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Abstract

Purpose This study aims to establish a regionalized environmental impact assessment of construction machinery equipped with
diesel engines certified by the European emission standard Stage V, and operated in cold climatic zones in Europe.

Method The study quantifies potential environmental impacts associated with construction machinery over the entire lifecycle,
from extraction of materials to the end-of-life. For the operation phase, a meso-level emission accounting method is applied to
quantify tailpipe emissions for certain subcategories of construction machinery. This is achieved by determining the operational
efficiency of each machine in terms of effective hours. The quantified emission data are then adjusted based on engine deteri-
oration models to estimate the rate of increase in emissions throughout the lifetime of each machine. Finally, the CML impact
assessment method is applied to inventory data to quantify potential environmental impacts.

Results The study shows that tailpipe emissions, which largely depend on an engine’s fuel consumption, had the largest
contribution to environmental impacts in most impact categories. At the same time, there was a positive correlation between
the operation weight and the impacts of the machinery. Also, machinery with similar operation weight had relatively similar
impact patterns due to similar driving factors and dependencies. In addition, network, sensitivity, and uncertainty analyses were
performed to quantify the source of impacts and validate the robustness of the study. Results of the sensitivity analysis showed
that the responsiveness of the studied systems is very sensitive to changes in the amount of fuel consumption. In addition, the
uncertainty results showed that the domain of uncertainty increased as the operation weight subcategory of machinery increased.
Conclusion This study extends previous work on the life cycle assessment (LCA) of construction machinery, and the method-
ology developed provides a basis for future extension and improvement in this field. The use of effective hours as the unit of
operational efficiency helps to resolve uncertainties linked to lifetime and annual operation hours. Also, the obtained results can
be of use for decision support and for assessing the impacts of transition from fossil fuels to alternative fuel types.

Keywords Life cycle assessment - Non-road mobile machinery - Construction machinery - Attributional LCA

1 Introduction

In any civil engineering project, the use of machinery is an
inevitable part of construction works. Construction machinery
Electronic supplementary material The online version of this article is designed to carry out various tasks and sometimes to repur-
(https://doi.org/10.1007/s11367-020-01769-x) contains supplementary . .
: A X pose parts of the ground. Diesel fuel has predominantly been
material, which is available to authorized users. ) . .
the main source of energy for most construction machinery
54 Babak Ebrahimi (Lewis and Ras.dorf 2017), and as the result, different tailpipe
babake@chalmers.se pollutants are discharged to the air (Bruce et al. 2001). Carbon
dioxide (CO,), sulfur dioxide (SO,), nitrogen oxides (NOx),
and particulate matter (PM) are examples of such exhaust
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few decades, a series of directives have been mandated by the
European Commissions to restrict tailpipe emissions from
construction machinery (EC 1997, 2002, 2010). These direc-
tives have been kept up-to-date to assist Europe in achieving
its mitigation goals by highlighting maximum allowed emis-
sion levels in consecutive stages, i.e., Stage [-VI standards
(Nesbit et al. 2016).

Besides the European directives and the remarkable ad-
vancements in technology, it is still in the interest of many
stakeholders to measure and assess their environmental per-
formance and to clearly see how they can fulfill their environ-
mental goals, such as reducing the carbon emissions of their
operations. In order to meet a climate mitigation target in the
construction sector, a combination of measures should be con-
ducted with respect to construction machinery. This includes
setting a maximum allowed idle time, changing fuel types and
blends, utilizing machinery equipped with newer technology
with higher emission standards, and shifting to electric
powertrain systems (Frey et al. 2008; Fridstr 2013;
Abbasian-hosseini et al. 2016; Weber and Amundsen 2016).

Alongside the interest in gaining insightful knowledge
about the environmental impacts of construction machinery,
different studies have been carried out to assess the perfor-
mance of different types and subcategories of construction
machinery, and in different setups (Lijewski et al. 2013; Cao
et al. 2016; Lewis et al. 2017). However, most studies have
only focused on the direct emissions associated with the
operation phase of the studied machinery. This focus has
been chosen because of the relatively high environmental
impacts during this phase compared with other lifecycle
phases. This is also highlighted by the low number of life
cycle assessments (LCA) focusing on construction machin-
ery (Lee et al. 2000; Athanassiadis et al. 2002; Kim et al.
2012a, b).

Having coherent insight into the operation phase of
construction machinery can indisputably enhance estima-
tions of impacts and assist in making informed decisions.
In general, there are two typical approaches to estimate
emissions from the operation phase of a machine and the
potential subsequent environmental impacts, namely a
top-down approach and a bottom-up approach. The top-
down approach simply requires two types of input data to
estimate the emissions: (1) the amount and type of sold/
consumed fuel and (2) a representative emission factor for
each fuel type. Several studies have used this approach
(e.g., Kasibhatla et al., 2002; Wetterberg et al., 2007,
Becken and Patterson, 2009; Helms and Lambrecht
2009; Guan et al., 2012). Due to the simplicity of this
approach, the generated results are often very coarse and
lack detailed information. Specifically, the results attained
using a top-down approach often struggle to explain the
conditions under which each subcategory of machinery
are operated.

In comparison, a bottom-up approach requires additional
fundamental information to estimate the performance of a ma-
chine. This may include engine speed, operation hours, torque
or power, weight of machinery, engine type, fuel type, and
lifetime of the equipment (Smith et al. 2000; Bruce et al. 2001;
Lindgren 2005; Frey et al. 2008; Ahn et al. 2013). In addition,
there are other external parameters that explain the underlying
performance of machinery, including the climatic and ground
conditions, experience of drivers, land types, angle of terrain,
and the density and volume of sediments being worked. While
creating a bottom-up approach would increase precisions in
the estimation of machinery performance during operation,
this requires large sample datasets that cover all variables in
order to obtain a realistic picture of the whole system.

In addition to the top-down and bottom-up approaches, a
third approach has become more popular in the scientific lit-
erature (Lewis et al. 2009; Hajji and Lewis 2013; Fan 2017).
This “meso-level analysis” stands somewhere in between the
top-down and bottom-up approaches. The meso-level analyt-
ical approach overcomes the limitations in the alternative ap-
proaches and capitalizes on their merits. In other words, the
meso-level approach dealing with a medium-size system
(groups of construction machinery) and explains performance
within each group. Medium in a sense that the system is not
bounded to individual construction machinery, as it is for a
small system dealing with individual machinery, and nor to
entire construction fleet (i.e., a broad system with a high level
of aggregation missing resolutions). Specifically, the meso-
level approach is faster to apply than the bottom-up approach,
yet is more detailed than the top-down approach. It often uses
historical data combined with complementary information to
estimate emissions. Such data often contain information that
can help characterize the conditions under which a task was
conducted, the productivity of the machine, and its operational
lifetime.

This study expands the existing research on the LCA of
construction machinery equipped with diesel engines. In do-
ing so, the regionalized LCA of construction machinery was
conducted and supplemented using meso-level analysis to
quantify emissions associated with the operation phase of ma-
chinery in cold regions in Europe. Statistical information for
subcategories of construction machinery operated in Norway
is used to quantify overall impact. A life cycle inventory (LCI)
for each subcategory is created following the “cradle-to-
grave” approach, corresponding to stages A to C in the
European Standard EN 15978:2011 (CEN/TC 350 2011). It
was necessary to consider these lifecycle stages because of
continuous advancements in the LCA databases (Steubing
et al. 2016; Wernet et al. 2016), which could subsequently
influence the relative impact among different stages. In addi-
tion, this study uses time-varying emission factors to calculate
operational emissions over the lifetime of each subcategory of
machinery. These time-varying emission factors show the
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effect of engine deterioration and are quantified by fitting
them to logistic distribution models. Finally, the network, sen-
sitivity, and uncertainty of the LCA study are assessed to
evaluate the root causes of impacts, and the robustness and
reliability of the results.

2 Methodology
2.1 Goal, scope, and data sources

The goal of this study was to establish a regionalized
attributional LCA to quantify the environmental impacts
associated with construction machinery equipped with
diesel engines (certified by the European emission stan-
dard Stage V) over their entire lifecycle, i.e., from cradle-
to-grave. The outcomes of this are considered relevant for
decision-makers and LCA practitioners who would like to
apply the results or the method for further development,
including comparative studies and ranking different con-
struction machinery, and including other environmental
contexts.

The scope was limited to selected subcategories of con-
struction machinery operated in Norway. The study focused
on five types of construction machinery in different subcate-
gories. The information related to the machinery was sourced
from the Norwegian construction machinery database (NTNU
and MEF 2016), which includes a representative performance
for each subcategory. The database covers a range of historical
data, dating back to the 1970s, from various construction pro-
jects in Norway.

The functional unit was one construction machine operated
throughout its expected economic lifetime. The economic life-
time for each machine was measured using the unit “effective
hour” (EH; see Table 1). An effective hour is a time that a
machine operates efficiently, accounting for both direct and
indirect productive time necessary to perform the required
duties (Aune et al. 1992).

The condition under which a machine operates often influ-
ences fuel consumption and, subsequently, tailpipe emissions.
In this study, medium operation conditions were assumed for
most of construction machinery listed in Table 1. In the case of
wheel loaders, these were operated in well-designed and well-
operated rock quarries to move blasted rock materials with a
d50 of 200250 mm.

The impact assessment in this study used the CML
impact assessment method version 4.2 (Pre’ 2018), which
is also recommended in European Standard 15804 for the
sustainability assessment of construction work (CEN,
2013). The following impact categories were assessed in
this study: abiotic depletion (AD, kg Sb eq.); fossil fuel—
based abiotic depletion (ADP, MJ); acidification (AP, kg
SO2 eq.); eutrophication (EP, kg PO4— eq.); freshwater
aquatic ecotoxicity (FE, kg 1.4-DB eq.); global warming
(GWP, kg CO2 eq.); human toxicity (HT, kg 1.4-DB eq.);
marine aquatic ecotoxicity (ME, kg 1.4-DB eq.); ozone
layer depletion (ODP, kg CFC-11 eq.); photochemical ox-
idation (PO, kg C2H4 eq.); and terrestrial ecotoxicity (TE,
kg 1.4-DB eq.).

The LCA analysis in this study was performed using
SimaPro v8.4 (SimaPro 2017) and ecoinvent database version
3.3 (ecoinvent 2016). In addition to the ecoinvent database,
other sources of information were used to modify standard

Table 1 Summary of studied construction machinery
Machine type  Engine net power ~ Operating weight ~ Economic lifetime ~ No. of  Lifetime of  Fuel efficiency Abbreviation of
(kW) (ton) (EH) tires tire (VEH) machine
Articulated 220 20 9000 6 1700 30 AH20
hauler 330 30 11,000 6 1900 4 AH30
Crawler 75 16 10,000 - - 16 CEl6
excavator 120 22 10,500 - - 22 CE22
120 23 10,600 - - 24 CE23
150 31 11,600 - - 31 CE31
260 48 12,000 - - 51 CE48
Grader 160 20 9300 6 780 25 G20
Wheel 87 14 9500 8 1300° 15 WE14
excavator 110 20 10,000 8 1500" 20 WE20
Wheel loader 140 16 8300 4 1650 23 WL16
180 21 8400 4 1700 30 WL21
200 23 9200 4 1800 36 WL23
260 30 9800 4 2075 46 WL30

# Assumptions
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Table 2  Boundary of the studied system and the data source

Life cycle stage

Data source

Manufacturing and material inputs

Operation

Maintenance

End-of-life

ecoinvent v3.3

Volvo EPD documents (Volvoce 2018)

LCI process for production of tires (Kromer et al. 1999; UNEP 2011)
EMEP/EEA guidebooks (Winther et al. 2013, 2017)

ecoinvent v3.3
Operation of construction machinery (see Table 1)
EMEP/EEA guidebooks (Winther et al. 2013, 2017)

ecoinvent v3.3
Service manual (Caterpillar 2010, 2011, 2012; Johan Deere 2012)

ecoinvent v3.3

LCI processes, like emission modelling, reference to relevant
reports, and other literature including environmental product
declaration (EPD) documents. These modifications helped to
establish regionalized LCI processes for each subcategory of
construction machinery. Table 2 presents an overview of the
applied sources in the LCI used in this study. In the following
subsections, explanations of the data sources and the applied
methods are also provided.

2.1.1 Manufacturing of machinery

To generate regionalized LCI processes for each subcategory
of machinery, the following ecoinvent processes were used:

*  “Lorry, 16t metric ton {RER}|Alloc Def, U”
*  “Lorry, 28t metric ton {RER}|Alloc Def, U”
*  “Lorry, 40t metric ton {RER}|Alloc Def, U”

However, some input and output flows within each process
were adjusted so that they were representative of the studied
machinery. Through the course of the adjustments, effort was
made to use representative information. When representative
information was not available, the existing assumptions of
ecoinvent were applied using on the default values.
Appendix S1 represents the structure of the LCI processes
for all of the construction machinery presented in Table 1 to
demonstrate how the LCI processes were created, and ex-
plains the underlying assumptions.

2.1.2 Operation of machinery

The information shown in Table 1 was coupled with certain
emission factors and other supplementary materials to esti-
mate tailpipe emissions. The European emissions inventory
guidebook (hereafter referred to as the EMEP/EEA guide-
book) was used, as it states baseline emission factors. The
EMEP/EEA guidebook is the result of a joint effort by the
European Environmental Agency (EEA) and the European

Monitoring and Evaluation Programme (EMEP) (Winther
etal. 2017).

As information related to the engine size for the machinery
was known, estimation of emissions was based on Tier 3
methodology as developed in the EMEP/EEA guidebook. In
addition, selected information from the EMEP/EEA guide-
book (Winther et al. 2017) was limited to one emission stan-
dard (i.e., Stage V emission standards), and the power ranges
75-130 kW and 130-560 kW. Equation 1 was used to quan-
tify emissions associated with each subcategory of machinery.
The equation was primarily based on proposed formula in the
EMEP/EEA guidebook; however, it was adjusted to fit to the
data in this study.

EH
Ey = Y. BEF ,yFC"EDyyLF (1 + ADF ;) (1)
t=0

where E is the calculated amount of pollutant  for construc-
tion machinery x in units of mass (g); BEF is the baseline
emission factor of pollutant 7 for the power range p and tech-
nology level ¢ in units of mass per energy (g/kWh); FC is fuel
efficiency of machinery x in units of liter per effective hour
(I/eh); ED is energy density of fuel y burned in machinery x
(g/kg fuel); LF is the adjustment load factor as a function of
technology levels ¢ and is the portion of engine power utilized
during operating conditions (this was set to 100%) (%); and
ADF is the adjusted deterioration factor which modifies emis-
sions as the machinery ages (%).

Equation 1 was used to quantify emissions over the eco-
nomic lifetime of construction machinery x. BEF is a function
of technology levels ¢ and power ranges p (kWh) and Table 3
presents the baseline emission factors for the studied
machinery.

CO, and SO, were predominantly assumed as fuel-
driven emissions rather than depending on engine type
and equipment technology (Winther et al. 2017). Since
no emission factor is suggested for these emissions in
the EMEP/EEA guidebook (Winther et al. 2013, 2017),
the CO, intensity of fuels suggested by Lindgren (2007)
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Table 3  Baseline emission factors

Engine power (kW) Technology level BC CHy CcO NH; N,O NO, PM vOoC
75<=P <560 Stage V 0.002 0.003 1.5 0.002 0.035 0.4 0.015 0.13

was adopted, which assumed CO, emission at a rate of
3146 g/kg burned fuel. In addition, a maximum sulfur
limit of 10 ppm was chosen for diesel fuel (European
Commission 2009) and it was assumed that all sulfur in
the fuel was fully transformed to SO,. Also, it was as-
sumed that the density of diesel was 0.85 kg/l.

As a vehicle ages, the technical capabilities of the engine
deteriorate together with its overall performance. This deteri-
oration process, also termed engine degradation behavior,
usually results in increased tailpipe emissions. To account
for engine degradation behavior and to produce a more reli-
able estimation of emissions from the machinery, logistic dis-
tribution models were applied. The models were used to de-
rive deterioration factors for a set of air pollutants from their
initial emission levels (see Table 3).

To measure the effect of engine deterioration on the tailpipe
emissions, calculations were performed from time zero (i.e.,
the first day of operation of the machinery) to the machinery
end-of-life. Three retardation factors were applied to account
for the rate of deterioration (see Fig. 1). A retardation factor
was a point at which the rate of deterioration was halfway
between zero and the maximum-adjusted deterioration at the
end-of-life. The three factors were chosen to reflect the poten-
tial range of behaviors with respect to the pace and rate of
pollutant formation. The 50% retardation factor was used as
the baseline for LCA analysis, while the 30% and 70% retar-
dation factors were considered the lower and upper bounds to
represent faster and slower rates of deterioration, respectively.
The effects of the upper and lower bounds are examined as
part of the uncertainty analyses.

To customize the demonstrated distribution in Fig. 1 for
different pollutants, the Y-axis (i.e., rate of deterioration) was
multiplied by the deterioration factor of each gas. Table 4
shows the adjusted deterioration factors for fewer pollutants
than those shown in Table 3. For pollutants with no

deterioration factor (i.e., black carbon, dinitrogen oxide, and
ammonia), it was assumed that there would be no effect from
engine deterioration. In these cases, the emission factor
remained constant over the lifetimes of the machines.

2.1.3 Maintenance of machinery

Throughout the lifetimes of machinery, follow-up services
and repairs take place to optimize performance and minimize
associated maintenance costs. The LCI of the maintenance
phase of machinery was structured based on the following
ecoinvent processes:

* “Maintenance, lorry 16 metric ton {RoW}| processing |
Alloc Def, U”

*  “Maintenance, lorry 28 metric ton {RoW}| processing |
Alloc Def, U”

* “Maintenance, lorry 40 metric ton {RoW}| processing |
Alloc Def, U”

However, adjustments were applied to make the mainte-
nance processes more representative (see Appendix S1).

2.1.4 End-of-life of machinery

As with the LCI approach used for the manufacturing and
maintenance of machinery, the developed ecoinvent processes
were used for the end-of-life phase of machinery. The follow-
ing processes were chosen for this purpose:

*  Used lorry, 16 metric ton {GLO}| market for | Alloc Def, U
* Used lorry, 28 metric ton {GLO}| market for | Alloc Def, U
*  Used lorry, 40 metric ton {GLO}| market for | Alloc Def, U

Fig. 1 Deterioration distribution 1 T T T AT - T e
c ,/' 7
2 ’ ’
© 4
Y / /
S G
3 K4 ’
® 05 / 7 J
kel 4
5 K4 4| === 30% retardation
Q // 4 50% retardation
&U s -, s = = 70% retardation
-" -
0 1 A i — - =T I I I 1
0 10 20 30 40 50 60 70 80 90 100
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Table 4  Adjustment deterioration factor

CH,4 co CO, FC? NO, PM voC SO,
Deterioration factor (% avg. engine lifetime) 0.15° 0.151° 0.1° 0.1° 0.008° 0.3° 0.027° 0.1°

#Fuel consumption
® Obtained from the emission inventory guidebook (Winther et al. 2013)
¢ Obtained from the emission inventory guidebook (Winther et al. 2017)

Similarly, each ecoinvent process was modified for the
end-of-life phase of machinery (see Appendix S1).

3 Results

Figure 2 demonstrates a comparative assessment of environ-
mental impacts associated with each subcategory of construc-
tion machinery. The normalized impacts for machinery are
shown in each corresponding impact category. Since there
are not any technological differences and all machinery is
equipped with diesel-based combustion engines, only one
type of machinery was found to have high impacts in all the
impact categories. In other words, CE48 was the most envi-
ronmentally intensive machine in all impact categories and,
therefore, the impacts from other types of construction ma-
chinery are relatively small in comparison. The quantitative
values in Fig. 2 are provided in the supplementary data (S2).

Figure 2 also demonstrates the proportion of impacts from
different sources over the lifetimes of the machinery. As can
be seen, diesel—which is the assumed energy source for all
the machinery—is predominantly the main (and sometimes
major) contributor in seven impact categories (ADP_F, AP,
EP, HT, ME, ODP, and TE). These high impacts are primarily
due to the production of low-sulfur diesel throughout the value
chain, which results in diverse impacts from upstream sources.
Despite the relatively high impacts, diesel still contributes to
the remaining impact categories, but with marginal propor-
tions. In comparison, the tailpipe impacts from the combustion
of diesel fuel during the operation phase dominate the results
for the GWP and PO impact categories.

The manufacturing phase, which is the assembly line and
distribution of the machinery, was shown to be the least influ-
ential phase in all impact categories. This phase was limited to
three main contributors: (1) energy consumption in form of
heat and electricity during the manufacturing activities, (2)
diesel consumption and emitted tailpipe gases due to engine

ADP ADP_F AP EP
WL32 I WL32 WL32 I WL32
WL25 I WL25 WL25 I WL25 I
WL21 — WL21-  — WL21- — WL21 I—
WL16 — WL16-  — WL16-  — WL16 —
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AH20 . — T AH20 ._ I T AH20 . I I T AH20 . L — T T
0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100%
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Fig. 2 Normalized impact assessment of results

@ Springer



1478

Int J Life Cycle Assess (2020) 25:1472-1485

test, and (3) wastewater produced during the manufacturing.
In comparison, the base material, which is the input to the
manufacturing phase, had different environmental burdens,
and the proportion of their contributions are shown in the
categories ADP, FE, HT, ME, and TE. The base material
consists of all processes from material extraction and produc-
tion to the fabrication of components, which are later used as
the inputs to the manufacturing phase. However, the main
contributors among the inputs characterized as the base mate-
rial are from iron-based products, cables, tires, and batteries.
The maintenance and end-of-life phases of machinery had
minor contributions across all impact categories, except for
ADP and FE, respectively. In the case of ADP, the consider-
able impact share from the maintenance phase results from the
environmental burdens associated with materials during the
replacement of parts such as tires, batteries, lubricants, and
mechanical parts. However, the use of waste tires as the fuel
source in cement production explains the contribution of the
end-of-life phase in the FE impact category.

The result table of the foreground system for each construc-
tion machinery can found in Appendix S3.

3.1 Network analysis of potential impacts

Because of the interconnectivities between processes in the
ecoinvent database, it was possible to perform a network anal-
ysis to understand linkages and latent causes of LCI processes
and impacts. The network analysis was performed on using
SimaPro software to assess the root cause of impacts from
both the dominant LCI processes and the emitted substances.
Appendix S4 shows the top-ranking LCI processes responsi-
ble for each machinery type and in each impact category.

The impacts of abiotic depletion (ADP) were dominated by
lead, zinc, and copper mining operations, as well as syntactic
rubber and gold production. These were the top-ranking back-
ground processes responsible for ADP impacts, associated
with the base materials prior to manufacturing of the machin-
ery such as the production of batteries, tires, and electronic
devices. Unlike the other impact categories, and with the ex-
ception of ADP_F, ADP impact was not caused by the emis-
sion of pollutants. Instead, these impacts were measured as the
amount of used raw materials transformed from their natural
state. Likewise, fossil fuel-based abiotic depletion (ADP_F)
was predominantly (ca. 98%) initiated by the on-shore pro-
duction of petroleum, with small contributions from the burn-
ing of sweet gas (1%) and waste natural gas (1%) in the fossil
fuel-refining process.

Acidification potential (AP) was influenced primarily by
waste natural gas and heat fuel oil during the refinery process-
ing of fossil fuel. The freight transport of goods by transoce-
anic tankers and the combustion of diesel fuel by construction
machinery (with 10 ppm sulfur) were the other contributing
LCI processes in the AP category. Airborne emissions from

@ Springer

these processes resulted from SO2, and to the lesser degree,
NOx.

The disposal of spoils from lignite and coal mining, on-
shore production of petroleum, and combustion of diesel by
construction machinery contributed to eutrophication poten-
tial (EP). Infiltration of phosphate and oxidizable pollutants
into water bodies and the airborne emission of NOx were the
substances causing these impacts.

Freshwater aquatic ecotoxicity (FE) was mainly dominated
by the disposal of spoil from lignite and hard coal mining,
water discharge from the oil industry, and the incineration of
scrap steel. Utilization of lignite and coal (as energy sources
for on-shore well operation and pig iron production) results in
the infiltration of spoil into water (Doka 2009). The assumed
waste treatment scenario for the used tires triggers impacts
associated with the incineration of scrap steel. Waste tires
containing steel wires in their structures were assumed to be
incinerated as the fuel source in cement production. Mining,
discharge, and incineration results in heavy metal leachates
reaching water bodies, including nickel, copper, beryllium,
barium, vanadium, and zinc.

The direct and indirect emission of CO2 was the dominant
causes of global warming potential (GWP) impact. This sub-
stance is formed during the combustion of diesel fuel (by the
machinery) and the upstream processes related to the produc-
tion of the consumed diesel.

Human toxicity (HT) was related to the production of
ferrochromium as the input to low-alloyed steel produc-
tion, the discharge of treated water, and the combustion of
heavy fuel oil by the oil industry prior to the production
of diesel fuel. Hazardous emissions, like chromium VI,
nickel, benzene, cadmium, and hydrogen fluoride, were
the major airborne substances contributing to the HT
impact.

Marine aquatic ecotoxicity (ME) was dominated by im-
pacts from the disposal of spoil from lignite and hard coal
mining, water discharge from the oil industry, and sulfidic
tailing from copper mining. These supply chain processes
involve in the discharge of toxic pollutants to air, water, and
soil.

Like ADP_F, the source of impacts for the ozone depletion
(ODP) was linked to diesel fuel production. However, the
underlying driver of this impact was related to the discharge
of reactive air pollutants that degrade the ozone layer, like
bromotrifluoromethane, 1,2-dichlorotetrafluoroethane, and
chlorodifluoromethane.

Photochemical oxidation (PO) had somewhat similar un-
derlying causes in GWP impact. The dominant processes in
this regard were direct emission from the combustion of die-
sel, the diesel production supply chain, and the discharge of
waste natural gas during petroleum refinement. Carbon mon-
oxide, sulfur dioxide, pentane, and butane were the leading
airborne substances contributing to the PO impact.
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Terrestrial ecotoxicity (TE) was influenced by the supply
chain processes and the release of heavy metal substances.
Drilling waste during the excavation of reservoirs, emission
of waste natural gas, and the combustion of refinery gas (as the
background processes prior to the production of diesel), as
well as production processes related to low-alloyed steel and
cast iron, constituted 40% of the supply chain—related impacts
in the TE category.

3.2 Sensitivity analysis

Based on the results obtained from the network analysis, it
was identified that diesel fuel, ferro materials, tires, and lead
were the impactful inputs in some of the impact categories. A
series of sensitivity analyses were therefore performed to ex-
amine the responsiveness of the studied system to changes in
these inputs. Figure 3 illustrates the relative changes in total
impacts based on a 10% increase in each input. The compar-
ison was made by using the baseline scenario, for which the
impacts have been previously discussed, as demonstrated in
Fig. 2 and Appendix S2. In addition, the sensitivity analysis
was limited to the two most polluting machinery types to
avoid complicating the assessment. This also included ma-
chinery types with different means of mobility, i.e., tire versus
track-chain machines.

An increase in fuel consumption and a subsequent in-
crease in tailpipe emissions had significant effects on
most of the impact categories. The extent of this impact
is shown in the fact that the ratio of fuel consumption to
impacts increased by almost 100% for ADP F, AP, EP,
GWP, ODP, and PO.

Despite the high response rates, the sensitivity of impacts
from the other LCI processes was not as significant as those
resulting in fuel consumption. In fact, the system was resilient
to the other adjusted processes, which did not cause a signif-
icant response. The quantitative values summarized in Fig. 3
are included in Appendix S5.

3.3 Uncertainty analysis

In addition to the network and sensitivity analyses, uncer-
tainties of the single-point impact assessments needed to be
evaluated to enhance the reliability of the results. For this,
uncertainty analysis was based on the variability of the created
LCI data, focusing solely on the total impact assessment.

In doing so, the pedigree approach was used to calculate
the uncertainty of the input values in each created LCI process
(Weidema et al. 2013). This was done by assigning uncer-
tainties of input and output flows within the studied system,
based on a calculation made by the pedigree matrix to quantify
the quality of information. The calculation is done via six
indicators to measure the quality of the information in a qual-
itative manner (i.e., reliability, completeness, temporal

correlation, geographical correlation, further technological
correlation, and sample size).

Figure 4 is based on the uncertainty analysis and depicts
comparative results for each impact category. The analysis
was performed within the SimaPro environment using
Monte Carlo simulation and the pedigree uncertainty ap-
proach. Figure 4 shows random deviation and relative accura-
cy in the impact results based on 1000 iterations with a 95%
confidence interval. The numerical values summarized in
Fig. 4 are also provided in Appendix S6.

Figure 4 is the integration of box plots and violin plots (i.e.,
kernel distribution plots) showing the overall spread of the
results. By evaluating the mean and median values, it became
clear that the order of impacts from the different machinery
types was not changed. This meant that CE48 remained the
most polluting machine, followed by AH30 and so on. This, to
some extent, can be explained by the assumption that the
uncertainty for all the machinery was identical. However, by
comparing the lower and upper bounds of the boxplots (i.e.,
the 25th and 75th percentiles), and the standard divisions, it
was no longer possible to identify with complete certainty
whether one construction machine had a greater or lesser im-
pact relative to the others. In other words, Fig. 4 shows the
probability of the impacts from one machine being higher or
lower than the others.

4 Discussion

The machinery impact assessment shows, similar to other
studies (Lee et al. 2000; Athanassiadis et al. 2002; Kim et al.
2012a), that the operation phase of fossil fuel-based machin-
ery was the dominant cause of environmental impacts. Indeed,
the operation phase was sometimes the only main cause of the
potential impacts. However, for some impact categories, such
as ADP, FE, HT, ME, and TE, other phases also contributed.

Figure 2 showed strong evidence of the relative impacts in
each category of machinery with respect to their operational
weight. This indicates that the heavier a machine is, the more
environmental impacts it will have over its entire lifecycle
(NB. It is worthwhile to remember that “the heavier, the more
environmental impacts” statement compares only construc-
tion machinery belonging to the same category and
performing under similar operating condition.) This is pre-
dominantly because of the higher fuel consumption associated
with heavier machinery, especially when performing more
difficult tasks. However, the proportion of impacts caused
by the production and consumption of diesel fuel was depen-
dent on machine lifetime, fuel efficiency, and operational
efficiency.

Although environmental impacts during the end-of-life
phase of machinery have been considered to be relatively
insignificant relative to other phases (Lee et al. 2000; Kim
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Fig. 3 Sensitivity analysis of the developed system to changes

et al. 2012a, b), this study indicates that this is not nec-
essarily the case. This highlights the importance of up-to-
date LCA databases, which have higher resolutions for
capturing potential impacts (Steubing et al. 2016).
Impacts during this phase were, to a very large extent,
linked to the assumed treatment of used tires at the end
of their life. However, if this assumption was changed,
and a cleaner alternative treatment was applied, the im-
pact share from the treatment of used tires during the end-
of-life phase would decrease.

The sensitivity analysis focused on few impactful ma-
terials but did not consider sensitivity to the lifetimes of
machinery. In other words, changes in the operable life-
time of machinery might substantially change the overall
patterns shown in Fig. 2. This may conflict with the gen-
eral statement that “the heavier the machinery, the higher
the impacts,” as a longer lifetime will equate to additional
fuel consumption, additional maintenance and services,
and additional waste materials. This longer lifetime may
also affect the engine deterioration factor, that machinery
will potentially be operated with a higher emission factor
than suggested in Table 4.

The uncertainty analysis shows that the distribution of un-
certainty becomes wider for machinery with higher relative
impacts (see Fig. 2), which in turn results in stretching the
density distribution, i.e., shallower probability density func-
tions for machinery with relatively higher impacts. This, in
fact, was the result of assuming an equal number of iterations
(1000) for all types of machinery, and the same uncertainty
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values for all inputs and outputs to all phases, expect the
operation phase.

4.1 Effective hour

Different types of machinery have engines with certain
emission standards and are operated with different work-
loads (i.e., working cycles and operational hours). In ad-
dition, as construction machinery is operated for diverse
purposes (e.g., material procurement/delivery or on-site
construction), performance is influenced by several pa-
rameters. Some of these parameters might change fuel
consumption rates and, subsequently, change the stated
maximum permissible emissions (Armas et al. 2009;
Sennoune et al. 2014).

Use of the “effective hour” (a function of lifetime and fuel
efficiency) assisted in reducing uncertainties surrounding the
operation time and the number of years a machine might be
serviceable (Lindgren 2007; Notter and Schmied 2015). In
addition, this unit indicates the number of hours a machine
can be operated effectively, excluding unproductive hours. In
other words, the effective hours unit only considers the total
number of working hours minus inactive hours, for the total
lifetime of a machine.

4.2 Engine deterioration model

In general, chemical reactions during the operation of an en-
gine are challenging processes to represent. Even though



Int J Life Cycle Assess (2020) 25:1472-1485 1481
ADP ADP_F AP EP
WL32 WL32 WL32 WL32
WL25 S—— WL25 WL25 WL25] — ee————
WL21{ —————— WL21 | —— WL21| <———— WL21{ ~————
WL16{ —E———— WL16 - —————— WL16 | Em———— WL16| «E—————————
WE20{ —fe—— | WE2( | —Em— WE20 WE20{ —~Si————
WE14{ —~S—— WE14- <E——— WE14 WE14{ <
G20 —_—— G204 =—=m— G20 —_—— G20 —_——
CE48 CE48 CE48 CE48
CE23 CE23 === CE23{ === CE23{ —===m—
CE22{ —====— CE22 —se===— CE22{ —====—— CE22{ —===—r
CE16{ —=e=— CE16 <==—o CE16{ ===—o CE16{ ===—
AH30 AH30{ ————— AH30 AH30
AH20 AH20{ —==—=—— AH204{ —e==—r AH20{  —e=——
2e+00 4e+00 6e+00 0e+00 1e+08 2e+08 3e+08 4e+08 5e+08  0e+00 1e+04 2e+04 3e+04 d4e+04 5e+04  0e+00  2e+03  4e+03  6e+03
FE GWP HT ME
WL32 WL32 ——— WL32 WL32
WL25 WL25 —— WL25] ——emm— WL25
WL21 o  ——— W21, —em—— W21 —i—— WL21{ ~e——
WL16{ —S———— WL16- <&— WL161 <S—— WL16{ <ES————
> WE20 WE20- e WE20{ -—E—————— WE20{ =Sis————
@ WE14 WE14- <@— WE14{ <@——— WE14{ <ES————
£ G20 G20 — G204 —E=— G20 ===
5 cE48 CE48 CE48 CE48
& CE31 CE31 CE31 CE31 —_———
S CE23 CE23 —= CE23{ —===m— CE23{ ===
CE22 CE22-  —=m— CE22- —e=m—r CE22{ —e=m—r
CE16{ —e=—o CE16- <=— CE164{ —&=— CE16{ —e=—
AH30 AH30 AH30 —_—— AH30
AH20 AH20+  —em— AH20{  ~—e=m— AH20{  —e—m——
0e+00  2e+05  4e+05  6e+05  8e+05 5.0e+06 1.0e+07 1.5e+07 2.0e+07 0.0e+00 5.0e+05 1.0e+06 1.5e+06 2.0e+06 5.0e+08 1.0e+09 1.5e+09 2.0e+09 2.5e+09
oppP PO TE —_—
WL32 WL32 —— WL32 Machinery
WL25 WL25 —————— WL25 ——E——— g E
WL21 WL21  —E——— WL21 ~Emm——— AH20 G20
WL16 1 <E— WL16+ < WL16q ~E—————————
WE20] emm———————— WE20 = WE20{ - EJ AH30 E5 WE14
WE14{ “8——————— WE14 - <@ WE14{ <ES—————
G20 G204  ===— G204 ~—=E=—— E3 CE16 E WE20
CE48 CE48 CE48 EJ cE22 B wL16
CE31 CE31 CE31 —_——
CE23 CE23{ ——mm— CE23| —=—— B3 cE23 B wL21
CE22 CE22- —emm— CE22- —=em—
CE16 === CE16- —e— CE164{ —e=— E3 CE31 . WL25
AH30 AH30+ AH30 —_—— B CcE4s . WL32
AH20 1, ; I | AH20{  —=m— s s AH0{ —em——
0e+00 26+00 4e+00 6e+00 2e+03 4e+03 6e+03 0e+00  3e+03  6e+03  9e+03
Impact

Fig. 4 Results of Monte Carlo simulation

pollutants form from carbonization of fuels within the com-
bustion chamber, their formation heavily depends on the prop-
erties of the involved chemical compounds, their chemistry,
and the conditions under which the reactions are occurring.
Therefore, each pollutant from a given chemical reaction fol-
lows a particular pathway to its formation. Consequently, dif-
ferent pollutants are formed at different stages of the reaction
and at different rates, and therefore might follow different
deterioration models (Riemersma et al. 2002; Dallmann and
Menon 2016; Thiruvengadam et al. 2016).

Use of deterioration rates based on logistic distribution
models provided an alternative approach to the use of linear
models used in prior work (Hajji and Lewis 2013; Notter and
Schmied 2015). Such a simplified deterioration model might
prove inadequate for representing real-world processes. For
example, Pang et al. (2014), Borken-Kleefeld and
Chen (2014), Ercan et al. (2015), and Zhang et al.
(2017) showed that engine deterioration and pollutant
formation does not propagate linearly. Nevertheless, to
the best of our knowledge, there are no alternative dis-
tribution models recommended for construction machin-
ery that adequately explain the effect of engine deterio-
ration on the rate of pollutant formation over time.
Therefore, there is some uncertainty whether the logistic
distribution models applied in this study accurately de-
scribe the nature of engine deterioration over the life-
times of different machinery.

4.3 Applied impact assessment method

The European Commission has issued various emission stan-
dards for different engines, which were distinctive in their
performance and emission levels (Nesbit et al. 2016).
Despite the historical regulations, the effect of different emis-
sion standards on relative environmental impact was not
assessed in this study. However, by evaluating the emission
factors in the EMEP/EEA guidebook, and by checking the
characterization factors using the CML method, it became
clear that only three of the impact categories could be influ-
enced by different emission standards: acidification potential
(AP), eutrophication potential (EP), and human toxicity (HT).
This is because of NOx, which was the only critical airborne
substance that could have affected the LCA results when con-
sidering different emission standards. However, this is only
valid if the effect of technological advancements in fuel effi-
ciency and after-treatment systems is disregarded, and if it is
assumed that these are not influenced by the emission standard
technologies, which affect the amount of pollution formation.

Across the studied subcategories of construction machinery,
the causes of impacts in all impact categories derived from sim-
ilar processes and polluting substances. This was a result of the
machinery having similar powertrain technologies and being cer-
tified by the emission standard Stage V. However, it was found
that the applied impact assessment method was limited in some
respects. For example, the CML method was incapable of
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addressing the impacts associated with volatile organic com-
pounds (VOCs) and PM. Hence, these airborne emissions were
not considered by this method.

One of the main challenges with construction machinery,
particularly when equipped with diesel-powered engines, is
the high emission of PM throughout its service life (Lewis
et al. 2009; Fu et al. 2012; Notter and Schmied 2015; Cao
et al. 2016). Emission of PM has subsequent negative effects
on human health, the acidity of water bodies, and nutrition
balance of soils and ecosystems (Grantz et al. 2003; Kampa
and Castanas 2008; Zhao et al. 2013; Gronlund et al. 2015;
Kim et al. 2015). Similarly, VOCs have several negative im-
pacts; VOCs have been found to have impacts on human health
and the formation of tropospheric ozone (Lee et al. 2002;
Koppmann 2007; Zhou et al. 2011; Costagliola et al. 2014).

4.4 Comparison of results

Even though the importance of construction machinery has been
highlighted in the LCA community (Barandica et al. 2013;
Garbarino et al. 2014; Barati and Shen 2016; Karlsson et al.
2017), very few studies were found that focus on the issue of
the environmental impacts of construction machinery. Instead,
the LCA of machinery has been integrated into bigger systems,
like construction projects, in an effort to provide an overarching
perspective on the potential impacts in the studied systems (Park
et al. 2003; Cass and Mukherjee 2011; Barandica et al. 2013;
Melanta et al. 2013; O’Born et al. 2014). In taking such an
approach, it is difficult to directly compare existing results with
this study. To overcome this, comparisons were performed based
on the measured data reported in earlier studies during the oper-
ation phase of construction machinery. This, in a sense, helps
understand the degree to which the inputs used in this study
compare with previous work.

A review of the measured data reported in other studies
showed that the amount of fuel consumption was 30 to 50%
lower than that used in this study for machinery with a similar
net power output (Lewis et al. 2012). Likewise, hourly mea-
sured emissions were lower than the calculated emissions in
this study by factor of 3 to 10 (Lewis et al. 2012; Sennoune
et al. 2014).

The higher values calculated in this study may potentially
be linked to three major underlying factors. Firstly, this study
considered a 100% load factor for each effective hour of op-
eration. This unrealistic assumption might have drastically
affected the results, producing higher emissions and associat-
ed impacts. However, the results may be adjusted for the op-
eration phase, by simply applying relevant coefficients. This
means that if, rather than 100%, a load factor of 45% is more
appropriate; the results for the operation phase can be multi-
plied by 0.45 to make the required adjustment.

Secondly, the effect of engine deterioration on the intensity
of' emissions was not evaluated in previous studies. This is due
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to an absence of continuous measurement data that reflect the
effects of “wear and tear” during the accumulated engine
hours. However, based on various studies (Chen and
Borken-Kleefeld 2014; Pang et al. 2014; Ercan et al. 2015;
Zhang et al. 2017), it has been proven that the rate of exhaust
emission increases with hours of engine use. Thirdly, the as-
sumed energy intensity and emission factors, coupled with the
assumed engine deterioration model, might have resulted in
higher calculated values for the operation phase.

4.5 Limitations

Even though it strived in this study to be critical and conduct a
comprehensive study, there were still gaps left that this study
could not close. Hence, it is advised to consider the presented
results with caution. Below, some of the main challenges in
this study could be found.

Due to a lack of available information, this study was unable
to include some machine parts in the LCI processes including
catalytic convertors, breaking systems, and filters; these com-
ponents should be taken into account in future studies. Also,
detailed information should replace generic information in the
LCI datasets to enhance the quality of similar studies.

This study was unable to account for pollutants other than
those documented in the EMEP/EEA guidebook, and it as-
sumed a 100% load factor for each effective hour. In future
studies, more pollutants should be included, and a more ap-
propriate load factor should be applied. The engine deteriora-
tion model employed a logistic distribution to represent the
effect of cumulative engine hours for all studied exhaust gas-
es. This assumption might not hold, however, as pollution
formation for different pollutants may follow different distri-
butions. Moreover, the assumed energy intensity and emission
factors per hourly consumed volume of diesel may have
overestimated the cumulative emissions throughout the oper-
ation phase. Hence, it is necessary to apply representative
energy intensity and emission factors, as well as engine dete-
rioration models, to enhance the representativeness of LCA
results.

This study assumed that all sulfur is converted to SO2
during the carbonization of fuel. This assumption may only
hold in the absence of catalytic converters. However, all cer-
tified machinery has a catalytic converter (to perform desul-
furization, DeSOx, and denitrogenating, DeNOx), meaning
the amount of oxidized sulfur and nitrate is significantly
reduced.

Although the applied emission factors were from the
EMEP/EEA guidebook, which are based on laboratory testing
(steady-state engine dynamometer tests), the accuracy of these
factors needs to be improved for the future studies based on
real-world measurements. Some recent research has empha-
sized the importance of using representative datasets, includ-
ing those that reflect actual machinery duty cycles (Frey et al.
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2008; Lewis et al. 2009; Fu et al. 2012; Lijewski et al. 2013;
Jerksjo et al. 2015; Cao et al. 2016). The importance of using
more realistic emission factors was also emphasized by
Lijewski et al. (2013), who found that emission of some pol-
lutants based on different engine standards did not always
reflect real-world measurements.

As it was shown by Lewis et al. (2012), changes in the
operating condition for similar machinery affect the rate of
fuel consumption. Even though the integration of EH to the
functional unit in this study provided a potential way to ex-
plain the productive lifetime, it was not precise enough to
attribute the specification of operating condition. Except for
the wheel loaders that operated in well-designed and well-
operated rock quarries to move blasted rock materials with a
d50 of 200-250 mm, medium operating condition was con-
sidered for the rest of construction machinery. This limitation
was due to the lack of more specified data that stopped this
work from creating a more precise functional unit. However,
there is a need for harmonization of LCA in the domain of
civil work to ease the inclusivity of the LCA of construction
machinery. And, this would be achievable by increasing the
accuracy of the functional unit for construction machinery
(like by introducing new guidelines) to assure the exclusivity
of the LCA results.

This LCA study only considered the consumption of
non-biogenic diesel fuel during the operation of the con-
struction machinery. However, consumption of different
fuel types, like biodiesel and natural gas, affects the
LCA results because of variations in chemical composi-
tions of each fuel, embodied environmental impacts, etc.
Despite the evidence, it was very difficult to cover the
matter in this study due to two main challenges. The
first is related to the lack of existing information regard-
ing EF corresponding to different fuel types, and the
second is related to the lack of LCI processes for dif-
ferent fuel types in ecoinvent. This study used the pub-
licly available data related to the EFs for non-road
heavy-duty machinery that was published by EMEP/
EEA guidebook. The published document only showed
EFs for diesel-based engines based on different engine
emission standards, but it did not contain EF informa-
tion for other fuel types.

Even if it could have been assumed that the EF is
insignificant for biogenic and non-biogenic types of die-
sel, there was still a data gap in the used LCI database.
Ecoinvent database unfortunately did not have LCI pro-
cesses for different fuel types. Even though it would
have been possible to combine ecoinvent with other
LCI databases (e.g., US), it was decided not to do so.
This was decided as the system boundary for different
LCI databases often differs and combining different pro-
cesses may result in double-counting.

5 Conclusion

The goal of this study was to perform a regionalized attribu-
tional LCA for different subcategories of construction ma-
chinery equipped with Stage V diesel engines. The study used
generic LCI processes developed by ecoinvent v3.3 and mod-
ified them to create related LCI processes. In addition, it used
documented information about the statistical performance of
different subcategories of construction machinery, and
coupled this with meso-level emission accounting to quantify
impacts through the entire machinery lifetime (i.e., a cradle-to-
grave assessment).

A similar conclusion is drawn to previous studies, that the
operation phase of machinery is responsible for most impacts
in the evaluated impact categories. The main cause of impacts
from the operation phase stemmed from the production, dis-
tribution, and combustion of low-sulfur diesel, via tailpipe
emissions. This was further demonstrated by the sensitivity
analysis involving a partial increase in fuel consumption.

However, by performing the full lifecycle analysis of the
studied construction machinery, it became clear that the oper-
ation phase was not the only cause of impacts. Utilization of
non-energetic materials in the manufacturing and maintenance
of machinery also contributed to the impact in some catego-
ries. In addition, the assumed recycling of tires at the end of
their service life (as a fuel source for cement production) re-
sulted in considerable impact on freshwater aquatic
ecotoxicity (FE). This strategic approach towards material
handling (at the end of its service life) may influence the
realized impacts.

Additionally, it was shown that the environmental impacts
and the relative differences between types of machinery
followed approximately similar patterns. This might, to some
degree, question the necessity of including so many indicators
in the assessment; a machine with the highest impact in one
was consistent with the impact in other categories. Such be-
haviors were sourced from similar influential factors and de-
pendencies in the LCI processes, proportioned by the opera-
tion weight of machinery and, at the end, showed that heavier
machinery had more environmental impacts across its entire
lifecycle. However, this statement may not hold when evalu-
ating the environmental impacts of machinery with different
powertrain systems in future research. Yet, the impact results
from different categories in this study may potentially be used
for the future comparison.
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