then �x r ∈ N
such that rL is a line bundle and denote with h the singular hermitian metric
on rL associated to rη + ddcrv. It is then well-known that for any k ∈ N the set
H0
(
Y,Lkr⊗I(krv)

)
of holomorphic sections σ ∈ H0(Y,Lkr) such that

∫
Y
|σ|2hkω

′n <
∞ is a not-empty �nite-dimensional Hilbert space. Choose for any k ∈ N an element
σk ∈ H0

(
Y,Lkr ⊗ I(krv)

)
of norm 1 and de�ne

wk := v +
1

kr
log |σ|2hk ∈ PSH(Y, η).

Then since (Y,∆) is klt there exists f ∈ Lp
′
for p′ > 1 such that ν(Y,∆) = fω′n.

We denote with q′ the Sobolev conjugate exponent of p′. For k ∈ N and α <

lct(Y,∆, wk + D) �xed, we also set c := αq′

r
, p := 1 + k

c
and q := 1 + c

k
. Clearly

p, q are Sobolev conjugate exponents. Then by construction and using Hölder's
inequality twice, we obtain

∫
Y

e
− rk
pq′ (v+vD)

dν(Y,∆) =

∫
Y

(
e
rk
pq′ (wk−v)

e
− rk
pq′ (wk+vD)

)
dν(Y,∆) ≤

≤
(∫

Y

e
rk
q′ (wk−v)

fω′n
) 1
p
(∫

Y

e
− rkq
pq′ (wk+vD)

dν(Y,∆)

) 1
q ≤

≤ ||f ||1/p
Lp
′
(ω′n)

(∫
X

e−rk(wk−v)ω′n
) 1
p
(∫

Y

e
− rkq
pq′ (wk+vD)

dν(Y,∆)

)
≤

≤ ||f ||1/p
Lp
′
(ω′n)

(∫
Y

e−α(wk+vD)dν(Y,∆)

)1/q

< +∞. (6.18)

Thus lct(Y,∆, v +D) ≥ rk

q′(1+ k
c

)
, i.e.

lct(Y,∆, v +D) ≥ rk

rk + q′lct(Y,∆, wk +D)
lct(Y,∆, wk +D)

by the arbitrariness of α < lct(Y,∆, wk +D). Therefore since η + ddcwk = [Fk] for
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a Q-e�ective divisor Fk by construction, it follows that

lct(Y,∆, v +D) ≥ lim inf
k→∞

( rk

rk + q′lct(Y,∆, Fk +D)
lct(Y,∆, Fk +D)

)
≥

≥ inf
F∼QL,F≥0

lct(Y,∆, F +D) lim inf
k→∞

rk

rk + q′lct(Y,∆, Fk +D)
=

= inf
F∼QL,F≥0

lct(Y,∆, F +D) (6.19)

using also lct(Y,∆, Fk +D) ≤ lct(Y,∆, D) < +∞.
Since L is big, we can now �x v ∈ PSH(Y, η) such that η + ddcv ≥ εω′ (i.e.
a Kähler current) and note that for any w ∈ PSH(Y, η) and for any t ∈ [0, 1),
wt := tw+(1−t)v ∈ PSH(Y, η) is a Kähler current since ηwt ≥ (1−t)εω′. Moreover

lct(Y,∆, wt +D) = sup
{
α ∈ Q≥0 :

∫
Y

e−α(wt+vD)dν(Y,∆) < +∞
}
≤

≤ sup
{
α ∈ Q≥0 :

∫
Y

e−αt(w+vD)dν(Y,∆) < +∞
}

=
1

t
lct(Y,∆, w +D) (6.20)

since wt + vD is more singular than t(w+ vD) for t ∈ [0, 1). Hence combining (6.19)
and (6.20) the conclusion follows letting t→ 1.

Proposition 6.4.13. Assume ψ = Pω[ϕ] ∈ Mklt with algebraic singularities type
formally encoded in (I, c). Let p : Y → X, η, D and ∆ as in Proposition 6.4.5, and
let L be the Q-line bundle on Y such that c1(L) = {η}. Then

min{1, α(Y,∆)} ≤ αω(ψ) ≤ 1 + inf
F∼QL,F≥0

lct(Y,∆, F + cD). (6.21)

Proof. Since p∗(ω) = η + θ for θ smooth (1, 1)-form and p∗(ω + ddcϕ) = η + c[D],
letting vD such that θ+ ddcvD = c[D], it follows from pluriharmonicity that ϕ ◦ p =
vD + a for a constant a, which we may assume to be equal to 0 up to replace vD.
Moreover as proved in Proposition 4.8 in [Tru20b] it is not di�cult to check that
over the open Zariski set Ω where p is an isomorphism we have

p−1
∗
(
e−ϕµ

)
= ν(Y,∆) (6.22)

where ν(Y,∆) is an adapted measure of the pair (Y,∆). Thus since p is an isomor-
phism outside a pluripolar set, we can extend to 0 the measure ν(Y,∆) and (6.22)
means that the lift of e−ϕµ is equal to ν(Y,∆). Therefore for any α ≥ 0 and for any
u 4 ψ we obtain that e−αuµ lifts to e−αũ−(α−1)vDν(Y,∆) using also Proposition 6.2.4
(and its notations). It follows that

αω(ψ) = inf
u4ψ

c(u) = inf
ũ∈PSH(Y,η)

sup
{
α ≥ 0 :

∫
X

e−αũe−(α−1)vDdν(Y,∆) < +∞
}
.

(6.23)
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and assuming αω(ψ) ≤ 1 the left inequality in (6.21) is an easy consequence of
Lemma 6.4.7 since clearly vD ≤ C. Similarly from Lemma 6.4.7 and the fact that
c(u) = c(u− supX u) we obtain, supposing α ≥ 1,

αω(ψ) ≤ inf
ũ∈PSH(Y,η)

lct(Y,∆, ũ+ cD) + 1

and Lemma 6.4.12 concludes the proof.

Remark 6.4.14. Set βω(ψ) := sup{β ≥ 0 : sup{u4ψ : supX u=0}
∫
X
e−βue−ψdµ <

+∞} for any ψ ∈ Mklt, and observe that the analog of Lemma 6.4.7 holds for this
new invariant. Then by Holder's inequality it is not hard to check that

αω(ψ)

q
≤ βω(ψ) ≤ αω(ψ) (6.24)

where q is the Sobolev conjugate exponent of lct(X, 0, ψ). Moreover if ψ has algebraic
singularities, with the usual notations, Lemma 6.4.12 yields

βω(ψ) = inf
F∼QL,F≥0

lct(Y,∆, F + cD)

proceeding as in Proposition 6.4.13. In particular (6.24) often produces a better
algebraic upper bound for αω(ψ) than the right inequality in (6.21).

6.4.2 Ding functional and uniqueness.

Similarly to the companion paper [Tru20b], we de�ne for ψ ∈ M+
klt the functional

Dψ : E1(X,ω, ψ)→ R as
Dψ := VψLµ − Eψ

where Lµ(u) := − log
∫
X
e−udµ. It is translation invariant and it assumes �nite

values by Proposition 6.3.1 since we are assuming ψ ∈ M+
klt. We call it ψ-relative

Ding functional since it coincides with the renewed Ding functional in the case ψ = 0.

Remark 6.4.15. When ψ = Pω[ϕ] has analytic singularities type, then with the
same notations of Propositions 6.2.4, 6.4.5,

Dψ(u) + Eψ(ϕ) = −Vη log

∫
X

e−ũdν − E(ũ) =: Dη(ũ)

where ν is a suitable non-pluripolar measure associated to the log-setting. Indeed
Dη(ũ) is the usual log-Ding functional associated to the pair (Y,∆).

Proposition 6.4.16. Let ψ ∈ M+
klt. Then Dψ is continuous on

(
E1(X,ω, ψ), d

)
and it is lower semicontinuous with respect to the weak topology.
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Proof. The continuity of E1(X,ω, ψ) 3 u→ Lµ(u) with respect to the weak topology
is given by Theorem 6.4.8. Therefore the result follows observing that Eψ is upper
semicontinuous in E1(X,ω, ψ) with respect to the weak topology (Proposition 6.2.1)
while it is strongly continuous by de�nition.

In the absolute setting, a key property of Ding functional is its convexity along
weak geodesic segments, which is the starting point to study the uniqueness of KE
metrics. The analog holds in the relative setting if ψ belongs to M+

D,klt and it has
small unbounded locus , i.e. it is locally bounded on the complement of a closed
complete pluripolar set.

Theorem 6.4.17 ([Bern09], [Bern11], [Bern15]) . Assume that ψ ∈ Mklt has small
unbounded locus. Let u0, u1 ∈ E1(X,ω, ψ) with ψ-relative minimal singularities and
let ut be the weak geodesic joining them. Then F(t) := Lµ(ut) is subharmonic on S.
Moreover if F is a�ne over the real segment, then there is an holomorphic vector
�eld V with �ow Fs such that F ∗s

(
ω + ddcus

)
= ω + ddcu0 for any s ∈ [0, 1].

Note that F can be thought as a function on [0, 1] since ut does not depend on Im t.

Proof. With the same notations and terminology of the references quoted, we �rst
observe that replacing the potentials ψ, ut with the corresponding metrics , the func-
tional Lµ becomes − log

∫
X
e−u. Therefore the subharmonicity of F(t) is a conse-

quence of [Bern09], [Bern11].
Next writing ut := ψ + (ut − ψ), we are in the situation described in section � 6.1 of
[Bern15] thanks to Proposition 6.3.9. Thus Theorem 6.1 in [Bern15] concludes the
proof.

Since by Theorem 6.3.11 the ψ-relative energy Eψ is linear along weak geodesic
segments if ψ ∈M+

D, Theorem 6.4.17 gives the convexity of Dψ requested.

Corollary 6.4.18. Assume ψ ∈ M+
D,klt with small unbounded locus. Then the ψ-

relative Ding functional Dψ is convex along any weak geodesic segment [0, 1] 3 t →
ut ∈ E1(X,ω, ψ) joining two potentials u0, u1 ∈ E1(X,ω, ψ) with ψ-relative minimal
singularities.

Next, to prove the �rst part of Theorem C we need to introduce the set

Aut(X, [ψ]) := {F ∈ Aut(X) : [F ∗ψ] = [ψ]}

of all automorphisms which preserve the singularity type [ψ], where we recall that
[u] = [v] is equivalent to ||u − v||∞ < ∞. Observe that Aut (X, [ψ]) is a linear
algebraic group since it is a subgroup of Aut (X). We denote with Aut (X, [ψ])◦ :=
Aut(X, [ψ]) ∩ Aut(X)◦ where Aut (X)◦ is the connected component of the identity
map.

Theorem 6.4.19. Assume ψ ∈ M+
D,klt with small unbounded locus and let u ∈

E1(X,ω, ψ). Then the following statement are equivalent:
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i) ωu := ω + ddcu is a [ψ]-KE metric;

ii) Dψ(u) = infE1(X,ω,ψ) Dψ.

Furthermore if ωu, ωv are [ψ]-KE metrics, then there exists F ∈ Aut(X, [ψ])◦ such
that F ∗(ωu) = ωv.

Proof. The implication (ii)⇒ (i) follows from Theorem 4.22 in [DDNL18b].
Vice versa the proof of (i)⇒ (ii) is the ψ-relative version of that of Theorem 6.6 in
[BBGZ13].
We want to prove that Dψ(u) ≤ Dψ(v) for any v ∈ E1(X,ω, ψ) and by the conti-
nuity of Dψ along decreasing sequences in E1(X,ω, ψ) we may suppose v to have
ψ-relative minimal singularities. Moreover without loss of generality we can assume∫
X
e−udµ = Vψ, i.e. C = 0 in the Monge-Ampère equation (6.11). Recall also that

any solution of the same equation has ψ-relative minimal singularities. Then, letting
ut be the weak geodesic joining u0 := u and u1 := v, Corollary 6.4.18 implies that
t→ Dψ(ut) is a convex function. Therefore it will be enough to prove that

d

dt

(
Dψ(ut)

)
|t=0+ ≥ 0. (6.25)

By Proposition 6.3.9 the function wt := (ut − u)/t is uniformly bounded and con-
verges almost everywhere to a bounded function w. Moreover by the concavity of
the ψ-relative energy ([DDNL18b])

Eψ(ut)− Eψ(u)

t
≤
∫
X

wtMAω(u) =

∫
X

wte
−udµ,

which implies
d

dt

(
Eψ(ut)

)
|t=0+ ≤

∫
X

we−udµ. (6.26)

On the other hand ∫
X

(e−ut − e−u)dµ

t
= −

∫
X

wtf(ut − u)e−udµ

where f(x) := (1 − e−x)/x is a continuous function. Thus f(ut − u) is uniformly
bounded since ||ut − u||∞ ≤ C for any t ∈ [0, 1], and by Dominated Convergence
Theorem it follows that

d

dt

(∫
X

e−utdµ
)
|t=0+

= −
∫
X

we−udµ (6.27)

since f(ut − u)→ 1 as t→ 0+ again by Proposition 6.3.9. Therefore the inequality
in (6.25) follows combining (6.26), (6.27) and using the chain rule of derivation.

Remark 6.4.20. The implication (ii) ⇒ (i) in Theorem 6.4.19 holds as soon as
ψ ∈M+

klt. When ψ = 0, Theorem 6.4.19 was proved in [BBGZ13].
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6.4.3 Mabuchi functional and Theorem C.

In this subsection we keep assuming ψ ∈M+
klt.

Before de�ning the ψ-relative Mabuchi functional we need to recall the ψ-relative
I, J-functionals:

Jψ(u) :=

∫
X

(u− ψ)MAω(ψ)− Eψ(u),

Iψ(u) :=

∫
X

(u− ψ)
(
MAω(ψ)−MAω(u)

)
for any u ∈ E1(X,ω, ψ). These functionals are translation invariant and strongly
continuous, i.e. in

(
E1(X,ω, ψ), d

)
, as a consequence of Corollary 3.5 and Proposition

3.6 in [Tru20a]. Moreover they satisfy the following important properties.

Proposition 6.4.21 ([Tru20a], [Tru20b]) . Let u ∈ E1(X,ω, ψ). Then

i) 1
n+1

Iψ(u) ≤ Jψ(u) ≤ n
n+1

Iψ(u);

ii) there exists a constant C > 0 depending uniquely on (X,ω) such that

d(ψ, u)− C ≤ Jψ(u) ≤ d(ψ, u) (6.28)

for any u ∈ E1
norm(X,ω, ψ).

We recall that with E1
norm(X,ω, ψ) we denote all elements u ∈ E1(X,ω, ψ) such that

supX u = 0.
Next it is also necessary to retrieve the de�nition of the entropy .

De�nition 6.4.22. Let ν1, ν2 ∈ P(X), i.e. two probability measures on X. The
relative entropy Hν1(ν2) ∈ [0,+∞] of ν2 with respect to ν1 is de�ned as follows.
If ν2 is absolutely continuous with respect to ν1 with density f := dν2

dν1
satisfying

f log f ∈ L1(ν1) then

Hν1(ν2) :=

∫
X

f log fdν1 =

∫
X

log fdν2.

Otherwise we set Hν1(ν2) := +∞.

Then we set ψ′ := ψ + a where a := log
∫
X
e−ψdµ, so that e−ψ

′
µ is a probability

measure.

De�nition 6.4.23. The ψ-relative Mabuchi functional Mψ : E1(X,ω, ψ) → R ∪
{+∞} is de�ned as

Mψ(u) := VψHe−ψ′µ
(
MAω(u)/Vψ

)
+ Jψ(u)− Iψ(u).
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Observe that it is clearly a translation invariant functional and that in the absolute
setting ψ = 0 it coincides with the usual Mabuchi functional (see [Mab86] and
the Tian's formula in [Chen00], [Tian] for the Fano case). Moreover it is lower
semicontinuous with respect to the strong topology since Jψ, Iψ are continuous and
the entropy is lower semicontinuous with respect to the weak topology. Furthermore
by de�nition and Theorem 6.2.2 we have

Mψ(u) =
(
VψHe−ψ′µ − E

∗
ψ

)(
MAω(u)/Vψ

)
.

See subsection �6.2.1 for the de�nition of the energy E∗. The Mabuchi functional
dominates the Ding functional as the next result shows.

Proposition 6.4.24. Let a := log
∫
X
e−ψdµ. Then Dψ(u) + aVψ ≤Mψ(u) for any

u ∈ E1(X,ω, ψ) with the equality if and only if ωu is a [ψ]-KE metric.

Proof. We may assume He−ψ′µ
(
MAω(u)/Vψ

)
< +∞. Observe that this implies

Hµu
(
MAω(u)/Vψ

)
< +∞ where µu := e−uµ∫

X e−uµ since u 4 ψ′. Moreover by an

immediate calculation(
Mψ −Dψ

)
(u) =

∫
X

log
(MAω(u)/Vψ

e−ψ′dµ

)
MAω(u) +

∫
X

(u− ψ)MAω(u)− VψLµ(u).

Thus, since µu = e−u+Lµ(u)µ, we get

VµLµ(u) =

∫
X

Lµ(u)MAω(u) =

∫
X

(
log
( dµu
e−ψ′dµ

)
+ (u− ψ′)

)
MAω(u),

which implies

(Mψ −Dψ)(u) =

∫
X

log
(MAω(u)/Vψ

dµu

)
MAω(u) + aVψ.

Therefore Proposition 2.10.(ii) in [BBEGZ19] concludes the proof.

We can now �nish to prove Theorem C using the following two Lemmas.

Lemma 6.4.25 ([BBEGZ19], Lemma 2.11.). For any lower semicontinuous func-
tion g on X and any ν1 ∈ P(X),

log

∫
X

egdν1 = sup
ν2∈P(X)

(∫
X

gdν2 −Hν1(ν2)
)
.

Lemma 6.4.26. For any u ∈ E1(X,ω, ψ),

VψLµ(u) = inf
v∈E1(X,ω,ψ)

(
VψHe−ψ′µ

(
MAω(v)/Vψ

)
+

∫
X

(u− ψ′)MAω(v)
)
,

Eψ(u) = inf
v∈E1(X,ω,ψ)

(
E∗ψ
(
MAω(v)/Vψ

)
+

∫
X

(u− ψ)MAω(v)
)
.
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Proof. The second equality follows easily from the concavity of Eψ ([DDNL18b])
since

Eψ(u) ≤ Eψ(v) +

∫
X

(u− v)MAω(v) = E∗ψ
(
MAω(v)/Vψ

)
+

∫
X

(u− ψ)MAω(v)

with the equality when v = u.
For the �rst equality we can clearly restrict to consider v ∈ E1(X,ω, ψ) such that
He−ψ′µ

(
MAω(v)/Vψ

)
< +∞. Then, setting b := − logµ(X), we observe that

−∞ <

∫
X

(ψ′ − u)MAω(v)− VψHe−ψ′µ
(
MAω(v)/Vψ

)
=

=

∫
X

(
−u−log

(MAω(v)/Vψ
ebdµ

))
MAω(v)−bVψ ≤ Vψ log

∫
X

e−u+bdµ−bVψ = −VψLµ(u)

where the last inequality is a consequence of Lemma 6.4.25. Hence

VψLµ(u) ≤ inf
v∈E1(X,ω,ψ)

(
VψHe−ψ′µ

(
MAω(v)/Vψ

)
+

∫
X

(u− ψ′)MAω(v)
)
.

To prove the equality we set µu := e−uµ/
∫
X
e−uµ and we claim that He−ψ′µ

(
µu
)
<

+∞. Indeed by the resolution of the openness conjecture there exists p > 1 such
that e−u ∈ Lp, thus by Theorem 1.4.(i) in [DDNL18b] there exists v ∈ E1(X,ω, ψ)
with ψ-relative minimal singularities such that MAω(v) = Vψµu. Therefore since

µu is clearly absolutely continuous with respect to e−ψ
′
µ with density equal to

f := e−u+ψ′/
∫
X
e−uµ, the claim follows by de�nition since∫

X

f log(f)e−ψ
′
dµ =

∫
X

(ψ′ − u)dµu =

∫
X

(ψ′ − u)MAω(v) < +∞.

Next, since MAω(v)/Vψ = µu = e−u+Lµ(u)µ, by an easy calculation we obtain

VψLµ(u) =

∫
X

Lµ(u)MAω(v) =

∫
X

(
log
(MAω(v)/Vψ

e−ψ′µ

)
+ (u− ψ′)

)
MAω(v) =

= VψHe−ψ′µ
(
MAω(v)/Vψ

)
+

∫
X

(u− ψ′)MAω(v),

which concludes the proof.

Theorem C. Assume ψ ∈M+
D,klt with small unbounded locus and let u ∈ E1(X,ω, ψ).

Then the following statements are equivalent:

i) ωu = ω + ddcu is a [ψ]-KE metric;

ii) Dψ(u) = infE1(X,ω,ψ) Dψ;

iii) Mψ(u) = infE1(X,ω,ψ) Mψ.
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Moreover if ωu is a [ψ]-KE metric then u has ψ-relative minimal singularities and if
ωv is another [ψ]-KE metric then there exists F ∈ Aut(X, [ψ])◦ such that F ∗ωv = ωu.

Proof. As said in the beginning of this section if ω+ddcu is a [ψ]-KE metric then by
the complex Monge-Ampère equation (6.11) it follows that u has ψ-relative minimal
singularities. Moreover the uniqueness modulo Aut (X, [ψ])◦ was already stated in
Theorem 6.4.19 where we also proved the equivalence between (i) and (ii). Further-
more if (ii) holds, then (iii) is given by (i) and Proposition 6.4.24. Thus it remains
to prove that (iii) implies (ii).
Set m := Mψ(u). Then for any v ∈ E1(X,ω, ψ) by Lemma 6.4.26 we obtain

VψHe−ψ′µ
(
MAω(v)/Vψ

)
+

∫
X

(u− ψ′)MAω(v)− Eψ(u) ≥

≥ VψHe−ψ′µ
(
MAω(v)/Vψ

)
−E∗ψ

(
MAω(v)/Vψ

)
−aVψ = Mψ(v)−aVψ ≥ m−aVψ

Hence taking the in�mum among all v ∈ E1(X,ω, ψ) again by Lemma 6.4.26 we get

inf
E1(X,ω,ψ)

Dψ ≥ m− aVψ.

So to conclude the proof it is enough to observe that by Proposition 6.4.24 Dψ(u) =
m− aVψ.

6.4.4 Proof of Theorem D.

In this subsection we assume ψ ∈M+
klt.

We �rst prove that the ψ-relative α-invariant controls the level sets of the entropy
in terms of the ψ-relative energy E∗ψ, and hence in the metric space

(
E1(X,ω, ψ), d

)
thanks to Theorem 6.2.2. In particular probability measures with ψ-relative �nite
entropy are in the range of the Monge-Ampère operator restricted to E1(X,ω, ψ).

Proposition 6.4.27. Let 0 < α < αω(ψ). Then there exists C ≥ 0 such that

He−ψ′µ(ν) ≥ α

Vψ
E∗ψ(ν)− C (6.29)

for any ν probability measure. In particular if He−ψ′µ(ν) < +∞ then there exists
u ∈ E1

norm(X,ω, ψ) such that Vψν = MAω(u) and

He−ψ′µ
(
MAω(u)/Vψ

)
≥ α

Vψ
Iψ(u)− C

for an uniform constant C ≥ 0.
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Proof. By de�nition there exists A > 0 such that

log

∫
X

e−αudµ ≤ −α sup
X
u+A

for any u ∈ PSH(X,ω) such that u 4 ψ. Then since supX u = supX(u−ψ) (Lemma
3.7. in [Tru19] quoted in Lemma 6.5.6 below) and clearly Eψ(u) ≤ Vψ supX(u− ψ)
we obtain

− log

∫
X

e−αudµ ≥ α

Vψ
Eψ(u)−A. (6.30)

Next we �x a positive probability measure ν and we de�ne ψk := max(ψ,−k) and

ψ′k := ψk + ak where ak ∈ R such that e−ψ
′
kµ is a probability measure. Obviously

ψ′k → ψ′ = ψ+a where as usual ψ′ = ψ+a for a = log
∫
X
e−ψdµ. Combining (6.30)

with Lemma 6.4.25, for any k ∈ N �xed, it follows that

H
e
−ψ′

kµ
(ν) = Hµ(ν) +

∫
X

ψ′kdν ≥
α

Vψ

(
Eψ(u)−

∫
X

(u− ψ′k)Vψdν
)
−A ≥

≥ α

Vψ

(
Eψ(u)−

∫
X

(u− ψ)Vψdν
)
−A+ akVψ. (6.31)

Then supposing ν such that He−ψ′µ(ν) < +∞, there exists f ∈ L1(e−ψ
′
µ) such that

ν = fe−ψ
′
µ and we de�ne for any j ∈ N

νj := cj min(fe−ψ
′
, j)µ =: cjfjµ

where cj ≥ 1 such that νj ∈ P(X). Thus by de�nition H
e
−ψ′

kµ
(νj) < +∞ and from

(6.31) we get∫
X

(
log(cjfj)+ψ′k

)
cjfjdµ ≥

α

Vψ

(
Eψ(u)−

∫
X

(u−ψ)Vψcjfjdµ
)
−A+akVψ, (6.32)

and letting k → ∞ the left side hand converges to
∫
X

(
log(cjfj) + ψ′

)
cjfjdµ since

| supX ψ
′
k| ≤ C by construction. Then moving j → ∞ we obtain

∫
X

log(f)dν =

He−ψ′µ(ν) by Monotone Convergence Theorem since cj ↘ 1 while fj ↗ fe−ψ
′
.

On the other hand the right side in (6.32) is invariant under translation on u,
thus assuming u ≤ ψ, again by Monotone Convergence Theorem it converges to
α
Vψ

(
Eψ(u) −

∫
X

(u − ψ)Vψdν
)
− A + aVψ. Summarizing, letting k, j → ∞ in this

order in (6.32), it follows that

He−ψ′µ(ν) ≥ α

Vψ

(
Eψ(u)−

∫
X

(u− ψ)Vψdν
)
− C

setting C := max(A − aVψ, 0). Taking the supremum over all u ∈ E1(X,ω, ψ),
we obtain (6.29). We also deduce that Vψν ∈ M1(X,ω, ψ) for any ν ∈ P(X)
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such that He−ψ′µ(ν) < +∞. Hence by Theorem 6.2.2 there exists an unique

u ∈ E1
norm(X,ω, ψ) such that MAω(u) = Vψν and similarly to before we get

He−ψ′µ(ν) ≥ α sup
X

(u− ψ)− α
∫
X

udν −A ≥

≥ α

Vψ

(∫
X

(u− ψ)MAω(ψ)−
∫
X

(u− ψ)Vψdν
)
−A =

α

Vψ
Iψ(u)−A,

which concludes the proof.

We recall the de�nition of d-coercivity.

De�nition 6.4.28. Let F : E1(X,ω, ψ)→ R be a translation invariant functional.
Then F is said to be d−coercive over E1

norm(X,ω, ψ) if there exist A > 0, B ≥ 0
such that

F (u) ≥ Ad(u, ψ)−B

for any u ∈ E1
norm(X,ω, ψ).

Note that, for any translation invariant functional F , as an easy consequence of
Proposition 6.4.21 the d-coercivity over E1

norm(X,ω, ψ) is equivalent to the Jψ-
coercivity over E1(X,ω, ψ), i.e.

F (u) ≥ AJψ(u)−B

for any u ∈ E1(X,ω, ψ) where A > 0, B ≥ 0.
The d-coercivity of the ψ-relative Ding functional and of the ψ-relative Mabuchi
functional are both equivalent to a ψ-relative version of a Mose-Trudinger type
inequality as our next result shows.

Proposition 6.4.29. The followings are equivalent:

i) the ψ-relative Ding functional is d-coercive over E1
norm(X,ω, ψ);

ii) the ψ-relative Mabuchi functional is d-coercive over E1
norm(X,ω, ψ);

iii) there exist p > 1, C > 0 such that

||eψ−u||Lp(e−ψ′µ) ≤ Ce
−Eψ(u)/Vψ (6.33)

for any u ∈ E1(X,ω, ψ).

Proof. The implication (i)⇒ (ii) follows from Proposition 6.4.24. Then let assume
(ii) to hold, i.e. there exists A > 0, B ≥ 0 such that

Mψ(u) ≥ Ad(u, ψ)−B
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for any u ∈ E1
norm(X,ω, ψ). Since d(u − supX u, ψ) ≥ Jψ(u − supX u) = Jψ(u) for

any u ∈ E1(X,ω, ψ) (Proposition 6.4.21) and since Mψ is translation invariant, we
get

Mψ(u) ≥ AJψ(u)−B = A
(n+ 1

n
Jψ(u)− 1

n
Jψ(u)

)
−B ≥ A

n
E∗ψ
(
MAω(u)/Vψ

)
−B

(6.34)
for any u ∈ E1(X,ω, ψ), where we used again Proposition 6.4.21 for the last inequal-
ity. The equation (6.34) is equivalent to

VψHe−ψ′µ
(
MAω(u)/Vψ

)
≥ pE∗ψ

(
MAω(u)/Vψ

)
−B

where p = 1+A/n > 1, which implies VψHe−ψ′µ(ν) ≥ pE∗ψ(ν)−B for any ν ∈ P(X)
by Proposition 6.4.27. Next we observe that considering the approximants uk :=
max(u, ψ−k) by Monotone Convergence Theorem and by the continuity of Eψ along
decreasing sequences it is enough to prove (6.33) for u ∈ E1(X,ω, ψ) with ψ-relative
minimal singularities. Thus by Lemma 6.4.25, letting b := − log

∫
X
e(p−1)ψdµ, we

have

log

∫
X

e−pue(p−1)ψ+bdµ = sup
ν∈P(X)

{∫
X

(−pu)dν −He(p−1)ψ+bµ(ν)
}
.

So for any ε > 0 �xed there exists νu,ε ∈ P(X) such that He(p−1)ψ+bµ(νu,ε) < +∞
and

log

∫
X

e−pue(p−1)ψ+bdµ ≤ ε−
∫
X

(pu)dνu,ε −He(p−1)ψ+bµ(νu,ε).

Then since He−ψ′µ(νu,ε) = He(p−1)ψ+bµ(νu,ε) + p
∫
X
ψdνu,ε + a + b (where as usual

ψ′ = ψ + a for a = log
∫
X
e−ψdµ), by an easy calculation we get

Vψ log

∫
X

e−pue(p−1)ψ+bdµ ≤ Vψε+
∫
X

p(ψ−u)Vψdνu,ε+aVψ+bVψ−VψHe−ψ′µ(νu,ε) ≤

≤ Vψ(ε+ a+ b) +B + p
(∫

X

(ψ − u)Vψdνu,ε − E∗ψ(νu,ε)
)
≤

≤ Vψ(ε+a+b)+B−p inf
ν∈P(X)

{
E∗ψ(ν)+

∫
X

(u−ψ)Vψdν
}

= Vψ(ε+a+b)+B−pEψ(u)

where in the equality we used Lemma 6.4.26. Hence by the arbitrariness of ε we
obtain

Vψ log

∫
X

ep(ψ−u)e−ψ
′
dµ ≤ −pEψ(u) +B,

for any u ∈ E1(X,ω, ψ) which is equivalent to (6.33) setting C := e
B
pVψ .

Finally supposing (iii) to hold it remains to prove the d-coercivity of Dψ. Fix
ε ∈ (0, 1) small enough such that p := 1 + ε satis�es (6.33). Then for any u ∈
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E1
norm(X,ω, ψ) combining the equality (u− ψ) = (1 + ε)(1− ε)(u− ψ) + ε2(u− ψ)

with the convexity of f → log
∫
X
e−fdν for any ν ∈ P(X) we get

log

∫
X

e−(u−ψ)e−ψ
′
dµ ≤ (1−ε) log

∫
X

e−(1+ε)(u−ψ)e−ψ
′
dµ+ε log

∫
X

e−ε(u−ψ)e−ψ
′
dµ,

and the �rst term in the right side is dominated by (1− ε)
(
− (1+ε)

Vψ
Eψ(u) +D

)
for

a constant D. For the second term,∫
X

e−ε(u−ψ)e−ψ
′
dµ ≤

∫
X

e−εue−ψ
′
dµ,

where the right hand side is uniformly bounded if ε � 1 small enough combining
Holder's inequality with the klt assumption and Theorem 6.4.10 (indeed it is enough
that ε < βω(ψ), see Remark 6.4.14). Therefore it follows that

Vψ log

∫
X

e−udµ = a+ Vψ log

∫
X

e−(u−ψ)e−ψ
′
dµ ≤ −(1− ε2)Eψ(u) +B

for an constant B. Hence

Dψ(u) ≥ (1− ε2)Eψ(u) +B − Eψ(u) = ε2d(ψ, u)−B,

for any u ∈ E1
norm(X,ω, ψ), which concludes the proof.

We can now prove our second main result which partly generalizes to the relative
setting Theorem 2.4 in [DR17].

Theorem D. Let ψ ∈M+
D,klt with small unbounded locus. Assume also Aut (X, [ψ])◦ =

{Id}. Then the following conditions are equivalent:

i) the ψ-relative Ding functional is d-coercive over E1
norm(X,ω, ψ);

ii) the ψ-relative Mabuchi functional is d-coercive over E1
norm(X,ω, ψ);

iii) there exists an unique [ψ]-KE metric.

Proof. The equivalence between (i) and (ii) is part of the content in Proposition
6.4.29, and the implication (i) ⇒ (iii) follows from Theorem C in [Tru20b] but we
recall brie�y here the proof for the courtesy to the reader. Let A > 0, B ≥ 0 such that
Dψ(u) ≥ Ad(ψ, u)−B for any u ∈ E1

norm(X,ω, ψ) and let {uk}k∈N ⊂ E1
norm(X,ω, ψ)

such that Dψ(uk) ↘ infE1(X,ω,ψ) Dψ ≥ −B. Then from the coercivity there exists
C > 0 such that

{uk}k∈N ⊂ E
1
C(X,ω, ψ) := {u ∈ E

1(X,ω, ψ) : Eψ(u) ≥ −C, sup
X
u ≤ C},

which is weakly compact by Proposition 6.2.1. Therefore up to considering a sub-
sequence we may suppose uk → u ∈ E1

C(X,ω, ψ) weakly. Moreover by Hartogs'
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Lemma u ∈ E1
norm(X,ω, ψ). Finally by the lower semicontinuity of Dψ (Proposition

6.4.16) it follows that

Dψ(u) ≤ lim inf
k→+∞

Dψ(uk) = inf
E1(X,ω,ψ)

Dψ,

i.e. ω + ddcu is the unique KE metric with prescribed singularities [ψ] by Theorem
6.4.19.
Finally we want to prove that (iii)⇒ (i). Letting u ∈ E1

norm(X,ω, ψ) such that ωu
is the unique KE metric with prescribed singularities [ψ], we de�ne

A := inf
{Dψ(v)−Dψ(u)

d(u, v)
: v ∈ E

1
norm(X,ω, ψ)with ψ-relative minimal singularities

such that d(u, v) ≥ 1
}
,

and we claim that it is enough to prove A > 0. Indeed setting B′ := A sup{d(v, ψ) :
d(v, u) ≤ 1} −Dψ(u) ≤ A+Ad(u, ψ)−Dψ(u) we clearly have

Dψ(v) ≥ Ad(v, ψ)−B′

for any v ∈ E1
norm(X,ω, ψ) such that d(u, v) ≤ 1. Thus

Dψ(v) ≥ Ad(v, ψ)−max
{
B′,−Dψ(u)

}
(6.35)

for any v ∈ E1
norm(X,ω, ψ) with ψ-relative minimal singularities. And by the strong

continuity of Dψ (Proposition 6.4.16) the inequality (6.35) would extend to any
v ∈ E1

norm(X,ω, ψ) considering the sequence vk := max(v, ψ − k).
Therefore it remains to prove that A > 0. Assume by contradiction A = 0. Then
there exists a sequence {vk}k∈N ⊂ E1

norm(X,ω, ψ) of potentials with ψ-relative min-
imal singularities such that d(vk, u) ≥ 1 and

Dψ(vk)−Dψ(u)

d(vk, u)
−→ 0

as k → ∞. Thus letting [0, d(vk, u)] 3 t → vkt be the unit speed weak geodesic
segment joining u and vk, the function t → Dψ(vkt ) is convex by Corollary 6.4.18.
Hence de�ning wk := vk1 we have d(wk, u) = 1 and

0 ≤ Dψ(wk)−Dψ(u) ≤ Dψ(vk)−Dψ(u)

d(u, vk)
−→ 0 (6.36)

as k →∞. Moreover since by the triangle inequality

{wk}k∈N ⊂ E
1
1+d(u,ψ)(X,ω, ψ) := {w ∈ E

1(X,ω, ψ) : Eψ(w) ≥ −1− d(u, ψ),

sup
X
w ≤ 1 + d(u, ψ)}
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which is weakly compact by the upper semicontinuity of Eψ, up to considering a
subsequence we may assume that wk → w weakly for w ∈ E1

norm(X,ω, ψ). But
from (6.36) and the lower-semicontinuity of Dψ with respect to the weak topology
(Proposition 6.4.16) we get Dψ(w) ≤ Dψ(u) which by Theorem 6.4.19 implies w = u.
In particular lim infk→∞Dψ(wk) = Dψ(w) which implies that Eψ(wk) → Eψ(w)
because Lµ is continuous with respect to the weak topology (Theorem 6.4.8). Hence
wk → u in

(
E1(X,ω, ψ), d

)
as k →∞ by Theorem 6.2.2, and letting k, j → +∞, in

this order, in the inequality

d(u,wj) ≥ d(u,wk)− d(wk, wj) = 1− d(wk, wj)

we �nd out the contradiction 0 ≥ 1, which concludes the proof.

Remark 6.4.30. As seen during the proof ot Theorem D the d-coercivity of the ψ-
relative Ding functional implies the existence of a [ψ]-KE metric as soon as ψ ∈M+

klt.

6.5 Why the prescribed singularities setting?

As stated in the Introduction, there are two main reasons to study these KE metrics
with prescribed singularities: it is natural to look for canonical metrics which have
prescribed singularities, and the following questions.

Question A. Let (X,ω) be a Fano manifold. Is it possible to characterize the KE
locus MKE? When MKE = M+

klt? Is there some not-trivial locus on M+
klt whose

intersection with MKE implies that 0 ∈MKE?

Theorem A, which gives a �rst answer to Question A, will be a consequence of the
following two results and of Proposition 6.4.9.

Theorem 6.5.1 ([Tru20b], Theorem C). Let ψ ∈ M+
klt. If Dψ is d-coercive over

E1
norm(X,ω, ψ) with slope 1 > A > 0, i.e. such that Dψ(u) ≥ Ad(ψ, u)− B for any
u ∈ E1

norm(X,ω, ψ) where B ≥ 0, then for any ψ′ ∈M+
klt, ψ

′ < ψ

Dψ′(u) ≥
(

1− Vψ′

Vψ
(1−A)

)
d(ψ′, u)− C

for any u ∈ E1
norm(X,ω, ψ′) where C = C(B, Vψ, X, ω). In particular Dψ′ is d-

coercive over E1
norm(X,ω, ψ′) for any ψ′ < ψ such that Vψ′ < Vψ/(1−A).

Proposition 6.5.2. Let ψ ∈ M+
klt. If αω(ψ) > n

n+1
then Dψ,Mψ are d-coercive

over E1
norm(X,ω, ψ). More precisely

Mψ(u) ≥
(n+ 1

n
α− 1

)
d(u, ψ)−Bα,

6.5. WHY THE PRESCRIBED SINGULARITIES SETTING? 269



270
CHAPTER 6. KÄHLER-EINSTEIN METRICS WITH PRESCRIBED

SINGULARITIES ON FANO MANIFOLDS.

for any α ∈
(

n
n+1

, αω(ψ)
)
, while

Dψ(u) ≥
(n+ 1

n2
α− 1

n

)2

d(u, ψ)−B′α (6.37)

for any u ∈ E1
norm(X,ω, ψ) and any n

n+1
< α < min

{
αω(ψ), n

2 min{βω(ψ),1}+n
n+1

}
where B,B′α ≥ 0 and βω(ψ) was de�ned in Remark 6.4.14.
Moreover when αω(ψ) > 1 the slopes of the coercivity can be improved respectively
to n+1

n
α − 1

n
for any α ∈

(
1, αω(ψ)

)
and to

(
n+1
n2 α − 1

n2

)2
for any 1 < α <

min
{
αω(ψ), n

2 min{βω(ψ),1}+1
n+1

}
.

Proof. By Proposition 6.4.27 there exists C ≥ 0 such that

Mψ(u) ≥ (α− 1)Iψ(u) + Jψ(u)− C (6.38)

for any u ∈ E1(X,ω, ψ) and for any α < αω(ψ). Then by Proposition 6.4.21, if
α ∈

(
n
n+1

, αω(ψ)
)
we easily obtain

Mψ(u) ≥
(
α− 1 +

1

n+ 1

)
Iψ(u)− C ≥ n+ 1

n

(
α− n

n+ 1

)
Jψ(u)− C

for any u ∈ E1(X,ω, ψ), which is equivalent to the requested d-coercivity on E1
norm(X,ω, ψ).

Furthermore if α ≥ 1 then from (6.38) and again by Proposition 6.4.21 it follows
that

Mψ(u) ≥
(n+ 1

n
α− n+ 1

n
+ 1
)
Jψ(u)− C =

(n+ 1

n
α− 1

n

)
Jψ(u),

which concludes the statements about the ψ-relative Mabuchi functional.

Next letting A :=
(
n+1
n
α − 1

)
for n

n+1
< α < min

{
αω(ψ), n

2 min{βω(ψ),1}+n
n+1

}
we

want to prove the d-coercivity of the ψ-relative Ding functional. We observe that by
the proof of Proposition 6.4.29 the estimate (6.33) holds for p = 1 +A/n. Therefore
in the implication (iii)⇒ (i) the functional Dψ is coercive with slope ε2 for any

0 < ε < min
{A
n
, βω(ψ), 1

}
.

But the assumption on α leads to A ≤ nmin
{
βω(ψ), 1} and (6.37) follows. The

case αω(ψ) > 1 is similar.

Theorem A. Let (X,ω) be a Fano manifold. Then{
ψ ∈M

+
klt : αω(ψ) >

n

n+ 1

}
⊂MKE .

Moreover (i)⇒ (ii)⇒ (iii) in the following conditions:
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i) there exists ψ ∈M, t ∈ (0, 1] such that

αω(ψt) >
n

(n+ 1)t
;

for ψt := Pω[(1− t)ψ];

ii) αω(0) > n
n+1

;

iii) MKE = M+
klt.

Furthermore 0 ∈MKE if there exists ψ ∈M+
klt such that

αω(ψ) > max
{ lct(X, 0, ψ)

lct(X, 0, ψ)− 1
,
n2

n+ 1

((V0 − Vψ
V0

)1/2

+
1

n2

)}
(6.39)

where lct(X, 0, ψ) = sup{p > 0 : (X, pψ) is klt}.

Proof. Suppose ψ ∈ M+
klt such that αω(ψ) > n

n+1
. Then the ψ-relative Ding func-

tional is d-coercive over E1
norm(X,ω, ψ) as immediate consequence of Proposition

6.5.2. Therefore by its lower-semicontinuity with respect to the weak topology
(Proposition 6.4.16) there exists a minimizer, which produces a [ψ]-KE metric (see
Theorem D and Remark 6.4.30). In particular the implication (ii) ⇒ (iii) follows
from the monotonicity of αω(·).
Next if the assumption (i) holds then by Proposition 6.4.9 αω(0) > n

n+1
.

For the last statement we suppose ψ ∈ M+
klt and we give a more precise estimate

than (6.39) in terms of the following quantity:

γω(ψ) := min
{
αω(ψ),

n2 min{βω(ψ), 1}+ n

n+ 1

}
where βω(ψ) is de�ned in Remark 6.4.14. Indeed by an easy computation from
Proposition 6.5.2 we obtain that

γω(ψ) >
n2

n+ 1

((V0 − Vψ
V0

)1/2

+
1

n

)
(6.40)

implies that the ψ-relative Ding functional is d-coercive with slope(n+ 1

n2
γ − 1

n

)2

for any γ < γω(ψ). Thus by Theorem 6.5.1 if (6.40) holds and γ is close to γω(ψ)
then we deduce that the usual Ding functional is d-coercive over E1(X,ω), hence
there exists a KE metric. Note also that when αω(ψ) ≥ 1 we can replace (6.40) with

γω(ψ) >
n2

n+ 1

((V0 − Vψ
V0

)1/2

+
1

n2

)
. (6.41)

Next if αω(ψ) ≥ lct(X,0,ψ)
lct(X,0,ψ)−1

then Remark 6.4.14 leads to

min{βω(ψ), 1} = 1

and (6.39) follows easily from (6.41).
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Corollary 6.5.3. Let X be a Fano manifold and denote with M+
klt,strict := {ψ ∈

M+
klt : lct(X, 0, ψ) ≥ n2+1

n2−n}. Then

sup
ψ∈M+

klt,strict

αω(ψ) >
n2 + 1

n+ 1
=⇒ 0 ∈MKE .

Proof. It is an immediate consequence of Theorem A since lct(X, 0, ψ) ≥ n2+1
n2−n

implies that the maximum on the right side in (6.39) is smaller than n2+1
n+1

.

The monotonicity of αω(·) and Theorem A may suggest that

0 ∈MKE =⇒MKE = M
+
klt (6.42)

but when Aut (X) is not �nite, this is false as the following easy example shows. It
also proves that (ii) cannot be replaced with αω(0) ≥ n

n+1
and that αω(·) may be

constant on some no trivial segment ψt = tψ for ψ ∈M+
klt, t ∈ [0, 1].

Example 6.5.4. Let X = P2, ω = ωFS and let Z := {p1, p2} ∈ X be two distinct
points. Then it is well-known that there exists a function ϕ ∈ PSH(X,ω) with
analytic singularities formally encoded in (IZ , 1). So, letting ψ := Pω[ϕ] ∈ M+

klt,
by Proposition 6.4.5 and with the same notations, the set of [ψ]-KE metrics is in
bijection with the set of log KE metrics in the class {η} for the weak log Fano pair
(Y,∆) where Y = BlZX. But {η} = −KY and ∆ = 0, so since Y does not have
any KE metric we necessarily have ψ /∈ MKE . Therefore by Theorem A and the
monotonicity of αω(·), we necessarily have αω(tψ) = 2

3
for any t ∈ [0, 1].

Note that αω(ψ) could also easily been computed explicitly since given p3 ∈ X not
collinear to p1, p2, there exists a function ϕ ∈ PSH(X,ω) such that ν(ϕ, p3) = 3
which implies αω(ψ) ≤ 2

3
, while the lower bound αω(ψ) ≥ 2

3
follows from Theorem

6.4.10 (see also subsection 6.5.2).

However we think that the existence of no trivial holomorphic vector �elds is the
unique obstruction to (6.42), i.e. we pose the following conjecture.

Conjecture A. Let (X,ω) be a Fano manifold such that Aut (X)◦ = {Id}. Then

0 ∈MKE =⇒MKE = M
+
klt.

6.5.1 Strong continuity in MKE.

Here we prove our Theorem B.

Theorem B. Let X be a Fano manifold and let {ψt}t∈[0,1] ⊂ M+
klt be a weakly

continuous segment such that

i) ψ0 ∈MKE;
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ii) ψ0 has small unbounded locus;

iii) Aut(X, [ψt])◦ = {Id} for any t ∈ [0, 1];

iv) ψt 4 ψs if t ≤ s;
v) {ψt}t∈[0,1] ⊂MD.

Then the set
S := {t ∈ [0, 1] : ψt ∈MKE}

is open, the unique family of [ψt]-KE metrics {ωut}t∈S is weakly continuous and
the family of potentials {ut}t∈S can be chosen so that the curve S 3 t → ut ∈
E1(X,ω, ψt) is strongly continuous.

Observe that by Proposition 6.3.7 the assumptions (iv), (v) are automatically sat-
is�ed for the segment ψt := (1 − t)ψ if ψ ∈ M+

D,klt. We also recall that the strong
convergence means that ut → u weakly and Eψt(ut)→ Eψ(u) (section �6.2).

The strategy to prove Theorem B is to use the new continuity method introduced in
the companion paper [Tru20b] where one moves the prescribed singularities instead
of the density of the Monge-Ampère equation (see [Tru20b] for a mixed continuity
method). Theorem 6.5.1 represents an openness result, which combined with the
following closedness result will give the tools to prove Theorem B.

Theorem 6.5.5 ([Tru20b], Theorem D). Let {ψk}k∈N ⊂ M+
klt be a increasing

sequence of model type envelopes converging weakly to ψ ∈M+
klt. Assume that

i) ωuk is a sequence of [ψk]-KE metrics where uk ∈ E1(X,ω, ψk) minimizes Dψk
and it is normalized so that satis�es MAω(uk) = e−ukµ for any k ∈ N;

ii) the sequence {uk}k∈N is uniformly bounded from above, i.e. there exists C ∈ R
such that supX uk ≤ C for any k ∈ N.

Then there exists a subsequence ukh which converges strongly to u ∈ E1(X,ω, ψ)
solution of MAω(u) = e−uµ.

If ψk ∈ M+
D,klt with small unbounded locus then by Theorem C the potential of

any [ψk]-KE metric maximizes Dψk , so in this case (i) is part of the setting, and
as noted in subsection �6.1.1 Theorem C extends to more general ψ ∈M+

klt as soon
as one proves the linearity of the Monge-Ampère energy Eψ(·) along weak geodesic
segments (i.e. Theorem 6.3.11). Instead the assumption (ii) is the real obstruction
to the closedness and it is also a necessary hypothesis as the curve considered in
Remark 6.4.4 shows.

To prove Theorem B we will also use the following properties of the distances d and
of the operator Pω[·](·).

Lemma 6.5.6 ([Tru19], Lemmas 3.7, 4.4 and Proposition 4.5). Let ψ1, ψ2 ∈ M+

such that ψ2 4 ψ1. Then
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i) for any u, v ∈ E1(X,ω, ψ1) such that u − v is globally bounded, ||Pω[ψ2](u) −
Pω[ψ2](v)||L∞ ≤ ||u− v||L∞ ;

ii) for any u, v ∈ E1(X,ω, ψ1), d
(
Pω[ψ2](u), Pω[ψ2](v)

)
≤ d(u, v);

iii) there are two constants A > 1, B > 0 depending uniquely on n,X, ω such that

−d(u, ψ1) ≤ Vψ1 sup
X
u = Vψ1 sup

X
(u− ψ1) ≤ Ad(u, ψ1) +B

for any u ∈ E1(X,ω, ψ).

Proof. of Theorem B
Step 1: Openness with respect to T := {[a, b)}a<b.
We �rst note that since [0, 1] 3 t → ψt ∈ M+

klt is weakly continuous and ψt 4 ψs if
t ≤ s then

[0, 1] 3 t→ Vψt =

∫
X

MAω(ψt)

is continuous by what said in Section �6.2 (it follows from Lemma 3.12 in [Tru20a]).
Thus combining Theorem D and Theorem 6.5.1 it immediately follows that S is
open with respect to the induced topology given by the generating open sets [a, b).
Step 2: Conclusion of the openness.

As a consequence of Step 1 to prove that S is open it is su�cient to show that given
t0 ∈ S, t0 > 0 there exists 0 < ε� 1 small enough such that (t0 − ε, t0] ⊂ S.
By Theorem D the ψt0 -Ding functional is coercive and there exists an unique [ψt0 ]-
KE metric. We denote with ut0 ∈ E1(X,ω, ψt0) its potential given as solution of the
Monge-Ampère equation {

MAω(ut0) = e−ut0µ

ut0 ∈ E1(X,ω, ψt0).

Then we assume by contradiction that there exists a sequence tk ↗ t0 such that
tk /∈ S for any k ∈ N. By Theorem C this means that Dψtk does not admit a
minimizer for any k ∈ N. Recalling that Dψtk is translation invariant and lower-
semicontinuous with respect to the weak topology (Proposition 6.4.16), we get that
any minimizer sequence {uk,h}h∈N ⊂ E1

norm(X,ω, ψtk ), for k ∈ N �xed, necessarily
satis�es d(uk,h, ψtk )→ +∞ as h→∞. Indeed if d(ψtk , uk,h) ≤ C then

{uk,h}h∈N ⊂ E
1
C(X,ω, ψtk ) := {u ∈ E

1(X,ω, ψtk ) : sup
X
u ≤ C,Eψtk (u) > −k}

which is weakly compact (Proposition 6.2.1). Hence, up to considering a subse-
quence, uk,h → uk ∈ E1

C(X,ω, ψtk ) and

Dψtk (uk) ≤ lim inf
h→∞

Dψtk (uk,h) = inf
E1(X,ω,ψtk )

Dψtk ,

which would lead to tk ∈ S by Theorem C.
Therefore we can �x a sequence {uk}k∈N such that uk ∈ E1(X,ω, ψtk ) for any k ∈ N,
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d(uk, ψtk )→ +∞, Eψtk (uk) = 0 and

Dψtk (uk) < Dψtk (vk)

where we set vk := Pω[ψtk ](ut0)− ck for ck = VψtkEψtk
(
Pω[ψtk ](ut0)

)
. By continu-

ity of the ψ-relative Ding functional with respect to decreasing sequences we may
also assume without loss of generality that uk has ψtk -relative minimal singularities.
We now claim that vk → uNt0 := ut0 − Vψt0Eψt0 (ut0) strongly, noting that by de�-
nition it is enough to prove that ṽk := Pω[ψtk ](ut0) converges strongly to ut0 . But
ut0 has ψt0 -relative minimal singularities, thus ||ṽk − ψk||L∞ ≤ ||ut0 − ψt0 ||L∞ ≤ C
by Lemma 6.5.6. Therefore Eψtk (ṽk)→ Eψt0 (ut0) as consequence of Lemma 4.3 in
[Tru19], and the claim follows.

In particular since
∫
X
e−vkdµ→

∫
X
e−u

N
t0 dµ by Theorem 6.4.8 we also have

Dψtk (vk)→ Dψt0 (ut0)

as k →∞. Next for C = d(ψt0 , u
N
t0) + 1 �xed and k � 1 big enough we denote with

wk ∈ E1(X,ω, ψtk ) the element on the weak geodesic segment joining vk and uk such
that d(ψtk , wk) = C. Note that such sequence wk exists since d(ψtk , vk) ≤ d(ψt0 , u

N
t0)

by Lemma 6.5.6. Moreover Eψtk (wk) = 0 by linearity of the Monge-Ampère energy
along weak geodesic segments (Theorem 6.3.11). Then by convexity of the ψtk -Ding
functional it follows that

Dψtk (wk) < Dψtk (vk)

for any k ∈ N. Furthermore by Lemma 6.5.6 | supX wk| ≤ A uniformly since
d(ψtk , wk) = C and Vψtk ≥ Vψ0 > 0. Hence by compactness, up to considering

a subsequence, wk → w weakly where w ∈ E1(X,ω, ψt0) by Proposition 6.2.1 which
also yields Eψt0 (w) ≥ 0. Thus since by Theorem 6.4.8

∫
X
e−wkdµ →

∫
X
e−wdµ we

obtain

Dψt0 (w) ≤ lim inf
k→∞

Dψtk (wk) ≤ lim
k→∞

Dψtk (vk) = Dψt0 (ut0) = inf
E1(X,ω,ψt0 )

Dψt0 ≤ Dψt0 (w).

Therefore Dψtk (wk) → Dψt0 (w) which reads as wk → w strongly. Moreover since

Eψt0 (w) = Eψt0 (uNt0) = 0 the uniqueness of solutions (Theorem C) implies w = ut0 .
Finally the contradiction is given by

d(ψtk , wk)− d(ψtk , vk) ≤ d(vk, wk).

since, as k → +∞, the left hand side converges to 1 (vk → uNt0 strongly) while the
right hand side goes to 0.
Step 3: Strong Continuity.

Suppose {tk}k∈N ⊂ S be a converging sequence to t0 ∈ S and denote with uk ∈
E1(X,ω, ψtk ) the unique potential of the corresponding KE metric such that{

MAω(uk) = e−ukdµ

uk ∈ E1(X,ω, ψtk ),
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and similarly for u ∈ E1(X,ω, ψt0) potential for the [ψt0 ]-KE metric. Then to prove
that uk → u strongly, since {ψt}t∈[0,1] is totally ordered, it is enough to consider the
two monotonically cases tk ↗ t0, tk ↘ t0 and prove the result for a subsequence.
In the case tk ↘ t0, Theorem 6.5.1 implies that there exist uniform coe�cients for
the coercivity if k � 1 big enough, i.e. there exists A > 0, B ≥ 0 such that

Dψtk (v) ≥ Ad(ψtk , v)−B

for any v ∈ E1
norm(X,ω, ψtk ). Thus since clearly Dψtk (uk) ≤ Dψtk (ψtk ) ≤ C1

uniformly, we obtain d(uk, ψtk ) ≤ C2 uniformly. Hence by Lemma 6.5.6 we also
have | supX uk| ≤ C3 uniformly and Theorem 6.5.5 concludes this case.
If instead tk ↗ t0 we �rst replace uk, u respectively with uNk := uk − VψtkEψtk (uk),

uN := u − Vψt0Eψt0 (u) so that they have null relative energies. Then proceeding

as in Step 2 we necessarily have d(ψtk , u
N
k ) ≤ C4 uniformly, which again by Lemma

6.5.6 implies
sup
X
uNk ≤ C5. (6.43)

Therefore by weak compactness and Proposition 6.2.1, up to considering a subse-
quence, it follows that uNk → ũ ∈ E1(X,ω, ψt0). On the other hand the Monge-
Ampère equations yields

VψtkEψtk (uk) = log Vψtk − log

∫
X

e−u
N
k dµ,

and by Theorem 6.4.8 we deduce Eψtk (uk) ≤ C6 uniformly. Hence (6.43) implies
supX uk ≤ C7 and Theorem 6.5.5 concludes the proof.

Remark 6.5.7. Observe that when ψ ∈ MKE does not belong to MD but its ψ-
relative Ding functional is coercive with slope A > 0, then a natural way to connect
it with other ψ̃ ∈ MD, ψ̃ < ψ as in Theorem B is to pass through the model type
envelope ψ′ ∈MD having the same singularity data of ψ. Indeed if

Vψ′ < Vψ/(1−A)

then by Theorem 6.5.1 the coe�cients of the d-coercivity of Dψs for ψs := sψ′ +
(1 − s)ψ are uniformly bounded. Thus, proceeding as in the proof of Theorem B,
appropriate potentials for the KE metrics are uniformly bounded from above and
the strong continuity of Theorem B holds for this path as a consequence of Theorem
6.5.5.

6.5.2 0-dimensional equisingularities

As an consequence of Theorem A an estimate on ψ-relative α-invariants gives an
estimate on the α-invariant in the absolute setting, which is often useful to detect if
a Fano manifold admits a KE metric (see also Question A and Conjecture A).
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Moreover by de�nition it is easier to produce lower bounds for αω(ψ) with respect
to �nding lower bounds for the usual α-invariant (i.e. αω(0)).
Moreover Remark 6.4.4 and Corollary 6.5.3 suggest that the most natural case to
consider is when the model type envelope has isolated singularities at N points with
the same weight (i.e. with the same Lelong numbers at these points). Indeed in
this way the singularities can have weight arbitrarily small (which clearly implies
lct(X, 0, ψ) arbitrarily big), the locus of the singularities is always 0-dimensional and
the total mass Vψ may basically be chosen arbitrary and independent on the weight
of the singularities. In particular, roughly speaking, the set {ψ′ ∈M : ψ′ 4 ψ} have
few elements if Vψ is small enough and this makes the computation of αω(ψ) easier
as underlined before.
Furthermore intuitively we expect that, assuming Aut (X)◦ = {Id}, if there exists a
KE metric then it should be recovered by these KE metrics with 0-dimensional equi-
singularities when N moves to +∞, and vice versa we expect that if the sequence of
these KE metrics diverges then X should not admit a KE metric. This point process
will be subject of study in future works.

To be more precise we �rst recall that given an nef line bundle L and R := {p1, . . . , pN}
a set of N distinct points on Y compact Kähler manifold, the multipoint Seshadri
constant at p1, . . . , pN is de�ned as

ε(L; p1, . . . , pN ) := sup{a > 0 : f∗NL− aEN is nef }

where fN : Z → Y is the blow-up along R and EN :=
∑N
j=1 Ej the sum of the

exceptional divisors (see [Dem90], [Laz04], [BDRH +09]). The de�nition extends to
Q-line bundle by rescaling and to R-line bundle by continuity. Moreover ε(L; ·)
is lower-semicontinuous and its supremum is reached outside a countable union of
proper subvarieties, i.e. when the points are in very general position . In this case
will indicate ε(L;N) for simplicity.
The characterization of multipoint Seshadri constants in terms of jets implies that
given N ∈ N, δ > 0 there exists a ω-psh function ϕN,δ with analytic singularities
formally encoded in (IZ , δ) if and only if δ < ε(L;N). In particular, letting ψN,δ :=
Pω[ϕN,δ] and ηN,δ the big and semipositive form given by f∗ωϕN,δ = ηN,δ + δ[EN ],

VψN,δ = VolZ
(
{ηN,δ}

)
= VolY (L)−Nδn

where we indicated with VolY (L) =
∫
X
ωn, VolZ({ηN,δ}) =

∫
Z
ηnN,δ. Observe also

that ψN,δ ∈M+
klt if and only if δ < n and that δ = ν(ψN,δ) := supy∈Y ν(ψN,δ, y).

Then letting Θ ∈ H1,1(Y,R) be a pseudoe�ective cohomology class on a compact
manifold Y , we call the quantity

σ(Θ, y) := sup{a ≥ 0 : f∗Θ− aE is pseudoe�ective }

the pseudoe�ective threshold of Θ at y, where we denoted with f : Z → Y the
blow-up at y and with E the exceptional divisor. When Θ is associated to a R-line
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bundle L, we will also replace Θ with L in the de�nitions since they are clearly
coholomogical.

Lemma 6.5.8. Let Θ ∈ H1,1(Y,R) be a pseudoe�ective cohomology class on a
compact manifold Y and let η be a smooth closed (1, 1)-form representative of Θ.
Then

sup
u∈PSH(Y,η)

ν(u, y) = σ(Θ, y) for any y ∈ Y,

Proof. For any u ∈ PSH(Y, η) and any y ∈ Y ,

g∗(ηu)− ν(u, y)E

is a closed and positive (1, 1)-current, where g : Z → Y is the blow-up at y and E
the exceptional divisor. Thus

sup
u∈PSH(Y,η)

ν(u, y) ≤ σ(Θ; y).

Vice versa if g∗Θ − aE is pseudoe�ective there exists a positive and closed (1, 1)-
current T representative of g∗Θ − aE. Therefore the current T + aE is closed and
positive with cohomology class g∗Θ. But this implies that there exists a closed and
positive current S such that f∗S = T + aE (see for instance Proposition 1.2.7.(ii)
in [BouTh]). Thus by the ∂∂̄-Lemma S = η + ddcu for u ∈ PSH(Y, η), and by
construction ν(u, y) = infz∈E ν(T + aE, z) ≥ a where we recall that the Lelong
number of a closed and positive (1, 1)-current is de�ned as the Lelong number of its
potential once that a smooth form is �xed. Hence supu∈PSH(Y,η) ν(u, y) ≥ σ(Θ; y)
which concludes the proof.

We can now state the following �nal estimate for the ψN,δ-relative α-invariant.

Proposition 6.5.9. Let 0 < δ < ε(−KX ;N) and let ψ ∈ M+ the model type
envelopes with analytic singularity types formally encoded in (IS , δ) where S =
{p1, . . . , pN} is the set of points. We also set L := f∗(−KX) − δE for the cor-
responding ample R-line bundle, where with obvious notations f : Y → X is the
blow-up at S and E :=

∑N
j=1 Ej the sum of the exceptional divisors. Then letting

σexc(L) := sup
y∈E

σ(L, y),

σgen(L) := sup
y∈Y \E

σ(L, y),

εexc(L) := inf
y∈E

ε(L, y),

εgen(L) := inf
y∈Y \E

ε(L, y),
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we have

αω(ψ) ≥ 2

max
{
δ + σexc(L), σgen(L)

} , (6.44)

αω(ψ) ≥ min
{ 2

δ + V−δnN
εexc(L)n−1

,
2εgen(L)n−1

V − δnN

}
(6.45)

where we set V := VolX(−KX) = (−KX)n

Proof. Proposition 6.2.4 yields a bijection between PSH(X,ω, ψ) := {u ∈ PSH(X,ω) :
u 4 ψ} and PSH(Y, η) where η is a smooth closed (1, 1)-form with cohomology
class c1(L). Moreover denoting with ũ ∈ PSH(X, η) the function corresponding to
u ∈ PSH(X,ω, ψ), it follows by construction that

ν(u; pj) = δ + inf
y∈Ej

ν(ũ; y),

while ν(u, x) = ν(ũ, f−1x) if x /∈ S. Thus we get

δ + sup
y∈E

sup
ũ∈PSH(Y,η)

ν(ũ, y) ≥ sup
x∈S

sup
u4ψ

ν(u, x), (6.46)

sup
y∈Y \E

sup
ũ∈PSH(Y,η)

ν(ũ, y) = sup
x∈X\S

sup
u4ψ

ν(u, x). (6.47)

Then by Lemma 6.5.8 the left hand sides in (6.46) and in (6.47) are equal respectively
to δ + σexc(L) and σgen(L). Therefore

2

max{δ + σexc(L), σgen(L)} ≤
2

supx∈X supu4ψ ν(u, x)
,

which implies (6.44). Indeed combining Theorem 6.4.10 and Lemma 6.4.7 αω(ψ) ≥ α
for any α > 0 such that

α <
2

supx∈X supu4ψ ν(u, x)
.

Next (6.45) is a consequence of (6.44) since

σ(L; y)ε(L; y)n−1 ≤ VolX(L).

holds for any y ∈ Y . One easy way to check this last inequality is through the
convexity of the Okounkov body of L at y with respect to an in�nitesimal �ag (see
[LM09], [KL17]).

Remark 6.5.10. As seen during the proof of Proposition 6.5.9 the lower bound in
terms of the pseudoe�ective thresholds is sharper than the one given by the Seshadri
constants. Anyway giving upper bounds for the pseudoe�ective threshold is usually
harder than �nding lower bounds for the Seshadri constant. Moreover the latter is
much more studied in the literature since it is related to di�erent famous problems
in Algebraic Geometry (see [BDRH +09]).
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We conclude the article with the following easy example of a K-unstable Fano man-
ifold which admits a [ψ]-KE metric with isolated singularities at N points of weight
δ using Proposition 6.5.9.

Example 6.5.11. Let S1 = BlpP2 endowed with a Kähler form ω. Since ε(−KS1 ; 6) >
1, we consider ψ ∈ M+ with isolated singularities respectively at 6 points in very
general position of weight δ = 1. Thus letting f : S7 → S1 the blow-up at these
points, the line bundle L = f∗6 (−KS1)−E6 coincides with the anticanonical bundle
−KS7 .
Then one way to produce a [ψ]-KE current is through Proposition 6.4.5 since S7

admits a KE metric. Anyway here we want to show that there exists a [ψ]-KE cur-
rent producing a lower bound for αω(ψ) by Proposition 6.5.9 and using Theorem A.
Indeed, since ε(−KS7 ; y) = 4/3 if y ∈ S7 is general and ε(−KS7 ; y) = 1 otherwise
([Bro06]), from Proposition 6.5.9 we easily have

αω(ψ) ≥ 4

5
, (6.48)

and Theorem A gives ψ ∈ MKE since (X,ψ) is klt. Observe also that the estimate
in (6.48) is better than αω(ψ) > 3

4
, which seems to be the known lower bound for

the usual α-invariant α(S7, 0) (see [Chel08]).
Moreover considering ψt := (1 − t)ψ for t ∈ [0, 1], by the right continuity of αω(·)
(Proposition 6.4.9) it follows that αω(ψt) >

2
3
for any 0 ≤ t � 1 small enough.

Hence Theorem A produces the existence of a [ψt]-KE current for any 0 ≤ t� 1 big
enough. Note that using Proposition 6.4.9 .(ii), which has not restriction on Mklt, it
is possible to produce good estimate on the largest t ∈ (0, 1] such that αω(ψt) >

2
3
,

i.e. on S := {t ∈ [0, 1] : ψt ∈ MKE}. Obviously S 6= [0, 1] since X does not admit
a KE metric.
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