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Protein phosphorylation regulates a large variety of biological processes in

all living cells. In pathogenic bacteria, the study of serine, threonine, and tyr-

osine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious

diseases, from adherence to host cells to pathogen virulence, replication, and

persistence. Mass spectrometry (MS)-based phosphoproteomics has provided

global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite

recent developments, a quantitative and dynamic view of phosphorylation

events that occur during bacterial pathogenesis is currently lacking. Tempo-

ral, spatial, and subpopulation resolution of phosphorylation data is required

to identify key regulatory nodes underlying bacterial pathogenesis. Herein,

we discuss how technological improvements in sample handling, MS instru-

mentation, data processing, and machine learning should improve bacterial

phosphoproteomic datasets and the information extracted from them. Such

information is expected to significantly extend the current knowledge of Ser/

Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately con-

tribute to the design of novel strategies to combat bacterial infections.
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Hanks kinases; host–pathogen interactions; machine learning; omics
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Protein phosphorylation on serine (Ser), threonine

(Thr), and tyrosine (Tyr) residues dynamically regu-

lates the cellular activities in bacteria, archaea, and

eukarya. By modulating the conformation and macro-

molecular interactions of proteins, phosphate attach-

ment can change the activity, stability, or localization

of proteins to guide cellular signaling. Although most

thoroughly studied in eukarya, where it is the most

common type of post-translational modification

(PTM) [1], Ser/Thr/Tyr phosphorylation is increasingly

recognized for playing wide-ranging and essential roles

in the control of bacterial life, including the process of

pathogenesis [2–5]. Other phosphorylation systems in

bacteria include the phosphorylation of histidines and

aspartates [such as in two-component systems (TCSs)]

and, less commonly, of arginines and cysteines, with

considerable crosstalk occurring between the different

modification systems [6]. The phosphorylation reaction

is catalyzed by distinct types of residue-specific kinases

and is reversed by cognate phosphatases to terminate

signaling events. Most bacterial Ser/Thr-specific

kinases belong to the evolutionary conserved Hanks-

type family, which are also present in eukaryotes [7–9].
In addition, bacteria contain a small group of atypical

Ser/Thr kinases [10,11]. Most Tyr-directed kinases in

bacteria do not, in contrast to eukarya, belong to the

Hanks family, but are bacteria-specific and referred to

as bacterial tyrosine kinases (BY-kinases) [10,12,13].

The catalytic domain of BY-kinases is characterized by

the presence of Walker A, A’ and B ATP/GTP-bind-

ing motifs [12,13]. All BY-kinases, as well as many

Hanks kinases, are transmembrane or membrane-asso-

ciated proteins that can relay signals from the extracel-

lular environment to the cell interior [9,12,13]. Many

Hanks kinases contain repeats of so-called penicillin

binding protein and Ser/Thr kinase-associated

(PASTA) domains in their extracellular portion that

bind cell wall fragments [14,15]. Table 1 provides an

overview of Ser/Thr- and Tyr-specific kinases identified

in a selection of commonly studied pathogenic bacteria

mentioned in this review [9,11,13,16–19]. Compara-

tively, much less is known about bacterial phos-

phatases, which are also fewer in number. The ones

described to date include the phosphoprotein and

metal-dependent phosphatases (PPPs and PPMs) act-

ing on Ser/Thr residues, and the conventional and low

molecular weight (LMW) protein Tyr-specific phos-

phatases (PTPs) [9,20]. Notably, there are also exam-

ples of kinases and phosphatases displaying dual

amino acid specificity [5,21–23]. Detailed descriptions

of bacterial kinases and phosphatases and their modes

of regulation can be found in other reviews

[9,10,12,13,24].

Bacterial pathogens are defined as any type of bacte-

ria able to cause infection in a host organism. The

infection process follows a sequence of events includ-

ing pathogen host entry, immune evasion, replication,

dissemination, and persistence. Literature on how bac-

terial Ser/Thr/Tyr phosphorylation is implicated in

each of these steps is accumulating. We therefore start

this review by presenting a selection of these functional

studies. The current rise in antibiotic drug resistance

poses an ever-increasing threat to human health and

urgently calls for new therapeutic opportunities. As

future therapies may involve targeted inhibition of the

pathogenic signaling networks that sustain bacterial

survival in the human host, research aiming at obtain-

ing in-depth knowledge of bacterial phosphorylation

systems should be prioritized. However, we are still far

from having a complete picture of how phosphoryla-

tion networks contribute to pathogenesis. Mass spec-

trometry (MS)-based phosphoproteomics has become

a key technology for obtaining global and systematic

views of phosphorylation networks in biological sys-

tems. This review therefore places particular focus on

the use of phosphoproteomics in the study of patho-

genic bacteria. We provide a comprehensive overview

of phosphoproteomic studies that have recorded phos-

phorylation sites at a global scale in different types of

pathogens and describe the use of phosphoproteomics

to understand kinase–substrate relationships and host–

Major take-home messages from this review

• Serine, threonine, and tyrosine (Ser/Thr/Tyr)

phosphorylation plays wide-ranging roles in bac-

terial pathogens affecting both basic physiology

and pathogen-specific processes.

• Recent advances in bacterial phosphoproteomics

have significantly increased our insight into the

width of pathogen Ser/Thr/Tyr phosphorylation

substrates.

• Further improvements in sample preparation, MS

instrumentation, and data acquisition and analy-

sis should enable time-resolved and spatially

resolved analyses of both bacterial and host cell

phosphoproteomes during in vivo infections.

• Automated methods to predict the functional

implications of bacterial phosphosites should be

developed.

• Omics integration and machine-learning methods

will help to obtain a systems-level understanding

of the phosphorylation networks driving bacterial

pathogenesis.
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pathogen interactions. Successively, a discussion on

current and future technical advancements that should

move the field forward with the ultimate goal of

obtaining deep and quantitative views of the phospho-

rylation networks supporting bacterial infections is

provided. Furthermore, based on insights obtained

from eukaryal phosphorylation, we describe how pro-

tein structural and evolutionary information can facili-

tate qualified predictions of phosphosite functions. We

then generally outline how machine learning can help

reveal regulatory patterns embedded in complex phos-

phoproteomic datasets, and how ‘omics’ data integra-

tion should allow for a systems-level analysis of

infectious disease. Finally, we discuss how knowledge

of protein phosphorylation can be exploited in the

design of new antibacterial therapies.

Control of bacterial pathogenesis by
Ser/Thr/Tyr phosphorylation

It is becoming increasingly clear that protein phospho-

rylation has the potential to regulate most types of cel-

lular processes, and hence, it is not surprising that

phosphorylation also acts as an important regulator in

the context of pathogenesis. To this attest, it has been

shown for diverse types of pathogens that inactivation

of specific kinases reduces or attenuates their virulence

in animal models [14,25–33]. Kinase-dependent in vivo

virulence has, for example, been well documented for

species of Streptococci using different infection models.

In Streptococcus agalactiae (group B streptococci),

mutation of the PASTA-domain-containing Hanks

kinase Stk1 diminishes virulence in a neonatal rat

model of sepsis [29], and mutation of the homologous

kinase of Streptococcus pneumoniae, StkP, decreases

the bacterial burden in the lungs and blood of intrana-

sally or intravenously infected mice [30]. Furthermore,

in Streptococcus pyogenes (group A streptococci) Stk1

has been found essential for disease development in a

mouse myositis model of infection [31]. Kinase inacti-

vation has also been seen to reduce the initial coloniza-

tion of intestinal pathogens [19,34]. As shown in a

hamster infection model, deletion of the Hanks kinase

PrkC of Clostridium difficile leads to a delay in gut col-

onization, although it has no significant effect on over-

all virulence [34]. In some cases, kinase-mediated

virulence may depend on the bacterial strain or the

infection model. While deletion of the Staphylococ-

cus aureus Stk1 Hanks kinase (also known as PknB) in

the SH100 strain background causes a significant

reduction of virulence in a mouse model of

pyelonephritis [32], deletion of Stk1 in the Newman

strain has no effect in a septicemia disease model [35].

What is more, a methicillin-resistant S. aureus (MRSA)

USA300 Dstk1 strain was actually seen to cause a more

severe infection in a cutaneous mouse model compared

to the USA300 wild-type strain [36]. Consistent with

the dynamic nature of phosphorylation being impor-

tant for cell function, phosphatase abrogation also fre-

quently affects in vivo infection outcomes [22,35,37–39].
This includes the secreted LMW PtpA Tyr phosphatase

of S. aureus, which enhances bacterial survival within

macrophages and promotes mouse liver infectivity [38].

Similarly, the also secretory LMW but dual-specificity

phosphatase SP-PTP of S. pyogenes is required for nor-

mal adherence to human lung cells and in vivo viru-

lence in mice. Consistently, SP-PTP overexpression

causes hypervirulence [22].

Table 1. Table listing reported Ser/Thr and Tyr kinases identified in a selection of commonly studied pathogenic bacteria. Additional

uncharacterized kinases are likely to exist in some of these species. ND, no data.

Bacterium Ser/Thr kinases Tyr kinases References

Mycobacterium tuberculosis PknA; PknB; PknD; PknE; PknF;

PknG; PknH; PknI; PknJ; PknK; PknL

PtkA [9,13]

Streptococcus pneumoniae StkP CpsD; Ubk (only

an autokinase?)

[9,13,16]

Staphylococcus aureus Stk1 (PknB) CapB [9,13,32]

Mycoplasma pneumoniae PrkC ND [9]

Listeria monocytogenes PrkA ND [9]

Escherichia coli HipA; YeaG; YihE (SrkA); Stk Etk; Wzc [8,9,11,13,17]

Yersinia spp. YpkA (YopO) ND [9]

Pseudomonas aeruginosa PpkA WaaP [9,13,26]

Salmonella typhimurium SteC; RdoA PutA [11,13,162]

Klebsiella pneumoniae KpnK Wzc [13,18]

Enterococcus faecalis IreK (PrkC) ND [19]

Clostridium difficile PrkC; CD2148 ND [34]
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The above-mentioned studies clearly demonstrate

the importance of Ser/Thr/Tyr kinases and phos-

phatases for bacterial virulence. Yet the specific mech-

anisms by which these enzymes contribute to

pathogenicity remain to be systematically elucidated.

Individual kinases and phosphatases generally have

multiple protein substrates operating in different cellu-

lar pathways. Thus, phosphorylation-based regulation

is exerted on many levels of pathogen function and

must be understood in a context- and species-specific

manner. The literature on phosphorylation in the regu-

lation of bacterial physiology and pathogenicity is vast

and it is beyond the scope of this review to cover cur-

rent knowledge in an all-encompassing manner. In this

section, we nonetheless seek to illustrate the diversity

by which Ser/Thr/Tyr phosphorylation can influence

bacterial infections via the control of some critical

pathogen functions.

Pathogen cell division and cell wall biosynthesis

Most bacteria harbor a peptidoglycan-based cell wall,

which acts to protect the bacterium from lysis in its

differing environments. Both cell elongation and the

septum formed during cell division require peptidogly-

can synthesis, making cell wall growth and division

highly interlinked processes. Protein phosphorylation,

especially by membrane-associated Hanks-type kinases

with PASTA repeats, plays significant roles in regulat-

ing these processes. For instance, the Hanks kinase

StkP is a key regulator of cell division in S. pneumo-

niae and controls the balance between elongated cell

growth and septation [40]. In an stkP mutant, cell wall

synthesis is perturbed resulting in elongated cells [40–
42]. During cell division, StkP, together with its cog-

nate phosphatase PhpP, localizes to the septum and

regulates a number of cell division proteins [40]. One

of these is DivIVA, and DivIVA phosphorylation neg-

atively regulates cell elongation and promotes cell divi-

sion [41,43]. StkP can also regulate cell division at the

direct level of cell wall peptidoglycan synthesis. At the

division site, the peptidoglycan synthase PBP2a forms

a complex with the membrane-anchored cofactor

MacP. MacP is in turn phosphorylated by StkP, lead-

ing to PBP2a activation [44]. A recent study aimed at

dissecting the roles of the StkP PASTA repeats during

S. pneumoniae cell division showed that while the three

membrane-proximal repeats are required for kinase

activation and septal cell wall thickness, the mem-

brane-distal repeat ensures proper localization of StkP

at the division site and effective cell separation [45].

Interestingly, StkP activation was seen not to depend

on PASTA peptidoglycan binding and thus contrasts

the generally accepted view of PASTA-dependent

kinase activation [9,45].

The S. aureus Stk1 Hanks kinase is also involved in

the regulation of cell wall metabolism and division

[32]. The cell wall precursor molecule Lipid II has been

reported as the activating signal for Stk1, and binding

to lipidII variants induces Stk1 autophosphorylation

in vitro [46]. In vivo, Stk1 localizes to the septum fol-

lowing recruitment of the contractile Z-ring forming

protein FtsZ. Phosphorylation reduces FtsZ GTPase

activity to possibly modulate Z-ring dynamics. In addi-

tion, Stk1 phosphorylates the response regulator

WalR, which controls the expression of a number of

proteins involved in cell wall remodeling [46].

In Mycobacterium tuberculosis, we also find a

PASTA-domain-containing Hanks kinase, PknB,

involved in regulating cell wall metabolism. Here, a

key PknB substrate is the peptidoglycan synthase

CwlM [47,48]. In its phosphorylated form, CwlM

interacts with the forkhead-associated (FHA)-domain

protein FhaA in the cytosol to presumably control

peptidoglycan synthesis. Conversely, nonphosphory-

lated CwlM localizes to the cell membrane and inter-

acts with the lipid flippase MurJ important for

peptidoglycan precursor export (Fig. 1A) [48]. Interest-

ingly, in the related, but mostly nonpathogenic

Mycobacterium smegmatis, phosphorylation of CwlM

quickly diminishes when cells are starved, suggesting

that CwlM phosphorylation acts to adjust peptidogly-

can synthesis according to nutrient status [47].

Virulence gene expression

Pathogens produce a variety of virulence factors that

enable them to colonize host cells and tissues and sur-

vive inside their host. Kinase or phosphatase inactiva-

tion often significantly alters bacterial gene expression

profiles, including expression levels of virulence deter-

minants [31,36,37,39,49–51]. These phenotypes are due

to both direct and indirect effects of kinases and phos-

phatases on gene transcription. Inactivation of kinases

or phosphatases may affect the transcription of genes

regulated by direct kinase/phosphatase targets, but

potentially also, indirectly, of genes part of the same

gene regulatory networks. A common way by which

phosphorylation directly regulates virulence gene

expression is by modulating the DNA-binding proper-

ties of transcriptional regulators [52]. This is the case

for the highly conserved catabolite control protein and

virulence regulator CcpA in S. aureus. CcpA gets

phosphorylated on two threonine residues in its DNA-

binding domain by Stk1. By abrogating CcpA DNA

binding, this phosphorylation event prevents the
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Fig. 1. Schematic illustrations of protein phosphorylation in the control of pathogen life cycle processes such a cell wall biosynthesis (A),

virulence gene expression (B), host signaling interference (C) and host persistence (D). (A) Mycobacterium tuberculosis cell wall synthesis is

controlled by the Hanks-type PASTA kinase PknB via phosphorylation of the peptidoglycan synthase CwlM. Left: Nonphosphorylated CwlM

is localized at the cell membrane where it interacts with the lipid flippase MurJ, responsible for transporting peptidoglycan precursors

across the membrane. Right: An accumulation of un-cross-linked extracellular peptidoglycan is sensed by the PknB PASTA repeats and

leads to PknB activation. PknB in turn phosphorylates CwlM as well as MurJ, stimulating their interaction with the FHA-domain protein

FhaA implicated in peptidoglycan biosynthesis [48]. (B) Staphylococcus aureus Stk1 regulates the expression of virulence genes via the

phosphorylation of transcriptional regulators. Left: Stk1-mediated phosphorylation of the catabolite control protein CcpA within its DNA-

binding domain prevents CcpA binding to its target DNA sequence and expression of the cytotoxic a-hemolysin protein (encoded by the hla

gene) [53]. Right: Stk1 also phosphorylates the stage V sporulation protein SpoVG, which acts as a transcriptional regulator of virulence

genes such as capA, lip, and nuc1. SpoVG gets phosphorylated on four N-terminal threonines, and in contrast to the situation for CcpA,

SpoVG phosphorylation stimulates DNA promoter binding and hence virulence gene expression [54]. (C) A secreted Yersinia Hanks kinase

obstructs host cell signaling. Yersinia bacteria secrete the kinase YpkA into host macrophage cells via its T3SS. Once inside, YpkA is able to

phosphorylate host proteins such as the heterotrimeric Gaq protein and the VASP. Gaq is a G-protein-coupled receptor subunit and is

phosphorylated by YpkA within its highly conserved diphosphate binding domain. This phosphorylation event inhibits Gaq GTP binding and

consequently Gaq signaling functions such as actin cytoskeleton regulation [84]. Similarly, YpkA-mediated phosphorylation of VASP prevents

VASP-driven actin polymerization. These effects on cytoskeleton dynamics impair effective macrophage phagocytosis [85]. (D) The HipA

kinase promotes Escherichia coli host persistence via the glutamyl-tRNA synthetase GltX. When HipA is inactive, GltX exists in a

nonphosphorylated and active state to promote protein translation. However, GltX phosphorylation by active HipA inhibits GltX catalytic

activity, leading to an accumulation of uncharged tRNAGlu, ribosome stalling, and ultimately, cell growth inhibition [109].
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expression of the critical virulence protein a-hemolysin,

a cytotoxin able to induce host cell death [53]. In con-

trast, Stk1-mediated phosphorylation of another S. au-

reus transcriptional regulator, SpoVG, enhances

SpoVG binding to target promoters of virulence genes

such as lip (lipase), nuc1 (thermonuclease 1), and capA

(capsular polysaccharide (CPS) biosynthesis protein;

Fig. 1B) [54]. Exemplifying crosstalk between different

phosphorylation-dependent signaling systems, S. au-

reus Stk1 is also seen to regulate the TCS response

regulator GraR implicated in virulence and antibiotic

resistance [55]. GraR phosphorylation increases its

DNA-binding activity to proposedly induce expression

of genes involved in the modulation of cell wall charge

via wall teichoic acid (WTA) D-alanine incorporation.

This is believed to have a global effect on S. aureus

pathogenicity since WTA charge is important for

diverse processes such as cell growth, host infection

and attachment, biofilm development, and drug resis-

tance [55]. Similar phosphorylation system crosstalk is

seen in Streptococci between the CovR/CovS (control

of virulence) TCS and the Stk1 Hanks kinase. In

S. agalactiae and in S. pyogenes, the CovR transcrip-

tional regulator can be phosphorylated on Thr65 by

Stk1 [39,56,57]. CovR acts mainly as a repressor of

virulence genes, and phosphorylation of CovR on

Asp53 stimulates its DNA binding. On the other hand,

a phospho-mimetic CovR-Thr65Glu variant reduces

Asp53 phosphorylation and consequently CovR pro-

moter regulation [56,57]. Consistently, in S. pyogenes,

the phospho-silenced CovR-Asp53Ala and the phos-

pho-mimetic CovR-Thr65Glu strains were seen to dis-

play similar profiles of gene repression to a CovR-

deleted strain. Interestingly, compared to DcovR,
CovR-Asp53Ala- and CovR-Thr65Glu-expressing

strains were still able to positively influence the expres-

sion of some CovR-activated virulence genes, and in

accordance caused hypervirulence in a mouse infection

model [57]. Similarly, in vivo hypervirulence as well as

increased blood–brain barrier penetration is seen for

S. agalactiae CovR-Asp53Ala-, CovR-Thr65Glu-, and

CovR-deleted strains [58]. Mechanistic insight into

Hanks kinase and TCS crosstalk relevant to bacterial

pathogenicity was also recently provided for S. pneu-

moniae [59]. During host invasion, S. pneumoniae has

to adapt to local fluctuations in pH in both extra- and

intracellular compartments. In response to acidic

stress, S. pneumoniae may undergo acidic stress-in-

duced lysis (ASIL), where virulence factors such as

pneumolysin are released and cause tissue damage [60].

The response regulator ComE controls whether pro-

survival or lytic responses are initiated at low pH

[59,61]. More specifically, Pi~nas et al. demonstrated

that ComE phosphorylation on Thr128 by the StkP

Hanks kinase stimulates ComE DNA binding, induc-

tion of genes involved in H2O2 production and cell

lysis [59]. In contrast, StkP-deleted and ComE-

Thr128Ala mutant strains were blocked in ASIL and

displayed increased survival in pneumocytes [59].

Finally, an example of transcription factor regula-

tion via Tyr phosphorylation has been elucidated in

enterohemorrhagic Escherichia coli (EHEC). Tyr phos-

phorylation of the sugar-sensing transcription regula-

tor Cra reduces its DNA binding and leads to

downregulation of type III secretion system (T3SS)

expression under glycolytic conditions, a condition

where T3SS is usually not needed [62]. Recent phos-

phoproteomic studies have identified multiple tran-

scriptional and post-transcriptional regulators

phosphorylated on tyrosine residues in species such as

E. coli and Shigella flexneri [63,64], and future charac-

terization of these sites should allow us to uncover

how Tyr phosphorylation affects virulence gene expres-

sion.

Regulation of pathogen exopolysaccharides

Besides governing virulence gene expression, Ser/Thr/

Tyr phosphorylation regulates pathogen host invasion

and survival through multiple other means. These

include the regulation of cell surface capsular and non-

capsular exopolysaccharides to facilitate host adher-

ence, biofilm formation, immune system avoidance,

and antibiotic resistance. Particularly, BY-kinases are

recognized for their role in exopolysaccharide produc-

tion and export [12,13]. A well-studied example is the

Wzc BY-kinase of E. coli, which acts together with its

cognate phosphatase Wzb in the synthesis of group 1

capsular and colonic acid polysaccharides [65–67]. The
current model proposes that the cycling of Wzc

autophosphorylation and Wzb-mediated dephosphory-

lation drives proper exopolysaccharide assembly [67].

Although the exact mechanism by which this influ-

ences exopolysaccharide production is not known,

crystallographic studies suggest that Wzc phosphoryla-

tion and dephosphorylation cause Wzc to exist in

mono- and oligomeric states, respectively [68]. Simi-

larly, the other E. coli BY-kinase–phosphatase pair

Etk–Etp promotes group 4 capsule formation in enter-

opathogenic strains [69]. In addition, Wzc and Etk can

both phosphorylate the same tyrosine residue on the

UDP-glucose dehydrogenase Ugd involved in the syn-

thesis of exopolysaccharide precursors [70,71]. Whereas

Ugd phosphorylation by Wzc regulates colanic acid

production, Ugd phosphorylation by Etk is important

for resistance to the antibiotic polymyxin [71]. In the
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context of CPS synthesis, crosstalk between Tyr and

Ser/Thr phosphorylation has interestingly been seen to

coordinate capsular and cell wall synthesis in S. aureus

by regulating the distribution of precursor molecules

common to the two pathways [72]. While the

CapA1B1 BY-kinase complex activates CPS synthesis

via phosphorylation of the biosynthetic enzymes CapO

[73], CapE, and CapM, the Ser/Thr kinase Stk1 pro-

motes peptidoglycan synthesis and reduces CPS pro-

duction by inhibiting CapA1B1 kinase and CapM

glycosyltransferase activities [72]. BY-kinases are also

able to coordinate capsule formation with cell division

[74]. In S. pneumoniae, autophosphorylation of the

BY-kinase CpsD, which forms part of a larger CPS

assembly complex, is required for proper capsule pro-

duction at the septum. Furthermore, by modulating

the mobility of the chromosome partitioning protein

ParB, phosphorylated CpsD acts to coordinate cell

constriction with the encapsulation of daughter cells

[74].

Host establishment

Upon infection with bacterial pathogens, the host initi-

ates a variety of cellular signaling events that act to

stimulate innate and adaptive immune defense mecha-

nisms and ultimately restrict pathogen dissemination.

A key virulence strategy utilized by pathogens to sub-

vert these processes and thus promote their own sur-

vival is the injection of effector molecules into host

cells. Effector translocation is mediated via specialized

secretion systems and these are frequently regulated by

phosphorylation. Initially, the reciprocal activity of the

PpkA–PppA Thr kinase/phosphatase pair was seen to

control secretion from a type VI secretion system

(T6SS) in Pseudomonas aeruginosa [75]. In the oppor-

tunistic pathogen Vibrio alginolyticus, T6SSs are con-

trolled by the PpkA2 Hanks kinase. Besides direct

T6SS regulation, PpkA2 controls T6SS expression via

a regulatory circuit involving the quorum sensing sys-

tem [76]. T3SSs are also subjected to diverse modes of

Ser/Thr/Tyr phospho-regulation. During infection,

enterohemorrhagic E. coli uses T3SS both for host

attachment and for injection of effector molecules [77].

In addition to transcriptional regulation, as mentioned

above [62], EHEC T3SS is regulated by the multicargo

chaperone CesT. CesT contains two highly conserved

tyrosine phosphorylation sites and these mediate dif-

ferential effector secretion [78]. In the closely related

S. flexneri, Tyr phosphorylation seems to be a negative

modulator of virulence and a Tyr-phospho-mimetic

mutant of the T3SS-associated ATPase Spa47 displays

impaired effector protein discharge [64].

Secreted effector molecules promote in vivo survival

and propagation by manipulating host signaling and

immune defense mechanisms. Many bacterial effectors

are actually kinases and phosphatases that target host

proteins [23,79–85]. In particular, there are several

examples of secreted bacterial kinases and phos-

phatases disrupting host cytoskeleton structures and

immunity [38,82,83,86,87]. Within the Yersinia genus,

for example, secreted Hanks kinase YpkA (YopO),

disrupts cytoskeleton dynamics via phosphorylation of

host heterotrimeric Gaq protein [82,84] and vasodila-

tor-stimulated phosphoprotein (VASP) [85], obstruct-

ing effective macrophage phagocytosis (Fig. 1C). In

M. tuberculosis, the secreted Tyr-specific PtkA kinase

and PtpA phosphatase, which are encoded in the same

operon, are both required for macrophage intracellular

growth [83,88,89]. Inside macrophages, PtpA dephos-

phorylates and inactivates the host vacuolar protein

sorting-associated protein 33B (VPS33B). This in turn

blocks the trafficking of the vacuolar-H+-ATPase to

the mycobacterial phagosome, impeding phagosome

acidification, phagosome–lysosome fusion, and ulti-

mately bacterial elimination [90]. The molecular mech-

anism behind PtkA-dependent M. tuberculosis

macrophage survival is less understood but may occur

via PtpA, as PtkA-mediated phosphorylation of PtpA

enhances PtpA phosphatase activity [91]. In addition,

PtkA is seen to downregulate the macrophage b-galac-
toside binding protein Galectin 3 involved in regulat-

ing apoptosis, and macrophages infected with a DptkA
strain undergo decreased apoptosis compared to a

wild-type M. tuberculosis strain [89]. The secreted

phosphatase PtpA of S. aureus is also required for

intramacrophage survival, as well as for mouse infec-

tivity, possibly via its interaction with the human

cytoskeleton-associated protein coronin-A [38]. Strep-

tococcus pyogenes encodes two secretory phosphatases,

that is, the Ser/Thr phosphatase SP-STP and the Ser/

Thr and Tyr dual-specificity phosphatase SP-PTP,

which have both been seen to induce virulence in

mouse peritonitis infection models [22,39]. In addition,

both are upregulated upon human pharyngeal cell

internalization [92]. SP-STP induces pharyngeal cell

apoptosis through both extrinsic and intrinsic host cell

stimulation in a manner dependent on its phosphatase

activity. In accordance, a SP-STP knockout strain

induces less host cell apoptosis in the lungs of infected

mice. This suggests that SP-STP interferes with multi-

ple host signaling pathways, and human pharyngeal

cells exposed to ectopically expressed SP-STP display

altered levels of various pro- and anti-apoptotic pro-

teins as well as deregulated histone phosphorylation

[92]. Lastly, to be mentioned is the interference of
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bacterial effectors with host innate immune responses

via the NF-jB pathway. In Legionella pneumophila,

the LegK1 Hanks kinase is secreted via the Dot/Icm

type IV secretion system into host macrophages where

it activates the NF-jB pathway by functionally mim-

icking host IjB kinase (IKK) proteins [93].

In some other cases, bacterial pathogens secrete pro-

teins that upon becoming phosphorylated by a host

kinase can suppress or hijack host protein function

[94–96]. More specifically, Tyr-phosphorylated bacte-

rial effectors can recruit a diverse array of host pro-

teins containing pTyr-binding Src homology 2 (SH2)

domains and thereby disrupt diverse host processes

[97]. Moreover, bacterial SH2 domains were recently

identified in a large group of Legionella effector pro-

teins. These were shown to bind Tyr-phosphorylated

host proteins with high affinity, proposing a novel

mechanism by which bacteria can interfere with host

cell signaling [98].

Finally, phosphorylation can guide the metabolic

adaptation of pathogens to their changing host envi-

ronment. Detailed mechanistic insight has been

obtained for the regulation of glutamate metabolism

by the soluble mycobacterial Hanks kinase PknG

[27,99–101]. Curiously, PknG phosphorylation of

GarA induces an intramolecular association in GarA

between its phosphorylated N terminus and its pThr-

binding FHA domain, which acts as a switch to relieve

the inhibitory interaction with the a-ketoglutarate
decarboxylase and NAD+-specific glutamate dehydro-

genase [99,100]. PknG activation depends on nutrient

status [102]. More precisely, periplasm amino acid

levels are sensed by the solute binding protein GlnH

and the signal is transmitted via the transmembrane

protein GlnX to cytosolic PknG [101].

Pathogen persistence

In case of chronic disease, bacteria can employ differ-

ent mechanisms for persistence, of which some are

based on protein phosphorylation. Biofilm formation

is a well-known strategy for development of persistent

infection [103]. Biofilms involve the production of an

extracellular matrix that consists of a mixture of pro-

teins, lipids, DNA, and different exopolysaccharides.

As described above, exopolysaccharide production is

regulated by phosphorylation in various ways.

Interestingly, in the dental pathogen Porphy-

romonas gingivalis, the BY-kinase Ptk1 and the metal-

dependent tyrosine phosphatase Php1 are required for

extracellular polysaccharide synthesis as well as for

interspecies community formation with the crucial oral

biofilm constituent Streptococcus gordonii [104,105].

Dual-species assemblies are facilitated by the binding

of the P. gingivalis fimbrial adhesion protein Mfa1 to

the S. gordonii surface SspA/B proteins, and Ptk1

induces Mfa1 expression by suppressing transcription

of the negative gene regulator CdhR [104], possibly

via direct CdhR phosphorylation [106]. Ptk1 is itself a

substrate for both Php1 and of the LMW tyrosine

phosphatase Ltp1, with the latter having a positive

effect on CdhR levels and a restrictive impact on

P. gingivalis–S. gordonii community development

[107,108]. Another important element of persistence is

cell dormancy where the stochastic establishment of

subpopulations of nonreplicating bacteria can confer

resistance to antibiotics targeting proliferating cells.

Upon drug withdrawal, reservoirs of dormant cells

can resume normal growth and re-initiate infections.

In E. coli, phosphorylation can induce the persistence

phenotype via the toxin–antitoxin module HipAB. The

toxin HipA is a Ser/Thr kinase that phosphorylates

and inactivates the glutamyl-tRNA synthetase GltX.

This leads to an increased pool of uncharged tRNAGlu,

which in turn leads to activation of the stringent

response and inhibition of cell growth (Fig. 1D) [109].

Dormancy is also a key feature of M. tuberculosis infec-

tion. After the primary infection, immune-derived gran-

uloma structures can form in which bacteria can reside

for decades. Inside the granuloma, M. tuberculosis faces

a hypoxic and nutrition-limited environment that leads

to development of dormant cells. The TCS DosSR con-

stitutes the main regulator of dormancy and is acti-

vated in response to hypoxia [110]. Thr

phosphorylation of the response regulator DosR by the

PknH kinase enhances DosR DNA binding and thus

expression from the dormancy regulon [111]. The

M. tuberculosis PknG kinase is similarly important for

persistence. Indeed, PknG is required for metabolic

adaptation to hypoxia and effective survival during

latency-like conditions, a role that is mediated via its

phosphorylation of the central metabolic regulator

GarA [112].

In summary, the above examples demonstrate the

importance of studying Ser/Thr/Tyr phosphorylation

in order to understand how pathogenic bacteria

invade, survive, and persist within their hosts. As

shown, bacterial kinases can modify numerous and

diverse proteins important for bacterial growth and

pathogenicity. The secretion of bacterial effectors that

can directly interfere with host phosphorylation signal-

ing furthermore expands the repertoire of phosphory-

lation-dependent mechanisms driving bacterial

infections. Notably, several of the discussed functional

studies were inspired from phosphoproteomic datasets,

emphasizing how unbiased phosphoproteomic profiling
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can be used to acquire novel insight into the regulation

of bacterial pathogenesis.

Phosphoproteomics in the study of
bacterial pathogenesis

Major advancements in MS-based proteomic method-

ologies over the last two decades have allowed

researchers to obtain global and unbiased insight into

protein PTMs at the site-specific level. Consequently,

it has revolutionized our knowledge of proteins and

their regulation. Nowadays, phosphoproteomics is a

mainstream laboratory technique used to identify regu-

latory events in all kinds of organisms. Mainly Ser/

Thr/Tyr-type phosphorylations have been extensively

studied in proteomic experiments. This is due to the

chemical lability of other types of phospho-bonds,

which challenge their detection by typical MS-based

protocols. Initially, phosphoproteomic protocols were

based on the separation of proteins on 2D gels where

excised phosphorylated proteins were analyzed by

MALDI-TOF MS. However, this strategy is biased

toward only the most abundant phosphoproteins and

can usually not determine the specific modification

sites. Thus, it was not until the development of gel-free

methods coupled to high-accuracy MS that high-

throughput and site-specific phosphoproteomic analy-

sis became feasible. The current state and future direc-

tions of phosphoproteomics in the study of bacterial

pathogens will be discussed below.

Large-scale identification of phosphosites

A typical shotgun phosphoproteomic experiment

involves the digestion of total cellular proteins fol-

lowed by liquid chromatography–tandem MS analysis

(LC-MS/MS) analysis of sorted phosphorylated pep-

tides. As phosphorylations are typically substoichio-

metric and of low abundance, phosphopeptides only

represent a tiny fraction of total protein digests [113].

Therefore, their isolation from the rest of the pro-

teome prior to MS analysis is of paramount impor-

tance for their successful detection [114,115]. The most

common enrichment methods are immobilized metal

affinity chromatography (IMAC) and metal oxide

affinity chromatography (most often with TiO2) [116].

Both methods rely on the affinity of negatively charged

phosphate groups for metals. Strong cation exchange

chromatography can furthermore be used to fraction-

ate peptides prior to phosphoenrichment to reduce

sample complexity and thereby improve phosphopep-

tide MS/MS identifications. Alternatively, phospho-

peptides can be enriched by phospho-specific

antibodies [115]. Another important step for maximiz-

ing phosphopeptide/site coverage is related to the frag-

mentation patterns of phosphopeptides during MS/

MS. Current fragmentation methods have recently

been discussed by Potel et al. [117]. Phosphoproteomic

protocols have primarily been developed for eukarya,

for which they are routinely used to identify tens of

thousands of sites [118,119]. Comparatively, bacterial

phosphoproteomes are much less explored. Bacterial

Ser/Thr/Tyr phosphosites are generally of a much

lower abundance compared to eukaryal sites

[113,120,121], making their identification more chal-

lenging. Nevertheless, since the first studies in bacterial

site-specific phosphoproteomics [122], our knowledge

of bacterial phosphoproteomes has greatly expanded

[2,114,123]. Phosphoproteomic studies in various types

of bacteria have revealed that phosphorylation affects

both basic bacterial physiology, such as central meta-

bolism and gene expression, as well as more pathogen-

specific functions [63,64,124–136]. A high proportion

of studies have been conducted for M. tuberculosis,

likely reflecting the high prevalence and mortality rates

of disease caused by this organism [137,138]. Together,

Tables 2 and 3 provide an overview of the untargeted

and gel-free Ser/Thr/Tyr phosphoproteomic studies

performed in pathogenic bacteria to date. While initial

studies generally identified in the range of 50–500
phosphosites from several mg of starting protein (de-

pending on the species), significant improvements in

sample preparation have more recently been reported.

For example, it is seen that the removal of interfering

bacterial biomolecules, such as phospholipids, peptido-

glycans, and nucleic acids, prior to phosphopeptide

enrichment, can greatly increase phosphosite identifica-

tions [139–142]. Potel et al. [140] incorporated ben-

zonase treatment and protein precipitation by

methanol/chloroform in their workflow to obtain

ultrapure phosphopeptide samples from which they

identified 10 times as many E. coli phosphosites com-

pared to a standard protocol. Another method that

enhances sample purity is the prepurification of phos-

phopeptides by calcium phosphate precipitation (CPP)

[143]. CPP treatment significantly expanded phospho-

site coverage for the nonpathogenic Strepto-

myces coelicolor [142]. Improved phosphopeptide

recovery may also be obtained by using IMAC resins

in a column format rather than batch or microtip

enrichment [140,144]. Moreover, species-specific opti-

mization may be required to maximize protocol effi-

ciencies [139].

The recent acquisition of large bacterial phospho-

proteomes has allowed the assessment of phosphosite

sequence features, representing putative kinase
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recognition motifs. Phosphorylation consensus

sequences have been identified in datasets obtained

from M. tuberculosis [51,125], Helicobacter pylori

[145], S. flexneri [64], and E. coli [63,146,147], includ-

ing bacteria-specific N- and C-terminal phosphoryla-

tion preferences [139,147]. Interestingly, a

phosphoproteomic dataset from the tick-transmitted

Ehrlichia ruminantium pathogen was enriched in recog-

nition motifs for several eukaryal kinases, suggesting

significant host cell interaction [148]. Another general

theme of bacterial phosphoproteomes is that they, sim-

ilar to the eukaryal ones, are dominated by pSer sites,

followed by pThr and, to a lesser extent, pTyr modifi-

cations. One exception is M. tuberculosis where pThr

sites are more frequently reported [149–151]. However,

pTyr sites are likely underrepresented in phosphopro-

teomic datasets obtained with metal affinity chro-

matography as their relatively low abundance

compared to pSer and pThr sites can result in their

disproportional enrichment. Instead, antibody-based

pTyr-peptide isolation strategies can greatly improve

pTyr identifications [115] with approximately 500 and

1000 pTyr sites identified in E. coli and S. flexneri,

respectively [63,64]. An alternative strategy may be to

use pTyr-binding SH2-peptide domains as a pTyr

affinity reagent [152]. As the collection of bacterial

phosphoproteomes continues to expand, it will allow

more systematic analyses of phosphosite features

across different species, potentially revealing interest-

ing differences between pathogens and nonpathogens.

To facilitate comparative and functional studies of

bacterial phosphorylation, phosphosite data should be

easily retrievable from public databases dedicated to

collecting experimentally verified phosphosites. Yet

such resources are currently underdeveloped for bacte-

ria compared to eukarya. Curated databases that do

include bacterial phosphosites are PHOSIDA, dbPTM,

and the bacteria-specific dbPSP [153]. These were

recently reviewed by Pagano et al. [154].

Assaying phosphoproteome dynamics

To obtain more than mere snapshots of cellular

phosphoproteomes, phosphoproteomic workflows

must be coupled to quantitative methods. Only then

can the dynamics of phosphorylation events, and

thus their regulatory implications, be understood.

Quantification can be obtained either with labeled or

nonlabeled approaches. Labeling techniques can be

either metabolic, such as stable isotope labeling of

amino acids in cell culture (SILAC), or chemical; for

example, isobaric tag for relative and absolute quan-

titation, tandem mass tag (TMT) or dimethyl peptide

labeling [155,156]. The disadvantages of using label-

ing are that only a limited number of labels can be

used simultaneously and, thus, the number of sam-

ples that can be compared is restricted. However,

several labeled experiments can be combined via a

common sample to obtain relative quantification

comparing an increased number of samples. For

instance, two triple-SILAC experiments were com-

bined to record phosphorylation dynamics during

E. coli culture growth [121]. Importantly, quantitative

methods can be used to investigate infection-related

phosphorylation. Verma et al. [125], for example,

used a TMT-based quantitative approach to identify

phosphorylation events specific to M. tuberculosis vir-

ulence by comparing virulent and attenuated sub-

strains. Similarly, Marcelino et al. [148] used label-

free quantification to compare the phosphorylation

patterns of virulent versus attenuated variants of

E. ruminantium that had been grown together with

bovine aortic endothelial cells. Misra et al. used a

hypervirulent strain of Listeria monocytogenes, har-

boring an activating mutation in the virulence gene

activator PrfA, to identify virulence-associated phos-

phorylation events. This approach found the phos-

phorylation of especially glycolytic enzymes to be

upregulated in the hypervirulent strain compared to

a nonvirulent control; findings that are in line with

altered glycolytic activity of L. monocytogenes during

intracellular growth [157]. Finally, the phosphopro-

teome of a subspecies of Francisella tularensis (the

causative agent of ‘rabbit fever’) was profiled in

response to KCl, which induces T6SS formation

required for immune evasion. Together with func-

tional experiments, this study was able to establish

Tyr phosphorylation of a T6SS sheath component to

be essential for T6SS biogenesis [158]. Quantitative

phosphoproteomics can also shed light on mecha-

nisms of antibacterial drug resistance. For E. coli,

label-free quantification was used to compare a clini-

cally isolated antibiotic-resistant strain with wild-type

cells grown with or without antibiotics for several

time periods. This uncovered numerous cases of

phosphorylation events potentially driving antibiotic

resistance, such as on transcription factors that regu-

late resistance [147]. Another study aimed to under-

stand the phenotypic mechanisms that contribute to

M. tuberculosis tolerance to the first-line antibiotic

rifampicin. By examining phosphoproteome dynamics

of the Beijing strain B0/W148 in response to high-

dose rifampicin, the authors identified upregulated

phosphorylation of proteins involved in iron seques-

tration, which is believed to be linked to antibiotic

resistance and dormancy [151].
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Table 2. Table listing gel-free and site-specific shotgun phosphoproteomic studies performed in pathogenic bacteria. Quantitative studies

are annotated, and total numbers of identified phosphosites/phosphoproteins are provided.

Bacterium Quantitative

Phosphosites/phosphoproteins

identified Year Reference

Acinetobacter baumannii (reference and invasive

multidrug-resistant strains)

No Strain ATCC17978: 48/41 Strain

Abh12O-A2: 80/70

2014 [126]

Acinetobacter baumannii (clinical imipenem-

resistant and sensitive strains)

No Strain SK17-S: 410/248

Strain SK17-R: 285/211

2016 [124]

Escherichia coli No 81/79 2008 [189]

Escherichia coli Yes (Growth phase analysis) 108 2013 [121]

Escherichia coli No 766/392 2015 [139]

Escherichia coli Yes (Antibiotic treatment and

resistance)

2509/1133 2018 [147]

Escherichia coli Yes (Growth phase analysis) 1883 sites 2018 [141]

Escherichia coli No >1600 sites 2018 [140]

Escherichia coli No 512/342 (pTyr only) 2013 [63]

Ehrlichia ruminantium Yes (Comparing virulent and

attenuated strains)

92/58 2019 [148]

Francisella novicida Yes (KCl treatment) 103 phosphopeptides 2019 [158]

Helicobacter pylori No 126/67 2011 [127]

Helicobacter pylori No Strain OK145: 50 sites Strain

TN2GF4: 50 sites

2019 [145]

Klebsiella pneumoniae No 93/81 2009 [128]

Klebsiella pneumoniae No 559/286 2015 [139]

Leptospira interrogans No 27 sites 2010 [129]

Listeria monocytogenes No 143/112 2011 [130]

Listeria monocytogenes Yes (PrfA WT versus PrfA*

activated mutant strain)

242/191 2014 [157]

Mycobacterium tuberculosis No 516/301 2010 [131]

Mycobacterium tuberculosis No 414/214 2015 [132]

Mycobacterium tuberculosis Yes (Antibiotic treatment) 191/132 2016 [151]

Mycobacterium tuberculosis Yes (Comparing virulent and

attenuated strains)

512/257 2017 [125]

Mycobacterium tuberculosis No 30/17 (pTyr only) 2014 [21]

Pseudomonas aeruginosa No 59/28 2014 [133]

Pseudomonas aeruginosa No 55 sites 2009 [134]

Staphylococcus aureus No 76/108 2014 [135]

Shigella flexneri No 905/573 (pTyr only) 2016 [64]

Streptococcus pneumoniae No 163/84 2009 [136]

Table 3. Table listing phosphoproteomic studies aiming at identifying kinase substrates in pathogenic bacteria. The table provides

information on the quantitative method used and on the numbers of potential kinase substrates as well as total phosphosites/

phosphoproteins reported in each study.

Bacterium Kinase

Quantification

method

Potential substrates: sites/

proteins

Phosphosites/

phosphoproteinsidentified References

Escherichia coli HipA/

HipA7

SILAC Not easily extractable 1183/632 [146]

Mycobacterium tuberculosis PknB TMT peptide

labeling

111/73 390 phosphopeptides /258 [150]

Mycobacterium tuberculosis PknB Label-free 17/13 ND [48]

Mycobacterium tuberculosis PknA/B Label-free 68/48 1241/470 [51]

Streptococcus agalactiae Stk1 Not quantitative 10/10 ND [160]

Vibrio alginolyticus PpkA2 Not quantitative 10/8 ND [76]
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Assigning substrates to kinases

To fully understand individual phosphorylation events,

as well as entire phosphorylation networks, we need to

characterize their regulation by kinases and phos-

phatases. Currently, only very few kinase–substrate
pairs have been defined. By analyzing strains with

altered levels of kinase activity, quantitative phospho-

proteomics can identify phosphorylation events depend-

ing on a kinase of interest. Several groups have used

this strategy to elucidate the substrates of Ser/Thr

kinases in pathogens (see Table 3) [76,159,160]. For

example, to shed light on the mechanisms behind HipA

kinase-dependent E. coli persistence, HipA and its vari-

ant HipA7 were overproduced from ectopic promoters

and their substrates sought out by SILAC experiments

[146]. Though, the success of such a strategy will

depend on the mechanism of kinase activation as kinase

overexpression may not by itself upregulate kinase

activity if the activating signal is concomitantly low. To

identify substrates of the essential M. tuberculosis PknB

kinase, Kaur et al. used a hyperactive mutant version

(PknB-GM). This allowed them to identify 73 potential

PknB substrates hyperphosphorylated in the PknB-GM

background [150]. Another strategy in the search for

M. tuberculosis PknB substrates was applied by Tura-

pov et al. They used a conditional deleterious PknB

mutant that could successfully grow in a specialized

osmoprotective media. Label-free quantitative compar-

ison of PknB-producing and PknB-depleted cells

detected 13 potential PknB substrates, of which the pep-

tidoglycan amidase homolog CwlM was characterized

by further analysis [48]. An alternative to genetic

manipulation is the use of chemical kinase inhibitors. A

small-molecule inhibitor targeting both PknA and PknB

was, for example, used by Carette et al. [51] to uncover

M. tuberculosis PknA/B substrates by label-free quan-

tification. Notably, among the 68 potential substrates

identified in the Carette study, only nine overlap with

the Kaur et al. dataset, and an overlap of only one and

two substrates is seen for each of these studies with

Turapov et al., respectively. As this is likely to reflect

the fact that dissimilar experimental conditions will

reveal different substrate subpools, it highlights the

need for extended and multifaceted screening to fully

elucidate the substrate repertoire of any given kinase.

Even though the above-mentioned studies are clearly

invaluable in helping to suggest kinase substrate candi-

dates, precautions must be made in their interpretation.

More specifically, one must dissect phosphorylation

events directly mediated by an investigated kinase from

those mediated by downstream kinases operating within

the same signaling cascade. Furthermore, kinases form

highly interconnected networks and perturbation of a

single kinase is therefore likely to also influence other

signaling nodes [1,161]. When using chemical inhibitors,

one should additionally be aware of unspecific effects

occurring due to off-target inhibitor binding. Therefore,

complementary cross-validation such as by in vitro

kinase or co-immunoprecipitation assays is essential to

sort out direct from indirect targets.

Host–pathogen interactions at the

phosphoproteome level

Knowledge of the molecular interactions that occur

between pathogens and their hosts is critical not only

for understanding the course of infectious diseases but

also for discovering novel targets for future antibacte-

rial therapies. A significant amount of host–pathogen
crosstalk involves their PTMs. In addition to indirect

effects exerted by pathogens on host phosphopro-

teomes via the activation of immune and stress

responses, bacteria may, as described earlier, also

interfere with host phosphorylation signaling in very

direct ways. They may, for example, secrete effector

kinases and phosphatases able to target host proteins,

or they may interact with host phosphoproteomes via

a family of phospho-binding domains present in both

host and some bacterial cells [79,97,98]. The use of

quantitative phosphoproteomics has become instru-

mental for elucidating pathogen-induced phosphoryla-

tion signaling in host cells. For example, the effect of

the Salmonella pathogenicity island 2 (SPI2) on host

phosphorylation was assessed in infected macrophage

and epithelial cells by SILAC experiments [162]. SPI2

encodes a T3SS responsible for secreting a high num-

ber of virulent factors, including the Salmonella Hanks

kinase SteC. Additional quantitative phosphopro-

teomic profiling of SteC-transfected host cells, in com-

bination with an MS-based SteC binding partner

screen, identified the Hsp27 host protein as a direct

SteC substrate through which SteC induces actin

cytoskeleton remodeling to promote Salmonella intra-

cellular growth [162]. Pathogen-induced phosphopro-

teome alterations have also been investigated for

H. pylori-infected human gastric epithelial cells

[163,164]. Notably, temporal pTyr-specific phospho-

proteomics revealed that changes in host phosphoryla-

tion mainly occurred at the early stages of infection

compared to a 7-h postinfection time point. To further

identify host signaling pathways affected by H. pylori

infection, a wild-type strain was compared to mutant

strains deleted for components of the cag pathogenic-

ity island. This approach allowed dissection of host
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signaling responses depending on the entire T4SS

secretion system and the T4SS effector protein Cag4,

respectively. While T4SS induced JNK and p38 kinase

activation, Cag4 was required for ERK1 signaling

[164]. Using a similar experimental design, time-specific

phosphorylation was assessed for human cells infected

with either wild-type or mutant enteropathogenic

E. coli (EPEC) deficient for the virulence-associated

T3SS secretion system [165]. This screen revealed acti-

vation of host mitogen-activated protein kinase

(MAPK) signaling by EPEC infection and identified

various T3SS-dependent phosphorylation events asso-

ciated especially with immune responses, intracellular

trafficking, and cytoskeletal regulation. Importantly,

this study provided novel mechanistic insight into

EPEC pathogenesis by identifying T3SS-mediated

phosphorylation of the septin-9 protein to be critical

for efficient EPEC–host cell adherence [165]. A study

on F. tularensis also pointed to host MAPK signaling

being disturbed upon pathogen interaction. Fabrik

et al. used SILAC-based quantification to analyze the

temporal dynamics of phosphorylation in primary den-

dritic cells (DC) at the early stages of infection by

either virulent or attenuated F. tularensis versions.

They found that the DC phosphorylation response

underwent distinct phases, which differed between the

two strains. Only the virulent strain induced later-

phase MAPK signaling, believed to facilitate host sur-

vival and immune suppression [166].

Increasing the comprehensiveness of

phosphoproteomic datasets

Despite significant recent progress in bacterial phos-

phoproteomics, as described above, there is still a long

way to go before we have fully elucidated the complex-

ity of pathogen phosphorylation networks. Optimizing

phosphoproteomic protocols is essential if we are to

obtain a deep and global understanding of the phos-

pho-regulatory events that drive infectious diseases.

For instance, to identify infection-relevant phosphory-

lation sites, phosphoproteomic analysis should be per-

formed for bacteria isolated from in vivo infections.

While experiments performed with free-living cells

have shed important light on modification patterns

under different growth and virulence conditions, phos-

phorylation sites should be recorded during live infec-

tions to increase the chance of identifying substrates

important for pathogenesis. This could include either

infected cell lines or mouse models [167]. Temporal

changes in pathogen phosphoproteomes should then

be systematically recorded over the course of the infec-

tion process. Separation of subcellular structures

would further allow for a spatial resolution of phos-

phoproteome dynamics [168]. Moreover, parallel anal-

ysis of samples obtained from the infected host would

allow one to correlate bacterial and host phosphoryla-

tion patterns and obtain integrated insight into host–
pathogen interactions. We propose that continued

improvements in sample preparation, quantification

methods, MS instrumentation, and data processing

should make such experiments possible. A major chal-

lenge is associated with enriching low-abundance phos-

phopeptides from already low quantities of material

obtainable from in vivo infection models. As bacterial

proteins will be highly diluted in the more complex

host proteome, the separation of bacteria from host

cells must be optimized [169]. Continued developments

in phosphopeptide preparation [139,140,141] and MS

instrumentation [170] will further help to maximize the

phosphosite coverage that can be obtained from these

samples. Emergence of streamlined and time-effective

sample preparation platforms that reduce sample

requirements and optimize sample reproducibility [171]

should in particular spur the generation of large-scale

bacterial phosphoproteomic studies that require the

parallel analysis of a high number of samples. Ideally,

workflows should be fully automated to allow rapid

and robust high-throughput sample processing. To this

end, Leutert et al. [172] recently developed an end-to-

end automated phosphoproteomic protocol (rapid-

robotic phosphoproteomics or R2–P2) where proteins

and phosphopeptides are captured on magnetic beads

and processed in 96-well plates using a magnetic parti-

cle-processing robot.

The basis for obtaining meaningful biological

information from phosphoproteomic datasets is the

reproducible quantification of phosphopeptides. Phos-

phoproteomic quantification methods have tradition-

ally involved labeling due to reproducibility problems

of label-free methods where individual sample process-

ing leads to high sample-to-sample variation. Even

though SILAC is considered the most accurate quan-

tification method [173] it is not suitable in cases where

a high number of samples are to be compared, such as

in extended time series experiments, or in cases where

metabolic labeling is not feasible. Instead, multiplexing

by TMT peptide labeling now allows comparative

analysis of up to 11 samples and label-free quantifica-

tion allows the comparison of an essentially unlimited

number of samples. Furthermore, recent innovations

in label-free methodologies have greatly justified their

usage [174,175]. A detailed comparison of common

phosphoproteomic quantification methods was recently

produced by Hogrebe et al. [173]. Their conclusion

was that even though label-free quantification and
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SILAC are the most accurate techniques, MS2-based

TMT-based quantification is at present the best

method for identifying biologically meaningful regula-

tory phosphorylation events.

Another source for improving bacterial phosphopro-

teomics comes from advances in MS acquisition meth-

ods. New data-independent acquisition (DIA) setups can

boost both the depth and reproducibility of shotgun

proteomic analysis [167,170,176,177]. Compared to tra-

ditional data-dependent acquisition (DDA), where only

the most abundant peptide ions in MS1 are selected for

MS2 fragmentation in a semi-stochastic manner, all pep-

tides within a predefined m/z range are cofragmented

and measured together in DIA mode. This way DIA

enables systematic measurement of all peptide ions

including very low-intensity/abundance peptides. Better

performance in terms of reproducibility and accuracy

also makes DIA highly suitable for quantification pur-

poses. Though, due to the high complexity of MS2 spec-

tra resulting from peptide cofragmentation, DIA holds

several analytical challenges and requires sophisticated

processing tools. Typical spectral deconvolution methods

rely on prerecorded spectral libraries but more stream-

lined methods based on in silico libraries or neural net-

works are now on the rise [178–180]. Although DIA has

not yet been adapted to bacterial phosphoproteomics,

an optimized DIA-based quantitative phosphoproteomic

protocol was recently reported for human cells [177].

Using label-free quantification, the authors were able to

quantify more than 10 000 phosphorylation sites across

hundreds of samples. Other acquisition settings that

avoid the random sampling problems of DDA are tar-

geted approaches such as selected reaction monitoring

(SRM) and parallel reaction monitoring (PRM) [181].

PRM and SRM are highly suitable for experiments that

seek sensitive and reproducible analysis of already pre-

specified phosphopeptides [182]. In summary, the field

of phosphoproteomics is still undergoing profound

advancements. The constant advent of methodologies

improving the sensitivity, robustness, and quantification

of phosphoproteomic profiling will undoubtedly expand

our insight into infection-related signaling from both the

host and pathogen perspective. Eventually, optimized

protocols will allow us to chart pathogen phosphoryla-

tion signatures from a minimum of material, such as

from infected patient samples, to suggest biomarkers for

precision medicine of the future.

Making sense of phosphoproteomic
data

While MS-based studies produce large lists of phos-

phorylated amino acids, characterizing the function of

each of these sites can so far not be performed in a

high-throughput manner and thus represent a major

bottleneck in phosphoproteomic research. This is, for

example, reflected in the fact that less than 3% of

identified human phosphosites have been designated a

function [1]. In this section, we will present emerging

concepts and methods, primarily arising from the

study of eukaryal phosphoproteomes, that can propel

the functional interpretation of phosphosites and phos-

phorylation networks at a global scale. Furthermore,

the integration of phosphoproteomics with other types

of omics data should eventually allow us to obtain a

more holistic view of infectious diseases.

Functional prioritization of phosphosites

Addressing ways to predict functionally relevant phos-

phosites from big datasets has become a key point in

phosphoproteomics as it allows researchers to priori-

tize phosphosites for further experimental exploration.

Such prioritization is especially important given the

suggestion that a noticeable proportion of phospho-

sites may be nonfunctional and possibly occur due to

random kinase encounters and/or evolutionary neutral

drift in regulatory interactions [183–185]. Exhaustive

examinations of eukaryal phosphoproteomes have sug-

gested that features such as phosphosite stoichiometry,

condition-dependent dynamics, evolutionary conserva-

tion, PTM colocalization, and structural context can

be used to indicate phosphosite functional relevance

[1,185,186]. For instance, a large fractional stoichiome-

try is a good indication of phosphosite importance

[119,187]. Though, the opposite is not always true as

low-stoichiometry sites might mediate specialized func-

tions for a minor subpool of a protein. Methods to

systematically determine phosphosite stoichiometry

from large-scale studies are becoming increasingly

accessible [118,119,177].

Phosphosites are generally only slightly more con-

served than their nonmodified counterparts, a theme

seen for both eukarya and bacteria [63,183,185,188,189].

However, phosphosites with a known or predicted func-

tion show higher conservation rates [185,188]. More-

over, although phosphorylation might not be well

conserved at an exact position, it may be conserved

when considering a somewhat broader positional win-

dow. In fact, conserved so-called phosphorylation hot-

spots consisting of positionally less-constrained

phosphosites can indicate areas of regulatory potential

[185,190]. Eukaryal phosphosites are predominantly

found in disordered regions [191] and phosphorylation

hotspots situated herein are likely to regulate protein–
protein interactions [1,190]. Hotspot regions are also
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common in structural domains. By mapping known

phosphosites from 40 eukaryal species onto Pfam

domains, Strumillo et al. [186] identified 241 phosphory-

lation hotspots within 162 diverse domain families. Plot-

ting these regions onto structural data exposed that they

were often positioned at protein interfaces or nearby

catalytic residues, consistent with phosphorylation regu-

lating protein–protein contact and enzyme activity. In

line with the notion that integrating multiple sources of

information provides better predictive power compared

to single features, computational machine-learning

methods have recently been developed, as will be dis-

cussed later on, to systematically integrate multiple

phosphosite attributes in the assessment of phosphosite

function.

Because the above-mentioned structural and evolu-

tionary patterns of phosphorylation have been

extracted from eukaryal phosphoproteomes, they may

not necessarily apply to bacteria. Similar comprehen-

sive evolutionary analysis of bacterial phosphosites has

so far not been performed due to the relative scarcity

in recorded bacterial phosphoproteomes, but should

become possible as we accumulate more and better-

coverage datasets. In any case, the integration of phos-

phoproteomic data with structural information should

be highly instructive for predicting the specific func-

tional roles for bacterial phosphosites as well. In par-

ticular, the visualization of sites in their 3D

environment can reveal phosphosites that are physi-

cally close to functional protein regions in 3D even

though they are far in sequence. By suggesting regula-

tory potentials of phosphosites not deducible from

sequence analysis alone, structural insight can greatly

improve hypothesis-driven functional experiments. As

manual mapping of phosphosites onto protein struc-

tures is a time-consuming process, some online PTM

databases have started incorporating PDB (Protein

Data Bank) structural information into their user

interfaces [192]. A software tool to identify PTMs

stored in 3D PDB structures has also been developed

[193]. Recently a comprehensive PTM-structural data-

base was launched (PRISMOID accessible through

http://prismoid.erc.monash.edu/) in which protein

modifications extracted from six different databases

have been annotated onto matching PDB structures

[194]. Since bacterial phosphosites are still underrepre-

sented in Web-based repositories [154], their represen-

tation in PRISMOID is also minor. The shortage of

adequately solved structures further compromises

phosphosite 3D annotations. This notwithstanding, we

propose that the next step will be to develop software

that can integrate phosphosite-structural information

with phosphoproteomic datasets in an automated

manner. By integrating information from different

databases and prediction tools, the structural context

of individual phosphosites, for example, disorder,

domain, and interaction properties, could be extracted

at a global scale. Additionally, phosphosites could be

automatically mapped onto 3D structures if these are

available and visual depictions could be generated. In

cases where there is no structural data, it would be

highly desirable if, in the future, protein structural pre-

diction tools could alternatively provide some putative

structural context [195].

How can phosphoproteomics benefit from
machine learning

Machine learning is being increasingly used to make

sense of the high-throughput and complex datasets

produced in the ‘big data’ era. In short, machine learn-

ing is a type of artificial intelligence in which computer

systems are set to learn and improve upon their own

procedures through training datasets. Deep learning is

a next-generation branch of machine learning based

on multilayered neural networks and is best suited for

analyzing highly dimensional and structured data

available in very large quantities [196]. In the biologi-

cal sciences, machine-learning methods can be used to

identify cellular and molecular patterns embedded in

the noise of biological systems [197,198]. In the field of

phosphoproteomics, machine learning has especially

been used for identifying contextual features of experi-

mentally validated phosphosites with the aim to be

able to predict unknown sites from protein sequences.

Numerous different prediction methods have been

published, including some that focus on kinase-specific

phosphorylation sites [199,200]. A few prediction tools

have been specifically tailored to bacteria [201–203].
The first bacteria-specific phosphosite predictor, Net-

PhosBac, was developed using neural network algo-

rithms [201]. At that time though, only about 150

bacterial phosphosites, from just two species, were

available as a training dataset. The MPSite web

resource is a more recent and improved machine-learn-

ing predictor trained on more than 3000 unique bacte-

rial pSer and pThr sites from the dbPSP database

[153,203]. While these and most other methods are

solely based on primary, and maybe secondary, struc-

tural features, a small predictive performance gain

may be obtained by including phosphosite 3D-context

information [204]. Importantly, the use of deep-learn-

ing strategies particularly shows great promise for

improving phosphosite predictions. In contrast to con-

ventional machine-learning methods, which involve

manual feature selection, deep-learning algorithms
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allow automatic and unbiased discovery of phosphory-

lation patterns [205,206]. Owing to their improving

performances, in silico predictions represent a valuable

supplement to experimental phosphosite identification

methods. For instance, in addition to being relatively

labor- and resource-intensive, MS-based phosphopro-

teomic protocols also pose noteworthy technical limi-

tations. In particular, they allow the identification of

only a limited number of sites in any given experiment,

that is, the sites modified to detectable degrees in the

specific cellular condition. On top of that, the usage of

just a few different amino acid-specific proteases (pre-

dominantly trypsin) in sample preparations, results in

fractions of phosphopeptides that are either too short

or too long for MS detection. This means that a signif-

icant portion of sites may persistently go undetected.

For these reasons, the continued development of

highly reliable phosphosite prediction algorisms could

make a crucial contribution to mapping all possible

phosphorylation substrates.

Another relevant application of machine learning is

in functional prioritization of phosphosites, as it enables

integrated evaluation of multiple distinct features that

can predict functionality [207]. This was indeed show-

cased by Ochoa et al. who incorporated 59 phosphosite

characteristics into a single functional score by training

machine-learning algorithms on human phosphosites of

already known function. Substantiating the applicability

of their model, it was able to correctly categorize regula-

tory phosphosites from a comprehensive reference

human phosphoproteome [208].

Finally, it is worth mentioning an example in which

machine learning was used to facilitate the challenging

task of identifying bona fide kinase substrates from

in vivo studies [209]. As described earlier, quantitative

phosphoproteomic screens are often used to elucidate

kinase–substrate pairs by comparing kinase-pertubated

cells with unpertubated cells. The interpretation of such

datasets is however hampered by the fact that manipula-

tion of a single kinase will alter the phosphorylation of

both direct and indirect substrates. To address this

issue, Kanshin et al. devised a machine-learning model

that could dissect direct from indirect substrates from a

large-scale quantitative phosphoproteomic experiment

involving kinase inhibition. As a list of already known

substrates was not available to use as a training set for

conventional machine learning, they applied an

approach related to positive and unlabeled learning.

Interestingly, their model, which was validated for two

different yeast kinases, found that direct kinase sub-

strates display higher fold changes and faster dephos-

phorylation kinetics upon kinase inhibition compared

to indirect substrates [209].

‘Omics’ data integration toward a
systems-level understanding of infection

While phosphoproteomics can offer important insight

into protein post-translational regulation, it only offers

information on one aspect of a cell’s biological state.

In concert with massive developments within large-

scale molecular biology techniques, such as genomics,

transcriptomics, proteomics, and metabolomics, there

has been an increasing interest in integrating different

types of ‘omics’ data to explore bacterial physiology

and pathogenicity in a more systemic manner

[210,211]. Current studies include integration of two or

more ‘omic’ layers. Deatherage Kaiser et al., for exam-

ple, used a multi-omics strategy that combined pro-

teomics, metabolomics, glycomics, and metagenomics

to elucidate interactions occurring between Sal-

monella enterica, its murine host, and the intestinal

microbiome, revealing the capability of S. enterica to

alter gut microbiome composition for its own advan-

tage [212]. Ramos et al. [213] integrated genomic, tran-

scriptomic, metabolic, and protein structural

information to identify candidate targets for the devel-

opment of novel antibiotics in Klebsiella pneumoniae.

A few studies have included phosphoproteomic data in

their multi-omics approach. A comprehensive inte-

grated multi-omics dataset was prepared for

Mycoplasma pneumoniae, comprising data from phos-

phoproteomics, lysine acetylomics, DNA methylomics,

transcriptomics, proteomics, protein–protein interac-

tomics, metabolomics, and a genomewide essentiality

map [171,214]. Using this resource to explore the regu-

latory layers of protein abundance, Chen et al. [214]

uncovered that antisense noncoding RNAs, lysine

acetylation, and protein phosphorylation were all bet-

ter predictors of protein abundance than mRNA

levels. A different study used multi-omics profiling,

incorporating quantitative phosphoproteomics, pro-

teomics, transcriptomics, lipidomics, and metabolo-

mics, to achieve a deeper understanding of the

essential roles played by the PknA and PknB Hanks

kinases in M. tuberculosis pathogenicity. Together with

chemical PknA/B inhibition, this multisystem analysis

uncovered a role for PknA/B in the regulation of cell

envelope and protein secretion processes, proposedly

via phosphorylation of the essential TCS response reg-

ulator MtrA [51]. Similar integration of different omics

assays is also being used to elucidate bacterial patho-

genesis from the perspective of the host [211,215].

However, successful integration of heterogeneous mul-

ti-omics data under a mathematical model is still fac-

ing significant challenges. Differences in data file

formats, nomenclatures, dimensionality, and quality
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constitute some of the key obstacles for computational

data integration and call for community-wide data

standardization [216]. Further improvements in omics

data preprocessing, integration, and machine-learning

analysis are essentially needed to fully capitalize on the

huge amount of information embedded in large-scale

omics datasets. Looking ahead, multi-omics integra-

tion together with machine-learning modeling will

likely revolutionize our knowledge on bacterial patho-

genesis. In particular, integrating data obtained from

both host and bacteria should help to uncover the

complex web of molecular interactions that dictates

infectious outcomes and ultimately offer a systems-

level understanding of infectious diseases.

Phosphorylation in antibacterial
therapies

The continuous emergence and worldwide spreading of

drug-resistant bacterial strains [217] places a high

demand on discovery of new antibacterial compounds.

Understanding the molecular basis behind both inher-

ent and acquired drug resistance is evidently crucial to

devise such novel types of therapeutic strategies.

Increased awareness of the essential roles played by

bacterial kinases in the control of bacterial growth,

pathogenicity, and antibiotic resistance has led to their

exploration as potential future drug targets. Inspired

by drugs already used in the clinic to treat cancer,

there is an increasing effort to identify bacterial kinase

inhibitors that can obstruct key signaling pathways

sustaining bacterial pathogenesis and antimicrobial

resistance.

Phosphorylation in antibiotic resistance

Common mechanisms underlying antibiotic resistance

include modification or degradation of the antimicro-

bial agent to render it ineffective, modification of tar-

get proteins to reduce drug binding, and altered drug

influx/efflux. Several studies have found that antibiotic

resistance can be driven by bacterial kinases. Particu-

larly, transmembrane Hanks kinases with PASTA

domains are seen to confer resistance to cell-wall-in-

hibiting b-lactam-type antibiotics in various Gram-pos-

itive species [14,19,34,36,218–221]. Although this may

not be surprising given their role in cell division and

cell wall homeostasis as described earlier, the mecha-

nism(s) by which Hanks-type PASTA kinases promote

b-lactam resistance are only poorly defined. In

S. pneumoniae antibiotic-sensitive strains, including

some clinical isolates, the response to the b-lactam
drugs involves the StkP Hanks kinase and its cognate

phosphatase PhpP [218,222]. StkP and PhpP expres-

sion as well as StkP phosphorylation is induced upon

sublethal exposure to penicillin or cefotaxime. Deleting

PhpP augments StkP phosphorylation levels and con-

fers drug resistance, suggesting that StkP inactivation

could be a strategy for overcoming S. pneumoniae b-
lactam resistance [218]. Similarly, L. monocytogenes

PrkA, Enterococcus faecalis IreK, C. difficile PrkC,

and MRSA Stk1 are all required for resistance to dif-

ferent types of b-lactams [19,34,36,219–221]. In S. au-

reus, b-lactams induce the phosphorylation of the b-
lactam antibiotic-sensing protein BlaR1 and this initi-

ates a cascade leading to expression of antibiotic resis-

tance determinants [223]. In E. faecalis, b-lactams

stimulate IreK autophosphorylation, and this in turn

leads to phosphorylation of the TCS histidine kinase

CroS required for antibiotic resistance [224]. Staphylo-

coccus aureus Stk1 has also been linked to the resis-

tance to vancomycin, which is another type of cell

wall-acting antibiotic. More specifically, Stk1 was

shown to negatively regulate the DNA-binding activity

of the vancomycin-resistance-associated response regu-

lator VraR of the VraTSR three-component system

[225]. These latter two examples illustrate the sophisti-

cated crosstalk that occurs between different phospho-

rylation systems in the orchestration of drug

responses.

Other types of antibiotics work by interfering with

DNA replication, such as the quinolones. In M. tu-

berculosis, phosphorylation of the global transcrip-

tional regulator MgrA by PknB controls its

differential induction of the NorA and NorB mul-

tidrug-resistance efflux pumps, correlating with resis-

tance to different types of quinolone drugs [226].

Other M. tuberculosis Hanks kinases implicated in

drug resistance are PknF and PknG. In fact, the sol-

uble PknG kinase promotes natural resistance to a

broad diversity of antibiotics, including ones that tar-

get transcription, translation, and cell wall biosynthe-

sis [227], while PknF is believed to reduce the activity

of the antitubercular drug ethionamide [228]. Ethion-

amide is a prodrug that needs to be activated by the

monooxygenase EthA and EthA expression is regu-

lated by the transcriptional regulator EthR. Notably,

PknF phosphorylation of EthR negatively affects its

DNA-binding activity, and further studies should

determine how this affects M. tuberculosis ethion-

amide resistance [228].

Taken together, the above findings emphasize the

importance of phosphorylation signaling in bacterial

drug responses. Yet it is also clear that substantially

more work is needed to fully delineate the diversity of

molecular mechanisms behind kinase-dependent
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drug resistance. Such work will be instrumental in

developing new and efficient types of antimicrobials,

as discussed below.

Drugging bacterial kinases

Due to their well-documented and multifaceted roles in

pathogenesis and antibiotic resistance, bacterial kinases

are currently being investigated as potential new drug

targets. While drug discovery studies are also trying to

find targets toward histidine kinases [229], these will not

be the focus here. Small-molecule drugs that target

human Ser/Thr and Tyr kinases are already being rou-

tinely used in the treatment of several types of cancers

and new classes of human kinase inhibitors continue to

be experimentally and clinically explored [230]. The

majority of these drugs target the ATP binding pocket of

the kinase catalytic domain and given their clinical suc-

cess, it was suggested that similar compounds could be

devised against bacterial kinases. Already established

small-molecule kinase inhibitor libraries have accord-

ingly helped guide bacterial drug studies. Many efforts

have especially been made to pharmacologically target

the essential PknB kinase of M. tuberculosis [231–235].
For example, Lougheed et al. first screened a commercial

library of more than 50.000 compounds and then opti-

mized on a group of inhibitor candidates by medicinal

chemistry [233]. Chapman et al. [234] also performed

high-throughput screening followed by optimization of

an aminopyrimidine inhibitor. However, while these can-

didate drugs were very efficient in inhibiting PknB activ-

ity in vitro (in the nanomolar range), their potency

in vivo was only modest with minimum inhibitory con-

centrations in the micromolar range. This did not appear

to be due to poor cell wall permeability [233,234].

Another approach to identify kinase inhibitors is by

in silico modeling. Wlodarchak et al. [236] exploited the

general structural similarity of bacterial and human Ser/

Thr kinases to identify PknB inhibitors by in silico

screening of a human kinase inhibitor collection. Their

in silico structural docking revealed a family of imida-

zopyridine aminofurazan lead compounds with high

binding affinity toward PknB. Intriguingly, and consis-

tent with the known role of PknB in cell wall homeosta-

sis, these inhibitors were able to significantly potentiate

the effect of b-lactams in several types of mycobacteria

and in the related Nocardia asteroides [236]. This syner-

gistic concept has also been reported for kinase inhibi-

tors of the nonessential L. monocytogenes PrkA and

S. aureus Stk1 Hanks kinases [219,223,237–240]. In

L. monocytogenes, the broad-spectrum kinase inhibitor

staurosporine, as well as some more selective repur-

posed human kinase inhibitors, was seen to inhibit PrkA

activity and sensitize cells to b-lactam drugs [219,237].

Similarly, several studies have identified Stk1-inhibiting

molecules from small-molecule libraries that sensitize

MRSA S. aureus strains to b-lactams [223,238–240].
Notably, Kant et al. optimized a quinazoline-based

Stk1-inhibiting molecule (Inh2-B1) that potentiates the

bactericidal activity of the cephalosporins ceftriaxone

and cefotaxime on drug-resistant S. aureus, both

in vitro and in an in vivo septicemia mouse model with

negligible cytotoxic side effects [240]. Mechanistically,

Inh2-B1 was shown to reduce the expression of cell wall

hydrolase-encoding genes important for cell wall synthe-

sis and biofilm formation. This effect is likely to occur

due to reduced phosphorylation and promoter binding

of the WalR response regulator upon Stk1 inhibition

[240]. Thus, in summary, several observations suggest

that combined b-lactam and Hanks kinase inhibition

therapy could represent a novel strategy to combat clini-

cal b-lactam resistance.

Another line of currently investigated mycobacterial

inhibitors are targeted toward the cytosolic PknG kinase

[86,241,242]. In contrast to PknA and PknB, PknG is not

essential but is instead important for host intracellular

survival by blocking macrophage phago-lysosomal

fusion [86]. By only targeting intracellular mycobacteria,

it may be expected that PknG inhibition would pose less

selective pressure for the development of resistant strains

[243]. Encouragingly, an initial drug screen found that

chemical inhibition of PknG at its ATP-binding site

allowed effective macrophage clearing of mycobacterial

cells via the phago-lysosomal system [86,241]. Since

PknG is also proposed to be crucial for the survival of

mycobacterial dormant persisters, antitubercular combi-

nation therapies that include PknG inhibition could be a

prospective means to prevent disease reactivation

[112,243]. An extensive overview of presently investi-

gated mycobacterial kinase inhibitors is provided in

Khan et al. andMori et al. [243,244].

Even though the above-mentioned studies clearly

demonstrate the clinical potential of bacterial kinase

inhibitors, there are, to best of our knowledge, so far no

reports on Ser/Thr or Tyr kinase inhibitors displaying

promising antibacterial activities for single-drug clinical

use. Larger scale drug screening and optimization of

compound leads is basically needed to make antimicro-

bial kinase drugs clinically relevant. As, for example,

discussed in Pensinger et al. [14], differences in biochem-

ical and antibacterial efficacy of currently tested drugs

may be related to limited penetration across the bacte-

rial cell envelope, not allowing drugs to reach their cyto-

plasmic targets. Another explanation for the discrepancy

between in vitro and in vivo effects could be due to

in vitro kinase function not properly reflecting kinase

2356 FEBS Letters 594 (2020) 2339–2369 ª 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd

on behalf of Federation of European Biochemical Societies

Protein STY phosphorylation in bacterial pathogens J. Bonne Køhler et al.



activity in the bacterial setting where kinases may be

tethered to the membrane and other molecular interac-

tion partners are present. Thus, more knowledge of drug

uptake mechanisms and in vivo kinase function is

needed for optimized drug design. Moreover, to be clini-

cally relevant, new drugs should be highly selective

toward only bacterial kinases and not show cross-reac-

tivity with host enzymes. To improve target specificity

of an initially identified PknA/B inhibitor, Wang et al.

[245] produced compound–enzyme cocrystals and identi-

fied a pocket in the drug binding site of PknB that was

unique to mycobacterial kinases. This allowed them to
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Fig. 2. Block chart presenting proposed future pipeline for phosphoproteomics in the study of bacterial infections. (1) Phosphoproteome

dynamics should be studied during in vivo bacterial infections such as by cell culture or mouse models, and parallel analysis should ideally

be performed on bacterial and host samples to facilitate an integrated understanding of host–pathogen signaling crosstalk. Furthermore,

samples should be acquired at several time points during the course of infection to obtain time-resolved insight into phosphorylation

dynamics. Quantification may be achieved by metabolic protein labeling, chemical peptide labeling, or label-free approaches. (2) Bacterial

and host cells should be separated prior to species-specific lysis and protein extraction. In addition, subcellular and/or subpopulation

fractionation may be performed to obtain spatially resolved sample analysis. (3) Reproducible and time-efficient analysis of a high number of

parallel samples should be possible by automated procedures for phosphopeptide enrichment and cleanup in 96-well formats. (4) High-

performance LC-MS/MS analysis of purified phosphopeptides together with optimized data acquisition methods, for example, DIA, should

result in datasets of high phosphoproteome coverage and good quantitative reproducibility. (5) Phosphoproteomic data should subsequently

be subjected to diverse types of bioinformatic and machine-learning analyses to get a systemic view of phosphorylation networks and to

generate testable predictions of phosphosite functionality. (6) Finally, integration of phosphoproteomes with other types of omics data

obtained from the same infection model should be analyzed by machine-learning algorithms to reveal molecular signatures of bacterial

infections that could be therapeutically exploited.
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modify their compound to achieve a 100-fold selectivity

over mammalian kinases. As the structure of, for exam-

ple, mycobacterial Hanks kinase domains displays only

around 20–30% similarity to eukaryal kinases, there

may be several options for designing highly bacteria-

specific drugs [243,246]. Alternatively, inhibitors could be

directed toward other kinase regions such as the extracellu-

lar PASTA domains, whichwould circumvent the problem

of having to cross the cell envelope [14]. As PASTA

domains are highly divergent [247] and not present in

eukarya they might be suitable target candidates for drugs

with high species specificity. Likewise, BY-kinases could

be desirable future drug targets due to their absence in

eukarya [248]. In any case, a thorough understanding of

kinase structure and function as well as of the molecular

basis for inhibitor specificity should be key to guide further

development of both effective and species-specific drugs

that could reach the clinic.

It should also be mentioned that another currently

pursued antibacterial strategy involves the development

of inhibitors directed toward secreted bacterial tyrosine

phosphatases [249,250]. In addition, host-directed thera-

peutics targeting host kinases represent yet another excit-

ing branch of explored anti-infectious medicines [251].

Host-directed therapeutics may, for example, inhibit

pathogen-hijacked host pathways or work to boost host

immune defenses. Importantly, drugs with such activities

can be derived from already commercially approved

drugs, a concept known as drug repurposing [252].

Conclusions and perspectives

While individual phosphoprotein studies have provided

valuable information about the function of Ser/Thr/

Tyr phosphorylation in specific contexts, a more sys-

tematic view of phosphorylation landscapes and their

dynamics during different pathogenic stages is needed

to fully grasp the phospho-regulatory mechanisms

underlying bacterial pathogenesis. This includes the

acquisition of spatial and time-resolved datasets and

possibly, simultaneous analysis of both bacterial and

host phosphoproteomes to detect phosphorylation-de-

pendent host–pathogen interactions. In addition,

future developments of single-cell phosphoproteomics

will be useful for dissecting phosphorylation networks

in heterogeneous cell populations. A proposed pipeline

for future phosphoproteomic experiments in the study

of bacterial pathogenesis is provided in Fig. 2. Basi-

cally, we need to move from a discovery mode to a

quantification mode when it comes to studying bacte-

rial phosphorylation. Quantitative phosphoproteomics

techniques are routinely used to study phosphorylation

dynamics in eukarya. However, their application in

bacterial studies is lagging far behind and bacterial

phosphoproteomes remain in general largely under-

studied. This is partly due to detection difficulties

related to lower levels of protein phosphorylation

found in bacteria compared to eukarya. Thus, techni-

cal optimizations are urgently needed to achieve

desired insights into bacterial phosphoproteomes. DIA

MS represents one recent development that may bene-

fit bacterial proteomics as it allows reproducible detec-

tion of low-abundance peptides. This strategy has to

our knowledge not yet been applied in bacterial phos-

phoproteomics. Another major bottleneck in under-

standing the role of phosphorylation in bacterial

pathogenesis is the functional characterization of phos-

phosites generated from MS analysis. To help predict

phosphosite function, prediction strategies, relying on

evolutionary and structural information of the phospho-

site sequence, has been described for eukaryal phospho-

rylation. As we will gain more information on bacterial

phosphorylation, it will be interesting to see whether bac-

terial phosphosites conform to the same localization pat-

terns. We also argue that mapping of phosphosites onto

protein 3D structures, or known domains, should greatly

facilitate functional interpretations that can be tested

experimentally. We propose that such a contextualiza-

tion of sites generated from large screens should be auto-

mated in the future by the integration of phosphosite

datasets with structural databases or predictions. The

functional insights deriving from individual phosphory-

lation datasets could be enhanced by integrating them

with other omics data, such as transcriptomics, pro-

teomics, metabolomics, and acetylomics, to obtain a sys-

tems-level understanding of infectious diseases that can

guide future antibacterial therapies. Developments in

machine- and deep-learning algorithms are expected to

facilitate information extraction from complex multi-

omics data to unravel the contribution of protein phos-

phorylation to pathogenicity.
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